Compare commits

..

12 Commits

Author SHA1 Message Date
f63fd09005 [Doc] Fix response parsing example 2025-11-14 22:35:38 +00:00
16c7afd06f Update test_dynamic_cache_exportability_multiple_run (failing on torch 2.10 nightly) (#42212)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-11-14 16:09:03 +01:00
309180f93a [BLT] Fix cache usage (#42188)
* fix

* properly

* fix tests
2025-11-14 15:58:17 +01:00
8976ceb051 Refactor check_auto_docstring using AST (#41432)
* refactor check_auto_docstring with AST

* use dataclass for ASTIndexes

* simplify and improve readability

* fix missing imports

* fix modular

* fix modular issues
2025-11-14 09:57:08 -05:00
c01e711ee5 Stop inheriting tests! (#42192)
* Stop inheriting tests!

* Just use a del instead

* fixup
2025-11-14 14:07:42 +00:00
082e3ff4a3 Add cross links for model contribution (#42207)
* add cross links

* a few nits

* last bit

* Update CONTRIBUTING.md

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2025-11-14 13:06:52 +00:00
c0678c81b9 New docker from AMD (#42208) 2025-11-14 13:40:24 +01:00
f78cadfc97 [Pop2Piano] Fix tied weights (#42193)
* fix

* try oh try

* change fix
2025-11-14 12:54:33 +01:00
eddd51ec3d Fix checkpoint loading with DeepSpeed ZeRO3 (#42201)
fix checkpoint loading with DeepSpeed ZeRO3

Signed-off-by: Masahiro Tanaka <mtanaka@anyscale.com>
Co-authored-by: Ferdinand Mom <47445085+3outeille@users.noreply.github.com>
2025-11-14 11:48:08 +01:00
7607d80f7e Add AutoTokenizer mapping for mistral3 and ministral (#42198)
* WIP

* WIP
2025-11-14 11:28:20 +01:00
32a58e3146 🚨 Delete deprecations with end-cycle in v4.xx and v5.0 (#41681)
* remove deprecations from v4

* delete those for v5

* delete these also

* fix tests

* add dummy test config

* fix copies

* SDPA raises warning but doesn't automatically change to eager

* max size can't be deleted, sadly

* oke, this should allow loading from-pretrained, but delete everything else

* style

* fix popping from kwargs

* audios rename

* padding defaults to self

* modular fix

* address comment

* style
2025-11-14 10:26:16 +01:00
6f6095e0cf Refactor weight loading (#41580)
* ah actually we don't discard lm head if missing -> needs to be moved to correct device and etc

* fix some tests

* small fixes

* up

* up

* dik why we tie weights twice but,..,,.

* ups

* removeunused

* fix hunyuan

* small fix

* nits

* ish

* up

* rev

* fix more tie weights keys

* small fixes

* nit

* update

* fix and fix

* fix a test

* glubs

* current shitty changes

* ship validated ones

* more

* more update

* more

* more

* more

* mllama

* more up

* fix ernie

* fix xopies

* up more

* more fixes

* up

* up

* fix-copies

* fix more

* more updates

* AI UPDATE

* up

* hoey

* make it fast

* fix

* lol

* fix asjusting

* more fixes

* _dtype nit

* up

* nit

* update

* update

* remove semaphores

* fix import to avoid jit execution

* try to remove custom tiing logic when its stupid

* fix more individual models

* fix whisper as well

* fix?

* fox umt5

* improve tqdm bar

* cleanup a bit

* oupsi

* some updates

* improve

* remove all buffering -> much faster without it

* remove some tie_weights custome funcs when not needed

* more fixes related to strict matching regex

* remove ALL custom tie weights

* small update

* revert change to init scheme (no need for params)

* mixtral init

* try less strict source check

* tied weight first shot to the fiiiixxxxxx

* does this help?

* :)

* fix some ppolry defined tied_weights_keys for now

* subclass nn.Parameters

* up

* lol

* Ouiiii

* fix led

* fix long cat flash

* fix qwen and long cat flash

* properly fix qwen init

* just push this for now

* propnet is dumb

* update

* push

* remove explict sharing of some tied keys.

* update decoder.bias

* moe case

* more changes to untangle old hardcoded ting

* fixup

* fix big faileurs

* fix prophnet

* fix resize token embeddings

* nits

* fix xcodex

* asyncio?

* fix smart apply

* fix data-2-vec

* [build-ci-image]

* checkout

* uupdate

* fix hunyuan

* update error message

* fix deformable detr

* fixes

* fix init weights for non param gate up projs

* shared todo?

* update some models

* big revert, don't break this behaviour

* ty @SunMarc this fixes the buffers

Co-authored-by: SunMarc <SunMarc@users.noreply.github.com>

* mt5 fuck

* fix lxmbert

* nuke slow test fetcher

* fix zamba and deepcopy for now

* fix zamba tied weight keys! ~

* fix-copies

* update fetch terst

* fix gradient for test modeling common!

* break "shared" for now I will fix tomorrow changes are properly isoalted now :)

* does this fix marian? probably not

* fix some vlms

* D fine seems to handle this well

* glob is fine actually

* fix dab detr

* small steps

* opusy

* fix some more models?

* yups

* better erro

* fix?

* fix double escape

* escape wehere it makes sense

* ??

* fix ibert

* fix tvp as well

* more fxes

* try always download ref PR

* ONONONO

* big fixup

* more fixup

* small step

* small nits

* nits

* brut force some stuff

* fix vilt

* make sure special models that always need tie always tie

* cleaning up

* small nits

* fix zamba and bridge tower!

* just fixup

* potential culprits

* revert bark and fix bridgetower

* remove now non existant tie_weights

* ?

* lol reformer actually had nothing tied!

* wow these two fucking models were really not well made

* fix sam family!

* fix bark revision

* fix speech2test ?

* push this for now....

* upsy

* the fuck

* fix rtdetr

* update

* proper

* wow that one 's annoying

* update

* try to find the culprit

* get some help on common

* nit about general init and cls.padding_idx

* revert num workers update

* remove old loading func

* fix glob

* add annotations

* fix re

* small improvements

* clean some stuff

* improvements

* someone did not understannnnnnd what I tried to dooo or does BNB not support that either?

* gluos

* fix case when `.` is just not there

* remove unused arg

* recover orignal parameter/buffer using _original

* fix glob issu

* this?

* deepspeed best-effort

* remove unused stuff

* Update tie weight keys as they were just wroong

Co-authored-by: Benjamin Bossan <benjaminbossan@users.noreply.github.com>"

* up

* augustuc clauss, a gloubs gloups gloubs

* fixup

* fixup

* there was fucking typo

* mrain

* nits

* fix marian 3 remaining tests

* one more

* fix some of the copies, not all :)

* small cleanup

* one propertest

* fix core model loadig tes

* attempt a new test

* fix some of the annoying tests by supporting reading .bin sometimes

* push

* push more small fixes

* remove 1 useless test

* up

* fix audio flamingo post rebase

* fixup

* some small updatess

* fix sam models

* nits

* up

* updates

* onem ore

* skip this stupid test

* some other fixes

* fixup

* update

* skip more offloaded stuff

* oups

* ups

* update mixtral

* skip this one

* LET"SGO

* fixup

* rope delta order

* fix csm

* small nit

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: SunMarc <SunMarc@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
2025-11-13 17:12:52 +01:00
668 changed files with 9517 additions and 10514 deletions

View File

@ -46,8 +46,8 @@ jobs:
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- run: python utils/tests_fetcher.py --filter_tests
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt || true
- run: python utils/tests_fetcher.py --filter_tests || true
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
@ -98,8 +98,8 @@ jobs:
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt
- run: python utils/tests_fetcher.py --filter_tests
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt || true
- run: python utils/tests_fetcher.py --filter_tests || true
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then

View File

@ -125,8 +125,9 @@ If you're contributing a **vision-language model** (or any multimodal model that
All new models should use the modular architecture pattern. Create a `modular_<model_name>.py` file using the modular model converter:
- Use the CLI, [`transformers add-new-model-like`](https://github.com/huggingface/transformers/blob/main/src/transformers/cli/add_new_model_like.py) to generate a modular skeleton and get started
- All code should be in the modular file if possible. Modeling must be in it, it's better if configuration is in it as well.
- All code should be in the modular file if possible. Modeling must be in it, it's better if configuration is in it as well. [Modular guide](./modular_transformers#implementing-a-modular-file) shows a quick way to set up a modular file.
- Reuse existing patterns from similar models as much as possible
- You can make the model compatible with inference engines such as vLLM or SGLang, and enable zero-effort integration. See specific requirements for model implementation in ["Transformers modeling backend"](./transformers_as_backend#multimodal-models)
To verify your modular file is correct, run:

View File

@ -45,6 +45,7 @@ repo-consistency:
python utils/check_modular_conversion.py
python utils/check_dummies.py
python utils/check_repo.py
python utils/check_init_weights_data.py
python utils/check_inits.py
python utils/check_pipeline_typing.py
python utils/check_config_docstrings.py

View File

@ -1,4 +1,4 @@
FROM rocm/pytorch:rocm7.0.2_ubuntu24.04_py3.12_pytorch_release_2.7.1
FROM rocm/pytorch:rocm7.1_ubuntu22.04_py3.10_pytorch_release_2.8.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive

View File

@ -508,16 +508,16 @@ BERT `_init_weights` Methode:
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
```
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
@ -533,9 +533,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
```
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf

View File

@ -118,7 +118,7 @@
- local: tools
title: Tools
- local: transformers_as_backend
title: Inference server backends
title: Transformers as modeling backend
- local: continuous_batching
title: Continuous Batching
title: Inference

View File

@ -314,16 +314,16 @@ Random initialization occurs in the `_init_weights` method of `BrandNewLlamaPreT
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
```
The initialization scheme can look different if you need to adapt it to your model. For example, [`Wav2Vec2ForPreTraining`] initializes [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) in its last two linear layers.
@ -339,9 +339,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
```
### Convert checkpoints to Transformers

View File

@ -74,14 +74,15 @@ messages = [
}
]
input_ids = tokenizer.apply_chat_template(
processed = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
)
input_ids = processed["input_ids"].to(model.device)
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1] :]
out_text = tokenizer.decode(outputs)
parsed = tokenizer.parse_response(out_text)
print(parsed.keys())

View File

@ -136,7 +136,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
fps=1,
# kwargs to be passed to `Qwen2-5-OmniProcessor`
padding=True,
@ -245,7 +245,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
fps=1,
# kwargs to be passed to `Qwen2-5-OmniProcessor`
padding=True,

View File

@ -54,7 +54,7 @@ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B", trust_remote_co
prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>Generate the caption in English:"
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/glass-breaking-151256.mp3"
audio, sr = librosa.load(BytesIO(urlopen(url).read()), sr=processor.feature_extractor.sampling_rate)
inputs = processor(text=prompt, audios=audio, return_tensors="pt").to(model.device)
inputs = processor(text=prompt, audio=audio, return_tensors="pt").to(model.device)
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
@ -63,7 +63,7 @@ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_
# We can also omit the audio_bos and audio_eos tokens
prompt = "<|AUDIO|>Generate the caption in English:"
inputs = processor(text=prompt, audios=audio, return_tensors="pt").to(model.device)
inputs = processor(text=prompt, audio=audio, return_tensors="pt").to(model.device)
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
@ -106,7 +106,7 @@ for message in conversation:
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to(model.device)
generate_ids = model.generate(**inputs, max_length=256)
@ -156,7 +156,7 @@ for message in conversation:
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to(model.device)
generate_ids = model.generate(**inputs, max_length=256)
@ -213,7 +213,7 @@ for conversation in conversations:
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
inputs['input_ids'] = inputs['input_ids'].to(model.device)
inputs.input_ids = inputs.input_ids.to(model.device)

View File

@ -80,7 +80,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
fps=1,
# kwargs to be passed to `Qwen3OmniMoeProcessor`
padding=True,
@ -136,7 +136,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
fps=1,
# kwargs to be passed to `Qwen3OmniMoeProcessor`
padding=True,
@ -245,7 +245,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
fps=1,
# kwargs to be passed to `Qwen3OmniMoeProcessor`
padding=True,

View File

@ -61,7 +61,7 @@ Here is how to use the processor to process text and audio:
>>> audio_sample = next(iter(dataset))["audio"]
>>> # now, process it
>>> audio_inputs = processor(audios=audio_sample["array"], return_tensors="pt")
>>> audio_inputs = processor(audio=audio_sample["array"], return_tensors="pt")
>>> # now, process some English test as well
>>> text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")

View File

@ -61,7 +61,7 @@ Here is how to use the processor to process text and audio:
>>> audio_sample = next(iter(dataset))["audio"]
>>> # now, process it
>>> audio_inputs = processor(audios=audio_sample["array"], return_tensors="pt")
>>> audio_inputs = processor(audio=audio_sample["array"], return_tensors="pt")
>>> # now, process some English text as well
>>> text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")

View File

@ -1,6 +1,6 @@
# Contributing a new model to Transformers
Modular Transformers lowers the bar for contributing models and significantly reduces the code required to add a model by allowing imports and inheritance.
Modular Transformers lowers the bar for contributing models and significantly reduces the code required to add a model by allowing imports and inheritance. We recommend to go through [general contribution guidelines for new models](./contributing#do-you-want-to-implement-a-new-model) before diving into the details here.
One of Transformers' core design feature is the [single model, single file](https://huggingface.co/blog/transformers-design-philosophy) policy. Model components - such as attention layers - are repeated across many files and any independent implementations tend to diverge as fixes and changes are applied to specific parts of the code.

View File

@ -149,7 +149,7 @@ The example below packs `up_proj` and `gate_proj` into a single `gate_up_proj` m
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
Batch matrix multiplication can be used in the `forward` pass to compute the output of the `gate_up_proj` module.

View File

@ -14,9 +14,9 @@ rendered properly in your Markdown viewer.
-->
# Inference server backends
# Transformers as modeling backend
Transformers' models are compatible with different inference servers like vLLM and SGLang. Instead of implementing a model for each inference server, you only need one model, which can be plugged into any inference server. It simplifies maintenance and makes it easy for users to use different inference servers for different use cases.
Transformers' models are compatible with different inference servers like vLLM and SGLang. Instead of implementing a new model architecture from scratch for each inference server, you only need a model definition in `transformers`, which can be plugged into any inference server. It simplifies maintenance and makes it easy for users to use different inference servers for different use cases.
With Transformers as a backend, you can also serve any model - including custom and Hub-hosted models - without waiting for native support.
@ -157,57 +157,13 @@ class MyConfig(PreTrainedConfig):
### Multimodal models
For multimodal models, you need to include a few more changes on top of the general recommendations. These rules ensure that your model integrates properly with multimodal data.
For multimodal models, you need to include a few more changes on top of the general recommendations outlined in ["contribuiting a model"](./contributing#vision-language-model-contribution-checklist). These rules ensure that your model integrates properly and enables processing multimodal data.
1. A multimodal model requires a base `MyMultiModalModel` class to handle multimodal fusion without a language modeling head and a separate generative class that adds a head.
1. A multimodal model's processing class must have the `self.image_token` and `self.image_token_ids` attributes. These are placeholder tokens used to indicate image positions in the input. This placeholder token is the same token used in the input prompt to denote images and used in model code to scatter image features.
The base model needs to implement the `get_image_features()` method to accept image pixel values and return encoded outputs. These are later merged with the language embeddings and don't require any postprocessing. The shape of the returned features must match the number of input images. If a vision encoder returns variable-length outputs (patch-based), return a list of 2D tensors of size `(image_seq_len, image_dim)` for each image.
2. The processing class needs `self._get_num_multimodal_tokens` method to compute the number of placeholder tokens needed for multimodal inputs with given sizes and to return a [`MultiModalData`] object. The placeholders between `<image>` tokens such as row or column tokens don't count as image placeholders. Only tokens that are actually replaced by image features later in modeling should be counted!
Expand the code below for an example.
<details>
<summary>modeling_my_multimodal_model.py</summary>
```python
from transformers.generation import GenerationMixin
class MyMultimodalModel(MyMultimodalPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.language_model = AutoModel.from_config(config.text_config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multimodal_projection = nn.Linear(vision_dim, text_dim)
def get_image_features(self, pixel_values):
return self.vision_tower(pixel_values).last_hidden_states
def forward(self, input_ids, pixel_values, **kwargs):
# process your inputs
return MyModelOutputWithPast(
last_hidden_state=last_hidden_state,
image_hidden_states=image_features,
[...]
)
class MyMultimodalModelForConditionalGeneration(MyMultimodalPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.model = MyMultimodalModel(config)
self.lm_head = nn.Linear(hidden_dim, vocab_size)
```
</details>
2. A multimodal model config must be nested with the following fields.
* text_config: decoder language model config
* vision_config: vision encoder config
* image_token_id: ID of the image placeholder token used in the input to indicate image position
3. A multimodal model's processing class must have the `self.image_token` and `self.image_token_ids` attributes. These are placeholder tokens used to indicate image positions in the input. The placeholder token is the same token used in the input prompt and to mask scatter image features.
The processing class also needs `self._get_num_multimodal_tokens` method to compute the number of placeholder tokens needed for multimodal inputs with given sizes and to return a [`MultiModalData`] object. The placeholder for row and column tokens don't count as image placeholders. Only the tokens that are actually replaced by image features are computed.
Finally, when `return_mm_token_type_ids=True`, the class has to return `mm_token_type_ids` to indicate whether each position is a text token (`0`) or image placeholder token (`1`). Each image's token type IDs must be contiguous with no breaks between consecutive ones.
3. The processor needs to check the value of `return_mm_token_type_ids` and return `mm_token_type_ids` to indicate whether each position is a text token (`0`), image placeholder token (`1`) or video placeholder token (`2`). Each multimodal token type ID sequence must be contiguous without breaks between consecutive tokens, therefore special tokens for begin/end/row/column must be treated as placeholders.
Expand the code below for an example.
@ -246,5 +202,5 @@ class MyMultimodalProcessor(ProcessorMixin):
## Resources
* Read the [Transformers backend integration in vLLM](https://blog.vllm.ai/2025/04/11/transformers-backend.html) blog post for more details about the Transformers backend in vLLM.
* Read the [Transformers backend integration in SGLang](https://huggingface.co/blog/transformers-backend-sglang) blog post for more details about the Transformers backend in SGLang.
* Read the [Transformers modeling backend integration in vLLM](https://blog.vllm.ai/2025/04/11/transformers-backend.html) blog post for more details about the Transformers modeling backend in vLLM.
* Read the [Transformers modeling backend integration in SGLang](https://huggingface.co/blog/transformers-backend-sglang) blog post for more details about the Transformers modeling backend in SGLang.

