Compare commits

...

3413 Commits

Author SHA1 Message Date
e42587f596 [Llama2] Add support for Llama 2 (#24891)
* add llama

* add other readmes

* update padding id in readme

* add link to paper

* fix paths and tokenizer

* more nits

* styling

* fit operation in 2 lines when possible

* nits

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add form

* update reademe

* update readme, we don't have a default pad token

* update test and tokenization

* LLaMA instead of Llama

* nits

* add expected text

* add greeedy output

* styling

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sequential device map

* skip relevant changes

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-18 15:19:58 -04:00
44006546f0 Release v4.31.0 2023-07-18 15:19:31 -04:00
49eb357564 Fix token pass (#24862)
* Fix how token is passed along in from_pretrained for tokenizers

* It's actually not necessary
2023-07-17 13:27:11 -04:00
f42a35e611 Add bark (#24086)
* first raw version of the bark integration

* working code on small models with single run

* add converting script from suno weights 2 hf

* many changes

* correct past_kv output

* working implementation for inference

* update the converting script according to the architecture changes

* add a working end-to-end inference code

* remove some comments and make small changes

* remove unecessary comment

* add docstrings and ensure no unecessary intermediary output during audio generation

* remove done TODOs

* make style + add config docstrings

* modification for batch inference support on the whole model

* add details to .generation_audio method

* add copyright

* convert EncodecModel from original library to transformers implementation

* add two class in order to facilitate model and sub-models loading from the hub

* add support of loading the whole model

* add BarkProcessor

* correct modeling according to processor output

* Add proper __init__ and auto support

* Add up-to-date copyright/license message

* add relative import instead of absolute

* cleaner head_dim computation

* small comment removal or changes

* more verbose LayerNorm init method

* specify eps for clearer comprehension

* more verbose variable naming in the MLP module

* remove unecessary BarkBlock parameter

* clearer code in the forward pass of the BarkBlock

* remove _initialize_modules method for cleaner code

* Remove unnecessary methods from sub-models

* move code to remove unnecessary function

* rename a variable for clarity and change an assert

* move code and change variable name for clarity

* remove unnecessary asserts

* correct small bug

* correct a comment

* change variable names for clarity

* remove asserts

* change import from absolute to relative

* correct small error due to comma missing + correct import

* Add attribute Bark config

* add first version of tests

* update attention_map

* add tie_weights and resize_token_embeddings for fineModel

* correct getting attention_mask in generate_text_semantic

* remove Bark inference trick

* leave more choices in barkProcessor

* remove _no_split_modules

* fixe error in forward of block and introduce clearer notations

* correct converting script with last changes

* make style + add draft bark.mdx

* correct BarkModelTest::test_generate_text_semantic

* add Bark in main README

* add dummy_pt_objects for Bark

* add missing models in the main init

* correct test_decoder_model_past_with_large_inputs

* disable torchscript test

* change docstring of BarkProcessor

* Add test_processor_bark

* make style

* correct copyrights

* add bark.mdx + make style, quality and consistency

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Remove unnecessary test method

* simply logic of a test

* Only check first ids for slow audio generation

* split full end-to-end generation tests

* remove unneccessary comment

* change submodel names for clearer naming

* remove ModuleDict from modeling_bark

* combine two if statements

* ensure that an edge misued won't happen

* modify variable name

* move code snippet to the right place (coarse instead of semantic)

* change BarkSemanticModule -> BarkSemanticModel

* align BarkProcessor with transformers paradigm

* correct BarkProcessor tests with last commit changes

* change _validate_voice_preset to an instance method instead of a class method

* tie_weights already called with post_init

* add codec_model config to configuration

* update bark modeling tests with recent BarkProcessor changes

* remove SubModelPretrainedModel + change speakers embeddings prompt type in BarkModel

* change absolute imports to relative

* remove TODO

* change docstrings

* add examples to docs and docstrings

* make style

* uses BatchFeature in BarkProcessor insteads of dict

* continue improving docstrings and docs + make style

* correct docstrings examples

* more comprehensible speaker_embeddings load/Save

* rename speaker_embeddings_dict -> speaker_embeddings

* correct bark.mdx + add bark to documentation_tests

* correct docstrings configuration_bark

* integrate last nit suggestions

* integrate BarkGeneration configs

* make style

* remove bark tests from documentation_tests.txt because timeout - tested manually

* add proper generation config initialization

* small bark.mdx documentation changes

* rename bark.mdx -> bark.md

* add torch.no_grad behind BarkModel.generate_audio()

* replace assert by ValueError in convert_suno_to_hf.py

* integrate a series of short comments from reviewer

* move SemanticLogitsProcessors and remove .detach() from Bark docs and docstrings

* actually remove SemanticLogitsProcessor from modeling_bark.oy

* BarkProcessor returns a single output instead of tuple + correct docstrings

* make style + correct bug

* add initializer_range to BarkConfig + correct slow modeling tests

* add .clone() to history_prompt.coarse_prompt to avoid modifying input array

* Making sure no extra "`" are present

* remove extra characters in modeling_bark.py

* Correct output if history_prompt is None

* remove TODOs

* remove ravel comment

* completing generation_configuration_bark.py docstrings

* change docstrings - number of audio codebooks instead of Encodec codebooks

* change 'bias' docstrings in configuration_bark.py

* format code

* rename BarkModel.generate_audio -> BarkModel.generate_speech

* modify AutoConfig instead of EncodecConfig in BarkConfig

* correct AutoConfig wrong init

* refactor BarkModel and sub-models generate_coarse, generate_fine, generate_text_semantic

* remove SemanticLogitsProcessor and replace it with SuppressTokensLogitsProcessor

* move nb_codebook related config arguments to BarkFineConfig

* rename bark.mdx -> bark.md

* correcting BarkModelConfig from_pretrained + remove keys_to_ignore

* correct bark.md with correct hub path

* correct code bug in bark.md

* correct list tokens_to_suppress

* modify Processor to load nested speaker embeddings in a safer way

* correct batch sampling in BarkFineModel.generate_fine

* Apply suggestions from code review

Small docstrings correction and code improvements

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* give more details about num_layers in docstrings

* correct indentation mistake

* correct submodelconfig order of docstring variables

* put audio models in alphabetical order in utils/check_repo.my

* remove useless line from test_modeling_bark.py

* makes BarkCoarseModelTest inherits from (ModelTesterMixin, GenerationTesterMixin, unittest.TestCase) instead of BarkSemanticModelTest

* make a Tester class for each sub-model instead of inheriting

* add test_resize_embeddings=True for Bark sub-models

* add Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads

* remove 'Copied fom Bark' comment

* remove unneccessary comment

* change np.min -> min in modeling_bark.py

* refactored all custom layers to have Bark prefix

* add attention_mask as an argument of generate_text_semantic

* refactor sub-models start docstrings to have more precise config class definition

* move _tied_weights_keys overriding

* add docstrings to generate_xxx in modeling_bark.py

* add loading whole BarkModel to convert_suno_to_hf

* refactor attribute and variable names

* make style convert_suno

* update bark checkpoints

* remove never entered if statement

* move bark_modeling docstrings after BarkPretrainedModel class definition

* refactor modeling_bark.py: kv -> key_values

* small nits - code refactoring and removing unecessary lines from _init_weights

* nits - replace inplace method by variable assigning

* remove *optional* when necessary

* remove some lines in generate_speech

* add default value for optional parameter

* Refactor preprocess_histories_before_coarse -> preprocess_histories

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct usage after refactoring

* refactor Bark's generate_xxx -> generate and modify docstrings and tests accordingly

* update docstrings python in configuration_bark.py

* add bark files in utils/documentation_test.txt

* correct docstrings python snippet

* add the ability to use parameters in the form of e.g coarse_temperature

* add semantic_max_new_tokens in python snippet in docstrings for quicker generation

* Reformate sub-models kwargs in BakModel.generate

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* correct kwargs in BarkModel.generate

* correct attention_mask kwarg in BarkModel.generate

* add tests for sub-models args in BarkModel.generate and correct BarkFineModel.test_generate_fp16

* enrich BarkModel.generate docstrings with a description of how to use the kwargs

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-17 17:53:24 +01:00
c21c3737c1 Add TAPEX to the list of deprecated models (#24859)
* Add TAPEX to the list of deprecated models

* Add check

* Fix typo

* Fix import path for Van conversion
2023-07-17 12:53:03 -04:00
054e802914 fix broken links in READMEs (#24861)
fix MRA in READMEs
2023-07-17 18:47:14 +02:00
c965d30279 Fix comments for _merge_heads (#24855)
* Fix comments

* Fix comments
2023-07-17 11:07:16 -04:00
e4a52b6a15 Fix is_vision_available (#24853)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-17 16:58:51 +02:00
4f08887053 Add Multimodal heading and Document question answering in task_summary.mdx (#23318)
* add multimodal heading and docqa

* fix sentence

* task_summary data type = modality clarification

* change the multimodal example to a smaller model
2023-07-17 13:51:19 +01:00
38dfb86958 Bump cryptography from 41.0.0 to 41.0.2 in /examples/research_projects/decision_transformer (#24833)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 41.0.0 to 41.0.2.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/41.0.0...41.0.2)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-07-17 07:17:17 -04:00
18d42bfd23 Remove unused code in GPT-Neo (#24826)
1
2023-07-17 07:07:47 -04:00
9771ad33be 🌐 [i18n-KO] Translated custom_tools.mdx to Korean (#24580)
* docs: ko: custom_tools.mdx

* feat: deepl draft

* fix: change .mdx to .md

* fix: resolve suggestions

* fix: resolve suggestions
2023-07-17 07:04:10 -04:00
8ba26c18cf deprecate sharded_ddp training argument (#24825)
* deprecate fairscale's ShardedDDP

* fix code style

* roll back

* deprecate the `sharded_ddp` training argument

---------

Co-authored-by: jihuazhong <jihuazhong1@huawei.com>
2023-07-17 06:57:42 -04:00
5bb4430edc [🔗 Docs] Fixed Incorrect Migration Link (#24793)
* [🔗 Docs] Fixed Incorrect Migration Link

* Update README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-14 17:47:50 -04:00
1023705440 Check models used for common tests are small (#24824)
* First models

* Conditional DETR

* Treat DETR models, skip others

* Skip LayoutLMv2 as well

* Fix last tests
2023-07-14 14:43:19 -04:00
a865b62e07 set correct model input names for gptsw3tokenizer (#24788) 2023-07-14 18:13:45 +01:00
50726f9ea7 Fixing double use_auth_token.pop (preventing private models from being visible). (#24812)
Fixing double `use_auth_token.pop` (preventing private models from
being visible).

Should fix: https://github.com/huggingface/transformers/issues/14334#issuecomment-1634527833

Repro: Have a private repo, with `vocab.json` (spread out files for the
tokenizer) and use `AutoTokenizer.from_pretrained(...,
use_auth_token="token")`.
2023-07-14 15:20:02 +02:00
91d7df58b6 Copy code when using local trust remote code (#24785)
* Copy code when using local trust remote code

* Remote upgrade strategy

* Revert "Remote upgrade strategy"

This reverts commit 4f0392f5d747bcbbcf7211ef9f9b555a86778297.
2023-07-13 16:57:20 -04:00
f32303d519 Run hub tests (#24807)
* Run hub tests

* [all-test] Run tests please!

* [all-test] Add vision dep for hub tests

* Fix tests
2023-07-13 15:25:45 -04:00
9d7a0871e2 Use _BaseAutoModelClass's register method (#24810)
Switching _BaseAutoModelClass from_pretrained and from_config to use the register classmethod that it defines rather than using the _LazyAutoMapping register method directly. This makes use of the additional consistency check within the base model's register.
2023-07-13 15:24:51 -04:00
0866705022 Update setup.py to be compatible with pipenv (#24789) 2023-07-13 12:56:43 -04:00
c0ca73dc98 Remove Falcon docs for the release until TGI is ready (#24808)
* Remove Falcon docs for the release until TGI is ready

* Update toctree
2023-07-13 17:27:58 +01:00
f9a711df4a Fix typo 'submosules' (#24809) 2023-07-13 16:56:53 +01:00
eebce4470c Add accelerate version in transformers-cli env (#24806)
* Add accelerate version in transformers-cli env

* Add accelerate config
2023-07-13 16:50:19 +01:00
34d9409427 Llama/GPTNeoX: add RoPE scaling (#24653)
* add rope_scaling

* tmp commit

* add gptneox

* add tests

* GPTNeoX can now handle long inputs, so the pipeline test was wrong

* Update src/transformers/models/open_llama/configuration_open_llama.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove ntk

* remove redundant validation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-13 16:47:30 +01:00
9342c8fb82 Deprecate models (#24787)
* Deprecate some models

* Fix imports

* Fix inits too

* Remove tests

* Add deprecated banner to documentation

* Remove from init

* Fix auto classes

* Style

* Remote upgrade strategy 1

* Remove site package cache

* Revert this part

* Fix typo...

* Update utils

* Update docs/source/en/model_doc/bort.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* With all files saved

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-07-13 11:46:54 -04:00
717dadc6f3 Skip torchscript tests for MusicgenForConditionalGeneration (#24782)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 15:54:18 +02:00
e367a9770f Fix MobileVitV2 doctest checkpoint (#24805)
* Fix doctest checkpoint

* Add import torch for mobilevit
2023-07-13 14:47:59 +01:00
e538189931 Upgrade jax/jaxlib/flax pin versions (#24791)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-13 13:57:30 +02:00
6ba4d5de3a [DOC] Clarify relationshi load_best_model_at_end and save_total_limit (#24614)
* Update training_args.py

Clarify the relationship between `load_best_model_at_end` and `save_total_limit`.

* fix: faulty quotes

* make quality

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* DOCS: add explicit `True`

* DOCS: make style/quality

---------

Co-authored-by: Bram Vanroy <Bram.Vanroy@UGent.be>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-13 07:36:16 -04:00
21946a8cf4 [fix] Change the condition of ValueError in "convert_checkpoint_from_transformers_to_megatron" (#24769)
* fix: half inference error

norm_factor is still torch.float32 after using model.half

So I changed it to register_buffer so I can change it to torch.float16 after using model.half

* fix: Added a variable "persistent=False"

* run make style

* [fix] Change the condition of ValueError
convert_checkpoint_from_transformers_to_megatron

* [fix] error wording
layers -> attention heads
2023-07-13 11:57:56 +01:00
1f6f32c243 Removing unnecessary device=device in modeling_llama.py (#24696)
* Update modeling_llama.py

Removing unnecessary `device=device`

* fix in all occurrences of _make_causal_mask
2023-07-13 10:30:22 +01:00
906afa1d5c Revert "Unpin protobuf in docker file (for daily CI)" (#24800)
Revert "Unpin protobuf in docker file (for daily CI) (#24761)"

This reverts commit 45025d92f815675e483f32812caa28cce3a960e7.
2023-07-13 04:19:45 +02:00
f1732e1374 Rm duplicate pad_across_processes (#24780)
Rm duplicate
2023-07-12 11:47:21 -04:00
cfc8a05305 Remove WWT from README (#24672) 2023-07-12 10:58:08 -04:00
395e566a42 gpt-bigcode: avoid zero_ to support Core ML (#24755)
gpt-bigcode: avoid `zeros_` to support Core ML.

In-place `zeros_` is not supported by the Core ML conversion process.
This PR replaces it with `zeros_like` so conversion can proceed.

The change only affects a workaround for a PyTorch bug on the `cpu`
device.
2023-07-12 16:38:25 +02:00
0284285501 Fix pad across processes dim in trainer and not being able to set the timeout (#24775)
* dim, and rm copy

* Don't rm copy for now

* Oops

* pad index

* Should be a working test

* Tickle down ddp timeout

* Put fix back in now that testing locally is done

* Better comment specifying timeout

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 10:01:51 -04:00
4f85aaa6c9 Update default values of bos/eos token ids in CLIPTextConfig (#24773)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-12 13:50:26 +02:00
fc9e387dc0 Replacement of 20 asserts with exceptions (#24757)
* initial replacements of asserts with errors/exceptions

* replace assert with exception in generation, align and bart

* reset formatting change

* reset another formatting issue

* Apply suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* don't touch this file

* change to 'is not False'

* fix type

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-12 07:45:09 -04:00
430a04a75a Docs: Update logit processors __call__ docs (#24729)
* tmp commit

* __call__ docs

* kwargs documented; shorter input_ids doc

* nit

* Update src/transformers/generation/logits_process.py
2023-07-12 12:21:30 +01:00
6e2f069650 Add MobileVitV2 to doctests (#24771)
* Add to doctests

* Alphabetical order
2023-07-12 12:06:17 +01:00
7edc33ac7a Fix eval_accumulation_steps leading to incorrect metrics (#24756)
Fix eval steps
2023-07-12 05:49:12 -04:00
45025d92f8 Unpin protobuf in docker file (for daily CI) (#24761)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 23:55:55 +02:00
6aadb8d016 Allow existing configs to be registered (#24760) 2023-07-11 16:52:34 -04:00
4c0e251dc7 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step function (#24759)
* 🐛 Handle empty gen_kwargs for seq2seq trainer prediction_step fn

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>

* Update src/transformers/trainer_seq2seq.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Signed-off-by: gkumbhat <kumbhat.gaurav@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-11 16:48:06 -04:00
253d43d46d Fix lr scheduler not being reset on reruns (#24758)
* Try this

* Solved!

* Rm extranious

* Rm extranious

* self

* Args'

* Check for if we created the lr scheduler

* Move comment

* Clean
2023-07-11 16:37:04 -04:00
1be0145d6a Skip some slow tests for doctesting in PRs (Circle)CI (#24753)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-11 22:08:14 +02:00
bb13a92859 [InstructBLIP] Fix bos token of LLaMa checkpoints (#24492)
* Add fix

* Fix doctest
2023-07-11 20:43:01 +01:00
aac4c79968 Fix non-deterministic Megatron-LM checkpoint name (#24674)
Fix non-deterministic checkpoint name

`os.listdir`'s order is not deterministic, which is a problem when
querying the first listed file as in the code (`os.listdir(...)[0]`).

This can return a checkpoint name such as `distrib_optim.pt`, which does
not include desired information such as the saved arguments originally
given to Megatron-LM.
2023-07-11 19:55:04 +01:00
33aafc26ee Skip keys not in the state dict when finding mismatched weights (#24749) 2023-07-11 12:40:21 -04:00
3d8697261e add gradient checkpointing for distilbert (#24719)
* add gradient checkpointing for distilbert

* reformatted
2023-07-11 11:29:47 -04:00
2642d8d04b Docs: add kwargs type to fix formatting (#24733) 2023-07-11 16:21:29 +01:00
5739726fcc fix: Text splitting in the BasicTokenizer (#22280)
* fix: Apostraphe splitting in the BasicTokenizer for CLIPTokenizer

* account for apostrophe at start of new word

* remove _run_split_on_punc, use re.findall instead

* remove debugging, make style and quality

* use pattern and punc splitting, repo-consistency will fail

* remove commented out debugging

* adds bool args to BasicTokenizer, remove pattern

* do_split_on_punc default True

* clean stray comments and line breaks

* rebase, repo-consistency

* update to just do punctuation split

* add unicode normalizing back

* remove redundant line
2023-07-11 11:07:58 -04:00
2489e380e4 Fix typo in LocalAgent (#24736) 2023-07-11 09:04:50 -04:00
8a5e8a9c2a Add ViViT (#22518)
* Add model

* Add ability to get classification head weights

* Add docs

* Add imports to __init__.py

* Run style

* Fix imports and add mdx doc

* Run style

* Fix copyright

* Fix config docstring

* Remove imports of ViViTLayer and load_tf_weights_in_vivit

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Remove ViViTForPreTraining from vivit.mdx

* Change ViViT -> Vivit everywhere

* Add model_doc to _toctree.yml

* Replace tuples with lists in arguments of VivitConfig

* Rename patch_size to tubelet_size in TubeletEmbeddings

* Fix checkpoint names

* Add tests

* Remove unused num_frames

* Fix imports for VivitImageProcessor

* Minor fixes

* Decrease number of frames in VivitModelTester from 32 to 16

* Decrease number of frames in VivitModelTester from 16 to 8

* Add initialization for pos embeddings

* Rename Vivit -> ViViT in some places

* Fix docstring and formatting

* Rename TubeletEmbeddings -> VivitTubeletEmbeddings

* Remove load_tf_weights_in_vivit

* Change checkpoint name

* Remove Vivit _TOKENIZER_FOR_DOC

* Fix

* Fix VivitTubeletEmbeddings and pass config object as parameter

* Use image_size and num_frames instead of video_size

* Change conversion script and fix differences with the orig implementation

* Fix docstrings

* Add attention head pruning

* Run style and fixup

* Fix tests

* Add ViViT to video_classification.mdx

* Save processor in conversion script

* Fix

* Add image processor test

* Run fixup and style

* Run fix-copies

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use PyAV instead of decord

* Add unittest.skip

* Run style

* Remove unneeded test

* Update docs/source/en/model_doc/vivit.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/configuration_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add model

* Add docs

* Run style

* Fix imports and add mdx doc

* Remove FeatureExtractor and replace with ImageProcessor everywhere

* Change ViViT -> Vivit everywhere

* Rename Vivit -> ViViT in some places

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Run make style

* Remove inputs save

* Fix image processor

* Fix

* Run `make style`

* Decrease parameters of VivitModelTester

* Decrease tubelet size

* Rename vivit.mdx

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/image_processing_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix default values in image_processing_vivit.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 14:04:04 +01:00
b15343de6f [Patch-t5-tokenizer] Patches the changes on T5 to make sure previous behaviour is still valide for beginning of words (#24622)
* patch `_tokenize` function

* more tests

* properly fix

* fixup

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix without ifs

* update

* protect import

* add python processing

* is first needed

* add doc and update with lefacy

* updaate

* fix T5 SPM converter

* styling

* fix T5 warning

* add is_seqio_available

* remove is_first

* revert some changes

* more tests and update

* update llama test batterie

* fixup

* refactor T5 spm common tests

* draft the llama tests

* update

* uopdate test

* nits

* refine

* name nit

* fix t5 tests

* fix T5

* update

* revert convert slow to fast changes that fail lots of tests

* legacy support

* fixup

* nits is first not defined

* don't use legacy behaviour for switch transformers

* style

* My attempt to check.

* nits

* fixes

* update

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* fixup

* add legacy warning

* fixup

* warning_once nit

* update t5 documentation test

* update llama tok documentation

* add space to warning

* nits

* nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* last nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-07-11 15:02:18 +02:00
b3ab3fac1d Falcon port (#24523)
* Initial commit

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleanup config docstring

* Update src/transformers/models/falcon/configuration_falcon.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert to relative imports

* Remove torch < 1.8 warning

* Restructure cos_sin header

* qkv -> query, key, value

* Refactor attention calculation

* Add a couple of config variables to account for the different checkpoints

* Successful merging of the code paths!

* Fix misplaced line in the non-parallel attention path

* Update config and tests

* Add a pad_token_id when testing

* Support output_attentions when alibi is None

* make fixup

* Skip KV cache shape test

* No more _keys_to_ignore_on_load_missing

* Simplify self attention a bit

* Simplify self attention a bit

* make fixup

* stash commit

* Some more attention mask updates

* Should pass all tests except assisted generation!

* Add big model generation test

* make fixup

* Add temporary workaround for test

* Test overrides for assisted generation

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Test overrides for assisted generation

* Add generation demo

* Update copyright

* Make the docstring model actually small

* Add module-level docstring

* Remove all assertions

* Add copied from bloom

* Reformat the QKV layer

* Add copied from bloom

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove unused line and reformat

* No single letter variables

* Cleanup return names

* Add copied from line

* Remove the deprecated arguments blocks

* Change the embeddings test to an alibi on/off test

* Remove position_ids from FalconForQA

* Remove old check for token type IDs

* Fix the alibi path when multi_query is False

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update config naming

* Fix typo for new_decoder_architecture

* Add some comments

* Fix docstring

* Fix docstring

* Create range in the right dtype from the start

* Review comment cleanup

* n_head_kv -> num_kv_heads

* self.alibi -> self.use_alibi

* self.num_kv -> self.num_kv_heads

* Reorder config args

* Made alibi arguments Optional

* Add all model docstrings

* Add extra checkpoints

* Add author info for Falcon

* Stop removing token_type_ids because our checkpoints shouldn't return it anymore

* Add one hopeful comment for the future

* Fix typo

* Update tests, fix cache issue for generation

* Use -1e9 instead of -inf to avoid float overflow

* Recompute the rotary embeddings much less often

* Re-enable disabled tests

* One final fix to attention mask calculation, and update tests

* Cleanup targeting falcon-40b equivalency

* Post-rebase docs update

* Update docstrings, especially in the config

* More descriptive variable names, and comments where we can't rename them

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-11 13:36:31 +01:00
35eac0df75 add link to accelerate doc (#24601) 2023-07-10 17:49:30 -04:00
a074a5d34d Docs: change some input_ids doc reference from BertTokenizer to AutoTokenizer (#24730) 2023-07-10 17:57:26 +01:00
2541108564 [T5] Adding model_parallel = False to T5ForQuestionAnswering and MT5ForQuestionAnswering (#24684)
Adding model_parallel = False
2023-07-10 13:50:07 +01:00
30ed3adf47 Add Multi Resolution Analysis (MRA) (New PR) (#24513)
* Add all files

* Update masked_language_modeling.md

* fix mlm models

* fix conflicts

* fix conflicts

* fix copies

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Reduce seq_len and hidden_size in ModelTester

* remove output_attentions

* fix conflicts

* remove copied from statements

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-10 10:50:43 +01:00
abaca9f943 Enable conversational pipeline for GPTSw3Tokenizer (#24648)
* feat: Add `_build_conversation_input_ids` to GPT-SW3 tokenizer, adjust line length

* feat: Merge in PR https://github.com/huggingface/transformers/pull/24504.

This allows the GPT-SW3 models (and other GPT-2 based models) to be 4-bit quantised
using `load_in_4bit` with `bitsandbytes`.

* fix: F-string

* fix: F-string

* fix: Remove EOS token from all responses

* fix: Remove redundant newlines

* feat: Add `load_in_4bit` to `Pipeline`

* fix: Separate turns with `\n<s>\n` rather than `<s>`

* fix: Add missing newline in prompt

* tests: Add unit tests for the new `_build_conversation_input_ids` method

* style: Automatic style correction

* tests: Compare encodings rather than decodings

* fix: Remove `load_in_4bit` from pipeline arguments

* docs: Add description and references of the GPT-SW3 chat format

* style: Line breaks

* Apply suggestions from code review

Fix Conversation type hints

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: Import TYPE_CHECKING

* style: Run automatic fixes

* tests: Remove `_build_conversation_input_ids` unit tests

* tests: Remove import of `Conversation` in GPT-SW3 unit test

* style: Revert formatting

* style: Move TYPE_CHECKING line after all imports

* style: Imports order

* fix: Change prompt to ensure that `sp_model.encode` and `encode` yields same result

* docs: Add TODO comment related to the addition of whitespace during decoding

* style: Automatic style checks

* fix: Remove final whitespace in prompt, as prefix whitespace is used by sentencepiece

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-07-07 19:52:21 +01:00
f614b6e393 Whisper: fix prompted max length (#24666) 2023-07-07 18:11:38 +01:00
4957294270 Fix flaky test_for_warning_if_padding_and_no_attention_mask (#24706)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-07 11:55:21 +02:00
fb78769b9c [MT5] Fix CONFIG_MAPPING issue leading it to load umt5 class (#24678)
* update

* add umt5 to auto tokenizer mapping

* nits

* fixup

* fix failing torch test
2023-07-07 11:33:54 +09:00
fded6f4186 Fix integration with Accelerate and failing test (#24691)
Fix integration
2023-07-06 14:12:16 -04:00
bbf3090848 Avoid import sentencepiece_model_pb2 in utils.__init__.py (#24689)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-06 16:30:23 +02:00
66a378429d DeepSpeed/FSDP ckpt saving utils fixes and FSDP training args fixes (#24591)
* update ds and fsdp ckpt logic

* refactoring

* fix 🐛

* resolve comment

* fix issue with overriding of the fsdp config set by accelerate
2023-07-06 15:03:25 +05:30
392740452e Add dropouts to GPT-NeoX (#24680)
* add attention dropout, post attention dropout, post mlp dropout to gpt-neox

* fix typo

* add documentation

* fix too long line

* ran Checking/fixing src/transformers/models/gpt_neox/configuration_gpt_neox.py src/transformers/models/gpt_neox/modeling_gpt_neox.py
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are included.
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
Checking all names in auto name mappings are defined.
Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.
Checking all auto mappings could be imported.
Checking all objects are equally (across frameworks) in the main __init__.
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
2023-07-06 10:26:36 +01:00
fb3b22c3b9 LlamaTokenizer should be picklable (#24681)
* LlamaTokenizer should be picklable

* make fixup
2023-07-06 10:21:27 +01:00
9a5d468ba0 Add Nucleotide Transformer notebooks and restructure notebook list (#24669)
* Add Nucleotide Transformer notebooks and restructure lists

* Add missing linebreak!
2023-07-05 18:28:47 +01:00
3df3b9d4bf Fix model referenced and results in documentation. Model mentioned was inaccessible (#24609) 2023-07-05 13:25:36 -03:00
050ef14516 Unpin huggingface_hub (#24667)
* fix

* fix

* fix

* [test all] commit

* [test all] commit

* [test all] commit

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 16:49:10 +02:00
bd9dfc23b9 Add is_torch_mps_available function to utils (#24660)
* Add mps function utils

* black formating

* format fix

* Added MPS functionality to transformers

* format fix
2023-07-05 16:02:20 +02:00
ee339bad01 Fix VisionTextDualEncoderIntegrationTest (#24661)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 13:44:30 +02:00
d211a84aca Fix EncodecModelTest::test_multi_gpu_data_parallel_forward (#24663)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-05 11:37:46 +02:00
469f4d0c29 Make warning disappear for remote code in pipelines (#24603)
* Make warning disappear for remote code in pipelines

* Make sure it works twice in a row

* No need for that
2023-07-04 19:03:14 -04:00
b19c7b5ccf Add finetuned_from property in the autogenerated model card (#24528)
* Add finetuned_from tag in the autogenerated model card

* Update name
2023-07-04 17:58:31 -04:00
ea9caf7aba Update warning messages reffering to post_process_object_detection (#24649)
* including the threshold alert in warning messages.

* Updating doc owlvit.md including post_process_object_detection function with threshold.

* fix
2023-07-04 16:47:57 -03:00
f3e96235a3 documentation_tests.txt - sort filenames alphabetically (#24647)
* Sort filenames alphabetically

* Add check for order
2023-07-04 17:06:05 +01:00
a3b402ff9a llama fp16 torch.max bug fix (#24561)
* open llama fp16 bug fix

* bug fix

* bug fixed

* make style

* Update modeling_llama.py

* apply formatting

* Address amy's comment

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-07-04 16:05:12 +01:00
4e94566018 Fix audio feature extractor deps (#24636)
* Fix audio feature extractor deps

* use audio utils window over torch window
2023-07-04 16:03:27 +01:00
cd4584e3c8 precompiled_charsmap checking before adding to the normalizers' list for XLNetTokenizerFast conversion. (#24618)
* precompiled_charsmap checking before adding to the normalizers' list.

* precompiled_charsmap checking for all Sentencepiece tokenizer models

* precompiled_charsmap checking for SPM tokenizer models - correct formatting
2023-07-04 02:51:42 +02:00
f4e4b4d0e2 Generate: force cache with inputs_embeds forwarding (#24639) 2023-07-03 18:18:49 +01:00
9934bb1f42 Generate: multi-device support for contrastive search (#24635) 2023-07-03 16:08:20 +01:00
4b26a61631 Fix loading dataset docs link in run_translation.py example (#24594)
* fix loading dataset link

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-07-03 15:21:21 +01:00
6eedfa6dd1 Pin Pillow for now (#24633)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-03 12:24:46 +02:00
fc7ce2ebc5 [Time-Series] Added blog-post to tips (#24482)
* [Time-Series] Added blog-post to tips

* added Resources to time series models docs

* removed "with Bert"
2023-07-03 10:07:25 +02:00
e16191a8ac 🌐 [i18n-KO] Translated perplexity.mdx to Korean (#23850)
* docs: ko: `perplexity.mdx`

* translate comment

* reference english file

* change extension

* update toctree
2023-07-03 08:50:27 +02:00
799df10aef [Umt5] Add google's umt5 to transformers (#24477)
* add tokenization template

* update conversion script

* update modeling code

* update

* update convert checkpoint

* update modeling

* revert changes on convert script

* new conversion script for new format

* correct position bias

* cleaning a bit

* Credit co authors

Co-authored-by: agemagician
<ahmed.elnaggar@tum.de>

Co-authored-by: stefan-it
<>

* styling

* Add docq

* fix copies

* add co author

* Other Author

* Merge branch 'main' of https://github.com/huggingface/transformers into add-umt5

* add testing

* nit

* Update docs/source/en/model_doc/umt5.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* fix t5

* actual fix?

* revert wrong changes

* remove

* update test

* more fixes

* revert some changes

* add SPIECE_UNDERLINE

* add a commone xample

* upfate

* fix copies

* revert changes on t5 conversion script

* revert bytefallback changes since there was no addition yet

* fixup

* fixup

* ingore umt5 cutom testing folder

* fix readmes

* revertT5 changes

* same outputs

* fixup

* update example

* Apply suggestions from code review

* style

* draft addition of all new files

* current update

* fix attention and stuff

* finish refactoring

* auto config

* fixup

* more nits

* add umt5 to init

* use md format

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes on mt5

* revert mt4 changes

* update test

* more fixes

* add to mapping

* fix-copies

* fix copies

* foix retain grad

* fix some tests

* nits

* done

* Update src/transformers/models/umt5/modeling_umt5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/umt5.md

* Update src/transformers/models/umt5/__init__.py

* Update docs/source/en/model_doc/umt5.md

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Update src/transformers/models/umt5/modeling_umt5.py

* update conversion script + use google checkpoints

* nits

* update test and modelling

* stash slow convert

* update fixupd

* don't change slow

---------

Co-authored-by: stefan-it <>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-07-03 07:38:21 +02:00
66ded238cd fix pydantic install command 2023-07-01 09:29:21 +02:00
d51aa48a76 Limit Pydantic to V1 in dependencies (#24596)
* Limit Pydantic to V1 in dependencies

Pydantic is about to release V2 release which will break a lot of things. This change prevents `transformers` to be used with Pydantic V2 to avoid breaking things.

