mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 17:48:57 +08:00
Compare commits
8 Commits
remove_dat
...
run_update
Author | SHA1 | Date | |
---|---|---|---|
37ecef0722 | |||
09825e3a09 | |||
c04b2985e3 | |||
5e8b04d7ba | |||
ee2e772848 | |||
37a4278bc5 | |||
8ef268e68f | |||
f2ee305898 |
@ -16,9 +16,10 @@
|
||||
import argparse
|
||||
import copy
|
||||
import os
|
||||
import random
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
import glob
|
||||
import yaml
|
||||
|
||||
|
||||
@ -29,7 +30,6 @@ COMMON_ENV_VARIABLES = {
|
||||
"RUN_PIPELINE_TESTS": False,
|
||||
# will be adjust in `CircleCIJob.to_dict`.
|
||||
"RUN_FLAKY": True,
|
||||
"DISABLE_SAFETENSORS_CONVERSION": True,
|
||||
}
|
||||
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
|
||||
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "vvv": None, "rsfE":None}
|
||||
@ -82,15 +82,15 @@ class EmptyJob:
|
||||
@dataclass
|
||||
class CircleCIJob:
|
||||
name: str
|
||||
additional_env: dict[str, Any] = None
|
||||
docker_image: list[dict[str, str]] = None
|
||||
install_steps: list[str] = None
|
||||
additional_env: Dict[str, Any] = None
|
||||
docker_image: List[Dict[str, str]] = None
|
||||
install_steps: List[str] = None
|
||||
marker: Optional[str] = None
|
||||
parallelism: Optional[int] = 0
|
||||
pytest_num_workers: int = 8
|
||||
pytest_options: dict[str, Any] = None
|
||||
pytest_options: Dict[str, Any] = None
|
||||
resource_class: Optional[str] = "xlarge"
|
||||
tests_to_run: Optional[list[str]] = None
|
||||
tests_to_run: Optional[List[str]] = None
|
||||
num_test_files_per_worker: Optional[int] = 10
|
||||
# This should be only used for doctest job!
|
||||
command_timeout: Optional[int] = None
|
||||
@ -130,12 +130,6 @@ class CircleCIJob:
|
||||
|
||||
def to_dict(self):
|
||||
env = COMMON_ENV_VARIABLES.copy()
|
||||
if self.job_name != "tests_hub":
|
||||
# fmt: off
|
||||
# not critical
|
||||
env.update({"HF_TOKEN": "".join(["h", "f", "_", "H", "o", "d", "V", "u", "M", "q", "b", "R", "m", "t", "b", "z", "F", "Q", "O", "Q", "A", "J", "G", "D", "l", "V", "Q", "r", "R", "N", "w", "D", "M", "V", "C", "s", "d"])})
|
||||
# fmt: on
|
||||
|
||||
# Do not run tests decorated by @is_flaky on pull requests
|
||||
env['RUN_FLAKY'] = os.environ.get("CIRCLE_PULL_REQUEST", "") == ""
|
||||
env.update(self.additional_env)
|
||||
@ -155,7 +149,7 @@ class CircleCIJob:
|
||||
# Examples special case: we need to download NLTK files in advance to avoid cuncurrency issues
|
||||
timeout_cmd = f"timeout {self.command_timeout} " if self.command_timeout else ""
|
||||
marker_cmd = f"-m '{self.marker}'" if self.marker is not None else ""
|
||||
junit_flags = " -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
|
||||
junit_flags = f" -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
|
||||
joined_flaky_patterns = "|".join(FLAKY_TEST_FAILURE_PATTERNS)
|
||||
repeat_on_failure_flags = f"--reruns 5 --reruns-delay 2 --only-rerun '({joined_flaky_patterns})'"
|
||||
parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> '
|
||||
@ -183,33 +177,14 @@ class CircleCIJob:
|
||||
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
|
||||
}
|
||||
},
|
||||
# During the CircleCI docker images build time, we might already (or not) download the data.
|
||||
# If it's done already, the files are inside the directory `/test_data/`.
|
||||
{"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
|
||||
{"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
|
||||
{"run": {"name": "fetch hub objects before pytest", "command": "python3 utils/fetch_hub_objects_for_ci.py"}},
|
||||
{"run": {
|
||||
"name": "Run tests",
|
||||
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
|
||||
},
|
||||
{"run":
|
||||
{
|
||||
"name": "Check for test crashes",
|
||||
"when": "always",
|
||||
"command": """if [ ! -f tests_output.txt ]; then
|
||||
echo "ERROR: tests_output.txt does not exist - tests may not have run properly"
|
||||
exit 1
|
||||
elif grep -q "crashed and worker restarting disabled" tests_output.txt; then
|
||||
echo "ERROR: Worker crash detected in test output"
|
||||
echo "Found: crashed and worker restarting disabled"
|
||||
exit 1
|
||||
else
|
||||
echo "Tests output file exists and no worker crashes detected"
|
||||
fi"""
|
||||
},
|
||||
},
|
||||
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
|
||||
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
|
||||
{"run": {"name": "Errors", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
|
||||
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
|
||||
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
|
||||
{"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
|
||||
{"store_test_results": {"path": "test-results"}},
|
||||
{"store_artifacts": {"path": "test-results/junit.xml"}},
|
||||
{"store_artifacts": {"path": "reports"}},
|
||||
@ -271,6 +246,7 @@ custom_tokenizers_job = CircleCIJob(
|
||||
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
|
||||
)
|
||||
|
||||
|
||||
examples_torch_job = CircleCIJob(
|
||||
"examples_torch",
|
||||
additional_env={"OMP_NUM_THREADS": 8},
|
||||
@ -294,6 +270,19 @@ hub_job = CircleCIJob(
|
||||
resource_class="medium",
|
||||
)
|
||||
|
||||
|
||||
onnx_job = CircleCIJob(
|
||||
"onnx",
|
||||
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
|
||||
install_steps=[
|
||||
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
|
||||
],
|
||||
pytest_options={"k onnx": None},
|
||||
pytest_num_workers=1,
|
||||
resource_class="small",
|
||||
)
|
||||
|
||||
|
||||
exotic_models_job = CircleCIJob(
|
||||
"exotic_models",
|
||||
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
|
||||
@ -301,6 +290,7 @@ exotic_models_job = CircleCIJob(
|
||||
pytest_options={"durations": 100},
|
||||
)
|
||||
|
||||
|
||||
repo_utils_job = CircleCIJob(
|
||||
"repo_utils",
|
||||
docker_image=[{"image":"huggingface/transformers-consistency"}],
|
||||
@ -308,6 +298,7 @@ repo_utils_job = CircleCIJob(
|
||||
resource_class="large",
|
||||
)
|
||||
|
||||
|
||||
non_model_job = CircleCIJob(
|
||||
"non_model",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
@ -343,7 +334,7 @@ doc_test_job = CircleCIJob(
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
REGULAR_TESTS = [torch_job, hub_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
|
||||
REGULAR_TESTS = [torch_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
|
||||
EXAMPLES_TESTS = [examples_torch_job]
|
||||
PIPELINE_TESTS = [pipelines_torch_job]
|
||||
REPO_UTIL_TESTS = [repo_utils_job]
|
||||
|
@ -1,6 +1,5 @@
|
||||
import argparse
|
||||
import re
|
||||
|
||||
import argparse
|
||||
|
||||
def parse_pytest_output(file_path):
|
||||
skipped_tests = {}
|
||||
|
29
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
29
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -36,23 +36,19 @@ body:
|
||||
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker @Cyrilvallez
|
||||
- vision models: @yonigozlan @molbap
|
||||
- audio models: @eustlb @ebezzam @vasqu
|
||||
- multimodal models: @zucchini-nlp
|
||||
- text models: @ArthurZucker
|
||||
- vision models: @amyeroberts, @qubvel
|
||||
- speech models: @eustlb
|
||||
- graph models: @clefourrier
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @gante and @Rocketknight1
|
||||
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
|
||||
- continuous batching: @remi-or @ArthurZucker @McPatate
|
||||
- pipelines: @Rocketknight1
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker and @itazap
|
||||
- trainer: @zach-huggingface @SunMarc
|
||||
- attention: @vasqu @ArthurZucker @CyrilVallez
|
||||
- model loading (from pretrained, etc): @CyrilVallez
|
||||
- distributed: @3outeille @ArthurZucker @S1ro1
|
||||
- CIs: @ydshieh
|
||||
|
||||
Integrations:
|
||||
|
||||
@ -60,8 +56,6 @@ body:
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
- kernels: @MekkCyber @drbh
|
||||
- peft: @BenjaminBossan @githubnemo
|
||||
|
||||
Devices/Backends:
|
||||
|
||||
@ -75,6 +69,19 @@ body:
|
||||
|
||||
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
|
||||
|
||||
HF projects:
|
||||
|
||||
- accelerate: [different repo](https://github.com/huggingface/accelerate)
|
||||
- datasets: [different repo](https://github.com/huggingface/datasets)
|
||||
- diffusers: [different repo](https://github.com/huggingface/diffusers)
|
||||
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
|
||||
|
||||
Maintained examples (not research project or legacy):
|
||||
|
||||
- Flax: @Rocketknight1
|
||||
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
|
||||
- TensorFlow: @Rocketknight1
|
||||
|
||||
Research projects are not maintained and should be taken as is.
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
40
.github/PULL_REQUEST_TEMPLATE.md
vendored
40
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -39,23 +39,20 @@ members/contributors who may be interested in your PR.
|
||||
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker @Cyrilvallez
|
||||
- vision models: @yonigozlan @molbap
|
||||
- audio models: @eustlb @ebezzam @vasqu
|
||||
- multimodal models: @zucchini-nlp
|
||||
- text models: @ArthurZucker
|
||||
- vision models: @amyeroberts, @qubvel
|
||||
- speech models: @eustlb
|
||||
- graph models: @clefourrier
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @gante and @Rocketknight1
|
||||
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
|
||||
- continuous batching: @remi-or @ArthurZucker @McPatate
|
||||
- pipelines: @Rocketknight1
|
||||
- tokenizers: @ArthurZucker and @itazap
|
||||
- trainer: @zach-huggingface @SunMarc
|
||||
- attention: @vasqu @ArthurZucker @CyrilVallez
|
||||
- model loading (from pretrained, etc): @CyrilVallez
|
||||
- distributed: @3outeille @ArthurZucker @S1ro1
|
||||
- CIs: @ydshieh
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker
|
||||
- trainer: @zach-huggingface, @SunMarc and @qgallouedec
|
||||
- chat templates: @Rocketknight1
|
||||
|
||||
Integrations:
|
||||
|
||||
@ -63,17 +60,20 @@ Integrations:
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
- kernels: @MekkCyber @drbh
|
||||
- peft: @BenjaminBossan @githubnemo
|
||||
|
||||
Devices/Backends:
|
||||
|
||||
- AMD ROCm: @ivarflakstad
|
||||
- Intel XPU: @IlyasMoutawwakil
|
||||
- Ascend NPU: @ivarflakstad
|
||||
|
||||
Documentation: @stevhliu
|
||||
|
||||
Research projects are not maintained and should be taken as is.
|
||||
HF projects:
|
||||
|
||||
- accelerate: [different repo](https://github.com/huggingface/accelerate)
|
||||
- datasets: [different repo](https://github.com/huggingface/datasets)
|
||||
- diffusers: [different repo](https://github.com/huggingface/diffusers)
|
||||
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
|
||||
|
||||
Maintained examples (not research project or legacy):
|
||||
|
||||
- Flax: @Rocketknight1
|
||||
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
|
||||
- TensorFlow: @Rocketknight1
|
||||
|
||||
-->
|
||||
|
39
.github/copilot-instructions.md
vendored
39
.github/copilot-instructions.md
vendored
@ -1,39 +0,0 @@
|
||||
# copilot-instructions.md Guide for Hugging Face Transformers
|
||||
|
||||
This copilot-instructions.md file provides guidance for code agents working with this codebase.
|
||||
|
||||
## Core Project Structure
|
||||
|
||||
- `/src/transformers`: This contains the core source code for the library
|
||||
- `/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
|
||||
- `/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
|
||||
- `/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
|
||||
- `/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
|
||||
|
||||
## Coding Conventions for Hugging Face Transformers
|
||||
|
||||
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
|
||||
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
|
||||
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
|
||||
|
||||
## Copying and inheritance
|
||||
|
||||
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
|
||||
We use two mechanisms to keep this code in sync:
|
||||
|
||||
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
|
||||
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
|
||||
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
|
||||
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
|
||||
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
|
||||
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
|
||||
|
||||
When adding new models, you should prefer `modular` style and inherit as many classes as possible from existing models.
|
||||
|
||||
## Testing
|
||||
|
||||
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
|
||||
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
|
||||
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
|
||||
|
||||
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
|
8
.github/scripts/assign_reviewers.py
vendored
8
.github/scripts/assign_reviewers.py
vendored
@ -13,16 +13,14 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import github
|
||||
import json
|
||||
from github import Github
|
||||
import re
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
|
||||
import github
|
||||
from github import Github
|
||||
|
||||
|
||||
def pattern_to_regex(pattern):
|
||||
if pattern.startswith("/"):
|
||||
start_anchor = True
|
||||
|
130
.github/scripts/codeowners_for_review_action
vendored
130
.github/scripts/codeowners_for_review_action
vendored
@ -7,8 +7,8 @@ docs/ @stevhliu
|
||||
/docker/ @ydshieh @ArthurZucker
|
||||
|
||||
# More high-level globs catch cases when specific rules later don't apply
|
||||
/src/transformers/models/*/processing* @molbap @yonigozlan
|
||||
/src/transformers/models/*/image_processing* @yonigozlan
|
||||
/src/transformers/models/*/processing* @molbap @yonigozlan @qubvel
|
||||
/src/transformers/models/*/image_processing* @qubvel
|
||||
/src/transformers/models/*/image_processing_*_fast* @yonigozlan
|
||||
|
||||
# Owners of subsections of the library
|
||||
@ -186,65 +186,65 @@ trainer_utils.py @zach-huggingface @SunMarc
|
||||
/src/transformers/models/zamba/mod*_zamba* @ArthurZucker
|
||||
|
||||
# Vision models
|
||||
/src/transformers/models/beit/mod*_beit* @yonigozlan @molbap
|
||||
/src/transformers/models/bit/mod*_bit* @yonigozlan @molbap
|
||||
/src/transformers/models/conditional_detr/mod*_conditional_detr* @yonigozlan @molbap
|
||||
/src/transformers/models/convnext/mod*_convnext* @yonigozlan @molbap
|
||||
/src/transformers/models/convnextv2/mod*_convnextv2* @yonigozlan @molbap
|
||||
/src/transformers/models/cvt/mod*_cvt* @yonigozlan @molbap
|
||||
/src/transformers/models/deformable_detr/mod*_deformable_detr* @yonigozlan @molbap
|
||||
/src/transformers/models/deit/mod*_deit* @yonigozlan @molbap
|
||||
/src/transformers/models/depth_anything/mod*_depth_anything* @yonigozlan @molbap
|
||||
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @yonigozlan @molbap
|
||||
/src/transformers/models/deta/mod*_deta* @yonigozlan @molbap
|
||||
/src/transformers/models/detr/mod*_detr* @yonigozlan @molbap
|
||||
/src/transformers/models/dinat/mod*_dinat* @yonigozlan @molbap
|
||||
/src/transformers/models/dinov2/mod*_dinov2* @yonigozlan @molbap
|
||||
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @yonigozlan @molbap
|
||||
/src/transformers/models/dit/mod*_dit* @yonigozlan @molbap
|
||||
/src/transformers/models/dpt/mod*_dpt* @yonigozlan @molbap
|
||||
/src/transformers/models/efficientformer/mod*_efficientformer* @yonigozlan @molbap
|
||||
/src/transformers/models/efficientnet/mod*_efficientnet* @yonigozlan @molbap
|
||||
/src/transformers/models/focalnet/mod*_focalnet* @yonigozlan @molbap
|
||||
/src/transformers/models/glpn/mod*_glpn* @yonigozlan @molbap
|
||||
/src/transformers/models/hiera/mod*_hiera* @yonigozlan @molbap
|
||||
/src/transformers/models/ijepa/mod*_ijepa* @yonigozlan @molbap
|
||||
/src/transformers/models/imagegpt/mod*_imagegpt* @yonigozlan @molbap
|
||||
/src/transformers/models/levit/mod*_levit* @yonigozlan @molbap
|
||||
/src/transformers/models/mask2former/mod*_mask2former* @yonigozlan @molbap
|
||||
/src/transformers/models/maskformer/mod*_maskformer* @yonigozlan @molbap
|
||||
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @yonigozlan @molbap
|
||||
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @yonigozlan @molbap
|
||||
/src/transformers/models/mobilevit/mod*_mobilevit* @yonigozlan @molbap
|
||||
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @yonigozlan @molbap
|
||||
/src/transformers/models/nat/mod*_nat* @yonigozlan @molbap
|
||||
/src/transformers/models/poolformer/mod*_poolformer* @yonigozlan @molbap
|
||||
/src/transformers/models/pvt/mod*_pvt* @yonigozlan @molbap
|
||||
/src/transformers/models/pvt_v2/mod*_pvt_v2* @yonigozlan @molbap
|
||||
/src/transformers/models/regnet/mod*_regnet* @yonigozlan @molbap
|
||||
/src/transformers/models/resnet/mod*_resnet* @yonigozlan @molbap
|
||||
/src/transformers/models/rt_detr/mod*_rt_detr* @yonigozlan @molbap
|
||||
/src/transformers/models/segformer/mod*_segformer* @yonigozlan @molbap
|
||||
/src/transformers/models/seggpt/mod*_seggpt* @yonigozlan @molbap
|
||||
/src/transformers/models/superpoint/mod*_superpoint* @yonigozlan @molbap
|
||||
/src/transformers/models/swiftformer/mod*_swiftformer* @yonigozlan @molbap
|
||||
/src/transformers/models/swin/mod*_swin* @yonigozlan @molbap
|
||||
/src/transformers/models/swinv2/mod*_swinv2* @yonigozlan @molbap
|
||||
/src/transformers/models/swin2sr/mod*_swin2sr* @yonigozlan @molbap
|
||||
/src/transformers/models/table_transformer/mod*_table_transformer* @yonigozlan @molbap
|
||||
/src/transformers/models/textnet/mod*_textnet* @yonigozlan @molbap
|
||||
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @yonigozlan @molbap
|
||||
/src/transformers/models/upernet/mod*_upernet* @yonigozlan @molbap
|
||||
/src/transformers/models/van/mod*_van* @yonigozlan @molbap
|
||||
/src/transformers/models/vit/mod*_vit* @yonigozlan @molbap
|
||||
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @yonigozlan @molbap
|
||||
/src/transformers/models/vitdet/mod*_vitdet* @yonigozlan @molbap
|
||||
/src/transformers/models/vit_mae/mod*_vit_mae* @yonigozlan @molbap
|
||||
/src/transformers/models/vitmatte/mod*_vitmatte* @yonigozlan @molbap
|
||||
/src/transformers/models/vit_msn/mod*_vit_msn* @yonigozlan @molbap
|
||||
/src/transformers/models/vitpose/mod*_vitpose* @yonigozlan @molbap
|
||||
/src/transformers/models/yolos/mod*_yolos* @yonigozlan @molbap
|
||||
/src/transformers/models/zoedepth/mod*_zoedepth* @yonigozlan @molbap
|
||||
/src/transformers/models/beit/mod*_beit* @amyeroberts @qubvel
|
||||
/src/transformers/models/bit/mod*_bit* @amyeroberts @qubvel
|
||||
/src/transformers/models/conditional_detr/mod*_conditional_detr* @amyeroberts @qubvel
|
||||
/src/transformers/models/convnext/mod*_convnext* @amyeroberts @qubvel
|
||||
/src/transformers/models/convnextv2/mod*_convnextv2* @amyeroberts @qubvel
|
||||
/src/transformers/models/cvt/mod*_cvt* @amyeroberts @qubvel
|
||||
/src/transformers/models/deformable_detr/mod*_deformable_detr* @amyeroberts @qubvel
|
||||
/src/transformers/models/deit/mod*_deit* @amyeroberts @qubvel
|
||||
/src/transformers/models/depth_anything/mod*_depth_anything* @amyeroberts @qubvel
|
||||
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @amyeroberts @qubvel
|
||||
/src/transformers/models/deta/mod*_deta* @amyeroberts @qubvel
|
||||
/src/transformers/models/detr/mod*_detr* @amyeroberts @qubvel
|
||||
/src/transformers/models/dinat/mod*_dinat* @amyeroberts @qubvel
|
||||
/src/transformers/models/dinov2/mod*_dinov2* @amyeroberts @qubvel
|
||||
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @amyeroberts @qubvel
|
||||
/src/transformers/models/dit/mod*_dit* @amyeroberts @qubvel
|
||||
/src/transformers/models/dpt/mod*_dpt* @amyeroberts @qubvel
|
||||
/src/transformers/models/efficientformer/mod*_efficientformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/efficientnet/mod*_efficientnet* @amyeroberts @qubvel
|
||||
/src/transformers/models/focalnet/mod*_focalnet* @amyeroberts @qubvel
|
||||
/src/transformers/models/glpn/mod*_glpn* @amyeroberts @qubvel
|
||||
/src/transformers/models/hiera/mod*_hiera* @amyeroberts @qubvel
|
||||
/src/transformers/models/ijepa/mod*_ijepa* @amyeroberts @qubvel
|
||||
/src/transformers/models/imagegpt/mod*_imagegpt* @amyeroberts @qubvel
|
||||
/src/transformers/models/levit/mod*_levit* @amyeroberts @qubvel
|
||||
/src/transformers/models/mask2former/mod*_mask2former* @amyeroberts @qubvel
|
||||
/src/transformers/models/maskformer/mod*_maskformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @amyeroberts @qubvel
|
||||
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @amyeroberts @qubvel
|
||||
/src/transformers/models/mobilevit/mod*_mobilevit* @amyeroberts @qubvel
|
||||
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @amyeroberts @qubvel
|
||||
/src/transformers/models/nat/mod*_nat* @amyeroberts @qubvel
|
||||
/src/transformers/models/poolformer/mod*_poolformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/pvt/mod*_pvt* @amyeroberts @qubvel
|
||||
/src/transformers/models/pvt_v2/mod*_pvt_v2* @amyeroberts @qubvel
|
||||
/src/transformers/models/regnet/mod*_regnet* @amyeroberts @qubvel
|
||||
/src/transformers/models/resnet/mod*_resnet* @amyeroberts @qubvel
|
||||
/src/transformers/models/rt_detr/mod*_rt_detr* @amyeroberts @qubvel
|
||||
/src/transformers/models/segformer/mod*_segformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/seggpt/mod*_seggpt* @amyeroberts @qubvel
|
||||
/src/transformers/models/superpoint/mod*_superpoint* @amyeroberts @qubvel
|
||||
/src/transformers/models/swiftformer/mod*_swiftformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/swin/mod*_swin* @amyeroberts @qubvel
|
||||
/src/transformers/models/swinv2/mod*_swinv2* @amyeroberts @qubvel
|
||||
/src/transformers/models/swin2sr/mod*_swin2sr* @amyeroberts @qubvel
|
||||
/src/transformers/models/table_transformer/mod*_table_transformer* @amyeroberts @qubvel
|
||||
/src/transformers/models/textnet/mod*_textnet* @amyeroberts @qubvel
|
||||
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @amyeroberts @qubvel
|
||||
/src/transformers/models/upernet/mod*_upernet* @amyeroberts @qubvel
|
||||
/src/transformers/models/van/mod*_van* @amyeroberts @qubvel
|
||||
/src/transformers/models/vit/mod*_vit* @amyeroberts @qubvel
|
||||
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @amyeroberts @qubvel
|
||||
/src/transformers/models/vitdet/mod*_vitdet* @amyeroberts @qubvel
|
||||
/src/transformers/models/vit_mae/mod*_vit_mae* @amyeroberts @qubvel
|
||||
/src/transformers/models/vitmatte/mod*_vitmatte* @amyeroberts @qubvel
|
||||
/src/transformers/models/vit_msn/mod*_vit_msn* @amyeroberts @qubvel
|
||||
/src/transformers/models/vitpose/mod*_vitpose* @amyeroberts @qubvel
|
||||
/src/transformers/models/yolos/mod*_yolos* @amyeroberts @qubvel
|
||||
/src/transformers/models/zoedepth/mod*_zoedepth* @amyeroberts @qubvel
|
||||
|
||||
# Audio models
|
||||
/src/transformers/models/audio_spectrogram_transformer/mod*_audio_spectrogram_transformer* @eustlb
|
||||
@ -304,7 +304,7 @@ trainer_utils.py @zach-huggingface @SunMarc
|
||||