View File

@ -170,7 +170,7 @@ Per quanto riguarda la classe `TrainingArguments`:
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `eval_strategy`.
Per quanto riguarda il modello Transfo-XL:
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_words_embeddings`.
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_word_embeddings`.
- Il metodo di modellazione `reset_length` di Transfo-XL diventa `reset_memory_length`.
Per quanto riguarda le pipeline:

View File

@ -406,16 +406,16 @@ model = BrandNewBertModel(BrandNewBertConfig())
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
```
特定のモジュールに特別な初期化が必要な場合、カスタムスキームをさらに持つことができます。たとえば、
@ -431,9 +431,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
```
`_is_hf_initialized`フラグは、サブモジュールを一度だけ初期化することを確実にするために内部で使用されます。

View File

@ -348,16 +348,16 @@ model = BrandNewBertModel(BrandNewBertConfig())
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
```
몇 가지 모듈에 대해 특별한 초기화가 필요한 경우 사용자 정의 방식을 사용할 수도 있습니다. 예를 들어, `Wav2Vec2ForPreTraining`에서 마지막 두 개의 선형 레이어는 일반적인 PyTorch `nn.Linear`의 초기화를 가져야 하지만, 다른 모든 레이어는 위와 같은 초기화를 사용해야 합니다. 이는 다음과 같이 코드화됩니다:
@ -371,9 +371,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
```
`_is_hf_initialized` 플래그는 서브모듈을 한 번만 초기화하도록 내부적으로 사용됩니다. `module.project_q``module.project_hid`에 대해 `True`로 설정함으로써, 우리가 수행한 사용자 정의 초기화가 이후에 덮어쓰이지 않도록 합니다. 즉, `_init_weights` 함수가 이들에게 적용되지 않습니다.

View File

@ -152,7 +152,7 @@ class ParallelInterface(MutableMapping):
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
배치 행렬 곱셈을 `forward` 패스에서 사용하여 `gate_up_proj` 모듈의 출력을 계산할 수 있습니다.

View File

@ -502,16 +502,10 @@ class DummyBertLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -536,18 +530,18 @@ class DummyBertPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, DummyBertLMPredictionHead):
module.bias.data.zero_()
module.bias.zero_()
@auto_docstring(

View File

@ -265,7 +265,7 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
# We initialize with 0s to be 1 centered as the RMSNorm here does (1 + weight)
if "RMSNorm" in module.__class__.__name__:
module.weight.data.zero_()
module.weight.zero_()
class MyNewModel2ForSequenceClassification(GenericForSequenceClassification, MyNewModel2PreTrainedModel):

View File

@ -104,9 +104,9 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
def token_type_ids_mask_function(
@ -428,7 +428,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
def __init__(self, config):
@ -440,7 +440,15 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
prefix = "model.language_model."
prefixed_mapping = {
f"{prefix}{target}": f"{prefix}{source}"
for target, source in self.language_model._tied_weights_keys.items()
}
if isinstance(self._tied_weights_keys, dict):
self._tied_weights_keys.update(prefixed_mapping)
else:
self._tied_weights_keys = prefixed_mapping
self.post_init()
def get_input_embeddings(self):

View File

@ -505,16 +505,10 @@ class RobertaLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -539,18 +533,18 @@ class RobertaPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, RobertaLMPredictionHead):
module.bias.data.zero_()
module.bias.zero_()
@auto_docstring(

View File

@ -846,11 +846,11 @@ class TestDetrPreTrainedModel(PreTrainedModel):
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if hasattr(module, "reference_points") and not self.config.two_stage:

View File

@ -19,7 +19,15 @@ class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration):
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
prefix = "model.language_model."
prefixed_mapping = {
f"{prefix}{target}": f"{prefix}{source}"
for target, source in self.language_model._tied_weights_keys.items()
}
if isinstance(self._tied_weights_keys, dict):
self._tied_weights_keys.update(prefixed_mapping)
else:
self._tied_weights_keys = prefixed_mapping
self.post_init()

View File

@ -27,7 +27,6 @@
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
@ -180,29 +179,11 @@ class ModelArguments:
)
},
)
freeze_feature_extractor: Optional[bool] = field(
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
def __post_init__(self):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder` "
"instead. Setting `freeze_feature_encoder==True`.",
FutureWarning,
)
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`. "
"Only make use of `--freeze_feature_encoder`."
)
def main():
# See all possible arguments in src/transformers/training_args.py

View File

@ -876,7 +876,7 @@ class PreTrainedConfig(PushToHubMixin):
if hasattr(self, "quantization_config"):
serializable_config_dict["quantization_config"] = (
self.quantization_config.to_dict()
if not isinstance(self.quantization_config, dict)
if not isinstance(self.quantization_config, dict) and self.quantization_config is not None
else self.quantization_config
)
self.dict_dtype_to_str(serializable_config_dict)
@ -910,7 +910,7 @@ class PreTrainedConfig(PushToHubMixin):
if hasattr(self, "quantization_config"):
output["quantization_config"] = (
self.quantization_config.to_dict()
if not isinstance(self.quantization_config, dict)
if not isinstance(self.quantization_config, dict) and self.quantization_config is not None
else self.quantization_config
)
self.dict_dtype_to_str(output)

View File

@ -0,0 +1,136 @@
# coding=utf-8
# Copyright (C) 2025 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from .core_model_loading import Concatenate, MergeModulelist, WeightConverter
from .utils import is_torch_available
if is_torch_available():
import torch
def _build_checkpoint_conversion_mapping():
mapping = {
"mixtral": [
WeightConverter(
source_keys=[
"block_sparse_moe.experts.*.w1.weight",
"block_sparse_moe.experts.*.w3.weight",
], # you give me a list of 2 keys, I collect a list of a list of tensors
target_keys="mlp.experts.gate_up_proj", # target key gets the list of two tensors
operations=[
MergeModulelist(
dim=0
), # each process has two lists of tensors, we cat each list. -> we end up with 2 tensors
Concatenate(dim=1), # each process has 2 tensors, gate and up, we concat them into gate_up
], # we want the loading to add this shard operation here. Though we can't shard after concats and merge, needs to be first
),
WeightConverter(
source_keys=[
"block_sparse_moe.experts.*.w2.weight",
],
target_keys="mlp.experts.down_proj", # target key gets the list of two tensors
operations=[
MergeModulelist(
dim=0
), # each process has two lists of tensors, we cat each list. -> we end up with 2 tensors
], # we want the loading to add this shard operation here. Though we can't shard after concats and merge, needs to be first
),
# WeightConverter(
# ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"],
# "self_attn.qkv_proj",
# operations=[Concatenate(dim=0)], # more like stack?
# ),
WeightConverter("*.block_sparse_moe.", "*.mlp."),
],
"qwen2_moe": [
WeightConverter(
source_keys=[
"mlp.experts.*.gate_proj.weight",
"mlp.experts.*.up_proj.weight",
],
target_keys="mlp.experts.gate_up_proj",
operations=[MergeModulelist(dim=0), Concatenate(dim=1)],
),
WeightConverter(
source_keys=["mlp.experts.*.down_proj.weight"],
target_keys="mlp.experts.down_proj",
operations=[MergeModulelist(dim=0)],
),
],
"legacy": [
WeightConverter(
source_keys="LayerNorm.gamma",
target_keys="LayerNorm.weight",
),
WeightConverter(
source_keys="LayerNorm.beta",
target_keys="LayerNorm.bias",
),
],
}
if hasattr(torch.nn.utils.parametrizations, "weight_norm"):
mapping["legacy"] += [
WeightConverter(
source_keys="weight_g",
target_keys="parametrizations.weight.original0",
),
WeightConverter(
source_keys="weight_v",
target_keys="parametrizations.weight.original1",
),
]
else:
mapping["legacy"] += [
WeightConverter(
source_keys="parametrizations.weight.original0",
target_keys="weight_g",
),
WeightConverter(
source_keys="parametrizations.weight.original1",
target_keys="weight_v",
),
]
mapping["phimoe"] = mapping["mixtral"].copy()
mapping["deepseek_v2"] = mapping["qwen2_moe"].copy()
mapping["deepseek_v3"] = mapping["qwen2_moe"].copy()
mapping["dot1"] = mapping["qwen2_moe"].copy()
mapping["ernie_4_5_moe"] = mapping["qwen2_moe"].copy()
mapping["glm4_moe"] = mapping["qwen2_moe"].copy()
mapping["glm4v_moe"] = mapping["qwen2_moe"].copy()
mapping["jamba"] = mapping["qwen2_moe"].copy()
mapping["lfm2_moe"] = mapping["mixtral"].copy()
mapping["long_cat_flash"] = mapping["qwen2_moe"].copy()
mapping["qwen3_moe"] = mapping["qwen2_moe"].copy()
mapping["qwen3_omni_moe"] = mapping["qwen2_moe"].copy()
mapping["qwen3_next"] = mapping["qwen2_moe"].copy()
mapping["qwen3_vl_moe"] = mapping["qwen2_moe"].copy()
mapping["hunyuan_v1_moe"] = mapping["qwen2_moe"].copy()
mapping["minimax"] = mapping["mixtral"].copy()
return mapping
_checkpoint_conversion_mapping_cache = None
def get_checkpoint_conversion_mapping(model_type):
global _checkpoint_conversion_mapping_cache
_checkpoint_conversion_mapping_cache = _build_checkpoint_conversion_mapping()
globals()["_checkpoint_conversion_mapping"] = _checkpoint_conversion_mapping_cache
return deepcopy(_checkpoint_conversion_mapping_cache.get(model_type, None))