* more

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-07-01 00:04:03 +02:00
299aafe55f Use protobuf 4 (#24599)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 20:56:55 +02:00
49e812d12b [several models] improve readability (#24585)
* [modeling_clip.py] improve readability

* apply to other models

* fix
2023-06-30 11:27:27 -07:00
134caef31a Speed up TF tests by reducing hidden layer counts (#24595)
* hidden layers, huh, what are they good for (absolutely nothing)

* Some tests break with 1 hidden layer, use 2

* Use 1 hidden layer in a few slow models

* Use num_hidden_layers=2 everywhere

* Slightly higher tol for groupvit

* Slightly higher tol for groupvit
2023-06-30 16:30:33 +01:00
3441ad7d43 Make (TF) CI faster (test only a subset of model classes) (#24592)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-30 16:54:54 +02:00
78a2b19fc8 Show a warning for missing attention masks when pad_token_id is not None (#24510)
* Adding warning messages to BERT for missing attention masks

These warning messages when there are pad tokens within the input ids and
no attention masks are given. The warning message should only show up once.

* Adding warning messages to BERT for missing attention masks

These warning messages are shown when the pad_token_id is not None
and no attention masks are given. The warning message should only
show up once.

* Ran fix copies to copy over the changes to some of the other models

* Add logger.warning_once.cache_clear() to the test

* Shows warning when there are no attention masks and input_ids start/end with pad tokens

* Using warning_once() instead and fix indexing in input_ids check

---------

Co-authored-by: JB Lau <hckyn@voyager2.local>
2023-06-30 08:19:39 -04:00
fd8dcd0953 Udate link to RunHouse hardware setup documentation. (#24590)
* Udate link to RunHouse hardware setup documentation.

* Fix link to hardware setup in other location as well
2023-06-30 12:11:58 +01:00
b52a03cd3b ⚠️⚠️[T5Tokenize] Fix T5 family tokenizers⚠️⚠️ (#24565)
* don't add space before single letter chars that don't have a merge

* fix the fix

* fixup

* add a test

* more testing

* fixup

* hack to make sure fast is also fixed

* update switch transformers test

* revert convert slow

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add typechecking

* quality

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-30 07:00:43 +02:00
9e28750287 fix peft ckpts not being pushed to hub (#24578)
* fix push to hub for peft ckpts

* oops
2023-06-30 00:07:44 +05:30
232c898f9f Fix annotations (#24582)
* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations
2023-06-29 14:17:35 -04:00
c817bc44e2 Check all objects are equally in the main __init__ file (#24573)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 17:49:59 +02:00
8c4471d1fc Fix ESM models buffers (#24576)
* Fix ESM models buffers

* Remove modifs

* Tied weights keys are needed silly

* quality
2023-06-29 10:55:21 -04:00
b324557aac Removal of deprecated vision methods and specify deprecation versions (#24570)
* Removal of deprecated methods and specify versions

* Fix tests
2023-06-29 15:09:51 +01:00
77db28dc52 Update some torchscript tests after #24505 (#24566)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-29 16:05:24 +02:00
1c1c90756d Add Musicgen (#24109)
* Add Audiocraft

* add cross attention

* style

* add for lm

* convert and verify

* introduce t5

* split configs

* load t5 + lm

* clean conversion

* copy from t5

* style

* start pattern provider

* make generation work

* style

* fix pos embs

* propagate shape changes

* propagate shape changes

* style

* delay pattern: pad tokens at end

* audiocraft -> musicgen

* fix inits

* add mdx

* style

* fix pad token in processor

* override generate and add todos

* add init to test

* undo pattern delay mask after gen

* remove cfg logits processor

* remove cfg logits processor

* remove logits processor in favour of mask

* clean pos embs

* make fix copies

* update readmes

* clean pos emb

* refactor encoder/decoder

* make fix copies

* update conversion

* fix config imports

* update config docs

* make style

* send pattern mask to device

* pattern mask with delay

* recover prompted audio tokens

* fix docstrings

* laydown test file

* pattern edge case

* remove t5 ref

* add processing class

* config refactor

* better pattern comment

* check if mask is not present

* check if mask is not present

* refactor to auto class

* remove encoder configs

* fix processor

* processor import

* start updating conversion

* start updating tests

* make style

* convert t5, encodec, lm

* convert as composite

* also convert processor

* run generate

* classifier free gen

* comments and clean up

* make style

* docs for logit proc

* docstring for uncond gen

* start lm tests

* work tests

* let the lm generate

* refactor: reshape inside forward

* undo greedy loop changes

* from_enc_dec -> from_sub_model

* fix input id shapes in docstrings

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* undo generate changes

* from sub model config

* Update src/transformers/models/musicgen/modeling_musicgen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make generate work again

* generate uncond -> get uncond inputs

* remove prefix allowed tokens fn

* better error message

* logit proc checks

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make decoder only tests work

* composite fast tests

* make style

* uncond generation

* feat extr padding

* make audio prompt work

* fix inputs docstrings

* unconditional inputs: dict -> model output

* clean up tests

* more clean up tests

* make style

* t5 encoder -> auto text encoder

* remove comments

* deal with frames

* fix auto text

* slow tests

* nice mdx

* remove can generate

* todo - hub id

* convert m/l

* make fix copies

* only import generation with torch

* ignore decoder from tests

* don't wrap uncond inputs

* make style

* cleaner uncond inputs

* add example to musicgen forward

* fix docs

* ignore MusicGen Model/ForConditionalGeneration in auto mapping

* add doc section to toctree

* add to doc tests

* add processor tests

* fix push to hub in conversion

* tips for decoder only loading

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix conversion for s / m / l checkpoints

* import stopping criteria from module

* remove from pipeline tests

* fix uncond docstring

* decode audio method

* fix docs

* org: sanchit-gandhi -> facebook

* fix max pos embeddings

* remove auto doc (not compatible with shapes)

* bump max pos emb

* make style

* fix doc

* fix config doc

* fix config doc

* ignore musicgen config from docstring

* make style

* fix config

* fix config for doctest

* consistent from_sub_models

* don't automap decoder

* fix mdx save audio file

* fix mdx save audio file

* processor batch decode for audio

* remove keys to ignore

* update doc md

* update generation config

* allow changes for default generation config

* update tests

* make style

* fix docstring for uncond

* fix processor test

* fix processor test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-29 14:48:59 +01:00
2dc5e1a120 Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments" (#24574)
Revert "Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)"

This reverts commit c5e29d4381d4b9739e6cb427adbca87fbb43a3ad.
2023-06-29 08:14:43 -04:00
4f1b31c2ee Docs: 4 bit doc corrections (#24572)
4 bit doc corrections
2023-06-29 13:13:20 +01:00
1fd52e6e60 Fix annotations (#24571)
* fix annotations

* fix copies
2023-06-29 08:05:19 -04:00
63cc30e71b Fix Typo (#24559) 2023-06-29 08:04:07 -04:00
ae454f41d4 Update old existing feature extractor references (#24552)
* Update old existing feature extractor references

* Typo

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Address comments from review - update 'feature extractor'
Co-authored by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-06-29 10:17:36 +01:00
10c2ac7bc6 Fixed OwlViTModel inplace operations (#24529)
* fixed OwlViTModel inplace operations

* fixed operands order in owlvit
2023-06-29 10:17:26 +02:00
66954ea25e Update masked_language_modeling.md (#24560)
See https://github.com/huggingface/transformers/issues/24546
2023-06-28 17:54:20 -04:00
fd6735102a Make PT/Flax tests could be run on GPU (#24557)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 20:11:01 +02:00
faae8d8255 Update PT/Flax weight conversion after #24030 (#24556)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 19:44:31 +02:00
33b5ef5cdf [InstructBlip] Add instruct blip int8 test (#24555)
* add 8bit instructblip test

* update tests
2023-06-28 19:06:30 +02:00
c70c88a268 Fix processor __init__ bug if image processor undefined (#24554)
Make sure feature_extractor is defined in all cases
2023-06-28 17:17:27 +01:00
903b97d8df [gpt2-int8] Add gpt2-xl int8 test (#24543)
add gpt2-xl test
2023-06-28 18:02:13 +02:00
b0651655be Update EncodecIntegrationTest (#24553)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 18:01:41 +02:00
6c57ce1558 Update PT/TF weight conversion after #24030 (#24547)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 16:36:57 +02:00
c5e29d4381 Fix typing annotations for FSDP and DeepSpeed in TrainingArguments (#24549)
* Fix typing annotations for FSDP and DeepSpeed in TrainingArguments

* Change dict to Dict
2023-06-28 10:36:17 -04:00
daccde143d Allow for warn_only selection in enable_full_determinism (#24496)
* Warn only in enable full determinism

* Add option in the function definition
2023-06-28 08:54:36 -04:00
11cb6e0f7e Unpin DeepSpeed and require DS >= 0.9.3 (#24541)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 14:01:22 +02:00
e84bf1f734 ⚠️ Time to say goodbye to py37 (#24091)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-28 07:22:39 +02:00
12240925cf Add bitsandbytes support for gpt2 models (#24504)
* Add bitsandbytes support for gpt2 models

* Guard Conv1D import to pass tensorflow test

* Appease ruff linter

* Fix 4bit test and remove int8 test boilerplate

* Update tests/bnb/test_mixed_int8.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-28 05:55:32 +02:00
89b6ee49fd Finishing tidying keys to ignore on load (#24535) 2023-06-27 21:35:15 -04:00
04f46a22d8 Fix Typo (#24530)
* Fix Typo

* Fix all copies
2023-06-27 15:38:14 -04:00
462f77cbce Allow backbones not in backbones_supported - Maskformer Mask2Former (#24532)
Allow backbones not in backbones_supported
2023-06-27 20:34:36 +01:00
8e5d1619b3 Clean load keys (#24505)
* Preliminary work on some models

* Fix test load missing and make sure nonpersistent buffers are tested

* Always ignore nonpersistent buffers if in state_dict

* Treat models

* More models

* Treat remaining models

* Fix quality

* Fix tests

* Remove draft

* This test is not needed anymore

* Fix copies

* Fix last test

* Newly added models

* Fix last tests

* Address review comments
2023-06-27 14:45:40 -04:00
53194991e9 [Mask2Former] Remove SwinConfig (#24259)
Remove SwinConfig
2023-06-27 13:33:55 -04:00
fb6a62762f Fix LR scheduler based on bs from auto bs finder (#24521)
* One solution

* args -> self
2023-06-27 13:28:26 -04:00
38db04ece0 Find module name in an OS-agnostic fashion (#24526)
* Find module name in an OS-agnostic fashion

* address review comment
2023-06-27 13:21:19 -04:00
7d150d68ff Update huggingface_hub commit sha (#24527)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 17:41:55 +02:00
4e8929dcbb set model to training mode before accelerate.prepare (#24520) 2023-06-27 10:09:38 -04:00
06910f5a76 [T5] Add T5ForQuestionAnswering and MT5ForQuestionAnswering (#24481)
* Adding T5ForQuestionAnswering

* Changed weight initialization that results in better initial loss when fine-tuning

* Update to class variables

* Running make fixup

* Running make fix-copies

* Remove model_parallel

* Adding MT5ForQuestionAnswering

* Adding docs

* Fix wrong doc

* Update src/transformers/models/mt5/modeling_mt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* File formatting

* Undoing change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-06-27 10:07:06 -04:00
bcf02ec701 Update hyperparameter_search.py (#24515)
* Update hyperparameter_search.py

* resolve comments
2023-06-27 18:42:15 +05:30
6fe8d198e3 use accelerate autocast in jit eval path, since mix precision logic is… (#24460)
use accelerate autocast in jit eval path, since mix precision logic is in accelerator currently

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-06-27 08:33:21 -04:00
0863436b6c 🌐 [i18n-KO] Translated tflite.mdx to Korean (#24435)
* docs: ko: tflite.mdx

* feat: nmt and manual edit `tflite.mdx`

* revised: resolve suggestions tflite.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* revised: resolve suggestions and new line tflite.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-27 08:18:42 -04:00
4abd3ee479 Fix poor past ci (#24485)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-27 14:14:17 +02:00
239ace152b Fix TypeError: Object of type int64 is not JSON serializable (#24340)
* Fix TypeError: Object of type int64 is not JSON serializable

* Convert numpy.float64 and numpy.int64 to float and int for json serialization

* Black reformatted examples/pytorch/token-classification/run_ner_no_trainer.py

* * make style
2023-06-27 12:15:49 +01:00
ac19871ce2 Generate: min_tokens_to_keep has to be >= 1 (#24453) 2023-06-27 11:48:23 +01:00
5f3efdf762 Generate: group_beam_search requires diversity_penalty>0.0 (#24456)
* add exception

* update docs
2023-06-27 10:46:39 +01:00
43479ef98f 🚨🚨 Fix group beam search (#24407)
* group_beam_search now works correctly

* add argument descriptions

* add a comment

* format

* make style

* change comment

* Update src/transformers/generation/beam_search.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: shogo.fujita <shogo.fujita@legalontech.jp>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-27 10:43:10 +01:00
68c92981ff Fix link in utils (#24501)
* fix link

* new link

---------

Co-authored-by: Gema <gema@mbp-de-gema-2.lan>
2023-06-26 14:26:09 -04:00
7b4e3b5b40 Compute dropout_probability only in training mode (SpeechT5) (#24498)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 19:43:06 +02:00
c9fd49853f Fix 'local_rank' AttiributeError in Trainer class (#24297)
fix attribute error
2023-06-26 13:38:29 -04:00
850cf4af0c Compute dropout_probability only in training mode (#24486)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 18:36:47 +02:00
9895670e95 [InstructBlip] Add accelerate support for instructblip (#24488)
* add accelerate support for instructblip

* add `_keep_in_fp32_modules`

* dynamically adapt `_no_split_modules`

* better fix

* same logic for `_keep_in_fp32_modules`
2023-06-26 18:36:27 +02:00
5757923888 Add support for for loops in python interpreter (#24429)
Add support for for loops
2023-06-26 09:58:14 -04:00
c2aa5e17e4 Update token_classification.md (#24484)
Add link to pytorch CrossEntropyLoss so that one understand why '-100' is ignore by the loss function.
2023-06-26 08:42:38 -04:00
3ca022238b Update InstructBlipModelIntegrationTest (#24490)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 14:37:12 +02:00
195a9e5bdb deepspeed z1/z2 state dict fix (#24489)
* deepspeed z2/z1 state_dict bloating fix

* update

* version check
2023-06-26 17:45:37 +05:30
c8aff1d3e6 when resume from peft checkpoint, the model should be trainable (#24463) 2023-06-26 08:07:27 -04:00
914289ac4b [pipeline] Fix str device issue (#24396)
* fix str device issue

* fixup

* adapt from suggestions

* forward contrib credits from suggestions

* better fix

* added backward compatibility for older PT versions

* final fixes

* oops

* Attempting something with less branching.

---------

Co-authored-by: amyeroberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-26 13:58:36 +02:00
892399c5ff Update AlbertModel type annotation (#24450)
Update type annotation
2023-06-26 10:59:42 +01:00
be2d9f2e47 Fix tpu_metrics_debug (#24452)
fix for tpu metrics debugs string
2023-06-26 10:59:07 +01:00
3b84d86b57 add missing alignment_heads to Whisper integration test (#24487)
add missing alignment heads
2023-06-26 11:50:10 +02:00
868363abb9 Add InstructBLIP (#23460)
* Squash 88 commits

* Use markdown

* Remove mdx files due to bad rebase

* Fix modeling files due to bad rebase

* Fix style

* Update comment

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-26 11:23:57 +02:00
8e164c5400 Improved keras imports (#24448)
* An end to accursed version-specific imports

* No more K.is_keras_tensor() either

* Update dependency tables

* Use a cleaner call context function getter

* Add a cap to <2.14

* Add cap to examples requirements too
2023-06-23 19:09:34 +01:00
1e9da2b0a6 Update JukeboxConfig.from_pretrained (#24443)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-23 15:00:52 +02:00
8767958fc1 Allow dict input for audio classification pipeline (#23445)
* Allow dict input for audio classification pipeline

* make style

* Empty commit to trigger CI

* Empty commit to trigger CI

* check for torchaudio

* add pip instructions

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>

* Update src/transformers/pipelines/audio_classification.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* asr -> audio class

* asr -> audio class

---------

Co-authored-by: Sylvain <sylvain.gugger@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-23 13:50:37 +01:00
a6f37f8879 fixes issue when saving fsdp via accelerate's FSDP plugin (#24446) 2023-06-23 18:03:57 +05:30
2898fd3968 Fix some TFWhisperModelIntegrationTests (#24428)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-23 14:27:49 +02:00
5e9f6752ee Fix typo (#24440) 2023-06-23 08:21:08 -04:00
a28325e25e Replace python random with torch.rand to enable dynamo.export (#24434)
* Replace python random with torch.rand to enable dynamo.export

* revert changes to flax model code

* Remove unused random import

* Fix torch template

* Move torch.manual_seed(0) to right location
2023-06-23 08:17:21 -04:00
c036c814f4 fix the grad_acc issue at epoch boundaries (#24415)
* fix the grad_acc issue at epoch boundaries

Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com>

* add contributors.

Co-authored-by: sumpster

* address comments

---------

Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
2023-06-23 17:43:07 +05:30
468aed39af [Trainer] Fix .to call on 4bit models (#24444)
* fix `.to` call on 4bit models

* better check
2023-06-23 13:35:04 +02:00
ea91c2adca [AutoModel] Add AutoModelForTextEncoding (#24305)
* [AutoModel] Add AutoModelForTextEncoding

* add mt5

* add other models

* add to docs

* fix tf imports

* add tf to docs / init

* up

* fix inits

* add to dummy objects
2023-06-23 10:01:37 +01:00
feb83521ec [llama] Fix comments in weights converter (#24436)
Explain the reason to clone tensor
2023-06-22 20:38:53 -04:00
2c977e4a90 Save site-packages as cache in CircleCI job (#24424)
* fix

* fix

* Upgrade complete!

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 23:16:35 +02:00
2834c17ad2 Clarify batch size displayed when using DataParallel (#24430) 2023-06-22 14:46:20 -04:00
b6295b26c5 Refactor hyperparameter search backends (#24384)
* Refactor hyperparameter search backends

* Simpler refactoring without abstract base class

* black

* review comments:
specify name in class
use methods instead of callable class attributes
name constant better

* review comments: safer bool checking, log multiple available backends

* test ALL_HYPERPARAMETER_SEARCH_BACKENDS vs HPSearchBackend in unit test, not module. format with black.

* copyright
2023-06-22 14:28:25 -04:00
a1c4b63076 TF CI fix for Segformer (#24426)
Fix segformer so compilation can figure out the channel dim
2023-06-22 15:49:13 +01:00
754f61ca05 Update RayTune doc link for Hyperparameter tuning (#24422)
Update outdated hyperlink hpo_train.md 

Link to RayTune search space API docs was outdated - have provided correct new link for docs.

Co-authored-by: Joshua Samuel <66880119+Joshsamuel101@users.noreply.github.com>
2023-06-22 10:38:01 -04:00
8f2ef52fb6 Fix save_cache version in config.yml (#24419)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 16:18:16 +02:00
3ce3385c47 Revert "Fix gradient checkpointing + fp16 autocast for most models" (#24420)
Revert "Fix gradient checkpointing + fp16 autocast for most models (#24247)"

This reverts commit 285a48011da3145ae77c5b22bcfbe77d367e5173.
2023-06-22 16:11:27 +02:00
ebb62e8880 [bnb] Fix bnb serialization issue with new release (#24416)
* fix bnb issue

* fixup

* revert and do simple patching instead

* add more details
2023-06-22 15:40:38 +02:00
652ece0710 Skip test_conditional_generation_pt_pix2struct in Past CI (torch < 1.11) (#24417)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-22 15:34:13 +02:00
22fe73c378 TF safetensors reduced mem usage (#24404)
* Slight comment cleanup

* Reduce peak mem usage when loading TF-format safetensor weights

* Tweak the PyTorch loading code to support lazy loading from safetensors

* Pass safe_open objects to the PyTorch loading function

* Do GPU transposes for speed

* One more tweak to reduce peak usage further

* One-line hasattr

* Fix bug when there's a shape mismatch

* Rename state_dict in the loading code to be clearer

* Use TF format everywhere for consistency
2023-06-22 14:06:16 +01:00
7e03e46934 [ASR pipeline] Check for torchaudio (#23953)
* [ASR pipeline] Check for torchaudio

* add pip instructions

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>

---------

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2023-06-22 13:48:49 +01:00
6ce6d62b6f Explicit arguments in from_pretrained (#24306)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 19:24:11 +02:00
127e81c272 Remove redundant code from TrainingArgs (#24401)
Remove redundant code
2023-06-21 11:51:27 -04:00
cd927a4736 add word-level timestamps to Whisper (#23205)
* let's go!

* initial implementation of token-level timestamps

* only return a single timestamp per token

* remove token probabilities

* fix return type

* fix doc comment

* strip special tokens

* rename

* revert to not stripping special tokens

* only support models that have alignment_heads

* add integration test

* consistently name it token-level timestamps

* small DTW tweak

* initial support for ASR pipeline

* fix pipeline doc comments

* resolve token timestamps in pipeline with chunking

* change warning when no final timestamp is found

* return word-level timestamps

* fixup

* fix bug that skipped final word in each chunk

* fix failing unit tests

* merge punctuations into the words

* also return word tokens

* also return token indices

* add (failing) unit test for combine_tokens_into_words

* make combine_tokens_into_words private

* restore OpenAI's punctuation rules

* add pipeline tests

* make requested changes

* PR review changes

* fix failing pipeline test

* small stuff from PR

* only return words and their timestamps, not segments

* move alignment_heads into generation config

* forgot to set alignment_heads in pipeline tests

* tiny comment fix

* grr
2023-06-21 17:48:21 +02:00
0f968ddaa3 Check auto mappings could be imported via from transformers (#24400)
* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 17:31:57 +02:00
1a6fb930fb Clean up dist import (#24402) 2023-06-21 11:19:42 -04:00
285a48011d Fix gradient checkpointing + fp16 autocast for most models (#24247)
* fix gc bug

* continue PoC on OPT

* fixes

* 🤯

* fix tests

* remove pytest.mark

* fixup

* forward contrib credits from discussions

* forward contrib credits from discussions

* reverting changes on untouched files.

---------

Co-authored-by: zhaoqf123 <zhaoqf123@users.noreply.github.com>
Co-authored-by: 7eu7d7 <7eu7d7@users.noreply.github.com>
2023-06-21 17:04:59 +02:00
1815d1865e [Trainer] Fix optimizer step on PyTorch TPU (#24389)
* update optimizer step for tpu

* add comment
2023-06-21 07:24:41 -04:00
4c6e429589 fix type annotation for debug arg (#24033)
* fix type annotation for debug arg

* fix TypeErorr
2023-06-21 11:42:21 +01:00
16c7b16a0a byebye Hub connection timeout - Recast (#24399)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 12:36:34 +02:00
5f0801d174 Generate: add SequenceBiasLogitsProcessor (#24334) 2023-06-21 11:14:41 +01:00
45f71d793d Add ffmpeg for doc_test_job on CircleCI (#24397)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-21 11:12:38 +02:00
ad78d9597b [docs] Fix NLLB-MoE links (#24388)
fix broken links
2023-06-20 17:34:20 -07:00
cb8f675510 Update deprecated torch.ger (#24387) 2023-06-20 20:21:13 -04:00
eb849f6604 Migrate doc files to Markdown. (#24376)
* Rename index.mdx to index.md

* With saved modifs

* Address review comment

* Treat all files

* .mdx -> .md

* Remove special char

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-20 18:07:47 -04:00
b0513b013b [Wav2Vec2 - MMS] Correct directly loading adapters weights (#24335)
* Correct direct lang loading

* correct more

* revert black

* Use tie weights instead=

* add tests

* add tests

* make style
2023-06-20 19:39:52 +02:00
e5c760d636 [GPTNeoX] Nit in config (#24349)
* add raise value error for attention size

* nits to fix test_config

* style
2023-06-20 19:19:19 +02:00
c2882403c4 [Whisper Docs] Nits (#24367)
* nits

* config doc did not match

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-20 19:18:52 +02:00
83dc5762e7 Skip a tapas (tokenization) test in past CI (#24378)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:35:45 +02:00
297d769d0e Better test name and enable pipeline test for pix2struct (#24377)
* best test name forever

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 18:29:30 +02:00
6950f70b38 style: add BitsAndBytesConfig __repr__ function (#24331)
* style: add repr to BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: update pattern for __repr__

implement diff dict for __repr__ of BitsAndBytesConfig

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-20 12:26:08 -04:00
7feba74400 [Tokenizer doc] Clarification about add_prefix_space (#24368)
* nits

* more details

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-20 18:22:00 +02:00
0527c1c0ea Add a check in ImageToTextPipeline._forward (#24373)
* fix

* fix

* fix

* Update src/transformers/pipelines/image_to_text.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-06-20 18:07:34 +02:00
dc4449918d Rename test to be more accurate (#24374) 2023-06-20 11:54:55 -04:00
a6b4d1ad83 Remove print statement 2023-06-20 11:14:29 -04:00
6c1344444a [Whisper] Make tests faster (#24105) 2023-06-20 16:01:56 +01:00
f924df3c7e [modelcard] add audio classification to task list (#24363) 2023-06-20 14:01:17 +01:00
c23d131eab Update tiny models for pipeline testing. (#24364)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-20 14:43:10 +02:00
56efbf4301 TensorFlow CI fixes (#24360)
* Fix saved_model_creation_extended

* Skip the BLIP model creation test for now

* Fix TF SAM test

* Fix longformer tests

* Fix Wav2Vec2

* Add a skip for XLNet

* make fixup

* make fix-copies

* Add comments
2023-06-20 12:59:21 +01:00
183f442ba8 Fix resuming PeftModel checkpoints in Trainer (#24274)
* Fix resuming checkpoints for PeftModels

Fix an error occurred when resuming a PeftModel from a training checkpoint. That was caused since PeftModel.pre_trained saves only adapter-related data while _load_from_checkpoint was expecting a torch sved model. This PR fix this issue and allows the adapter checkpoint to be loaded.

Resolves: #24252

* fix last comment

* fix nits

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-20 13:57:08 +02:00
0875b2509a Allow passing kwargs through to TFBertTokenizer (#24324) 2023-06-20 12:49:06 +01:00
cfc838dd4d Respect explicitly set framework parameter in pipeline (#24322)
* Respect framework parameter

* Move check to pipeline()

* Add check inside infer_framework_load_model again
2023-06-20 11:43:52 +01:00
c5454eba9e Fix the order in GPTNeo's docstring (#24358)
* Fix arg sort in docstring

* further order fix

* make style
2023-06-19 18:59:35 +01:00
20273ee214 [Doc Fix] Fix model name path in the transformers doc for AutoClasses (#24329)
fix model name path

Co-authored-by: Ritesh Ghorse <riteshghorse@Riteshs-Air.attlocal.net>
2023-06-19 17:26:55 +01:00
c003c8cb52 docs: add BentoML to awesome-transformers (#24344)
* docs: add BentoML to awesome-transformers

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

* chore: add the project to the bottom of the line

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>

---------

Signed-off-by: Aaron <29749331+aarnphm@users.noreply.github.com>
2023-06-19 12:17:30 -04:00
52c4276e44 Fix link to documentation in Install from Source (#24336)
Update __init__.py

Fix link to documentation to install Transformers from source 
Probably the title changed at some point from 'Installing' to 'Install'
2023-06-19 17:12:55 +01:00
7e71eb2ef7 Fix ImageGPT doctest (#24353)
Fix doctest
2023-06-19 15:23:29 +01:00
a4de24f691 Make AutoFormer work with previous torch version (#24357)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 16:02:06 +02:00
7761b1893a Update MMS integration docs (#24311)
* Update mms.mdx

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update mms.mdx

* Update docs/source/en/model_doc/mms.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-06-19 14:49:01 +01:00
5fca839fef Fix device issue in SwitchTransformers (#24352)
* fix

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-19 15:06:05 +02:00
3b5a56e595 Fix KerasMetricCallback: pass generate_kwargs even if use_xla_generation is False (#24333)
* Fix `KerasMetricCallback`: always pass `generate_kwargs`.

* Reformat code using Black.
2023-06-19 12:51:25 +01:00
0b259a3b7e Clean up disk sapce during docker image build for transformers-pytorch-gpu (#24346)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:54:02 +02:00
691b60db90 byebye Hub connection timeout (#24350)
byebye timeout

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:50:20 +02:00
17e3e7d686 pin apex to a speicifc commit (for DeepSpeed CI docker image) (#24351)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-19 12:48:53 +02:00
3c124df579 🌐 [i18n-KO] Fixed tutorial/preprocessing.mdx (#24156)
* fix: revise translations

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-19 11:43:57 +01:00
881c0df952 error bug on saving distributed optim state when using data parallel (#24108)
Update checkpoint_reshaping_and_interoperability.py
2023-06-19 16:04:21 +05:30
ee88ae5994 Adding ddp_broadcast_buffers argument to Trainer (#24326)
adding ddp_broadcast_buffers argument
2023-06-16 15:14:03 -04:00
9138995025 Add test for proper TF input signatures (#24320)
* Add test for proper input signatures

* No more signature pruning

* Test the dummy inputs are valid too

* fine-tine -> fine-tune

* Fix indent in test_dataset_conversion
2023-06-16 17:03:13 +01:00
bdfd57d1d1 Fix ImageGPT doc example (#24317)
* Fix ImageGPT doc example

* Update src/transformers/models/imagegpt/image_processing_imagegpt.py

* Fix types
2023-06-16 17:01:22 +01:00
096f2cf126 Tied weights load (#24310)
* Use tied weight keys

* More

* Fix tied weight missing warning

* Only give info on unexpected keys with different classes

* Deal with empty archs

* Fix tests

* Refine test
2023-06-16 10:55:42 -04:00
61ffdeba38 Fix ner average grouping with no groups (#24319)
Fixes #https://github.com/huggingface/transformers/issues/24314
2023-06-16 16:43:19 +02:00
3403712958 Big TF test cleanup (#24282)
* Fix one BLIP arg not being optional, remove misspelled arg

* Remove the lxmert test overrides and just use the base test_saved_model_creation

* saved_model_creation fixes and re-enabling tests across the board

* Remove unnecessary skip

* Stop caching sinusoidal embeddings in speech_to_text

* Fix transfo_xl compilation

* Fix transfo_xl compilation

* Fix the conditionals in xglm

* Set the save spec only when building

* Clarify comment

* Move comment correctly

* Correct embeddings generation for speech2text

* Mark RAG generation tests as @slow

* Remove redundant else:

* Add comment to clarify the save_spec line in build()

* Fix size tests for XGLM at last!

* make fixup

* Remove one band_part operation

* Mark test_keras_fit as @slow
2023-06-16 15:40:49 +01:00
896a58de15 Byebye pytorch 1.9 (#24080)
byebye

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-16 16:38:23 +02:00
62d71f4083 Fix functional TF Whisper and modernize tests (#24301)
* Revert whisper change and modify the test_compile_tf_model test

* make fixup

* Tweak test slightly

* Add functional model saving to test

* Ensure TF can infer shapes for data2vec

* Add override for efficientformer

* Mark test as slow
2023-06-16 14:43:43 +01:00
ba3fb4b8d7 [SwitchTransformers] Fix return values (#24300)
* clean history

* remove other changes

* fix

* fix coipes
2023-06-16 15:40:33 +02:00
0b7b4429c7 Update test versions on README.md (#24307)
Update README.md

Updated the tested versions
2023-06-15 18:01:11 +01:00
6134b9b4c7 Make can_generate as class method (#24299)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 18:31:38 +02:00
e45bc14350 Beam search type (#24288)
* test check in

* adding in type hint fix on beam search

* fixed code quality issue
2023-06-15 16:48:02 +01:00
1a113fcf65 Update tokenizer_summary.mdx (grammar) (#24286) 2023-06-15 16:31:47 +01:00
c3ca346b49 [Docs] Fix the paper URL for MMS model (#24302)
Fix the paper URL for MMS model
2023-06-15 15:45:49 +01:00
4124a09f8b [EnCodec] Changes for 32kHz ckpt (#24296)
* [EnCodec] Changes for 32kHz ckpt

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py

* Update src/transformers/models/encodec/convert_encodec_checkpoint_to_pytorch.py
2023-06-15 14:36:19 +01:00
01b55779d3 deepspeed init during eval fix (#24298)
* deepspeed init during eval fix

* commit suggestions

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 18:47:09 +05:30
6a081c512a Update README_zh-hans.md (#24181)
* Update README_zh-hans.md

update document link

* Update README_zh-hans.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-15 13:50:40 +01:00
604a21b1e6 [Docs] Improve docs for MMS loading of other languages (#24292)
* Improve docs

* Apply suggestions from code review

* upload readme

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-15 14:29:32 +02:00
e6122c3f40 Fix image segmentation tool bug (#23897)
* Image segmentation tool bug

* Remove resizing in the tests
2023-06-15 08:09:31 -04:00
6cd34d451c [fix] bug in BatchEncoding.__getitem__ (#24293)
Co-authored-by: luchen <luchen@luchendeMBP.lan>
2023-06-15 12:33:37 +01:00
372f50030b Split common test from core tests (#24284) 2023-06-15 07:30:24 -04:00
a611ac9b3f remove unused is_decoder parameter in DetrAttention (#24226)
* issue#24161 remove unused is_decoder parameter in DetrAttention

* #24161 fix check_repository_consistency fail
2023-06-15 11:39:32 +01:00
33196b459c Fix LLaMa beam search when using parallelize (#24224)
* Fix LLaMa beam search when using parallelize

same issue as T5 #11717

* fix code format in modeling_llama.py

* fix format of _reorder_cache in modeling_llama.py
2023-06-15 11:28:48 +01:00
7504be35ab Fix check_config_attributes: check all configuration classes (#24231)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-15 11:39:20 +02:00
6793f0cfe0 Fix bug in slow tokenizer conversion, make it a lot faster (#24266)
* Make conversion faster, fix None vs 0 bug

* Add second sort for consistency

* Update src/transformers/convert_slow_tokenizer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-06-15 09:41:57 +01:00
1609a436ec Add MMS CTC Fine-Tuning (#24281)
* Add mms ctc fine tuning

* make style

* More fixes that are needed

* make fix-copies

* make draft for README

* add new file

* move to new file

* make style

* make style

* add quick test

* make style

* make style
2023-06-15 01:10:27 +02:00
0c3fdccf2f [WIP] add EnCodec model (#23655)
* boilerplate stuff

* messing around with the feature extractor

* fix feature extractor

* unit tests for feature extractor

* rename speech to audio

* quick-and-dirty import of Meta's code

* import weights (sort of)

* cleaning up

* more cleaning up

* move encoder/decoder args into config

* cleanup model

* rename EnCodec -> Encodec

* RVQ parameters in config

* add slow test

* add lstm init and test_init

* Add save & load

* finish EncodecModel

* remove decoder_input_values as they are ont used anywhere (not removed from doc yet)

* fix test feature extraction model name

* Add better slow test

* Fix tests

* some fixup and cleaning

* Improve further

* cleaning up quantizer

* fix up conversion script

* test don't pass, _encode_fram does not work

* update tests with output per encode and decode

* more cleanup

* rename _codebook

* remove old config cruft

* ratios & hop_length

* use ModuleList instead of Sequential

* clean up resnet block

* update types

* update tests

* fixup

* quick cleanup

* fix padding

* more styl,ing

* add patrick feedback

* fix copies

* fixup

* fix lstm

* fix shape issues

* fixup

* rename conv layers

* fixup

* fix decoding

* small conv refactoring

* remove norm_params

* simplify conv layers

* rename conv layers

* stuff

* Clean up

* Add padding logic

use padding mask

small conv refactoring

remove norm_params

simplify conv layers

rename conv layers

stuff

add batched test

update

Clean up

merge and update for padding

fix padding

fixup

* clean up more

* clean up more

* More clean ups

* cleanup convolutions

* typo

* fix typos

* fixup

* build PR doc?