/src/transformers/models/donut/mod*_donut* @zucchini-nlp
|
||||
/src/transformers/models/flava/mod*_flava* @zucchini-nlp
|
||||
/src/transformers/models/git/mod*_git* @zucchini-nlp
|
||||
/src/transformers/models/grounding_dino/mod*_grounding_dino* @yonigozlan
|
||||
/src/transformers/models/grounding_dino/mod*_grounding_dino* @qubvel
|
||||
/src/transformers/models/groupvit/mod*_groupvit* @zucchini-nlp
|
||||
/src/transformers/models/idefics/mod*_idefics* @zucchini-nlp
|
||||
/src/transformers/models/idefics2/mod*_idefics2* @zucchini-nlp
|
||||
@ -326,10 +326,10 @@ trainer_utils.py @zach-huggingface @SunMarc
|
||||
/src/transformers/models/mgp_str/mod*_mgp_str* @zucchini-nlp
|
||||
/src/transformers/models/mllama/mod*_mllama* @zucchini-nlp
|
||||
/src/transformers/models/nougat/mod*_nougat* @NielsRogge
|
||||
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @yonigozlan
|
||||
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @qubvel @yonigozlan
|
||||
/src/transformers/models/oneformer/mod*_oneformer* @zucchini-nlp
|
||||
/src/transformers/models/owlvit/mod*_owlvit* @yonigozlan
|
||||
/src/transformers/models/owlv2/mod*_owlv2* @yonigozlan
|
||||
/src/transformers/models/owlvit/mod*_owlvit* @qubvel
|
||||
/src/transformers/models/owlv2/mod*_owlv2* @qubvel
|
||||
/src/transformers/models/paligemma/mod*_paligemma* @zucchini-nlp @molbap
|
||||
/src/transformers/models/perceiver/mod*_perceiver* @zucchini-nlp
|
||||
/src/transformers/models/pix2struct/mod*_pix2struct* @zucchini-nlp
|
||||
|
85
.github/workflows/benchmark_v2.yml
vendored
85
.github/workflows/benchmark_v2.yml
vendored
@ -1,85 +0,0 @@
|
||||
name: Benchmark v2 Framework
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
runner:
|
||||
description: 'GH Actions runner group to use'
|
||||
required: true
|
||||
type: string
|
||||
container_image:
|
||||
description: 'Docker image to use'
|
||||
required: true
|
||||
type: string
|
||||
container_options:
|
||||
description: 'Container options to use'
|
||||
required: true
|
||||
type: string
|
||||
commit_sha:
|
||||
description: 'Commit SHA to benchmark'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
run_id:
|
||||
description: 'Custom run ID for organizing results (auto-generated if not provided)'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
benchmark_repo_id:
|
||||
description: 'HuggingFace Dataset to upload results to (e.g., "org/benchmark-results")'
|
||||
required: false
|
||||
type: string
|
||||
default: ''
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
|
||||
jobs:
|
||||
benchmark-v2:
|
||||
name: Benchmark v2
|
||||
runs-on: ${{ inputs.runner }}
|
||||
if: |
|
||||
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark')) ||
|
||||
(github.event_name == 'schedule')
|
||||
container:
|
||||
image: ${{ inputs.container_image }}
|
||||
options: ${{ inputs.container_options }}
|
||||
steps:
|
||||
- name: Get repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Install benchmark dependencies
|
||||
run: |
|
||||
python3 -m pip install -r benchmark_v2/requirements.txt
|
||||
|
||||
- name: Reinstall transformers in edit mode
|
||||
run: |
|
||||
python3 -m pip uninstall -y transformers
|
||||
python3 -m pip install -e ".[torch]"
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: |
|
||||
python3 -m pip list
|
||||
python3 -c "import torch; print(f'PyTorch version: {torch.__version__}')"
|
||||
python3 -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
|
||||
python3 -c "import torch; print(f'CUDA device count: {torch.cuda.device_count()}')" || true
|
||||
nvidia-smi || true
|
||||
|
||||
- name: Run benchmark v2
|
||||
working-directory: benchmark_v2
|
||||
run: |
|
||||
echo "Running benchmarks"
|
||||
python3 run_benchmarks.py \
|
||||
--commit-id '${{ inputs.commit_sha || github.sha }}' \
|
||||
--run-id '${{ inputs.run_id }}' \
|
||||
--push-to-hub '${{ inputs.benchmark_repo_id}}' \
|
||||
--token '${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}' \
|
||||
--log-level INFO
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
21
.github/workflows/benchmark_v2_a10_caller.yml
vendored
21
.github/workflows/benchmark_v2_a10_caller.yml
vendored
@ -1,21 +0,0 @@
|
||||
name: Benchmark v2 Scheduled Runner - A10 Single-GPU
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 16:30 UTC
|
||||
- cron: "30 16 * * *"
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
|
||||
jobs:
|
||||
benchmark-v2-default:
|
||||
name: Benchmark v2 - Default Models
|
||||
uses: ./.github/workflows/benchmark_v2.yml
|
||||
with:
|
||||
runner: aws-g5-4xlarge-cache-use1-public-80
|
||||
container_image: huggingface/transformers-pytorch-gpu
|
||||
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
|
||||
secrets: inherit
|
21
.github/workflows/benchmark_v2_mi325_caller.yml
vendored
21
.github/workflows/benchmark_v2_mi325_caller.yml
vendored
@ -1,21 +0,0 @@
|
||||
name: Benchmark v2 Scheduled Runner - MI325 Single-GPU
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# Run daily at 16:30 UTC
|
||||
- cron: "30 16 * * *"
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
|
||||
jobs:
|
||||
benchmark-v2-default:
|
||||
name: Benchmark v2 - Default Models
|
||||
uses: ./.github/workflows/benchmark_v2.yml
|
||||
with:
|
||||
runner: amd-mi325-ci-1gpu
|
||||
container_image: huggingface/transformers-pytorch-amd-gpu
|
||||
container_options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
|
||||
secrets: inherit
|
2
.github/workflows/build-ci-docker-images.yml
vendored
2
.github/workflows/build-ci-docker-images.yml
vendored
@ -26,7 +26,7 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "exotic-models", "examples-torch"]
|
||||
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "jax-light", "examples-torch", "examples-tf"]
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
|
3
.github/workflows/build-docker-images.yml
vendored
3
.github/workflows/build-docker-images.yml
vendored
@ -5,7 +5,6 @@ on:
|
||||
branches:
|
||||
- build_ci_docker_image*
|
||||
repository_dispatch:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
inputs:
|
||||
image_postfix:
|
||||
@ -222,7 +221,7 @@ jobs:
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on:
|
||||
group: aws-highcpu-32-priv
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
|
@ -2,10 +2,6 @@ name: Build docker images (Nightly CI)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
push:
|
||||
branches:
|
||||
- build_nightly_ci_docker_image*
|
||||
@ -16,8 +12,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
latest-with-torch-nightly-docker:
|
||||
name: "Nightly PyTorch"
|
||||
if: inputs.job == 'latest-with-torch-nightly-docker' || inputs.job == ''
|
||||
name: "Nightly PyTorch + Stable TensorFlow"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
@ -46,7 +41,6 @@ jobs:
|
||||
|
||||
nightly-torch-deepspeed-docker:
|
||||
name: "Nightly PyTorch + DeepSpeed"
|
||||
if: inputs.job == 'nightly-torch-deepspeed-docker' || inputs.job == ''
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
steps:
|
||||
|
14
.github/workflows/build_documentation.yml
vendored
14
.github/workflows/build_documentation.yml
vendored
@ -16,20 +16,8 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: en
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
||||
build_other_lang:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: ar de es fr hi it ja ko pt zh
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
1
.github/workflows/check_failed_tests.yml
vendored
1
.github/workflows/check_failed_tests.yml
vendored
@ -35,6 +35,7 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
8
.github/workflows/collated-reports.yml
vendored
8
.github/workflows/collated-reports.yml
vendored
@ -35,9 +35,15 @@ jobs:
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
python3 utils/collated_reports.py \
|
||||
--path . \
|
||||
--path /transformers/reports/ \
|
||||
--machine-type ${{ inputs.machine_type }} \
|
||||
--commit-hash ${{ env.CI_SHA }} \
|
||||
--job ${{ inputs.job }} \
|
||||
--report-repo-id ${{ inputs.report_repo_id }} \
|
||||
--gpu-name ${{ inputs.gpu_name }}
|
||||
|
||||
- name: Upload collated reports
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: collated_reports_${{ env.CI_SHA }}.json
|
||||
path: collated_reports_${{ env.CI_SHA }}.json
|
||||
|
1
.github/workflows/doctest_job.yml
vendored
1
.github/workflows/doctest_job.yml
vendored
@ -16,6 +16,7 @@ env:
|
||||
RUN_SLOW: yes
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
|
||||
jobs:
|
||||
|
63
.github/workflows/model_jobs.yml
vendored
63
.github/workflows/model_jobs.yml
vendored
@ -12,6 +12,9 @@ on:
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
runner_map:
|
||||
required: false
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
@ -22,12 +25,6 @@ on:
|
||||
required: false
|
||||
default: run_models_gpu
|
||||
type: string
|
||||
runner_type:
|
||||
required: false
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: false
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -38,6 +35,7 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
@ -50,12 +48,10 @@ jobs:
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on:
|
||||
group: '${{ inputs.machine_type }}'
|
||||
group: ${{ fromJson(inputs.runner_map)[matrix.folders][inputs.machine_type] }}
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
machine_type: ${{ steps.set_machine_type.outputs.machine_type }}
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
@ -109,7 +105,6 @@ jobs:
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
id: set_machine_type
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
@ -125,58 +120,26 @@ jobs:
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
echo "machine_type=$machine_type" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Create report directory if it doesn't exist
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
echo "dummy" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/dummy.txt
|
||||
ls -la /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
|
||||
ls -la
|
||||
# Extract the exit code from the output file
|
||||
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
|
||||
exit ${EXIT_CODE:-1}
|
||||
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
# This step is only to show information on Github Actions log.
|
||||
# Always mark this step as successful, even if the report directory or the file `failures_short.txt` in it doesn't exist
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Captured information
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/captured_info.txt
|
||||
|
||||
- name: Copy test_outputs.txt
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cp /transformers/test_outputs.txt /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
collated_reports:
|
||||
name: Collated Reports
|
||||
if: ${{ always() }}
|
||||
needs: run_models_gpu
|
||||
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
gpu_name: ${{ inputs.runner_type }}
|
||||
machine_type: ${{ needs.run_models_gpu.outputs.machine_type }}
|
||||
secrets: inherit
|
||||
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
|
||||
|
1
.github/workflows/model_jobs_intel_gaudi.yml
vendored
1
.github/workflows/model_jobs_intel_gaudi.yml
vendored
@ -26,6 +26,7 @@ env:
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
|
@ -14,7 +14,7 @@ permissions: {}
|
||||
jobs:
|
||||
get-pr-number:
|
||||
name: Get PR number
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
|
||||
get-pr-info:
|
||||
|
3
.github/workflows/push-important-models.yml
vendored
3
.github/workflows/push-important-models.yml
vendored
@ -2,7 +2,7 @@ name: Slow tests on important models (on Push - A10)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
branches: [ run_update_important_models222 ]
|
||||
|
||||
jobs:
|
||||
get_modified_models:
|
||||
@ -145,7 +145,6 @@ jobs:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
needs: get_modified_models
|
||||
if: needs.get_modified_models.outputs.matrix != '' && needs.get_modified_models.outputs.matrix != '[]'
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-push"
|
||||
|
3
.github/workflows/self-comment-ci.yml
vendored
3
.github/workflows/self-comment-ci.yml
vendored
@ -20,6 +20,7 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
@ -28,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
24
.github/workflows/self-nightly-caller.yml
vendored
24
.github/workflows/self-nightly-caller.yml
vendored
@ -12,36 +12,12 @@ on:
|
||||
branches:
|
||||
- run_ci_with_nightly_torch*
|
||||
|
||||
# Used for `push` to easily modify the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
|
||||
|
||||
jobs:
|
||||
build_nightly_torch_ci_images:
|
||||
name: Build CI Docker Images with nightly torch
|
||||
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
|
||||
with:
|
||||
job: latest-with-torch-nightly-docker
|
||||
secrets: inherit
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: setup_values
|
||||
path: setup_values
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
needs: build_nightly_torch_ci_images
|
||||
|
@ -20,7 +20,7 @@ jobs:
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: amd-mi325
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
@ -33,7 +33,7 @@ jobs:
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: amd-mi325
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
@ -46,7 +46,7 @@ jobs:
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: amd-mi325
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
@ -59,7 +59,7 @@ jobs:
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: amd-mi325
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
|
@ -3,7 +3,7 @@ name: Self-hosted runner scale set (AMD mi355 scheduled CI caller)
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu : amd-mi355-ci-1gpu
|
||||
# 2gpu : amd-mi355-ci-2gpu
|
||||
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
@ -20,10 +20,10 @@ jobs:
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
runner_scale_set: amd-mi355-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -32,10 +32,10 @@ jobs:
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
runner_scale_set: amd-mi355-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -44,20 +44,20 @@ jobs:
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
runner_scale_set: amd-mi355-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
runner_scale_set: amd-mi355-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
65
.github/workflows/self-scheduled-caller.yml
vendored
65
.github/workflows/self-scheduled-caller.yml
vendored
@ -6,7 +6,7 @@ on:
|
||||
- cron: "17 2 * * *"
|
||||
push:
|
||||
branches:
|
||||
- run_nvidia_ci*
|
||||
- run_update_important_models
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
prev_workflow_run_id:
|
||||
@ -52,69 +52,6 @@ jobs:
|
||||
slack_report_channel: "#transformers-ci-daily-models"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
runner_type: "a10"
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-examples"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
trainer-fsdp-ci:
|
||||
name: Trainer/FSDP CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_trainer_and_fsdp_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-training"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
runner_type: "a10"
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-training"
|
||||
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
ci_event: Daily CI
|
||||
working-directory-prefix: /workspace
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
quantization-ci:
|
||||
name: Quantization CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_quantization_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-quantization"
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
@ -26,6 +26,7 @@ env:
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
|
99
.github/workflows/self-scheduled.yml
vendored
99
.github/workflows/self-scheduled.yml
vendored
@ -31,9 +31,6 @@ on:
|
||||
commit_sha:
|
||||
required: false
|
||||
type: string
|
||||
runner_type:
|
||||
required: false
|
||||
type: string
|
||||
models:
|
||||
default: ""
|
||||
required: false
|
||||
@ -48,6 +45,7 @@ env:
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
NUM_SLICES: 2
|
||||
@ -67,6 +65,7 @@ jobs:
|
||||
outputs:
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
runner_map: ${{ steps.set-matrix.outputs.runner_map }}
|
||||
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
@ -93,6 +92,7 @@ jobs:
|
||||
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "runner_map=$(python3 ../utils/get_runner_map.py)" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
|
||||
@ -116,17 +116,16 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs.yml
|
||||
with:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
runner_map: ${{ needs.setup.outputs.runner_map }}
|
||||
docker: ${{ inputs.docker }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
runner_type: ${{ inputs.runner_type }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
secrets: inherit
|
||||
|
||||
run_trainer_and_fsdp_gpu:
|
||||
@ -143,10 +142,9 @@ jobs:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
runner_map: ${{ needs.setup.outputs.runner_map }}
|
||||
docker: ${{ inputs.docker }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
runner_type: ${{ inputs.runner_type }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
report_name_prefix: run_trainer_and_fsdp_gpu
|
||||
secrets: inherit
|
||||
|
||||
@ -462,88 +460,3 @@ jobs:
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_extract_warnings:
|
||||
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
|
||||
if: ${{ always() && inputs.job == 'run_models_gpu' }}
|
||||
name: Extract warnings in CI artifacts
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [setup, run_models_gpu]
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
ref: ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Install transformers
|
||||
run: pip install transformers
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Create output directory
|
||||
run: mkdir warnings_in_ci
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: warnings_in_ci
|
||||
|
||||
- name: Show artifacts
|
||||
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: warnings_in_ci
|
||||
path: warnings_in_ci/selected_warnings.json
|
||||
|
||||
send_results:
|
||||
name: Slack Report
|
||||
needs: [
|
||||
setup,
|
||||
run_models_gpu,
|
||||
run_trainer_and_fsdp_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_quantization_torch_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
if: always() && !cancelled()
|
||||
uses: ./.github/workflows/slack-report.yml
|
||||
with:
|
||||
job: ${{ inputs.job }}
|
||||
# This would be `skipped` if `setup` is skipped.
|
||||
setup_status: ${{ needs.setup.result }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
# This would be an empty string if `setup` is skipped.
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
check_new_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
start_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
4
.github/workflows/slack-report.yml
vendored
4
.github/workflows/slack-report.yml
vendored
@ -36,7 +36,7 @@ jobs:
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always() && !cancelled()
|
||||
if: always()
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
@ -93,7 +93,7 @@ jobs:
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
|
18
.github/workflows/ssh-runner.yml
vendored
18
.github/workflows/ssh-runner.yml
vendored
@ -20,6 +20,7 @@ env:
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
@ -32,17 +33,14 @@ jobs:
|
||||
steps:
|
||||
- name: Get runner to use
|
||||
shell: bash
|
||||
env:
|
||||
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
|
||||
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
|
||||
run: |
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
|
||||
else
|
||||
echo "RUNNER=" >> $GITHUB_ENV
|
||||
@ -87,11 +85,9 @@ jobs:
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_ACTOR: ${{ github.actor }}
|
||||
run: |
|
||||
echo "$GITHUB_ACTOR"
|
||||
github_actor=$GITHUB_ACTOR
|
||||
echo "${{ github.actor }}"
|
||||
github_actor=${{ github.actor }}
|
||||
github_actor=${github_actor/'-'/'_'}
|
||||
echo "$github_actor"
|
||||
echo "github_actor=$github_actor" >> $GITHUB_ENV
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -13,7 +13,6 @@ tests/fixtures/cached_*_text.txt
|
||||
logs/
|
||||
lightning_logs/
|
||||
lang_code_data/
|
||||
reports/
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
|
@ -68,7 +68,8 @@ already reported** (use the search bar on GitHub under Issues). Your issue shoul
|
||||
|
||||
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
|
||||
|
||||
* Your **OS type and version** and **Python**, and **PyTorch** versions when applicable.
|
||||
* Your **OS type and version** and **Python**, **PyTorch** and
|
||||
**TensorFlow** versions when applicable.
|
||||
* A short, self-contained, code snippet that allows us to reproduce the bug in
|
||||
less than 30s.
|
||||
* The *full* traceback if an exception is raised.
|
||||
@ -164,7 +165,8 @@ You'll need **[Python 3.9](https://github.com/huggingface/transformers/blob/main
|
||||
mode with the `-e` flag.
|
||||
|
||||
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
|
||||
failure with this command. If that's the case make sure to install Pytorch then do:
|
||||
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
|
||||
(PyTorch, TensorFlow and/or Flax) then do:
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
@ -278,14 +280,13 @@ are working on it).<br>
|
||||
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
|
||||
☐ Make sure existing tests pass.<br>
|
||||
☐ If adding a new feature, also add tests for it.<br>
|
||||
|
||||
- If you are adding a new model, make sure you use
|
||||
- If you are adding a new model, make sure you use
|
||||
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
|
||||
- If you are adding new `@slow` tests, make sure they pass using
|
||||
- If you are adding new `@slow` tests, make sure they pass using
|
||||
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
|
||||
- If you are adding a new tokenizer, write tests and make sure
|
||||
- If you are adding a new tokenizer, write tests and make sure
|
||||
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
|
||||
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
|
||||
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
|
||||
|
||||
☐ All public methods must have informative docstrings (see
|
||||
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
|
||||
@ -341,7 +342,6 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/t
|
||||
```
|
||||
|
||||
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
|
||||
|
||||
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
|
||||
|
||||
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
|
||||
|
@ -38,6 +38,7 @@ In particular all "Please explain" questions or objectively very user-specific f
|
||||
|
||||
* "How to train T5 on De->En translation?"
|
||||
|
||||
|
||||
## The GitHub Issues
|
||||
|
||||
Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues).