View File

@ -0,0 +1,732 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Core helpers for loading model checkpoints."""
from __future__ import annotations
import itertools
import os
import re
from abc import abstractmethod
from collections import defaultdict
from collections.abc import MutableMapping, MutableSet, Sequence
from concurrent.futures import Future, ThreadPoolExecutor
from contextlib import contextmanager
from dataclasses import dataclass, field
from functools import partial
from types import MethodType
from typing import TYPE_CHECKING, Any, Optional, Union
import torch
from .integrations.tensor_parallel import ALL_PARALLEL_STYLES, DTensor, Replicate, TensorParallelLayer
from .utils import is_torch_greater_or_equal, logging
_torch_distributed_available = torch.distributed.is_available()
_is_dtensor_available = _torch_distributed_available and is_torch_greater_or_equal("2.5")
if _is_dtensor_available:
from torch.distributed.tensor import DTensor
if TYPE_CHECKING:
from .modeling_utils import PreTrainedModel
from .quantizers import HfQuantizer
logger = logging.get_logger(__name__)
str_to_torch_dtype = {
"BOOL": torch.bool,
"U8": torch.uint8,
"I8": torch.int8,
"I16": torch.int16,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I32": torch.int32,
"F32": torch.float32,
"F64": torch.float64,
"I64": torch.int64,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
logger = logging.get_logger(__name__)
def _glob_to_regex_src(glob: str, *, digits_only: bool = True) -> str:
"""
Convert a glob with '*' into a regex *source* string. We don't use `glob.translate`
'*' matches (\\d+) if digits_only else (.+). Inner groups are non-capturing.
"""
star = r"(\d+)" if digits_only else r"(.+)"
return glob.replace(r"\*", star)
def build_glob_alt(
globs: list[str],
) -> tuple[re.Pattern, dict[str, str]]:
r"""
Build one compiled regex alternation with a named group per glob. This allows to run a single
re.match and get the correct group name to finally get which pattern matched.
Returns (compiled_regex, name->glob map).
Example:
```py
>>> reg, map_ = build_glob_alt(["mlp.*.w1", "mlp.*.w2"])
>>> print(reg)
(re.compile(r'(?P<g0>.*mlp\.(\d+)\.w1)|(?P<g1>.*mlp\.(\d+)\.w2)', re.UNICODE),
>>> print(map_)
{'g0': 'mlp.*.w1', 'g1': 'mlp.*.w2'})
>>> match_ = reg.match("model.layers.0.mlp.0.w1.weight")
>>> print(match_.lastgroup)
'g0'
>>> print(map_[match_.lastgroup])
mlp.*.w1
```
"""
name_map: dict[str, str] = {}
parts: list[str] = []
for i, g in enumerate(globs):
name = f"g{i}"
name_map[name] = g
pat_src = _glob_to_regex_src(g)
prefix_src = ""
if pat_src.startswith("*"):
prefix_src = "."
elif not pat_src.startswith(r"\^") and not pat_src.startswith(r".*"):
prefix_src = ".*"
parts.append(f"(?P<{name}>{prefix_src}{pat_src}.*)")
alt_src = "|".join(parts).replace("\\^", "^").replace("\\.", r"\.")
try:
reg = re.compile(alt_src)
except re.error as e:
logger.error(f"Error compiling regex for alternation: {alt_src}")
raise e
return reg, name_map
def match_glob(key: str, alt: re.Pattern, name_map: dict[str, str]) -> Optional[str]:
"""
Match the key against the alternation; return the original glob string that matched.
"""
m = alt.match(key)
if not m:
return None
return name_map.get(m.lastgroup)
class ConversionOps:
"""Base class for weight conversion operations."""
# The inverse operation class, will be used when saving the checkpoint
reverse_op: type[ConversionOps]
@abstractmethod
def convert(
self, value: Union[dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor], *args, **kwargs
) -> torch.Tensor:
raise NotImplementedError
class Chunk(ConversionOps):
"""Split a tensor along ``dim`` into equally sized chunks or using explicit ``sizes``."""
reverse_op: type[ConversionOps]
def __init__(self, dim: int = 0, chunks: Optional[int] = None, sizes: Optional[Sequence[int]] = None):
if chunks is None and sizes is None:
raise ValueError("`chunks` or `sizes` must be provided for Chunk operations.")
if chunks is not None and chunks <= 0:
raise ValueError("`chunks` must be a strictly positive integer.")
self.dim = dim
self.chunks = chunks
self.sizes = list(sizes) if sizes is not None else None
self.reverse_op = Concatenate
def convert(self, value: torch.Tensor, *args, **kwargs) -> list[torch.Tensor]:
# chunk requires a single tensor input
if len(value) != 1 or len(value[0]) != 1:
raise ValueError("Chunk operation requires a single tensor input.")
return list(torch.chunk(value[0][0], self.chunks, dim=self.dim))
class Concatenate(ConversionOps):
"""Concatenate tensors along `dim` using a reusable buffer."""
reverse_op: type[ConversionOps]
def __init__(self, dim: int = 0):
self.dim = dim
self.reverse_op = Chunk
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *args, **kwargs) -> torch.Tensor:
if isinstance(value[0], list):
value = [v[0] for v in value]
tensors = value
if not tensors:
raise ValueError("Fuse requires at least one tensor to concatenate.")
return torch.cat(tuple(tensors), dim=self.dim)
class MergeModulelist(Concatenate):
"""
Merge a list of tensors into a single tensor along the first dimension.
We explicitly define this because for EP or TP you want to make sure you know what you are doing!
"""
def __init__(self, dim: int = 0):
super().__init__(dim=dim)
self.reverse_op = SplitModulelist
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *args, **kwargs) -> list[torch.Tensor]:
merged = []
for group in value:
if not isinstance(group, Sequence) or len(group) == 0:
raise ValueError("MergeModulelist requires non-empty sub-sequences.")
group = [k for k in group if k.ndim]
merged.append(torch.stack(group, dim=self.dim))
return merged
class SplitModulelist(ConversionOps):
"""Inverse of :class:`MergeModulelist` using explicit split sizes per group."""
def __init__(self, sizes: Sequence[Sequence[int]], dim: int = 0):
if not isinstance(sizes, Sequence) or not all(isinstance(sub, Sequence) and sub for sub in sizes):
raise ValueError("`sizes` must be a sequence of non-empty sequences of integers.")
self.sizes = [list(sub) for sub in sizes]
self.dim = dim
self.reverse_op = MergeModulelist
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *, context: dict[str, Any]) -> list[list[torch.Tensor]]:
if not isinstance(value, Sequence):
raise TypeError("SplitModulelist expects a sequence of tensors.")
if len(value) != len(self.sizes):
raise ValueError("Number of tensors does not match the provided split specifications.")
result: list[list[torch.Tensor]] = []
for tensor, split_sizes in zip(value, self.sizes):
if not isinstance(tensor, torch.Tensor):
raise TypeError("SplitModulelist can only split torch.Tensor instances.")
splits = torch.split(tensor, split_sizes, dim=self.dim)
result.append(list(splits))
return result
class PermuteForRope(ConversionOps):
"""
Applies the permutation required to convert complex RoPE weights to the split sin/cos format.
"""
def __init__(self):
pass
def _apply(self, tensor: torch.Tensor) -> torch.Tensor:
dim1, dim2 = tensor.shape
n_heads = self.config.getattr("num_attention_heads", 1)
tensor = tensor.view(n_heads, dim1 // n_heads // 2, 2, dim2)
tensor = tensor.transpose(1, 2).reshape(dim1, dim2)
return tensor
@torch.no_grad
def convert(
self, value: Union[dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor], config
) -> Union[dict[str, torch.Tensor], list[torch.Tensor], torch.Tensor]:
self.config = config
out = [[self._apply(x) for x in inner] if isinstance(inner, list) else self._apply(inner) for inner in value]
return out
@dataclass(slots=True)
class WeightConverter:
r"""
A weight convert that acts on a pattern of source keys.
The keys need to be collected based on the target keys.
With wild card, glob patterns are matched, so you have to be detailed with what to match. If you match:
`model.layers.*.experts.*` -> it will act on all of them
{"model.layers.*.experts.*": []}
but
`experts.*.mlp` will be layer specific.
{"model.layers.1.experts.*": [], }
- source_keys: str | list[str] (wildcards '*' match digits)
- target_keys: str | list[str] | None
- distributed_operation / operations / quantization_operations are ALWAYS lists.
TODO: for BNB we need to collect model.weight.quant_state_keys
"""
source_keys: Union[str, list[str]]
target_keys: Optional[Union[str, list[str]]] = None
operations: list[ConversionOps] = field(default_factory=list, repr=False)
distributed_operation: Optional[TensorParallelLayer] = None
quantization_operation: Optional[ConversionOps] = None
def __post_init__(self):
if not isinstance(self.source_keys, list):
self.source_keys = [self.source_keys]
targets_were_none = False
if not isinstance(self.target_keys, list):
if self.target_keys is None:
self.target_keys = list(self.source_keys)
targets_were_none = True
else:
self.target_keys = [self.target_keys]
if not targets_were_none and bool(len(self.source_keys) - 1) + bool(len(self.target_keys) - 1) >= 2:
raise ValueError(
f"source keys={self.source_keys}, target_keys={self.target_keys} but you can only have one to many, one to one or many to one."
)
@dataclass(slots=True)
class ConversionEntry:
weight_converter: WeightConverter
collected_tensors: dict = field(default_factory=lambda: defaultdict(dict))
GLOBAL_WORKERS = min(16, (os.cpu_count() or 8) * 2) # NVMe: 8-16; HDD/NFS: 2-4
# Factory function to create LoadedParameter subclasses dynamically
def get_loaded_parameter_class(base_cls):
"""
base_cls: an nn.Parameter subclass (or nn.Parameter) or a Tensor
Returns a new class that combines the base_cls with LoadedParameterMixin
"""
class LoadedParam(base_cls):
_inplace_methods = [
"add_",
"mul_",
"clamp_",
"zero_",
"fill_",
"normal_",
"uniform_",
"copy_",
"erfinv_",
"log_",
"__getitem__",
"neg_",
"exp_",
"sub_",
]
def __new__(cls, from_existing, **kwargs):
if isinstance(from_existing, torch.nn.Parameter):
inst = super().__new__(cls, from_existing.data, from_existing.requires_grad, **from_existing.__dict__)
else:
inst = super().__new__(cls, from_existing)
# we store the original object to get it back later on
inst._original = from_existing
# Explicitly override all in-place methods per instance
for method_name in inst._inplace_methods:
setattr(inst, method_name, MethodType(inst._skip, inst))
return inst
def _skip(self, *args, **kwargs):
"""Helper to skip in-place operations."""
return self
def __repr__(self):
return f"LoadedParameter(data={self.data})"
@property
def data(self):
return super().data
@data.setter
def data(self, new):
pass
def __lt__(self, other):
return torch.Tensor.__lt__(self, other)
def __le__(self, other):
return torch.Tensor.__le__(self, other)
def __gt__(self, other):
return torch.Tensor.__gt__(self, other)
def __ge__(self, other):
return torch.Tensor.__ge__(self, other)
def __eq__(self, other):
return torch.Tensor.__eq__(self, other)
def __ne__(self, other):
return torch.Tensor.__ne__(self, other)
def __iadd__(self, *args, **kwargs):
return self
def __isub__(self, *args, **kwargs):
return self
def __imul__(self, *args, **kwargs):
return self
def __imatmul__(self, *args, **kwargs):
return self
def __itruediv__(self, *args, **kwargs):
return self
def __ifloordiv__(self, *args, **kwargs):
return self
def __imod__(self, *args, **kwargs):
return self
def __ipow__(self, *args, **kwargs):
return self
def __iand__(self, *args, **kwargs):
return self
def __ior__(self, *args, **kwargs):
return self
def __ixor__(self, *args, **kwargs):
return self
def __ilshift__(self, *args, **kwargs):
return self
def __irshift__(self, *args, **kwargs):
return self
return LoadedParam
def _materialize_copy(tensor, dtype=None):
tensor = tensor[...]
if dtype is not None:
tensor = tensor.to(dtype)
return tensor
def spawn_materialize(thread_pool, tensor, dtype=None) -> Future:
def _job():
return _materialize_copy(tensor, dtype)
return thread_pool.submit(_job)
def spawn_tp_materialize(thread_pool, tensor, sharding_method, tensor_idx, dtype=None) -> Future:
def _job():
return sharding_method.shard_tensor(tensor, param_casting_dtype=dtype, tensor_idx=tensor_idx)[0]
return thread_pool.submit(_job)
def dot_natural_key(s: str):
parts = s.split(".")
for i, p in enumerate(parts):
# whole-segment digits -> int; otherwise leave as str
if p.isdigit():
parts[i] = int(p)
return parts
@contextmanager
def log_to_misc(
layer_name: str,
misc: MutableMapping[str, str],
extras: Any = None,
op: Union[list[ConversionOps], ConversionOps, None] = None,
):
# A simple helper to handle errors with contextual messages.
try:
yield
except Exception as e:
def _format_op_name(curr_op: Union[list[ConversionOps], ConversionOps, None]) -> Optional[str]:
if curr_op is None:
return None
if isinstance(curr_op, (list, tuple, set)):
names = [o.__class__.__name__ for o in curr_op if o is not None]
if not names:
return None
return ", ".join(names)
return curr_op.__class__.__name__
op_name = _format_op_name(op)
if isinstance(extras, tuple) and len(extras) == 2:
values, target_keys = extras
descriptor = f"{op_name} " if op_name else ""
misc[layer_name] = (
f"{e}\nError: {descriptor}on tensors destined for {target_keys}. Ckpt contains: {len(values[0])}"
)
elif isinstance(extras, str):
suffix = f" via {op_name}" if op_name else ""
misc[layer_name] = f"{e}\nError{suffix} when processing parameter {extras}"
elif extras is None and op_name:
misc[layer_name] = f"{op_name}: {e}"
else:
misc[layer_name] = f"{extras} |Error: {e}"
raise SkipLayer()
def set_param_for_module(
model: PreTrainedModel,
layer_name: str,
param_value: torch.Tensor,
mismatch_keys: MutableSet[tuple[str, torch.Size, torch.Size]],
missing_keys: MutableSet[str],
misc: MutableMapping[str, Any],
distributed_operation: Optional[TensorParallelLayer],
):
with log_to_misc(layer_name, misc, layer_name):
module_path, _, param_name = layer_name.rpartition(".")
module_obj = model.get_submodule(module_path) if module_path else model
param_value = param_value[0] if isinstance(param_value, list) else param_value[...]
ref = getattr(module_obj, param_name)
use_dtensor = hasattr(distributed_operation, "use_dtensor") and distributed_operation.use_dtensor
if not isinstance(param_value, torch.nn.Parameter):
if distributed_operation is not None:
param_value = DTensor.from_local(
param_value,
distributed_operation.device_mesh,
getattr(distributed_operation, "shard", Replicate()),
run_check=False,
shape=ref.size(),
stride=ref.stride(),
)
if not use_dtensor:
# we convert to local
param_value = param_value.to_local()
if param_name not in module_obj._buffers:
param_value = torch.nn.Parameter(param_value, requires_grad=param_value.is_floating_point())
param_value = get_loaded_parameter_class(param_value.__class__)(from_existing=param_value)
# Remove from missing keys (it's either mismatched, or all good)
missing_keys.discard(layer_name)
if ref is not None and ref.shape != param_value.shape:
mismatch_keys.add((layer_name, param_value.shape, ref.shape))
module_obj.param_name._is_hf_initialized = False # Needs to be initialized
else:
param_value._is_hf_initialized = True # super important otherwise _init_weight re-initi if bias is missing
setattr(module_obj, param_name, param_value)
class SkipLayer(Exception):
"""Control-flow sentinel: abort processing of the current layer only."""
pass
def convert_and_load_state_dict_in_model(
model: PreTrainedModel,
state_dict: dict[str, Any],
weight_mapping: dict[str, WeightConverter] | None,
tp_plan: dict[str, str] | None,
quantizer: HfQuantizer | None,
dtype: torch.dtype | None = None,
device_map: dict | None = None,
dtype_plan: dict | None = None,
device_mesh: torch.distributed.device_mesh.DeviceMesh | None = None,
):
"""
Convert a state dict according to a weight mapping (one WeightConverter per glob pattern),
collecting tensors per *layer instance* (the concrete indices captured from '*').
"""
prefix = model.base_model_prefix
tp_plan = tp_plan or {} # {glob_pattern: plan_obj_or_key}
device_map = device_map or {} # {exact_target_key: device}
dtype_plan = dtype_plan or {} # {glob_pattern: dtype}
weight_mapping = weight_mapping or {} # {glob_pattern: WeightConverter}
meta_model_state_dict = model.state_dict()
missing_keys = set(meta_model_state_dict.keys())
misc = {}
mismatch_keys = set()
unexpected_keys = set()
# Global thread_pool
thread_pool = ThreadPoolExecutor(max_workers=GLOBAL_WORKERS)
_patterns = list(itertools.chain.from_iterable([k.source_keys for k in weight_mapping]))
source_to_target = {sk: k for k in weight_mapping for sk in k.source_keys}
weight_pattern_alt, weight_pattern_by_group_name = build_glob_alt(_patterns)
tp_plan_alt, tp_plan_by_group_name = build_glob_alt(list(tp_plan.keys()))
dtype_policy_alt, dtype_policy_by_group_name = build_glob_alt(list(dtype_plan.keys()))
state_dict = sorted(state_dict.items(), key=lambda kv: dot_natural_key(kv[0]))
# 1. Create the conversion entries
by_conversion_pattern: dict[str, ConversionEntry] = {}
for original_key, tensor in state_dict:
matched_pattern = match_glob(original_key, weight_pattern_alt, weight_pattern_by_group_name)
if matched_pattern is not None:
converter = source_to_target[matched_pattern] # TODO make sure its the ref
sub_with_extractor = partial(re.sub, matched_pattern.replace("*", r"(\d+)"), string=original_key)
entry_key = "|".join(converter.target_keys)
target_key = "|".join(map(sub_with_extractor, [k.replace("*", "\\1") for k in converter.target_keys]))
entry: ConversionEntry = by_conversion_pattern.setdefault(entry_key, ConversionEntry(converter))
converter_key = sub_with_extractor(matched_pattern)
else:
converter = WeightConverter(original_key)
converter_key = entry_key = target_key = original_key
entry = by_conversion_pattern.setdefault(converter_key, ConversionEntry(converter))
_dtype = dtype
new_target_key = [] # test_load_with_mismatched_shapes for AutoModel.from_pretrained(AutoForCausal, vocab=10)
for t in target_key.split("|"):
if t.startswith(prefix) and meta_model_state_dict.get(re.sub(f"^{prefix}.", "", t, count=1)) is not None:
t = re.sub(f"^{prefix}.", "", t, count=1)
elif meta_model_state_dict.get(f"{prefix}.{t}") is not None:
t = f"{prefix}.{t}"
new_target_key.append(t)
empty_param = meta_model_state_dict.get(t)
# If it does not exist, it's unexpected
if empty_param is None:
unexpected_keys.add(t)
continue
if quantizer is not None and quantizer.param_needs_quantization(model, t):
if quantizer.__class__.__name__ == "FineGrainedFP8HfQuantizer":
from .integrations.finegrained_fp8 import Fp8Quantize
converter.quantization_operation = Fp8Quantize() # TODO support other methods
else:
raise ValueError("This quantization method is gonna be supported SOOOON")
else:
_dtype = dtype
matched_dtype_pattern = match_glob(t, dtype_policy_alt, dtype_policy_by_group_name)
if matched_dtype_pattern is not None:
_dtype = dtype_plan[matched_dtype_pattern]
elif empty_param.dtype != _dtype:
_dtype = empty_param.dtype
first_target_key = new_target_key[0]
target_key = "|".join(new_target_key)
future = None
if device_mesh:
if matched_tp_pattern := match_glob(first_target_key, tp_plan_alt, tp_plan_by_group_name):
empty_param = meta_model_state_dict.get(first_target_key)
if getattr(converter, "distributed_operation", {}) is None:
tp_layer = ALL_PARALLEL_STYLES[model.tp_plan[matched_tp_pattern]].__class__
converter.distributed_operation = tp_layer(
device_mesh=device_mesh, rank=device_map[""].index, empty_param=empty_param.clone()
)
# VERY IMPORTANT: this tells us wether we collected stuffs or not.
shard_index = len(entry.collected_tensors[target_key].get(converter_key, []))
future = spawn_tp_materialize(
thread_pool,
tensor,
_dtype,
converter.distributed_operation,
shard_index,
)
if future is None: # If not TP, async materialize the tensors. TODO handle disk offload?
future = spawn_materialize(thread_pool, tensor, _dtype)
entry.collected_tensors[target_key].setdefault(converter_key, []).append(future)
# 2. Actually convert the ckpt
inverse_converters = {}
keys = list(by_conversion_pattern.keys())
with logging.tqdm(total=len(keys), desc="Loading weights") as pbar:
for key in keys[::-1]: # revert to process simple keys first
group = by_conversion_pattern.pop(key)
converter = group.weight_converter
operations = converter.operations if isinstance(converter.operations, list) else [converter.operations]
for layer_name, tensors_for_this_layer in group.collected_tensors.items():
pbar.update(1)
pbar.set_postfix({"Materializing param": layer_name})
pbar.refresh()
concrete_target_keys = layer_name.split("|")
try:
if bool(set(concrete_target_keys) - unexpected_keys):
with log_to_misc(layer_name, misc):
values = [[k.result() for k in inner] for inner in tensors_for_this_layer.values()]
for op in operations:
with log_to_misc(layer_name, misc, (values, concrete_target_keys), operations):
values = op.convert(values, model.config)
values = [values] if not isinstance(values, list) else values
with log_to_misc(layer_name, misc, (values, concrete_target_keys), operations):
realized_value = {
k: t for k, t in zip(concrete_target_keys, values) if k not in unexpected_keys
}
for k in list(realized_value.keys()).copy():
if op := converter.quantization_operation:
with log_to_misc(layer_name, misc, op=op):
realized_value.update(
op.convert(
{k: realized_value.pop(k)}, quant_config=quantizer.quantization_config
)
)
for k, output_value in realized_value.items():
for src in converter.source_keys: # what should happen to k when we meet k at saving
inverse_converters[k] = {src: converter}
set_param_for_module(
model,
k,
output_value,
mismatch_keys,
missing_keys,
misc,
converter.distributed_operation,
)
except SkipLayer:
continue
del group
model.inverse_converters = inverse_converters
thread_pool.shutdown(wait=False)
return missing_keys, unexpected_keys, mismatch_keys, misc
# TODO this is not done yet!
def revert_weight_conversion(model, state_dict):
mapping = getattr(model, "_checkpoint_conversion_mapping", {}) # IDK why but setting this will fail all llava.
reverse_key_mapping = [(v, k) for k, v in mapping.items()]
original_state_dict = {}
for key, value in state_dict.items():
for pattern, inverse_converter in reverse_key_mapping:
# TODO FIXME you name it
replacement = inverse_converter.lstrip("^") # strip off un-needed chars and patterns
replacement = re.sub(r"\(.*\)", "", replacement)
key, n_replace = re.subn(pattern, replacement, key)
# Early exit of the loop
if n_replace > 0:
break
original_state_dict[key] = value
state_dict = original_state_dict
return state_dict

View File

@ -411,7 +411,7 @@ class GenerationMixin(ContinuousMixin):
"Generation config file not found, using a generation config created from the model config."
)
# Load custom generate function if `pretrained_model_name_or_path` defines it (and override `generate`)
if hasattr(self, "load_custom_generate"):
if hasattr(self, "load_custom_generate") and trust_remote_code:
try:
custom_generate = self.load_custom_generate(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **repo_loading_kwargs
@ -1635,7 +1635,12 @@ class GenerationMixin(ContinuousMixin):
# TransformersKwargs are model-agnostic attention and generation arguments such as 'output_attentions'
for key, value in model_kwargs.items():
if value is not None and key not in model_args and key not in TransformersKwargs.__optional_keys__:
if (
value is not None
and key not in model_args
and key not in TransformersKwargs.__optional_keys__
and key != "debug_io"
):
unused_model_args.append(key)
if unused_model_args:

View File

@ -383,10 +383,11 @@ class BayesianDetectorModel(PreTrainedModel):
)
self.prior = torch.nn.Parameter(torch.tensor([self.base_rate]))
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Parameter):
module.weight.data.normal_(mean=0.0, std=0.02)
module.weight.normal_(mean=0.0, std=0.02)
def _compute_posterior(
self,

View File

@ -512,10 +512,8 @@ def accelerate_disk_offload(
checkpoint_files,
device_map,
checkpoint_keys,
key_renaming_mapping,
sharded_metadata,
dtype,
reverse_key_renaming_mapping,
):
disk_only_shard_files = []
if disk_offload_folder is not None:
@ -534,19 +532,13 @@ def accelerate_disk_offload(
weight_map = dict.fromkeys(checkpoint_keys, checkpoint_files[0])
else:
folder = os.path.sep.join(checkpoint_files[0].split(os.path.sep)[:-1])
# Fix the weight map keys according to the key mapping
weight_map = {
key_renaming_mapping[k]: v
for k, v in sharded_metadata["weight_map"].items()
if k in key_renaming_mapping
}
weight_map = {k: os.path.join(folder, v) for k, v in weight_map.items()}
# Find potential checkpoints containing only offloaded weights
disk_only_shard_files = get_disk_only_shard_files(device_map, weight_map)
disk_offload_index = {
name: {
"safetensors_file": file,
"weight_name": reverse_key_renaming_mapping[name],
"weight_name": name,
"dtype": str_dtype,
}
for name, file in weight_map.items()

View File

@ -1,5 +1,4 @@
import inspect
from copy import deepcopy
from inspect import signature
from ..utils import (
@ -24,7 +23,6 @@ if is_accelerate_available():
import accelerate
from accelerate import init_empty_weights
from accelerate.hooks import add_hook_to_module, remove_hook_from_module
from accelerate.utils import find_tied_parameters
logger = logging.get_logger(__name__)
@ -151,52 +149,6 @@ def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name
return model
def get_keys_to_not_convert(model):
r"""
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
int8.
Parameters:
model (`torch.nn.Module`):
Input model
"""
# Create a copy of the model and tie the weights, then
# check if it contains tied weights
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
tied_params = find_tied_parameters(tied_model)
tied_keys = sum(tied_params, [])
has_tied_params = len(tied_keys) > 0
# If there is not tied weights, we want to keep the lm_headoutput_embedding) in full precision
if not has_tied_params:
output_emb = model.get_output_embeddings()
if output_emb is not None:
list_last_module = [name for name, module in model.named_modules() if id(module) == id(output_emb)]
return list_last_module
# otherwise, no tied weights, no output embedding defined, simply keep the last module in full precision
list_modules = list(model.named_parameters())
list_last_module = [list_modules[-1][0]]
# add last module together with tied weights
intersection = set(list_last_module) - set(tied_keys)
list_untouched = list(set(tied_keys)) + list(intersection)
# remove ".weight" from the keys
names_to_remove = [".weight", ".bias"]
filtered_module_names = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
name = name.replace(name_to_remove, "")
filtered_module_names.append(name)
return filtered_module_names
# Copied from PEFT: https://github.com/huggingface/peft/blob/47b3712898539569c02ec5b3ed4a6c36811331a1/src/peft/utils/integrations.py#L41
def dequantize_bnb_weight(weight: "torch.nn.Parameter", dtype: "torch.dtype", state=None):
"""

View File

@ -13,8 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import re
from collections.abc import Sequence
from typing import Any, Optional, Union
from ..core_model_loading import ConversionOps
from ..utils import is_accelerate_available, is_torch_accelerator_available, is_torch_available, logging
@ -30,6 +33,18 @@ if is_accelerate_available():
logger = logging.get_logger(__name__)
try:
_FP8_DTYPE = torch.float8_e4m3fn
_FP8_MIN = torch.finfo(_FP8_DTYPE).min
_FP8_MAX = torch.finfo(_FP8_DTYPE).max
_FP8_IS_INT = False
except AttributeError:
_FP8_DTYPE = torch.int8
_FP8_MIN, _FP8_MAX = -127, 127
_FP8_IS_INT = True
logger.warning_once(
"torch.float8_e4m3fn not available; falling back to int8 emulation for Fp8Quantize operations."
)
# Copied from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/inference/kernel.py
@ -332,6 +347,12 @@ class FP8Linear(nn.Linear):
if self.weight.element_size() > 1:
return F.linear(input, self.weight, self.bias)
else:
if isinstance(self.weight, torch.distributed.tensor.DTensor):
weight = self.weight._local_tensor.contiguous()
scale_inv = self.weight_scale_inv._local_tensor.contiguous()
else:
weight = self.weight.contiguous()
scale_inv = self.weight_scale_inv.contiguous()
# Context manager used to switch among the available accelerators
device_type = torch.accelerator.current_accelerator().type if is_torch_accelerator_available() else "cuda"
torch_accelerator_module = getattr(torch, device_type, torch.cuda)
@ -339,9 +360,9 @@ class FP8Linear(nn.Linear):
qinput, scale = act_quant(input, self.block_size[1])
output = w8a8_block_fp8_matmul_triton(
qinput,
self.weight,
weight,
scale,
self.weight_scale_inv,
scale_inv,
self.block_size,
output_dtype=input.dtype,
)
@ -350,9 +371,124 @@ class FP8Linear(nn.Linear):
torch_accelerator_module.synchronize()
if self.bias is not None:
output = output + self.bias
output = torch.nan_to_num(output, nan=0.0)
return output.to(dtype=input.dtype)
def _ceil_div(a, b):
return (a + b - 1) // b
class FP8Expert(nn.Module):
dtype = torch.float8_e4m3fn
def __init__(self, config, block_size, device):
super().__init__()
from ..activations import ACT2FN
self.block_size = block_size
self.num_experts = config.num_local_experts
self.hidden_dim = config.hidden_size
self.intermediate_dim = config.intermediate_size
Wg_out, Wg_in = 2 * self.intermediate_dim, self.hidden_dim
Wd_out, Wd_in = self.hidden_dim, self.intermediate_dim
self.gate_up_proj = nn.Parameter(
torch.zeros(self.num_experts, Wg_out, Wg_in, dtype=FP8Expert.dtype, device=device)
)
self.down_proj = nn.Parameter(
torch.zeros(self.num_experts, Wd_out, Wd_in, dtype=FP8Expert.dtype, device=device)
)
# Create inverse scale tiles only when using 1-byte types (fp8)
if self.gate_up_proj.element_size() == 1:
bo, bi = self.block_size
# gate_up tiles: ceil(Wg_out/bo) x ceil(Wg_in/bi)
gu_scale_o = _ceil_div(Wg_out, bo)
gu_scale_i = _ceil_div(Wg_in, bi)
self.gate_up_proj_scales_inv = nn.Parameter(
torch.zeros(self.num_experts, gu_scale_o, gu_scale_i, dtype=torch.float32, device=device)
)
# down tiles: ceil(Wd_out/bo) x ceil(Wd_in/bi)
dp_scale_o = _ceil_div(Wd_out, bo)
dp_scale_i = _ceil_div(Wd_in, bi)
self.down_proj_scales_inv = nn.Parameter(
torch.zeros(self.num_experts, dp_scale_o, dp_scale_i, dtype=torch.float32, device=device)
)
else:
# Match FP8Linear behavior when not using 1-byte weights
self.register_parameter("gate_up_proj_scale_inv", None)
self.register_parameter("down_proj_scale_inv", None)
# (Optional) bias per projection — many MoEs omit bias; keep None to match your FP8Linear default
self.register_parameter("gate_up_bias", None)
self.register_parameter("down_bias", None)
# Activation used in the MLP (same as your config / ACT2FN)
# Keep a handle here; actual usage happens in forward of your MoE block
self.act_fn = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.Tensor,
top_k_index: torch.Tensor,
top_k_weights: torch.Tensor,
) -> torch.Tensor:
final_hidden_states = torch.zeros_like(hidden_states)
num_experts = top_k_weights.shape[1]
with torch.no_grad():
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=num_experts + 1)
expert_mask = expert_mask.permute(2, 1, 0)
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hit:
expert_idx = expert_idx[0]
if expert_idx == num_experts:
continue
_, token_idx = torch.where(expert_mask[expert_idx])
current_state = hidden_states.index_select(0, token_idx)
gate, up = self.linear(
current_state, self.gate_up_proj[expert_idx], self.gate_up_proj_scales_inv[expert_idx]
).chunk(2, dim=-1)
current_hidden_states = self.act_fn(gate) * up
current_hidden_states = self.linear(
current_hidden_states, self.down_proj[expert_idx], self.down_proj_scales_inv[expert_idx]
)
routing_weights = top_k_weights[token_idx, expert_idx].unsqueeze(-1)
current_hidden_states = current_hidden_states * routing_weights.to(current_hidden_states.dtype)
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
return final_hidden_states
def linear(self, input: torch.Tensor, weight: torch.Tensor, weight_scale_inv: torch.Tensor) -> torch.Tensor:
if weight.element_size() > 1:
return F.linear(input, weight, None)
else:
# Context manager used to switch among the available accelerators
device_type = torch.accelerator.current_accelerator().type if is_torch_accelerator_available() else "cuda"
torch_accelerator_module = getattr(torch, device_type, torch.cuda)
with torch_accelerator_module.device(input.device):
qinput, scale = act_quant(input, self.block_size[1])
output = w8a8_block_fp8_matmul_triton(
qinput,
weight,
scale,
weight_scale_inv,
self.block_size,
output_dtype=input.dtype,
)
# Blocks the CPU until all accelerator operations on the specified device are complete. It is used to ensure that the results of the
# preceding operations are ready before proceeding
torch_accelerator_module.synchronize()
return output.to(dtype=input.dtype)
# TODO: we do need this.... but not recursive...
def _replace_with_fp8_linear(
model,
tp_plan=None,
@ -361,40 +497,48 @@ def _replace_with_fp8_linear(
quantization_config=None,
has_been_replaced=False,
):
"""Replace Linear layers with FP8Linear."""
if current_key_name is None:
current_key_name = []
iterator = list(model.named_parameters()).copy()
for name, empty_tensor in iterator:
current_key_name = name
name = name.rsplit(".", 1)[0] if "." in name else name
module = model.get_submodule(name)
for name, module in model.named_children():
current_key_name.append(name)
if isinstance(module, nn.Linear) and name not in (modules_to_not_convert or []):
current_key_name_str = ".".join(current_key_name)
if not any(key in current_key_name_str for key in (modules_to_not_convert or [])):
with init_empty_weights():
model._modules[name] = FP8Linear(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
activation_scheme=quantization_config.activation_scheme,
block_size=quantization_config.weight_block_size,
current_key_name_str = re.sub(r"\d+", "*", current_key_name)
if not any(key in current_key_name_str for key in (modules_to_not_convert or [])):
with init_empty_weights():
if (
"gate_up_proj" in current_key_name
or "down_proj" in current_key_name
and "experts" in current_key_name
): # Experts!
in_features = empty_tensor.size(-2)
out_features = empty_tensor.size(-1)
model.set_submodule(
name,
FP8Expert(
config=model.config,
block_size=quantization_config.weight_block_size,
device=empty_tensor.device,
),
)
has_been_replaced = True
# when changing a layer the TP PLAN for that layer should be updated. TODO
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_fp8_linear(
module,
tp_plan,
modules_to_not_convert,
current_key_name,
quantization_config,
has_been_replaced=has_been_replaced,
)
current_key_name.pop(-1)
elif isinstance(module, nn.Linear):
in_features = module.in_features
out_features = module.out_features
model.set_submodule(
name,
FP8Linear(
in_features=in_features,
out_features=out_features,
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
activation_scheme=quantization_config.activation_scheme,
block_size=quantization_config.weight_block_size,
),
)
has_been_replaced = True
# when changing a layer the TP PLAN for that layer should be updated. TODO
return model, has_been_replaced
@ -405,7 +549,7 @@ def replace_with_fp8_linear(
quantization_config=None,
):
"""Helper function to replace model layers with FP8 versions."""
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
modules_to_not_convert += ["lm_head"]
if quantization_config.modules_to_not_convert is not None:
modules_to_not_convert.extend(quantization_config.modules_to_not_convert)
@ -424,3 +568,133 @@ def replace_with_fp8_linear(
)
return model
class QuantizationOp(ConversionOps):
"""Base class for quantization operations."""
pass
class Fp8Quantize(QuantizationOp):
"""
A quantization operation that creates two tensors, weight and scale out of a weight.
"""
reverse_op: type[ConversionOps]
def __init__(self, block_size: Optional[tuple[int, int]] = None):
self.block_size = block_size
self.reverse_op = Fp8Dequantize
def convert(self, input_dict: torch.Tensor, *, quant_config: dict[str, Any]) -> dict[str, torch.Tensor]:
# Unpack single key/value (value may be wrapped in a list)
target_keys, value = tuple(input_dict.items())[0]
value = value[0] if isinstance(value, list) else value
# Resolve block size (support dict-like or attr-like quant_config)
block_size = None
if quant_config is not None:
if isinstance(quant_config, dict):
block_size = quant_config.get("weight_block_size")
else:
block_size = getattr(quant_config, "weight_block_size", None)
if block_size is None:
block_size = (value.shape[-2], value.shape[-1])
block_m, block_n = block_size
rows, cols = value.shape[-2], value.shape[-1]
# Enforce exact tiling like your original
if rows % block_m != 0 or cols % block_n != 0:
raise ValueError(
f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_m}, {block_n}). for {target_keys}"
)
# Leading dims can be empty (2D) or include num_experts/... (3D+)
leading_shape = value.shape[:-2]
rows_tiles = rows // block_m
cols_tiles = cols // block_n
original_shape = value.shape
value_fp32 = value.to(torch.float32)
# Reshape to (..., rows_tiles, block_m, cols_tiles, block_n)
reshaped = value_fp32.reshape(*leading_shape, rows_tiles, block_m, cols_tiles, block_n)
# Per-tile max-abs over the block dims
# dims: block_m is at -3, block_n is at -1 after the reshape
max_abs = reshaped.abs().amax(dim=(-3, -1))
safe_max_abs = torch.where(max_abs > 0, max_abs, torch.ones_like(max_abs))
# Tile scale (we store inverse scale like your Linear: weight_scale_inv)
scales = _FP8_MAX / safe_max_abs
scales = torch.where(max_abs > 0, scales, torch.ones_like(scales)) # keep zeros stable
# Broadcast scales back over the block dims and quantize
# max_abs/scales shape: (..., rows_tiles, cols_tiles)
scales_broadcast = scales.unsqueeze(-1).unsqueeze(-3) # -> (..., rows_tiles, 1, cols_tiles, 1)
scaled = reshaped * scales_broadcast
if _FP8_IS_INT:
quantized = torch.clamp(scaled.round(), min=_FP8_MIN, max=_FP8_MAX).to(_FP8_DTYPE)
else:
quantized = torch.clamp(scaled, min=_FP8_MIN, max=_FP8_MAX).to(_FP8_DTYPE)
quantized = quantized.reshape(original_shape)
inv_scales = (1.0 / scales).to(torch.float32) # shape: (*leading, rows_tiles, cols_tiles)
if target_keys.endswith("weight"):
scale_key = target_keys.rsplit(".", 1)[0] + ".weight_scale_inv"
else:
scale_key = target_keys + "_scales_inv"
# Return both quantized weights and per-tile inverse scales (keeps leading dims, e.g., num_experts)
return {
target_keys: quantized,
scale_key: inv_scales,
}
class Fp8Dequantize(QuantizationOp):
"""Inverse operation of :class:`Fp8Quantize`. Takes a pair (weight, scale) and reconstructs the fp32 tensor."""
def __init__(self, block_size: Optional[tuple[int, int]] = None):
self.block_size = block_size
self.reverse_op = Fp8Quantize
def convert(
self,
value: Union[Sequence[torch.Tensor], dict[str, torch.Tensor]],
*,
context: dict[str, Any],
) -> torch.Tensor:
if isinstance(value, dict):
tensors = list(value.values())
else:
tensors = list(value) if isinstance(value, Sequence) else [value]
if len(tensors) != 2:
raise ValueError("Fp8Dequantize expects exactly two tensors: quantized weights and scales.")
quantized, scales = tensors
if not isinstance(quantized, torch.Tensor) or not isinstance(scales, torch.Tensor):
raise TypeError("Fp8Dequantize expects tensors as inputs.")
quantized_fp32 = quantized.to(torch.float32)
rows, cols = quantized_fp32.shape[-2:]
block_size = self.block_size
if block_size is None:
quant_config = context.get("quantization_config")
block_size = getattr(quant_config, "weight_block_size", None)
if block_size is None:
block_size = (rows, cols)
block_m, block_n = block_size
if rows % block_m != 0 or cols % block_n != 0:
raise ValueError(
f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_m}, {block_n})."
)
reshaped = quantized_fp32.reshape(-1, rows // block_m, block_m, cols // block_n, block_n)
expanded_scales = scales.to(torch.float32).reshape(-1, rows // block_m, cols // block_n)
expanded_scales = expanded_scales.unsqueeze(-1).unsqueeze(2)
dequantized = reshaped * expanded_scales
return dequantized.reshape(quantized_fp32.shape)