* start refactoring docstring

* fix don't pad when no strid and chunk

* update docstring

* update docstring

* nits

* update going to lunch

* update config and model

* fix broken testse (becaue of the config changes)

* fix scale computation

* fixu[

* only return dict if speciefied or if config returns it

* remove todos

* update defaults in config

* update conversion script

* fix doctest

* more docstring + fixup

* nits on batched_tests

* more nits

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update basxed on review

* fix update

* updaet tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fixup

* add overlap and chunl_length_s

* cleanup feature extraction

* teste edge cases truncation and padding

* correct processor values

* update config encodec, nits

* fix tests

* fixup

* fix 24Hz test

* elle tests are green

* fix fixup

* Apply suggestions from code review

* revert readme changes

* fixup

* add example

* use facebook checkpoints

* fix typo

* no pipeline tests

* use slef.pad everywhere we can

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update based on review

* update

* update mdx

* fix bug and tests

* fixup

* fix doctest

* remove comment

* more nits

* add more coverage for `test_truncation_and_padding`

* fixup

* add last test

* fix text

* nits

* Update tests/models/encodec/test_modeling_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* take care of the last comments

* typo

* fix test

* nits

* fixup

* Update src/transformers/models/encodec/feature_extraction_encodec.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: arthur.zucker@gmail.com <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-14 18:57:23 +02:00
26a2ec56d7 Clean up old Accelerate checks (#24279)
* Clean up old Accelerate checks

* Put back imports
2023-06-14 12:44:09 -04:00
860d11ff7c Fix Debertav2 embed_proj (#24205)
* MLM prediction head output size from embed_size

Take the output size of the dense projection layer from embedding_size instead of hidden_size since there could be a projection of the input embedding into hidden_size if they are different

* project TFDebertaV2 mlm output to embedding size

embedding size can be different that hidden_size, so the final layer needs to project back to embedding size. like in ELECTRA or DeBERTaV3 style pertaining.

This should solve an error that occurs when loading models like "almanach/camemberta-base-generator".

* fix the same issue for reshaping after projection

* fix layernorm size

* add self.embedding_size to scope

* fix embed_proj scope name

* apply the same changes to TF Deberta

* add the changes to deberta

* added self.embedding_size instead of config.embedding_size

* added the same change to debertav2

* added coppied from deberta to deberta2 model

* config.embedding_size fix

* black

* fix deberta config name
2023-06-14 17:24:53 +01:00
a04ebc8b33 Pix2StructImageProcessor requires torch>=1.11.0 (#24270)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 17:05:40 +02:00
8978b696d7 Update check of core deps (#24277) 2023-06-14 10:06:31 -04:00
c4fec38bc7 Adapt Wav2Vec2 conversion for MMS lang identification (#24234)
* Add conversion for mms lid

* make style
2023-06-14 16:02:36 +02:00
4626df5077 TF: CTRL with native embedding layers (#23456) 2023-06-14 14:39:02 +01:00
eac8dede83 Skip some TQAPipelineTests tests in past CI (#24267)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-14 14:25:24 +02:00
91b62f5a78 QA doc: import torch before it is used (#24228)
* import torch before it is used

* style

Signed-off-by: byhsu <byhsu@linkedin.com>

---------

Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
2023-06-14 11:23:55 +01:00
6ab045d6fe Fix URL in comment for contrastive loss function (#24271)
* Update language_modeling.py

in "class TextDatasetForNextSentencePrediction(Dataset)", double considering "self.tokenizer.num_special_tokens_to_add(pair=True)" 

so, i remove self.block_size, and add parameter for "def create_examples_from_document". like "class LineByLineWithSOPTextDataset" do

* Update language_modeling.py

* Fix URL in comment for contrastive loss function
2023-06-14 11:08:31 +01:00
b89fcccd44 update FSDP save and load logic (#24249)
* update fsdp save and load logic

* fix

* see if this resolves the failing tests
2023-06-14 00:49:15 +05:30
e0603d894d docs wrt using accelerate launcher with trainer (#24250)
* update docs

* missing part

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* address Zach's comment

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-14 00:31:06 +05:30
233113149b Skip GPT-J fx tests for torch < 1.12 (#24256)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 20:33:26 +02:00
3bd1fe4315 Stop storing references to bound methods via tf.function (#24146)
* Stop storing references to bound methods in tf.functions

* Remove the gc.collect calls now that we resolved the underlying problem

* Remove the default signature from model.serving entirely, big cleanup

* Remove _prune_signature as self.input_signature can prune itself

* Restore serving docstring

* Update int support test to check the input signature

* Make sure other tests also use model.input_signature and not serving.input_signature

* Restore _prune_signature

* Remove the doctest GC now it's no longer needed

* Correct core tests to use the pruned sig

* order lines correctly in core tests

* Add eager_serving back with a deprecation warning
2023-06-13 19:04:22 +01:00
b979a2064d Fix how we detect the TF package (#24255)
* Fix how we detect the TF package

* Add a comment as a talisman warding against future harm

* Actually put the comment in the right place
2023-06-13 18:57:50 +01:00
e64d99fa6b Update urls in warnings for rich rendering (#24136)
* fixing typo in url in warnings

* fixing typo in url in warnings

* multi-line fix

* multi-line fix

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/flax_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/tf_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 18:23:30 +01:00
cf561d7cf1 Add torch >=1.12 requirement for Tapas (#24251)
* fix

* fix

* fix

* Update src/transformers/models/tapas/modeling_tapas.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 19:19:40 +02:00
b1ea6b4bf5 Generate: GenerationConfig can overwrite attributes at from_pretrained time (#24238)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-13 17:59:21 +01:00
7bb6933b9d TF: standardize test_model_common_attributes for language models (#23457) 2023-06-13 17:51:37 +01:00
4ed075280c [Time Series] use mean scaler when scaling is a boolean True (#24237)
* use mean scaler when scaling is boolean True

* remove debug
2023-06-13 18:46:05 +02:00
695928e1e5 Tied params cleanup (#24211)
* First test

* Add info for all models

* style

* Repo consistency

* Fix last model and cleanup prints

* Repo consistency

* Use consistent function for detecting tied weights
2023-06-13 11:38:39 -04:00
3723329d01 deprecate use_mps_device (#24239) 2023-06-13 19:48:36 +05:30
3e142cb0f5 fix overflow when training mDeberta in fp16 (#24116)
* Porting changes from https://github.com/microsoft/DeBERTa/ that hopefully allows for fp16 training of mdeberta

* Updates to deberta modeling from microsoft repo

* Performing some cleanup

* Undoing changes that weren't necessary

* Undoing float calls

* Minimally change the p2c block

* Fix error

* Minimally changing the c2p block

* Switch to torch sqrt

* Remove math

* Adding back the to calls to scale

* Undoing attention_scores change

* Removing commented out code

* Updating modeling_sew_d.py to satisfy utils/check_copies.py

* Missed changed

* Further reduce changes needed to get fp16 working

* Reverting changes to modeling_sew_d.py

* Make same change in TF
2023-06-13 15:04:27 +01:00
f91810da88 Safely import pytest in testing_utils.py (#24241) 2023-06-13 14:28:08 +01:00
fdd78d9153 Improving error message when using use_safetensors=True. (#24232) 2023-06-13 15:07:00 +02:00
74b846cacf Update (TF)SamModelIntegrationTest (#24199)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-13 14:28:14 +02:00
d7389cd201 fix: TextIteratorStreamer cannot work with pipeline (#23641)
* fix: TextIteratorStreamer cannot work with pipeline

Deepcopying the TextIteratorStreamer object causes the exception.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/text_generation.py

Got it. I will update the patch.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/pipelines/text_generation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update text_generation.py

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-06-13 10:42:41 +01:00
70c7994095 Fix README copies 2023-06-12 16:24:27 -04:00
41a8fa4e14 Add the number of model test failures to slack CI report (#24207)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 21:27:10 +02:00
4da84008dc Finish dataloader integration (#24201) 2023-06-12 13:26:17 -04:00
0675600a60 Update WhisperForAudioClassification doc example (#24188)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 19:10:31 +02:00
e5dd7432e7 Remove unnecessary aten::to overhead in llama (#24203)
* fix dtype init

* fix copies

* fix fixcopies mess

* edit forward as well

* copy
2023-06-12 12:18:04 -04:00
4fe9716a79 Skip RWKV test in past CI (#24204)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 18:14:15 +02:00
f7d80cb3d2 Fix steps bugs in no trainer examples (#24197)
Fix step bugs in no trainer + load checkpoint + grad acc
2023-06-12 11:49:55 -04:00
08ae37c820 Fix _load_pretrained_model (#24200)
Fix test
2023-06-12 11:31:06 -04:00
ebd94b0f6f 🚨🚨🚨 Replace DataLoader logic for Accelerate in Trainer, remove unneeded tests 🚨🚨🚨 (#24028)
* Working integration

* Fix failing test

* Revert label host logic

* Bring it back!
2023-06-12 11:23:37 -04:00
dc42a9d76f 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean (#23977)
* 🌐 [i18n-KO] Translated tasks_summary.mdx to Korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

* Delete generation_strategies.mdx

* Delete tasks_explained.mdx

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
2023-06-12 11:07:15 -04:00
60b69f7de2 Generate: detect special architectures when loaded from PEFT (#24198) 2023-06-12 16:06:20 +01:00
97527898da typo: fix typos in CONTRIBUTING.md and deepspeed.mdx (#24184)
* typo: fix typos in CONTRIBUTING.md and deepspeed.mdx

* Update CONTRIBUTING.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-12 15:43:58 +01:00
dadc9fb427 Update GPTNeoXLanguageGenerationTest (#24193)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:37:12 +02:00
a9cdb059a8 Fix device issue in OpenLlamaModelTest::test_model_parallelism (#24195)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 15:21:27 +02:00
9f81f4f6dd Generate: force caching on the main model, in assisted generation (#24177) 2023-06-12 14:10:49 +01:00
535f92aea3 [i18n]Translated "attention.mdx" to korean (#23878)
* [i18n]Translated "attention.mdx" to korean

Co-Authored-By: Hyeonseo Yun <0525yhs@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-06-12 08:59:18 -04:00
ba64ec07bb Change ProgressCallback to use dynamic_ncols=True (#24101)
* Change ProgressCallback to use dynamic_ncols=True

* style: make style

* Revert "style: make style"

This reverts commit dee484904cd30a072d80e3be0a3d74a03cff30c6.

* run make style only trainer_callback
2023-06-12 08:56:48 -04:00
93f73a3848 Fix push to hub (#24187)
Add fix
2023-06-12 08:51:09 -04:00
e26c6f03be Fix Wav2Vec2 CI OOM (#24190)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-12 11:39:04 +02:00
8f093fb799 Avoid OOM in doctest CI (#24139)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-10 09:47:38 +02:00
0d217f428f [tests] fix bitsandbytes import issue (#24151)
fix bitsandbytes import issue
2023-06-09 21:53:11 -07:00
deff5979fe Tool types (#24032)
* Tool types

* Tests + fixes

* Isolate types

* Oops

* Review comments + docs

* Tests + docs

* soundfile -> vision
2023-06-09 13:34:07 -04:00
061580c82c Fix typo in streamers.py (#24144) 2023-06-09 17:27:46 +01:00
12bb853ccd [documentation] grammatical fixes in image_classification.mdx (#24141)
Update image_classification.mdx
2023-06-09 16:59:44 +01:00
d0d1632958 Fix Pipeline CI OOM issue (#24124)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 16:49:02 +02:00
a7501f6fc6 [BlenderBotSmall] Update doc example (#24092)
* small tokenizer uses `__start__` and `__end__`

* fix PR doctest
2023-06-09 16:31:57 +02:00
5af3a1aa48 [lamaTokenizerFast] Update documentation (#24132)
* Update documentation

* nits
2023-06-09 16:30:20 +02:00
62fe753325 [SAM] Fix sam slow test (#24140)
* fix sam test

* update pipeline typehint
2023-06-09 16:22:09 +02:00
847b47c0ee Fix XGLM OOM on CI (#24123)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:20:59 +02:00
b8fe259f16 Fix SAM OOM issue on CI (#24125)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:07:08 +02:00
707023d155 Fix TF Rag OOM issue (#24122)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-09 15:03:11 +02:00
f2b918356c fix bugs with trainer (#24134)
* fix the deepspeed test failures

* apex fix

* FSDP save ckpt fix

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-09 17:54:53 +05:30
be10092e63 Generate: PT's top_p enforces min_tokens_to_keep when it is 1 (#24111) 2023-06-09 13:20:05 +01:00
03585f3734 Correctly build models and import call_context for older TF versions (#24138) 2023-06-09 13:11:01 +01:00
a6d05d55f6 [bnb] Fix bnb config json serialization (#24137)
* fix bnb config json serialization

* forward contrib credits from discussions

---------

Co-authored-by: Andrechang <Andrechang@users.noreply.github.com>
2023-06-09 13:41:14 +02:00
e2972dffdd PLAM => PaLM (#24129) 2023-06-09 12:32:16 +01:00
535542d38d [Lllama] Update tokenization code to ensure parsing of the special tokens [core] (#24042)
* preventllama fast from returning token type ids

* remove type hints

* normalised False
2023-06-09 09:36:19 +02:00
2e2088f24b Avoid GPT-2 daily CI job OOM (in TF tests) (#24106)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-08 18:21:09 +02:00
9322c24476 Fix typo in Llama docstrings (#24020)
* Fix typo in Llama docstrings

Signed-off-by: Serge Panev <spanev@nvidia.com>

* Update

Signed-off-by: Serge Panev <spanev@nvidia.com>

* make style

Signed-off-by: Serge Panev <spanev@nvidia.com>

---------

Signed-off-by: Serge Panev <spanev@nvidia.com>
2023-06-08 17:19:07 +01:00
a73883ae9e add trust_remote_code option to CLI download cmd (#24097)
* add trust_remote_code option

* require_torch
2023-06-08 11:13:57 -04:00
8b169142f8 [GPT2] Add correct keys on _keys_to_ignore_on_load_unexpected on all child classes of GPT2PreTrainedModel (#24113)
* add correct keys on `_keys_to_ignore_on_load_unexpected`

* oops
2023-06-08 10:21:42 -04:00
71a114d3e0 fix get_keys_to_not_convert function (#24095)
* fix get_keys_to_not_convert funct

* Fix style
2023-06-08 10:14:27 -04:00
8c5f306719 Update the pin on Accelerate (#24110) 2023-06-08 10:11:01 -04:00
2200bf7a45 [Trainer] Correct behavior of _load_best_model for PEFT models (#24103)
* v1

* some refactor

- add ST format as well

* fix

* add `ADAPTER_WEIGHTS_NAME` & `ADAPTER_SAFE_WEIGHTS_NAME`
2023-06-08 15:38:30 +02:00
0f23605094 reset accelerate env variables after each test (#24107) 2023-06-08 09:19:07 -04:00
5fa0a1b23b Fix a tiny typo in WhisperForConditionalGeneration::generate docstring (#24045) 2023-06-08 13:54:56 +01:00
ba695c1efd v4.31.0.dev0 2023-06-07 16:49:00 -04:00
c3572e6bfb Add AzureOpenAiAgent (#24058)
* Add AzureOpenAiAgent

* quality

* Update src/transformers/tools/agents.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-07 16:34:53 -04:00
5eb3d3c702 Up pinned accelerate version (#24089)
* Min accelerate

* Also min version

* Min accelerate

* Also min version

* To different minor version

* Empty
2023-06-07 16:21:51 -04:00
d1c039e398 fix accelerator prepare during eval only mode (#24014)
* fix mixed precision prep during eval only mode

* update to address comments

* update to reflect the changes in accelerate
2023-06-08 01:03:13 +05:30
2c887cf8e0 Do not prepare lr scheduler as it as the right number of steps (#24088)
* Do not prepare lr scheduler as it as the right number of steps

* Trigger CI

* Trigger CI

* Trigger CI

* Add fake comment

* Remove fake comment

* Trigger CI please!
2023-06-07 15:31:32 -04:00
12298cb65c fix executable batch size issue (#24067)
* fix executable batch size issue

* fix

* undo
2023-06-07 22:08:04 +05:30
ef010071ee Update delete_doc_comment_trigger.yml (#24084)
fix base workflow name
2023-06-07 17:55:48 +02:00
89b00eef94 Fix expected value in tests of the test fetcher (#24077)
* Fix expected value in tests of the test fetcher

* Fix trigger for repo util tests
2023-06-07 11:38:56 -04:00
5c9394b54c [doc build] Use secrets (#24079) 2023-06-07 17:33:39 +02:00
1fc832b454 Make the TF dummies even smaller (#24071)
* Let's see if we can use the smallest possible dummies

* Make GPT-2's dummies a little longer

* Just use (1,2) as the default shape

* Update other dummies in sync

* Correct imports for Keras 2.13

* Shrink the Wav2Vec2 dummies
2023-06-07 16:23:05 +01:00
092c14c37d Be nice to TF (#24076)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-07 16:18:13 +02:00
4795219228 [bnb] Fix bnb skip modules (#24043)
* fix skip modules test

* oops

* address comments
2023-06-07 15:27:46 +02:00
a1160185ff Fix is_optimum_neuron_available (#23961)
Fix is_optimum_neuron_available
2023-06-07 09:13:01 -04:00
6b548129b1 [Hub] Add safe_serialization in push_to_hub (#24074)
add `safe_serialization` in push_to_hub
2023-06-07 09:07:33 -04:00
6daf7c311b Support PEFT models when saving the model using trainer (#24073)
* support PEFT models when saving the model using trainer

* fixup
2023-06-07 14:30:55 +02:00
1e4a7737ed Add support for non-rust implemented tokenization for __getitem__ method. (#24039)
* Add support for non-rust implemented tokenization for `__getitem__` method.

* Update for error message on adding new sub-branch for `__item__` method.

---------

Co-authored-by: liuyang17 <liuyang17@zhihu.com>
2023-06-07 12:29:19 +01:00
52972e70c7 [Wav2Vec2] Fix torch srcipt (#24062)
* [Wav2Vec2] Fix torch srcipt

* fix more
2023-06-07 07:27:07 -04:00
612b2a1a6d Generate: increase left-padding test atol (#23448)
increase atol
2023-06-07 11:56:57 +01:00
f1660d7e23 Remote code improvements (#23959)
* Fix model load when it has both code on the Hub and locally

* Add input check with timeout

* Add tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Some non-saved stuff

* Add feature extractors

* Add image processor

* Add model

* Add processor and tokenizer

* Reduce timeout

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-06 14:31:14 -04:00
60825f2c6e Fix device placement for model-parallelism in generate for encoder/de… (#24025)
* Fix device placement for model-parallelism in generate for encoder/decoders

* Remove debug statements
2023-06-06 14:30:59 -04:00
02d255db26 bring back filtered_test_list_cross_tests.txt (#24055)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 19:35:24 +02:00
bc9ecef942 Use new parametrization based weight norm if available (#24030)
* Use new parametrization based weight norm if available

See https://github.com/pytorch/pytorch/pull/103001

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* handle copies

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

* black

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

---------

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
2023-06-06 13:34:57 -04:00
4a55e47877 Move TF building to an actual build() method (#23760)
* A fun new PR where I break the entire codebase again

* A fun new PR where I break the entire codebase again

* Handle cross-attention

* Move calls to model(model.dummy_inputs) to the new build() method

* Seeing what fails with the build context thing

* make fix-copies

* Let's see what fails with new build methods

* Fix the pytorch crossload build calls

* Fix the overridden build methods in vision_text_dual_encoder

* Make sure all our build methods set self.built or call super().build(), which also sets it

* make fix-copies

* Remove finished TODO

* Tentatively remove unneeded (?) line

* Transpose b in deberta correctly and remove unused threading local

* Get rid of build_with_dummies and all it stands for

* Rollback some changes to TF-PT crossloading

* Correctly call super().build()
2023-06-06 18:30:51 +01:00
cbf6bc2350 Oops, missed one (#24054)
Oops
2023-06-06 13:30:19 -04:00
7203ea6797 Reduce memory usage in TF building (#24046)
* Make the default dummies (2, 2) instead of (3, 3)

* Fix for Funnel

* Actually fix Funnel
2023-06-06 18:29:54 +01:00
072188d638 Act on deprecations in Accelerate no_trainer examples (#24053)
Act on deprecation
2023-06-06 13:04:38 -04:00
ff4c0fc7d2 Tiny fix for check_self_hosted_runner.py (#24052)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-06 18:17:41 +02:00
a717e0318c Add TimmBackbone model (#22619)
* Add test_backbone for convnext

* Add TimmBackbone model

* Add check for backbone type

* Tidying up - config checks

* Update convnextv2

* Tidy up

* Fix indices & clearer comment

* Exceptions for config checks

* Correclty update config for tests

* Safer imports

* Safer safer imports

* Fix where decorators go

* Update import logic and backbone tests

* More import fixes

* Fixup

* Only import all_models if torch available

* Fix kwarg updates in from_pretrained & main rebase

* Tidy up

* Add tests for AutoBackbone

* Tidy up

* Fix import error

* Fix up

* Install nattan in doc_test_job

* Revert back to setting self._out_xxx directly

* Bug fix - out_indices mapping from out_features

* Fix tests

* Dont accept output_loading_info for Timm models

* Set out_xxx and don't remap

* Use smaller checkpoint for test

* Don't remap timm indices - check out_indices based on stage names

* Skip test as it's n/a

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Cleaner imports / spelling is hard

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-06 17:11:30 +01:00
b8935980a2 Modification of one text example file should trigger said test (#24051) 2023-06-06 12:02:56 -04:00
02fe3af275 Prevent ZeroDivisionError on trainer.evaluate if model and dataset are tiny (#24049)
Prevent ZeroDivisionError if evaluation is too quick
2023-06-06 11:31:05 -04:00
d924390d5b Use TruncatedNormal from Keras initializers (#24036)
Co-authored-by: Andrey Voynov <avoin@google.com>
2023-06-06 14:51:44 +01:00
c2e3fa0b2a Fixing single candidate_label return. (#24023) 2023-06-06 15:26:10 +02:00
6307312dfc Add check for tied parameters (#24029)
* Add check for tied parameters

* Fix style

* fix style

* Fix versioning

* Change if to elif
2023-06-06 09:12:46 -04:00
7da3ce04a6 🌐 [i18n-KO] Translated bertology.mdx to Korean (#23968)
* docs: ko: `bertology.mdx`

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-06-06 09:08:45 -04:00
c938597657 🌐 [i18n-KO] Translated language-modeling.mdx (#23969)
* docs: ko: `language_modeling.mdx`

* feat: nmt draft

* fix: manual edits

* fix: add inline toc

* fix: typo in toc_tree.yml

* fix: resolve suggestions

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-06 09:08:26 -04:00
7631db0fdc Pin deepspeed to 0.9.2 for now (#24024)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 20:00:28 +02:00
17846646f2 Fix MobileViTV2 checkpoint name (#24018)
* fix

* fix

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-05 18:12:45 +02:00
649ffbf575 🌐 [i18n-KO] Translated tasks_explained.mdx to Korean (#23844)
* docs: ko: tasks_explained.mdx

* feat: nmt and manual edit `tasks_explained.mdx`

* revised: resolve suggestions task_explained.mdx

* fixed: added draft of reference docs

Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>

* revised: resolve suggestions(voca, spell check) task_explained.mdx

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* revised: remove duplicate sentence in task_explained.mdx

* fixed: remove draft of reference docs

- I think it will be confusing in the translation process.
- This issue is included in #23971.

---------

Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-05 12:02:03 -04:00
2872f9671b TensorBoard callback no longer adds hparams (#23999)
tensorboard callback no longer adds hparams
2023-06-05 11:53:45 -04:00
44bd590a29 Pix2Struct: fix wrong broadcast axis of attention mask in visual encoder (#23976)
* fix wrong broadcast axis of attention mask in visual encoder

* fix slow tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-06-05 11:47:29 -04:00
7824fa431e expose safe_serialization argument in the pipeline API (#23775)
expose safe_serialization argument of PreTrainedModel and TFPreTrainedModel in the save_pretrained of the pipeline api

Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
2023-06-05 11:19:58 -04:00
b4919cb520 Auto tokenizer registration (#23965)
add check loop over extra content
2023-06-05 11:10:47 -04:00
b143019005 Update README.md (#24022)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 17:08:15 +02:00
5176dc2310 Skip test_multi_gpu_data_parallel_forward for MobileViTV2ModelTest (#24017)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-06-05 16:29:32 +02:00
460b844360 fix trainer slow tests related to hyperparam search (#24011)
* fix trainer slow tests

* commit 2
2023-06-05 17:58:10 +05:30
3c3108972a Fix typo in doc comment of BitsAndBytesConfig (#23978) 2023-06-05 12:10:31 +01:00
539e2281cd Bump cryptography from 39.0.1 to 41.0.0 in /examples/research_projects/decision_transformer (#23964)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 39.0.1 to 41.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/39.0.1...41.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-06-02 16:23:44 -04:00
bacaab1629 Added time-series blogs to the models (#23857)
* added blogs to docs

* removed new-line
2023-06-02 12:32:34 -04:00
167a0d8f87 Add an option to reduce compile() console spam (#23938)
* Add an option to reduce compile() console spam

* Add annotations to the example scripts

* Add notes to the quicktour docs as well

* minor fix
2023-06-02 15:28:52 +01:00
c9cf337772 [Whisper Tokenizer] Skip special tokens when decoding with timestamps (#23945) 2023-06-02 16:26:59 +02:00
8940d315aa Trainer: fixed evaluate raising KeyError for ReduceLROnPlateau (#23952)
Trainer: fixed KeyError on evaluate for ReduceLROnPlateau

Co-authored-by: Claudius Kienle <claudius.kienle@artiminds.com>
2023-06-02 08:53:48 -04:00
2fdba73a99 🌐 [i18n-KO] Translated object_detection.mdx to Korean (#23164)
* translated object_detection.mdx

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: simso <3035487+simso@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: simso <3035487+simso@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-06-02 07:43:55 -04:00
dcb5e18c9e add new mms functions to doc (#23954) 2023-06-02 11:35:52 +01:00
07c54413ac Add MobileViTv2 (#22820)
* generated code from add-new-model-like

* Add code for modeling, config, and weight conversion

* add tests for image-classification, update modeling and config

* add code, tests for semantic-segmentation

* make style, make quality, make fix-copies

* make fix-copies

* Update modeling_mobilevitv2.py

fix bugs

* Update _toctree.yml

* update modeling, config

fix bugs

* Edit docs - fix bug MobileViTv2v2 -> MobileViTv2

* Update mobilevitv2.mdx

* update docstrings

* Update configuration_mobilevitv2.py

make style

* Update convert_mlcvnets_to_pytorch.py

remove unused options

* Update convert_mlcvnets_to_pytorch.py

make style

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style, make quality

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Remove MobileViTv2ImageProcessor

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

* Add suggestions from code review

Rename MobileViTv2 -> MobileViTV2

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_mobilevitv2.py

make style

* Update serialization.mdx

* Update modeling_mobilevitv2.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:37:02 +01:00
5dfd407b37 [MMS] Scaling Speech Technology to 1,000+ Languages | Add attention adapter to Wav2Vec2 (#23813)
* add fine-tuned with adapter layer

* Add set_target_lang to tokenizer

* Implement load adapter

* add tests

* make style

* Apply suggestions from code review

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

* make fix-copies

* Apply suggestions from code review

* make fix-copies

* make style again

* mkae style again

* fix doc string

* Update tests/models/wav2vec2/test_tokenization_wav2vec2.py

* Apply suggestions from code review

* fix

* Correct wav2vec2 adapter

* mkae style

* Update src/transformers/models/wav2vec2/modeling_wav2vec2.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add more nice docs

* finish

* finish

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

* all finish

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-06-02 10:30:24 +01:00
f49a3453ca Fix ReduceLROnPlateau object has no attribute 'get_last_lr' (#23944)
* Fix 'ReduceLROnPlateau' object has no attribute 'get_last_lr'

* fix style
2023-06-01 16:10:52 -04:00
c62b01d0b0 use _make_causal_mask in clip/vit models (#23942)
use _make_causal_mask in clip models
2023-06-01 16:10:24 -04:00
e03a9cc0cd Modify device_map behavior when loading a model using from_pretrained (#23922)
* Modify device map behavior for 4/8 bits model

* Remove device_map arg for training 4/8 bit model

* Remove index

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add Exceptions

* Modify comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix formatting

* Get current device with accelerate

* Revert "Get current device with accelerate"

This reverts commit 46f00799103bbe15bd58762ba029aab35363c4f7.

* Fix Exception

* Modify quantization doc

* Fix error

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-06-01 13:21:22 -04:00
d1fa349e78 #23675 Registering Malay language (#23689)
* #23675 Registering Malay language

* removing untranslated files

* some translate

* more updates to toctree

* inc index

* additional translations for toctree

* translations of more sections

* removing untranslated file

* translated index.mdx to malay
2023-06-01 13:17:27 -04:00
dc67da0182 Revert "Update stale.yml to use HuggingFaceBot" (#23943)
Revert "Update stale.yml to use HuggingFaceBot (#23941)"

This reverts commit 5929f86ebba157b3ea3460622215a2b9db69d44b.
2023-06-01 11:58:11 -04:00
8088ca4185 Make TF ESM inv_freq non-trainable like PyTorch (#23940)
Make TF inv_freq non-trainable like PyTorch
2023-06-01 16:15:00 +01:00
5929f86ebb Update stale.yml to use HuggingFaceBot (#23941) 2023-06-01 10:54:50 -04:00
857d4e1c87 rename DocumentQuestionAnsweringTool parameter input to match docstring (#23939)
rename encode input to match docstring
2023-06-01 10:54:01 -04:00
9193188276 Pin rhoknp (#23937) 2023-06-01 10:25:43 -04:00
af2c36793f Fix doc string nits (#23929) 2023-06-01 10:10:15 -04:00
9a35a7b9e1 Effectively allow encoder_outputs input to be a tuple in pix2struct (#23932)
consistentcy
2023-06-01 09:07:57 -04:00
9603ef890a [Flax Whisper] Update decode docstring (#23908) 2023-06-01 14:36:45 +02:00
fabe17a726 Skip device placement for past key values in decoder models (#23919) 2023-05-31 15:32:21 -04:00
6affd9cd7c [PushToHub] Make it possible to upload folders (#23920)
Add first draft
2023-05-31 15:31:28 -04:00
4aa13224a5 Update the update metadata job to use upload_folder (#23917) 2023-05-31 14:10:14 -04:00
3ff443a6d9 Re-enable squad test (#23912)
* Re-enable squad test

* [all-test]

* [all-test] Fix all test command

* Fix the all-test
2023-05-31 13:44:26 -04:00
d13021e35f remove the extra accelerator.prepare (#23914)
remove the extra `accelerator.prepare` that slipped in with multiple update from main 😅
2023-05-31 23:04:55 +05:30
c608b8fc93 Bug fix - flip_channel_order for channels first images (#23701)
Bug fix - flip_channel_order for channels_first
2023-05-31 17:12:27 +01:00
0b3d092f63 Empty circleci config (#23913)
* Try easy first

* Add an empty job

* Fix name

* Fix method
2023-05-31 12:02:05 -04:00
8714b964ee Raise error if loss can't be calculated - ViT MIM (#23872)
Raise error if loss can't be calculated
2023-05-31 17:01:53 +01:00
404d925384 add conditional statement for auxiliary loss calculation (#23899)
* add conditional statement for auxiliary loss calculation

* fix style and copies
2023-05-31 16:40:23 +01:00
c63bfc3023 [RWKV] Fix RWKV 4bit (#23910)
fix RWKV 4bit
2023-05-31 17:36:56 +02:00
55451c66ce Upgrade safetensors version (#23911)
* Upgrade safetensors

* Second table
2023-05-31 11:30:39 -04:00
7adce8b532 fix: Replace add_prefix_space in get_prompt_ids with manual space for FastTokenizer compatibility (#23796)
* add ' ' replacement for add_prefix_space

* add fast tokenizer test
2023-05-31 10:52:35 -04:00
84bac652f3 Move import check to before state reset (#23906)
* Move import check to before state reset

* Guard better
2023-05-31 10:49:43 -04:00
e42869b091 [bnb] add warning when no linear (#23894)
* add warning for gpt2-like models

* more details

* adapt from suggestions
2023-05-31 16:40:07 +02:00
8f915c450d Unpin numba (#23162)
* fix for ragged list

* unpin numba

* make style

* np.object -> object

* propagate changes to tokenizer as well

* np.long -> "long"

* revert tokenization changes

* check with tokenization changes

* list/tuple logic

* catch numpy

* catch else case

* clean up

* up

* better check

* trigger ci

* Empty commit to trigger CI
2023-05-31 14:59:30 +01:00
d99f11e898 ensure banned_mask and indices in same device (#23901)
* ensure banned_mask and indices in same device

* ensure banned_mask and indices in same device

switch the order in which indices and banned_mask are created and create banned_mask on the proper device
2023-05-31 09:47:46 -04:00
d68d6665f9 Support shared tensors (#23871)
* Suport shared storage

* Really be sure we have the same storage

* Make style

* - Refactor storage identifier mechanism
 - Group everything into a single for loop

* Make style

* PR

* make style

* Update src/transformers/pytorch_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-31 09:42:30 -04:00
68d53bc717 Fix Trainer when model is loaded on a different GPU (#23792) 2023-05-31 07:54:26 -04:00
0963a2508b fix(configuration_llama): add keys_to_ignore_at_inference to LlamaConfig (#23891) 2023-05-31 07:39:51 -04:00
00f6ba0e7e Skip failing test for now 2023-05-31 06:31:33 -04:00
a73b1d59a3 accelerate deepspeed and gradient accumulation integrate (#23236)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate

* shift deepspeed integration and save & load utils to accelerate

* fix accelerate launcher support

* oops

* fix 🐛

* save ckpt fix

* Trigger CI

* nasty 🐛 😅

* as deepspeed needs grad_acc fixes, transfer grad_acc to accelerate

* make tests happy

* quality 

* loss tracked needs to account for grad_acc

* fixing the deepspeed tests

* quality 

* 😅😅😅

* tests 😡

* quality 

* Trigger CI

* resolve comments and fix the issue with the previous merge from branch

* Trigger CI

* accelerate took over deepspeed integration

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-05-31 15:16:22 +05:30
88f50a1e89 Add TensorFlow implementation of EfficientFormer (#22620)
* Add tf code for efficientformer

* Fix return dict bug - return last hidden state after last stage

* Fix corresponding return dict bug

* Override test tol

* Change default values of training to False

* Set training to default False X3

* Rm axis from ln

* Set init in dense projection

* Rm debug stuff

* Make style; all tests pass.