|
||||
@ -153,7 +154,7 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
cd examples/seq2seq
|
||||
torchrun --nproc_per_node=2 ./finetune_trainer.py \
|
||||
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
|
||||
--output_dir output_dir \
|
||||
--output_dir output_dir --overwrite_output_dir \
|
||||
--do_train --n_train 500 --num_train_epochs 1 \
|
||||
--per_device_train_batch_size 1 --freeze_embeds \
|
||||
--src_lang en_XX --tgt_lang ro_RO --task translation \
|
||||
@ -246,6 +247,7 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
|
||||
Try not use italics and bold text too much as these often make the text more difficult to read.
|
||||
|
||||
|
||||
12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to.
|
||||
|
||||
To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link".
|
||||
@ -255,6 +257,7 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
1. https://github.com/huggingface/transformers/issues/9257
|
||||
2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162
|
||||
|
||||
|
||||
13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here.
|
||||
|
||||
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:
|
||||
|
2
Makefile
2
Makefile
@ -3,7 +3,7 @@
|
||||
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
|
||||
export PYTHONPATH = src
|
||||
|
||||
check_dirs := examples tests src utils scripts benchmark benchmark_v2
|
||||
check_dirs := examples tests src utils
|
||||
|
||||
exclude_folders := ""
|
||||
|
||||
|
18
README.md
18
README.md
@ -48,11 +48,9 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_it.md">Italiano</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_bn.md">বাংলা</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
@ -64,11 +62,12 @@ limitations under the License.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
|
||||
</h3>
|
||||
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
|
||||
vision, audio, video, and multimodal model, for both inference and training.
|
||||
|
||||
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
|
||||
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
|
||||
vision, audio, video, and multimodal model, for both inference and training.
|
||||
|
||||
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
|
||||
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
|
||||
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
|
||||
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
|
||||
|
||||
@ -81,7 +80,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
|
||||
|
||||
## Installation
|
||||
|
||||
Transformers works with Python 3.9+, and [PyTorch](https://pytorch.org/get-started/locally/) 2.1+.
|
||||
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
|
||||
|
||||
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
|
||||
|
||||
@ -111,10 +110,10 @@ git clone https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
|
||||
# pip
|
||||
pip install '.[torch]'
|
||||
pip install .[torch]
|
||||
|
||||
# uv
|
||||
uv pip install '.[torch]'
|
||||
uv pip install .[torch]
|
||||
```
|
||||
|
||||
## Quickstart
|
||||
@ -194,6 +193,7 @@ pipeline("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.pn
|
||||
<details>
|
||||
<summary>Visual question answering</summary>
|
||||
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg"></a>
|
||||
</h3>
|
||||
|
@ -6,7 +6,7 @@ developers, researchers, students, professors, engineers, and anyone else to bui
|
||||
|
||||
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
|
||||
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
|
||||
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
|
||||
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
|
||||
to add it.
|
||||
|
||||
## [gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
@ -49,7 +49,7 @@ Keywords: LLMs, Large Language Models, Agents, Chains
|
||||
|
||||
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retrieval mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
|
||||
|
||||
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
|
||||
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
|
||||
|
||||
## [ParlAI](https://github.com/facebookresearch/ParlAI)
|
||||
|
||||
@ -257,7 +257,7 @@ Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusi
|
||||
Keywords: Text-to-3D, Stable Diffusion
|
||||
|
||||
## [txtai](https://github.com/neuml/txtai)
|
||||
|
||||
|
||||
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
|
||||
|
||||
Keywords: Semantic search, LLM
|
||||
@ -309,8 +309,8 @@ Keywords: OCR, LaTeX, Math formula
|
||||
|
||||
OpenCLIP is an open source implementation of OpenAI's CLIP.
|
||||
|
||||
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
|
||||
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
|
||||
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
|
||||
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
|
||||
|
||||
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
|
||||
|
||||
@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
|
||||
|
||||
## [BentoML](https://github.com/bentoml/BentoML)
|
||||
|
||||
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
|
||||
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
|
||||
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
|
||||
|
||||
Keywords: BentoML, Framework, Deployment, AI Applications
|
||||
@ -606,3 +606,4 @@ Keywords: BentoML, Framework, Deployment, AI Applications
|
||||
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
|
||||
|
||||
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
|
||||
|
||||
|
@ -11,28 +11,25 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
from logging import Logger
|
||||
import os
|
||||
from threading import Event, Thread
|
||||
from time import perf_counter, sleep
|
||||
from typing import Optional
|
||||
|
||||
import sys
|
||||
|
||||
# Add the parent directory to Python path to import benchmarks_entrypoint
|
||||
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from benchmarks_entrypoint import MetricsRecorder
|
||||
|
||||
import gpustat
|
||||
import psutil
|
||||
import psycopg2
|
||||
from benchmarks_entrypoint import MetricsRecorder
|
||||
|
||||
|
||||
# Optional heavy ML dependencies - only required when actually running the benchmark
|
||||
try:
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
|
||||
|
||||
TRANSFORMERS_AVAILABLE = True
|
||||
except ImportError:
|
||||
TRANSFORMERS_AVAILABLE = False
|
||||
@ -66,13 +63,7 @@ def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
|
||||
|
||||
|
||||
def run_benchmark(
|
||||
logger: Logger,
|
||||
repository: str,
|
||||
branch: str,
|
||||
commit_id: str,
|
||||
commit_msg: str,
|
||||
metrics_recorder=None,
|
||||
num_tokens_to_generate=100,
|
||||
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, metrics_recorder=None, num_tokens_to_generate=100
|
||||
):
|
||||
# Check if required ML dependencies are available
|
||||
if not TRANSFORMERS_AVAILABLE:
|
||||
@ -80,11 +71,11 @@ def run_benchmark(
|
||||
logger.error("pip install torch transformers")
|
||||
logger.error("Skipping LLaMA benchmark due to missing dependencies.")
|
||||
return
|
||||
|
||||
|
||||
continue_metric_collection = Event()
|
||||
metrics_thread = None
|
||||
model_id = "meta-llama/Llama-2-7b-hf"
|
||||
|
||||
|
||||
# If no metrics_recorder is provided, create one for backward compatibility
|
||||
if metrics_recorder is None:
|
||||
try:
|
||||
@ -163,7 +154,7 @@ def run_benchmark(
|
||||
# First eager forward pass
|
||||
logger.info("running first eager forward pass")
|
||||
start = perf_counter()
|
||||
_ = model(**inputs)
|
||||
outputs = model(**inputs)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
first_eager_fwd_pass_time = end - start
|
||||
@ -172,7 +163,7 @@ def run_benchmark(
|
||||
# Second eager forward pass (should be faster)
|
||||
logger.info("running second eager forward pass")
|
||||
start = perf_counter()
|
||||
_ = model(**inputs)
|
||||
outputs = model(**inputs)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
second_eager_fwd_pass_time = end - start
|
||||
@ -348,7 +339,7 @@ def run_benchmark(
|
||||
continue_metric_collection.set()
|
||||
if metrics_thread is not None:
|
||||
metrics_thread.join()
|
||||
|
||||
|
||||
# Only close the recorder if we created it locally
|
||||
if should_close_recorder:
|
||||
metrics_recorder.close()
|
||||
metrics_recorder.close()
|
@ -31,7 +31,9 @@ from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
from git import Repo
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from optimum_benchmark import Benchmark
|
||||
from optimum_benchmark_wrapper import main
|
||||
|
||||
|
@ -13,20 +13,19 @@
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import importlib.util
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Dict, Tuple, Optional, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
try:
|
||||
from psycopg2.extensions import register_adapter
|
||||
from psycopg2.extras import Json
|
||||
|
||||
register_adapter(dict, Json)
|
||||
PSYCOPG2_AVAILABLE = True
|
||||
except ImportError:
|
||||
@ -39,14 +38,8 @@ class ImportModuleException(Exception):
|
||||
|
||||
class MetricsRecorder:
|
||||
def __init__(
|
||||
self,
|
||||
connection,
|
||||
logger: logging.Logger,
|
||||
repository: str,
|
||||
branch: str,
|
||||
commit_id: str,
|
||||
commit_msg: str,
|
||||
collect_csv_data: bool = True,
|
||||
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str,
|
||||
collect_csv_data: bool = True
|
||||
):
|
||||
self.conn = connection
|
||||
self.use_database = connection is not None
|
||||
@ -58,43 +51,27 @@ class MetricsRecorder:
|
||||
self.commit_id = commit_id
|
||||
self.commit_msg = commit_msg
|
||||
self.collect_csv_data = collect_csv_data
|
||||
|
||||
|
||||
# For CSV export - store all data in pandas DataFrames (only if CSV collection is enabled)
|
||||
if self.collect_csv_data:
|
||||
# Initialize empty DataFrames with proper schemas
|
||||
self.benchmarks_df = pd.DataFrame(
|
||||
columns=[
|
||||
"benchmark_id",
|
||||
"repository",
|
||||
"branch",
|
||||
"commit_id",
|
||||
"commit_message",
|
||||
"metadata",
|
||||
"created_at",
|
||||
]
|
||||
)
|
||||
self.device_measurements_df = pd.DataFrame(
|
||||
columns=["benchmark_id", "cpu_util", "mem_megabytes", "gpu_util", "gpu_mem_megabytes", "time"]
|
||||
)
|
||||
self.model_measurements_df = pd.DataFrame(
|
||||
columns=[
|
||||
"benchmark_id",
|
||||
"time",
|
||||
"model_load_time",
|
||||
"first_eager_forward_pass_time_secs",
|
||||
"second_eager_forward_pass_time_secs",
|
||||
"first_eager_generate_time_secs",
|
||||
"second_eager_generate_time_secs",
|
||||
"time_to_first_token_secs",
|
||||
"time_to_second_token_secs",
|
||||
"time_to_third_token_secs",
|
||||
"time_to_next_token_mean_secs",
|
||||
"first_compile_generate_time_secs",
|
||||
"second_compile_generate_time_secs",
|
||||
"third_compile_generate_time_secs",
|
||||
"fourth_compile_generate_time_secs",
|
||||
]
|
||||
)
|
||||
self.benchmarks_df = pd.DataFrame(columns=[
|
||||
'benchmark_id', 'repository', 'branch', 'commit_id', 'commit_message',
|
||||
'metadata', 'created_at'
|
||||
])
|
||||
self.device_measurements_df = pd.DataFrame(columns=[
|
||||
'benchmark_id', 'cpu_util', 'mem_megabytes', 'gpu_util',
|
||||
'gpu_mem_megabytes', 'time'
|
||||
])
|
||||
self.model_measurements_df = pd.DataFrame(columns=[
|
||||
'benchmark_id', 'time', 'model_load_time', 'first_eager_forward_pass_time_secs',
|
||||
'second_eager_forward_pass_time_secs', 'first_eager_generate_time_secs',
|
||||
'second_eager_generate_time_secs', 'time_to_first_token_secs',
|
||||
'time_to_second_token_secs', 'time_to_third_token_secs',
|
||||
'time_to_next_token_mean_secs', 'first_compile_generate_time_secs',
|
||||
'second_compile_generate_time_secs', 'third_compile_generate_time_secs',
|
||||
'fourth_compile_generate_time_secs'
|
||||
])
|
||||
else:
|
||||
self.benchmarks_df = None
|
||||
self.device_measurements_df = None
|
||||
@ -106,7 +83,7 @@ class MetricsRecorder:
|
||||
"""
|
||||
# Generate a unique UUID for this benchmark
|
||||
benchmark_id = str(uuid.uuid4())
|
||||
|
||||
|
||||
if self.use_database:
|
||||
with self.conn.cursor() as cur:
|
||||
cur.execute(
|
||||
@ -114,32 +91,28 @@ class MetricsRecorder:
|
||||
(benchmark_id, self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
|
||||
)
|
||||
self.logger.debug(f"initialised benchmark #{benchmark_id}")
|
||||
|
||||
|
||||
# Store benchmark data for CSV export (if enabled)
|
||||
if self.collect_csv_data:
|
||||
# Add row to pandas DataFrame
|
||||
new_row = pd.DataFrame(
|
||||
[
|
||||
{
|
||||
"benchmark_id": benchmark_id,
|
||||
"repository": self.repository,
|
||||
"branch": self.branch,
|
||||
"commit_id": self.commit_id,
|
||||
"commit_message": self.commit_msg,
|
||||
"metadata": json.dumps(metadata),
|
||||
"created_at": datetime.utcnow().isoformat(),
|
||||
}
|
||||
]
|
||||
)
|
||||
new_row = pd.DataFrame([{
|
||||
'benchmark_id': benchmark_id,
|
||||
'repository': self.repository,
|
||||
'branch': self.branch,
|
||||
'commit_id': self.commit_id,
|
||||
'commit_message': self.commit_msg,
|
||||
'metadata': json.dumps(metadata),
|
||||
'created_at': datetime.utcnow().isoformat()
|
||||
}])
|
||||
self.benchmarks_df = pd.concat([self.benchmarks_df, new_row], ignore_index=True)
|
||||
|
||||
|
||||
mode_info = []
|
||||
if self.use_database:
|
||||
mode_info.append("database")
|
||||
if self.collect_csv_data:
|
||||
mode_info.append("CSV")
|
||||
mode_str = " + ".join(mode_info) if mode_info else "no storage"
|
||||
|
||||
|
||||
self.logger.debug(f"initialised benchmark #{benchmark_id} ({mode_str} mode)")
|
||||
return benchmark_id
|
||||
|
||||
@ -150,20 +123,16 @@ class MetricsRecorder:
|
||||
# Store device measurements for CSV export (if enabled)
|
||||
if self.collect_csv_data:
|
||||
# Add row to pandas DataFrame
|
||||
new_row = pd.DataFrame(
|
||||
[
|
||||
{
|
||||
"benchmark_id": benchmark_id,
|
||||
"cpu_util": cpu_util,
|
||||
"mem_megabytes": mem_megabytes,
|
||||
"gpu_util": gpu_util,
|
||||
"gpu_mem_megabytes": gpu_mem_megabytes,
|
||||
"time": datetime.utcnow().isoformat(),
|
||||
}
|
||||
]
|
||||
)
|
||||
new_row = pd.DataFrame([{
|
||||
'benchmark_id': benchmark_id,
|
||||
'cpu_util': cpu_util,
|
||||
'mem_megabytes': mem_megabytes,
|
||||
'gpu_util': gpu_util,
|
||||
'gpu_mem_megabytes': gpu_mem_megabytes,
|
||||
'time': datetime.utcnow().isoformat()
|
||||
}])
|
||||
self.device_measurements_df = pd.concat([self.device_measurements_df, new_row], ignore_index=True)
|
||||
|
||||
|
||||
# Store in database if available
|
||||
if self.use_database:
|
||||
with self.conn.cursor() as cur:
|
||||
@ -171,7 +140,7 @@ class MetricsRecorder:
|
||||
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
|
||||
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
|
||||
)
|
||||
|
||||
|
||||
self.logger.debug(
|
||||
f"collected device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
|
||||
)
|
||||
@ -180,13 +149,16 @@ class MetricsRecorder:
|
||||
# Store model measurements for CSV export (if enabled)
|
||||
if self.collect_csv_data:
|
||||
# Add row to pandas DataFrame with flattened measurements
|
||||
row_data = {"benchmark_id": benchmark_id, "time": datetime.utcnow().isoformat()}
|
||||
row_data = {
|
||||
'benchmark_id': benchmark_id,
|
||||
'time': datetime.utcnow().isoformat()
|
||||
}
|
||||
# Flatten the measurements dict into the row
|
||||
row_data.update(measurements)
|
||||
|
||||
|
||||
new_row = pd.DataFrame([row_data])
|
||||
self.model_measurements_df = pd.concat([self.model_measurements_df, new_row], ignore_index=True)
|
||||
|
||||
|
||||
# Store in database if available
|
||||
if self.use_database:
|
||||
with self.conn.cursor() as cur:
|
||||
@ -202,7 +174,7 @@ class MetricsRecorder:
|
||||
measurements,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
self.logger.debug(f"collected model measurements for benchmark #{benchmark_id}: {measurements}")
|
||||
|
||||
def export_to_csv(self, output_dir: str = "benchmark_results"):
|
||||
@ -212,19 +184,19 @@ class MetricsRecorder:
|
||||
if not self.collect_csv_data:
|
||||
self.logger.warning("CSV data collection is disabled - no CSV files will be generated")
|
||||
return
|
||||
|
||||
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
self.logger.info(f"Created output directory: {output_dir}")
|
||||
|
||||
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
files_created = []
|
||||
|
||||
|
||||
# Export using pandas DataFrames
|
||||
self._export_pandas_data(output_dir, timestamp, files_created)
|
||||
|
||||
|
||||
self.logger.info(f"CSV export complete! Created {len(files_created)} files in {output_dir}")
|
||||
|
||||
|
||||
def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list):
|
||||
"""
|
||||
Export CSV files using pandas DataFrames
|
||||
@ -234,24 +206,24 @@ class MetricsRecorder:
|
||||
self.benchmarks_df.to_csv(benchmarks_file, index=False)
|
||||
files_created.append(benchmarks_file)
|
||||
self.logger.info(f"Exported {len(self.benchmarks_df)} benchmark records to {benchmarks_file}")
|
||||
|
||||
# Export device measurements
|
||||
|
||||
# Export device measurements
|
||||
device_file = os.path.join(output_dir, f"device_measurements_{timestamp}.csv")
|
||||
self.device_measurements_df.to_csv(device_file, index=False)
|
||||
files_created.append(device_file)
|
||||
self.logger.info(f"Exported {len(self.device_measurements_df)} device measurement records to {device_file}")
|
||||
|
||||
|
||||
# Export model measurements (already flattened)
|
||||
model_file = os.path.join(output_dir, f"model_measurements_{timestamp}.csv")
|
||||
self.model_measurements_df.to_csv(model_file, index=False)
|
||||
files_created.append(model_file)
|
||||
self.logger.info(f"Exported {len(self.model_measurements_df)} model measurement records to {model_file}")
|
||||
|
||||
|
||||
# Create comprehensive summary using pandas operations
|
||||
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.csv")
|
||||
self._create_summary(summary_file)
|
||||
files_created.append(summary_file)
|
||||
|
||||
|
||||
def _create_summary(self, summary_file: str):
|
||||
"""
|
||||
Create a comprehensive summary CSV using pandas operations
|
||||
@ -262,42 +234,36 @@ class MetricsRecorder:
|
||||
summary_df.to_csv(summary_file, index=False)
|
||||
self.logger.info(f"Created empty benchmark summary at {summary_file}")
|
||||
return
|
||||
|
||||
|
||||
# Start with benchmarks as the base
|
||||
summary_df = self.benchmarks_df.copy()
|
||||
|
||||
|
||||
# Add model measurements (join on benchmark_id)
|
||||
if len(self.model_measurements_df) > 0:
|
||||
# Drop 'time' column from model measurements to avoid conflicts
|
||||
model_df = self.model_measurements_df.drop(columns=["time"], errors="ignore")
|
||||
summary_df = summary_df.merge(model_df, on="benchmark_id", how="left")
|
||||
|
||||
model_df = self.model_measurements_df.drop(columns=['time'], errors='ignore')
|
||||
summary_df = summary_df.merge(model_df, on='benchmark_id', how='left')
|
||||
|
||||
# Calculate device measurement aggregates using pandas groupby
|
||||
if len(self.device_measurements_df) > 0:
|
||||
device_agg = (
|
||||
self.device_measurements_df.groupby("benchmark_id")
|
||||
.agg(
|
||||
{
|
||||
"cpu_util": ["mean", "max", "std", "count"],
|
||||
"mem_megabytes": ["mean", "max", "std"],
|
||||
"gpu_util": ["mean", "max", "std"],
|
||||
"gpu_mem_megabytes": ["mean", "max", "std"],
|
||||
}
|
||||
)
|
||||
.round(3)
|
||||
)
|
||||
|
||||
device_agg = self.device_measurements_df.groupby('benchmark_id').agg({
|
||||
'cpu_util': ['mean', 'max', 'std', 'count'],
|
||||
'mem_megabytes': ['mean', 'max', 'std'],
|
||||
'gpu_util': ['mean', 'max', 'std'],
|
||||
'gpu_mem_megabytes': ['mean', 'max', 'std']
|
||||
}).round(3)
|
||||
|
||||
# Flatten column names
|
||||
device_agg.columns = [f"{col[0]}_{col[1]}" for col in device_agg.columns]
|
||||
device_agg = device_agg.reset_index()
|
||||
|
||||
|
||||
# Rename count column to be more descriptive
|
||||
if "cpu_util_count" in device_agg.columns:
|
||||
device_agg = device_agg.rename(columns={"cpu_util_count": "device_measurement_count"})
|
||||
|
||||
if 'cpu_util_count' in device_agg.columns:
|
||||
device_agg = device_agg.rename(columns={'cpu_util_count': 'device_measurement_count'})
|
||||
|
||||
# Merge with summary
|
||||
summary_df = summary_df.merge(device_agg, on="benchmark_id", how="left")
|
||||
|
||||
summary_df = summary_df.merge(device_agg, on='benchmark_id', how='left')
|
||||
|
||||
# Export the comprehensive summary
|
||||
summary_df.to_csv(summary_file, index=False)
|
||||
self.logger.info(f"Created comprehensive benchmark summary with {len(summary_df)} records at {summary_file}")
|
||||
@ -346,18 +312,23 @@ def parse_arguments() -> tuple[str, str, str, str, bool, str]:
|
||||
type=str,
|
||||
help="The commit message associated with the commit, truncated to 70 characters.",
|
||||
)
|
||||
|
||||
parser.add_argument("--csv", action="store_true", default=False, help="Enable CSV output files generation.")