View File

@ -236,7 +236,7 @@ class PeftAdapterMixin:
**adapter_kwargs,
)
peft_config.inference_mode = not is_trainable
# TODO: WE NEED TOO APPLY OUR DYNAMIC WEIGHT CONVERSION AT SOME POINT HERE!
# Create and add fresh new adapters into the model.
inject_adapter_in_model(peft_config, self, adapter_name, **peft_load_kwargs)

View File

@ -18,6 +18,7 @@ import operator
import os
import re
from functools import partial, reduce
from typing import Optional
import torch
import torch.distributed as dist
@ -316,7 +317,7 @@ def repack_weights(
return final_ordered_tensor
def get_tensor_shard(param, empty_param, device_mesh, rank, dim):
def get_tensor_shard(param, empty_param, device_mesh, rank, dim, tensor_idx: Optional[int] = None):
"""
Generalized tensor sharding across a multi-dimensional device mesh.
Extract only the fraction of the parameter owned by the given `rank` when the parameter would have gone sharding at provided `dim`.
@ -368,32 +369,57 @@ def get_tensor_shard(param, empty_param, device_mesh, rank, dim):
rank (int): Global rank of the current process/device.
dim (int): Dimension along which to shard the tensor.
"""
param_dim = empty_param.dim()
if dim < 0:
dim = param_dim + dim
if dim >= param_dim:
raise ValueError(f"dim {dim} is out of bounds for tensor of dimension {param_dim}")
param_dim = empty_param.ndim
# Flatten the mesh to get the total number of devices
mesh_shape = device_mesh.shape
world_size = reduce(operator.mul, mesh_shape)
if dim < 0:
dim = param_dim + dim
if empty_param.dim() == 3 and dim == 1 and len(param.get_shape()) == 2:
dim = 0
elif empty_param.dim() == 3 and dim == 2 and len(param.get_shape()) == 2:
dim = 0
shard_size = math.ceil(empty_param.size(dim) / world_size)
start = rank * shard_size
end = min(start + shard_size, empty_param.size(dim))
if dim >= param_dim:
raise ValueError(f"dim {dim} is out of bounds for tensor of dimension {param_dim}")
if rank >= world_size:
raise ValueError(f"Rank {rank} is out of bounds for mesh size {world_size}")
shard_size = math.ceil(empty_param.shape[dim] / world_size)
start = rank * shard_size
# we have the full tensor not 1 part of it.
# in that case, we just assume that the weight was properly saved
# and thus because we TP if the layer is colwise it should not use this. Layer should be packed_colwise
# to inform that it needs to read form a packed tensor. It will also take care of the module list thingy.
# here we take care of potential chunking / layer split / layer chunking.
# The only "hard" case is? if we collect q,k,v -> merge it into qkv. In that case
# actually we still shard dim=0 does not change
# so only case is if the dim of the empty param is 3 and the shard dim is 0 -> we put the
# tensor on a certain device (with the input tensor_index)
dimensions = param.get_shape()
# Construct slicing index dynamically
end = min(start + shard_size, empty_param.shape[dim])
slice_indices = [slice(None)] * param_dim
if start < empty_param.shape[dim]:
if empty_param.dim() == 3 and dim == 0 and len(param.get_shape()) == 2:
# special case we don't "shard" just send this entire tensor to the correct rank.
if start <= tensor_idx < end:
# this tensor does need to be materialized on this device:
return param[:]
else:
return torch.empty([], dtype=torch.int64, device=rank)
slice_indices = [slice(None)] * len(param.get_shape())
if start < param.get_shape()[dim]:
slice_indices[dim] = slice(start, end)
return param[tuple(slice_indices)]
dimensions = list(param.shape)
param = param[tuple(slice_indices)]
if isinstance(param, list): # TODO handle the modulelist case!
param = [p[:] for p in param]
return param
dimensions[dim] = 0
return torch.empty(tuple(dimensions), dtype=torch.int64)
return torch.empty(tuple(dimensions), dtype=torch.int64) # empty allocates memory....
def distribute_module(
@ -420,6 +446,19 @@ class TensorParallelLayer:
"""
use_dtensor = True
device_mesh = None
rank = None
# Used to compare the shape of the original tensor
empty_param = None
# Used to init the corresponding DTensor
shard = None
def __init__(self, device_mesh=None, rank=None, empty_param=None):
self.rank = rank
self.device_mesh = device_mesh
self.empty_param = empty_param
@staticmethod
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh): ...
@ -449,12 +488,12 @@ class GatherParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
**kwargs,
):
super().__init__()
super().__init__(**kwargs)
self.input_layouts = (input_layouts or Replicate(),)
self.output_layouts = output_layouts
self.desired_input_layouts = (Replicate(),)
@ -475,6 +514,21 @@ class GatherParallel(TensorParallelLayer):
dist.all_reduce(outputs[0], op=dist.ReduceOp.SUM, async_op=False)
return outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
shard = [Replicate()]
parameter = param[...].to(param_casting_dtype)
self.shard = shard
return parameter, shard
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
distribute_module(
module,
@ -503,6 +557,23 @@ class IsolatedParallel(TensorParallelLayer):
# TODO: figure out dynamo support for instance method and switch this to instance method
return outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
mesh = device_mesh or self.device_mesh
parameter = param[...].to(param_casting_dtype)
if mesh is not None:
parameter = parameter / mesh.size()
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
param = param[...].to(param_casting_dtype)
if to_contiguous:
@ -525,8 +596,8 @@ class ReplicateParallel(TensorParallelLayer):
This class is used to replicate computation in a TP layer (used in SP regions when we don't use sequence parallelism for example)
"""
def __init__(self, *, use_dtensor=True, use_local_output=True):
super().__init__()
def __init__(self, use_dtensor=True, use_local_output=True, **kwargs):
super().__init__(**kwargs)
self.input_layouts = (Replicate(),)
self.output_layouts = (Replicate(),)
self.desired_input_layouts = (Replicate(),)
@ -547,12 +618,33 @@ class ReplicateParallel(TensorParallelLayer):
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
return outputs.to_local() if use_local_output and isinstance(outputs, DTensor) else outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
shard = [Replicate()]
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
param = param[...].to(param_casting_dtype)
if to_contiguous:
param = param.contiguous()
param = DTensor.from_local(param, device_mesh, [Replicate()], run_check=False)
return param
parameter, shard = self.shard_tensor(
param,
param_type=param_type,
param_casting_dtype=param_casting_dtype,
to_contiguous=to_contiguous,
rank=rank,
device_mesh=device_mesh,
)
if self.use_dtensor:
parameter = DTensor.from_local(parameter, device_mesh, shard, run_check=False)
return parameter
class ColwiseParallel(TensorParallelLayer):
@ -562,13 +654,13 @@ class ColwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
use_dtensor=True,
**kwargs,
):
super().__init__()
super().__init__(**kwargs)
self.input_layouts = (input_layouts or Replicate(),)
self.output_layouts = (output_layouts or Shard(-1),)
self.desired_input_layouts = (Replicate(),)
@ -588,18 +680,34 @@ class ColwiseParallel(TensorParallelLayer):
input_tensor = input_tensor.redistribute(placements=desired_input_layouts, async_op=False)
return input_tensor
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = self.device_mesh
empty_param = self.empty_param
rank = self.rank
if param_type == "bias":
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1, tensor_idx)
shard = [Shard(-1)]
else:
shard = [Shard(-2)]
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -2, tensor_idx)
parameter = parameter.to(param_casting_dtype)
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
# weight would become Shard(1)
if param_type == "bias":
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1)
shard = [Shard(-1)]
else:
shard = [Shard(-2)]
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -2)
parameter = parameter.to(param_casting_dtype)
parameter, shard = self.shard_tensor(param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh)
if to_contiguous:
parameter = parameter.contiguous()
if self.use_dtensor:
@ -618,6 +726,21 @@ class ColwiseParallel(TensorParallelLayer):
class PackedColwiseParallel(ColwiseParallel):
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
return get_packed_weights(param, empty_param, device_mesh, rank, -2).to(param_casting_dtype), [Shard(-2)]
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
@ -652,18 +775,41 @@ class RowwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
use_dtensor=True,
**kwargs,
):
super().__init__()
super().__init__(**kwargs)
self.input_layouts = (input_layouts or Shard(-1),)
self.output_layouts = (output_layouts or Replicate(),)
self.use_local_output = use_local_output
self.use_dtensor = use_dtensor
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
if param_type == "bias":
shard = [Replicate()]
parameter = param[...]
else:
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1, tensor_idx=tensor_idx)
shard = [Shard(-1)]
parameter = parameter.to(param_casting_dtype)
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# Rowwise shard weight to Shard(1), bias to Replicate(), weight be Shard(1)
# means Rowwise as nn.Linear is input * weight^T + bias, where
@ -735,6 +881,21 @@ class RowwiseParallel(TensorParallelLayer):
class PackedRowwiseParallel(RowwiseParallel):
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
return get_packed_weights(param, empty_param, device_mesh, rank, -1), [Shard(-1)]
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
@ -793,8 +954,8 @@ class SequenceParallel(TensorParallelLayer):
to ensure that they are replicated.
"""
def __init__(self, *, sequence_dim: int = 1, use_local_output: bool = False, use_dtensor=False):
super().__init__()
def __init__(self, sequence_dim: int = 1, use_local_output: bool = False, use_dtensor=False, **kwargs):
super().__init__(**kwargs)
self.input_layouts = (Replicate(),)
self.desired_input_layouts = (Shard(1),)
self.output_layouts = (Replicate(),)
@ -803,6 +964,21 @@ class SequenceParallel(TensorParallelLayer):
self.sequence_sharding = (Shard(sequence_dim),)
self.use_local_output = use_local_output
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
shard = [Replicate()]
self.shard = shard
return parameter, shard
@staticmethod
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
input_tensor = inputs[0]
@ -837,10 +1013,34 @@ class GroupedGemmParallel(TensorParallelLayer):
Applies Expert Parallelism to MoE experts by loading the correct experts on each device.
"""
def __init__(self):
super().__init__()
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.use_dtensor = False
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
empty_param = self.empty_param
ep_rank = self.rank
device_mesh = self.device_mesh
global_num_experts = empty_param.shape[0]
if global_num_experts % device_mesh.size() != 0:
raise ValueError(
f"Global number of experts must be divisible by number of devices: {global_num_experts} % {device_mesh.size()} != 0"
)
local_num_experts = global_num_experts // device_mesh.size()
parameter = param[ep_rank * local_num_experts : (ep_rank + 1) * local_num_experts].to(param_casting_dtype)
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
ep_rank = rank
global_num_experts = empty_param.shape[0]
@ -861,8 +1061,8 @@ class RouterParallel(TensorParallelLayer):
"""
def __init__(self, *args, **kwargs):
super().__init__(**kwargs)
self.args = args
self.kwargs = kwargs
self.use_dtensor = False
@staticmethod
@ -927,6 +1127,20 @@ class RouterParallel(TensorParallelLayer):
) # masking class for one hot
return router_scores, router_indices
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# TODO: i'd like for this to be the default
param = param[...].to(param_casting_dtype)
@ -1069,6 +1283,9 @@ def shard_and_distribute_module(
if current_shard_plan is not None:
try:
tp_layer = ALL_PARALLEL_STYLES[current_shard_plan]
tp_layer.empty_param = empty_param
tp_layer.device_mesh = device_mesh
tp_layer.rank = rank
param = tp_layer.partition_tensor(
param, empty_param, param_type, param_casting_dtype, is_contiguous, rank, device_mesh
)

File diff suppressed because it is too large Load Diff

View File

@ -37,7 +37,6 @@ from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, filter_out_non_signature_kwargs
from ...utils.deprecation import deprecate_kwarg
from ...utils.generic import check_model_inputs
from .configuration_aimv2 import Aimv2Config, Aimv2TextConfig, Aimv2VisionConfig
@ -406,13 +405,14 @@ class Aimv2PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if hasattr(module, "logit_scale"):
if isinstance(module.logit_scale, nn.Parameter):
module.logit_scale.data.fill_(math.log(1 / 0.07))
module.logit_scale.fill_(math.log(1 / 0.07))
elif isinstance(module, Aimv2AttentionPoolingHead):
module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range)
module.cls_token.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring(
@ -445,13 +445,11 @@ class Aimv2VisionModel(Aimv2PreTrainedModel):
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embed
@deprecate_kwarg("attention_mask", version="v4.58.0")
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
pixel_values,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""

View File

@ -32,7 +32,6 @@ from ...utils import (
auto_docstring,
can_return_tuple,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.generic import check_model_inputs
from ..clip.modeling_clip import CLIPModel, CLIPTextEmbeddings, _get_vector_norm
from ..llama.modeling_llama import LlamaMLP, LlamaRMSNorm
@ -449,13 +448,14 @@ class Aimv2PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if hasattr(module, "logit_scale"):
if isinstance(module.logit_scale, nn.Parameter):
module.logit_scale.data.fill_(math.log(1 / 0.07))
module.logit_scale.fill_(math.log(1 / 0.07))
elif isinstance(module, Aimv2AttentionPoolingHead):
module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range)
module.cls_token.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring(
@ -488,13 +488,11 @@ class Aimv2VisionModel(Aimv2PreTrainedModel):
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embed
@deprecate_kwarg("attention_mask", version="v4.58.0")
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
pixel_values,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""

View File

@ -128,6 +128,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -301,21 +302,22 @@ class AlbertPreTrainedModel(PreTrainedModel):
"attentions": AlbertAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, AlbertMLMHead):
module.bias.data.zero_()
module.bias.zero_()
@dataclass
@ -424,7 +426,10 @@ class AlbertModel(AlbertPreTrainedModel):
"""
)
class AlbertForPreTraining(AlbertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
_tied_weights_keys = {
"predictions.decoder.weight": "albert.embeddings.word_embeddings.weight",
"predictions.decoder.bias": "predictions.bias",
}
def __init__(self, config: AlbertConfig):
super().__init__(config)
@ -524,7 +529,6 @@ class AlbertMLMHead(nn.Module):
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
self.decoder.bias = self.bias
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
@ -536,14 +540,6 @@ class AlbertMLMHead(nn.Module):
return prediction_scores
def _tie_weights(self) -> None:
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class AlbertSOPHead(nn.Module):
def __init__(self, config: AlbertConfig):
@ -560,7 +556,10 @@ class AlbertSOPHead(nn.Module):
@auto_docstring
class AlbertForMaskedLM(AlbertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
_tied_weights_keys = {
"predictions.decoder.weight": "albert.embeddings.word_embeddings.weight",
"predictions.decoder.bias": "predictions.bias",
}
def __init__(self, config):
super().__init__(config)

View File

@ -580,7 +580,8 @@ def eager_attention_forward(
):
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -822,24 +823,25 @@ class AlignPreTrainedModel(PreTrainedModel):
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, AlignModel):
nn.init.xavier_uniform_(module.text_projection.weight)
module.text_projection.bias.data.zero_()
module.temperature.data.fill_(self.config.temperature_init_value)
module.text_projection.bias.zero_()
module.temperature.fill_(self.config.temperature_init_value)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
if isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
@auto_docstring(

View File

@ -770,6 +770,7 @@ class AltCLIPPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_no_split_module = []
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
@ -797,23 +798,21 @@ class AltCLIPPreTrainedModel(PreTrainedModel):
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
module.text_projection._is_hf_initialized = True
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
module.visual_projection._is_hf_initialized = True
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
module.weight.normal_(mean=0.0, std=self.config.initializer_factor)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
module.weight.normal_(mean=0.0, std=self.config.initializer_factor)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
class AltCLIPVisionTransformer(nn.Module):

View File

@ -17,7 +17,6 @@ Image/Text processor class for AltCLIP
"""
from ...processing_utils import ProcessorMixin
from ...utils.deprecation import deprecate_kwarg
class AltCLIPProcessor(ProcessorMixin):
@ -35,7 +34,6 @@ class AltCLIPProcessor(ProcessorMixin):
The tokenizer is a required input.
"""
@deprecate_kwarg(old_name="feature_extractor", version="5.0.0", new_name="image_processor")
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)

View File

@ -201,7 +201,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -428,7 +429,7 @@ class ApertusModel(ApertusPreTrainedModel):
@auto_docstring
class ApertusForCausalLM(ApertusPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -208,7 +208,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -433,7 +434,7 @@ class ArceeModel(ArceePreTrainedModel):
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForCausalLM(ArceePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -431,7 +431,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -584,10 +585,11 @@ class AriaTextPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaGroupedExpertsGemm):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring
@ -607,6 +609,7 @@ class AriaPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaProjector):
@ -759,7 +762,7 @@ class AriaTextModel(AriaTextPreTrainedModel):
@auto_docstring
class AriaTextForCausalLM(AriaTextPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
@ -889,8 +892,6 @@ class AriaModelOutputWithPast(BaseModelOutputWithPast):
"""
)
class AriaModel(AriaPreTrainedModel):
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
def __init__(self, config: AriaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
@ -1047,12 +1048,12 @@ class AriaModel(AriaPreTrainedModel):
)
class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
_checkpoint_conversion_mapping = {
"^language_model.model": "model.language_model",
"^vision_tower": "model.vision_tower",
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
r"^language_model.model": "model.language_model",
r"^vision_tower": "model.vision_tower",
r"^multi_modal_projector": "model.multi_modal_projector",
r"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
def __init__(self, config: AriaConfig):
super().__init__(config)