* Modify year to 2023

* Fix attention biases codes

* Update the shape list logic

* Add a batch norm eps config

* Remove extract comments in test files

* Add conditional attn and hidden states return for serving output

* Change channel dim checking logic

* Add exception for withteacher model in training mode

* Revert layer count for now

* Add layer count for conditional layer naming

* Transpose for conv happens only in main layer

* Make tests smaller

* Make style

* Update doc

* Rm from_pt

* Change to actual expect image class label

* Remove stray print in tests

* Update image processor test

* Remove the old serving output logic

* Make style

* Make style

* Complete test
2023-05-31 10:43:12 +01:00
9fea71b465 Fix last instances of kbit -> quantized (#23797) 2023-05-31 11:38:20 +02:00
38dbbc2640 Fix bug leading to missing token in GPTSanJapaneseTokenizer (#23883)
* add \n

* removed copied from header
2023-05-31 11:32:27 +02:00
03db591047 shift torch dynamo handling to accelerate (#23168)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving

* shift torch dynamo handling to accelerate
2023-05-31 14:42:07 +05:30
0b774074a5 move fsdp handling to accelerate (#23158)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments

* move fsdp handling to accelerate

* fixex

* fix saving
2023-05-31 14:10:46 +05:30
015829e6c4 🌐 [i18n-KO] Translated pad_truncation.mdx to Korean (#23823)
* docs: ko: pad_truncation.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-31 10:23:59 +02:00
1cf148a6aa Smangrul/accelerate ddp integrate (#23151)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* move ddp prep to accelerate

* fix 😅

* resolving comments
2023-05-31 13:42:49 +05:30
9f0646a555 Smangrul/accelerate mp integrate (#23148)
* mixed precision support via accelerate

* fix issues

* fix for the sharded ddp case

* fix flax and tf failing tests

* `refactor the place to create `Accelerator` object

* address comments by removing debugging print statements
2023-05-31 12:27:51 +05:30
de9255de27 Adds AutoProcessor.from_pretrained support for MCTCTProcessor (#23856)
Adds support for AutoProcessor.from_pretrained to MCTCTProcessor models
2023-05-30 14:36:18 -04:00
6451ad0471 Editing issue with pickle def with lambda function (#23869)
* Editing issue with pickle def with lambda function

* fix type

* Made helper function private

* delete tab

---------

Co-authored-by: georgebredis <9454-georgebredis@users.noreply.gitlab.aicrowd.com>
2023-05-30 13:26:37 -04:00
af2aac51fc [from_pretrained] imporve the error message when _no_split_modules is not defined (#23861)
* Better warning

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* format line

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 17:12:14 +02:00
58022e41b8 #23388 Issue: Update RoBERTa configuration (#23863) 2023-05-30 10:53:40 -04:00
6fc0454b2f [LlamaTokenizerFast] nit update post_processor on the fly (#23855)
* Update the processor when changing add_eos and add_bos

* fixup

* update

* add a test

* fix failing tests

* fixup
2023-05-30 16:50:41 +02:00
0623f08e99 Update collating_graphormer.py (#23862) 2023-05-30 10:23:20 -04:00
62ba64b90a Adds a FlyteCallback (#23759)
* initial flyte callback

* lint

* logs should still be saved to Flyte even if pandas isn't install (unlikely)

* cr - flyte team

* add docs for Flytecallback

* fix doc string - cr sgugger

* Apply suggestions from code review

cr - sgugger fix doc strings

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-30 10:08:07 -04:00
867316670a 🌐 [i18n-KO] Translated troubleshooting.mdx to Korean (#23166)
* docs: ko: troubleshooting.mdx

* revised: fix _toctree.yml #23112

* feat: nmt draft `troubleshooting.mdx`

* fix: manual edits `troubleshooting.mdx`

* revised: resolve suggestions troubleshooting.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-05-30 09:49:47 -04:00
192aa04783 [i18n-KO] Translated video_classification.mdx to Korean (#23026)
* task/video_classification translated

Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/tasks/video_classification.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>

* Update video_classification.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

* Update _toctree.yml

---------

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:28:44 -04:00
a077f710f3 🌐 [i18n-KO] Translated fast_tokenizers.mdx to Korean (#22956)
* docs: ko: fast_tokenizer.mdx

content - translated

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Hyeonseo Yun <0525_hhgus@naver.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* Update docs/source/ko/fast_tokenizers.mdx

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update fast_tokenizers.mdx

* Update _toctree.yml

---------

Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-30 09:27:40 -04:00
2faa09530b fix Whisper tests on GPU (#23753)
* move input features to GPU

* skip these tests because undefined behavior

* unskip tests
2023-05-30 09:06:58 -04:00
ac224dee90 TF SAM shape flexibility fixes (#23842)
SAM shape flexibility fixes for compilation
2023-05-30 13:08:44 +01:00
af45ec0a16 add type hint in pipeline model argument (#23740)
* add type hint in pipeline model argument

* add pretrainedmodel and tfpretainedmodel type hint

* make type hints string
2023-05-30 11:05:58 +01:00
4b6a5a7caa [Time-Series] Autoformer model (#21891)
* ran `transformers-cli add-new-model-like`

* added `AutoformerLayernorm` and `AutoformerSeriesDecomposition`

* added `decomposition_layer` in `init` and `moving_avg` to config

* added `AutoformerAutoCorrelation` to encoder & decoder

* removed caninical self attention `AutoformerAttention`

* added arguments in config and model tester. Init works! 😁

* WIP autoformer attention with autocorrlation

* fixed `attn_weights` size

* wip time_delay_agg_training

* fixing sizes and debug time_delay_agg_training

* aggregation in training works! 😁

* `top_k_delays` -> `top_k_delays_index` and added `contiguous()`

* wip time_delay_agg_inference

* finish time_delay_agg_inference 😎

* added resize to autocorrelation

* bug fix: added the length of the output signal to `irfft`

* `attention_mask = None` in the decoder

* fixed test: changed attention expected size, `test_attention_outputs` works!

* removed unnecessary code

* apply AutoformerLayernorm in final norm in enc & dec

* added series decomposition to the encoder

* added series decomp to decoder, with inputs

* added trend todos

* added autoformer to README

* added to index

* added autoformer.mdx

* remove scaling and init attention_mask in the decoder

* make style

* fix copies

* make fix-copies

* inital fix-copies

* fix from https://github.com/huggingface/transformers/pull/22076

* make style

* fix class names

* added trend

* added d_model and projection layers

* added `trend_projection` source, and decomp layer init

* added trend & seasonal init for decoder input

* AutoformerModel cannot be copied as it has the decomp layer too

* encoder can be copied from time series transformer

* fixed generation and made distrb. out more robust

* use context window to calculate decomposition

* use the context_window for decomposition

* use output_params helper

* clean up AutoformerAttention

* subsequences_length off by 1

* make fix copies

* fix test

* added init for nn.Conv1d

* fix IGNORE_NON_TESTED

* added model_doc

* fix ruff

* ignore tests

* remove dup

* fix SPECIAL_CASES_TO_ALLOW

* do not copy due to conv1d weight init

* remove unused imports

* added short summary

* added label_length and made the model non-autoregressive

* added params docs

* better doc for `factor`

* fix tests

* renamed `moving_avg` to `moving_average`

* renamed `factor` to `autocorrelation_factor`

* make style

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix configurations

* fix integration tests

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixing `lags_sequence` doc

* Revert "fixing `lags_sequence` doc"

This reverts commit 21e34911e36a6f8f45f25cbf43584a49e5316c55.

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* model layers now take the config

* added `layer_norm_eps` to the config

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* added `config.layer_norm_eps` to AutoformerLayernorm

* added `config.layer_norm_eps` to all layernorm layers

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix variable names

* added inital pretrained model

* added use_cache docstring

* doc strings for trend and use_cache

* fix order of args

* imports on one line

* fixed get_lagged_subsequences docs

* add docstring for create_network_inputs

* get rid of layer_norm_eps config

* add back layernorm

* update fixture location

* fix signature

* use AutoformerModelOutput dataclass

* fix pretrain config

* no need as default exists

* subclass ModelOutput

* remove layer_norm_eps config

* fix test_model_outputs_equivalence test

* test hidden_states_output

* make fix-copies

* Update src/transformers/models/autoformer/configuration_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* removed unused attr

* Update tests/models/autoformer/test_modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/autoformer/modeling_autoformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use AutoFormerDecoderOutput

* fix formatting

* fix formatting

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-30 10:23:32 +02:00
17a55534f5 Enable code-specific revision for code on the Hub (#23799)
* Enable code-specific revision for code on the Hub

* invalidate old revision
2023-05-26 15:51:15 -04:00
edf7772826 Log the right train_batch_size if using auto_find_batch_size and also log the adjusted value seperately. (#23800)
* Log right bs

* Log

* Diff message
2023-05-26 15:09:05 -04:00
e724246935 Fix no such file or directory error (#23783)
* Fix no such file or directory error

* Address comment

* Fix formatting issue
2023-05-26 14:24:57 -04:00
b7b729b38d no_cuda does not take effect in non distributed environment (#23795)
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2023-05-26 10:47:51 -04:00
d61d747627 Update trainer.mdx class_weights example (#23787)
class_weights tensor should follow model's device
2023-05-26 08:36:33 -04:00
4d9b76a80f Fix RWKV backward on GPU (#23774) 2023-05-26 08:33:17 -04:00
8d28dba35d [OPT] Doc nit, using fast is fine (#23789)
small doc nit
2023-05-26 14:30:32 +02:00
f67dac97bd [Nllb-Moe] Fix nllb moe accelerate issue (#23758)
fix nllb moe accelerate issue
2023-05-25 22:37:33 +02:00
d685e330b5 Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/visual_bert (#23767)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:12 -04:00
4b0e7ded1c Bump tornado from 6.0.4 to 6.3.2 in /examples/research_projects/lxmert (#23766)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.0.4 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.0.4...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-25 16:16:01 -04:00
f04f549bae Fix is_ninja_available() (#23752)
* Fix is_ninja_available()

search ninja using subprocess instead of importlib.

* Fix style

* Fix doc

* Fix style
2023-05-25 16:10:25 -04:00
3416bba7c7 [LongFormer] code nits, removed unused parameters (#23749)
* remove unused parameters

* remove unused parameters in config
2023-05-25 16:06:14 +02:00
6e4bc67099 Revamp test selection for the example tests (#23737)
* Revamp test selection for the example tests

* Rename old XLA test and fake modif in run_glue

* Fixes

* Fake Trainer modif

* Remove fake modifs
2023-05-25 09:38:21 -04:00
7d4fe85ef3 Fix psuh_to_hub in Trainer when nothing needs pushing (#23751) 2023-05-25 09:38:09 -04:00
06c28cd0fc Add LlamaIndex to awesome-transformers.md (#23484) 2023-05-25 09:35:10 -04:00
f0a2a82ab4 Fix pip install --upgrade accelerate command in modeling_utils.py (#23747)
Fix command in modeling_utils.py
2023-05-25 07:48:48 -04:00
e45e756d22 Remove the last few TF serving sigs (#23738)
Remove some more serving methods that (I think?) turned up while this PR was open
2023-05-24 21:19:44 +01:00
9850e6ddab Enable prompts on the Hub (#23662)
* Enable prompts on the Hub

* Update src/transformers/tools/prompts.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-24 16:09:13 -04:00
75bbf20bce Fix sagemaker DP/MP (#23681)
* Check for use_sagemaker_dp

* Add a check for is_sagemaker_mp when setting _n_gpu again. Should be last broken thing

* Try explicit check?

* Quality
2023-05-24 15:51:09 -04:00
89159651ba Fix the regex in get_imports to support multiline try blocks and excepts with specific exception types (#23725)
* fix and test get_imports for multiline try blocks, and excepts with specific errors

* fixup

* add some more tests

* add license
2023-05-24 15:40:19 -04:00
d8222be57e [Whisper] Reduce batch size in tests (#23736) 2023-05-24 17:31:25 +01:00
814de8fac7 Overhaul TF serving signatures + dummy inputs (#23234)
* Let's try autodetecting serving sigs

* Don't clobber existing sigs

* Change shapes for multiplechoice models

* Make default dummy inputs smarter too

* Fix missing f-string

* Let's YOLO a serving output too

* Read __class__.__name__ properly

* Don't just pass naked lists in there and expect it to be okay

* Code cleanup

* Update default serving sig

* Clearer error messages

* Further updates to the default serving output

* make fixup

* Update the serving output a bit more

* Cleanups and renames, raise errors appropriately when we can't infer inputs

* More renames

* we're building in a functional context again, yolo

* import DUMMY_INPUTS from the right place

* import DUMMY_INPUTS from the right place

* Support cross-attention in the dummies

* Support cross-attention in the dummies

* Complete removal of dummy/serving overrides in BERT

* Complete removal of dummy/serving overrides in RoBERTa

* Obliterate lots and lots of serving sig and dummy overrides

* merge type hint changes

* Fix for token_type_ids with vocab_size 1

* Add missing property decorator

* Fix T5 and hopefully some models that take conv inputs

* More signature pruning

* Fix T5's signature

* Fix Wav2Vec2 signature

* Fix LongformerForMultipleChoice input signature

* Fix BLIP and LED

* Better default serving output error handling

* Fix BART dummies

* Fix dummies for cross-attention, esp encoder-decoder models

* Fix visionencoderdecoder signature

* Fix BLIP serving output

* Small tweak to BART dummies

* Cleanup the ugly parameter inspection line that I used in a few places

* committed a breakpoint again

* Move the text_dims check

* Remove blip_text serving_output

* Add decoder_input_ids to the default input sig

* Remove all the manual overrides for encoder-decoder model signatures

* Tweak longformer/led input sigs

* Tweak default serving output

* output.keys() -> output

* make fixup
2023-05-24 17:03:24 +01:00
3d7baef114 fix: Whisper generate, move text_prompt_ids trim up for max_new_tokens calculation (#23724)
move text_prompt_ids trimming to top
2023-05-24 11:34:21 -04:00
50a56bedb6 fix: delete duplicate sentences in document_question_answering.mdx (#23735)
fix: delete duplicate sentence
2023-05-24 11:20:50 -04:00
d2d8822604 TF SAM memory reduction (#23732)
* Extremely small change to TF SAM dummies to reduce memory usage on build

* remove debug breakpoint

* Debug print statement to track array sizes

* More debug shape printing

* More debug shape printing

* Now remove the debug shape printing

* make fixup

* make fixup
2023-05-24 15:59:02 +01:00
28aa438cd2 Minor awesome-transformers.md fixes (#23453)
Minor docs fixes
2023-05-24 08:57:52 -04:00
f8b2574416 Better TF docstring types (#23477)
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Rework TF type hints to use | None instead of Optional[] for tf.Tensor

* Don't forget the imports

* Add the imports to tests too

* make fixup

* Refactor tests that depended on get_type_hints

* Better test refactor

* Fix an old hidden bug in the test_keras_fit input creation code

* Fix for the Deit tests
2023-05-24 13:52:52 +01:00
767e6b5314 fix gptj could not jit.trace in GPU (#23317)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 08:48:31 -04:00
b4698b7ef2 fix: use bool instead of uint8/byte in Deberta/DebertaV2/SEW-D to make it compatible with TensorRT (#23683)
* Use bool instead of uint8/byte in DebertaV2 to make it compatible with TensorRT

TensorRT cannot accept onnx graph with uint8/byte intermediate tensors. This PR uses bool tensors instead of unit8/byte tensors to make the exported onnx file can work with TensorRT.

* fix: use bool instead of uint8/byte in Deberta and SEW-D

---------

Co-authored-by: Yuxian Qiu <yuxianq@nvidia.com>
2023-05-24 08:47:43 -04:00
2eaaf17a0b Export to ONNX doc refocused on using optimum, added tflite (#23434)
* doc refocused on using optimum, tflite

* minor updates to fix checks

* Apply suggestions from code review

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

* TFLite to separate page, added links

* Removed the onnx list builder

* make style

* Update docs/source/en/serialization.mdx

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>

---------

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
2023-05-24 08:13:23 -04:00
796162c512 Paged Optimizer + Lion Optimizer for Trainer (#23217)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-24 12:53:28 +02:00
9d73b92269 4-bit QLoRA via bitsandbytes (4-bit base model + LoRA) (#23479)
* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Fixing issues for PR #23479.

* Added fix for fp32 layer norms and bf16 compute in LLaMA.

* Reverted variable name change.

* Initial draft. Some tests fail.

* Fixed dtype bug.

* Fixed bug caused by torch_dtype='auto'.

* All test green for 8-bit and 4-bit layers.

* Added lion and paged optimizers and made original tests pass.

* Added tests for paged and lion optimizers.

* Added and fixed optimizer tests.

* Style and quality checks.

* Added missing tests.

* Fixup changes.

* Added fixup changes.

* Missed some variables to rename.

* revert trainer tests

* revert test trainer

* another revert

* fix tests and safety checkers

* protect import

* simplify a bit

* Update src/transformers/trainer.py

* few fixes

* add warning

* replace with `load_in_kbit = load_in_4bit or load_in_8bit`

* fix test

* fix tests

* this time fix tests

* safety checker

* add docs

* revert torch_dtype

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* multiple fixes

* update docs

* version checks and multiple fixes

* replace `is_loaded_in_kbit`

* replace `load_in_kbit`

* change methods names

* better checks

* oops

* oops

* address final comments

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-24 12:52:45 +02:00
33687a3f61 add GPTJ/bloom/llama/opt into model list and enhance the jit support (#23291)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-05-24 10:57:56 +01:00
003a0cf8cc Fix some docs what layerdrop does (#23691)
* Fix some docs what layerdrop does

* Update src/transformers/models/data2vec/configuration_data2vec_audio.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix more docs

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-23 14:50:40 -04:00
357f281ba2 fix: load_best_model_at_end error when load_in_8bit is True (#23443)
Ref: https://github.com/huggingface/peft/issues/394
    Loading a quantized checkpoint into non-quantized Linear8bitLt is not supported.
    call module.cuda() before module.load_state_dict()
2023-05-23 14:50:27 -04:00
de5f86e59d Skip TFCvtModelTest::test_keras_fit_mixed_precision for now (#23699)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 20:47:47 +02:00
3d57404464 is_batched fix for remaining 2-D numpy arrays (#23309)
* Fix is_batched code to allow 2-D numpy arrays for audio

* Tests

* Fix typo

* Incorporate comments from PR #23223
2023-05-23 14:37:35 -04:00
6b7d6f848b [Blip] Fix blip doctest (#23698)
fix blip doctest
2023-05-23 18:25:44 +02:00
876d9a32c6 TF version compatibility fixes (#23663)
* New TF version compatibility fixes

* Remove dummy print statement, move expand_1d

* Make a proper framework inference function

* Make a proper framework inference function

* ValueError -> TypeError
2023-05-23 16:42:11 +01:00
42baa58f90 [SAM] Fixes pipeline and adds a dummy pipeline test (#23684)
* add a dummy pipeline test

* change test name
2023-05-23 17:36:49 +02:00
71a5ed3433 Fix a BridgeTower test (#23694)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 17:32:57 +02:00
1fe1e3caa4 🌐 [i18n-KO] Translated tasks/monocular_depth_estimation.mdx to Korean (#23621)
docs: ko: `tasks/monocular_depth_estimation`

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-05-23 15:54:39 +02:00
9e8d7066e6 Making safetensors a core dependency. (#23254)
* Making `safetensors` a core dependency.

To be merged later, I'm creating the PR so we can try it out.

* Update setup.py

* Remove duplicates.

* Even more redundant.
2023-05-23 15:16:34 +02:00
abf691aac0 Fix PyTorch SAM tests (#23682)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-23 14:48:38 +02:00
b687af0b36 Fix typo in a parameter name for open llama model (#23637)
* Update modeling_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Fix typo in `use_memorry_efficient_attention` parameter name

* Update configuration_open_llama.py

Take care of backwards compatibility ensuring that the previous parameter name is taken into account if used

* Update configuration_open_llama.py

format to adjust the line length

* Update configuration_open_llama.py

proper code formatting using `make fixup`

* Update configuration_open_llama.py

pop the argument not to let it be set later down the line
2023-05-23 12:57:58 +01:00
527ab894e5 Add PerSAM [bis] (#23659)
* Add PerSAM args

* Make attn_sim optional

* Rename to attention_similarity

* Add docstrigns

* Improve docstrings
2023-05-23 11:43:12 +02:00
aa30cd4f3f Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/lxmert (#23668)
Bump requests in /examples/research_projects/lxmert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:53 -04:00
9bf72ae564 Bump requests from 2.22.0 to 2.31.0 in /examples/research_projects/visual_bert (#23670)
Bump requests in /examples/research_projects/visual_bert

Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:31:30 -04:00
ecc05f8c1e Bump requests from 2.27.1 to 2.31.0 in /examples/research_projects/decision_transformer (#23673)
Bump requests in /examples/research_projects/decision_transformer

Bumps [requests](https://github.com/psf/requests) from 2.27.1 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.27.1...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 05:28:09 -04:00
e30ceae07b small fix to remove unused eos in processor when it's not used. (#23408) 2023-05-23 09:27:36 +02:00
2f424d7979 [image-to-text pipeline] Add conditional text support + GIT (#23362)
* First draft

* Remove print statements

* Add conditional generation

* Add more tests

* Remove scripts

* Remove BLIP specific linkes

* Add support for pix2struct

* Add fast test

* Address comment

* Fix style
2023-05-22 21:45:50 +02:00
e69feab8a1 Update workflow files (#23658)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-22 21:26:51 +02:00
b191d7db44 Update all no_trainer with skip_first_batches (#23664) 2023-05-22 14:49:31 -04:00
26a06814a1 Fix SAM tests and use smaller checkpoints (#23656)
* Fix SAM tests and use smaller checkpoints

* Override test_model_from_pretrained to use sam-vit-base as well

* make fixup
2023-05-22 19:42:35 +02:00
6f72e71f97 changing the requirements to a cpu torch version that works (#23483) 2023-05-22 12:58:55 -04:00
5de2a6d5e5 Fix wav2vec2 is_batched check to include 2-D numpy arrays (#23223)
* Fix wav2vec2 is_batched check to include 2-D numpy arrays

* address comment

* Add tests

* oops

* oops

* Switch to np array

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Switch to np array

* condition merge

* Specify mono channel only in comment

* oops, add other comment too

* make style

* Switch list check from falsiness to empty

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-05-22 12:57:45 -04:00
4ddd9de9d3 Bugfix: LLaMA layer norm incorrectly changes input type and consumers lots of memory (#23535)
* Fixed bug where LLaMA layer norm would change input type.

* make fix-copies

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-22 18:20:38 +02:00
fe34486f12 Muellerzr fix deepspeed (#23657)
* Fix deepspeed recursion

* Better fix
2023-05-22 11:22:54 -04:00
7bbdfd7b24 Fix accelerate logger bug (#23650)
* fix logger bug

* Update tests/mixed_int8/test_mixed_int8.py

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>

* import `PartialState`

---------

Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
2023-05-22 15:39:47 +02:00
29294b0e68 Fix tensor device while attention_mask is not None (#23538)
* Fix tensor device while attention_mask is not None

* Fix tensor device while attention_mask is not None
2023-05-22 09:30:46 -04:00
12ec7f0c20 Remove erroneous img closing tag (#23646)
See https://github.com/huggingface/transformers/pull/23625
2023-05-22 09:28:26 -04:00
6397b7f008 Debug example code for MegaForCausalLM (#23382)
* Debug example code for MegaForCausalLM

set ignore_mismatched_sizes=True in model loading code

* Fix up
2023-05-22 10:53:14 +01:00
3658488ff7 Fix tests/repo_utils/test_get_test_info.py (#23485)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-20 06:53:10 +02:00
9728f1134b Fix confusing transformers installation in CI (#23465)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 22:10:18 +02:00
1f2c00d671 Fix DeepSpeed stuff in the nightly CI (#23478)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 20:31:55 +02:00
3cb9309024 [Blip] Remove redundant shift right (#23153)
* remove redundant shit right

* fix failing tests

* this time fix tests
2023-05-19 19:14:16 +02:00
847e5691a6 Fix: Change tensors to integers for torch.dynamo and torch.compile compatibility (#23475)
* Fix: Change tensors to integers in torch.split() for torch.dynamo and torch.compile compatibility

* Applied the suggested fix to the utils/check_copies.py test

* Applied the suggested fix by changing the original function that gets copied
2023-05-19 12:50:11 -04:00
389bdba618 Fix PretrainedConfig min_length docstring (#23471) 2023-05-19 17:48:35 +01:00
b455ad0a64 Fix parallel mode check (#23409)
* Fix sagemaker/distributed state

* Fix correctly

* Bring back -1

* Bring back local rank for distributed check

* better version

* Cleanest option
2023-05-19 12:44:24 -04:00
db4d765249 Fix transformers' DeepSpeed CI job (#23463)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-19 17:50:06 +02:00
2aa0cc2c2a Use config to set name and description if not present (#23473)
Use config to set name and descriptiob if not present
2023-05-19 10:36:14 -04:00
21bd3be172 [RWKV] Rwkv fix for 8bit inference (#23468)
* rwkv fix for 8bit inference

* add comment
2023-05-19 16:12:25 +02:00
1c460a5273 TF port of the Segment Anything Model (SAM) (#22970)
* First commit

* Add auto-translation with GPT-4

* make fixup

* Add a functional layernorm for TF

* Add all the auxiliary imports etc.

* Add the extra processor and tests

* rebase to main

* Add all the needed fixes to the GPT code

* make fixup

* Make convolutions channels-last so they run on CPU

* make fixup

* Fix final issues

* Fix other models affected by test change

* Clarify comment on the sparse_prompt_embeddings check

* Refactor functional_layernorm, use shape_list in place of .shape in some places

* Remove deprecated torch-alike code

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/sam/test_modeling_tf_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Refactor processor with common methods and separated private methods

* make fixup

* Quietly delete the file that didn't do anything (sorry Sylvain)

* Refactor the processor tests into one file

* make fixup

* Clean up some unnecessary indirection

* Fix TF mask postprocessing

* Add more processor equivalence tests

* Refactor generate_crop_boxes to use framework-neutral np code

* Make the serving output correctly conditional

* Fix error message line length

* Use dict keys rather than indices internally in both TF and PT SAM call/forward

* Return dicts internally in the call/forward methods

* Revert changes to common tests and just override check_pt_tf_outputs

* Revert changes to other model tests

* Clarify comments for functional layernorm

* Add missing transpose from PT code

* Removed unused copied from in PT code

* Remove overrides for tests that don't exist in TF

* Fix transpose and update tests for PT and TF to check pred_masks

* Add training flag

* Update tests to use TF checkpoints

* Update index.mdx

* Add missing cross-test decorator

* Remove optional extra asterisks

* Revert return_dict changes in PT code

* Update src/transformers/models/sam/modeling_tf_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove None return annotations on init methods

* Update tests/models/sam/test_processor_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix input_boxes shapes

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-19 14:14:13 +01:00
8aa8513f71 Remove .data usages in optimizations.py (#23417)
Patched the optimizers
2023-05-19 07:41:51 -04:00
3cf01b2060 README: Fix affiliation for MEGA (#23394)
* README: Fix affiliation for MEGA

* Fix quality

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-05-19 11:03:07 +02:00
2acedf4721 feat: Whisper prompting (#22496)
* initial working additions

* clean and rename, add cond stripping initial prompt to decode

* cleanup, edit create_initial_prompt_ids, add tests

* repo consistency, flip order of conditional

* fix error, move the processor fn to the tokenizer

* repo consistency, update test ids to corresponding tokenizer

* use convert_tokens_to_ids not get_vocab...

* use actual conditional in generate

* make sytle

* initial address comments

* initial working add new params to pipeline

* first draft of sequential generation for condition_on_previous_text

* add/update tests, make compatible with timestamps

* make compatible with diff. input kwargs and max length

* add None check

* add temperature check

* flip temp check operand

* refocusing to prev pr scope

* remove the params too

* make style

* edits, move max length incorporating prompt to whisper

* address comments

* remove asr pipeline prompt decoding, fix indexing

* address comments (more tests, validate prompt)

* un-comment out tests (from debug)

* remove old comment

* address comments

* fix typo

* remove timestamp token from test

* make style

* cleanup

* copy method to fast tokenizer, set max_new_tokens for test

* prompt_ids type just pt

* address Amy's comments

* make style
2023-05-19 09:33:11 +01:00
a7920065f2 fix bug in group_texts function, that was inserting short batches (#23429)
* fix bug in group_texts function, that was inserting short batches

* fully exclude short batches and return empty dict instead

* fix style
2023-05-18 14:22:30 -04:00
b7b81d9344 Clean up CUDA kernels (#23455) 2023-05-18 14:14:43 -04:00
40ed18ae15 Add an option to log result from the Agent (#23454) 2023-05-18 14:06:49 -04:00
f69589d1bc add cleanlab to awesome-transformers tools list (#23440)
* add tool to awesome-transformers list

* add keyword list

* sgugger wording suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-18 13:14:28 -04:00
167aa76cfa Properly guard PyTorch stuff (#23452)
* Properly guard PyTorch stuff

* [all-test]

* [all-test] Fix model imports as well

* Making sure StoppingCriteria is always defined

* [all-test]
2023-05-18 12:17:17 -04:00
ffad4f1373 Update tiny models and pipeline tests (#23446)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:29:04 +02:00
2406dbdcfa Less flaky test_assisted_decoding_matches_greedy_search (#23451)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:28:22 +02:00
21f7e81b6b Make RwkvModel accept attention_mask but discard it internally (#23442)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 17:14:25 +02:00
cf43200861 Add local agent (#23438)
* Add local agent

* Document LocalAgent
2023-05-18 11:09:55 -04:00
db13634183 TF: GPT2 with native embedding layers (#23436) 2023-05-18 14:46:40 +01:00
c618ab4fab Fix DecisionTransformerConfig doctring (#23450) 2023-05-18 14:07:10 +01:00
5777c3cb3f Fix (skip) a pipeline test for RwkvModel (#23444)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-18 14:54:23 +02:00
8cfae44093 🌐 [i18n-KO] Translated tasks/zero_shot_object_detection.mdx to Korean (#23430)
docs: ko: zero_shot_object_detection
2023-05-18 08:52:17 -04:00
f2d2880bbb remove unnecessary print in gpt neox sequence classifier (#23433) 2023-05-18 11:34:33 +01:00
aea7b23b57 Generate: skip left-padding tests on old models (#23437) 2023-05-18 11:04:51 +01:00
a8732e09bb Fix device issue in SwiftFormerModelIntegrationTest::test_inference_image_classification_head (#23435)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 19:48:18 +02:00
0f2c738207 Remove hardcoded prints in Trainer (#23432) 2023-05-17 13:08:12 -04:00
a574de302f Encoder-Decoder: add informative exception when the decoder is not compatible (#23426) 2023-05-17 17:42:54 +01:00
939a65aba7 Update Bigbird Pegasus tests (#23431)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 18:14:29 +02:00
cf9e7cb079 TF: embeddings out of bounds check factored into function (#23427) 2023-05-17 17:04:51 +01:00
45e3d6496a Update error message when Accelerate isn't installed (#23373)
Update error
2023-05-17 11:16:02 -04:00
ea0eb15649 Small fixes and link in the README (#23428)
Fix + link
2023-05-17 11:07:36 -04:00
5ba0c332b6 Top 100 (#22912)
* Awesome Transformers

* Update

* Update

* Keywords

* Keywords

* Complete document

* Add lm-evaluation-harness

* Edit txtai according to David's comments

* Update awesome-transformers.md
2023-05-17 10:46:55 -04:00
ebb649a4e3 Add Missing tokenization test [electra] (#22997)
* Create test_tokenization_electra.py

* Update tests/models/electra/test_tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-17 10:45:15 -04:00
cyy
a2789adddf [Reland] search model buffers for dtype as the last resort (#23319)
search model buffers for dtype as the last resort
2023-05-17 09:05:07 -04:00
3d764fe860 Return early once stop token is found. (#23421)
Previously even after finding a stop token, other stop tokens were considered, which is unnecessary and slows down processing.