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"--csv",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Enable CSV output files generation."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--csv-output-dir",
|
||||
type=str,
|
||||
default="benchmark_results",
|
||||
help="Directory for CSV output files (default: benchmark_results).",
|
||||
help="Directory for CSV output files (default: benchmark_results)."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# CSV is disabled by default, only enabled when --csv is used
|
||||
generate_csv = args.csv
|
||||
|
||||
@ -382,10 +353,9 @@ def create_database_connection():
|
||||
if not PSYCOPG2_AVAILABLE:
|
||||
logger.warning("psycopg2 not available - running in CSV-only mode")
|
||||
return None
|
||||
|
||||
|
||||
try:
|
||||
import psycopg2
|
||||
|
||||
conn = psycopg2.connect("dbname=metrics")
|
||||
logger.info("Successfully connected to database")
|
||||
return conn
|
||||
@ -394,28 +364,27 @@ def create_database_connection():
|
||||
return None
|
||||
|
||||
|
||||
def create_global_metrics_recorder(
|
||||
repository: str, branch: str, commit_id: str, commit_msg: str, generate_csv: bool = False
|
||||
) -> MetricsRecorder:
|
||||
def create_global_metrics_recorder(repository: str, branch: str, commit_id: str, commit_msg: str,
|
||||
generate_csv: bool = False) -> MetricsRecorder:
|
||||
"""
|
||||
Create a global metrics recorder that will be used across all benchmarks.
|
||||
"""
|
||||
connection = create_database_connection()
|
||||
recorder = MetricsRecorder(connection, logger, repository, branch, commit_id, commit_msg, generate_csv)
|
||||
|
||||
|
||||
# Log the storage mode
|
||||
storage_modes = []
|
||||
if connection is not None:
|
||||
storage_modes.append("database")
|
||||
if generate_csv:
|
||||
storage_modes.append("CSV")
|
||||
|
||||
|
||||
if not storage_modes:
|
||||
logger.warning("Running benchmarks with NO data storage (no database connection, CSV disabled)")
|
||||
logger.warning("Use --csv flag to enable CSV output when database is unavailable")
|
||||
else:
|
||||
logger.info(f"Running benchmarks with: {' + '.join(storage_modes)} storage")
|
||||
|
||||
|
||||
return recorder
|
||||
|
||||
|
||||
@ -424,16 +393,16 @@ if __name__ == "__main__":
|
||||
benches_folder_path = os.path.join(benchmarks_folder_path, "benches")
|
||||
|
||||
repository, branch, commit_id, commit_msg, generate_csv, csv_output_dir = parse_arguments()
|
||||
|
||||
|
||||
# Create a global metrics recorder
|
||||
global_metrics_recorder = create_global_metrics_recorder(repository, branch, commit_id, commit_msg, generate_csv)
|
||||
|
||||
|
||||
successful_benchmarks = 0
|
||||
failed_benchmarks = 0
|
||||
|
||||
|
||||
# Automatically discover all benchmark modules in benches/ folder
|
||||
benchmark_modules = []
|
||||
|
||||
|
||||
if os.path.exists(benches_folder_path):
|
||||
logger.debug(f"Scanning for benchmarks in: {benches_folder_path}")
|
||||
for entry in os.scandir(benches_folder_path):
|
||||
@ -441,12 +410,12 @@ if __name__ == "__main__":
|
||||
continue
|
||||
if entry.name.startswith("__"): # Skip __init__.py, __pycache__, etc.
|
||||
continue
|
||||
|
||||
|
||||
# Check if the file has a run_benchmark function
|
||||
try:
|
||||
logger.debug(f"checking if benches/{entry.name} has run_benchmark function")
|
||||
module = import_from_path(entry.name.split(".")[0], entry.path)
|
||||
if hasattr(module, "run_benchmark"):
|
||||
if hasattr(module, 'run_benchmark'):
|
||||
benchmark_modules.append(entry.name)
|
||||
logger.debug(f"discovered benchmark: {entry.name}")
|
||||
else:
|
||||
@ -467,18 +436,16 @@ if __name__ == "__main__":
|
||||
logger.debug(f"loading: {module_name}")
|
||||
module = import_from_path(module_name.split(".")[0], module_path)
|
||||
logger.info(f"running benchmarks in: {module_name}")
|
||||
|
||||
|
||||
# Check if the module has an updated run_benchmark function that accepts metrics_recorder
|
||||
try:
|
||||
# Try the new signature first
|
||||
module.run_benchmark(logger, repository, branch, commit_id, commit_msg, global_metrics_recorder)
|
||||
except TypeError:
|
||||
# Fall back to the old signature for backward compatibility
|
||||
logger.warning(
|
||||
f"Module {module_name} using old run_benchmark signature - database connection will be created per module"
|
||||
)
|
||||
logger.warning(f"Module {module_name} using old run_benchmark signature - database connection will be created per module")
|
||||
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
|
||||
|
||||
|
||||
successful_benchmarks += 1
|
||||
except ImportModuleException as e:
|
||||
logger.error(e)
|
||||
@ -494,7 +461,7 @@ if __name__ == "__main__":
|
||||
logger.info(f"CSV reports have been generated and saved to the {csv_output_dir} directory")
|
||||
else:
|
||||
logger.info("CSV generation disabled - no CSV files created (use --csv to enable)")
|
||||
|
||||
|
||||
logger.info(f"Benchmark run completed. Successful: {successful_benchmarks}, Failed: {failed_benchmarks}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to export CSV results: {e}")
|
||||
|
@ -3,11 +3,7 @@ import subprocess
|
||||
|
||||
|
||||
def main(config_dir, config_name, args):
|
||||
subprocess.run(
|
||||
["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"]
|
||||
+ ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"]
|
||||
+ args
|
||||
)
|
||||
subprocess.run(["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"] + ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"] + args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
1
benchmark_v2/.gitignore
vendored
1
benchmark_v2/.gitignore
vendored
@ -1 +0,0 @@
|
||||
benchmark_results/
|
@ -1,138 +0,0 @@
|
||||
# Benchmarking v2
|
||||
|
||||
A comprehensive benchmarking framework for transformer models that supports multiple execution modes (eager, compiled, kernelized), detailed performance metrics collection, and structured output format.
|
||||
|
||||
|
||||
## Quick Start
|
||||
|
||||
### Running All Benchmarks
|
||||
|
||||
```bash
|
||||
# Run all benchmarks with default settings
|
||||
python run_benchmarks.py
|
||||
|
||||
# Specify output directory
|
||||
python run_benchmarks.py --output-dir my_results
|
||||
|
||||
# Run with custom parameters
|
||||
python run_benchmarks.py \
|
||||
--warmup-iterations 5 \
|
||||
--measurement-iterations 10 \
|
||||
--num-tokens-to-generate 200
|
||||
```
|
||||
|
||||
### Uploading Results to HuggingFace Dataset
|
||||
|
||||
You can automatically upload benchmark results to a HuggingFace Dataset for tracking and analysis:
|
||||
|
||||
```bash
|
||||
# Upload to a public dataset with auto-generated run ID
|
||||
python run_benchmarks.py --upload-to-hub username/benchmark-results
|
||||
|
||||
# Upload with a custom run ID for easy identification
|
||||
python run_benchmarks.py --upload-to-hub username/benchmark-results --run-id experiment_v1
|
||||
|
||||
# Upload with custom HuggingFace token (if not set in environment)
|
||||
python run_benchmarks.py --upload-to-hub username/benchmark-results --token hf_your_token_here
|
||||
```
|
||||
|
||||
**Dataset Directory Structure:**
|
||||
```
|
||||
dataset_name/
|
||||
├── 2025-01-15/
|
||||
│ ├── runs/ # Non-scheduled runs (manual, PR, etc.)
|
||||
│ │ └── 123-1245151651/ # GitHub run number and ID
|
||||
│ │ └── benchmark_results/
|
||||
│ │ ├── benchmark_summary_20250115_143022.json
|
||||
│ │ └── model-name/
|
||||
│ │ └── model-name_benchmark_20250115_143022.json
|
||||
│ └── benchmark_results_abc123de/ # Scheduled runs (daily CI)
|
||||
│ ├── benchmark_summary_20250115_143022.json
|
||||
│ └── model-name/
|
||||
│ └── model-name_benchmark_20250115_143022.json
|
||||
└── 2025-01-16/
|
||||
└── ...
|
||||
```
|
||||
|
||||
**Authentication for Uploads:**
|
||||
|
||||
For uploading results, you need a HuggingFace token with write permissions to the target dataset. You can provide the token in several ways (in order of precedence):
|
||||
|
||||
1. Command line: `--token hf_your_token_here`
|
||||
3. Environment variable: `HF_TOKEN`
|
||||
|
||||
### Running Specific Benchmarks
|
||||
|
||||
```bash
|
||||
# Include only specific benchmarks
|
||||
python run_benchmarks.py --include llama
|
||||
|
||||
# Exclude specific benchmarks
|
||||
python run_benchmarks.py --exclude old_benchmark
|
||||
|
||||
## Output Format
|
||||
|
||||
Results are saved as JSON files with the following structure:
|
||||
|
||||
```json
|
||||
{
|
||||
"model_name": "llama_2_7b",
|
||||
"benchmark_scenarios": [
|
||||
{
|
||||
"scenario_name": "eager_variant",
|
||||
"metadata": {
|
||||
"timestamp": "2025-01-XX...",
|
||||
"commit_id": "abc123...",
|
||||
"hardware_info": {
|
||||
"gpu_name": "NVIDIA A100",
|
||||
"gpu_memory_total": 40960,
|
||||
"cpu_count": 64
|
||||
},
|
||||
"config": {
|
||||
"variant": "eager",
|
||||
"warmup_iterations": 3,
|
||||
"measurement_iterations": 5
|
||||
}
|
||||
},
|
||||
"measurements": {
|
||||
"latency": {
|
||||
"mean": 2.45,
|
||||
"median": 2.43,
|
||||
"std": 0.12,
|
||||
"min": 2.31,
|
||||
"max": 2.67,
|
||||
"p95": 2.61,
|
||||
"p99": 2.65
|
||||
},
|
||||
"time_to_first_token": {
|
||||
"mean": 0.15,
|
||||
"std": 0.02
|
||||
},
|
||||
"tokens_per_second": {
|
||||
"mean": 87.3,
|
||||
"unit": "tokens/sec"
|
||||
}
|
||||
},
|
||||
"gpu_metrics": {
|
||||
"gpu_utilization_mean": 85.2,
|
||||
"gpu_memory_used_mean": 12450
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Debug Mode
|
||||
|
||||
```bash
|
||||
python run_benchmarks.py --log-level DEBUG
|
||||
```
|
||||
|
||||
## Contributing
|
||||
|
||||
To add new benchmarks:
|
||||
|
||||
1. Create a new file in `benches/`
|
||||
2. Implement the `ModelBenchmark` interface
|
||||
3. Add a runner function (`run_<benchmark_name>` or `run_benchmark`)
|
||||
4. run_benchmarks.py
|
@ -1 +0,0 @@
|
||||
# Benchmark implementations directory
|
@ -1,165 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from benchmark_framework import ModelBenchmark
|
||||
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "1"
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
|
||||
class LLaMABenchmark(ModelBenchmark):
|
||||
"""Simplified LLaMA model benchmark implementation using the ModelBenchmark base class."""
|
||||
|
||||
def __init__(self, logger: logging.Logger):
|
||||
super().__init__(logger)
|
||||
self._default_prompt = "Why dogs are so cute?" # Custom prompt for LLaMA
|
||||
|
||||
def get_scenario_configs(self) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Get LLaMA-specific scenario configurations.
|
||||
|
||||
Returns:
|
||||
List of scenario configuration dictionaries
|
||||
"""
|
||||
return [
|
||||
# Eager variants
|
||||
{"variant": "eager", "compile_mode": None, "use_cache": True, "description": "Eager execution with cache"},
|
||||
# Compiled variants
|
||||
{
|
||||
"variant": "compiled",
|
||||
"compile_mode": "max-autotune",
|
||||
"use_cache": True,
|
||||
"description": "Compiled with max autotune",
|
||||
},
|
||||
# Kernelized variant (if available)
|
||||
{
|
||||
"variant": "kernelized",
|
||||
"compile_mode": "max-autotune",
|
||||
"use_cache": True,
|
||||
"description": "Kernelized execution",
|
||||
},
|
||||
]
|
||||
|
||||
def _is_kernelization_available(self) -> bool:
|
||||
"""Check if kernelization is available for LLaMA."""
|
||||
try:
|
||||
from kernels import Mode, kernelize # noqa: F401
|
||||
|
||||
return True
|
||||
except ImportError:
|
||||
self.logger.debug("Kernelization not available: kernels module not found")
|
||||
return False
|
||||
|
||||
def get_default_generation_config(self) -> dict[str, Any]:
|
||||
"""Get LLaMA-specific generation configuration."""
|
||||
return {
|
||||
"do_sample": False,
|
||||
"top_p": 1.0,
|
||||
"temperature": 1.0,
|
||||
"repetition_penalty": 1.0,
|
||||
"max_new_tokens": None, # Will be set per scenario
|
||||
}
|
||||
|
||||
def get_model_init_kwargs(self, config) -> dict[str, Any]:
|
||||
"""Get LLaMA-specific model initialization kwargs."""
|
||||
return {
|
||||
"torch_dtype": getattr(torch, config.torch_dtype),
|
||||
"attn_implementation": config.attn_implementation,
|
||||
"use_cache": True,
|
||||
}
|
||||
|
||||
def get_default_torch_dtype(self) -> str:
|
||||
"""Get default torch dtype for LLaMA."""
|
||||
return "float16" # LLaMA works well with float16
|
||||
|
||||
def get_default_device(self) -> str:
|
||||
"""Get default device for LLaMA."""
|
||||
return "cuda" # LLaMA prefers CUDA
|
||||
|
||||
|
||||
def run_llama(logger, output_dir, **kwargs):
|
||||
"""
|
||||
Run LLaMA benchmark with the given configuration.
|
||||
|
||||
Args:
|
||||
logger: Logger instance
|
||||
output_dir: Output directory for results
|
||||
**kwargs: Additional configuration options
|
||||
|
||||
Returns:
|
||||
Path to output file if successful
|
||||
"""
|
||||
from benchmark_framework import BenchmarkRunner
|
||||
|
||||
# Extract parameters with defaults
|
||||
model_id = kwargs.get("model_id", "meta-llama/Llama-2-7b-hf")
|
||||
warmup_iterations = kwargs.get("warmup_iterations", 3)
|
||||
measurement_iterations = kwargs.get("measurement_iterations", 5)
|
||||
num_tokens_to_generate = kwargs.get("num_tokens_to_generate", 100)
|
||||
include_sdpa_variants = kwargs.get("include_sdpa_variants", True)
|
||||
device = kwargs.get("device", "cuda")
|
||||
torch_dtype = kwargs.get("torch_dtype", "float16")
|
||||
batch_size = kwargs.get("batch_size", 1)
|
||||
commit_id = kwargs.get("commit_id")
|
||||
|
||||
logger.info(f"Starting LLaMA benchmark for model: {model_id}")
|
||||
logger.info(
|
||||
f"Configuration: warmup={warmup_iterations}, measurement={measurement_iterations}, tokens={num_tokens_to_generate}"
|
||||
)
|
||||
|
||||
try:
|
||||
# Create benchmark instance
|
||||
benchmark = LLaMABenchmark(logger)
|
||||
|
||||
# Create scenarios
|
||||
scenarios = benchmark.create_scenarios(
|
||||
model_id=model_id,
|
||||
warmup_iterations=warmup_iterations,
|
||||
measurement_iterations=measurement_iterations,
|
||||
num_tokens_to_generate=num_tokens_to_generate,
|
||||
include_sdpa_variants=include_sdpa_variants,
|
||||
device=device,
|
||||
torch_dtype=torch_dtype,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
logger.info(f"Created {len(scenarios)} benchmark scenarios")
|
||||
|
||||
# Create runner and execute benchmarks
|
||||
runner = BenchmarkRunner(logger, output_dir)
|
||||
results = runner.run_benchmark(benchmark, scenarios, commit_id=commit_id)
|
||||
|
||||
if not results:
|
||||
logger.warning("No successful benchmark results")
|
||||
return None
|
||||
|
||||
# Save results
|
||||
model_name = model_id.split("/")[-1] # Extract model name from ID
|
||||
output_file = runner.save_results(model_name, results)
|
||||
|
||||
logger.info(f"LLaMA benchmark completed successfully. Results saved to: {output_file}")
|
||||
return output_file
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"LLaMA benchmark failed: {e}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
raise
|
File diff suppressed because it is too large
Load Diff
@ -1,7 +0,0 @@
|
||||
numpy>=1.21.0
|
||||
psutil>=5.8.0
|
||||
gpustat>=1.0.0
|
||||
torch>=2.0.0
|
||||
transformers>=4.30.0
|
||||
datasets>=2.10.0
|
||||
huggingface_hub>=0.16.0
|
@ -1,495 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Top-level benchmarking script that automatically discovers and runs all benchmarks
|
||||
in the ./benches directory, organizing outputs into model-specific subfolders.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import importlib.util
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
def setup_logging(log_level: str = "INFO", enable_file_logging: bool = False) -> logging.Logger:
|
||||
"""Setup logging configuration."""
|
||||
numeric_level = getattr(logging, log_level.upper(), None)
|
||||
if not isinstance(numeric_level, int):
|
||||
raise ValueError(f"Invalid log level: {log_level}")
|
||||
|
||||
handlers = [logging.StreamHandler(sys.stdout)]
|
||||
|
||||
if enable_file_logging:
|
||||
handlers.append(logging.FileHandler(f"benchmark_run_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"))
|
||||
|
||||
logging.basicConfig(
|
||||
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
|
||||
)
|
||||
|
||||
return logging.getLogger(__name__)
|
||||
|
||||
|
||||
def discover_benchmarks(benches_dir: str) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Discover all benchmark modules in the benches directory.
|
||||
|
||||
Returns:
|
||||
List of dictionaries containing benchmark module info
|
||||
"""
|
||||
benchmarks = []
|
||||
benches_path = Path(benches_dir)
|
||||
|
||||
if not benches_path.exists():
|
||||
raise FileNotFoundError(f"Benches directory not found: {benches_dir}")
|
||||
|
||||
for py_file in benches_path.glob("*.py"):
|
||||
if py_file.name.startswith("__"):
|
||||
continue
|
||||
|
||||
module_name = py_file.stem
|
||||
|
||||
try:
|
||||
# Import the module
|
||||
spec = importlib.util.spec_from_file_location(module_name, py_file)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
|
||||
# Check if it has a benchmark runner function
|
||||
if hasattr(module, f"run_{module_name}"):
|
||||
benchmarks.append(
|
||||
{
|
||||
"name": module_name,
|
||||
"path": str(py_file),
|
||||
"module": module,
|
||||
"runner_function": getattr(module, f"run_{module_name}"),
|
||||
}
|
||||
)
|
||||
elif hasattr(module, "run_benchmark"):
|
||||
benchmarks.append(
|
||||
{
|
||||
"name": module_name,
|
||||
"path": str(py_file),
|
||||
"module": module,
|
||||
"runner_function": getattr(module, "run_benchmark"),
|
||||
}
|
||||
)
|
||||
else:
|
||||
logging.warning(f"No runner function found in {py_file}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to import {py_file}: {e}")
|
||||
|
||||
return benchmarks
|
||||
|
||||
|
||||
def run_single_benchmark(
|
||||
benchmark_info: dict[str, Any], output_dir: str, logger: logging.Logger, **kwargs
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Run a single benchmark and return the output file path.
|
||||
|
||||
Args:
|
||||
benchmark_info: Dictionary containing benchmark module info
|
||||
output_dir: Base output directory
|
||||
logger: Logger instance
|
||||
**kwargs: Additional arguments to pass to the benchmark
|
||||
|
||||
Returns:
|
||||
Path to the output file if successful, None otherwise
|
||||
"""
|
||||
benchmark_name = benchmark_info["name"]
|
||||
runner_func = benchmark_info["runner_function"]
|
||||
|
||||
logger.info(f"Running benchmark: {benchmark_name}")
|
||||
|
||||
try:
|
||||
# Check function signature to determine what arguments to pass
|
||||
import inspect
|
||||
|
||||
sig = inspect.signature(runner_func)
|
||||
|
||||
# Prepare arguments based on function signature
|
||||
func_kwargs = {"logger": logger, "output_dir": output_dir}
|
||||
|
||||
# Add other kwargs if the function accepts them
|
||||
for param_name in sig.parameters:
|
||||
if param_name in kwargs:
|
||||
func_kwargs[param_name] = kwargs[param_name]
|
||||
|
||||
# Filter kwargs to only include parameters the function accepts
|
||||
# If function has **kwargs, include all provided kwargs
|
||||
has_var_kwargs = any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values())
|
||||
if has_var_kwargs:
|
||||
valid_kwargs = {**func_kwargs, **kwargs}
|
||||
else:
|
||||
valid_kwargs = {k: v for k, v in func_kwargs.items() if k in sig.parameters}
|
||||
|
||||
# Run the benchmark
|
||||
result = runner_func(**valid_kwargs)
|
||||
|
||||
if isinstance(result, str):
|
||||
# Function returned a file path
|
||||
return result
|
||||
else:
|
||||
logger.info(f"Benchmark {benchmark_name} completed successfully")
|
||||
return "completed"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Benchmark {benchmark_name} failed: {e}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return None
|
||||
|
||||
|
||||
def generate_summary_report(
|
||||
output_dir: str,
|
||||
benchmark_results: dict[str, Any],
|
||||
logger: logging.Logger,
|
||||
benchmark_run_uuid: Optional[str] = None,
|
||||
) -> str:
|
||||
"""Generate a summary report of all benchmark runs."""