View File

@ -1196,10 +1196,11 @@ class AriaTextPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaGroupedExpertsGemm):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
class AriaPreTrainedModel(LlamaPreTrainedModel):
@ -1208,6 +1209,7 @@ class AriaPreTrainedModel(LlamaPreTrainedModel):
_can_compile_fullgraph = False # MoE models don't work with torch.compile (dynamic slicing)
_supports_attention_backend = True
@torch.no_grad()
def _init_weights(self, module):
PreTrainedModel._init_weights(self, module)
if isinstance(module, AriaProjector):
@ -1225,7 +1227,7 @@ class AriaTextModel(LlamaModel):
class AriaTextForCausalLM(AriaTextPreTrainedModel, LlamaForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
def __init__(self, config: AriaTextConfig):
super().__init__(config)
@ -1364,6 +1366,8 @@ class AriaModel(LlavaModel):
"""
)
class AriaForConditionalGeneration(LlavaForConditionalGeneration):
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
def get_image_features(
self,
pixel_values: torch.FloatTensor,

View File

@ -114,6 +114,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -299,23 +300,26 @@ class ASTPreTrainedModel(PreTrainedModel):
"attentions": ASTSelfAttention,
}
@torch.no_grad()
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
module.weight.copy_(
nn.init.trunc_normal_(module.weight.to(torch.float32), mean=0.0, std=self.config.initializer_range).to(
module.weight.dtype
)
)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, ASTEmbeddings):
module.cls_token.data.zero_()
module.position_embeddings.data.zero_()
module.distillation_token.data.zero_()
module.cls_token.zero_()
module.position_embeddings.zero_()
module.distillation_token.zero_()
@auto_docstring

View File

@ -58,8 +58,8 @@ def eager_attention_forward(
scaling = query.size(-1) ** -0.5
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if attention_mask is not None and attention_mask.ndim == 4:
attn_weights = attn_weights + attention_mask[:, :, :, : key.shape[-2]]
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -264,6 +264,7 @@ class AudioFlamingo3PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_sdpa = True
@torch.no_grad()
def _init_weights(self, module):
# important: this ported version of AudioFlamingo3 isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed
@ -274,16 +275,16 @@ class AudioFlamingo3PreTrainedModel(PreTrainedModel):
)
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
@auto_docstring(
@ -435,10 +436,9 @@ class AudioFlamingo3MultiModalProjector(nn.Module):
"""
)
class AudioFlamingo3ForConditionalGeneration(AudioFlamingo3PreTrainedModel, GenerationMixin):
_tied_weights_keys = None
_keep_in_fp32_modules_strict = None
_tp_plan = None
_pp_plan = None
_keep_in_fp32_modules_strict = None
def __init__(self, config):
super().__init__(config)
@ -446,9 +446,6 @@ class AudioFlamingo3ForConditionalGeneration(AudioFlamingo3PreTrainedModel, Gene
self.audio_tower = AutoModel.from_config(config.audio_config)
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.multi_modal_projector = AudioFlamingo3MultiModalProjector(config)
# Similar to Qwen2Audio
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
# Initialize weights and apply final processing
self.post_init()

View File

@ -136,16 +136,12 @@ class AudioFlamingo3MultiModalProjector(VoxtralMultiModalProjector):
"""
)
class AudioFlamingo3ForConditionalGeneration(VoxtralForConditionalGeneration):
_tied_weights_keys = None
_tp_plan = None
_pp_plan = None
_keep_in_fp32_modules_strict = None
def __init__(self, config):
super().__init__(config)
# Similar to Qwen2Audio
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
def get_audio_features(
self, input_features: torch.FloatTensor, input_features_mask: torch.Tensor

View File

@ -442,6 +442,15 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
"GPT2TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"ministral",
(
"MistralCommonTokenizer"
if is_mistral_common_available()
else ("LlamaTokenizer" if is_sentencepiece_available() else None),
"LlamaTokenizerFast" if is_tokenizers_available() and not is_mistral_common_available() else None,
),
),
(
"mistral",
(
@ -451,6 +460,15 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
"LlamaTokenizerFast" if is_tokenizers_available() and not is_mistral_common_available() else None,
),
),
(
"mistral3",
(
"MistralCommonTokenizer"
if is_mistral_common_available()
else ("LlamaTokenizer" if is_sentencepiece_available() else None),
"LlamaTokenizerFast" if is_tokenizers_available() and not is_mistral_common_available() else None,
),
),
(
"mixtral",
(

View File

@ -826,21 +826,22 @@ class AutoformerPreTrainedModel(PreTrainedModel):
main_input_name = "past_values"
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module: nn.Module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
module._init_weight()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
# copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask
def _update_full_mask(

View File

@ -90,7 +90,6 @@ class AyaVisionMultiModalProjector(nn.Module):
@auto_docstring
class AyaVisionPreTrainedModel(PreTrainedModel):
config: AyaVisionConfig
base_model_prefix = ""
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
@ -163,8 +162,6 @@ class AyaVisionModelOutputWithPast(BaseModelOutputWithPast):
"""
)
class AyaVisionModel(AyaVisionPreTrainedModel):
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
def __init__(self, config: AyaVisionConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
@ -333,12 +330,12 @@ class AyaVisionModel(AyaVisionPreTrainedModel):
)
class AyaVisionForConditionalGeneration(AyaVisionPreTrainedModel, GenerationMixin):
_checkpoint_conversion_mapping = {
"^language_model.model": "model.language_model",
"^vision_tower": "model.vision_tower",
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
r"^language_model.model": "model.language_model",
r"^vision_tower": "model.vision_tower",
r"^multi_modal_projector": "model.multi_modal_projector",
r"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
def __init__(self, config: AyaVisionConfig):
super().__init__(config)

View File

@ -292,7 +292,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -1125,12 +1126,13 @@ class BambaPreTrainedModel(PreTrainedModel):
# Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, BambaMixer):
module.dt_bias.data.fill_(1.0)
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
module.D.data.fill_(1.0)
module.dt_bias.fill_(1.0)
module.A_log.copy_(torch.log(torch.arange(1, module.num_heads + 1)))
module.D.fill_(1.0)
@auto_docstring
@ -1382,7 +1384,7 @@ class BambaModel(BambaPreTrainedModel):
@auto_docstring
class BambaForCausalLM(BambaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -800,12 +800,13 @@ class BambaPreTrainedModel(PreTrainedModel):
# Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, BambaMixer):
module.dt_bias.data.fill_(1.0)
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
module.D.data.fill_(1.0)
module.dt_bias.fill_(1.0)
module.A_log.copy_(torch.log(torch.arange(1, module.num_heads + 1)))
module.D.fill_(1.0)
@auto_docstring

View File

@ -329,19 +329,21 @@ class BarkPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = False
_supports_flash_attn = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if getattr(module, "bias", None) is not None:
module.bias.zero_()
module.weight.fill_(1.0)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@ -910,6 +912,9 @@ class BarkFineModel(BarkPreTrainedModel):
# non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
super().__init__(config)
self.config = config
self._tied_weights_keys = {}
for i in range(self.config.n_codes_total - self.config.n_codes_given):
self._tied_weights_keys[f"lm_heads.{i}.weight"] = f"input_embeds_layers.{i + 1}.weight"
# initialize a modified non causal GPT-like model
# note that for there is one embedding layer and one lm_head for each codebook of Encodec
@ -1025,25 +1030,6 @@ class BarkFineModel(BarkPreTrainedModel):
return model_embeds
def _tie_weights(self):
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_embedding_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
"""
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@auto_docstring
def forward(
self,
@ -1580,14 +1566,6 @@ class BarkModel(BarkPreTrainedModel, GenerationMixin):
return audio
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
"""
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
__all__ = [
"BarkFineModel",

View File

@ -164,7 +164,7 @@ class BartConfig(PreTrainedConfig):
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
self.tie_encoder_decoder = True
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id

View File

@ -126,6 +126,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -475,19 +476,20 @@ class BartPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
@torch.no_grad()
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
@property
def dummy_inputs(self):
@ -526,7 +528,7 @@ class BartEncoder(BartPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BartConfig):
super().__init__(config)
self.dropout = config.dropout
@ -537,12 +539,9 @@ class BartEncoder(BartPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -673,7 +672,7 @@ class BartDecoder(BartPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BartConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -681,12 +680,9 @@ class BartDecoder(BartPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -898,7 +894,10 @@ class BartDecoder(BartPreTrainedModel):
@auto_docstring
class BartModel(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
_tied_weights_keys = {
"decoder.embed_tokens.weight": "shared.weight",
"encoder.embed_tokens.weight": "shared.weight",
}
def __init__(self, config: BartConfig):
super().__init__(config)
@ -907,24 +906,12 @@ class BartModel(BartPreTrainedModel):
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = BartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
self.encoder = BartEncoder(config)
self.decoder = BartDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def _tie_weights(self):
if self.config.tie_word_embeddings:
# Some model checkpoints like "facebook/bart-large-cnn"'s embedding weight is in decoder.embed_tokens, need check here, see issue #36247
if self.shared.weight.device == torch.device(
"meta"
) and self.decoder.embed_tokens.weight.device != torch.device("meta"):
self._tie_embedding_weights(self.encoder.embed_tokens, self.decoder.embed_tokens)
self._tie_embedding_weights(self.shared, self.decoder.embed_tokens)
else:
self._tie_embedding_weights(self.encoder.embed_tokens, self.shared)
self._tie_embedding_weights(self.decoder.embed_tokens, self.shared)
def get_input_embeddings(self):
return self.shared
@ -1051,7 +1038,9 @@ class BartModel(BartPreTrainedModel):
)
class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BartConfig):
@ -1085,11 +1074,6 @@ class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_embedding_weights(self.lm_head, self.model.shared)
@auto_docstring
def forward(
self,
@ -1239,8 +1223,6 @@ class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
"""
)
class BartForSequenceClassification(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BartModel(config)
@ -1373,8 +1355,6 @@ class BartForSequenceClassification(BartPreTrainedModel):
@auto_docstring
class BartForQuestionAnswering(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
@ -1512,7 +1492,9 @@ class BartDecoderWrapper(BartPreTrainedModel):
"""
)
class BartForCausalLM(BartPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.decoder.embed_tokens.weight",
}
def __init__(self, config):
config.is_decoder = True

View File

@ -16,7 +16,6 @@
import collections.abc
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Union
@ -163,14 +162,7 @@ class BeitEmbeddings(nn.Module):
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
) -> torch.Tensor:
if self.position_embeddings is not None and interpolate_pos_encoding is not None:
warnings.warn(
"`interpolate_pos_encoding` argument has no effect for BEiTEmbeddings, embeddings are always "
"interpolated to the input image size. The argument will be removed in transformers v4.51.0."
)
_, _, height, width = pixel_values.shape
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
@ -325,19 +317,9 @@ class BeitSdpaSelfAttention(BeitSelfAttention):
) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]:
if output_attentions:
logger.warning_once(
"`BeitSdpaSelfAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not "
"support `output_attentions=True`. Falling back to the manual attention implementation, "
"but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
f"{self.__class__.__name__} does not support `output_attentions=True`. The returned attention weights will "
"be `None`. If you want to get attention weights, please set `attn_implementation='eager'` when loading the model."
)
return super().forward(
hidden_states=hidden_states,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
interpolate_pos_encoding=interpolate_pos_encoding,
resolution=resolution,
)
batch_size, seq_length, _ = hidden_states.shape
query_layer = (
self.query(hidden_states)
@ -692,31 +674,32 @@ class BeitPreTrainedModel(PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r".*relative_position_index.*"]
_supports_sdpa = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BeitEmbeddings):
module.cls_token.data.zero_()
module.cls_token.zero_()
if module.mask_token is not None:
module.mask_token.data.zero_()
module.mask_token.zero_()
if module.position_embeddings is not None:
module.position_embeddings.data.zero_()
module.position_embeddings.zero_()
elif isinstance(module, BeitRelativePositionBias):
module.relative_position_bias_table.data.zero_()
module.relative_position_bias_table.zero_()
elif isinstance(module, BeitLayer):
if module.lambda_1 is not None:
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
module.lambda_1.fill_(self.config.layer_scale_init_value)
module.lambda_2.fill_(self.config.layer_scale_init_value)
@auto_docstring

View File

@ -130,6 +130,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -505,16 +506,9 @@ class BertLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -568,21 +562,22 @@ class BertPreTrainedModel(PreTrainedModel):
"cross_attentions": BertCrossAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BertLMPredictionHead):
module.bias.data.zero_()
module.bias.zero_()
@dataclass
@ -769,7 +764,10 @@ class BertModel(BertPreTrainedModel):
"""
)
class BertForPreTraining(BertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
def __init__(self, config):
super().__init__(config)
@ -863,7 +861,10 @@ class BertForPreTraining(BertPreTrainedModel):
"""
)
class BertLMHeadModel(BertPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
def __init__(self, config):
super().__init__(config)
@ -947,7 +948,10 @@ class BertLMHeadModel(BertPreTrainedModel, GenerationMixin):
@auto_docstring
class BertForMaskedLM(BertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
def __init__(self, config):
super().__init__(config)

View File

@ -74,6 +74,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -455,21 +456,22 @@ class BertGenerationPreTrainedModel(PreTrainedModel):
"cross_attentions": BertGenerationCrossAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BertGenerationOnlyLMHead):
module.bias.data.zero_()
module.bias.zero_()
@auto_docstring(
@ -628,20 +630,11 @@ class BertGenerationOnlyLMHead(nn.Module):
super().__init__()
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
logits = self.decoder(hidden_states)
return logits
def _tie_weights(self):
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@auto_docstring(
custom_intro="""
@ -649,7 +642,10 @@ class BertGenerationOnlyLMHead(nn.Module):
"""
)
class BertGenerationDecoder(BertGenerationPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
_tied_weights_keys = {
"lm_head.decoder.weight": "bert.embeddings.word_embeddings.weight",
"lm_head.decoder.bias": "lm_head.bias",
}
def __init__(self, config):
super().__init__(config)

View File

@ -1464,16 +1464,9 @@ class BigBirdLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -1521,21 +1514,22 @@ class BigBirdPreTrainedModel(PreTrainedModel):
base_model_prefix = "bert"
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BigBirdLMPredictionHead):
module.bias.data.zero_()
module.bias.zero_()
@dataclass
@ -1899,7 +1893,10 @@ class BigBirdModel(BigBirdPreTrainedModel):
class BigBirdForPreTraining(BigBirdPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
def __init__(self, config):
super().__init__(config)
@ -1999,7 +1996,10 @@ class BigBirdForPreTraining(BigBirdPreTrainedModel):
@auto_docstring
class BigBirdForMaskedLM(BigBirdPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
def __init__(self, config):
super().__init__(config)
@ -2141,7 +2141,10 @@ class BigBirdForMaskedLM(BigBirdPreTrainedModel):
"""
)
class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
def __init__(self, config):
super().__init__(config)

View File

@ -1172,6 +1172,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -1538,19 +1539,20 @@ class BigBirdPegasusPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
@torch.no_grad()
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
@property
def dummy_inputs(self):
@ -1573,7 +1575,7 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
self.attention_type = config.attention_type
@ -1591,9 +1593,6 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
@ -1848,7 +1847,7 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -1860,9 +1859,6 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
@ -2074,7 +2070,10 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
@auto_docstring
class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
_tied_weights_keys = {
"encoder.embed_tokens.weight": "shared.weight",
"decoder.embed_tokens.weight": "shared.weight",
}
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
@ -2085,8 +2084,8 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
vocab_size, config.d_model, padding_idx, embed_scale=embed_scale
)
self.encoder = BigBirdPegasusEncoder(config, self.shared)
self.decoder = BigBirdPegasusDecoder(config, self.shared)
self.encoder = BigBirdPegasusEncoder(config)
self.decoder = BigBirdPegasusDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@ -2099,11 +2098,6 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_embedding_weights(self.encoder.embed_tokens, self.shared)
self._tie_embedding_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
@ -2212,7 +2206,9 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BigBirdPegasusConfig):
@ -2246,11 +2242,6 @@ class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, Gene
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_embedding_weights(self.lm_head, self.model.shared)
@auto_docstring
# Ignore copy
def forward(
@ -2373,8 +2364,6 @@ class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, Gene
"""
)
class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BigBirdPegasusConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BigBirdPegasusModel(config)
@ -2496,8 +2485,6 @@ class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
@auto_docstring
class BigBirdPegasusForQuestionAnswering(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
@ -2620,8 +2607,6 @@ class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel):
class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config.is_decoder = True
config.is_encoder_decoder = False

View File

@ -106,6 +106,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -509,7 +510,7 @@ class BioGptModel(BioGptPreTrainedModel):
"""
)
class BioGptForCausalLM(BioGptPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["output_projection.weight"]
_tied_weights_keys = {"output_projection.weight": "biogpt.embed_tokens.weight"}
def __init__(self, config):
super().__init__(config)

View File

@ -332,7 +332,7 @@ class BioGptModel(BioGptPreTrainedModel):
"""
)
class BioGptForCausalLM(BioGptPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["output_projection.weight"]
_tied_weights_keys = {"output_projection.weight": "biogpt.embed_tokens.weight"}
def __init__(self, config):
super().__init__(config)

View File

@ -628,6 +628,7 @@ class BitPreTrainedModel(PreTrainedModel):
main_input_name = "pixel_values"
_no_split_modules = ["BitEmbeddings"]
@torch.no_grad()
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")

View File

@ -139,7 +139,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -432,7 +433,7 @@ class BitNetModel(BitNetPreTrainedModel):
@auto_docstring
class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = None
_pp_plan = None