Currently, this unnecessary overhead is negligible since there are usually 2 stop tokens considered and they are fairly short, but in future it may become more expensive.
2023-05-17 09:00:08 -04:00
3d3c7d4213 [SAM] fix sam slow test (#23376)
* fix sam slow test

* oops

* fix error message
2023-05-17 14:27:43 +02:00
22a0769933 Update 3 docker files to use cu118 (#23406)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-17 14:26:50 +02:00
a6c9643ce7 Use dict.items to avoid unnecessary lookups. (#23415)
It's more efficient to iterate over key, value dict pairs instead of iterating over keys and performing value lookups on each iteration. It's also more idiomatic.
2023-05-17 11:25:29 +01:00
43f146208e Fix a typo in HfAgent docstring. (#23420) 2023-05-17 09:43:02 +01:00
46d2468695 Update ConvNextV2ModelIntegrationTest::test_inference_image_classification_head (#23402)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:35:11 +02:00
ca3df9f0cf Run doctest (in PRs) only when some doc example(s) are modified (#23387)
* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 23:29:02 +02:00
17d0290e57 Why crash the whole run when HFHub gives a 50x error? (#23320)
Logging an error and continuing is probably following the principle of least surprise.
2023-05-16 15:46:53 -04:00
d712ebd86d Fix smdistributed check (#23414) 2023-05-16 15:18:31 -04:00
4e244b8817 Replace appends with list comprehension. (#23359)
It's more idiomatic and significantly more efficient because
1) it avoids repeated `append` call that Python has to resolve on each iteration
2) can preallocate the size of the final list avoiding resizing
2023-05-16 20:14:11 +01:00
918a06e25d Generate: add test to check KV format (#23403)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 19:28:19 +01:00
9cf4a8b456 Build with non Python files (#23405)
* Add a test of the built release

* Polish everything

* Trigger CI
2023-05-16 14:23:10 -04:00
5b1ad0eb73 Docs: add link to assisted generation blog post (#23397) 2023-05-16 18:54:34 +01:00
bbbc5c15d4 [AutoModel] fix torch_dtype=auto in from_pretrained (#23379)
* [automodel] fix torch_dtype=auto in from_pretrained

* add test

* fix logic

* Update src/transformers/models/auto/auto_factory.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-16 10:21:42 -07:00
8a58809312 Fix translation no_trainer (#23407)
* Fix translation
2023-05-16 13:10:42 -04:00
130e154291 Generate: faster can_generate check on TF and Flax (#23398) 2023-05-16 15:12:21 +01:00
2922e394e3 [Pix2Struct] Add conditional generation on docstring example (#23399)
add conditional generation on docstring
2023-05-16 15:59:18 +02:00
52d516c3a9 Minor fixes in transformers-tools (#23364)
* Few fixes in new Tools implementation

* code quality
2023-05-16 15:55:44 +02:00
728c5e82cc 🌐 [i18n-KO] Translated asr.mdx to Korean (#23106)
* docs: ko: task/asr.mdx

* feat: manual draft

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-16 09:22:56 -04:00
770a1275d3 Fix chat prompt in HFAgent (#23335)
fix chat prompts
2023-05-16 09:18:58 -04:00
466af1a356 OPT/BioGPT: Improved attention mask shape exception (#23270) 2023-05-16 13:59:53 +01:00
21741e8c7e Update test_batched_inference_image_captioning_conditioned (#23391)
* fix

* fix

* fix test + add more docs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-16 14:49:24 +02:00
d765717c76 Fix RwkvModel (#23392)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-16 12:14:54 +02:00
80ca924709 Use mkstemp to replace deprecated mktemp (#23372)
* Use `mkstemp` to replace deprecated `mktemp`

The `tempfile.mktemp` function is [deprecated](https://docs.python.org/3/library/tempfile.html#tempfile.mktemp) due to [security issues](https://cwe.mitre.org/data/definitions/377.html).

* Update src/transformers/utils/hub.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-16 11:10:54 +01:00
ba6815e824 Replace NumPy Operations with JAX NumPy Equivalents for JIT Compilation Compatibility (#23356)
* Replace numpy operations with jax.numpy for JIT compatibility

Replaced numpy operations with their jax.numpy equivalents in the transformer library. This change was necessary to prevent errors during JIT compilation. Specifically, the modifications involve changing numpy's in-place assignments to jax.numpy's immutable update methods.

* rm numpy import

* rm numpy import and fix np->jnp

* fixed slices bug

* fixed decoder_start_tokens -> decoder_start_token_id

* fixed jnp in modleing mt5

* doc fix

* rm numpy import

* make
2023-05-16 10:54:19 +01:00
c2393cad08 Added type hints for Graphormer pytorch version (#23073)
* Added type hints for `Graphormer` pytorch version

added type hints for graphormers pytorch , checked formating issues .

* made the code less bloated
2023-05-15 18:27:41 +01:00
ee3be05310 Fix test typos - audio feature extractors (#23310) 2023-05-15 17:22:10 +01:00
8f76dc8e5a Skip failing AlignModelTest::test_multi_gpu_data_parallel_forward (#23374)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 16:46:58 +02:00
41d47db90f [Bugfix] OPTDecoderLayer does not return attentions when gradient_checkpointing and training is enabled. (#23367)
Update modeling_opt.py
2023-05-15 13:31:53 +01:00
569a97adb2 Revert "Only add files with modification outside doc blocks" (#23371)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:28:36 +02:00
c94f7a1cce Fix OwlViTForObjectDetection.image_guided_detection doc example (#23370)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:17:09 +02:00
380280d994 Fix BigBirdForMaskedLM doctest (#23369)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:15:43 +02:00
96ae83a0d2 Fix some is_xxx_available (#23365)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 14:08:45 +02:00
65b885027a Typo suggestion (#23360)
Update graphormer.mdx

Typo suggestion
2023-05-15 12:04:16 +01:00
81a73fa638 Fix issue introduced in PR #23163 (#23363)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-15 11:38:44 +02:00
2958b55fe5 Removing one of the twice defined position_embeddings in LongFormer (#23343)
Removing twice defined position_embeddings

The self.position_embeddings in LongFormerEmbeddings is defined twice.
Removing the first with padding_idx
2023-05-15 10:35:55 +01:00
cf11493dce Use cu118 with cudnn >= 8.6 in docker file (#23339)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 21:58:15 +02:00
79743cedab replaced assert with raise ValueError for t5, switch_transformers, pix2struct, mt5, longt5, gptsan_japanese. (#23273)
* replaced assert with raise ValueError

* one liner

* reverse one liner and cache-decoder check
2023-05-12 19:29:50 +01:00
291c5e9b25 Handle padding warning in generation when using inputs_embeds (#23131)
* Handle padding warning in generation when using `inputs_embeds`

* Simpler condition

* Black formatter

* Changed warning logic
2023-05-12 17:06:15 +01:00
65d7b21b77 OR am I crazy? (#23295)
or or and
2023-05-12 16:47:40 +01:00
ef3e25ce4e [docs] Fix Agents and Tools docstring (#23313)
fix kwargs
2023-05-12 08:29:13 -07:00
a3975f94f3 Only add files with modification outside doc blocks (#23327)
* min. version for pytest

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 16:35:15 +02:00
7f8b909189 Compute the mask in-place, with less memory reads, and on CUDA on XLNetLMHeadModel (#23332)
When working on TorchInductor, I realised that there was a part from
`XLNetLMHeadModel` that was being compiled to CPU code.

This PR should allow to fuse this operation with other CUDA operations
in `torch.compile`. It also should be faster on eager mode, as it has a
this implementation has a lower foot-print.

If in-place operations are not allowed even in non-grad context, I still
believe that doing ones + tril rather than a ones + tril + zeros + cat
should be faster simply due to the number of memory reads/writes.

I tested that this code produces the same results for `0 <= qlen,mlen <
10` and `same_length in (True, False)`.
2023-05-12 14:35:37 +01:00
8c8744a94a Fix docker image (caused by tensorflow_text) (#23321)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 13:37:37 +02:00
c045249049 Add swiftformer (#22686)
* Commit the automatically generated code

using add-new-model-like

* Update description at swiftformer.mdx file

* remove autogenerated code for MaskedImageModeling

* update weight conversion scripts

* Update modeling_swiftformer.py

* update configuration_swiftformer.py

* Update test_modeling_swiftformer.py

* update modeling code - remove einops dependency

* Update _toctree.yml

* update modeling code - remove copied from comments

* update docs

* Revert "update docs"

This reverts commit c2e05e2998fe2cd6eaee8b8cc31aca5222bac9fb.

* update docs

* remove unused reference SwiftFormerImageProcessor

* update dependency_versions_table.py

* update swiftformer.mdx

* update swiftformer.mdx

* change model output type - no attentions

* update model org name

* Fix typo

* fix copies

* Update tests/models/swiftformer/test_modeling_swiftformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/feature_extraction_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/swiftformer.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/swiftformer/configuration_swiftformer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_swiftformer.py

fix-copies

* make style, make quality, fix-copies

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fix-copies

* Update modeling_swiftformer.py

* Update modeling_swiftformer.py

* Add suggestions from code review

Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-12 11:52:31 +01:00
364ced6893 Remove LanguageIdentificationTool in __init__.py as we don't have it yet (#23326)
remove LanguageIdentificationTool

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-12 12:11:20 +02:00
273f5ba026 Revert "search buffers for dtype" (#23308)
Revert "search buffers for dtype (#23159)"

This reverts commit ef42c2c487260c2a0111fa9d17f2507d84ddedea.
2023-05-11 15:31:59 -04:00
ba71d9e94c unpin tf prob (#23293)
* unpin tf prob

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 21:28:08 +02:00
786b9cf5ca Style 2023-05-11 14:40:38 -04:00
4eea25b445 Fix image segmentation tool test (#23306) 2023-05-11 14:38:11 -04:00
662751b4e2 Fix typo in gradio-tools docs (#23305)
Fix typo
2023-05-11 14:31:28 -04:00
f76fb3aeea Fix broken links in the agent docs (#23297) 2023-05-11 14:26:19 -04:00
71b19ee251 Agents extras (#23301)
* Agents extras

* Add to docs
2023-05-11 14:25:51 -04:00
ab96bf0294 Add gradient_checkpointing parameter to FlaxWhisperEncoder (#23300)
Add gradient_checkpointing parameter
2023-05-11 19:13:05 +01:00
83eda6435e Better check for packages availability (#23163)
* Better check for packages availability

* amend _optimumneuron_available

* amend torch_version

* amend PIL detection and lint

* lint

* amend _faiss_available

* remove overloaded signatures of _is_package_available

* fix sklearn and decord detection

* remove unused checks

* revert
2023-05-11 13:52:22 -04:00
d51296d9c2 skip test_run_squad_no_trainer for now (#23302)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 19:26:48 +02:00
6a6225beab Fix doctest files fetch issue (#23277)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-11 17:14:06 +02:00
5d02e6bd20 Convert numpy arrays to lists before saving the evaluation metrics as json (#23268)
* convert numpy array to list before writing to json

per_category_iou and per_category_accuracy  are ndarray in the eval_metrics

* code reformatted with make style
2023-05-11 08:54:23 -04:00
436dc779a5 Update transformers_agents.mdx (#23289)
Make `huggingface-tools` to [`huggingface-tools`](https://huggingface.co/huggingface-tools)
2023-05-11 08:54:02 -04:00
125516977d Update custom_tools.mdx: fix link (#23292)
Wrong parantheses
2023-05-11 08:50:04 -04:00
dee673232b Added missing " in CHAT_PROMPT_TEMPLATE (#23287) 2023-05-11 11:45:32 +01:00
e1eb3efd02 Temporarily increase tol for PT-FLAX whisper tests (#23288) 2023-05-11 11:43:18 +01:00
b3bbe1bdb6 transformers-cli -> huggingface-cli (#23276) 2023-05-11 11:12:13 +01:00
b92abfa6e0 Add top_k argument to post-process of conditional/deformable-DETR (#22787)
* update min k_value of conditional detr post-processing

* feat: add top_k arg to post processing of deformable and conditional detr

* refactor: revert changes to deprecated methods

* refactor: move prob reshape to improve code clarity and reduce repetition
2023-05-11 10:07:43 +01:00
f82ee109e6 Temporary tolerance fix for flaky whipser PT-TF equiv. test (#23257)
* Temp tol fix for flaky whipser test

* Add equivalent update to TF tests
2023-05-11 10:04:07 +01:00
ca26699f37 [gpt] Gpt2 fix half precision causal mask (#23256)
* fix gpt2 inference

* fixup

* no need to be in `_keys_to_ignore_on_load_missing`
2023-05-11 09:32:23 +02:00
9088fcae82 Bring back the PR Refactor doctests + add CI to main (#23271)
* Revert "Revert "[Doctests] Refactor doctests + add CI" (#23245)"

This reverts commit 69ee46243c40ea61f63d4b8f78d171ad27b4a046.

* try not expose HfDocTestParser

* move into testing_utils.py

* remove pytest install

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-10 22:00:48 +02:00
b2846afda8 Remove missplaced test file (#23275) 2023-05-10 15:10:06 -04:00
6d6b7c923c Fix link displayed for custom tools (#23274) 2023-05-10 15:09:57 -04:00
0c65fb7cfa chore: allow protobuf 3.20.3 requirement (#22759)
* chore: allow protobuf 3.20.3

Allow latest bugfix release for protobuf (3.20.3)

* chore: update auto-generated dependency table

update auto-generated dependency table

* run in subprocess

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-10 20:22:56 +02:00
eb5b5ce641 Render custom tool docs a bit better (#23269)
* Try on a couple of blocks to see

* Build the doc please

* Build the doc please

* Build the doc please

* add more

* Finish with all

* Style
2023-05-10 11:58:20 -04:00
42017d82ba Fix new line bug in chat mode for agents (#23267) 2023-05-10 11:13:42 -04:00
f93509b114 Refine documentation for Tools (#23266)
* refine documentation for Tools

* + one bugfix
2023-05-10 11:03:53 -04:00
5f26a23d03 pin tensorflow-probability in docker files (#23260)
* pong TF prob

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-10 16:21:09 +02:00
b203de7c86 Update Image segmentation description (#23261)
* Update Image segmentation description

* prompt -> label
2023-05-10 09:36:15 -04:00
4f05bbf165 Metadata update (#23259)
* Metadata update

* Make fixup
2023-05-10 09:25:07 -04:00
996f127a90 Improve Docs of Custom Tools and Agents (#23255)
* Improve docs

* correct tip format

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Correct grammer & spelling

* Improve code style

* make style ruff

* make style final
2023-05-10 08:55:26 -04:00
d3cbc997a2 [docs] Audio task guides fixes (#23239)
trainer parameters fixed
2023-05-10 07:45:33 -04:00
91f4c84a19 CTC example: updated trainer parameters to save tokenizer (#23243)
trainer parameters changed to save tokenizer in addition to feature_extractor
2023-05-10 07:45:10 -04:00
3335724376 Test composition (#23214)
* Remove nestedness in tool config

* Really do it

* Use remote tools descriptions

* Work

* Clean up eval

* Changes

* Tools

* Tools

* tool

* Fix everything

* Use last result/assign for evaluation

* Prompt

* Remove hardcoded selection

* Evaluation for chat agents

* correct some spelling

* Small fixes

* Change summarization model (#23172)

* Fix link displayed

* Update description of the tool

* Fixes in chat prompt

* Custom tools, custom prompt

* Tool clean up

* save_pretrained and push_to_hub for tool

* Fix init

* Tests

* Fix tests

* Tool save/from_hub/push_to_hub and tool->load_tool

* Clean push_to_hub and add app file

* Custom inference API for endpoints too

* Clean up

* old remote tool and new remote tool

* Make a requirements

* return_code adds tool creation

* Avoid redundancy between global variables

* Remote tools can be loaded

* Tests

* Text summarization tests

* Quality

* Properly mark tests

* Test the python interpreter

* And the CI shall be green.

* fix loading of additional tools

* Work on RemoteTool and fix tests

* General clean up

* Guard imports

* Fix tools

* docs: Fix broken link in 'How to add a model...'  (#23216)

fix link

* Get default endpoint from the Hub

* Add guide

* Simplify tool config

* Docs

* Some fixes

* Docs

* Docs

* Docs

* Fix code returned by agent

* Try this

* Match args with signature in remote tool

* Should fix python interpreter for Python 3.8

* Fix push_to_hub for tools

* Other fixes to push_to_hub

* Add API doc page

* Docs

* Docs

* Custom tools

* Pin tensorflow-probability (#23220)

* Pin tensorflow-probability

* [all-test]

* [all-test] Fix syntax for bash

* PoC for some chaining API

* Text to speech

* J'ai pris des libertés

* Rename

* Basic python interpreter

* Add agents

* Quality

* Add translation tool

* temp

* GenQA + LID + S2T

* Quality + word missing in translation

* Add open assistance, support f-strings in evaluate

* captioning + s2t fixes

* Style

* Refactor descriptions and remove chain

* Support errors and rename OpenAssistantAgent

* Add setup

* Deal with typos + example of inference API

* Some rename + README

* Fixes

* Update prompt

* Unwanted change

* Make sure everyone has a default

* One prompt to rule them all.

* SD

* Description

* Clean up remote tools

* More remote tools

* Add option to return code and update doc

* Image segmentation

* ControlNet

* Gradio demo

* Diffusers protection

* Lib protection

* ControlNet description

* Cleanup

* Style

* Remove accelerate and try to be reproducible

* No randomness

* Male Basic optional in token

* Clean description

* Better prompts

* Fix args eval in interpreter

* Add tool wrapper

* Tool on the Hub

* Style post-rebase

* Big refactor of descriptions, batch generation and evaluation for agents

* Make problems easier - interface to debug

* More problems, add python primitives

* Back to one prompt

* Remove dict for translation

* Be consistent

* Add prompts

* New version of the agent

* Evaluate new agents

* New endpoints agents

* Make all tools a dict variable

* Typo

* Add problems

* Add to big prompt

* Harmonize

* Add tools

* New evaluation

* Add more tools

* Build prompt with tools descriptions

* Tools on the Hub

* Let's chat!

* Cleanup

* Temporary bs4 safeguard

* Cache agents and clean up

* Blank init

* Fix evaluation for agents

* New format for tools on the Hub

* Add method to reset state

* Remove nestedness in tool config

* Really do it

* Use remote tools descriptions

* Work

* Clean up eval

* Changes

* Tools

* Tools

* tool

* Fix everything

* Use last result/assign for evaluation

* Prompt

* Remove hardcoded selection

* Evaluation for chat agents

* correct some spelling

* Small fixes

* Change summarization model (#23172)

* Fix link displayed

* Update description of the tool

* Fixes in chat prompt

* Custom tools, custom prompt

* Tool clean up

* save_pretrained and push_to_hub for tool

* Fix init

* Tests

* Fix tests

* Tool save/from_hub/push_to_hub and tool->load_tool

* Clean push_to_hub and add app file

* Custom inference API for endpoints too

* Clean up

* old remote tool and new remote tool

* Make a requirements

* return_code adds tool creation

* Avoid redundancy between global variables

* Remote tools can be loaded

* Tests

* Text summarization tests

* Quality

* Properly mark tests

* Test the python interpreter

* And the CI shall be green.

* Work on RemoteTool and fix tests

* fix loading of additional tools

* General clean up

* Guard imports

* Fix tools

* Get default endpoint from the Hub

* Simplify tool config

* Add guide

* Docs

* Some fixes

* Docs

* Docs

* Fix code returned by agent

* Try this

* Docs

* Match args with signature in remote tool

* Should fix python interpreter for Python 3.8

* Fix push_to_hub for tools

* Other fixes to push_to_hub

* Add API doc page

* Fixes

* Doc fixes

* Docs

* Fix audio

* Custom tools

* Audio fix

* Improve custom tools docstring

* Docstrings

* Trigger CI

* Mode docstrings

* More docstrings

* Improve custom tools

* Fix for remote tools

* Style

* Fix repo consistency

* Quality

* Tip

* Cleanup on doc

* Cleanup toc

* Add disclaimer for starcoder vs openai

* Remove disclaimer

* Small fixed in the prompts

* 4.29

* Update src/transformers/tools/agents.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Complete documentation

* Small fixes

* Agent evaluation

* Note about gradio-tools & LC

* Clean up agents and prompt

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Note about gradio-tools & LC

* Add copyrights and address review comments

* Quality

* Add all language codes

* Add remote tool tests

* Move custom prompts to other docs

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* TTS tests

* Quality

---------

Co-authored-by: Lysandre <hi@lyand.re>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
Co-authored-by: Connor Henderson <connor.henderson@talkiatry.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-09 20:37:57 -04:00
366a8ca09e Fix from_config (#23246)
fix
2023-05-09 16:58:39 -04:00
69ee46243c Revert "[Doctests] Refactor doctests + add CI" (#23245)
Revert "[Doctests] Refactor doctests + add CI (#22987)"

This reverts commit 627f44799a9f4948a6a1b8fe9e536eee0e29ea68.
2023-05-09 15:26:15 -04:00
a0c0a78233 v4.30.0.dev0 2023-05-09 14:59:38 -04:00
627f44799a [Doctests] Refactor doctests + add CI (#22987)
* intiial commit

* new styling

* update

* just run doctest in CI

* remove more test for fast dev

* update

* update refs

* update path and fetch upstream

* update documentatyion trests

* typo

* parse pwd

* don't check for files that are in hidden folders

* just give paths relative to transformers

* update

* update

* update

* major refactoring

* make sure options is ok

* lest test that mdx is tested

* doctest glob

* nits

* update doctest nightly

* some cleaning

* run correct test on diff

* debug

* run on a single worker

* skip_cuda_test tampkate

* updates

* add rA and continue on failure

* test options

* parse `py` codeblock?

* we don't need to replace ignore results, don't remember whyu I put it

* cleanup

* more cleaning

* fix arg

* more cleaning

* clean an todo

* more pre-processing

* doctest-module has none so extra `- ` is needed

* remove logs

* nits

* doctest-modules ....

* oups

* let's use sugar

* make dataset go quiet

* add proper timeout

* nites

* spleling timeout

* update

* properly skip tests that have CUDSA

* proper skipping

* cleaning main and get tests to run

* remove make report?

* remove tee

* some updates

* tee was removed but is the full output still available?

* [all-test]

* only our tests

* don't  touch tee in this PR

* no atee-sys

* proper sub

* monkey

* only replace call

* fix sub

* nits

* nits

* fix invalid syntax

* add skip cuda doctest env variable

* make sure all packages are installed

* move file

* update check repo

* revert changes

* nit

* finish cleanup

* fix re

* findall

* update don't test init files

* ignore pycache

* `-ignore-pycache` when running pytests

* try to fix the import missmatch error

* install dec

* pytest is required as doctest_utils imports things from it

* the only log issues were dataset, ignore results should work

* more cleaning

* Update .circleci/create_circleci_config.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* [ydshieh] empty string if cuda is found

* [ydshieh] fix condition

* style

* [ydshieh] fix

* Add comment

* style

* style

* show failure

* trigger CI

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-05-09 20:34:48 +02:00
650a71e157 Support ratios for logging_steps, eval_steps, and save_steps (#23235)
* Ratio option for `logging_steps`, `eval_steps`, `save_steps`

* Add guards if arguments are not set

* Add more detailed comments + formatting

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert args values to `int` if bigger than 1

* `black`

* `make fixup`

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-09 13:05:13 -04:00
c34a525d2f Proposed fix for TF example now running on safetensors. (#23208)
* Proposed fix for TF example now running on safetensors.

* Adding more warnings and returning keys.

* Trigger CI

* Trigger CI

---------

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2023-05-09 13:04:27 -04:00
b4d4d6fe87 Add RWKV-4 (#22797)
* First draft of RWKV-4

* Add support for generate

* Style post-rebase

* Properly use state

* Write doc

* Fix doc

* More math

* Add model to README, dummies and clean config

* Fix init

* multiple fixes:

- fix common tests
- fix configuraion default values
- add CI test for checking state computation
- fix some CI tests

* correct tokenizer

* some tweaks

- fix config docstring
- fix failing tests

* fix CI tests

- add output_attention / output_hidden_states
- override test_initialization
- fix failing CIs

* fix conversion script

- fix sharded case
- add new arguments

* add slow tests + more fixes on conversion script

* add another test

* final fixes

* change single name variable

* add mock attention mask for pipeline to work

* correct eos token id

* fix nits

* add checkpoints

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add `tie_word_embeddings` in docstring

* change tensor name

* fix final nits

* Trigger CI

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-09 13:04:10 -04:00
9a50cb6195 Add Japanese translation to accelerate.mdx (#23232)
Co-authored-by: rustinwelter <rustinwelter.alwp9@slmails.com>
2023-05-09 10:51:43 -04:00
1a8f61110e fix: Update run_qa.py to work with deepset/germanquad (#23225)
Call str on id to make sure any ints are converted into the expected format for squad datasets
2023-05-09 09:20:10 -04:00
51ae566511 Fix typo ; Update output.mdx (#23227) 2023-05-09 09:19:38 -04:00
e02a8065e0 make opt checkpoint dir name correct (#21660)
make opt checkpoint dir name corrent following 100b522bb8/megatron/checkpointing.py (L117)
2023-05-09 09:14:02 -04:00
7f91950901 audio_utils improvements (#21998)
* silly change to allow making a PR

* clean up doc comments

* simplify hertz_to_mel and mel_to_hertz

* fixup

* clean up power_to_db

* also add amplitude_to_db

* move functions

* clean up mel_filter_bank

* fixup

* credit librosa & torchaudio authors

* add unit tests

* tests for power_to_db and amplitude_to_db

* add mel_filter_bank tests

* rewrite STFT

* add convenience spectrogram function

* missing transpose

* fewer transposes

* add integration test to M-CTC-T

* frame length can be either window or FFT length

* rewrite stft API

* add preemphasis coefficient

* move argument

* add log option to spectrogram

* replace M-CTC-T feature extractor

* fix api thing

* replace whisper STFT

* replace whisper mel filters

* replace tvlt's stft

* allow alternate window names

* replace speecht5 stft

* fixup

* fix integration tests

* fix doc comments

* remove manual FFT length calculation

* fix docs

* go away, deprecation warnings

* combine everything into spectrogram function

* add deprecated functions back

* fixup
2023-05-09 09:10:17 -04:00
431b04d8c4 [SAM] Add resources (#23224)
Add resources
2023-05-09 08:58:19 -04:00
006da469dd Pin tensorflow-probability (#23220)
* Pin tensorflow-probability

* [all-test]

* [all-test] Fix syntax for bash
2023-05-08 18:36:22 -04:00
188a8bfccc docs: Fix broken link in 'How to add a model...' (#23216)
fix link
2023-05-08 14:56:42 -04:00
94056b57be New version of Accelerate for the Trainer (#23204) 2023-05-08 09:47:08 -04:00
fd6970bc56 Skip failing test 2023-05-08 08:52:44 -04:00
843fdf2e42 Fixing class embedding selection in owl-vit (#23157)
fixing class embedding selection in owl-vit
2023-05-08 07:35:04 -04:00
bbfb9fc22b Generate: starcoder 🤜 🤛 assisted generation (#23182)
* starcoder has joined the chat

* indexing that works for all
2023-05-08 10:45:40 +01:00
dbc12269ed Fix hf_argparser.parse_json_file to open file with utf-8 encoding, close file when finished (#23194)
* Open json args in utf-8 encoding, close file when finished

* black formatted
2023-05-07 19:06:24 -04:00
6f8a02844a fix random attention for pytorch's bigbird/pegasus_bigbird (#23056)
* fix random attention usage for bigbird and pegasus_bigbird

* remove staticmethod, update tests target valus

* revert style changes
2023-05-07 18:55:04 -04:00
ef0c380c12 Update LLaMA docs with arxiv link (#23191)
* Update docs with arxiv link

* Update llama model docs
2023-05-07 18:52:44 -04:00
cyy
ef42c2c487 search buffers for dtype (#23159) 2023-05-06 11:41:08 -04:00
312b104ff6 Add FlaxWhisperForAudioClassification model (#23173)
* Add FlaxWhisperForAudioClassification model

* Add models to init

* Add models to init

* Fix copies

* Fix automapping

* Fix failing test
2023-05-05 13:23:46 -04:00
fc6c8b0eaa Add no_trainer scripts to pre-train Vision Transformers (#23156)
* Add run_mim_no_trainer.py draft from #20412

Add parse_args method and copy over other dependencies

Add Method call for sending telemetry

Initialize Accelerator

Make one log on every process

Set seed and Handle repository creation

Initialize dataset and Set validation split

Create Config

Adapt Config

Update Config

Create Feature Extractor

Create model

Set column names

Create transforms

Create mask generator

Create method to preprocess images

Shuffle datasets if needed and set transforms

Create Dataloaders

Add optimizer

Add learning rate scheduler

Prepare everything with our accelerator

Tie weights for TPU training

Recalculate training steps and training epochs

Set accelerator checkpointing steps

Initialize trackers and store configuration

Set total batch size

Fix typo: mlm -> mim

Log info at the start of training

Load in the weights and states from previous save

update the progress_bar if load from checkpoint

Define train loop

Add evaluation loop to training

Add to parse_args method

Push repo to hub

Save accelerator state

End training and save model and feature extractor

Remove unused imports

Fix trailing whitespace

* Update code based on comments, Rename feature_extractor to image_processor

* Fix linting

* Add argument for learning rate

* Add argument for setting number of training epochs

* Remove incorrect logger argument

* Convert max_train_steps to int for tqdm

---------

Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
2023-05-05 13:22:49 -04:00
17083b9b84 fix: Passing language as acronym to Whisper generate (#23141)
* add fix

* address comments

* remove error formatting
2023-05-05 11:52:19 -04:00
40082d598b 🌐 [i18n-KO] docs: ko: Translate multiple_choice.mdx (#23064)
* update doctree

* doc: ko: translate multiple choice

* Update reviews
2023-05-05 11:36:56 -04:00
77412343c8 fixed whisper positional encoding (#23167) 2023-05-05 11:36:15 -04:00
1b9c352e55 Add TrOCR resources (#23142)
* Add TrOCR resources

* Made fixes suggested by stevhliu
2023-05-05 11:29:20 -04:00
01734dba84 Revert "Add FlaxWhisperForAudioClassification model" (#23154)
Revert "Add FlaxWhisperForAudioClassification model (#22883)"

This reverts commit c8f2c5c56e942e8c45821d07555f2eab178b3f83.
2023-05-04 13:47:07 -04:00
b369e507aa Generate: text generation pipeline no longer emits max_length warning when it is not set (#23139) 2023-05-04 18:36:23 +01:00
516dc6305f [docs] Text to speech task guide (#23107)
* First draft

* Some polishing

* Text polishing

* added TOC entry for TTS

* make style

* added links to images

* fixed links to images

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* feedback addressed

* feedback from Matthijs addresed

* Update docs/source/en/tasks/text-to-speech.mdx

Co-authored-by: Matthijs Hollemans <mail@hollance.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matthijs Hollemans <mail@hollance.com>
2023-05-04 13:17:13 -04:00
c8f2c5c56e Add FlaxWhisperForAudioClassification model (#22883)
* Add FlaxWhisperForAudioClassification model

* Add models to init

* Add models to init

* Fix copies

* Fix automapping
2023-05-04 13:00:16 -04:00
3341bb41cd Pin urllib3 2023-05-04 12:00:22 -04:00
57ffd8ab4c [GPT-J] Fix causal mask dtype (#23147)
* fix #23136

* better fix

* same fix for `masked_bias`
2023-05-04 16:31:19 +02:00
83b38fbea8 GPTNeoXForQuestionAnswering (#23059)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* initial commit

* formatting

* adding the class to many places

* towards less unhappy checks

* nearly there

* and gpt neox for qa

* use right model

* forgot this one

* base_model_prefix is "gpt_neox" for GPTNeoX* models

* unnecessary stuff

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* format

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* removed gpt2 stuff

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-04 10:15:15 -04:00
510ad0a8b8 gpt2 multi-gpu fix (#23149)
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-05-04 09:58:38 -04:00
adb0760b5f fix resume fsdp (#23111)
* fix resume fsdp

* fix rank 0 loading

* fix style and quality
2023-05-04 09:57:32 -04:00
3b74889e8f Remove typo in perf_train_gpu_many.mdx (#23144)
- Excess `w` in  the word `bottom`
2023-05-04 09:56:45 -04:00
5eeb556484 fix spelling error (#23143)
change referrred to referred
2023-05-04 09:56:28 -04:00
90e8263d91 Add methods to update and verify out_features out_indices (#23031)
* Add methods to update and verify out_features out_indices

* Safe update for config attributes

* Fix function names

* Save config correctly

* PR comments - use property setters

* PR comment - directly set attributes

* Update test

* Add updates to recently merged focalnet backbone
2023-05-04 10:15:06 +01:00
78b7debf56 GPTNeoForQuestionAnswering (#23057)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* initial commit

* formatting

* adding the class to many places

* towards less unhappy checks

* nearly there

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* avoid error

* moving to device of star/end_logits

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-03 15:59:19 -04:00
b6933d76d2 Tidy Pytorch GLUE benchmark example (#23134)
Migration to Evaluate for metric is not quite complete
2023-05-03 15:50:41 -04:00
b0a78091a5 Remove redundant print statements (#23133)
remove redundant print statements
2023-05-03 18:04:48 +01:00
e3ee45aa54 Enable to use custom tracer in FX symbolic_trace (#23105)
* Enable to use custom tracer in FX `symbolic_trace`