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.json")
|
||||
|
||||
summary_data = {
|
||||
"run_metadata": {
|
||||
"timestamp": datetime.utcnow().isoformat(),
|
||||
"benchmark_run_uuid": benchmark_run_uuid,
|
||||
"total_benchmarks": len(benchmark_results),
|
||||
"successful_benchmarks": len([r for r in benchmark_results.values() if r is not None]),
|
||||
"failed_benchmarks": len([r for r in benchmark_results.values() if r is None]),
|
||||
},
|
||||
"benchmark_results": benchmark_results,
|
||||
"output_directory": output_dir,
|
||||
}
|
||||
|
||||
with open(summary_file, "w") as f:
|
||||
json.dump(summary_data, f, indent=2, default=str)
|
||||
|
||||
logger.info(f"Summary report saved to: {summary_file}")
|
||||
return summary_file
|
||||
|
||||
|
||||
def upload_results_to_hf_dataset(
|
||||
output_dir: str,
|
||||
summary_file: str,
|
||||
dataset_name: str,
|
||||
run_id: Optional[str] = None,
|
||||
token: Optional[str] = None,
|
||||
logger: Optional[logging.Logger] = None,
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Upload benchmark results to a HuggingFace Dataset.
|
||||
Based on upload_collated_report() from utils/collated_reports.py
|
||||
Args:
|
||||
output_dir: Local output directory containing results
|
||||
summary_file: Path to the summary file
|
||||
dataset_name: Name of the HuggingFace dataset to upload to
|
||||
run_id: Unique run identifier (if None, will generate one)
|
||||
token: HuggingFace token for authentication (if None, will use environment variables)
|
||||
logger: Logger instance
|
||||
Returns:
|
||||
The run_id used for the upload, None if upload failed
|
||||
"""
|
||||
if logger is None:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
api = HfApi()
|
||||
|
||||
if run_id is None:
|
||||
github_run_number = os.getenv("GITHUB_RUN_NUMBER")
|
||||
github_run_id = os.getenv("GITHUB_RUN_ID")
|
||||
if github_run_number and github_run_id:
|
||||
run_id = f"{github_run_number}-{github_run_id}"
|
||||
|
||||
date_folder = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
github_event_name = os.getenv("GITHUB_EVENT_NAME")
|
||||
if github_event_name != "schedule":
|
||||
# Non-scheduled runs go under a runs subfolder
|
||||
repo_path = f"{date_folder}/runs/{run_id}/benchmark_results"
|
||||
else:
|
||||
# Scheduled runs go directly under the date
|
||||
repo_path = f"{date_folder}/{run_id}/benchmark_results"
|
||||
|
||||
logger.info(f"Uploading benchmark results to dataset '{dataset_name}' at path '{repo_path}'")
|
||||
|
||||
try:
|
||||
# Upload all files in the output directory
|
||||
from pathlib import Path
|
||||
|
||||
output_path = Path(output_dir)
|
||||
|
||||
for file_path in output_path.rglob("*"):
|
||||
if file_path.is_file():
|
||||
# Calculate relative path from output_dir
|
||||
relative_path = file_path.relative_to(output_path)
|
||||
path_in_repo = f"{repo_path}/{relative_path}"
|
||||
|
||||
logger.debug(f"Uploading {file_path} to {path_in_repo}")
|
||||
|
||||
api.upload_file(
|
||||
path_or_fileobj=str(file_path),
|
||||
path_in_repo=path_in_repo,
|
||||
repo_id=dataset_name,
|
||||
repo_type="dataset",
|
||||
token=token,
|
||||
commit_message=f"Upload benchmark results for run {run_id}",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Successfully uploaded results to: https://huggingface.co/datasets/{dataset_name}/tree/main/{repo_path}"
|
||||
)
|
||||
|
||||
return run_id
|
||||
|
||||
except Exception as upload_error:
|
||||
logger.error(f"Failed to upload results: {upload_error}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for the benchmarking script."""
|
||||
# Generate a unique UUID for this benchmark run
|
||||
benchmark_run_uuid = str(uuid.uuid4())[:8]
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run all benchmarks in the ./benches directory",
|
||||
epilog="""
|
||||
Examples:
|
||||
# Run all available benchmarks
|
||||
python3 run_benchmarks.py
|
||||
|
||||
# Run with specific model and upload to HuggingFace Dataset
|
||||
python3 run_benchmarks.py --model-id meta-llama/Llama-2-7b-hf --upload-to-hf username/benchmark-results
|
||||
|
||||
# Run with custom run ID and upload to HuggingFace Dataset
|
||||
python3 run_benchmarks.py --run-id experiment_v1 --upload-to-hf org/benchmarks
|
||||
|
||||
# Run only specific benchmarks with file logging
|
||||
python3 run_benchmarks.py --include llama --enable-file-logging
|
||||
""", # noqa: W293
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
default="benchmark_results",
|
||||
help="Base output directory for benchmark results (default: benchmark_results)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--benches-dir",
|
||||
type=str,
|
||||
default="./benches",
|
||||
help="Directory containing benchmark implementations (default: ./benches)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
type=str,
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
|
||||
default="INFO",
|
||||
help="Logging level (default: INFO)",
|
||||
)
|
||||
|
||||
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
|
||||
|
||||
parser.add_argument("--warmup-iterations", type=int, default=3, help="Number of warmup iterations (default: 3)")
|
||||
|
||||
parser.add_argument(
|
||||
"--measurement-iterations", type=int, default=5, help="Number of measurement iterations (default: 5)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tokens-to-generate",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of tokens to generate in benchmarks (default: 100)",
|
||||
)
|
||||
|
||||
parser.add_argument("--include", type=str, nargs="*", help="Only run benchmarks matching these names")
|
||||
|
||||
parser.add_argument("--exclude", type=str, nargs="*", help="Exclude benchmarks matching these names")
|
||||
|
||||
parser.add_argument("--enable-file-logging", action="store_true", help="Enable file logging (disabled by default)")
|
||||
|
||||
parser.add_argument(
|
||||
"--commit-id", type=str, help="Git commit ID for metadata (if not provided, will auto-detect from git)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
type=str,
|
||||
help="Upload results to HuggingFace Dataset (provide dataset name, e.g., 'username/benchmark-results')",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--run-id", type=str, help="Custom run ID for organizing results (if not provided, will generate a unique ID)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token",
|
||||
type=str,
|
||||
help="HuggingFace token for dataset uploads (if not provided, will use HF_TOKEN environment variable)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Setup logging
|
||||
logger = setup_logging(args.log_level, args.enable_file_logging)
|
||||
|
||||
logger.info("Starting benchmark discovery and execution")
|
||||
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
|
||||
logger.info(f"Output directory: {args.output_dir}")
|
||||
logger.info(f"Benches directory: {args.benches_dir}")
|
||||
|
||||
# Create output directory
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
try:
|
||||
# Discover benchmarks
|
||||
benchmarks = discover_benchmarks(args.benches_dir)
|
||||
logger.info(f"Discovered {len(benchmarks)} benchmark(s): {[b['name'] for b in benchmarks]}")
|
||||
|
||||
if not benchmarks:
|
||||
logger.warning("No benchmarks found!")
|
||||
return 1
|
||||
|
||||
# Filter benchmarks based on include/exclude
|
||||
filtered_benchmarks = benchmarks
|
||||
|
||||
if args.include:
|
||||
filtered_benchmarks = [
|
||||
b for b in filtered_benchmarks if any(pattern in b["name"] for pattern in args.include)
|
||||
]
|
||||
logger.info(f"Filtered to include: {[b['name'] for b in filtered_benchmarks]}")
|
||||
|
||||
if args.exclude:
|
||||
filtered_benchmarks = [
|
||||
b for b in filtered_benchmarks if not any(pattern in b["name"] for pattern in args.exclude)
|
||||
]
|
||||
logger.info(f"After exclusion: {[b['name'] for b in filtered_benchmarks]}")
|
||||
|
||||
if not filtered_benchmarks:
|
||||
logger.warning("No benchmarks remaining after filtering!")
|
||||
return 1
|
||||
|
||||
# Prepare common kwargs for benchmarks
|
||||
benchmark_kwargs = {
|
||||
"warmup_iterations": args.warmup_iterations,
|
||||
"measurement_iterations": args.measurement_iterations,
|
||||
"num_tokens_to_generate": args.num_tokens_to_generate,
|
||||
}
|
||||
|
||||
if args.model_id:
|
||||
benchmark_kwargs["model_id"] = args.model_id
|
||||
|
||||
# Add commit_id if provided
|
||||
if args.commit_id:
|
||||
benchmark_kwargs["commit_id"] = args.commit_id
|
||||
|
||||
# Run benchmarks
|
||||
benchmark_results = {}
|
||||
successful_count = 0
|
||||
|
||||
for benchmark_info in filtered_benchmarks:
|
||||
result = run_single_benchmark(benchmark_info, args.output_dir, logger, **benchmark_kwargs)
|
||||
|
||||
benchmark_results[benchmark_info["name"]] = result
|
||||
|
||||
if result is not None:
|
||||
successful_count += 1
|
||||
|
||||
# Generate summary report
|
||||
summary_file = generate_summary_report(args.output_dir, benchmark_results, logger, benchmark_run_uuid)
|
||||
|
||||
# Upload results to HuggingFace Dataset if requested
|
||||
upload_run_id = None
|
||||
if args.push_to_hub:
|
||||
logger.info("=" * 60)
|
||||
logger.info("UPLOADING TO HUGGINGFACE DATASET")
|
||||
logger.info("=" * 60)
|
||||
# Use provided run_id or fallback to benchmark run UUID
|
||||
effective_run_id = args.run_id or benchmark_run_uuid
|
||||
upload_run_id = upload_results_to_hf_dataset(
|
||||
output_dir=args.output_dir,
|
||||
summary_file=summary_file,
|
||||
dataset_name=args.push_to_hub,
|
||||
run_id=effective_run_id,
|
||||
token=args.token,
|
||||
logger=logger,
|
||||
)
|
||||
if upload_run_id:
|
||||
logger.info(f"Upload completed with run ID: {upload_run_id}")
|
||||
else:
|
||||
logger.warning("Upload failed - continuing with local results")
|
||||
|
||||
# Final summary
|
||||
total_benchmarks = len(filtered_benchmarks)
|
||||
failed_count = total_benchmarks - successful_count
|
||||
|
||||
logger.info("=" * 60)
|
||||
logger.info("BENCHMARK RUN SUMMARY")
|
||||
logger.info("=" * 60)
|
||||
logger.info(f"Total benchmarks: {total_benchmarks}")
|
||||
logger.info(f"Successful: {successful_count}")
|
||||
logger.info(f"Failed: {failed_count}")
|
||||
logger.info(f"Output directory: {args.output_dir}")
|
||||
logger.info(f"Summary report: {summary_file}")
|
||||
|
||||
if args.push_to_hub:
|
||||
if upload_run_id:
|
||||
logger.info(f"HuggingFace Dataset: {args.push_to_hub}")
|
||||
logger.info(f"Run ID: {upload_run_id}")
|
||||
logger.info(
|
||||
f"View results: https://huggingface.co/datasets/{args.push_to_hub}/tree/main/{datetime.now().strftime('%Y-%m-%d')}/runs/{upload_run_id}"
|
||||
)
|
||||
else:
|
||||
logger.warning("Upload to HuggingFace Dataset failed")
|
||||
|
||||
if failed_count > 0:
|
||||
logger.warning(f"{failed_count} benchmark(s) failed. Check logs for details.")
|
||||
return 1
|
||||
else:
|
||||
logger.info("All benchmarks completed successfully!")
|
||||
return 0
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Benchmark run failed: {e}")
|
||||
import traceback
|
||||
|
||||
logger.debug(traceback.format_exc())
|
||||
return 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
14
conftest.py
14
conftest.py
@ -16,7 +16,6 @@
|
||||
# by pytest before any tests are run
|
||||
|
||||
import doctest
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from os.path import abspath, dirname, join
|
||||
@ -28,7 +27,6 @@ from transformers.testing_utils import (
|
||||
HfDoctestModule,
|
||||
HfDocTestParser,
|
||||
is_torch_available,
|
||||
patch_testing_methods_to_collect_info,
|
||||
patch_torch_compile_force_graph,
|
||||
)
|
||||
|
||||
@ -54,6 +52,7 @@ NOT_DEVICE_TESTS = {
|
||||
"test_gradient_checkpointing_backward_compatibility",
|
||||
"test_gradient_checkpointing_enable_disable",
|
||||
"test_torch_save_load",
|
||||
"test_initialization",
|
||||
"test_forward_signature",
|
||||
"test_model_get_set_embeddings",
|
||||
"test_model_main_input_name",
|
||||
@ -63,8 +62,11 @@ NOT_DEVICE_TESTS = {
|
||||
"test_load_save_without_tied_weights",
|
||||
"test_tied_weights_keys",
|
||||
"test_model_weights_reload_no_missing_tied_weights",
|
||||
"test_can_load_ignoring_mismatched_shapes",
|
||||
"test_mismatched_shapes_have_properly_initialized_weights",
|
||||
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
|
||||
"test_model_is_small",
|
||||
"test_tf_from_pt_safetensors",
|
||||
"test_flax_from_pt_safetensors",
|
||||
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
|
||||
"ModelTester::test_pipeline_",
|
||||
"/repo_utils/",
|
||||
@ -89,8 +91,6 @@ def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
|
||||
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
|
||||
|
||||
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
|
||||
|
||||
|
||||
def pytest_collection_modifyitems(items):
|
||||
for item in items:
|
||||
@ -145,7 +145,3 @@ if is_torch_available():
|
||||
# patch `torch.compile`: if `TORCH_COMPILE_FORCE_FULLGRAPH=1` (or values considered as true, e.g. yes, y, etc.),
|
||||
# the patched version will always run with `fullgraph=True`.
|
||||
patch_torch_compile_force_graph()
|
||||
|
||||
|
||||
if os.environ.get("PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS", "").lower() in ("yes", "true", "on", "y", "1"):
|
||||
patch_testing_methods_to_collect_info()
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
USER root
|
||||
ARG REF=main
|
||||
@ -6,8 +6,10 @@ RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
# tensorflow pin matching setup.py
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
|
||||
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
|
||||
RUN git lfs install
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
|
@ -1,8 +1,8 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler git-lfs curl
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
|
||||
@ -15,20 +15,12 @@ RUN mv catch.hpp ../libs/
|
||||
RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
|
||||
RUN make install -j 10
|
||||
|
||||
WORKDIR /
|
||||
|
||||
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
# spacy is not used so not tested. Causes to failures. TODO fix later
|
||||
RUN uv run python -m unidic download
|
||||
|
||||
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
|
||||
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
|
||||
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
|
||||
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
|
||||
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
13
docker/examples-tf.dockerfile
Normal file
13
docker/examples-tf.dockerfile
Normal file
@ -0,0 +1,13 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git
|
||||
RUN apt-get install -y g++ cmake
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv
|
||||
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
|
||||
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
|
||||
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
@ -1,19 +1,12 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
|
||||
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
|
||||
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
|
||||
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
|
||||
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
|
||||
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
@ -1,24 +1,17 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps timm accelerate
|
||||
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
RUN uv pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
|
||||
# RUN git clone https://github.com/facebookresearch/detectron2.git
|
||||
# RUN python3 -m pip install --no-cache-dir -e detectron2
|
||||
RUN uv pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3' --no-build-isolation
|
||||
|
||||
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
|
||||
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
|
||||
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
|
||||
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
|
||||
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
10
docker/jax-light.dockerfile
Normal file
10
docker/jax-light.dockerfile
Normal file
@ -0,0 +1,10 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
10
docker/pipeline-tf.dockerfile
Normal file
10
docker/pipeline-tf.dockerfile
Normal file
@ -0,0 +1,10 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
|
||||
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
|
@ -1,18 +1,11 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
|
||||
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
|
||||
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
|
||||
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
|
||||
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
|
||||
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
|
12
docker/tf-light.dockerfile
Normal file
12
docker/tf-light.dockerfile
Normal file
@ -0,0 +1,12 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git
|
||||
RUN apt-get install -y cmake
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
|
||||
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
16
docker/torch-jax-light.dockerfile
Normal file
16
docker/torch-jax-light.dockerfile
Normal file
@ -0,0 +1,16 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-deps accelerate
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
|
||||
|
||||
|
||||
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
@ -1,17 +1,11 @@
|
||||
FROM python:3.10-slim
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
|
||||
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
|
||||
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
|
||||
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
|
||||
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
|
19
docker/torch-tf-light.dockerfile
Normal file
19
docker/torch-tf-light.dockerfile
Normal file
@ -0,0 +1,19 @@
|
||||
FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
RUN echo ${REF}
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN git lfs install
|
||||
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
|
||||
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
|
||||
|
||||
|
||||
RUN uv pip uninstall transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
@ -12,6 +12,8 @@ SHELL ["sh", "-lc"]
|
||||
ARG PYTORCH='2.8.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
# Disable kernel mapping for now until all tests pass
|
||||
ENV DISABLE_KERNEL_MAPPING=1
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
|
||||
@ -24,14 +26,13 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U timm
|
||||
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir pytesseract
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
@ -40,8 +41,6 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
|
||||
|
||||
# For bettertransformer
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
# For kernels
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
|
||||
|
||||
# For video model testing
|
||||
RUN python3 -m pip install --no-cache-dir av
|
||||
@ -52,10 +51,6 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
# Some tests require quanto
|
||||
RUN python3 -m pip install --no-cache-dir quanto
|
||||
|
||||
# After using A10 as CI runner, let's run FA2 tests
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
|
||||
|
||||
# TODO (ydshieh): check this again
|
||||
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
|
||||
# (`deformable_detr`, `rwkv`, `mra`)
|
||||
RUN python3 -m pip uninstall -y ninja
|
||||
|
@ -15,8 +15,8 @@ RUN apt update && \
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
jupyter \
|
||||
tensorflow \
|
||||
torch
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
|
||||
|
||||
RUN git clone https://github.com/NVIDIA/apex
|
||||
RUN cd apex && \
|
||||
|
@ -1,71 +0,0 @@
|
||||
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS base
|
||||
LABEL maintainer="Hugging Face"
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y software-properties-common && \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && \
|
||||
apt-get update
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get -y install \
|
||||
apt-utils \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
clinfo \
|
||||
curl \
|
||||
git \
|
||||
git-lfs \
|
||||
vim \
|
||||
numactl \
|
||||
gnupg2 \
|
||||
gpg-agent \
|
||||
python3-dev \
|
||||
python3-opencv \
|
||||
unzip \
|
||||
ffmpeg \
|
||||
tesseract-ocr \
|
||||
espeak-ng \
|
||||
wget \
|
||||
ncurses-term \
|
||||
google-perftools \
|
||||
libjemalloc-dev \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Use virtual env because Ubuntu:24 does not allowed pip on original python
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
RUN pip install --upgrade pip wheel
|
||||
RUN pip install torch torchvision torchaudio torchcodec --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
|
||||
RUN pip install av pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sentence_transformers sacremoses nltk rouge_score librosa soundfile mpi4py pytorch_msssim
|
||||
RUN pip install onnx optimum onnxruntime
|
||||
RUN pip install autoawq
|
||||
RUN pip install gptqmodel --no-build-isolation
|
||||
RUN pip install -U datasets timm transformers accelerate peft diffusers opencv-python kenlm evaluate
|
||||
RUN pip install -U intel-openmp
|
||||
|
||||
# install bitsandbytes
|
||||
RUN git clone https://github.com/bitsandbytes-foundation/bitsandbytes.git && cd bitsandbytes/ && \
|
||||
cmake -DCOMPUTE_BACKEND=cpu -S . && make && pip install . && cd ../
|
||||
|
||||
# CPU don't need triton
|
||||
RUN pip uninstall triton -y
|
||||
|
||||
ENV LD_PRELOAD=${LD_PRELOAD}:/opt/venv/lib/libiomp5.so:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4
|
||||
ENV KMP_AFFINITY=granularity=fine,compact,1,0
|
||||
|
||||
RUN touch /entrypoint.sh
|
||||
RUN chmod +x /entrypoint.sh
|
||||
RUN echo "#!/bin/bash" >> /entrypoint.sh
|
||||
RUN echo "/bin/bash" >> /entrypoint.sh
|
||||
|
||||
ENTRYPOINT ["/entrypoint.sh"]
|
59
docker/transformers-past-gpu/Dockerfile
Normal file
59
docker/transformers-past-gpu/Dockerfile
Normal file
@ -0,0 +1,59 @@
|
||||
ARG BASE_DOCKER_IMAGE
|
||||
FROM $BASE_DOCKER_IMAGE
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
|
||||
SHELL ["sh", "-lc"]
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
|
||||
RUN git lfs install
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
ARG FRAMEWORK
|
||||
ARG VERSION
|
||||
|
||||
# Control `setuptools` version to avoid some issues
|
||||
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
|
||||
|
||||
# Remove all frameworks
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
|
||||
|
||||
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
|
||||
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
|
||||
|
||||
# Install the target framework
|
||||
RUN echo "INSTALL_CMD = $INSTALL_CMD"
|
||||
RUN $INSTALL_CMD
|
||||
|
||||
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
|
||||
|
||||
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
|
||||
# We will install `accelerate@main` in Past CI workflow file
|
||||
RUN python3 -m pip uninstall -y accelerate
|
||||
|
||||
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y torch-tensorrt apex
|
||||
|
||||
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
|
||||
RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
|
||||
# Issue: https://github.com/deepspeedai/DeepSpeed/issues/2010
|
||||
# RUN git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build && \
|
||||
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
@ -20,9 +20,14 @@ WORKDIR /
|
||||
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
# On ROCm, torchcodec is required to decode audio files
|
||||
# RUN python3 -m pip install --no-cache-dir torchcodec
|
||||
# Install transformers
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
|
||||
|
||||
# Remove tensorflow and flax as they are no longer supported by transformers
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
@ -32,13 +37,3 @@ RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# On ROCm, torchcodec is required to decode audio files and 0.4 or 0.6 fails
|
||||
RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
|
||||
|
||||
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
|
||||
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
|
||||
cd flash-attention && \
|
||||
GPU_ARCHS="gfx942" python setup.py install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
@ -25,6 +25,8 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
|
||||
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
|
||||
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -9,9 +9,11 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.8.0'
|
||||
ARG PYTORCH='2.6.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
ARG CUDA='cu121'
|
||||
# Disable kernel mapping for quantization tests
|
||||
ENV DISABLE_KERNEL_MAPPING=1
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
@ -28,20 +30,31 @@ RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio tor
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
# needed in bnb and awq
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
# Add bitsandbytes for mixed int8 testing
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# Add gptqmodel for gtpq quantization testing, installed from source for pytorch==2.6.0 compatibility
|
||||
RUN python3 -m pip install lm_eval
|
||||
RUN git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel && pip install -v . --no-build-isolation
|
||||
|
||||
# Add optimum for gptq quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
|
||||
# Add PEFT
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
|
||||
|
||||
# needed in bnb and awq
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
# Add aqlm for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
|
||||
|
||||
# Add bitsandbytes
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
# Add vptq for quantization testing
|
||||
RUN pip install vptq
|
||||
|
||||
# # Add gptqmodel
|
||||
# RUN python3 -m pip install --no-cache-dir gptqmodel
|
||||
# Add spqr for quantization testing
|
||||
# Commented for now as No matching distribution found we need to reach out to the authors
|
||||
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
|
||||
|
||||
# Add hqq for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir hqq
|
||||
@ -50,11 +63,25 @@ RUN python3 -m pip install --no-cache-dir hqq
|
||||
RUN python3 -m pip install --no-cache-dir gguf
|
||||
|
||||
# Add autoawq for quantization testing
|
||||
# New release v0.2.8
|
||||
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
|
||||
|
||||
# Add quanto for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir optimum-quanto
|
||||
|
||||
# Add eetq for quantization testing
|
||||
RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
|
||||
|
||||
# # Add flute-kernel and fast_hadamard_transform for quantization testing
|
||||
# # Commented for now as they cause issues with the build
|
||||
# # TODO: create a new workflow to test them
|
||||
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
# Requires py3.11 but our CI runs on 3.9
|
||||
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
|
||||
# Add compressed-tensors for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir compressed-tensors
|
||||
|
||||
@ -62,10 +89,7 @@ RUN python3 -m pip install --no-cache-dir compressed-tensors
|
||||
RUN python3 -m pip install --no-cache-dir amd-quark
|
||||
|
||||
# Add AutoRound for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir auto-round
|
||||
|
||||
# Add torchao for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir torchao
|
||||
RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
|
||||
|
||||
# Add transformers in editable mode
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
|
||||
@ -79,27 +103,3 @@ RUN python3 -m pip uninstall -y flash-attn
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.2.0"
|
||||
|
||||
# Low usage or incompatible lib, will enable later on
|
||||
|
||||
# # Add aqlm for quantization testing
|
||||
# RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
|
||||
|
||||
# # Add vptq for quantization testing
|
||||
# RUN pip install vptq
|
||||
|
||||
# Add spqr for quantization testing
|
||||
# Commented for now as No matching distribution found we need to reach out to the authors
|
||||
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
|
||||
|
||||
# # Add eetq for quantization testing
|
||||
# RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
|
||||
|
||||
# # Add flute-kernel and fast_hadamard_transform for quantization testing
|
||||
# # Commented for now as they cause issues with the build
|
||||
# # TODO: create a new workflow to test them
|
||||
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
25
docker/transformers-tensorflow-gpu/Dockerfile
Normal file
25
docker/transformers-tensorflow-gpu/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
|
||||
|
||||
# If set to nothing, will install the latest version
|
||||
ARG TENSORFLOW='2.13'
|
||||
|
||||
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
|
||||
RUN python3 -m pip uninstall -y torch flax
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U "tensorflow_probability<0.22"
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
@ -50,7 +50,7 @@ Begin translating the text!