View File

@ -114,7 +114,7 @@ class BitNetModel(LlamaModel):
class BitNetForCausalLM(LlamaForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = None
_pp_plan = None

View File

@ -121,6 +121,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -437,19 +438,20 @@ class BlenderbotPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
@torch.no_grad()
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
@property
def dummy_inputs(self):
@ -473,7 +475,7 @@ class BlenderbotEncoder(BlenderbotPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
self.dropout = config.dropout
@ -484,12 +486,9 @@ class BlenderbotEncoder(BlenderbotPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -622,7 +621,7 @@ class BlenderbotDecoder(BlenderbotPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -630,12 +629,9 @@ class BlenderbotDecoder(BlenderbotPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -851,7 +847,10 @@ class BlenderbotDecoder(BlenderbotPreTrainedModel):
@auto_docstring
class BlenderbotModel(BlenderbotPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
_tied_weights_keys = {
"encoder.embed_tokens.weight": "shared.weight",
"decoder.embed_tokens.weight": "shared.weight",
}
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
@ -859,8 +858,8 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BlenderbotScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = BlenderbotEncoder(config, self.shared)
self.decoder = BlenderbotDecoder(config, self.shared)
self.encoder = BlenderbotEncoder(config)
self.decoder = BlenderbotDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@ -1000,7 +999,9 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
@ -1183,7 +1184,9 @@ class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
class BlenderbotForCausalLM(BlenderbotPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.decoder.embed_tokens.weight",
}
def __init__(self, config):
config.is_decoder = True

View File

@ -105,6 +105,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -430,19 +431,20 @@ class BlenderbotSmallPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
@torch.no_grad()
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
module.weight.fill_(1.0)
module.bias.zero_()
@property
def dummy_inputs(self):
@ -466,7 +468,7 @@ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
self.dropout = config.dropout
@ -477,10 +479,7 @@ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -611,7 +610,7 @@ class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -619,10 +618,7 @@ class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -837,7 +833,10 @@ class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
@auto_docstring
class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
_tied_weights_keys = {
"encoder.embed_tokens.weight": "shared.weight",
"decoder.embed_tokens.weight": "shared.weight",
}
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
@ -845,8 +844,8 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = BlenderbotSmallEncoder(config, self.shared)
self.decoder = BlenderbotSmallDecoder(config, self.shared)
self.encoder = BlenderbotSmallEncoder(config)
self.decoder = BlenderbotSmallDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@ -973,7 +972,9 @@ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
@ -1143,7 +1144,9 @@ class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {
"lm_head.weight": "model.decoder.embed_tokens.weight",
}
def __init__(self, config):
config.is_decoder = True

View File

@ -419,13 +419,14 @@ class BlipPreTrainedModel(PreTrainedModel):
_no_split_modules = ["BlipEncoderLayer", "BlipTextEmbeddings"]
_skip_keys_device_placement = ["past_key_values"]
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_range
if isinstance(module, (nn.Conv2d, nn.Embedding, nn.Linear)):
module.weight.data.normal_(mean=0.0, std=factor)
module.weight.normal_(mean=0.0, std=factor)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
if isinstance(module, BlipVisionEmbeddings):
if hasattr(self.config, "vision_config"):
@ -443,10 +444,10 @@ class BlipPreTrainedModel(PreTrainedModel):
)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
class BlipEncoder(nn.Module):
@ -797,8 +798,11 @@ class BlipModel(BlipPreTrainedModel):
)
class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
config: BlipConfig
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
main_input_name = "pixel_values"
_tied_weights_keys = {
"text_decoder.cls.predictions.decoder.bias": "text_decoder.cls.predictions.bias",
"text_decoder.cls.predictions.decoder.weight": "text_decoder.bert.embeddings.word_embeddings.weight",
} # TODO @arthurzucker check why we need this when for other models, their subPreTrainedModel handle it themselves.
def __init__(self, config: BlipConfig):
super().__init__(config)
@ -963,7 +967,10 @@ class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
)
class BlipForQuestionAnswering(BlipPreTrainedModel, GenerationMixin):
config: BlipConfig
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
_tied_weights_keys = {
"text_decoder.cls.predictions.decoder.bias": "text_decoder.cls.predictions.bias",
"text_decoder.cls.predictions.decoder.weight": "text_decoder.bert.embeddings.word_embeddings.weight",
}
def __init__(self, config: BlipConfig):
super().__init__(config)
@ -971,7 +978,6 @@ class BlipForQuestionAnswering(BlipPreTrainedModel, GenerationMixin):
self.vision_model = BlipVisionModel(config.vision_config)
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
self.text_decoder = BlipTextLMHeadModel(config.text_config)
self.decoder_pad_token_id = config.text_config.pad_token_id

View File

@ -473,16 +473,9 @@ class BlipTextLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -511,15 +504,16 @@ class BlipTextPreTrainedModel(PreTrainedModel):
base_model_prefix = "bert"
_no_split_modules = []
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
@ -744,7 +738,10 @@ class BlipTextModel(BlipTextPreTrainedModel):
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
def __init__(self, config):
super().__init__(config)

View File

@ -15,7 +15,6 @@
"""PyTorch BLIP-2 model."""
import math
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Optional, Union
@ -409,19 +408,20 @@ class Blip2PreTrainedModel(PreTrainedModel):
]
_skip_keys_device_placement = "past_key_values"
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=factor)
module.weight.normal_(mean=0.0, std=factor)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=factor)
module.weight.normal_(mean=0.0, std=factor)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, Blip2VisionEmbeddings):
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
@ -435,7 +435,7 @@ class Blip2PreTrainedModel(PreTrainedModel):
Blip2ForImageTextRetrieval,
),
):
module.query_tokens.data.zero_()
module.query_tokens.zero_()
# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2
@ -1049,10 +1049,6 @@ class Blip2Model(Blip2PreTrainedModel):
else:
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
# Update _tied_weights_keys using the base model used.
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
# Initialize weights and apply final processing
@ -1076,11 +1072,6 @@ class Blip2Model(Blip2PreTrainedModel):
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
@filter_out_non_signature_kwargs()
@auto_docstring
def get_text_features(
@ -1090,7 +1081,6 @@ class Blip2Model(Blip2PreTrainedModel):
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
legacy_output: bool = True,
) -> Union[torch.FloatTensor, CausalLMOutputWithPast]:
r"""
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
@ -1109,12 +1099,10 @@ class Blip2Model(Blip2PreTrainedModel):
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
legacy_output (`bool`, *optional*, defaults to `True`):
Whether to return a model output object or a tensor of features.
Returns:
text_outputs (`CausalLMOutputWithPast` or `torch.FloatTensor`):
The language model outputs. If `legacy_output=False`, the output is a `torch.FloatTensor`.
text_outputs (``torch.FloatTensor`):
The language model's last hidden states.
Examples:
```python
@ -1129,13 +1117,6 @@ class Blip2Model(Blip2PreTrainedModel):
... text_features = model.get_text_features(**inputs)
```"""
if legacy_output:
warnings.warn(
"Deprecation notice: In Transformers v4.59, the default return value of `get_text_features` will change. "
"Currently, this method returns a model output object, but starting in v4.59, it will return a tensor instead. "
"To opt in to the new behavior now, set `legacy_output=False`."
)
if self.config.use_decoder_only_language_model:
text_outputs: CausalLMOutputWithPast = self.language_model(
input_ids=input_ids,
@ -1153,7 +1134,7 @@ class Blip2Model(Blip2PreTrainedModel):
return_dict=True,
)
return text_outputs if legacy_output else text_outputs.logits
return text_outputs.logits
@filter_out_non_signature_kwargs()
@auto_docstring
@ -1161,15 +1142,11 @@ class Blip2Model(Blip2PreTrainedModel):
self,
pixel_values: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
legacy_output: bool = True,
) -> Union[torch.FloatTensor, CausalLMOutputWithPast]:
r"""
legacy_output (`bool`, *optional*, defaults to `True`):
Whether to return a model output object or a tensor of features.
Returns:
vision_outputs (`BaseModelOutputWithPooling` or `torch.FloatTensor`):
The vision model outputs. If `legacy_output=False`, the output is a `torch.FloatTensor`.
vision_outputs (`torch.FloatTensor`):
The vision model's last layer pooled logits.
Examples:
```python
@ -1187,20 +1164,13 @@ class Blip2Model(Blip2PreTrainedModel):
>>> with torch.inference_mode():
... image_outputs = model.get_image_features(**inputs)
```"""
if legacy_output:
warnings.warn(
"Deprecation notice: In Transformers v4.59, the default return value of `get_text_features` will change. "
"Currently, this method returns a model output object, but starting in v4.59, it will return a tensor instead. "
"To opt in to the new behavior now, set `legacy_output=False`."
)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=True,
)
return vision_outputs if legacy_output else vision_outputs.pooler_output
return vision_outputs.pooler_output
@filter_out_non_signature_kwargs()
@auto_docstring
@ -1208,15 +1178,11 @@ class Blip2Model(Blip2PreTrainedModel):
self,
pixel_values: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
legacy_output: bool = True,
) -> Union[torch.FloatTensor, BaseModelOutputWithPooling]:
r"""
legacy_output (`bool`, *optional*, defaults to `True`):
Whether to return a model output object or a tensor of features.
Returns:
qformer_outputs (`BaseModelOutputWithPooling` or `torch.FloatTensor`):
The Q-Former outputs. If `legacy_output=False`, the output is a `torch.FloatTensor`.
qformer_outputs (`torch.FloatTensor`):
The Q-Former model's last layer hidden states.
Examples:
@ -1235,14 +1201,6 @@ class Blip2Model(Blip2PreTrainedModel):
>>> with torch.inference_mode():
... qformer_outputs = model.get_qformer_features(**inputs)
```"""
if legacy_output:
warnings.warn(
"Deprecation notice: In Transformers v4.59, the default return value of `get_qformer_features` will change. "
"Currently, this method returns a model output object, but starting in v4.59, it will return a tensor instead. "
"To opt in to the new behavior now, set `legacy_output=False`."
)
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
@ -1262,7 +1220,7 @@ class Blip2Model(Blip2PreTrainedModel):
return_dict=True,
)
return query_outputs if legacy_output else query_outputs.last_hidden_state
return query_outputs.last_hidden_state
def get_placeholder_mask(self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor):
"""
@ -1612,10 +1570,6 @@ class Blip2ForConditionalGeneration(Blip2PreTrainedModel, GenerationMixin):
else:
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
# Update _tied_weights_keys using the base model used.
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
# Initialize weights and apply final processing
@ -1639,11 +1593,6 @@ class Blip2ForConditionalGeneration(Blip2PreTrainedModel, GenerationMixin):
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
def _preprocess_accelerate(self):
r"""
Some pre-processing hacks to make the model `accelerate` compatible. Check

View File

@ -15,7 +15,6 @@
"""PyTorch BLOOM model."""
import math
import warnings
from typing import Optional, Union
import torch
@ -284,7 +283,7 @@ class BloomAttention(nn.Module):
# change view to [batch_size, num_heads, q_length, kv_length]
attn_weights = attention_scores.view(batch_size, self.num_heads, q_length, -1)
if attention_mask is not None:
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_layer.shape[-1]]
attn_weights = attn_weights + causal_mask
@ -425,19 +424,20 @@ class BloomPreTrainedModel(PreTrainedModel):
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
@auto_docstring
@ -484,7 +484,6 @@ class BloomModel(BloomPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**deprecated_arguments,
) -> Union[tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
@ -499,16 +498,6 @@ class BloomModel(BloomPreTrainedModel):
[What are input IDs?](../glossary#input-ids)
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@ -722,7 +711,7 @@ class BloomModel(BloomPreTrainedModel):
"""
)
class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "transformer.word_embeddings.weight"}
def __init__(self, config: BloomConfig):
super().__init__(config)
@ -817,7 +806,7 @@ class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**deprecated_arguments,
**kwargs,
) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
@ -836,18 +825,6 @@ class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
# Bloom has deprecated kwargs, so we need to pop num_items_in_batch explicitly
num_items_in_batch = deprecated_arguments.pop("num_items_in_batch", None)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
@ -873,7 +850,7 @@ class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
logits,
labels,
vocab_size=self.config.vocab_size,
num_items_in_batch=num_items_in_batch,
num_items_in_batch=kwargs.get("num_items_in_batch"),
)
if not return_dict:
@ -925,7 +902,6 @@ class BloomForSequenceClassification(BloomPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
@ -944,16 +920,6 @@ class BloomForSequenceClassification(BloomPreTrainedModel):
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
@ -1059,7 +1025,6 @@ class BloomForTokenClassification(BloomPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
@ -1078,16 +1043,6 @@ class BloomForTokenClassification(BloomPreTrainedModel):
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
@ -1142,7 +1097,6 @@ class BloomForQuestionAnswering(BloomPreTrainedModel):
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
@ -1168,7 +1122,6 @@ class BloomForQuestionAnswering(BloomPreTrainedModel):
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

View File

@ -28,7 +28,7 @@ import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
@ -250,7 +250,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -320,7 +321,6 @@ class BltSelfAttention(nn.Module):
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
use_cache: bool = False,
past_key_values=None,
cache_position=None,
**kwargs,
@ -392,9 +392,7 @@ class BltCrossAttention(nn.Module):
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
@ -403,27 +401,13 @@ class BltCrossAttention(nn.Module):
query_states = self.q_proj(query_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if cross_attention_states is not None:
cross_attention_states = self.k_norm(cross_attention_states)
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_values is not None:
key_states, value_states = past_key_values.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_values.layers[self.layer_idx].keys,
past_key_values.layers[self.layer_idx].values,
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
attention_interface: Callable = eager_attention_forward
cross_attention_states = self.k_norm(cross_attention_states)
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
@ -446,7 +430,6 @@ class BltCrossAttention(nn.Module):
@auto_docstring
class BltPreTrainedModel(PreTrainedModel):
config: BltConfig
base_model_prefix = ""
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
_no_split_modules = ["BltTransformerLayer"]
@ -1089,6 +1072,9 @@ class BltModel(BltPreTrainedModel):
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config))
# Extract input embeddings as early as possible
if inputs_embeds is not None:
encoder_embeds = inputs_embeds
@ -1137,7 +1123,7 @@ class BltModel(BltPreTrainedModel):
input_embeds=encoder_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
past_key_values=past_key_values.self_attention_cache if past_key_values is not None else None,
position_ids=position_ids,
)
@ -1157,6 +1143,7 @@ class BltModel(BltPreTrainedModel):
encoder_attention_mask=cross_attn_mask_enc,
num_patches=patch_lengths.shape[1],
patch_ids=patch_ids,
past_key_values=past_key_values.self_attention_cache if past_key_values is not None else None,
**kwargs,
)
encoder_cross_states = encoder_cross_states.view(batch_size, patch_lengths.shape[1], -1)
@ -1192,7 +1179,7 @@ class BltModel(BltPreTrainedModel):
patch_embeds=global_hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
past_key_values=past_key_values.cross_attention_cache if past_key_values is not None else None,
cache_position=cache_position,
encoder_attention_mask=cross_attn_mask_dec,
**kwargs,
@ -1230,7 +1217,7 @@ class BltForCausalLM(BltPreTrainedModel, GenerationMixin):
config: BltConfig
_can_compile_fullgraph = False
base_model_prefix = "model"
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"model.local_encoder.embed_tokens.weight": "lm_head.weight"}
def __init__(self, config: BltConfig):
super().__init__(config.get_text_config())

View File

@ -22,7 +22,7 @@ import torch.distributions
import torch.nn as nn
import torch.nn.functional as F
from ...cache_utils import Cache, DynamicCache
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...masking_utils import create_causal_mask
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import dynamic_rope_update
@ -299,27 +299,6 @@ class BltTransformerLayer(MllamaSelfAttentionDecoderLayer):
class BltSelfAttention(MllamaTextSelfAttention):
def __init__(self, config: BltConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.is_causal = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
use_cache: bool = False,
past_key_values=None,
cache_position=None,
**kwargs,
):
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
use_cache=use_cache,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
class BltCrossAttention(MllamaTextCrossAttention):
@ -335,9 +314,7 @@ class BltCrossAttention(MllamaTextCrossAttention):
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
):
bsz, q_len, _ = hidden_states.size()
@ -345,27 +322,13 @@ class BltCrossAttention(MllamaTextCrossAttention):
query_states = self.q_proj(query_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if cross_attention_states is not None:
cross_attention_states = self.k_norm(cross_attention_states)
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_values is not None:
key_states, value_states = past_key_values.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_values.layers[self.layer_idx].keys,
past_key_values.layers[self.layer_idx].values,
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
attention_interface: Callable = eager_attention_forward
cross_attention_states = self.k_norm(cross_attention_states)
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
@ -828,6 +791,9 @@ class BltModel(BltPreTrainedModel):
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config))
# Extract input embeddings as early as possible
if inputs_embeds is not None:
encoder_embeds = inputs_embeds
@ -876,7 +842,7 @@ class BltModel(BltPreTrainedModel):
input_embeds=encoder_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
past_key_values=past_key_values.self_attention_cache if past_key_values is not None else None,
position_ids=position_ids,
)
@ -896,6 +862,7 @@ class BltModel(BltPreTrainedModel):
encoder_attention_mask=cross_attn_mask_enc,
num_patches=patch_lengths.shape[1],
patch_ids=patch_ids,
past_key_values=past_key_values.self_attention_cache if past_key_values is not None else None,
**kwargs,
)
encoder_cross_states = encoder_cross_states.view(batch_size, patch_lengths.shape[1], -1)
@ -931,7 +898,7 @@ class BltModel(BltPreTrainedModel):
patch_embeds=global_hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
past_key_values=past_key_values.cross_attention_cache if past_key_values is not None else None,
cache_position=cache_position,
encoder_attention_mask=cross_attn_mask_dec,
**kwargs,
@ -964,7 +931,7 @@ class BltForCausalLM(MllamaForCausalLM):
config: BltConfig
_can_compile_fullgraph = False
base_model_prefix = "model"
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"model.local_encoder.embed_tokens.weight": "lm_head.weight"}
def __init__(self, config: BltConfig):
super().__init__(config)

View File

@ -175,7 +175,6 @@ class BridgeTowerTextConfig(PreTrainedConfig):
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
@ -298,7 +297,7 @@ class BridgeTowerConfig(PreTrainedConfig):
self.text_config = text_config
self.vision_config = vision_config
super().__init__(**kwargs)
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
__all__ = ["BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig"]

View File

@ -192,9 +192,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
do_pad: bool = True,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 288}
size = get_size_dict(size, default_to_square=False)
@ -208,7 +205,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_pad = do_pad
self.do_pad = kwargs.pop("pad_and_return_pixel_mask", do_pad)
self.do_center_crop = do_center_crop
self.crop_size = crop_size

View File

@ -420,6 +420,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -918,6 +919,7 @@ class BridgeTowerPreTrainedModel(PreTrainedModel):
_no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"]
_skip_keys_device_placement = "past_key_values"
@torch.no_grad()
def _init_weights(self, module: nn.Module):
std = self.config.initializer_factor
if isinstance(module, BridgeTowerVisionTransformer):
@ -926,7 +928,7 @@ class BridgeTowerPreTrainedModel(PreTrainedModel):
fc_std = (2 * self.config.hidden_size) ** -0.5
for block in module.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std * std)
block.attn.in_proj_bias.data.zero_()
block.attn.in_proj_bias.zero_()
nn.init.normal_(block.attn.out_proj.weight, std=proj_std * std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * std)
@ -934,15 +936,15 @@ class BridgeTowerPreTrainedModel(PreTrainedModel):
nn.init.normal_(module.embeddings.class_embedding, std=attn_std * std)
nn.init.normal_(module.embeddings.position_embedding.weight, std=attn_std * std)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.05 * std)
module.weight.normal_(mean=0.0, std=0.05 * std)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BridgeTowerForContrastiveLearning):
module.logit_scale.data.fill_(self.config.logit_scale_init_value)
module.logit_scale.fill_(self.config.logit_scale_init_value)
if isinstance(module, (nn.Linear, BridgeTowerMLMHead)) and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
@ -1496,7 +1498,7 @@ class BridgeTowerITMHead(nn.Module):
"""
)
class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel):
_tied_weights_keys = ["mlm_score.decoder.weight"]
_tied_weights_keys = {"mlm_score.decoder.weight": "bridgetower.text_model.embeddings.word_embeddings.weight"}
def __init__(self, config):
super().__init__(config)

View File

@ -514,20 +514,21 @@ class BrosPreTrainedModel(PreTrainedModel):
config: BrosConfig
base_model_prefix = "bros"
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, BrosRelationExtractor):
nn.init.normal_(module.dummy_node, std=std)

View File

@ -70,6 +70,7 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
@ -382,7 +383,6 @@ class CamembertLMHead(nn.Module):
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
@ -394,14 +394,6 @@ class CamembertLMHead(nn.Module):
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@auto_docstring
class CamembertPreTrainedModel(PreTrainedModel):
@ -418,21 +410,22 @@ class CamembertPreTrainedModel(PreTrainedModel):
"cross_attentions": CamembertCrossAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, CamembertLMHead):
module.bias.data.zero_()
module.bias.zero_()
class CamembertEmbeddings(nn.Module):
@ -744,7 +737,10 @@ class CamembertModel(CamembertPreTrainedModel):
@auto_docstring
class CamembertForMaskedLM(CamembertPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
_tied_weights_keys = {
"lm_head.decoder.weight": "roberta.embeddings.word_embeddings.weight",
"lm_head.decoder.bias": "lm_head.bias",
}
def __init__(self, config):
super().__init__(config)
@ -1190,7 +1186,10 @@ class CamembertForQuestionAnswering(CamembertPreTrainedModel):
"""
)
class CamembertForCausalLM(CamembertPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
_tied_weights_keys = {
"lm_head.decoder.weight": "camembert.embeddings.word_embeddings.weight",
"lm_head.decoder.bias": "lm_head.bias",
}
def __init__(self, config):
super().__init__(config)

View File

@ -53,6 +53,11 @@ class CamembertModel(RobertaModel):
class CamembertForMaskedLM(RobertaForMaskedLM):
_tied_weights_keys = {
"lm_head.decoder.weight": "roberta.embeddings.word_embeddings.weight",
"lm_head.decoder.bias": "lm_head.bias",
}
def __init__(self, config):
super().__init__(config)
del self.camembert

View File

@ -688,12 +688,11 @@ class CanineLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states: tuple[torch.FloatTensor]) -> torch.FloatTensor:
hidden_states = self.transform(hidden_states)
@ -720,19 +719,20 @@ class CaninePreTrainedModel(PreTrainedModel):
base_model_prefix = "canine"
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
@auto_docstring

View File

@ -232,7 +232,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -1008,7 +1009,7 @@ class ChameleonModel(ChameleonPreTrainedModel):
"""
)
class ChameleonForConditionalGeneration(ChameleonPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
def __init__(self, config):
super().__init__(config)

View File

@ -247,7 +247,8 @@ def eager_attention_forward(
):
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -561,6 +562,7 @@ class ChineseCLIPPreTrainedModel(PreTrainedModel):
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
@ -575,7 +577,7 @@ class ChineseCLIPPreTrainedModel(PreTrainedModel):
nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
if embedding.padding_idx is not None:
embedding.weight.data[embedding.padding_idx].zero_()
embedding.weight[embedding.padding_idx].zero_()
elif isinstance(module, ChineseCLIPVisionAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
@ -601,12 +603,12 @@ class ChineseCLIPPreTrainedModel(PreTrainedModel):
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
# Copied from transformers.models.align.modeling_align.AlignTextEncoder with Align->ChineseCLIP

View File

@ -1061,7 +1061,8 @@ def eager_attention_forward(
):
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -1307,28 +1308,29 @@ class ClapPreTrainedModel(PreTrainedModel):
input_modalities = ["audio", "text"]
supports_gradient_checkpointing = False
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, ClapTextEmbeddings):
module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embeddings.weight.normal_(mean=0.0, std=factor * 0.02)
module.token_type_embeddings.weight.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, ClapModel):
module.logit_scale_a.data.fill_(math.log(self.config.logit_scale_init_value))
module.logit_scale_t.data.fill_(math.log(self.config.logit_scale_init_value))
module.logit_scale_a.fill_(math.log(self.config.logit_scale_init_value))
module.logit_scale_t.fill_(math.log(self.config.logit_scale_init_value))
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.weight.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
elif isinstance(module, (nn.Conv2d, nn.Linear)):
in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor
nn.init.normal_(module.weight, std=in_proj_std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, ClapAudioSelfAttention):
module.relative_position_bias_table.data.zero_()
module.relative_position_bias_table.zero_()
class ClapAudioModel(ClapPreTrainedModel):
@ -1371,7 +1373,7 @@ class ClapAudioModel(ClapPreTrainedModel):
>>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused")
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused")
>>> inputs = processor(audios=audio_sample, return_tensors="pt")
>>> inputs = processor(audio=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
@ -1646,7 +1648,7 @@ class ClapModel(ClapPreTrainedModel):
>>> input_text = ["Sound of a dog", "Sound of vacuum cleaner"]
>>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True)
>>> inputs = processor(text=input_text, audio=audio_sample, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score
@ -1818,7 +1820,7 @@ class ClapAudioModelWithProjection(ClapPreTrainedModel):
>>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> inputs = processor(audios=audio_sample, return_tensors="pt")
>>> inputs = processor(audio=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> audio_embeds = outputs.audio_embeds
```"""