* Integrate feedback from review

* Formatting

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-03 12:47:36 -04:00
441658dd6c Add focalnet backbone (#23104)
Adds FocalNet backbone to return features from all stages
2023-05-03 19:32:42 +03:00
ca7eb27ed5 [doc] Try a few ≠ ways of linking to Papers, users, and org profiles (#22611)
* [doc] Try a few ≠ ways of linking to Papers, users, and org profiles

* Empty commit

* Empty commit now that the backend is fixed

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-05-03 18:23:09 +02:00
fbe0178f08 docs: ko: update _toctree.yml (#23112)
* docs: ko: update `_toctree.yml`

* fix: ko: update toc

* fix: resolve suggestions

* fix: resolve build issue

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-05-03 11:04:58 -04:00
c4e32e206f Add support for beam search's num_return_sequencs flag in flax (#23082)
* add code for numReturnSeq

* add flax support for num return sequences

* Make Fix up for changes

* add test for num return sequences

* lint
2023-05-03 10:50:34 -04:00
ee4bc07474 Support union types X | Y syntax for HfArgumentParser for Python 3.10+ (#23126)
* Support union types `X | Y` syntax for `HfArgumentParser` for Python 3.10+

* Add tests for PEP 604 for `HfArgumentParser`

* Reorganize tests
2023-05-03 10:49:54 -04:00
56b8d49ddf Fix ConvNext V2 paramater naming issue (#23122)
Fixes the parameter naming issue in ConvNextV2GRN module
2023-05-03 17:21:27 +03:00
b53004fdce Add resources for LayoutLmV2 and reformat documentation resources (#23115)
* add resources for layoutlmv2

* remove 🌎 from some resources
2023-05-03 09:53:00 -04:00
3a08dc63fd Generate: better warnings with pipelines (#23128) 2023-05-03 14:43:17 +01:00
2a16d8b275 improve unclear documentation (#23123) 2023-05-03 09:36:30 -04:00
a0bd464776 Generate: correct beam search length on score calculation for multi batch generation (#23127) 2023-05-03 14:29:55 +01:00
ce31e3c8bf Generate: slow assisted generation test (#23125) 2023-05-03 14:24:50 +01:00
b61d5b47f6 [Doctest] Fix pix2struct doctest (#23121)
fix pix2struct doctest
2023-05-03 11:21:59 +02:00
4b6aecb48e Pin numba for now (#23118) 2023-05-02 22:02:39 -04:00
3ff89f29f5 Fixed default config for Pix2Struct model to set Pix2StructTextModel to is_decoder=True (#23051)
added  as default keyword arg. to  in order to correctly configure the decoder
2023-05-02 13:40:41 -04:00
805db1fe13 num_noise_spans should be <= num_items #22246 (#22938) 2023-05-02 13:07:30 -04:00
9ade58f055 [ONNX] Sam fix (#23110)
* [WIP] Fix for the ONNX export

* Apply changes

* Remove commented code

* Resolve todo

* empty -> zeros

* fix slow tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-05-02 17:20:02 +02:00
4baa34c18f [Flava] Fix flava torch.distributed.nn.functional import all_gather issue (#23108)
* fix flava `torch.distributed.nn.functional import all_gather` issue

* more comments
2023-05-02 15:35:57 +02:00
c6c6658499 Fix check for backword_pos (#23075) 2023-05-02 09:32:42 -04:00
f31a510bb3 🌐 [i18n-KO] Translated torchscript.mdx to Korean (#23060)
* docs: ko: torchscript.mdx

* feat: gpt and deepl draft

* fix: manual edits

* fix: edit anchor link

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

* fix: resolve suggestions

---------

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-05-02 09:27:59 -04:00
2b0c924568 GPT2ForQuestionAnswering (#23030)
* first draft - gives index error in question_answering.py

* maturing

* no labels

* pipeline should know about QA

* fixing checks

* formatting

* fixed docstring

* make sure legacy code executes

* comment

* like this

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-05-02 09:25:46 -04:00
bcedd0a471 Save the tokenizer and image preprocessor after training a model with the contrastive image-text example (#23035)
Save tokenizer and image preprocessor
2023-05-02 09:23:16 -04:00
85e3d7b6a0 added type hints for blip_text pytorch model (#23071)
* added type hints for blip_text pytorch model

* updated type hints for blip_text pytorch model
2023-05-02 13:22:31 +01:00
b8648290d2 Bump flask from 2.0.3 to 2.3.2 in /examples/research_projects/decision_transformer (#23094)
Bump flask in /examples/research_projects/decision_transformer

Bumps [flask](https://github.com/pallets/flask) from 2.0.3 to 2.3.2.
- [Release notes](https://github.com/pallets/flask/releases)
- [Changelog](https://github.com/pallets/flask/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/flask/compare/2.0.3...2.3.2)

---
updated-dependencies:
- dependency-name: flask
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-01 20:15:11 -04:00
f9426eeb94 🌐 [i18n-KO] Translated tasks/zero_shot_image_classification.mdx to Korean (#23065)
docs: ko: `tasks/zero_shot_image_classification`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-05-01 20:11:56 -04:00
92601d2eb1 🌐 [i18n-KO] Translated tasks/question_answering.mdx to Korean (#23012)
docs: ko: `tasks/question_answering.mdx` to Korean

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
2023-05-01 11:05:40 -04:00
78941b9fe5 🌐 [i18n-KO] Translated tasks/image_classification.mdx to Korean (#23048)
* ko: init: tasks/image_classification.mdx

* docs: ko: trans: tasks/image_classification.mdx

* docs: ko: revise: sync glossary and spell check tasks/image_classification.mdx

* docs: ko: revise: sync glossary tasks/image_classification.mdx

* fix: resolve suggestions (github) image_classification.mdx

Only github code review suggestion

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* fix: resolve suggestions image_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
2023-05-01 09:50:05 -04:00
9884862383 Depricate xpu_backend for ddp_backend (#23085)
* Depricate xpu_backend for ddp_backend

* Typo

* Only do a minor deprecation, no need for major

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-05-01 09:44:47 -04:00
95cf3725b4 Fix convnext __init__ (#23078)
fix
2023-05-01 09:36:42 -04:00
487f132a6f Add BioGPTForSequenceClassification (#22253)
* added BioGptForSequenceClassification

* added source of copied code

* typo

* Format code with black

* Update comments for copied code

* Remove code copy comment

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix failing tests

* Update code copied from comments

* Fix code quality

* Update src/transformers/models/biogpt/modeling_biogpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix lint error

* Update src/transformers/models/biogpt/modeling_biogpt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename model to biogpt for consistency

* Add PipelineTesterMixin to test_modeling_biogpt.py

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Resolve merge confict

---------

Co-authored-by: Guillem García Subies <37592763+GuillemGSubies@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-05-01 09:17:27 -04:00
549e5f9f23 Fix string syntax error in logger warning message (additional comma) (#23083) 2023-05-01 09:14:16 -04:00
9062d1bab2 Fix grammar error in summarization pipeline (#23080)
Fix minor grammar issue
2023-05-01 08:54:57 -04:00
849367ccf7 Generate: prepare assisted generation for release (#23052) 2023-04-29 10:53:30 +01:00
dfeb5aa6a9 extend the test files (#23043)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 22:25:34 +02:00
b6865b9bef Fix model parallelism for BridgeTower (#23039)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 21:53:58 +02:00
d337631b91 🚨🚨🚨 [Blip] remove labels masking (#23024)
* remove labels masking

* add fix on blip tf
2023-04-28 18:24:51 +02:00
c2c99dc7ef add open-llama model with ckpt (#22795)
* update Open-Llama model

* update

* update format

* update doc

* update

* update stable embedding test

* update test case

* update format

* update readme

* fix typo

* update name

* remove tokenizer and update format

* remove convert_open_llama_weights_to_hf

* update warning and doc_string

---------

Co-authored-by: songliang.bayesian <songliang.bayesian@bytedance.com>
2023-04-28 11:01:32 -04:00
0bf34b1c9f Skip pt/flax equivalence tests in pytorch bigbird test file (#23040)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 17:00:13 +02:00
4d0ea3d269 Cuda rng_state_all is used when saving in distributed mode so same should also be used when loading (#23045)
cuda rng state should be all for distributed bc all were saved
2023-04-28 09:28:01 -04:00
521a8ffa53 [docs] Doc TOC updates (#23049)
* first draft of toc restructure

* polishing based on feedback
2023-04-28 09:24:28 -04:00
4893d919f1 🌐 [i18n-KO] Translated model_sharing.mdx to Korean (#22991)
* docs: ko: init: model_sharing.mdx

* docs: ko: trans: model_sharing.mdx

Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* docs: ko: revised: apply code reviews model_sharing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* docs: ko: revised: apply aditional reviews model_sharing.mdx

1. Natural Expression
2. `파인 튜닝` to `미세 조정`
3. Glossary Sync

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* docs: ko: revised: apply aditional reviews in model_sharing.mdx

1. Spell check
2. Natural Expression
3. Sync Glossary

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* docs: ko: revised: `프로그래밍 방식` to `API` in model_sharing.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

---------

Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-28 09:20:33 -04:00
9b435204b1 Add Trainer support for ReduceLROnPlateau (#23010)
* Add Trainer support for ReduceLROnPlateau

Fixes #16503

* Remove training argument and add default instance

---------

Co-authored-by: mmeloux <maxime.meloux@loria.fr>
2023-04-28 09:17:30 -04:00
cf7baf4060 Make _test_xla_generate less flaky (#22996)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-28 13:27:28 +02:00
a0e7332839 Fix CLAP link across all READMEs (#23032)
* Fix CLAP link across all READMEs

* Fix copy only for en
2023-04-27 18:07:02 -04:00
88399476c3 Fix bigbird random attention (#21023)
* switch np.random.permutation to jax.random.permuation

* remove comments

* remove leftover comment

* skip similarity tests

* modify indices_prng_key usage, add deterministic behaviour

* update style

* remove unused import

* remove copy statement since classes are not identical

* remove numpy import

* revert removing copied from statements

* make style from copied

* remove copied from statement

* update copied from statement to include only np.ndarry

* add deterministic args, unittestskip equivalence tests
2023-04-27 13:52:28 -04:00
27b66bea01 Update BridgeTowerModelTester (#23029)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-27 18:26:17 +02:00
d65b14ed67 added GPTNeoForTokenClassification (#22908)
* added GPTNeoForTokenClassification

* add to top-level init

* fixup

* test

* more fixup

* add to gpt_neo.mdx

* repo consistency

* dummy copy

* fix copies

* optax >= 0.1.5 assumes jax.Array exists - which it doesn't for jax <= 0.3.6

* merge with main made this superfluous

* added classifier_dropout

* remove legacy code

* removed fmt:on/off
removed expected_outputs

* doc style fix

* classifier_dropout is always in config

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-04-27 12:10:03 -04:00
614e191c4d added GPTNeoXForTokenClassification (#23002)
* initial commit

* added GPTNeoXForTokenClassification

* typo

* doc
fixed extra comma that turned into a tuple

* unifying variable names
fixing forward call

* classifier_dropout is in config

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-27 11:08:26 -04:00
1933231a0a [MEGA] nit size test (#23028)
* add fast not use warning

* properly check sequence_length vs chunk_size

* fixup
2023-04-27 16:21:00 +02:00
a4908da04e Fix the expected error in test_offline_mode_pipeline_exception (#23022)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-27 14:22:05 +02:00
e28fff18b8 🌐 [i18n-KO] Translated multilingual.mdx to Korean (#23008)
docs: ko: `multilingual.mdx`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-27 08:06:12 -04:00
9435cc6670 [Pix2Struct] Fix pix2struct doctest (#23023)
fix pix2struct doctest
2023-04-27 11:48:02 +02:00
3042c63a95 Add methods to PreTrainedModel to use PyTorch's BetterTransformer (#21259)
* fix mess

* better documentation

* typo

* fix doc

* update

* add test

* fix test

* more tests

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* move to utils

* Apply suggestions from code review

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* nit

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2023-04-27 11:03:42 +02:00
0083b149e9 🚨🚨🚨 Use default ignore index in Luke (#23014)
Use default ignore index in Luke
2023-04-26 17:55:01 -04:00
8b129030cb Bring back PartialState DeepSpeed (#22921)
* Bring back deepspeed integration

* Branchname

* Self-scheduled

* newline

* Use deepspeed env var

* Remove comment

* Del env var after partialstate
2023-04-26 15:35:59 -04:00
4331923b97 Fix None value when adding info to auto_map (#22990) 2023-04-26 14:39:36 -04:00
d0b5002378 [Llama Tokenizer] Fast llama template (#22959)
* update template processing for llama fast to add eos

* style

* update

* adress training from new issue

* fix

* update

* special tokens can be given even if not used
2023-04-26 19:13:20 +02:00
00bc6e2067 [PEFT] Add HFTracer support for PEFT (#23006)
* add hack fx

* continue hacking

* final changes

* Test

* Add a keys method

* Fix keys method

* revert unneeded changes

* small nit

---------

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2023-04-26 18:45:05 +02:00
304aacac90 🚨🚨🚨 [Pix2Struct] Attempts to fix training issues 🚨🚨🚨 (#23004)
* multiple fixes

- add `add_special_tokens` to `True` by default
- remove label smoothing and labels masking

* fix test
2023-04-26 18:29:25 +02:00
ba0dc54576 Add gradient checkpointing to Whisper Flax (#22954)
* Add gradient checkpointing to Whisper Flax

* self.gradient_checkpointing only needed in nn.Module, removing unnecessary comments
2023-04-26 12:19:16 -04:00
a72b82ebe6 Remove a failing ONNX test (#23011)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-26 17:44:12 +02:00
20ac86c6f1 Add TensorFlow Wav2Vec2 for sequence classification (#22073)
* Add initial changes for TF wav2vec2 for sequence classification

* Add suggested changes

* Add serving and serving output methods

* Add serving_output implementation and fix layer_weights

* Add fixes

* Fixed test cases

* Fixing test and adding suggested changes
2023-04-26 13:35:30 +01:00
4c2b4c4c3c 🌐 [i18n-KO] Translated token_classification.mdx to Korean (#22945)
* docs: ko: init: token_classification.mdx

* docs: ko: trans: tasks/token_classification.mdx

* docs: ko: revise: apply suggestions tasks/token_classification.mdx

right vocabulary, spell check, natural expression

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

* docs: ko: revise: `Hub` to `허브` in tasks/token_classification.mdx

* docs: ko: revise: `example` in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* docs: ko: revise: ko expression in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* Revert "docs: ko: revise: ko expression in tasks/token_classification.mdx"

This reverts commit 8efe28059b65cf02de12249db2132a50e2b2b827.

* docs: ko: revise: `quick tour` in tasks/token_classification.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

---------

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-26 07:56:14 -04:00
6dc2474727 🌐 [i18n-KO] Translated tasks/image_captioning.mdx to Korean (#22943)
docs: ko: tasks/image_captioning.mdx

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-04-26 07:54:58 -04:00
4e1522d65a Fix typo in mega.mdx (#22998)
MegaConfiig -> MegaConfig
2023-04-25 17:58:45 -04:00
d95045717e 🌐 [i18n-KO] Translated serialization.mdx to Korean (#22806)
docs: ko: serialization.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-04-25 12:38:51 -04:00
a0ae2310ec [DocTest] Fix correct checkpoint (#22988)
fix pipeline issue
2023-04-25 15:20:36 +02:00
5427250351 Avoid invalid escape sequences, use raw strings (#22936)
* Avoid invalid escape sequences, use raw strings

* Integrate PR feedback
2023-04-25 09:17:56 -04:00
81c1910c86 fixed small typo in code example (#22982)
fixed typo in code example

fixed a really small typo in the docs of single gpu inference
2023-04-25 08:56:21 -04:00
0a570dbd2e Neptune fix bug init run (#22836)
* [neptune] fix checkpoint bug with relative out_dir

* update imports

* reformat with black

* check neptune without imports

* fix typing-related issue

* run black on code

* use os.path.sep instead of raw \

* simplify imports and remove type annotation

* make ruff happy

* apply review suggestions

* replace run with with_id kwarg to run

* update imports to avoid deprecation warnings for the latest client

---------

Co-authored-by: kshitij12345 <kshitijkalambarkar@gmail.com>
2023-04-25 08:51:05 -04:00
d4d628462f [SAM] Add sam doc (#22984)
* add sam doc

* fixes

* multiple fixes
2023-04-25 14:00:27 +02:00
f0f5e28f82 🌐 [i18n-KO] Fixed tasks/masked_language_modeling.mdx (#22965)
fix: docs: missing newline before code block
2023-04-25 09:59:17 +02:00
60f9649653 Fix DeepSpeed CI job link in Past CI (#22967)
* Fix job link

* fix artifact name logic

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-25 09:52:19 +02:00
073baf7f22 Install accelerete@main in PyTorch Past CI jobs (#22963)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 21:19:06 +02:00
e4a97f82bf Generate: assisted generation with sample (take 2) (#22949)
* temperature controls speed
2023-04-24 19:54:55 +01:00
7701716efc 🌐 [i18n-KO] translate create_a_model doc to Korean (#22754)
docs: ko: translates create_a_model.mdx

Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-24 13:02:19 -04:00
8f20e61c85 Update feature selection in to_tf_dataset (#21935)
* Update feature selection

* Check compatibility with datasets version

* Checkout from datasets main
2023-04-24 17:34:30 +01:00
345a1371d8 Fix TF example in quicktour (#22960)
* Fix TF example in quicktour

* Fix model.fit() and the dataset section too
2023-04-24 17:25:13 +01:00
503e8c8b32 fix ValueError message in LlamaAttention (#22966) 2023-04-24 12:02:05 -04:00
6e32959329 Reverting Deta cloning mecanism. (#22656)
* Fixed the revert by making sure that even the regexp can cover all
duplicates.

* Code simplification using hash.

* Fixing the `ident`.

* Fixing ignoring patterened duplicate names.

* Using `accelerate@find_tied_parameters` for from_pretrained

This is more correct there, since it handles meta device seemlessly
and we don't need to handle "non-duplicate" tensors (slices of each
other).

* Protecting accelerate.

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-24 11:24:35 -04:00
d6f1da6b71 🌐 [i18n-KO] Translated run_scripts.mdx to Korean (#22793)
docs: ko: `run_scripts` to Korean

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-24 10:18:20 -04:00
74c55ab9e5 Prepare tests for hfh 0.14 (#22958)
* Test hf_hub 0.14.0rc1

* fix mocked tests

* package version

---------

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: testbot <lucainp@hf.co>
2023-04-24 09:31:50 -04:00
69f2d5386b [Fix Bugs] Fix keys in _load_pretrained_model (#22947)
fix transformers keys
2023-04-24 09:28:51 -04:00
b5f06d6c59 Raise error if stride is too high in TokenClassificationPipeline (#22942)
* Raise error if `stride` is too high

* Clarify use of `stride`
2023-04-24 09:27:49 -04:00
3f6a4b5bd7 Decorate test_codegen_sample_max_time as flaky (#22953)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 15:27:31 +02:00
edb6d950cb Add an attribute to disable custom kernels in deformable detr in order to make the model ONNX exportable (#22918)
* add disable kernel option

* add comment

* fix copies

* add disable_custom_kernels to config

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-24 09:27:03 -04:00
84097f6d38 🌐 [i18n-KO] Translated tasks/summarization.mdx to Korean (#22783)
docs: ko: tasks/summarization.mdx

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
2023-04-24 09:03:02 -04:00
093be36f6c 🌐 [i18n-KO] Translated tasks/masked_language_modeling.mdx to Korean (#22838)
docs: ko: `tasks/masked_language_modeling.mdx` to Korean

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-24 09:02:21 -04:00
975159bb61 Update tiny models and a few fixes (#22928)
* run_check_tiny_models

* update summary

* update mixin

* update pipeline_model_mapping

* update pipeline_model_mapping

* Update for gpt_bigcode

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-24 14:45:22 +02:00
2fbd6df81c Generate: Add exception path for Donut (#22955) 2023-04-24 13:05:55 +01:00
df017c3ccc [CLAP] Doc nits (#22957)
clap nits
2023-04-24 14:00:29 +02:00
137eb8e663 [i18n-KO] Translated accelerate.mdx to Korean (#22830)
* docs: ko: init: accelerate.mdx

* docs: ko: translated: accelerate.mdx

* docs: ko: revised: natural expression accelerate.mdx

Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>

* docs: ko: revised: natural expression2 accelerate.mdx

Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>

---------

Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
2023-04-24 07:49:05 -04:00
3d3204c025 Add FocalNet (#21532)
Adds FocalNet by Microsoft to transformers

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: alaradirik <alaradirik@gmail.com>
2023-04-23 20:03:05 +03:00
d04ec99bec vilt_model (#22930) 2023-04-21 20:01:25 -04:00
4d10de55b4 Feature to convert videomae huge and small finetuned on kinetics and ssv2 added to the videomae to pytorch converter (#22788)
* Feature to convert videomae huge finetuned kinetics and videomae small finetuned kinetics and ssv2 added to videomae to pytorch converter

* Reformat convert_videomae_to_pytorch using black

* Value exception added for the possible videomae model architectures
2023-04-21 16:13:06 -04:00
7579a52b55 Small sam patch (#22920)
* patch

* add test

* move tests

* cover more cases (will fail nw update the code)

* style

* fix

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add better check

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-04-21 21:41:18 +02:00
5166c30e29 Fix a minor bug in CI slack report (#22906)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 20:36:35 +02:00
b950c38565 tests: Fix flaky test for NLLB-MoE (#22880)
* add test update and docs edits

* docs edit suggestion
2023-04-21 17:09:40 +01:00
d00997e66c ddp fixes for training (#22874)
ddp fixes for stable lm training
2023-04-21 11:42:02 -04:00
eddf9eeca0 [CI] clap patch fusion test values (#22922)
* patch test with values

* lower tol
2023-04-21 11:22:07 -04:00
5600e6f3ba Hardcode GELU as the intermediate activation for ESM (#22892)
* Hardcode GELU as the intermediate activation for ESM

* Sneak a quick fix to the weight tying in too

* Make the call to gelu explicit
2023-04-21 16:10:10 +01:00
874c7caf19 Remove broken test_data symlink in legacy s2s examples (#22876) 2023-04-21 15:35:42 +01:00
587a19c725 fix: GPTNeoX half inference error (#22888)
* fix: half inference error

norm_factor is still torch.float32 after using model.half

So I changed it to register_buffer so I can change it to torch.float16 after using model.half

* fix: Added a variable "persistent=False"

* run make style
2023-04-21 10:23:53 -04:00
3d852da2db Expose AutoModelForMaskGeneration (#22910)
* expose

* style

* add dummy object

* amazed by the quality of transformers CI
2023-04-21 10:04:45 -04:00
75444551c0 Make sam ONNX exportable (#22915)
* fix code not exportable

* fix

* Update src/transformers/models/sam/modeling_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-21 09:54:30 -04:00
d03d8c720f Fix: Seq2SeqTrainingArgs overriding to_dict for GenerationConfig json support (#22919)
* Seq2SeqTrainingArgs overriding to_dict for GenerationConfig json support

* seq2seqTrainingArgs to_dict calling super method before handling genconf
2023-04-21 09:53:24 -04:00
64ec802e50 fix bug of CLAP dataloader (#22674)
fix bug of CLAP: https://github.com/LAION-AI/CLAP/issues/62
2023-04-21 09:41:29 -04:00
3db2e40422 Update Swin MIM output class (#22893)
Updates Swin MIM output class to match other masked image modeling outputs
2023-04-21 16:38:32 +03:00
1e1cb6f8e5 Fix FillMaskPipelineTests (#22894)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 15:16:45 +02:00
9fdf158aa0 Add inputs_embeds functionality when generating with GPT-Neox (#22916)
* support gpt neox generate with inputs embeds

* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py

great thx for the suggestion!

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Lei Li <tobiaslee@qq.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-04-21 12:51:28 +01:00
ec93b895c1 fix CLAP integration tests (#22834)
* integration tests were not being run

* add tests for short input waveform

* rewrite test for long input

* even more betterer

* my bad

* oh boy
2023-04-21 11:04:15 +01:00
3080fb714f Fix Slack report for Nightly CI and Past CI (#22901)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 11:23:16 +02:00
435abb22cb Fix counting in Slack report for some jobs (#22913)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 11:22:23 +02:00
aab14120d4 Moved labels to enable parallelism pipeline in Luke model (#22909) 2023-04-21 10:19:15 +01:00
397720fb14 Skip a failing test on main for now (#22911)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-21 10:22:54 +02:00
8a817e1eca moved labels to the same device as logits for LILT model (#22898) 2023-04-20 14:49:47 -04:00
515d6a551e [tensorflow] Add support for the is_symbolic_tensor predicate (#22878)
This predicate will become available in tensorflow starting with version
2.14.

Co-authored-by: Russell Power <power@google.com>
2023-04-20 19:46:42 +01:00
5764e67cee Revert DeepSpeed stuff from accelerate integration (#22899) 2023-04-20 14:23:59 -04:00
f143037789 Add automatic-mask-generation pipeline for Segment Anything Model (SAM) (#22840)
* cleanup

* updates

* more refactoring

* make style

* update inits

* support other inputs in base

* update based on review

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>

* Update tests/pipelines/test_pipelines_automatic_mask_generation.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* update

* fixup

* TODO x and y to refactor, _h _w refactored here

* update docstring

* more nits

* style on these

* more doc fix

* rename variables

* update

* updates

* style

* update

* fix `_mask_to_rle_pytorch`

* styling

* fix ask to rle, wrong outputs

* add device arg

* update

* more updates, fix tets

* udpate

* update docstrings

* styling

* fixup

* add notebook on the docs

* update orginal sizes

* fix docstring

* updat condition on point_per-batch

* updates tests

* fix CI  test

* extend is required, append does not work!

* fixup

* fix CI tests

* whit pixels left

* address doc comments

* fix doc

* slow pipeline tests

* update auto init

* add revision

* make fixup

* update p!ipoeline tag when calling tests

* alphabeitcal order in inits

* fix copies

* last style nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* reformat docstring

* more reformat

* address most of the comments

* Update src/transformers/pipelines/mask_generation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final refactor

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixup and fix slow tests

* revert

---------

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-20 19:27:24 +02:00
e5f3487190 Pin flax & optax version (#22895)
* Pin optax version

* Pin flax too

* Fixup
2023-04-20 17:30:14 +01:00
6dc0a849b7 Fix weight tying in TF-ESM (#22839)
Fix weight tying in ESM
2023-04-20 15:50:31 +01:00
3b61d2890d Include decoder_attention_mask in T5 model inputs (#22835) 2023-04-20 15:05:36 +01:00
91d6a593f1 moved labels to the same device as logits for OTP, CODEGEN ,gptj and pixel2struct model (#22872)
* moved labels to the same device as logits for OTP model

* moved labels to the same device as logits for CODEGEN model

* Update modeling_codegen.py

* moved labels to the same device as logits for gptj and pix2struct model

* Update modeling_pix2struct.py
2023-04-20 08:52:54 -04:00
4116d1ec75 [Examples/TensorFlow] minor refactoring to allow compatible datasets to work (#22879)
minor refactoring to allow compatible datasets to work.
2023-04-20 18:21:01 +05:30
10dd3a7d1c [SAM] Change to facebook/sam-vit-base (#22891)
change to `facebook/sam-vit-base`
2023-04-20 14:11:18 +02:00
aa43a76538 fix warning function call creating logger error (max_length and max_new_tokens) (#22889) 2023-04-20 13:08:03 +01:00
aa4316757d Change schedule CI time (#22884)
* fix

* Update .github/workflows/self-nightly-past-ci-caller.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-04-20 14:01:08 +02:00
d50db469c0 Generation: only search for eos_token if set (#22875)
Generation: only check for eos_token if set

The check for unfinished_sequences.max(), which is to find sequences
that have ended early via eos_token_id, creates a synchronization point
even when there is no eos_token, which slows inference down.

This change moves the calculation to inside the condition checking for
eos_token, so that such slowdown may be removed by disabling this token.

Co-authored-by: John Doe <john.doe@example.com>
2023-04-20 12:18:28 +01:00
a438a0941c fix: Correct small typo in docstring (#22857)
* fix: Correct small typo in docstring

* fix: Run make fixup
2023-04-20 11:58:52 +01:00
4cfe328bae Fix SAM example in documentation (#22887)
fix sam example
2023-04-20 12:22:42 +02:00
cb47293eba Patching clip model to create mask tensor on the device (#22711)
* Patching clip model to create mask tensor on the device

* Addressing PR's comments

* Addressing PR's comments

* Addressing PR's comments

---------

Co-authored-by: Shanmugam Ramasamy <shanmugamr@shanmugamr-mlt.client.nvidia.com>
2023-04-20 10:58:52 +01:00
2da73f6302 [SAM] Correct arxiv link (#22886)
put correct link
2023-04-20 11:23:12 +02:00
4060d6857e XGLM: Fix left-padding (PT and TF) (#22828) 2023-04-20 10:01:56 +01:00
474bf508df Add Segment Anything Model (SAM) (#22654)
* initial commit

* keys match

* update, fix conversion

* fixes, inference working

* fix

* more fixes

* more fixes

* clean up

* more clean up

* fix copies and add convext copied layer norm

* stash

* pretty big upfate

* cleaning

* more cleaning

* fixup stuffs

* fix copies

* fix iinit

* update test removing tokenizer

* nits

* add pretrained

* more nits

* remove tracking of pipeline

* few fixes

* update san and conversion script

* fix mask decoder and prompt encoder conversion

* fixes

* small update

* fix order

* fix

* fix image embeddings

* nites

* few fixes

* fix logits

* clean up

* fixes boxes inference

* v1 AMG

* clean up

* some clean up

* multi points support

* amg working

* fixup

* clean up

* readme

* update toctree

* fix type hint

* multiple fixes

* fixup

* fixes

* updates

* updates

* more tests

* few fixes

* change to `SamForMaskGeneration`

* doc

* fixup

* fix more tests

* multiple fixes

* fix CI tests

* refactor processor

* renamings

* draft the pipeline

* refactor

* fix tests

* fix test

* few cleanings

* fix test

* edit pipelien support chunking

* udate

* add slow tests

* fix nit

* fixup

* fix nit

* current chunk pipleine

* cast boxes in fp32

* nit

* current updates

* piepleine works

* fixup

* clean up config

* fix slow tests

* fix slow tests

* clean up

* update doc and pipeline

* adds more slow tests

* fix slow tests

* cleaning

* tests pass

* add docstring

* fix copies

* clean up

* support batch of images

* style

* dummy is needed, add tests

* fix slow tests

* fix CI

* update

* adds more tests

* fixes

* fixes

* fixup

* fixes

* few fixes

* filter

* few fixes

* some refactor

* touches finales

* fix

* style

* remove pipeline files

* fixes nits

* revert pipeline changes

* fix test

* fixup

* remove automodel for automatic mask generation

* fix failing torch tests

* update mdx

* revert removal of `MODEL_FOR_AUTOMATIC_MASK_GENERATION_MAPPING`

* update sam config based on review

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* update low_resolution_masks -> pred_masks
inti ln with layer_norm_eps
add_decomposed_rel_pos doc
forward doc of SamForMaskGeneration

* update processor docstring

* remove image processor import empty

* update for testing

* output vision hidden states + clean recomm
also test all iou values

* fixup

* fixup

* remove unused

* Update src/transformers/models/sam/modeling_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/sam/image_processing_sam.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* nits

* fix

* fix CI tests and slow tests

* replace with Amy's processor

* clearer docstring

* add `SamVisionNeck`

* refactor - all CI tests should pass

* fix broken import on Gcolab

* few fixes here and there

* fix another bug

* fix more bugs

* update and merge

* correct ckpt

* address comments

* add tips

* revert

* fix docstring

* replace with `SamModel`

* make fixup

* add support for bathed images and batch ed points

* make fixup this time, really

* make fixup again and again

* few fixes here and there, this should be the touche finale

* Update docs/source/en/model_doc/sam.mdx

* fixup

* correct checkpoints

* correct name

* rm unneeded file

* add notebook

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-04-19 21:01:49 +02:00
898efca72a Fix to removing ESM special tokens (#22870)
Fix to make sure the EOS token doesn't come back
2023-04-19 19:42:29 +01:00
a8aad0ec93 Fixup multigpu local_rank (#22869)
Fixup multigpu tests
2023-04-19 14:37:16 -04:00
06bab00338 Remove some pipeline skip cases (#22865)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 20:27:19 +02:00
648bd5a8aa Show diff between 2 CI runs on Slack reports (#22798)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 19:27:37 +02:00
5f97bbc124 Remove 'main' from doc links (#22860) 2023-04-19 15:03:57 +01:00
4603fe9b1f use accelerate@main in CI (#22859)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-19 14:58:53 +02:00
337225ec1c feat(model parallelism): move labels to the same device as logits for M2M100 (#22850)
moved logits for m2m_100
2023-04-19 08:54:27 -04:00
6bd8ae2640 move preprocess_logits_for_metrics before _nested_gather in trainer.e… (#22603)
* move preprocess_logits_for_metrics before _nested_gather in trainer.evaluation_loop

* fix

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* fix

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-19 08:53:47 -04:00
c582e8aad0 fix SpeechT5 doc comments (#22854)
fix doc comments
2023-04-19 14:10:40 +02:00
84a6570e7b Make ClipSeg compatible with model parallelism (#22844) 2023-04-18 19:31:59 -04:00
5bb4ec6233 Raise err if minimum Accelerate version isn't available (#22841)
* Add warning about accelerate

* Version block Accelerate

* Include parse

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Check partial state

* Update param

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-18 14:25:02 -04:00
5f09219400 Fix from_pretrained when model is instantiated on the meta device (#22837) 2023-04-18 13:54:18 -04:00
5f9b825c89 Use code on the Hub from another repo (#22814)
* initial work

* Add other classes

* Refactor code

* Move warning and fix dynamic pipeline

* Issue warning when necessary

* Add test

* Do not skip auto tests

* Fix failing tests

* Refactor and address review comments

* Address review comments
2023-04-18 13:46:11 -04:00
aec10d162f Update accelerate version + warning check fix (#22833) 2023-04-18 12:51:32 -04:00
78cda46f17 Generate: Add assisted generation (#22211)
* working mvp