|
||||
|
||||
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
|
||||
|
||||
- If the `_toctree.yml` file doesn't exist for your language, create one by copying the English version and removing unrelated sections.
|
||||
- If the `_toctree.yml` file doesn’t exist for your language, create one by copying the English version and removing unrelated sections.
|
||||
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
|
||||
|
||||
Here’s an example structure for the `_toctree.yml` file:
|
||||
|
@ -123,6 +123,8 @@
|
||||
title: تشغيل التدريب على Amazon SageMaker
|
||||
- local: serialization
|
||||
title: التصدير إلى ONNX
|
||||
- local: tflite
|
||||
title: التصدير إلى TFLite
|
||||
- local: torchscript
|
||||
title: التصدير إلى TorchScript
|
||||
- local: notebooks
|
||||
@ -182,6 +184,8 @@
|
||||
# title: التدريب الفعال على وحدة المعالجة المركزية (CPU)
|
||||
# - local: perf_train_cpu_many
|
||||
# title: التدريب الموزع لوحدة المعالجة المركزية (CPU)
|
||||
# - local: perf_train_tpu_tf
|
||||
# title: التدريب على (TPU) باستخدام TensorFlow
|
||||
# - local: perf_train_special
|
||||
# title: تدريب PyTorch على Apple silicon
|
||||
# - local: perf_hardware
|
||||
@ -199,6 +203,8 @@
|
||||
# title: إنشاء نموذج كبير
|
||||
# - local: debugging
|
||||
# title: تصحيح الأخطاء البرمجية
|
||||
# - local: tf_xla
|
||||
# title: تكامل XLA لنماذج TensorFlow
|
||||
# - local: perf_torch_compile
|
||||
# title: تحسين الاستدلال باستخدام `torch.compile()`
|
||||
# title: الأداء وقابلية التوسع
|
||||
@ -254,6 +260,8 @@
|
||||
# title: التكوين
|
||||
# - local: main_classes/data_collator
|
||||
# title: مجمع البيانات
|
||||
# - local: main_classes/keras_callbacks
|
||||
# title: استدعاءات Keras
|
||||
# - local: main_classes/logging
|
||||
# title: التسجيل
|
||||
# - local: main_classes/model
|
||||
|
@ -52,7 +52,7 @@
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
|
||||
</div>
|
||||
|
||||
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PreTrainedConfig.from_pretrained`]:
|
||||
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
|
||||
|
||||
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
@ -115,6 +115,8 @@
|
||||
|
||||
## النموذج التلقائي (AutoModel)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
@ -141,4 +143,25 @@
|
||||
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
|
||||
</pt>
|
||||
|
||||
<tf>
|
||||
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -54,19 +54,19 @@ DistilBertConfig {
|
||||
|
||||
```
|
||||
|
||||
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PreTrainedConfig.from_pretrained`] :
|
||||
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
|
||||
```
|
||||
|
||||
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PreTrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
|
||||
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
|
||||
|
||||
```py
|
||||
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
|
||||
```
|
||||
|
||||
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PreTrainedConfig.from_pretrained`]:
|
||||
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
@ -81,6 +81,8 @@ DistilBertConfig {
|
||||
|
||||
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
|
||||
|
||||
```py
|
||||
@ -103,11 +105,39 @@ DistilBertConfig {
|
||||
```py
|
||||
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertModel
|
||||
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
|
||||
>>> tf_model = TFDistilBertModel(my_config)
|
||||
```
|
||||
|
||||
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
|
||||
|
||||
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
### رؤوس النموذج
|
||||
|
||||
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
|
||||
|
||||
```py
|
||||
@ -123,6 +153,25 @@ DistilBertConfig {
|
||||
|
||||
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForSequenceClassification
|
||||
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForQuestionAnswering
|
||||
|
||||
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## مجزئ النصوص
|
||||
|
||||
|
@ -20,11 +20,11 @@
|
||||
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
|
||||
|
||||
```python
|
||||
from transformers import PreTrainedConfig
|
||||
from transformers import PretrainedConfig
|
||||
from typing import List
|
||||
|
||||
|
||||
class ResnetConfig(PreTrainedConfig):
|
||||
class ResnetConfig(PretrainedConfig):
|
||||
model_type = "resnet"
|
||||
|
||||
def __init__(
|
||||
@ -58,11 +58,11 @@ class ResnetConfig(PreTrainedConfig):
|
||||
```
|
||||
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
|
||||
|
||||
- يجب أن ترث من `PreTrainedConfig`،
|
||||
- يجب أن تقبل دالة `__init__` الخاصة بـ `PreTrainedConfig` أي معامﻻت إضافية kwargs،
|
||||
- يجب أن ترث من `PretrainedConfig`،
|
||||
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
|
||||
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
|
||||
|
||||
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PreTrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
|
||||
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
|
||||
|
||||
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
|
||||
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
|
||||
@ -82,7 +82,7 @@ resnet50d_config.save_pretrained("custom-resnet")
|
||||
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
|
||||
```
|
||||
|
||||
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PreTrainedConfig`]، مثل [`~PreTrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
|
||||
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
|
||||
|
||||
## كتابة نموذج مخصص
|
||||
|
||||
|
@ -60,10 +60,10 @@ pip install transformers bitsandbytes>=0.39.0 -q
|
||||
أولاً، تحتاج إلى تحميل النموذج.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
>>> from transformers import AutoModelForCausalLM
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
@ -113,12 +113,12 @@ pip install transformers bitsandbytes>=0.39.0 -q
|
||||
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
@ -192,7 +192,7 @@ LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/l
|
||||
```python
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
>>> set_seed(0)
|
||||
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""
|
||||
|
@ -231,7 +231,7 @@ flush()
|
||||
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_4bit=True), pad_token_id=0)
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
|
||||
@ -329,6 +329,174 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
|
||||
لنلقِ نظرة على مثال عملي.
|
||||
|
||||
|
||||
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
|
||||
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
|
||||
|
||||
```python
|
||||
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
|
||||
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
|
||||
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
|
||||
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
|
||||
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
|
||||
|
||||
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
|
||||
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
|
||||
-----
|
||||
|
||||
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
|
||||
|
||||
Answer: Sure. Here is a function that does that.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(len(list1)):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
return results
|
||||
|
||||
Question: Can you write some test cases for this function?
|
||||
|
||||
Answer: Sure, here are some tests.
|
||||
|
||||
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
|
||||
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
|
||||
assert alternating([], []) == []
|
||||
|
||||
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
|
||||
|
||||
Answer: Here is the modified function.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(min(len(list1), len(list2))):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
if len(list1) > len(list2):
|
||||
results.extend(list1[i+1:])
|
||||
else:
|
||||
results.extend(list2[i+1:])
|
||||
return results
|
||||
-----
|
||||
"""
|
||||
```
|
||||
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
|
||||
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
|
||||
|
||||
```python
|
||||
long_prompt = 10 * system_prompt + prompt
|
||||
```
|
||||
|
||||
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", dtype=torch.bfloat16, device_map="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
|
||||
|
||||
```python
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 10.96854019165039 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
|
||||
|
||||
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
|
||||
|
||||
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
37.668193340301514
|
||||
```
|
||||
|
||||
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
|
||||
|
||||
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
|
||||
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
|
||||
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
|
||||
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
|
||||
|
||||
```python
|
||||
model.to_bettertransformer()
|
||||
```
|
||||
|
||||
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
|
||||
|
||||
```py
|
||||
start_time = time.time()
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 3.0211617946624756 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
|
||||
|
||||
دعنا نقيس استهلاك الذاكرة لآخر مرة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
32.617331981658936
|
||||
```
|
||||
|
||||
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
|
||||
|
||||
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
|
||||
|
||||
```py
|
||||
flush()
|
||||
```
|
||||
|
||||
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
|
||||
|
||||
## 3. الابتكارات المعمارية
|
||||
|
||||
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:
|
||||
@ -472,7 +640,7 @@ for _ in range(5):
|
||||
next_token_id = torch.argmax(next_logits, dim=-1)
|
||||
|
||||
print("shape of input_ids", next_token_id.shape)
|
||||
print("length of key-value cache", past_key_values.get_seq_length()) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
|
||||
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
|
||||
generated_tokens.append(next_token_id.item())
|
||||
|
||||
generated_text = tokenizer.batch_decode(generated_tokens)
|
||||
|
@ -65,15 +65,43 @@ pip install huggingface_hub
|
||||
|
||||
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
|
||||
|
||||
```py
|
||||
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
|
||||
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
حدد `from_pt=True` لتحويل نقطة تحقق من PyTorch إلى TensorFlow:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
|
||||
```
|
||||
|
||||
بعد ذلك، يمكنك حفظ نموذج TensorFlow الجديد بنقطة التحقق الجديدة:
|
||||
|
||||
```py
|
||||
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</tf>
|
||||
<jax>
|
||||
إذا كان النموذج متاحًا في Flax، فيمكنك أيضًا تحويل نقطة تحقق من PyTorch إلى Flax:
|
||||
|
||||
```py
|
||||
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
|
||||
... "path/to/awesome-name-you-picked", from_pt=True
|
||||
... )
|
||||
```
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
## دفع نموذج أثناء التدريب
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Z1-XMy-GNLQ"/>
|
||||
|
||||
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
|
||||
@ -99,6 +127,29 @@ pip install huggingface_hub
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
|
||||
|
||||
- دليل إخراج لنموذجك.
|
||||
- مُجزّئ اللغوي.
|
||||
- `hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
|
||||
|
||||
```py
|
||||
>>> from transformers import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
|
||||
... )
|
||||
```
|
||||
|
||||
أضف الاستدعاء إلى [`fit`](https://keras.io/api/models/model_training_apis/)، وسيقوم 🤗 Transformers بدفع النموذج المدرب إلى Hub:
|
||||
|
||||
```py
|
||||
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## استخدام دالة `push_to_hub`
|
||||
|
||||
@ -169,4 +220,4 @@ pip install huggingface_hub
|
||||
* قم بإنشاء ملف `README.md` وتحميله يدويًا.
|
||||
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
|
||||
|
||||
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
|
||||
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
|
@ -39,6 +39,7 @@
|
||||
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
|
||||
| [كيفية تدريب نموذج لغة من البداية](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| تسليط الضوء على جميع الخطوات لتدريب نموذج Transformer بشكل فعال على بيانات مخصصة | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
|
||||
| [كيفية إنشاء نص](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| كيفية استخدام أساليب فك التشفير المختلفة لإنشاء اللغة باستخدام المحولات | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
|
||||
| [كيفية إنشاء نص (مع قيود)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| كيفية توجيه إنشاء اللغة باستخدام القيود التي يوفرها المستخدم | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
|
||||
| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| كيف يدفع Reformer حدود النمذجة اللغوية | [](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
|
||||
|
||||
#### رؤية الكمبيوتر[[pytorch-cv]]
|
||||
|
@ -152,6 +152,8 @@ pip install datasets
|
||||
|
||||
قم بتعيين معلمة `return_tensors` إلى إما `pt` لـ PyTorch، أو `tf` لـ TensorFlow:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
@ -171,6 +173,33 @@ pip install datasets
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
dtype=int32)>,
|
||||
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
|
||||
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
|
@ -12,10 +12,20 @@
|
||||
|
||||
ستحتاج أيضًا إلى تثبيت إطار عمل التعلم الآلي المفضل لديك:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```bash
|
||||
pip install torch
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## خط الأنابيب
|
||||
|
||||
@ -112,6 +122,8 @@ label: NEGATIVE, with score: 0.5309
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي):
|
||||
|
||||
```py
|
||||
@ -120,6 +132,18 @@ label: NEGATIVE, with score: 0.5309
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي:
|
||||
|
||||
@ -168,6 +192,8 @@ label: NEGATIVE, with score: 0.5309
|
||||
|
||||
يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> pt_batch = tokenizer(
|
||||
@ -178,6 +204,20 @@ label: NEGATIVE, with score: 0.5309
|
||||
... return_tensors="pt",
|
||||
... )
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> tf_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="tf",
|
||||
... )
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -187,6 +227,8 @@ label: NEGATIVE, with score: 0.5309
|
||||
|
||||
### AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
@ -222,6 +264,39 @@ label: NEGATIVE, with score: 0.5309
|
||||
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
راجع [ملخص المهام](./task_summary) للمهام المدعومة بواسطة فئة [`AutoModel`].
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. يمكنك تمرير المصفوفات كما هي:
|
||||
|
||||
```py
|
||||
>>> tf_outputs = tf_model(tf_batch)
|
||||
```
|
||||
|
||||
يقوم النموذج بإخراج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` لاسترداد الاحتمالات:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
||||
>>> tf_predictions # doctest: +IGNORE_RESULT
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -231,6 +306,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
|
||||
### حفظ النموذج
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
@ -244,9 +321,28 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`TFPreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_save_directory = "./tf_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> tf_model.save_pretrained(tf_save_directory)
|
||||
```
|
||||
|
||||
عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
@ -254,6 +350,17 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
|
||||
## إنشاء نماذج مخصصة
|
||||
@ -268,6 +375,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`AutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
@ -275,6 +384,17 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
|
||||
>>> my_model = AutoModel.from_config(my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`TFAutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> my_model = TFAutoModel.from_config(my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
الق نظرة على دليل [إنشاء بنية مخصصة](./create_a_model) لمزيد من المعلومات حول بناء التكوينات المخصصة.
|
||||
|
||||
|
@ -76,6 +76,8 @@ pip install -r requirements.txt
|
||||
|
||||
## تشغيل نص برمجي
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets).
|
||||
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) على بنية تدعم الملخص.
|
||||
@ -93,8 +95,31 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets/).
|
||||
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام Keras على بنية تدعم الملخص.
|
||||
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
|
||||
- يتطلب نموذج T5 ماعمل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
|
||||
|
||||
```bash
|
||||
python examples/tensorflow/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التدريب الموزع والدقة المختلطة
|
||||
|
||||
@ -116,6 +141,7 @@ torchrun \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -123,6 +149,8 @@ torchrun \
|
||||
|
||||
## تشغيل نص برمجي على وحدة معالجة الدقة الفائقة (TPU)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. يدعم PyTorch وحدات معالجة الدقة الفائقة (TPUs) مع [XLA](https://www.tensorflow.org/xla) مجمع الدقة الفائقة للتعلم العميق (راجع [هنا](https://github.com/pytorch/xla/blob/master/README.md) لمزيد من التفاصيل). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتشغيل نص `xla_spawn.py` البرمجي واستخدم معامل `num_cores` لتعيين عدد وحدات معالجة الدقة الفائقة (TPU) التي تريد استخدامها.
|
||||
|
||||
@ -138,8 +166,28 @@ python xla_spawn.py --num_cores 8 \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. تستخدم نصوص TensorFlow البرمجية استراتيجية [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) للتدريب على وحدات معالجة الدقة الفائقة (TPUs). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتمرير اسم مورد وحدة معالجة الدقة الفائقة (TPU) إلى حجة `tpu`.
|
||||
```bash
|
||||
python run_summarization.py \
|
||||
--tpu name_of_tpu_resource \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## تشغيل نص برمجي باستخدام 🤗 Accelerate
|
||||
|
||||
@ -194,6 +242,7 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--summary_column summary_column_name \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--overwrite_output_dir \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--predict_with_generate
|
||||
@ -221,6 +270,7 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -234,6 +284,8 @@ examples/pytorch/summarization/run_summarization.py -h
|
||||
|
||||
خيار آخر مفيد لتمكينه هو استئناف التدريب من نقطة تفتيش سابقة. سيضمن ذلك أنك تستطيع الاستمرار من حيث توقفت دون البدء من جديد إذا تم مقاطعة تدريبك. هناك طريقتان لاستئناف التدريب من نقطة تفتيش.
|
||||
|
||||
تستخدم الطريقة الأولى المعلمة `output_dir previous_output_dir` لاستئناف التدريب من أحدث نقطة تفتيش مخزنة في `output_dir`. في هذه الحالة، يجب عليك إزالة `overwrite_output_dir`:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
@ -245,6 +297,24 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--output_dir previous_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
تستخدم الطريقة الثانية معلمة `resume_from_checkpoint path_to_specific_checkpoint` لاستئناف التدريب من مجلد نقطة تفتيش محددة.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--resume_from_checkpoint path_to_specific_checkpoint \
|
||||
--predict_with_generate
|
||||
```
|
||||
@ -276,5 +346,6 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
@ -182,6 +182,8 @@ pip install transformers datasets evaluate
|
||||
|
||||
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأفضل أن تقوم بـ *الحشو الديناميكي* للجمل إلى الطول الأطول في الدفعة أثناء التجميع، بدلاً من حشو كامل المجموعة من البيانات إلى الطول الأقصى.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
|
||||
|
||||
```py
|
||||
@ -191,9 +193,23 @@ pip install transformers datasets evaluate
|
||||
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
```
|
||||
|
||||
</pt>
|
||||
<tf>
|
||||
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf")
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -251,6 +267,75 @@ Perplexity: 49.61
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتدريب نموذج باستخدام Keras، اطلع على [البرنامج التعليمي الأساسي](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لتدريب نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معاملات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer, AdamWeightDecay
|
||||
|
||||
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل DistilGPT2 باستخدام [`TFAutoModelForCausalLM`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForCausalLM
|
||||
|
||||
>>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
|
||||
```
|
||||
|
||||
حول مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... lm_dataset["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_test_set = model.prepare_tf_dataset(
|
||||
... lm_dataset["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة الافتراضية، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # لا يوجد حجة للخسارة!
|
||||
```
|
||||
|
||||
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومجمّع البيانات في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_eli5_clm-model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
أخيراً، أنت جاهز لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العصور، والتعليقات الخاصة بك لتدريب النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -280,6 +365,8 @@ Perplexity: 49.61
|
||||
[{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
|
||||
|
||||
```py
|
||||
@ -305,3 +392,31 @@ Perplexity: 49.61
|
||||
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتقسيم النص وإرجاع `input_ids` كـ TensorFlow tensors:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model")
|
||||
>>> inputs = tokenizer(prompt, return_tensors="tf").input_ids
|
||||
```
|
||||
|
||||
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الملخص. للمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والبارامترات للتحكم في التوليد، راجع صفحة [استراتيجيات توليد النص](../generation_strategies).
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForCausalLM
|
||||
|
||||
>>> model = TFAutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model")
|
||||
>>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
|
||||
```
|
||||
|
||||
فك ترميز الرموز المولدة مرة أخرى إلى نص:
|
||||
|
||||
```py
|
||||
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
@ -176,6 +176,8 @@ pip install transformers datasets evaluate
|
||||
|
||||
الآن، قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأكثر كفاءة أن تقوم بـ *الحشو الديناميكي* ليصل طولها إلى أطول جملة في الدفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الطول الأقصى.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
|
||||
|
||||
@ -185,9 +187,23 @@ pip install transformers datasets evaluate
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token
|
||||
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -247,6 +263,75 @@ Perplexity: 8.76
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لتعديل نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer, AdamWeightDecay
|
||||
|
||||
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل DistilRoBERTa باستخدام [`TFAutoModelForMaskedLM`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForMaskedLM
|
||||
|
||||
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base")
|
||||
```
|
||||
|
||||
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... lm_dataset["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_test_set = model.prepare_tf_dataset(
|
||||
... lm_dataset["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers لديها جميعها دالة خسارة افتراضية ذات صلة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة ما لم تكن تريد ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # لا توجد حجة للخسارة!
|
||||
```
|
||||
|
||||
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالج الرموز في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_eli5_mlm_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
أخيراً، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد العصور، والتعليقات الخاصة بك لتعديل النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائياً إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -287,6 +372,8 @@ Perplexity: 8.76
|
||||
'sequence': 'The Milky Way is a small galaxy.'}]
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بتجزئة النص وإرجاع `input_ids` كمتجهات PyTorch. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
|
||||
|
||||
```py
|
||||
@ -318,3 +405,38 @@ The Milky Way is a spiral galaxy.
|
||||
The Milky Way is a massive galaxy.
|
||||
The Milky Way is a small galaxy.
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتقسيم النص إلى رموز وإرجاع `input_ids` كـ TensorFlow tensors. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_mlm_model")
|
||||
>>> inputs = tokenizer(text, return_tensors="tf")
|
||||
>>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1]
|
||||
```
|
||||
|
||||
قم بتمرير المدخلات إلى النموذج وإرجاع `logits` للرمز المقنع:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForMaskedLM
|
||||
|
||||
>>> model = TFAutoModelForMaskedLM.from_pretrained("username/my_awesome_eli5_mlm_model")
|
||||
>>> logits = model(**inputs).logits
|
||||
>>> mask_token_logits = logits[0, mask_token_index, :]
|
||||
```
|
||||
|
||||
ثم قم بإرجاع الرموز الثلاثة المقنعة ذات الاحتمالية الأعلى وطباعتها:
|
||||
|
||||
```py
|
||||
>>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy()
|
||||
|
||||
>>> for token in top_3_tokens:
|
||||
... print(text.replace(tokenizer.mask_token, tokenizer.decode([token])))
|
||||
The Milky Way is a spiral galaxy.
|
||||
The Milky Way is a massive galaxy.
|
||||
The Milky Way is a small galaxy.