View File

@ -16,13 +16,8 @@
Audio/Text processor class for CLAP
"""
from typing import Optional, Union
from ...audio_utils import AudioInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.deprecation import deprecate_kwarg
logger = logging.get_logger(__name__)
@ -45,28 +40,5 @@ class ClapProcessor(ProcessorMixin):
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
@deprecate_kwarg("audios", version="v4.59.0", new_name="audio")
def __call__(
self,
text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None,
audios: Optional[AudioInput] = None,
audio: Optional[AudioInput] = None,
**kwargs: Unpack[ProcessingKwargs],
):
"""
Forwards the `audio` and `sampling_rate` arguments to [`~ClapFeatureExtractor.__call__`] and the `text`
argument to [`~RobertaTokenizerFast.__call__`]. Please refer to the docstring of the above two methods for more
information.
"""
# The `deprecate_kwarg` will not work if the inputs are passed as arguments, so we check
# again that the correct naming is used
if audios is not None and audio is None:
logger.warning(
"Using `audios` keyword argument is deprecated when calling ClapProcessor, instead use `audio`."
)
audio = audios
return super().__call__(text=text, audio=audio, **kwargs)
__all__ = ["ClapProcessor"]

View File

@ -408,12 +408,13 @@ class CLIPPreTrainedModel(PreTrainedModel):
"attentions": CLIPAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, CLIPTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.token_embedding.weight.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, CLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
@ -459,10 +460,10 @@ class CLIPPreTrainedModel(PreTrainedModel):
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
class CLIPEncoder(nn.Module):

View File

@ -427,12 +427,13 @@ class CLIPSegPreTrainedModel(PreTrainedModel):
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, CLIPSegTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.token_embedding.weight.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, CLIPSegVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
@ -463,10 +464,10 @@ class CLIPSegPreTrainedModel(PreTrainedModel):
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->CLIPSeg

View File

@ -781,17 +781,18 @@ class ClvpPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.weight.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.weight.normal_(mean=0.0, std=factor * 0.02)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, ClvpRMSNorm):
module.weight.data.fill_(1.0)
module.weight.fill_(1.0)
elif isinstance(module, ClvpEncoderMLP):
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
@ -800,22 +801,22 @@ class ClvpPreTrainedModel(PreTrainedModel):
elif isinstance(module, ClvpEncoder):
config = self.config.get_text_config()
factor = config.initializer_factor
module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
module.projection.weight.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
elif isinstance(module, ClvpConditioningEncoder):
module.mel_conv.weight.data.normal_(mean=0.0, std=factor)
module.mel_conv.bias.data.zero_()
module.mel_conv.weight.normal_(mean=0.0, std=factor)
module.mel_conv.bias.zero_()
elif isinstance(module, ClvpForCausalLM):
for name, p in module.named_parameters():
if name == "c_proj.weight":
p.data.normal_(
p.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))
)
elif isinstance(module, ClvpModelForConditionalGeneration):
module.logit_scale.data.fill_(self.config.logit_scale_init_value)
module.logit_scale.fill_(self.config.logit_scale_init_value)
if isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
class ClvpEncoder(ClvpPreTrainedModel):

View File

@ -283,19 +283,20 @@ class CodeGenPreTrainedModel(PreTrainedModel):
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
module.bias.zero_()
module.weight.fill_(1.0)
@auto_docstring
@ -560,7 +561,7 @@ class CodeGenModel(CodeGenPreTrainedModel):
"""
)
class CodeGenForCausalLM(CodeGenPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "transformer.wte.weight"}
def __init__(self, config):
super().__init__(config)

View File

@ -173,7 +173,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -465,7 +466,7 @@ class CohereModel(CoherePreTrainedModel):
@auto_docstring
class CohereForCausalLM(CoherePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -149,7 +149,8 @@ def eager_attention_forward(
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
@ -446,7 +447,7 @@ class Cohere2Model(Cohere2PreTrainedModel):
@auto_docstring
class Cohere2ForCausalLM(Cohere2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -129,7 +129,6 @@ class Cohere2VisionCausalLMOutputWithPast(ModelOutput):
@auto_docstring
class Cohere2VisionPreTrainedModel(PreTrainedModel):
config: Cohere2VisionConfig
base_model_prefix = "model"
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
@ -143,6 +142,7 @@ class Cohere2VisionPreTrainedModel(PreTrainedModel):
"hidden_states": "DecoderLayer",
"attentions": "Attention",
}
base_model_prefix = "model"
@auto_docstring(
@ -268,7 +268,7 @@ class Cohere2VisionModel(Cohere2VisionPreTrainedModel):
)
class Cohere2VisionForConditionalGeneration(Cohere2VisionPreTrainedModel, GenerationMixin):
_checkpoint_conversion_mapping = {}
_tied_weights_keys = ["lm_head.weight"]
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
def __init__(self, config: Cohere2VisionConfig):
super().__init__(config)

View File

@ -144,7 +144,15 @@ def convert_colpali_weights_to_hf(
# Tie the weights (following ColPali's `__init__`` step)
if model.vlm.language_model._tied_weights_keys is not None:
model._tied_weights_keys = [f"vlm.language_model.{k}" for k in model.vlm.language_model._tied_weights_keys]
prefix = "vlm.language_model."
prefixed_mapping = {
f"{prefix}{target}": f"{prefix}{source}"
for target, source in model.vlm.language_model._tied_weights_keys.items()
}
if isinstance(model._tied_weights_keys, dict):
model._tied_weights_keys.update(prefixed_mapping)
else:
model._tied_weights_keys = prefixed_mapping
# Sanity check: ensure all keys are the same
state_dict_keys_old = set(original_state_dict.keys())

View File

@ -38,6 +38,7 @@ class ColPaliPreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
std = (
self.config.initializer_range
@ -46,13 +47,13 @@ class ColPaliPreTrainedModel(PreTrainedModel):
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
@dataclass
@ -113,7 +114,6 @@ class ColPaliForRetrieval(ColPaliPreTrainedModel):
self.vocab_size = config.vlm_config.text_config.vocab_size
self.vlm = AutoModelForImageTextToText.from_config(config.vlm_config)
self._tied_weights_keys = [f"vlm.language_model.{k}" for k in (self.vlm._tied_weights_keys or [])]
self.embedding_dim = self.config.embedding_dim
self.embedding_proj_layer = nn.Linear(
@ -186,9 +186,6 @@ class ColPaliForRetrieval(ColPaliPreTrainedModel):
def set_output_embeddings(self, new_embeddings):
self.vlm.set_output_embeddings(new_embeddings)
def tie_weights(self):
return self.vlm.tie_weights()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,

View File

@ -46,6 +46,7 @@ class ColQwen2PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
std = (
self.config.initializer_range
@ -54,13 +55,13 @@ class ColQwen2PreTrainedModel(PreTrainedModel):
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
module.bias.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
module.weight[module.padding_idx].zero_()
@dataclass
@ -118,7 +119,6 @@ class ColQwen2ForRetrieval(ColQwen2PreTrainedModel):
self.config.vlm_config.text_config.hidden_size,
self.embedding_dim,
)
self._tied_weights_keys = [f"vlm.{k}" for k in (self.vlm._tied_weights_keys or [])]
self.post_init()
@ -222,9 +222,6 @@ class ColQwen2ForRetrieval(ColQwen2PreTrainedModel):
def set_output_embeddings(self, new_embeddings):
self.vlm.set_output_embeddings(new_embeddings)
def tie_weights(self):
return self.vlm.tie_weights()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,

View File

@ -304,7 +304,6 @@ class ColQwen2ForRetrieval(ColPaliForRetrieval):
def __init__(self, config: ColQwen2Config):
super().__init__(config)
del self._tied_weights_keys
self._tied_weights_keys = [f"vlm.{k}" for k in (self.vlm._tied_weights_keys or [])]
@can_return_tuple
@auto_docstring

View File

@ -826,18 +826,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
pad_size: Optional[dict[str, int]] = None,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None if size is None else 1333
max_size = None if size is None else kwargs.pop("max_size", 1333)
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, max_size=max_size, default_to_square=False)
@ -856,7 +845,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
self.do_convert_annotations = do_convert_annotations
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self.do_pad = kwargs.pop("pad_and_return_pixel_mask", do_pad)
self.pad_size = pad_size
self._valid_processor_keys = [
"images",
@ -880,21 +869,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
"input_data_format",
]
@classmethod
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->ConditionalDetr
def from_dict(cls, image_processor_dict: dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `ConditionalDetrImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->ConditionalDetr
def prepare_annotation(
self,
@ -963,15 +937,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
size = get_size_dict(size, max_size=None, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
new_size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
@ -1308,19 +1274,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
size = kwargs.pop("max_size")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
@ -1472,50 +1425,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
return encoded_inputs
def post_process(self, outputs, target_sizes):
"""
Converts the output of [`ConditionalDetrForObjectDetection`] into the format expected by the Pascal VOC format (xmin, ymin, xmax, ymax).
Args:
outputs ([`ConditionalDetrObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation). For visualization, this should be the image size after data
augment, but before padding.
Returns:
`list[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logging.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = out_logits.sigmoid()
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 300, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
# Copied from transformers.models.deformable_detr.image_processing_deformable_detr.DeformableDetrImageProcessor.post_process_object_detection with DeformableDetr->ConditionalDetr
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, list[tuple]] = None, top_k: int = 100

Some files were not shown because too many files have changed in this diff Show More