* remove breakpoint

* fix commit

* standardize outputs

* tmp commit

* tests almost ready

* tmp commit

* skip a few models

* Add streaming; Docs and examples

* document limitations

* PR commits

* Amy PR comments
2023-04-18 17:36:56 +01:00
90247d3e01 Fix test_eos_token_id_int_and_list_top_k_top_sampling (#22826)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-18 16:04:51 +02:00
1ebc1dee92 Fix Past CI not running against the latest main (#22823)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-18 15:41:41 +02:00
42288269c3 🌐 [i18n-KO] Fix anchor links for docs auto_tutorial, training (#22796)
docs: ko: fix anchor links for docs (auto_tutorial, training)

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-18 09:11:30 -04:00
ac2bc50a10 TTS fine-tuning for SpeechT5 (#21824)
* wrong argument name

* append eos_token_id

* all tokenizers need mask and ctc_blank tokens

* remove reduction factor from feature extractor

* add proper TTS loss

* did shifting the wrong way around

* mask out padded portions

* remove logits again (don't really need it)

* fix unit tests

* fixup

* pad also returns the decoder attention mask, since that's useful to have

* clean up feature extractor logic

* pad can handle TTS task too

* remove stop_labels from loss calculation

* simplify logic

* fixup

* do -100 masking properly

* small STFT optimization (calculate mel filterbanks only once)

* replace torchaudio fbanks with audio_utils

* remove torchaudio dependency

* simplify & speed up the STFT

* don't serialize window and mel filters

* output cross attentions when generating speech

* add guided attention loss

* fix failing test

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/speecht5/modeling_speecht5.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change type annotation of attention_mask to LongTensor

* extract loss into class

* remove unused frame_signal_scale argument

* use config object in loss class

* fix type annotations in doc comments

* change optional to just bool

* implement missing tokenizer method

* add deprecation warning

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/speecht5/feature_extraction_speecht5.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add deprecation warning for stop_labels

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-18 10:12:30 +01:00
dacd34568d Mark auto models as important (#22815)
* Mark auto models as important

* Annoying file with bad line endings
2023-04-17 15:33:01 -04:00
03462875cc Introduce PartialState as the device handler in the Trainer (#22752)
* Use accelerate for device management

* Add accelerate to setup


Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-17 15:09:45 -04:00
50caa20628 Revert "Use code on the Hub from another repo" (#22813)
Revert "Use code on the Hub from another repo (#22698)"

This reverts commit ea7b0a539a92a79b829cfc7d41d28f33f993e820.
2023-04-17 14:22:13 -04:00
e13d6ef7dc Simplify update metadata job (#22811)
* Simplify update metadata job

* Match more branch names

* Install all what is necessary

* Install all what is necessary

* Forgot the dev

* Install less stuff

* This syntax?
2023-04-17 13:54:20 -04:00
cd3e0211a6 Remove accelerate from tf test reqs (#22777)
Remove accelerate from tf
2023-04-17 12:31:21 -04:00
f8c43c9425 Fix squeeze into torch 1.x compatible form in llama model (#22808)
fix-squeeze-tuple
2023-04-17 17:28:48 +01:00
5269718cb7 Don't use LayoutLMv2 and LayoutLMv3 in some pipeline tests (#22774)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-17 17:45:20 +02:00
ea7b0a539a Use code on the Hub from another repo (#22698)
* initial work

* Add other classes

* Refactor code

* Move warning and fix dynamic pipeline

* Issue warning when necessary

* Add test
2023-04-17 11:36:29 -04:00
4d2c52e830 🌐 [i18n-KO] Translated tasks/translation.mdx to Korean (#22805)
docs: ko: tasks/translation.mdx
2023-04-17 11:30:17 -04:00
2237127a6c Fix sneaky torch dependency in TF example (#22804) 2023-04-17 16:11:52 +01:00
626c1b8af1 improve(llama): Faster apply_rotary_pos_emb (#22785) 2023-04-17 15:18:38 +01:00
abbc96a214 [i18n-KO] fix: docs: ko: sagemaker anchors and _toctree.yml (#22549)
fix: docs: ko: sagemaker anchors and  `_toctree.yml`

Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-17 07:41:52 -04:00
18c894814e 🌐 [i18n-KO] Translated custom_models.mdx to Korean (#22534)
docs: ko: translated `custom_models.mdx`

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2023-04-17 07:39:53 -04:00
76d24f1a83 Fix test_word_time_stamp_integration for Wav2Vec2ProcessorWithLMTest (#22800)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-17 12:41:55 +02:00
28f26c107b Generate: add CJK support to TextStreamer (#22664) 2023-04-15 10:35:08 +01:00
fb3aa06cb6 Move labels to the same device as logits for Whisper (#22779) 2023-04-14 19:08:41 -04:00
20e54e49fa Indexing fix - CLIP checkpoint conversion (#22776)
* Indexing fix - CLIP checkpoint conversion

* Fix up
2023-04-14 19:12:47 +01:00
895ae3b5c4 Seq2SeqTrainer: Evict decoder_input_ids only when it is created from labels (#22772) 2023-04-14 17:45:14 +01:00
daf53241d6 Fix word_ids hyperlink (#22765)
* Fix word_ids hyperlink

* Add suggested fix
2023-04-14 16:18:15 +01:00
06e737fbaf Tweak ESM tokenizer for Nucleotide Transformer (#22770)
* If EOS is None, don't add it to sequences

* If EOS is None, don't add it to sequences
2023-04-14 15:18:43 +01:00
c8df3900c8 [WIP]🌐 [i18n-KO] Translated tutorial/proprecssing.mdx to Korean (#22578)
* add ko preprocessing

* translate preprocessing.mdx to korean

* translate preprocessing.mdx

* Update preprocessing.mdx

Fixed the line 273 as below:
또한, 특징 추출기에 `sampling_rate` 인자를 추가하여 발생할 수 있는 조용한 오류(silent errors)를 더 잘 디버깅하는 것을 권장합니다.

* translate Image part

* translated preprocess.mdx

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* Update docs/source/ko/preprocessing.mdx

* fixed translation

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-14 07:26:44 -04:00
53c710d17b Fix failing torchscript tests for CpmAnt model (#22766)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-14 12:53:45 +02:00
d2ffc3fc48 Fix a mistake in Llama weight converter log output. (#22764)
Fixed string format; better tokenizer message.

Before: `Saving a {tokenizer_class} to {tokenizer_path}`
After: `Saving a LlamaTokenizerFast to outdir.`
2023-04-14 10:26:45 +01:00
9af845afc2 Generate: pin number of beams in BART test (#22763) 2023-04-14 09:57:25 +01:00
66b15efb20 Pix2struct: doctest fix (#22761) 2023-04-14 09:40:39 +01:00
390e121fb5 [Examples] TPU-based training of a language model using TensorFlow (#21657)
* add: tokenizer training script for TF TPU LM training.

* add: script for preparing the TFRecord shards.

* add: sequence of execution to readme.

* remove limit from the tfrecord shard name.

* Add initial train_model.py

* Add basic training arguments and model init

* Get up to the point of writing the data collator

* Pushing progress so far!

* Complete first draft of model training code

* feat: grouping of texts efficiently.

Co-authored-by: Matt <rocketknight1@gmail.com>

* Add proper masking collator and get training loop working

* fix: things.

* Read sample counts from filenames

* Read sample counts from filenames

* Draft README

* Improve TPU warning

* Use distribute instead of distribute.experimental

* Apply suggestions from code review

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Modularize loading and add MLM probability as arg

* minor refactoring to better use the cli args.

* readme fillup.

* include tpu and inference sections in the readme.

* table of contents.

* parallelize maps.

* polish readme.

* change script name to run_mlm.py

* address PR feedback (round I).

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-04-14 10:41:01 +05:30
bfb3925fcb 🌐 [i18n-KO] Translated sequence_classification.mdx to Korean (#22655)
* docs: ko: init: tasks/sequence_classification.mdx

* docs: ko: revised: change voca in tasks/sequence_classification.mdx

* docs: ko: revised: [RE] change voca in tasks/sequence_classification.mdx

* docs: ko: revised: spell check and sentence naturally in tasks/sequence_classification.mdx

* docs: ko: revised: spell check and consistent vocabulary in tasks/sequence_classification.mdx

* docs: ko: revised: Add full stop and change voca in tasks/sequence_classification.mdx

* docs: ko: revised: sync first section templates in tasks/sequence_classification.mdx

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: revert use of full-stops to colons

* colons are used to emphasize the code block that follows

* @0525hhgus @wonhyeongseo docs: ko: revised: sync second section templates in tasks/sequence_classification.mdx

Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>

* docs: ko: revised: change 'train', 'finetuning' in tasks/sequence_classification.mdx

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
2023-04-13 21:40:36 -04:00
a6752a7d3c Fix serving_output for TF composite models (encoder-decoder like models) (#22743)
* fix

* style

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 23:45:22 +02:00
410b61ad7e Revert (for now) the change on Deta in #22437 (#22750)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 21:32:29 +02:00
9dfd6a4baa Generate: handle text conditioning with multimodal encoder-decoder models (#22748) 2023-04-13 19:51:13 +01:00
90ce374d14 fix(llama): fix LlamaTokenzier (#22746)
Bug in LlamaTokenizer when  #22742
2023-04-13 18:19:38 +01:00
d85bf95436 [trainer] update url (#22747)
* [trainer] update url

* style
2023-04-13 09:23:55 -07:00
656d41ab4c Remove DS_BUILD_AIO=1 (#22741)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 18:08:22 +02:00
32b08742a5 DocumentQuestionAnsweringPipeline only for fast tokenizers (#22745)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 17:22:59 +02:00
4def2fe969 🌐 [i18n-KO] Translated training.mdx to Korean (#22670)
translate training doc to Korean
2023-04-13 11:04:47 -04:00
7df1343292 Change torch_dtype to str when saved_model=True in save_pretrained for TF models (#22740)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-13 15:52:16 +02:00
8eb38f638d [Pix2struct] Simplify generation (#22527)
* Add model to doc tests

* Remove generate and replace by prepare_inputs_for_generation

* More fixes

* Remove print statements

* Update integration tests

* Fix generate

* Remove model from auto mapping

* Use auto processor

* Fix integration tests

* Fix test

* Add inference code snippet

* Remove is_encoder_decoder

* Update docs

* Remove notebook link
2023-04-13 09:01:14 -04:00
95e7057507 Make vilt, switch_transformers compatible with model parallelism (#22703)
* Update modeling_vilt.py

Vilt compatible with model parallelism

* Update modeling_switch_transformers.py

switch_transformers compatible with model parallelism
2023-04-13 06:50:30 -04:00
89087597ba Indexing fix for gpt_bigcode (#22737)
Fix indexing
2023-04-13 11:00:37 +01:00
7ade6ef7d4 [Doctest] Add configuration_mvp.py (#22735)
* added configuration file for mvp model

* added configuration_mvp.py line to file
2023-04-13 08:19:18 +02:00
51007976ec [Doctest] Add configuration_m2m_100.py (#22733)
m2m-100-config for doctest
2023-04-13 08:17:07 +02:00
888c4a2ae0 v4.29.0.dev0 2023-04-12 20:04:29 -04:00
50f82e1282 Fix docstrings for TF BLIP (#22618)
* Fix docstrings for TFBLIP

* Fix missing line in TF port!

* Use values from torch tests now other bugs fixed

* Use values from torch tests now other bugs fixed

* Fix doctest string
2023-04-12 17:46:41 +01:00
ce06e4780e Update warning levels (#22727)
* Use different level

* Remove futurewarning

* Use warning_once

* Update copies
2023-04-12 17:25:24 +01:00
9858195481 add fast support and option (#22724)
* add fast support and option

* update based on review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/llama/convert_llama_weights_to_hf.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* nit

* add print

* fixup

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-12 18:10:04 +02:00
10fab90fe2 torch.distributed group initialization for torch_neuron disabled when optimum-neuron is installed (#22728)
* Make the process group initialization not happen if optimum_neuron is installed

* Add warning

* Remove list and added warning
2023-04-12 17:42:50 +02:00
1306b7d3ae [tests] switch to torchrun (#22712) 2023-04-12 08:25:45 -07:00
d87ef00c31 Modify pipeline_tutorial.mdx (#22726)
generator(model="openai/whisper-large") always returns error. As the error says the generator expects an input, just like the .flac file above. Even the generator object has no parameters called model. While there are parameters which can be passed to generator like 'batch_size' but to pass a model i believe the the parameter has to be passed while instantiating the pipeline and not as a parameter to the instance.

I believe the correct term should be:

generator = pipeline(model="openai/whisper-large", device=0)
2023-04-12 15:20:25 +01:00
370f0ca18c [bnb] Let's make serialization of int8 models possible (#22177)
* make serialization of int8 models possible

* make fixup

* add docs

* add ability to push to hub and save pretrained

* fixes

* more addition

* more tests

* fix issues

* change variable

* clearer message

* adapt from suggestions

* few fixes

* remove unused function

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address last comments

* last warning

* clarify doc

* protect import

* Update src/transformers/modeling_utils.py

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-12 08:01:18 -04:00
523ca4e016 add model resources for CPMAnt (new) (#20906)
* resolve conflicts

* rebase and make style

* test

* test

* test

* rebase and make style

* rebase and make style

* tests

* tests

* rewrite some functions

* rebase and make style

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* fix some bugs & docstring

* add models and tests

* solve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* tests

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* fix some bugs & docstring

* save resolution

* make style

* delete redefinition code

* reformat function

* reformat

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* tests

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* resolve conflicts

* fix load_tf_weights_in_cpmant

* reformat some unrelated files

* upgrade quality

* resolve conflicts

* make style

* fix bugs and refactor

* modify docstrings and make style

* unify import format in __init__.py

* fix import-altclp bug

* fix copies to update index.md

* fix unused config parameters

* fix unused config parameters

* fix unused config parameters

* update README_ja.md

* dummy commit for unit test

* fix attention mask

* add CPMAntTokenizer&-Fast to auto-mapping

* drop redundant changes in README_ko

* fix  defaults in docstring

* fix use_cache and some docstring

* add missing args in tokenizer

* modify tester inheritance

* add is_jieba_available

* fix some bugs

* make style and fix-copies

* add doctests

* skip integration tests

* add is_jieba_available

* fix bugs in common tests

* adjust docstrings and make style

* add argument docstring

* adjust code to some specifications

* make style and fix-copies

* add fast tokenization test

* dummy commit for unit test

* dummy commit for unit test

* dummy commit for unit test

* normalize some comments and names

* Bert->CPMAnt

* camel names and drop redundant codes

* make style and fix-coies

* add CpmTokenizerFast _import_structure

* drop cpmanttokenizerfast in model_doc

* fix some problems

* fix CPMAnt tokenization for common test

* make style and fixup

* fix copies and fixup

* fix bugs in tokenization test

* dummy commit for connection failure in unittest

* fix copies

* drop trailing comma

* fix decorator in tests

* dummy commit for connection failure in unittest

---------

Co-authored-by: Gong Baitao <gongbaitao11@gmail.com>
2023-04-12 07:33:20 -04:00
17503b00ea Added parallel device usage for GPT-J (#22713) 2023-04-12 07:31:27 -04:00
b76e6ebd44 remove wrong doc in readme (#22723) 2023-04-12 07:11:12 -04:00
5a71977b8b Update input values for docstring (#22631) 2023-04-12 11:44:29 +01:00
fe1f5a639d Fix decorator order (#22708)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 17:59:15 +02:00
1b1867d86b Replace -100s in predictions by the pad token (#22693)
* Replace -100s in predictions by the pad token

* Style

* Try to catch them all
2023-04-11 09:32:20 -04:00
ff73deeb0e Remove 2 failing ONNX conversion tests (#22660)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 15:26:32 +02:00
06b05d4575 Clarify stride option (#22684)
* Clarify stride option

* formatting
2023-04-11 14:06:54 +01:00
0224aaf67f Enable naive Pipeline Parallelism training for Gpt neox japanese and san japanese (#22702)
Move labels to same device as logits
2023-04-11 09:06:17 -04:00
28c19ab58d Make it easier to develop without a dev install (#22697)
* Make it easier to develop without a dev install

* Remove ugly hack that doesn't work anyway
2023-04-11 08:41:53 -04:00
4c01231e67 Update some MarkupLM tests' expected values (#22667)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-11 10:00:34 +02:00
151425ddb2 Model parallelism: Moving labels to same devices as the logits are (#22691)
Model parallelism correct labels device
2023-04-10 12:22:53 -04:00
6daa9cb515 add GPTNeoXForSequenceClassification (#22671)
* add GPTNeoXForSequenceClassification

* move the labels to logits.device (ref: #22561)

* fix
2023-04-10 11:52:23 -04:00
f74b40208d use __func__ to check can_generate (#22643) 2023-04-10 09:06:52 -04:00
14fc1a2467 Fix quantization docs typo (#22666) 2023-04-10 08:53:53 -04:00
3876fc6839 Make dynamic code work with offline mode (#22661)
* Make dynamic code work with offline mode

* Clean up

* Quality
2023-04-10 08:49:42 -04:00
98597725f1 (feat): Moving labels to same device as logits for Deit (#22679) 2023-04-10 08:04:57 -04:00
870d91fb89 Model parallelism: Moving labels to the same device as logits for BridgeTower models (#22676)
BrideTower Model parallelism logits device for loss calculation
2023-04-10 08:04:14 -04:00
e0921c6b53 Add GPTBigCode model (Optimized GPT2 with MQA from Santacoder & BigCode) (#22575)
* Add model with cli tool

* Remove unwanted stuff

* Add new code

* Remove inference runner

* Style

* Fix checks

* Test updates

* make fixup

* fix docs

* fix doc

* fix test

* hopefully fix pipeline tests

* refactor

* fix CIs

* add comment

* rename to `GPTBigCodeForCausalLM`

* correct readme

* make fixup + docs

* make fixup

* fixes

* fixes

* Remove pruning

* Remove import

* Doc updates

* More pruning removal

* Combine copies

* Single MQA implementation, remove kv cache pre-allocation and padding

* Update doc

* Revert refactor to match gpt2 style

* Merge back key and value caches, fix some type hints

* Update doc

* Fix position ids pith padding (PR 21080)

* Add conversion script temporarily

* Update conversion script

* Remove checkpoint conversion

* New model

* Fix MQA test

* Fix copies

* try fix tests

* FIX TEST!!

* remove  `DoubleHeadsModel`

* add MQA tests

* add slow tests

* clean up

* add CPU checker

* final fixes

* fixes

- fix GPU issue
- fixed slow tests
- skip disk offload

* fix final issue

* Simplify and comment baddbmm fix

* Remove unnecessary code

* Transpose tweaks

* Use beta=1 on cpu, improve tests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-04-10 10:57:21 +02:00
656e869a45 moved labels to the same device as logits for BLOOM, GPT Neo, GPT NeoX, RoBERTa and VIT models (#22663)
moved labels to the same device as logits
2023-04-07 17:04:54 -04:00
6db23af50c Revert migration of setup to pyproject.toml (#22658) 2023-04-07 15:08:44 -04:00
3f96e0b4e4 Generate: add API warning to streamers (#22659)
add API warning
2023-04-07 14:15:20 -04:00
f33419261a [OPT] Fix default attention mask size (#22649)
* Fix default attention mask size

* fixup

* add a test to make sure that even if attention mask are not provided, works

* style
2023-04-07 20:12:57 +02:00
b1b3dc3e52 [tokenization] do not push special file (#22657)
* do not push special file

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-07 20:12:36 +02:00
117a0f6afa Small nit, (#22653)
* Small nit,
Fixes #21986

* Update src/transformers/pipelines/__init__.py
2023-04-07 17:29:23 +02:00
fc1ba6fd11 🌐 [i18n-KO] Translated pipeline_tutorial.mdx to Korean (#22508)
docs: feat: Korean pipeline_tutorial

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: gabrielwithappy <102908949+gabrielwithappy@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
2023-04-07 11:27:59 -04:00
14d5b2b645 Fix MegaModel CI (#22652)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-07 17:13:04 +02:00
f2cc8ffdaa Fix typo (#22650) 2023-04-07 08:46:23 -04:00
1de8ce9ee1 Move labels to the same device as logits for LlamaForSequenceClassification and Blip2 (#22596)
* (feat): Move labels to the same device as logits

* Trigger CI

* Trigger CI

* Trigger CI

* (feat): Making changes for Blip2
2023-04-07 08:23:55 -04:00
d59034ff6f 🌐[i18n-KO] Translate autoclass_tutorial to Korean and Fix the typo of quicktour (#22533)
translate the autoclass_tutorial and fix the typo of the quicktour
2023-04-07 08:12:35 -04:00
ee8e80a060 fix FSDP version related issues (#22489)
fix fsdp
2023-04-07 04:25:19 +05:30
c7ec71baf5 Update tiny model summary file for recent models (#22637)
* Update tiny model summary file for recent models

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 22:52:59 +02:00
ed67286465 [Blip] Fix slow tests and doctests with correct values (#22632)
fix slow tests and doctests
2023-04-06 19:12:51 +02:00
6a02e98074 LlamaTokenizerFast Fix (.., from_slow=True). (#22630) 2023-04-06 18:52:59 +02:00
09a9888fe9 [bnb] 8bit models should not be converted to DDP (#22628)
add safety checker
2023-04-06 18:09:24 +02:00
d0b83fe2e1 A script to add/update pipeline_model_mapping systematically (#22180)
* Auto. add and update pipeline_model_mapping

* Fix style and quality

* Finalize (comments)

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 18:08:14 +02:00
fa01127a67 update_pip_test_mapping (#22606)
* Add TFBlipForConditionalGeneration

* update pipeline_model_mapping

* Add import

* Revert changes in GPTSanJapaneseTest

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 17:56:06 +02:00
321b0908dd docs: Fix broken link to generation strategies (#22623)
fix broken link
2023-04-06 11:48:50 -04:00
2c22bc79c2 Make tiny model creation + pipeline testing more robust (#22500)
* Final Tiny things

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-04-06 17:45:55 +02:00
12d51db243 Backbone add mixin tests (#22542)
* Add out_indices to backbones, deprecate out_features

* Update - can specify both out_features and out_indices but not both

* Add backbone mixin tests

* Test tidy up

* Add test_backbone for convnext

* Remove redefinition of method

* Update for Dinat and Nat backbones

* Update tests

* Smarter indexing

* Add checks on config creation for backbone

* PR comments
2023-04-06 13:50:15 +01:00
48706c7178 Seq2SeqTrainer: use unwrapped model to retrieve the generation config (#22584) 2023-04-06 13:29:58 +01:00
0aa1153ffb Revert error back into warning for byte fallback conversion. (#22607) 2023-04-06 14:00:29 +02:00
1670be4bde Adding Llama FastTokenizer support. (#22264)
* Adding Llama FastTokenizer support.

- Requires https://github.com/huggingface/tokenizers/pull/1183 version
- Only support byte_fallback for llama, raise otherwise (safety net).
- Lots of questions are special tokens

How to test:

```python

from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import AutoTokenizer
from tokenizers import Tokenizer

tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b")

if False:
    new_tokenizer = Tokenizer.from_file("tok.json")
else:
    new_tokenizer = convert_slow_tokenizer(tokenizer)
    new_tokenizer.save("tok.json")

strings = [
    "This is a test",
    "生活的真谛是",
    "生活的真谛是[MASK]。",
    # XXX: This one is problematic because of special tokens
    # "<s> Something something",
]

for string in strings:
    encoded = tokenizer(string)["input_ids"]
    encoded2 = new_tokenizer.encode(string).ids

    assert encoded == encoded2, f"{encoded} != {encoded2}"

    decoded = tokenizer.decode(encoded)
    decoded2 = new_tokenizer.decode(encoded2)

    assert decoded.strip() == decoded2, f"{repr(decoded)} != {repr(decoded2)}"
```

The converter + some test script.

The test script.

Tmp save.

Adding Fast tokenizer + tests.

Adding the tokenization tests.

Correct combination.

Small fix.

Fixing tests.

Fixing with latest update.

Rebased.

fix copies + normalized added tokens  + copies.

Adding doc.

TMP.

Doc + split files.

Doc.

Versions + try import.

Fix Camembert + warnings -> Error.

Fix by ArthurZucker.

Not a decorator.

* Fixing comments.

* Adding more to docstring.

* Doc rewriting.
2023-04-06 09:53:03 +02:00
1564189298 feat(model parallelism): moving the labels to the same device as the logits for gpt2 and bart (#22591) 2023-04-05 14:37:17 -04:00
e577bd0f13 Use native TF checkpoints for the BLIP TF tests (#22593)
* Use native TF checkpoints for the TF tests

* Remove unneeded exceptions
2023-04-05 18:43:14 +01:00
176ceff91f Add DePlot + MatCha on transformers (#22528)
* add deplot + matcha on `transformers`

* more docs

* correct path

* Update docs/source/en/model_doc/deplot.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* use auto processor

* Update docs/source/en/model_doc/matcha.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fixup

* Update docs/source/en/model_doc/deplot.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add correct names

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-04-05 17:43:48 +02:00
126eafe396 Adding support for BPE merge creation from scores instead of ids. (#22582)
* Adding support for BPE merge creation from scores instead of ids.

* Revert warn -> raise.

* Update src/transformers/convert_slow_tokenizer.py

* Quality.
2023-04-05 16:03:06 +02:00
12f1a3bb3c Fix a typo in one of the BLIP pretrained checkpoint names (#22588)
Fixes a typo in one of the BLIP pretrained checkpoint names
2023-04-05 14:56:20 +01:00
d5239bab5b Sync preprocesses before loading the processor at run_speech_recognition_ctc.py (#21926)
* Update run_speech_recognition_ctc.py

Make sure all processes wait until data is saved before loading the processor from the output_dit

* Make sure all processes wait until data is saved before loading the processor from the output_dit

* Update run_speech_recognition_ctc.py

* Update run_speech_recognition_seq2seq.py
2023-04-05 09:36:04 -04:00
f49b0762a1 docs: ko: complete _toctree.yml (#22581)
Co-authored-by: gabrielwithappy <102908949+gabrielwithappy@users.noreply.github.com>
2023-04-05 09:32:17 -04:00
4861c25817 Add thousands separator in training summary (#22583)
The logger prints a summary at the beginning of training that displays some info such as number of examples, number of parameters, total number of steps, etc. Those numbers can be quite large and difficult to read. I added a thousand separator to improve readability for the following:
- num_examples
- num_train_epochs
- per_device_train_batch_size
- total_train_batch_size
- max_steps
- num_trainable_params
2023-04-05 09:28:38 -04:00
2a91a9ef66 Fix PT-TF equivalence test for GPT1 (#22586)
* Re-enable skipped test and fix the hidden state shape issue

* Actually fix the bug instead of just doing something wrong
2023-04-05 13:16:00 +01:00
0684284911 Tests: disable accelerate_tests mark warnings (#22585) 2023-04-05 13:13:26 +01:00
6c640f098a Move back doctest instructions to setup.cfg (#22587) 2023-04-05 07:53:19 -04:00
861ff890d6 Generate: TextIteratorStreamer timeout (#22576) 2023-04-05 09:57:46 +01:00
11fd2c773b Skip failing test 2023-04-04 21:26:17 -04:00
edb704b26e Fix inverted conditional in TF common test! (#22540)
* Fix inverted conditional in TF common test!

* Make the same change in the PT tests file

* Make sure hidden states for GPT2 have the same output shape in PT/TF

* Minor fix to PT implementation of token classification loss

* Skip loss equivalence test for TFHubert because it keeps overflowing to inf

* Compute LM loss for TF the (weird) way it's computed in PT

* Skip loss equivalence test for Wav2Vec2 for the same reason as Hubert

* Fix - don't try to access the hidden states property when output is a tuple
2023-04-04 21:59:54 +01:00
48fbd8fa2e fix _no_split_modules for Whisper model (#22486) 2023-04-04 13:01:32 -04:00
900677487d Flax Regnet (#21867)
* initial commit

* review changes

* post model PR merge

* updating doc
2023-04-04 12:41:12 -04:00
fc5b7419d4 corrected the code comment for the output of find_pruneable_heads_and_indices (#22557)
* corrected/clarified the code comment of find_pruneable_heads_and_indices

* have run make style
2023-04-04 11:29:42 -04:00
5f3ea66bc0 Add TF port of BLIP (#22090)
* Initial commit

* more stash commit

* Yet another stash commit

* yet more stash commit

* Mostly working except for docs / repo consistency

* Stop importing model list from torch file

* Add TF BLIP models to docs

* Add auto classes

* Move get_text_features and get_image_features

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blip/test_modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blip/test_modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/blip/test_modeling_tf_blip_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use channels_last convolutions in TF (better performance + compatibility)

* Remove _shape function

* Move multi-line statement to one line in PT + TF

* Specify tf.keras.layers instead of importing from it

* Remove test_gradient_checkpointing and empty test_training methods

* move some multi-line statements to one line

* Update docstring for generate

* Remove pruned heads set

* Remove self.seq_len_dim

* Fixed issues with loss computation, should resolve some tests. Also ensured that the PT version follows the config for output_attentions and output_hidden_states

* ensure original model follows config in more cases

* Skip the same cross-attention tests in the PT tests - didn't realize we did it twice!

* Add training args throughout the models and layers

* make fixup

* Fix docstring for inputs_embeds

* Add docstring for is_decoder

* Add docstrings to text models

* Remove redundant computation

* Add unpack_inputs / keras_serializable

* Add modeling_tf_blip to doctests

* Add config classes for keras serialization

* Changes to allow model porting with pt-to-tf

* Quick fix to decoder head and test tweaks

* Revert an issue with masking the embeddings outputs

* Allow missing keys in some equivalence tests (for unused layers)

* Add tf-pt equivalence tests back in

* Update src/transformers/models/blip/modeling_tf_blip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/blip/modeling_tf_blip_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fixup

* Refactor invert_attention_mask out into tf_utils

* Re-enable cross-tests on the PT side too

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-04 16:05:22 +01:00
a515d0a77c Soft error whisper. (#22475)
* Soft error whisper.

* Fix format.

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-34-94.taildb5d.ts.net>
2023-04-04 16:21:57 +02:00
98268b2e76 Add id2label and label2id to model's config in run_xnil (#22558)
Add id2label and label2id to config in run_xnil
2023-04-04 09:28:57 -04:00
fa2bdffc5d [bnb] Fix typo (#22556)
Update modeling_utils.py
2023-04-04 15:26:45 +02:00
28fcf00607 Remove hack for dynamic modules and use Python functions instead (#22537) 2023-04-04 09:20:13 -04:00
871598be55 Implemented safetensors checkpoints save/load for Trainer (#22498)
* implemented safetensors save/load

* remove duplicated file

* added tests

* more tests

* style fix

* fix tf tests

* change to list comprehension

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* review fixes + safe load for sharded checkpoint

* style fix

* remove rogue import

* remove partial to avoid undefined exception

* use naming alias instead of safetensors.torch

* fix safe sharding in tests

* grammar

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor corrections

* style

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-04-04 09:05:04 -04:00
00b5887b94 🚨🚨🚨 [NLLB Tokenizer] Fix the prefix tokens 🚨🚨🚨 (#22313)
* fix the prefix tokens

* update fast and test values

* add legacy behaviour

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* update disclaimer, linkissue PR and behaviral changes

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* styling

* make a quote

* quote this time

---------

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-04-04 14:53:06 +02:00
ad5e9b6c6a [Roformer] Fixing a bug in RoFormerEncoder where it was ignoring the length of past_key_values when generating as a decoder (#22416)
* fix RoFormerEncoder postion embedding when generate as decoder

* make fixup

* add test case for check generate with past key values

* remove duplicating code
2023-04-04 12:50:33 +02:00
1905384fd5 Generate: Add text streamer decoding options (#22544) 2023-04-04 09:03:13 +01:00
41a2f3529c Fix OPTForQuestionAnswering doc string (#22481)
* Fix OPTForQuestionAnswering doc string

for more adequate model answer decoding

* black style fix

* doc-builder style
2023-04-03 21:05:31 -04:00
159ff3342c Update test_image_processing_pix2struct.py (#22543) 2023-04-03 15:26:35 -04:00
c14d31294e Skip failing test 2023-04-03 14:07:40 -04:00
4169dc84bf [setup] migrate setup script to pyproject.toml (#22539)
* [setup] migrate setup script to `pyproject.toml`

* [setup] cleanup configurations

* remove unused imports
2023-04-03 14:03:41 -04:00
a17841ac49 Generate: Enable easier TextStreamer customization (#22516) 2023-04-03 18:49:38 +01:00
80d1319e1b [setup] drop deprecated distutils usage (#22531)
* [setup] drop deprecated `distutils` usage

* drop deprecated `distutils.util.strtobool` usage

* fix import order

* reformat docstring by `doc-builder`
2023-04-03 12:04:24 -04:00
4c33a0c4fc Fix missing metrics with multiple eval datasets (#22536) 2023-04-03 12:03:57 -04:00
d7a4f5becc [T5] Enable naive Pipeline Parallelism training for T5 (#22535)
* enable PP for T5

* make fixup

* fix failing tests
2023-04-03 17:55:37 +02:00
cab048fb35 [Trainer] Force is_model_parallel when model is loaded in multiple GPUs using accelerate (#22532)
* add `is_model_parallel` arg on Trainer

* add warning

* adapt from suggestions

* revert t5 changes

* remove commas

* adapt from suggestions
2023-04-03 17:10:50 +02:00
aecbcb3680 [BLIP] fix cross attentions for BlipTextEncoder (#22515) 2023-04-03 11:00:26 -04:00
4e441e529c fix LayoutLMv3TokenizerFast subword label after 'Ġ' token (#21695)
LayoutLMv3TokenizerFast produces empty 'Ġ' token with `offset_mapping = (0, 0)`.
Next token is wrongly assumed to also be beginning of word and isn't
correctly assigned `pad_token_label`.
Modify test with text that produce 'Ġ' token.
Remove copy check from LayoutLMv2TokenizerFast for `_batch_encode_plus`.

solves issue: #19978
2023-04-03 10:32:36 -04:00
a60010566a llama docs: fix conversion script url (#22514) 2023-04-03 10:28:40 -04:00
9419f144ad Fix convert_opt_original_pytorch_checkpoint_to_pytorch.py typo (#22526)
`load_checkpoint()` silently fails because `".qkj_proj." in key` is always `False`, but will eventually cause an error at `model.load_state_dict(state_dict)`.
2023-04-03 10:06:52 -04:00
a55a822adf Generate: TextIteratorStreamer (streamer for gradio) (#22501)
* haha text go brrr (but in gradio)
2023-04-03 15:04:37 +01:00
7d25c9c81e added biogpt token classifier (#22447)
* added biogpt token classifier

* fix reviews

* Updated modeling_biogpt.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-04-03 09:20:02 -04:00
1194c3e315 [WIP] docs: ko: sagemaker.mdx (#22509)
docs: ko: sagemaker.mdx
2023-04-03 09:17:02 -04:00
c0f99b4d2e Fix llama tokenizer (#22402)
* draft

* update tokenization limma and conversion script

* more udpates

* initial commit

* style

* default pad to None

* draft tokenization tests

* update test

* update tokenization tests

* nits

* update

* versioning test

* major fix

* fix more testst

* finish fixing special masks

* last nit

* more nits

* add encode decode tests

* add more

* fix token type ids

* style
2023-04-03 09:07:32 -04:00
9eae4aa576 [Time-Series] fix past_observed_mask type (#22076)
added > 0.5 to `past_observed_mask`
2023-04-03 09:07:21 -04:00
559a45d1dc Backbone add out indices (#22493)
* Add out_indices to backbones, deprecate out_features

* Update - can specify both out_features and out_indices but not both

* Can specify both

* Fix copies

* Add out_indices to convnextv2 configuration
2023-04-03 11:06:25 +01:00
db803b6919 Update convert_llama_weights_to_hf.py (#22525) 2023-04-03 10:41:39 +01:00
c612628045 Test fetch v2 (#22367)
* Test fetcher v2

* Fix regexes

* Remove sanity check

* Fake modification to OPT

* Fixes some .sep issues

* Remove fake OPT change

* Fake modif for BERT

* Fake modif for init

* Exclude SageMaker tests

* Fix test and remove fake modif

* Fake setup modif

* Fake pipeline modif

* Remove all fake modifs

* Adds options to skip/force tests

* [test-all-models] Fake modif for BERT

* Try this way

* Does the command actually work?