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
@ -116,6 +116,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
|
||||
يقوم `DataCollatorForMultipleChoice` بتجميع جميع مدخلات النموذج، ويطبق الحشو، ثم يعيد تجميع النتائج في شكلها الأصلي:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from dataclasses import dataclass
|
||||
@ -156,6 +158,50 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
... batch["labels"] = torch.tensor(labels, dtype=torch.int64)
|
||||
... return batch
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from dataclasses import dataclass
|
||||
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
|
||||
>>> from typing import Optional, Union
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> @dataclass
|
||||
... class DataCollatorForMultipleChoice:
|
||||
... """
|
||||
... Data collator that will dynamically pad the inputs for multiple choice received.
|
||||
... """
|
||||
|
||||
... tokenizer: PreTrainedTokenizerBase
|
||||
... padding: Union[bool, str, PaddingStrategy] = True
|
||||
... max_length: Optional[int] = None
|
||||
... pad_to_multiple_of: Optional[int] = None
|
||||
|
||||
... def __call__(self, features):
|
||||
... label_name = "label" if "label" in features[0].keys() else "labels"
|
||||
... labels = [feature.pop(label_name) for feature in features]
|
||||
... batch_size = len(features)
|
||||
... num_choices = len(features[0]["input_ids"])
|
||||
... flattened_features = [
|
||||
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
|
||||
... ]
|
||||
... flattened_features = sum(flattened_features, [])
|
||||
|
||||
... batch = self.tokenizer.pad(
|
||||
... flattened_features,
|
||||
... padding=self.padding,
|
||||
... max_length=self.max_length,
|
||||
... pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
... return_tensors="tf",
|
||||
... )
|
||||
|
||||
... batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
|
||||
... batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
|
||||
... return batch
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التقييم (Evaluate)
|
||||
|
||||
@ -182,6 +228,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -235,6 +283,93 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فراجع الدرس الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer
|
||||
|
||||
>>> batch_size = 16
|
||||
>>> num_train_epochs = 2
|
||||
>>> total_train_steps = (len(tokenized_swag["train"]) // batch_size) * num_train_epochs
|
||||
>>> optimizer, schedule = create_optimizer(init_lr=5e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل BERT باستخدام [`TFAutoModelForMultipleChoice`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForMultipleChoice
|
||||
|
||||
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
|
||||
```
|
||||
|
||||
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_swag["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=batch_size,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_validation_set = model.prepare_tf_dataset(
|
||||
... tokenized_swag["validation"],
|
||||
... shuffle=False,
|
||||
... batch_size=batch_size,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة مناسبة للمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> model.compile(optimizer=optimizer) # لا توجد وسيطة خسارة!
|
||||
```
|
||||
|
||||
الخطوتان الأخيرتان قبل بدء التدريب هما: حساب دقة التنبؤات، وتوفير طريقة لرفع النموذج إلى Hub. ويمكن تحقيق ذلك باستخدام [استدعاءات Keras](../main_classes/keras_callbacks)
|
||||
|
||||
مرر دالتك `compute_metrics` إلى [`~transformers.KerasMetricCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
|
||||
```
|
||||
|
||||
حدد مكان دفع نموذجك ومعالجك في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم قم بتضمين الاستدعاءات معًا:
|
||||
|
||||
```py
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
أخيرًا، أنت جاهز لبدء تدريب نموذجك! استدعِ[`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب والاستدعاءات لضبط النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=2, callbacks=callbacks)
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -255,6 +390,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
>>> candidate2 = "The law applies to baguettes."
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد تنسورات PyTorch. يجب عليك أيضًا إنشاء بعض `العلامات`:
|
||||
|
||||
```py
|
||||
@ -282,3 +419,34 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
|
||||
>>> predicted_class
|
||||
0
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد موترات TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_swag_model")
|
||||
>>> inputs = tokenizer([[prompt, candidate1], [prompt, candidate2]], return_tensors="tf", padding=True)
|
||||
```
|
||||
|
||||
مرر مدخلاتك إلى النموذج وأعد القيم logits:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForMultipleChoice
|
||||
|
||||
>>> model = TFAutoModelForMultipleChoice.from_pretrained("username/my_awesome_swag_model")
|
||||
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in inputs.items()}
|
||||
>>> outputs = model(inputs)
|
||||
>>> logits = outputs.logits
|
||||
```
|
||||
|
||||
استخرج الفئة ذات الاحتمالية الأكبر:
|
||||
|
||||
```py
|
||||
>>> predicted_class = int(tf.math.argmax(logits, axis=-1)[0])
|
||||
>>> predicted_class
|
||||
0
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -167,15 +167,29 @@ pip install transformers datasets evaluate
|
||||
|
||||
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DefaultDataCollator`]. بخلاف مجمّعات البيانات الأخرى في 🤗 Transformers، لا يطبق [`DefaultDataCollator`] أي معالجة مسبقة إضافية مثل الحشو.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import DefaultDataCollator
|
||||
|
||||
>>> data_collator = DefaultDataCollator()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import DefaultDataCollator
|
||||
|
||||
>>> data_collator = DefaultDataCollator(return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -226,6 +240,82 @@ pip install transformers datasets evaluate
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن، وجدول معدل التعلم، وبعض المعاملات الفائقة للتدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer
|
||||
|
||||
>>> batch_size = 16
|
||||
>>> num_epochs = 2
|
||||
>>> total_train_steps = (len(tokenized_squad["train"]) // batch_size) * num_epochs
|
||||
>>> optimizer, schedule = create_optimizer(
|
||||
... init_lr=2e-5,
|
||||
... num_warmup_steps=0,
|
||||
... num_train_steps=total_train_steps,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل DistilBERT باستخدام [`TFAutoModelForQuestionAnswering`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForQuestionAnswering
|
||||
|
||||
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_squad["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_validation_set = model.prepare_tf_dataset(
|
||||
... tokenized_squad["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer)
|
||||
```
|
||||
|
||||
آخر شيء يجب إعداده قبل بدء التدريب هو توفير طريقة لدفع نموذجك إلى Hub. يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالجك المعجمي في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_qa_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العهود، ومعاودة الاتصال الخاصة بك لضبط النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=[callback])
|
||||
```
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
|
||||
<Tip>
|
||||
@ -267,6 +357,8 @@ pip install transformers datasets evaluate
|
||||
|
||||
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
قسّم النص وأرجع تنسورات PyTorch:
|
||||
|
||||
@ -302,3 +394,39 @@ pip install transformers datasets evaluate
|
||||
>>> tokenizer.decode(predict_answer_tokens)
|
||||
'176 billion parameters and can generate text in 46 languages natural languages and 13'
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحليل النص المعجمي وأعد موترات TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_qa_model")
|
||||
>>> inputs = tokenizer(question, context, return_tensors="tf")
|
||||
```
|
||||
|
||||
مرر مدخلاتك إلى النموذج وأعد `logits`:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForQuestionAnswering
|
||||
|
||||
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("my_awesome_qa_model")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
احصل على أعلى احتمال من مخرجات النموذج لموضعي البداية والنهاية:
|
||||
|
||||
```py
|
||||
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
|
||||
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
|
||||
```
|
||||
|
||||
استخلاص الإجابة من الرموز المتوقعة:
|
||||
|
||||
```py
|
||||
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
||||
>>> tokenizer.decode(predict_answer_tokens)
|
||||
'176 billion parameters and can generate text in 46 languages natural languages and 13'
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -92,12 +92,24 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
|
||||
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`]. الأكثر كفاءة هو استخدام الحشو الديناميكي لجعل الجمل متساوية في الطول داخل كل دفعة، بدلًا من حشو كامل البيانات إلى الحد الأقصى للطول.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorWithPadding
|
||||
|
||||
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorWithPadding
|
||||
|
||||
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التقييم(Evaluate)
|
||||
|
||||
@ -131,6 +143,8 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
>>> label2id = {"NEGATIVE": 0, "POSITIVE": 1}
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بضبط نموذج دقيق باستخدام [`Trainer`], فالق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
@ -191,6 +205,98 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بضبط نموذج باستخدام Keras، قم بالاطلاع على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معلمات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> batch_size = 16
|
||||
>>> num_epochs = 5
|
||||
>>> batches_per_epoch = len(tokenized_imdb["train"]) // batch_size
|
||||
>>> total_train_steps = int(batches_per_epoch * num_epochs)
|
||||
>>> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForSequenceClassification`] بالإضافة إلى عدد التصنيفات المتوقعة، وتعيينات التسميات:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained(
|
||||
... "distilbert/distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_imdb["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_validation_set = model.prepare_tf_dataset(
|
||||
... tokenized_imdb["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # No loss argument!
|
||||
```
|
||||
|
||||
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب الدقة من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
|
||||
|
||||
قم بتمرير دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
|
||||
```
|
||||
|
||||
حدد مكان دفع نموذجك والمجزئ اللغوي في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم اجمع الاستدعاءات معًا:
|
||||
|
||||
```py
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
أخيرًا، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد الحقبات، واستدعاءاتك لضبط النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -222,6 +328,8 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
|
||||
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم يتجزئة النص وإرجاع تنسورات PyTorch:
|
||||
|
||||
```py
|
||||
@ -248,3 +356,32 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
|
||||
>>> model.config.id2label[predicted_class_id]
|
||||
'POSITIVE'
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحليل النص وإرجاع تنسيقات TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_model")
|
||||
>>> inputs = tokenizer(text, return_tensors="tf")
|
||||
```
|
||||
|
||||
قم بتمرير مدخلاتك إلى النموذج وإرجاع `logits`:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_model")
|
||||
>>> logits = model(**inputs).logits
|
||||
```
|
||||
|
||||
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم `id2label` لتحويلها إلى تصنيف نصي:
|
||||
|
||||
```py
|
||||
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
|
||||
>>> model.config.id2label[predicted_class_id]
|
||||
'POSITIVE'
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -118,12 +118,24 @@ pip install transformers datasets evaluate rouge_score
|
||||
|
||||
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء عملية التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التقييم (Evaluate)
|
||||
|
||||
@ -158,6 +170,8 @@ pip install transformers datasets evaluate rouge_score
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -212,6 +226,91 @@ pip install transformers datasets evaluate rouge_score
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer, AdamWeightDecay
|
||||
|
||||
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل T5 باستخدام [`TFAutoModelForSeq2SeqLM`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSeq2SeqLM
|
||||
|
||||
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
||||
```
|
||||
|
||||
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_billsum["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_test_set = model.prepare_tf_dataset(
|
||||
... tokenized_billsum["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة افتراضيًا، لذلك لست بحاجة إلى تحديد واحدة ما لم تكن ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # No loss argument!
|
||||
```
|
||||
|
||||
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب درجة ROUGE من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
|
||||
|
||||
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_test_set)
|
||||
```
|
||||
|
||||
حدد مكان دفع نموذجك ومُحلِّلك اللغوي في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_billsum_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم اجمع استدعاءاتك معًا:
|
||||
|
||||
```py
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -242,6 +341,8 @@ pip install transformers datasets evaluate rouge_score
|
||||
|
||||
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
|
||||
|
||||
```py
|
||||
@ -266,3 +367,31 @@ pip install transformers datasets evaluate rouge_score
|
||||
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قسم النص وإرجع `input_ids` كتنسورات TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_billsum_model")
|
||||
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
|
||||
```
|
||||
|
||||
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء التلخيص. لمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والمعلمات للتحكم في التوليد، راجع واجهة برمجة تطبيقات [توليد النص](../main_classes/text_generation).
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSeq2SeqLM
|
||||
|
||||
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("username/my_awesome_billsum_model")
|
||||
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
|
||||
```
|
||||
|
||||
فك تشفير معرفات الرموز المولدة مرة أخرى إلى نص:
|
||||
|
||||
```py
|
||||
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
@ -151,11 +151,22 @@ pip install transformers datasets evaluate seqeval
|
||||
|
||||
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`].من الأفضل استخدام *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بالكامل إلى الطول الأقصى.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```py
|
||||
>>> from transformers import DataCollatorForTokenClassification
|
||||
|
||||
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
>>> from transformers import DataCollatorForTokenClassification
|
||||
|
||||
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التقييم(Evaluate)
|
||||
|
||||
@ -235,6 +246,8 @@ pip install transformers datasets evaluate seqeval
|
||||
... }
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
|
||||
@ -289,6 +302,101 @@ pip install transformers datasets evaluate seqeval
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
للتعديل على نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer
|
||||
|
||||
>>> batch_size = 16
|
||||
>>> num_train_epochs = 3
|
||||
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
|
||||
>>> optimizer, lr_schedule = create_optimizer(
|
||||
... init_lr=2e-5,
|
||||
... num_train_steps=num_train_steps,
|
||||
... weight_decay_rate=0.01,
|
||||
... num_warmup_steps=0,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForTokenClassification`] إلى جانب عدد التسميات المتوقعة، وتخطيطات التسميات:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained(
|
||||
... "distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` مع [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_wnut["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_validation_set = model.prepare_tf_dataset(
|
||||
... tokenized_wnut["validation"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
هيّئ النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers تتضمن دالة خسارة افتراضية مرتبطة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # No loss argument!
|
||||
```
|
||||
|
||||
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب درجات seqeval من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
|
||||
|
||||
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
|
||||
```
|
||||
|
||||
حدد مكان دفع نموذجك والمحلل اللغوي في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_wnut_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم جمّع callbacks الخاصة بك معًا:
|
||||
|
||||
```py
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
أخيرًا، أنت جاهز الآن لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع بيانات التدريب والتحقق، وعدد الحقبات، وcallbacks لتعديل النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -349,6 +457,8 @@ pip install transformers datasets evaluate seqeval
|
||||
|
||||
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قسّم النص إلى رموز وأرجع المُوتّرات بلغة PyTorch:
|
||||
|
||||
```py
|
||||
@ -392,3 +502,49 @@ pip install transformers datasets evaluate seqeval
|
||||
'O',
|
||||
'O']
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قسّم النص إلى رموز وأرجع المُوتّرات ب TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
|
||||
>>> inputs = tokenizer(text, return_tensors="tf")
|
||||
```
|
||||
|
||||
مرر مدخلاتك إلى النموذج واحصل على `logits`:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
|
||||
>>> logits = model(**inputs).logits
|
||||
```
|
||||
|
||||
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم جدول `id2label` الخاصة بالنموذج لتحويلها إلى تسمية نصية:
|
||||
|
||||
```py
|
||||
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
|
||||
>>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
|
||||
>>> predicted_token_class
|
||||
['O',
|
||||
'O',
|
||||
'B-location',
|
||||
'I-location',
|
||||
'B-group',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'O',
|
||||
'B-location',
|
||||
'B-location',
|
||||
'O',
|
||||
'O']
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -113,12 +113,24 @@ pip install transformers datasets evaluate sacrebleu
|
||||
|
||||
الآن أنشئ دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. من الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التقييم (Evaluate)
|
||||
|
||||
@ -165,6 +177,8 @@ pip install transformers datasets evaluate sacrebleu
|
||||
|
||||
## التدريب (Train)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -219,6 +233,91 @@ pip install transformers datasets evaluate sacrebleu
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
|
||||
|
||||
</Tip>
|
||||
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل تعلم وبعض المعلمات الفائقة للتدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import AdamWeightDecay
|
||||
|
||||
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
|
||||
```
|
||||
|
||||
ثم يمكنك تحميل T5 باستخدام [`TFAutoModelForSeq2SeqLM`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSeq2SeqLM
|
||||
|
||||
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
||||
```
|
||||
|
||||
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
||||
|
||||
```py
|
||||
>>> tf_train_set = model.prepare_tf_dataset(
|
||||
... tokenized_books["train"],
|
||||
... shuffle=True,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_test_set = model.prepare_tf_dataset(
|
||||
... tokenized_books["test"],
|
||||
... shuffle=False,
|
||||
... batch_size=16,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> model.compile(optimizer=optimizer) # No loss argument!
|
||||
```
|
||||
|
||||
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب مقياس SacreBLEU من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
|
||||
|
||||
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_test_set)
|
||||
```
|
||||
|
||||
حدد مكان دفع نموذجك ومعالجك اللغوي في [`~transformers.PushToHubCallback`]:
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="my_awesome_opus_books_model",
|
||||
... tokenizer=tokenizer,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم اجمع استدعاءاتك معًا:
|
||||
|
||||
```py
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
|
||||
|
||||
```py
|
||||
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
|
||||
```
|
||||
|
||||
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -252,6 +351,8 @@ pip install transformers datasets evaluate sacrebleu
|
||||
|
||||
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بتحويل النص إلى رموز وإرجاع `input_ids` كموترات PyTorch:
|
||||
|
||||
```py
|
||||
@ -276,3 +377,31 @@ pip install transformers datasets evaluate sacrebleu
|
||||
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
'Les lignées partagent des ressources avec des bactéries enfixant l'azote.'
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحويل النص إلى رموز وإرجاع `input_ids` كموترات TensorFlow:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_opus_books_model")
|
||||
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
|
||||
```
|
||||
|
||||
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الترجمة. لمزيد من التفاصيل حول استراتيجيات توليد النصوص المختلفة والمعلمات للتحكم في التوليد، تحقق من واجهة برمجة تطبيقات [توليد النصوص](../main_classes/text_generation).
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSeq2SeqLM
|
||||
|
||||
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("username/my_awesome_opus_books_model")
|
||||
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
|
||||
```
|
||||
|
||||
فك تشفير معرفات الرموز المولدة مرة أخرى إلى نص:
|
||||
|
||||
```py
|
||||
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.'
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
40
docs/source/ar/tflite.md
Normal file
40
docs/source/ar/tflite.md
Normal file
@ -0,0 +1,40 @@
|
||||
# التصدير إلى TFLite
|
||||
|
||||
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) هو إطار عمل خفيف الوزن لنشر نماذج التعلم الآلي على الأجهزة المحدودة الموارد، مثل الهواتف المحمولة، والأنظمة المدمجة، وأجهزة إنترنت الأشياء (IoT). تم تصميم TFLite لتشغيل النماذج وتحسينها بكفاءة على هذه الأجهزة ذات الطاقة الحاسوبية والذاكرة واستهلاك الطاقة المحدودة.
|
||||
|
||||
يُمثَّل نموذج TensorFlow Lite بتنسيق محمول فعال خاص يُعرَّف بامتداد الملف `.tflite`.
|
||||
|
||||
🤗 Optimum يقدم وظيفة لتصدير نماذج 🤗 Transformers إلى TFLite من خلال الوحدة النمطية `exporters.tflite`. بالنسبة لقائمة هندسات النماذج المدعومة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/tflite/overview).
|
||||
|
||||
لتصدير نموذج إلى TFLite، قم بتثبيت متطلبات البرنامج المطلوبة:
|
||||
|
||||
```bash
|
||||
pip install optimum[exporters-tf]
|
||||
```
|
||||
|
||||
للاطلاع على جميع المغامﻻت المتاحة، راجع [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model)، أو عرض المساعدة في سطر الأوامر:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --help
|
||||
```
|
||||
|
||||
لتصدير نسخة النموذج ل 🤗 Hub، على سبيل المثال، `google-bert/bert-base-uncased`، قم بتشغيل الأمر التالي:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/
|
||||
```
|
||||
|
||||
ستظهر لك السجلات التي تُبيّن التقدم وموقع حفظ ملف `model.tflite` الناتج، كما في المثال التالي:
|
||||
|
||||
```bash
|
||||
Validating TFLite model...
|
||||
-[✓] TFLite model output names match reference model (logits)
|
||||
- Validating TFLite Model output "logits":
|
||||
-[✓] (1, 128, 30522) matches (1, 128, 30522)
|
||||
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
|
||||
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
|
||||
- logits: max diff = 5.817413330078125e-05.
|
||||
The exported model was saved at: bert_tflite
|
||||
```
|
||||
|
||||
يُبيّن المثال أعلاه كيفية تصدير نسخة من النموذج ل 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج المجزء اللغوى في نفس المسار (`local_path`). عند استخدام CLI، قم بتمرير `local_path` إلى معامل `model` بدلاً من اسم النسخة على 🤗 Hub.
|
@ -611,6 +611,7 @@ accelerate launch \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
يمكنك أيضًا تحديد المعلمات من ملف `config_file.yaml` مباشرة في سطر الأوامر:
|
||||
@ -633,6 +634,7 @@ accelerate launch --num_processes=2 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
اطلع على برنامج تعليمي [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) لمعرفة المزيد حول `accelerate_launch` والتكوينات المخصصة.
|
||||
|
@ -58,6 +58,8 @@
|
||||
في شريط التنقل الأيمن للقفز إلى الإطار الذي تريده - وإذا كنت تريد إخفاء كل المحتوى لإطار معين،
|
||||
فاستخدم الزر في الركن العلوي الأيمن من كتلة الإطار!
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="nvBXf7s7vTI"/>
|
||||
|
||||
## التدريب باستخدام PyTorch Trainer
|
||||
@ -137,10 +139,124 @@
|
||||
```py
|
||||
>>> trainer.train()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<a id='keras'></a>
|
||||
|
||||
<Youtube id="rnTGBy2ax1c"/>
|
||||
|
||||
## تدريب نموذج TensorFlow باستخدام Keras
|
||||
|
||||
يمكنك أيضًا تدريب نماذج 🤗 Transformers في TensorFlow باستخدام واجهة برمجة تطبيقات Keras!
|
||||
|
||||
### تحميل البيانات لـ Keras
|
||||
|
||||
عندما تريد تدريب نموذج 🤗 Transformers باستخدام واجهة برمجة تطبيقات Keras، فأنت بحاجة إلى تحويل مجموعة البيانات الخاصة بك إلى تنسيق يفهمه
|
||||
Keras. إذا كانت مجموعة البيانات الخاصة بك صغيرة، فيمكنك ببساطة تحويلها بالكامل إلى مصفوفات NumPy وإرسالها إلى Keras.
|
||||
دعونا نجرب ذلك أولاً قبل أن نقوم بأي شيء أكثر تعقيدًا.
|
||||
|
||||
أولاً، قم بتحميل مجموعة بيانات. سنستخدم مجموعة بيانات CoLA من معيار [GLUE benchmark](https://huggingface.co/datasets/glue)،
|
||||
نظرًا لأنه مهمة تصنيف نص ثنائي بسيطة، وسنأخذ فقط قسم التدريب الآن.
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("glue"، "cola")
|
||||
dataset = dataset ["train"] # خذ فقط قسم التدريب الآن
|
||||
```
|
||||
|
||||
بعد ذلك، قم بتحميل أداة المُجزّئ اللغوي وقم بترميز البيانات كمصفوفات NumPy. لاحظ أن التصنيفات هي بالفعل قائمة من 0 و 1،
|
||||
لذا يمكننا ببساطة تحويل ذلك مباشرة إلى مصفوفة NumPy بدون ترميز!
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer
|
||||
import numpy as np
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
|
||||
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
|
||||
tokenized_data = dict(tokenized_data)
|
||||
|
||||
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
|
||||
```
|
||||
|
||||
أخيرًا، قم بتحميل وتجميع وتناسب النموذج. لاحظ أن نماذج Transformers تحتوي جميعها على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
|
||||
# تحميل وتجميع النموذج الخاص بنا
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
|
||||
# معدلات التعلم المنخفضة أفضل غالبًا لضبط النماذج الدقيقة
|
||||
model.compile(optimizer=Adam(3e-5)) # لا توجد دالة خسارة!
|
||||
|
||||
model.fit(tokenized_data, labels)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
أنت لست مضطرًا لتمرير دالة خسارة إلى نماذجك عند تجميعها! تختار نماذج Hugging Face تلقائيًا
|
||||
دالة خسارة مناسبة لمهمتها وهندسة نموذجها إذا تُركت هذه الحجة فارغة. يمكنك دائمًا
|
||||
تجاوز ذلك عن طريق تحديد دالة خسارة بنفسك إذا كنت تريد ذلك!
|
||||
|
||||
</Tip>
|
||||
|
||||
يعمل هذا النهج بشكل رائع لمجموعات البيانات الصغيرة، ولكن بالنسبة لمجموعات البيانات الأكبر، فقد تجد أنه يصبح مشكلة. لماذا؟
|
||||
لأن المصفوفة المرمزة والتصنيفات يجب أن يتم تحميلها بالكامل في الذاكرة، ولأن NumPy لا يتعامل مع
|
||||
المصفوفات"غير المنتظمة"، لذا حشو كل عينة إلى طول أطول عينة في مجموعة البيانات بأكملها. سيؤدي ذلك إلى زيادة حجم المصفوفة لديك، وستبطئ الرموز الزائده من عملية التدريب أيضًا!
|
||||
|
||||
### تحميل البيانات كـ tf.data.Dataset
|
||||
|
||||
إذا كنت تريد تجنب إبطاء التدريب، فيمكنك تحميل بياناتك كـ `tf.data.Dataset` بدلاً من ذلك. على الرغم من أنه يمكنك كتابة خط أنابيب `tf.data` الخاص بك إذا كنت تريد، إلا أن لدينا طريقتين مختصرتين للقيام بذلك:
|
||||
- [`~TFPreTrainedModel.prepare_tf_dataset`]: هذه هي الطريقة التي نوصي بها في معظم الحالات. نظرًا لأنه طريقة
|
||||
على نموذجك، فيمكنه فحص النموذج لتحديد الأعمدة القابلة للاستخدام كمدخلات للنموذج تلقائيًا،
|
||||
واستبعاد الأعمدة الأخرى لإنشاء مجموعة بيانات أبسط وأكثر كفاءة.
|
||||
- [`~datasets.Dataset.to_tf_dataset`]: هذه الطريقة أكثر أساسية، وهي مفيدة عندما تريد التحكم بدقة في كيفية
|
||||
إنشاء مجموعة البيانات الخاصة بك، عن طريق تحديد أعمدة `columns` و `label_cols` المحددة التي سيتم تضمينها.
|
||||
|
||||
قبل أن تتمكن من استخدام [`~TFPreTrainedModel.prepare_tf_dataset`]، ستحتاج إلى إضافة مخرجات المُجزئ إلى مجموعة البيانات الخاصة بك كأعمدة، كما هو موضح في
|
||||
عينة التعليمات البرمجية التالية:
|
||||
|
||||
```py
|
||||
def tokenize_dataset (data):
|
||||
# ستتم إضافة مفاتيح القاموس الذي تمت إعادته كأعمدة إلى مجموعة البيانات
|
||||
return tokenizer(data["text"])
|
||||
|
||||
|
||||
dataset = dataset.map(tokenize_dataset)
|
||||
```
|
||||
|
||||
تذكر أن مجموعات بيانات Hugging Face يتم تخزينها على القرص بشكل افتراضي، لذا فلن يؤدي ذلك إلى تضخيم استخدام الذاكرة لديك! بمجرد إضافة الأعمدة، يمكنك بث الدفعات من مجموعة البيانات وإضافة الترميز إلى كل دفعة، مما يقلل بشكل كبير من عدد رموز الترقيم مقارنة بترميز مجموعة البيانات بأكملها.
|
||||
|
||||
|
||||
```py
|
||||
>>> tf_dataset = model.prepare_tf_dataset(dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
لاحظ أنه في عينة التعليمات البرمجية أعلاه، تحتاج إلى تمرير المُجزئ اللغوي إلى `prepare_tf_dataset` حتى تتمكن من حشو الدُفعات بشكل صحيح أثناء تحميلها.
|
||||
إذا كانت جميع العينات في مجموعة البيانات الخاصة بك بنفس الطول ولم يكن الترميز ضروريًا، فيمكنك تخطي هذا المعامل.
|
||||
إذا كنت بحاجة إلى القيام بشيء أكثر تعقيدًا من مجرد ترميز العينات (على سبيل المثال، إفساد الرموز للنمذجة اللغوية المُقنعة)،
|
||||
فيمكنك استخدام معامل `collate_fn` بدلاً من ذلك لتمرير دالة يتم استدعاؤها لتحويل
|
||||
قائمة العينات إلى دفعة وتطبيق أي معالجة مسبقة تريدها. راجع أمثلةنا [examples](https://github.com/huggingface/transformers/tree/main/examples) أو
|
||||
[دفاتر الملاحظات](https://huggingface.co/docs/transformers/notebooks) لرؤية هذا النهج في العمل.
|
||||
|
||||
بمجرد إنشاء `tf.data.Dataset`، يمكنك تجميع النموذج وتناسبه كما هو الحال من قبل:
|
||||
|
||||
```py
|
||||
model.compile(optimizer=Adam(3e-5)) # No loss argument!
|
||||
|
||||
model.fit(tf_dataset)
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='pytorch_native'></a>
|
||||
## تدريب في PyTorch الأصلي
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Dh9CL8fyG80"/>
|
||||
|
||||
[`Trainer`] يهتم بحلقة التدريب ويسمح لك بضبط نموذج في سطر واحد من التعليمات البرمجية. بالنسبة للمستخدمين الذين يفضلون كتابة حلقة التدريب الخاصة بهم، يمكنك أيضًا ضبط نموذج 🤗 Transformers في PyTorch الأصلي.
|
||||
@ -281,6 +397,8 @@ torch.cuda.empty_cache()
|
||||
|
||||
>>> metric.compute()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='additional-resources'></a>
|
||||
|
||||
@ -291,4 +409,4 @@ torch.cuda.empty_cache()
|
||||
- [🤗 أمثلة المحولات](https://github.com/huggingface/transformers/tree/main/examples) تتضمن
|
||||
النصوص البرمجية لتدريب مهام NLP الشائعة في PyTorch وTensorFlow.
|
||||
|
||||
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
|
||||
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
|
@ -53,7 +53,7 @@ Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek ei
|
||||
### Überblick über die Modelle
|
||||
|
||||
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
|
||||
[`PreTrainedModel`] und [`PreTrainedConfig`]. Als Beispiel werden wir
|
||||
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
|
||||
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
|
||||
|
||||
Schauen wir uns das mal an:
|
||||
@ -81,10 +81,10 @@ model.config # model has access to its config
|
||||
```
|
||||
|
||||
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
|
||||
[`PreTrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
|
||||
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
|
||||
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
|
||||
[`~PreTrainedModel.save_pretrained`] wird automatisch
|
||||
[`~PreTrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
|
||||
[`~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
|
||||
|
||||
|
||||
### Code-Stil
|
||||
|
@ -81,6 +81,8 @@ Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
|
||||
|
||||
## AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
@ -106,3 +108,24 @@ TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Arc
|
||||
</Tip>
|
||||
|
||||
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
|
||||
</pt>
|
||||
<tf>
|
||||
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -78,10 +78,10 @@ Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere
|
||||
Zunächst müssen Sie das Modell laden.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
>>> from transformers import AutoModelForCausalLM
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
@ -119,12 +119,12 @@ Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zun
|
||||
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
||||
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
|
@ -79,15 +79,43 @@ Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit
|
||||
|
||||
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
|
||||
|
||||
```py
|
||||
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
|
||||
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
|
||||
```
|
||||
|
||||
Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern:
|
||||
|
||||
```py
|
||||
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</tf>
|
||||
<jax>
|
||||
Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren:
|
||||
|
||||
```py
|
||||
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
|
||||
... "path/to/awesome-name-you-picked", from_pt=True
|
||||
... )
|
||||
```
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
## Ein Modell während des Trainings hochladen
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Z1-XMy-GNLQ"/>
|
||||
|
||||
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
|
||||
@ -113,6 +141,29 @@ Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
|
||||
|
||||
- Ein Ausgabeverzeichnis für Ihr Modell.
|
||||
- Einen Tokenizer.
|
||||
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
|
||||
|
||||
```py
|
||||
>>> from transformers import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
|
||||
... )
|
||||
```
|
||||
|
||||
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
|
||||
|
||||
```py
|
||||
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Verwenden Sie die Funktion `push_to_hub`.
|
||||
|
||||
@ -178,4 +229,4 @@ Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verz
|
||||
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
|
||||
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
|
||||
|
||||
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
|
||||
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
|
@ -153,6 +153,8 @@ Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurüc
|
||||
|
||||
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
@ -172,6 +174,32 @@ Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
dtype=int32)>,
|
||||
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
|
||||
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Audio
|
||||
|
||||
|
@ -66,10 +66,20 @@ Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verw
|
||||
|
||||
Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```bash
|
||||
pip install torch
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten:
|
||||
|
||||
@ -144,6 +154,8 @@ Die [`pipeline`] kann jedes Modell aus dem [Model Hub](https://huggingface.co/mo
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and its associated tokenizer (more on an `AutoClass` below):
|
||||
|
||||
```py
|
||||
@ -152,6 +164,18 @@ Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and its associated tokenizer (more on an `TFAutoClass` below):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden:
|
||||
|
||||
@ -202,6 +226,8 @@ Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält:
|
||||
|
||||
Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> pt_batch = tokenizer(
|
||||
@ -212,11 +238,27 @@ Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Dar
|
||||
... return_tensors="pt",
|
||||
... )
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> tf_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="tf",
|
||||
... )
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung.
|
||||
|
||||
### AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
@ -248,6 +290,39 @@ Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wen
|
||||
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
🤗 Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] für die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben, indem Sie die Wörterbuchschlüssel direkt an die Tensoren übergeben:
|
||||
|
||||
```py
|
||||
>>> tf_outputs = tf_model(tf_batch)
|
||||
```
|
||||
|
||||
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
||||
>>> tf_predictions # doctest: +IGNORE_RESULT
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -267,6 +342,8 @@ Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B.
|
||||
|
||||
### Modell speichern
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden:
|
||||
|
||||
```py
|
||||
@ -280,9 +357,28 @@ Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrai
|
||||
```py
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern:
|
||||
|
||||
```py
|
||||
>>> tf_save_directory = "./tf_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> tf_model.save_pretrained(tf_save_directory)
|
||||
```
|
||||
|
||||
Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
@ -290,6 +386,17 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Custom model builds
|
||||
|
||||
@ -303,6 +410,8 @@ Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte
|
||||
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Create a model from your custom configuration with [`AutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
@ -310,6 +419,17 @@ Create a model from your custom configuration with [`AutoModel.from_config`]:
|
||||
|
||||
>>> my_model = AutoModel.from_config(my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Create a model from your custom configuration with [`TFAutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> my_model = TFAutoModel.from_config(my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model).
|
||||
|
||||
|
@ -85,6 +85,8 @@ pip install -r requirements.txt
|
||||
|
||||
## Ein Skript ausführen
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Dann nimmt das Skript eine Feinabstimmung eines Datensatzes mit dem [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) auf einer Architektur vor, die eine Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/google-t5/t5-small) auf dem Datensatz [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
|
||||
|
||||
```bash
|
||||
@ -98,8 +100,27 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Anschließend nimmt das Skript die Feinabstimmung eines Datensatzes mit Keras auf einer Architektur vor, die die Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/google-t5/t5-small) auf dem [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) Datensatz durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
|
||||
|
||||
```bash
|
||||
python examples/tensorflow/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Verteiltes Training und gemischte Präzision
|
||||
|
||||
@ -121,6 +142,7 @@ torchrun \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -128,6 +150,8 @@ TensorFlow-Skripte verwenden eine [`MirroredStrategy`](https://www.tensorflow.or
|
||||
|
||||
## Ein Skript auf einer TPU ausführen
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. PyTorch unterstützt TPUs mit dem [XLA](https://www.tensorflow.org/xla) Deep Learning Compiler (siehe [hier](https://github.com/pytorch/xla/blob/master/README.md) für weitere Details). Um eine TPU zu verwenden, starten Sie das Skript `xla_spawn.py` und verwenden das Argument `num_cores`, um die Anzahl der TPU-Kerne festzulegen, die Sie verwenden möchten.
|
||||
|
||||
```bash
|
||||
@ -142,8 +166,28 @@ python xla_spawn.py --num_cores 8 \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. TensorFlow Skripte verwenden eine [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) für das Training auf TPUs. Um eine TPU zu verwenden, übergeben Sie den Namen der TPU-Ressource an das Argument `tpu`.
|
||||
|
||||
```bash
|
||||
python run_summarization.py \
|
||||
--tpu name_of_tpu_resource \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Führen Sie ein Skript mit 🤗 Accelerate aus.
|
||||
|
||||
@ -198,6 +242,7 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--summary_column summary_column_name \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--overwrite_output_dir \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--predict_with_generate
|
||||
@ -225,6 +270,7 @@ python examples/pytorch/summarization/run_summarization.py \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
@ -238,6 +284,8 @@ examples/pytorch/summarization/run_summarization.py -h
|
||||
|
||||
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
|
||||
|
||||
Die erste Methode verwendet das Argument `output_dir previous_output_dir`, um das Training ab dem letzten in `output_dir` gespeicherten Kontrollpunkt wieder aufzunehmen. In diesem Fall sollten Sie `overwrite_output_dir` entfernen:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
@ -249,6 +297,24 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--output_dir previous_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
Die zweite Methode verwendet das Argument `Resume_from_checkpoint path_to_specific_checkpoint`, um das Training ab einem bestimmten Checkpoint-Ordner wieder aufzunehmen.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--resume_from_checkpoint path_to_specific_checkpoint \
|
||||
--predict_with_generate
|
||||
```
|
||||
@ -280,5 +346,6 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
```
|
@ -73,6 +73,8 @@ An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, de
|
||||
in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten,
|
||||
klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks!
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="nvBXf7s7vTI"/>
|
||||
|
||||
## Trainieren mit PyTorch Trainer
|
||||
@ -153,11 +155,128 @@ Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Traine
|
||||
```py
|
||||
>>> trainer.train()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<a id='keras'></a>
|
||||
|
||||
<Youtube id="rnTGBy2ax1c"/>
|
||||
|
||||
## Trainieren Sie ein TensorFlow-Modell mit Keras
|
||||
|
||||
Sie können auch 🤗 Transformers Modelle in TensorFlow mit der Keras API trainieren!
|
||||
|
||||
### Laden von Daten für Keras
|
||||
|
||||
Wenn Sie ein 🤗 Transformers Modell mit der Keras API trainieren wollen, müssen Sie Ihren Datensatz in ein Format konvertieren, das
|
||||
Keras versteht. Wenn Ihr Datensatz klein ist, können Sie das Ganze einfach in NumPy-Arrays konvertieren und an Keras übergeben.
|
||||
Probieren wir das zuerst aus, bevor wir etwas Komplizierteres tun.
|
||||
|
||||
Laden Sie zunächst ein Dataset. Wir werden den CoLA-Datensatz aus dem [GLUE-Benchmark](https://huggingface.co/datasets/glue) verwenden,
|
||||
da es sich um eine einfache Aufgabe zur Klassifizierung von binärem Text handelt, und nehmen vorerst nur den Trainingssplit.
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("glue", "cola")
|
||||
dataset = dataset["train"] # Just take the training split for now
|
||||
```
|
||||
|
||||
Als nächstes laden Sie einen Tokenizer und tokenisieren die Daten als NumPy-Arrays. Beachten Sie, dass die Beschriftungen bereits eine Liste von 0 und 1en sind,
|
||||
Wir können sie also ohne Tokenisierung direkt in ein NumPy-Array konvertieren!
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
tokenized_data = tokenizer(dataset["text"], return_tensors="np", padding=True)
|
||||
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
|
||||
tokenized_data = dict(tokenized_data)
|
||||
|
||||
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
|
||||
```
|
||||
|
||||
Schließlich laden, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) und [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) Sie das Modell:
|
||||
|
||||
```py
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
|
||||
# Load and compile our model
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
|
||||
# Lower learning rates are often better for fine-tuning transformers
|
||||
model.compile(optimizer=Adam(3e-5))
|
||||
|
||||
model.fit(tokenized_data, labels)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Sie müssen Ihren Modellen kein Verlustargument übergeben, wenn Sie sie `compile()`! Hugging-Face-Modelle wählen automatisch
|
||||
einen Loss, der für ihre Aufgabe und Modellarchitektur geeignet ist, wenn dieses Argument leer gelassen wird. Sie können jederzeit außer Kraft setzen, indem Sie selbst einen Loss angeben, wenn Sie das möchten!
|
||||
|
||||
</Tip>
|
||||
|
||||
Dieser Ansatz eignet sich hervorragend für kleinere Datensätze, aber bei größeren Datensätzen kann er zu einem Problem werden. Warum?
|
||||
Weil das tokenisierte Array und die Beschriftungen vollständig in den Speicher geladen werden müssten, und weil NumPy nicht mit
|
||||
"gezackte" Arrays nicht verarbeiten kann, so dass jedes tokenisierte Sample auf die Länge des längsten Samples im gesamten Datensatz aufgefüllt werden müsste.
|
||||
Datensatzes aufgefüllt werden. Dadurch wird das Array noch größer, und all die aufgefüllten Token verlangsamen auch das Training!
|
||||
|
||||
### Laden von Daten als tf.data.Dataset
|
||||
|
||||
Wenn Sie eine Verlangsamung des Trainings vermeiden wollen, können Sie Ihre Daten stattdessen als `tf.data.Dataset` laden. Sie können zwar Ihre eigene
|
||||
tf.data"-Pipeline schreiben können, wenn Sie wollen, haben wir zwei bequeme Methoden, um dies zu tun:
|
||||
|
||||
- [`~TFPreTrainedModel.prepare_tf_dataset`]: Dies ist die Methode, die wir in den meisten Fällen empfehlen. Da es sich um eine Methode
|
||||
Ihres Modells ist, kann sie das Modell inspizieren, um automatisch herauszufinden, welche Spalten als Modelleingaben verwendet werden können, und
|
||||
verwirft die anderen, um einen einfacheren, leistungsfähigeren Datensatz zu erstellen.
|
||||
- [`~datasets.Dataset.to_tf_dataset`]: Diese Methode ist eher auf niedriger Ebene angesiedelt und ist nützlich, wenn Sie genau kontrollieren wollen, wie
|
||||
Dataset erstellt wird, indem man genau angibt, welche `columns` und `label_cols` einbezogen werden sollen.
|
||||
|
||||
Bevor Sie [`~TFPreTrainedModel.prepare_tf_dataset`] verwenden können, müssen Sie die Tokenizer-Ausgaben als Spalten zu Ihrem Datensatz hinzufügen, wie in
|
||||
dem folgenden Codebeispiel:
|
||||
|
||||
```py
|
||||
def tokenize_dataset(data):
|
||||
# Keys of the returned dictionary will be added to the dataset as columns
|
||||
return tokenizer(data["text"])
|
||||
|
||||
|
||||
dataset = dataset.map(tokenize_dataset)
|
||||
```
|
||||
|
||||
Denken Sie daran, dass Hugging Face-Datensätze standardmäßig auf der Festplatte gespeichert werden, so dass dies nicht zu einem erhöhten Arbeitsspeicherbedarf führen wird! Sobald die
|
||||
Spalten hinzugefügt wurden, können Sie Batches aus dem Datensatz streamen und zu jedem Batch Auffüllungen hinzufügen, was die Anzahl der Auffüllungs-Token im Vergleich zum Auffüllen des gesamten Datensatzes reduziert.
|
||||
|
||||
|
||||
```py
|
||||
>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
Beachten Sie, dass Sie im obigen Codebeispiel den Tokenizer an `prepare_tf_dataset` übergeben müssen, damit die Stapel beim Laden korrekt aufgefüllt werden können.
|
||||
Wenn alle Stichproben in Ihrem Datensatz die gleiche Länge haben und kein Auffüllen erforderlich ist, können Sie dieses Argument weglassen.
|
||||
Wenn Sie etwas Komplexeres als nur das Auffüllen von Stichproben benötigen (z. B. das Korrumpieren von Token für die maskierte Sprachmodellierung), können Sie das Argument
|
||||
Modellierung), können Sie stattdessen das Argument `collate_fn` verwenden, um eine Funktion zu übergeben, die aufgerufen wird, um die
|
||||
Liste von Stichproben in einen Stapel umwandelt und alle gewünschten Vorverarbeitungen vornimmt. Siehe unsere
|
||||
[examples](https://github.com/huggingface/transformers/tree/main/examples) oder
|
||||
[notebooks](https://huggingface.co/docs/transformers/notebooks), um diesen Ansatz in Aktion zu sehen.
|
||||
|
||||
Sobald Sie einen `tf.data.Dataset` erstellt haben, können Sie das Modell wie zuvor kompilieren und anpassen:
|
||||
|
||||
```py
|
||||
model.compile(optimizer=Adam(3e-5))
|
||||
|
||||
model.fit(tf_dataset)
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='pytorch_native'></a>
|
||||
|
||||
## Trainieren in nativem PyTorch
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Dh9CL8fyG80"/>
|
||||
|
||||
[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen.
|
||||
@ -299,6 +418,8 @@ Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müss
|
||||
|
||||
>>> metric.compute()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='additional-resources'></a>
|
||||
|
||||
@ -309,4 +430,4 @@ Weitere Beispiele für die Feinabstimmung finden Sie unter:
|
||||
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte
|
||||
um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren.
|
||||
|
||||
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.
|
||||
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user