* [test-all-models] Try again!

* [skip circleci] Remove fake modif

* Remove debug statements

* Add the list of important models

* Quality

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* Address review comments

* Fix and add test

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-03-31 16:18:43 -04:00
3a9464bd30 Update Neptune callback docstring (#22497)
* update NeptuneCallback docstring

* formatting

* apply make style

---------

Co-authored-by: Aleksander Wojnarowicz <alwojnarowicz@gmail.com>
2023-03-31 15:38:34 -04:00
6fc44656b4 Bump redis from 4.5.3 to 4.5.4 in /examples/research_projects/decision_transformer (#22494)
Bump redis in /examples/research_projects/decision_transformer

Bumps [redis](https://github.com/redis/redis-py) from 4.5.3 to 4.5.4.
- [Release notes](https://github.com/redis/redis-py/releases)
- [Changelog](https://github.com/redis/redis-py/blob/master/CHANGES)
- [Commits](https://github.com/redis/redis-py/compare/v4.5.3...v4.5.4)

---
updated-dependencies:
- dependency-name: redis
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-03-31 10:50:33 -04:00
d143087d18 Making sure we can use safetensors to serialize all the time. (#22437)
* Making sure we can use safetensors to serialize all the time.

* Expanding the tests for increased coverage.

* Update the test.

* Getting current state of affairs.

* Tentative fix.

* Fixing black version.

* Fixing the worst offenders.

* Try to modify less files.

* Fixing blip_2 (Weird solution right now).

* Fixing deta.

* Fix blip ?

* Missing extra newline.

* No deta modification.

* Adding some comments.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Addressing comments.

* Addressing comments.

* creating warn_once.

* Warning_once !

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-31 16:07:35 +02:00
516077b3b0 Update Wav2Vec2ProcessorWithLM doc example (#22474)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-31 14:17:40 +02:00
da68fd691c Relax eos_token_id < 0 checks in generate() from ValueError to warning (#22472)
* Relax  checks from  to warning

* Fix style

* Replace warnings with logger

* Use warning vs warn
2023-03-31 09:09:40 +02:00
0fe6c6bdca (Re-)Enable Nightly + Past CI (#22393)
* Enable Nightly + Past CI

* put schedule

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-30 21:06:35 +02:00
d5de578c22 Docs fix: Multinomial sampling decoding needs "num_beams=1", since by default it is usually not 1. (#22473)
Fix: Multinomial sampling needs "num_beams=1", since by default is 5.
2023-03-30 11:04:12 -04:00
165dd6dc91 Llama: support for max_position_embeddings (#22471)
* Llama now supports max_position_embeddings

* Save config; Cosmetic edits
2023-03-30 15:54:01 +01:00
349e1242d9 [NLLB-MoE] model_type update for auto mapping (#22470)
edit default model type and testing path set to hf-internal-testing
2023-03-30 15:36:07 +02:00
11426641dc Guard imports of PreTrainedTokenizerFast on is_tokenizers_available (#22285)
Guard imports that use the tokenizers library
2023-03-30 09:16:03 -04:00
4d7a5b5ba3 🚨🚨🚨 Fix ordering of height, width for BLIP image processor (#22466)
Fix ordering of height,width for BLIP
2023-03-30 14:02:16 +01:00
228792a9dc Generate: basic token streaming (#22449)
* haha tokens go brrrr
2023-03-30 12:00:12 +01:00
f0aeb1be17 Skip flaky NLLB Moe test for now (#22463)
Skip flaky test for now
2023-03-30 11:30:19 +01:00
154c6bb7ac Rescale image back if it was scaled during PIL conversion (#22458)
* Rescale image back if it was scaled during PIL conversion

* do_rescale is defined if PIL image passed in
2023-03-30 11:29:11 +01:00
c15f937581 Move common properties to BackboneMixin (#21855)
* Move common properties to BackboneMixin

* Fix failing tests

* Update ConvNextV2 backbone
2023-03-30 10:04:11 +01:00
cd73b9a8c1 Update: ignore padding support for TransfoXL training when n_clusters==0 (#22457)
* Update: ignore padding support for TransfoXL training when n_clusters==0

* Update: transformer XL always pad

* Update: drop doc
2023-03-29 14:36:39 -04:00
2194943a34 Pin ruff (#22455) 2023-03-29 14:07:06 -04:00
4c295a265b Update release instructions (#22454) 2023-03-29 14:05:42 -04:00
97440e9c75 Avoid using personal HF token in CI (#22453)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-29 19:45:06 +02:00
173193ccd0 Update Neptune docs (#22452) 2023-03-29 13:15:38 -04:00
5e89a435c8 Revert "Fix --bf16 option support for Neuron after PR #22300" (#22451)
This reverts commit fd81746dbec5f17c8285a0fdc72ca4b4c025cc33.
2023-03-29 12:59:13 -04:00
b844f8a9ab [Pix2Struct] Fix slow test (#22448)
fix slow test
2023-03-29 17:40:45 +02:00
55dae94c0c Revert "Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head))" (#22444)
Revert "Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head)) (#21627)"

This reverts commit bad83008377bf01a34ac2e08c74e7da89eaf4e07.
2023-03-29 10:59:42 -04:00
8894b81742 Use real tokenizers if tiny version(s) creation has issue(s) (#22428)
Fix some tiny model creation issues

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-29 16:16:23 +02:00
9b494a1537 Don't hard error when cache version can't be converted to int (#22427) 2023-03-29 09:46:30 -04:00
8252e24a77 [Generate] Add conditional generation for multimodal models (#22424)
* add conditional generation

* add comments
2023-03-29 15:35:30 +02:00
33f4cb1093 [bnb] fix bnb failing test (#22439)
* fix bnb failing test

* fix

* fix

* fixup
2023-03-29 15:13:00 +02:00
fab1de72f1 Hyperparameter search reporting to W&B (#22440)
Fixes #22429
2023-03-29 09:09:57 -04:00
8d9c3836be Add clean_up_tokenization_spaces to config (#22341)
* add draft changes

* fix failing wav2vec

* style

* make sure that the argument is saved + add tests

* style

* fixup

* update test

* default clean_up_tokenization_spaces to False for Bloom and Llama

* Update code based on review

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>

* style

* quality

---------

Co-authored-by: Nicolas Patry <patry.nicolas@gmail.com>
2023-03-29 13:21:07 +02:00
b29fd6971d MBart: Fix docs and doctests (#22422)
Fix docs and doctests
2023-03-28 15:42:02 +01:00
ae5fc2db87 [performance] ensure causal_mask is created directly on device (#22378)
* ensure causal_mask is created directly on device

* add copy tag to opt, update bart implementation

* add device to all _make_causal_mask copies

* formatting fixes

* more manual fixes due to unlinked versions of _prepare_decoder_attention_mask
2023-03-28 09:17:03 -04:00
ed57c979b9 Fix bug in perplexity guide calculations and update perplexity numbers. Fixes #22348 (#22411)
Fix bug in perplexity guide calculations and update perplexity numbers.
2023-03-28 09:09:17 -04:00
32ff06403d Bump redis from 4.1.4 to 4.5.3 in /examples/research_projects/decision_transformer (#22410)
Bump redis in /examples/research_projects/decision_transformer

Bumps [redis](https://github.com/redis/redis-py) from 4.1.4 to 4.5.3.
- [Release notes](https://github.com/redis/redis-py/releases)
- [Changelog](https://github.com/redis/redis-py/blob/master/CHANGES)
- [Commits](https://github.com/redis/redis-py/compare/v4.1.4...v4.5.3)

---
updated-dependencies:
- dependency-name: redis
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-03-27 20:23:55 -04:00
3ec7a47664 [neptune] fix checkpoint bug with relative out_dir (#22102)
* [neptune] fix checkpoint bug with relative out_dir

* update imports

* reformat with black

* check neptune without imports

* fix typing-related issue

* run black on code

* use os.path.sep instead of raw \

* simplify imports and remove type annotation

* make ruff happy

* apply review suggestions

---------

Co-authored-by: Aleksander Wojnarowicz <alwojnarowicz@gmail.com>
2023-03-27 15:00:16 -04:00
19ade2426a [WIP]NLLB-MoE Adds the moe model (#22024)
* Initial commit

* update modeling code

* update doc

* add functions necessary

* fix impotrs

* revert changes

* fixup

* more styling to get going

* remove standalone encoder

* update code

* styling

* fix config and model

* update code and some refactoring

* make more tests pass

* Adding NLLB-200 - MoE - 54.5B for no language left behind
Fixes #21300

* fix mor common tests

* styke

* update testing file

* update

* update

* Router2 doc

* update check config with sparse layer

* add dummy router

* update current conversion script

* create on the fly conversion script

* Fixup

* style

* style 2

* fix empty return

* fix return

* Update default config sparse layers

* easier to create sparse layers

* update

* update conversion script

* update modeling

* add to toctree

* styling

* make ruff happy

* update docstring

* update conversion script

* update, will break tests but impelemting top2

* update

* local groups are supported here

* ⚠️ Support for local groups is now removed ⚠️

This is because it has to work with model parallelism that we do not support

* finish simplificaiton

* Fix forward

* style

* fixup

* Update modelling and test, refactoring

* update tests

* remove final layer)norm as it is done in the FF

* routing works! Logits test added

* nit in test

* remove top1router

* style

* make sure sparse are tested. Had to change route_tokens a liottle bit

* add support for unslip models when converting

* fixup

* style

* update test s

* update test

* REFACTOR

* encoder outputs match!

* style

* update testing

* 🎉encoder and decoder logits match 🎉

* styleing

* update tests

* cleanup tests

* fix router test and CIs

* cleanup

* cleanup test styling

* fix tests

* Finally the generation tests match!

* cleanup

* update test

* style testing file

* remove script

* cleanup

* more cleanup

* nits

* update

* NLLB tokenizer is wrong and will be fixed soon

* use LongTensors

* update tests

* revert some small changes

* fix second expert sampling and batch prioritized routing

* update tests

* finish last tests

* make ruff happy

* update

* ruff again

* style

* Update docs/source/en/model_doc/nllb-moe.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updates based on review

* style and fix import issue

* nit

* more nits

* cleanup

* styling

* update test_seconde_expert_policy

* fix name

* last nit on the markdown examples

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-27 19:42:00 +02:00
057e1d7473 Fix quality 2023-03-27 13:17:14 -04:00
f02e3a2b18 Hardware Auto-Setup for Examples (#22319)
* Add initial remote hardware auto-setup docs

* Fix a few typos and clarify some language

* Add missing dependency

* Update self-hosted launch script with Sylvain's comments.

* Formatting.

* Trigger CI

* Style
2023-03-27 13:07:53 -04:00
738944c9ee Trainer: missing None check (#22404)
missing None check
2023-03-27 18:04:28 +01:00
53155b520d Trainer: move Seq2SeqTrainer imports under the typing guard (#22401) 2023-03-27 16:39:26 +01:00
0e708178ed [Pix2Struct] Add support to resize embeddings (#22394)
* First draft

* Fix integration test

* Remove script

* Fix test and typos

* Fix one more test

* Skip tied embeddings test

* Remove line

* Address comments
2023-03-27 11:38:07 -04:00
f6b80a0139 Transformers env safetensors (#22400)
* Report safetensors version in transformers-cli env

* Styling

* Trigger CI maybe
2023-03-27 11:12:42 -04:00
d324b70f00 [bnb] Force requires_grad to be False (#22396)
for rg to be `False`
2023-03-27 16:55:55 +02:00
7dcd8703ef Generate: support for left-padding on GPTNeoX and Llama (#22382) 2023-03-27 15:48:23 +01:00
5506d04969 Seq2seq trainer generation config arg (#22323)
* seq2seq trainer and training arguments accepting GenerationConfig arg

* seq2seq Trainer and training arguments docstring fixes

* Update training_args_seq2seq.py docstring

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fixing trainer_seq2seq.py docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* seq2seq trainer: legacy gen args back & GenerationConfig created at init

* Seq2seq trainer: fix in case gen_config.max_new_tokens is None

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding legacy arg retrocompatibility

* seq2seq trainer and training arguments accepting GenerationConfig arg

* seq2seq Trainer and training arguments docstring fixes

* Update training_args_seq2seq.py docstring

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fixing trainer_seq2seq.py docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* seq2seq trainer: legacy gen args back & GenerationConfig created at init

* Seq2seq trainer: fix in case gen_config.max_new_tokens is None

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding legacy arg retrocompatibility

* seq2seq trainer: evaluate and predict untouched

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* seq2seq trainer: adding init args, keeping IDEs hints

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-27 15:47:35 +01:00
03966cacf9 Wav2Vec2ProcessorWithLM can return N best hypotheses now (#22235)
* Wav2Vec2ProcessorWithLM can return N best hypotheses now

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>

* Wav2Vec2ProcessorWithLM n_best cannot be None

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Batch decoding can return  N best hypotheses now

batch_decode was extended with the same functionality as decode
function, N best hypotheses per sample can be returned

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>

---------

Signed-off-by: Vladislav Sokolovskii <vladislav@parrothq.com>
Co-authored-by: Vladislav Sokolovskii <vladislav@parrothq.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-27 10:37:46 -04:00
66d1eee682 load_in_8bit now respects 'balanced' device maps in multi-gpu environments (#22377)
balanced 8bit memory
2023-03-27 10:34:52 -04:00
8cfc6678da Adapt find_tied_parameters to handle breaking change in Accelerate (#22360) 2023-03-27 10:11:14 -04:00
204737fcc5 Translated documentation in italian (#22388)
* updated toctree

* added and translated mdx documents
2023-03-27 09:48:49 -04:00
d5c2c71c0f Changed world_size() to get_world_size() bugfix (#22381)
Edited one line in src/transormers/generation/utils.py. Changed dist.world_size() to dist.get_world_size() since world_size() doesn't exist in pytorch.dist.
2023-03-27 09:24:25 -04:00
c746eb1603 TensorFlow: additional missing cmake dependencies in CI (#22383)
* missing cmake

* more cmake
2023-03-27 09:20:56 -04:00
cae78c46d6 [safetensors] don't use in torch<1.10 (#22370)
* [safetensors] don't use in pt<1.10

* better fix
2023-03-24 16:23:27 -04:00
cfab34e188 Fix TF pipeline job 2023-03-24 16:16:43 -04:00
500fce073b [Trainer] add disclaimer that full_determinism is slow (#22368) 2023-03-24 12:46:41 -07:00
a0cbbba31f Resnet flax (#21472)
* [WIP] flax resnet

* added pretrained flax models, results reproducible

* Added pretrained flax models, results reproducible

* working on tests

* no real code change, just some comments

* [flax] adding support for batch norm layers

* fixing bugs related to pt+flax integration

* removing loss from modeling flax output class

* fixing classifier tests

* fixing comments, model output

* cleaning comments

* review changes

* review changes

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* renaming Flax to PyTorch

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-24 19:45:57 +00:00
88dae78f4d TensorFlow: pin maximum version to 2.12 (#22364) 2023-03-24 18:45:03 +00:00
3a7f5fa9d2 Improve error message (#22361)
* Improve error message

* Fix consistency
2023-03-24 18:09:01 +00:00
6587125c0a Pin tensorflow-text to go with tensorflow (#22362)
* Pin tensorflow-text to go with tensorflow

* Make it more convenient to pin TensorFlow

* setup don't like f-strings
2023-03-24 10:54:06 -04:00
01203475c9 Update docker files to use official torch 2.0.0 (#22357)
* update docker files to use official torch 2.0.0

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-24 14:29:05 +01:00
57f25f4b7f Add Mega: Moving Average Equipped Gated Attention (#21766)
* add mega file structure and plain pytorch version of mega source code

* added config class with old naming conventions

* filled in mega documentation

* added config class and embeddings with optional token types

* updated notes

* starting the conversion process, deleted intermediate and added use_cache back to config

* renamed config attributes in modeling_mega.py

* checkpointing before refactoring incremental decoding functions

* removed stateful incremental key/values for EMA and self-attention

* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask

* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement

* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention

* bug fix in attention mask handling in MovingAverageGatedAttention

* removed incremental state from GatedCrossAttention and removed IncrementalState class

* finished gated cross attention and got MegaLayer working

* fixed causal masking in mega decoder

* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching

* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids

* added optional dense hidden layer for masked and causal LM classes

* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention

* removed before_attn_fn in Mega class and updated docstrings and comments up to there

* bug fix in MovingAverageGatedAttention masking

* working conversion of MLM checkpoint in scratchpad script -- perfect matches

* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters

* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint

* finished checkpoint conversion script

* cleanup old class in mega config script

* removed 'copied from' statements and passing integration tests

* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing

* fixed tuple output of megamodel

* all common tests passing after fixing issues in decoder, gradient retention, and initialization

* added mega-specific tests, ready for more documentation and style checks

* updated docstrings; checkpoint before style fixes

* style and quality checks, fixed initialization problem in float_tensor, ready for PR

* added mega to toctree

* removed unnecessary arg in megaconfig

* removed unused arg and fixed code samples with leftover roberta models

* Apply suggestions from code review

Applied all suggestions except the one renaming a class, as I'll need to update that througout

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA

* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms

* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention

* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()

* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files

* variable names in NFFN

* manual Mega->MEGA changes in docs

* Mega->MEGA in config auto

* style and quality fixes

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments

* commit before dealing with merge conflicts

* made new attention activation functions available in ACT2FN and added generation test from OPT

* style and quality in activations and tests

* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings

* style and quality fixes after latest updates, before rotary position ids

* causal mask in MegaBlock docstring + added missing device passing

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR

* style and quality fixes + readme updates pointing to main

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-24 08:17:27 -04:00
0fa46524ac Generate: Add GPTNeoX integration test (#22346) 2023-03-24 11:33:16 +00:00
b79607656b Fix typo in Greedy Search Description (#22345)
Fix typo in greedy search docs
2023-03-24 07:32:18 -04:00
c0fa2aa0b8 [HFTracer] Make embeddings ops take on the dtype of the weight (#22347)
* [HFTracer] Make embeddings ops take on the dtype of the weight

* fix bug
2023-03-24 07:04:51 -04:00
e8cc02555e Automatically create/update tiny models (#22275)
* Automatically create or update tiny models

* Skip failed tests

* update workflow file

* use revision

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-23 19:14:17 +01:00
a92e0ad2e2 Enable training Llama with model or pipeline parallelism (#22329)
* Llama - Move target tokens to final pipeline device if needed

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-23 13:15:51 -04:00
502fec779b Generate: add test for left-padding support (#22322) 2023-03-23 17:00:22 +00:00
ec9b18f62d Fix --bf16 option support for Neuron after PR #22300 (#22307)
This PR fixes the "RuntimeError: No CUDA GPUs are available"
when running with --bf16 option on Neuron.

Related PRs:
https://github.com/huggingface/transformers/pull/20684
https://github.com/huggingface/transformers/pull/22300
2023-03-23 12:27:13 -04:00
aef488c503 Added type hints to TFDeiTModel (#22327)
* Added type hints to TFDeiTModel

* make style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-03-23 15:31:32 +00:00
59b9351b78 Minor typo in pipeline FillMaskPipeline's documentation. (#22339) 2023-03-23 11:14:11 -04:00
506e7c6361 Fix various imports (#22281)
* Fix various imports

* Fix copies

* Fix import
2023-03-23 10:34:17 -04:00
053c2153f8 Mention why one needs to specify max_steps in Trainer (#22333)
* Mention why one needs to specify max_steps in Trainer

* dummy change to trigger CI
2023-03-23 15:26:51 +01:00
5a9eb31477 Fixed gradient checkpoint bug for TimeSeriesTransformer (#22272)
* Fixed gradient checkpoint bug for this model

* Updating PR indentation (maintainer feedback)

* make fixup

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-03-23 08:45:13 -04:00
ff20f9cf36 [MBart] Add accelerate support for MBart (#22309)
add `accelerate` support for MBart
2023-03-23 10:34:43 +01:00
61f79b2986 [gptj] support older pytorch version (#22325)
* [gptj] support older pytorch version

* contributor

* contributor

* make copies

---------

Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2023-03-22 18:35:04 -07:00
80e3b36361 Really fix quality due to ruff release 2023-03-22 20:56:22 -04:00
ef28df0572 Fix quality due to ruff release 2023-03-22 20:45:08 -04:00
73fdc8c5b4 [deepspeed zero3] need generate(synced_gpus=True, ...) (#22242)
* [deepspeed zero3] need generate(synced_gpus=True, ...)

* fix

* rework per Sylvain's suggestion

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-22 12:18:57 -07:00
8b05ace014 Fix PipelineTests skip conditions (#22320)
* check what tests fail

* Skip failing tests

* Skip failing tests

* Skip failing tests

* Skip failing tests

* clean up

* clean up

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-22 20:02:24 +01:00
d62e7d8842 Chunkable token classification pipeline (#21771)
* Chunkable classification pipeline 

The TokenClassificationPipeline is now able to process sequences longer than 512. No matter the framework, the model, the tokenizer. We just have to pass process_all=True and a stride number (optional). The behavior remains the same if you don't pass these optional parameters. For overlapping parts when using stride above 0, we consider only the max scores for each overlapped token in all chunks where the token is.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* update with latest black format

* update black format

* Update token_classification.py

* Update token_classification.py

* format correction

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update comments

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update token_classification.py

Correct spaces, remove process_all and keep only stride. If stride is provided, the pipeline is applied to the whole text.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update chunk aggregation

Update the chunk aggregation strategy based on entities aggregation.

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

Remove unnecessary pop from outputs dict

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update token_classification.py

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add chunking tests

* correct formating

* correct formatting

* correct model id for test chunking

* update scores with nested simplify

* Update test_pipelines_token_classification.py

* Update test_pipelines_token_classification.py

* update model to a tiny one

* Update test_pipelines_token_classification.py

* Adding smaller test for chunking.

* Fixup

* Update token_classification.py

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/token_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-22 14:13:20 -04:00
f48d3314e4 docs: Resolve incorrect type typo in trainer methods (#22316)
Resolve incorrect type typo in trainer methods
2023-03-22 11:57:08 -04:00
0f68a7f408 Add Pix2Struct (#21400)
* v1 all keys match

* clean up

* forward pass ok

* add correct image transform

* generate works, logits matching

* clean up

* more refactor

* revert

* revert

* clean up

* clean ups

* clean up

* refactor

* refactor

* fix doc

* fix tokenizer test

* fix toctree

* revert toctree

* oops

* few fixes

* replace to `pixel_embeds`

* make fixup

* test processing & feat extractor

* fix some tests

* more fixes

* make fixup

* clean up

* more clean up

* add a single slow test

* fix test

* make fixup

* fix

* fix authors

* fix toctree

* update docs

* add docstring

* revert change

* Update src/transformers/models/pix2struct/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix tokenizer

* fix processor test

* fix test

* make fixup

* refactor

* fix config

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* format

* fix

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make fixup

* add docstring

* fix issues

* fix

* fix

* fix

* add slow test

* fix

* fix

* fix batched issue

* fix training issues

* fix ci test

* fix slow test

* fix conversion script

* remove unneeded classes

* fix slow test

* fix require backends

* fix masked fill

* revert

* fix softmax

* add large models support

* fix conditional generation

* few fixes

* add instructions

* rm unneeded file

* Update src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py

* fix ci test

* fix ci test really

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix nit

* fix nits

* fix image processors nits

* docstring

* clean up

* fix nit

* fix tests

* docstring nit

* fix reshape

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix nit

* fix repetition

* refactor processor

* make patch size consistent

* refactor forward

* fix docstring

* fix max_patches issue

* update docstirng

* update docstring

* fix coped from

* add skip reasons

* few fixes

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* format

* fix doctests

* refactor and fix

* fix doc build issue

* fix processor test

* small fix conversion script

* replace correct weights

* make fixup

* fix some issues

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* revert config and fixes

* Update src/transformers/models/pix2struct/image_processing_pix2struct.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more details

* fixes

* fix processor

* fix processor test

* fix

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* fix processor

* Update src/transformers/models/pix2struct/modeling_pix2struct.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add copied

* make fixup

* fix copies

* update docstring

* refactor

* fix docstring

* fix conversion script

* fix vqa issue

* replace to `flattened_patches`

* nit

* fix numpy issue

* fix image processors

* add batched vqa support

* fix vqa conversion

* make fixup

* fix conversion script

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* add correct docstring

* update docstring

* fix module level + channel dim

* use `make_list_of_images`

* refactor

* correct docstring

* fix authors

* remove `data_format`

* add header text test

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* add checkpoints

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-22 16:53:52 +01:00
fd3eb3e3cd Beef up Llama tests (#22314)
* tmp commit

* beef up llama tests
2023-03-22 15:20:48 +00:00
12febc20db Generate: Export TF generate with a TF tokenizer (#22310)
* Export TF generate with a TF tokenizer

* remove unused lines
2023-03-22 15:00:20 +00:00
5fd4e3c87c Enforce max_memory for device_map strategies (#22311)
Enforce  for device_map strategies
2023-03-22 09:22:07 -04:00
48bef3a734 Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer (#22302)
Fixed bug to calculate correct xpath_sub_list in MarkupLMTokenizer. Earlier xpath_sub_list was same as xpath_tags_list

Co-authored-by: dusejat <dusejat@amazon.com>
2023-03-22 12:07:49 +00:00
4e94c6c008 Fix position embeddings for GPT-J and CodeGen (#22069)
* Revert "[GPT-J] add deprecation warning (#21869)"

This reverts commit fb76994c41d1eaf09e50020cbd849d3bb686b6a3.

* Fix position embeddings for GPT-J and CodeGen

* Address review comments from @gante

* Fix "Copied from" comment referencing wrong function

* Fix copy/paste mistake

* Fix training path

* Hopefully make torch.fx happy

* Move position_ids long cast

* Revert "Hopefully make torch.fx happy"

This reverts commit e41a6f4cad3ff441124c7457b19cfb630d4ca025.

* Changes to help with torch.fx tracing

* Linter fix

* Correct position_ids tensor type hint

* Work-around torch.fx tracing issue

* Get the changes to work with torch.fx

* Address review comment from @michaelbenayoun

* Another small adjustment

* Add explanatory comment; small code tidyup
2023-03-22 11:14:54 +00:00
8e6c34b390 fix: Allow only test_file in pytorch and flax summarization (#22293)
allow only test_file in pytorch and flax summarization
2023-03-22 10:46:56 +00:00
4ccaf268fb add low_cpu_mem_usage option in run_clm.py example which will benefit… (#22288)
* add low_cpu_mem_usage option in run_clm.py example which will benefit LLM loading

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update all the example and README under language-modeling

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-03-22 10:42:39 +00:00
8472a224fb Enable traced model for text-generation task (#22265) 2023-03-22 10:19:26 +00:00
0558914dff Add MaskedImageModelingOutput (#22212)
* Add MaskedImageModelingOutput
2023-03-22 07:35:47 +03:00
0dcb46e7a4 Final update of doctest (#22299)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-22 01:00:33 +01:00
89a0a9eace [deepspeed] offload + non-cpuadam optimizer exception doc (#22044)
* [deepspeed] offload + non-cpuadam optimizer exception doc

* deps
2023-03-21 17:00:05 -07:00
5990743fdd Correct NATTEN function signatures and force new version (#22298) 2023-03-21 17:21:34 -04:00
d35f729649 Restore fp16 support on xla gpu device (#22300) 2023-03-21 16:32:43 -04:00
67c2dbdb54 Time to Say Goodbye, torch 1.7 and 1.8 (#22291)
* time to say goodbye, torch 1.7 and 1.8

* clean up torch_int_div

* clean up is_torch_less_than_1_8-9

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 19:22:01 +01:00
86c7931a70 Add translation perf_infer_gpu_one for it (#22296)
Add translation
2023-03-21 13:07:30 -04:00
d0b942d1dc fix more doctests (#22292)
* fix more doctests

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 16:16:17 +01:00
48327c5718 More doctests (#22268)
* all doctests

* Skip failed tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-21 13:27:30 +01:00
5a2b77a6c1 Fix error in mixed precision training of TFCvtModel (#22267)
* Make sure CVT can be trained using mixed precision

* Add test for keras-fit with mixed-precision

* Update tests/models/cvt/test_modeling_tf_cvt.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: gcuder <Gerald.Cuder@iacapps.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-03-21 12:12:57 +00:00
330d8b991f replace_8bit_linear modules_to_not_convert default value fix (#22238)
* Fixed modules_to_not_convert default value

* Fixed modules_to_not_convert docstring

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* ["lm_head"] if modules_to_not_convert is None

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-03-21 10:16:07 +00:00
c07a02a4b7 Update vision docstring bool masked pos (#22237)
* Add bool_masked_pos to forward docstrings

* Add note about mask ratio - videomae

* Fix up

* Fix indenting
2023-03-20 20:06:16 +00:00
7bd8650512 Example of pad_to_multiple_of for padding and truncation guide & docstring update (#22278)
* added an example of pad_to_multiple_of

* make style

* addressed feedback
2023-03-20 14:18:55 -04:00
fb0a38b4f2 Move torch.compile() wrapping after DDP/FSDP wrapping to ensure correct graph breaks during training (#22279) 2023-03-20 13:54:01 -04:00
8ac29fe090 Fix doc links (#22274) 2023-03-20 17:07:31 +00:00
da005253b8 Proper map location for optimizer load (#22273)
* Proper map location for optimizer load

* What happened to my code?
2023-03-20 11:30:46 -04:00
786092a35e Rework a bit the LLaMA conversion script (#22236)
* Update LLaMA conversion script

* Doc

* Fix the weight size for the 13B checkpoint

* Update src/transformers/models/llama/convert_llama_weights_to_hf.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-03-20 11:30:36 -04:00
43efd7cb13 Fix balanced and auto device_map (#22271) 2023-03-20 11:24:17 -04:00
89f0fda5d3 Fix the gradient checkpointing bug of the llama model (#22270)
fix grad ckpt bug of llama
2023-03-20 10:26:50 -04:00
cf0af9a31b [Trainer] Add optional communication backends for torch.distributed when using GPU (#22247)
Update training_args.py
2023-03-20 09:17:34 -04:00
c4bf6f38bd Italian translation perf_infer_cpu (#22243)
* added translated files

added perf_train_cpu and perf_train_cpu_many

* updated toctree

* updated toctree

* added file

perf_infer_cpu.medx

* italian translation perf_infer_cpu.mdx
2023-03-20 09:16:07 -04:00
466144d440 [Docs] fix typos in some tokenizer docs (#22256)
[Docs] fix typos

Co-authored-by: yesinkim <yesinkim@yesinkimui-MacBookAir.local>
2023-03-20 12:17:31 +00:00
a48310de47 Update training_args.py -- a nightly install is not required anymore for torch.compile (#22266)
Update training_args.py

A nightly install is not required anymore for `torch.compile`.
2023-03-20 12:00:05 +00:00
60d51ef512 [trainer] param count for deepspeed zero3 (#22193)
[trainer] param count for zero3
2023-03-17 11:02:55 -07:00
cf601b902f Fix Unnecessary move of tensors from CPU to GPU in LlamaRotaryEmbedding (#22234)
push
2023-03-17 13:56:32 -04:00
bec075612a Revert "Use dash==2.8.1 for now for daily CI" (#22233)
Revert "Use `dash==2.8.1` for now for daily CI (#22227)"

This reverts commit 53218671d968235ff320a4b03f7753972a637299.
2023-03-17 16:54:27 +01:00
3028b20a71 Fix natten (#22229)
* Add kernel size to NATTEN's QK arguments.

The new NATTEN 0.14.5 supports PyTorch 2.0, but also adds an additional
argument to the QK operation to allow optional RPBs.

This ends up failing NATTEN tests.

This commit adds NATTEN back to circleci and adds the arguments to get
it working again.

* Force NATTEN >= 0.14.5
2023-03-17 11:07:55 -04:00
074490b2c2 fix(docs): fix task guide links in model docs (#22226)
fix(docs): task guide links in model docs
2023-03-17 14:30:17 +00:00
314cdf7c25 Removed .mdx extension in two links (#22230)
removed .mdx extension
2023-03-17 10:27:12 -04:00
f251441387 Add LlamaForSequenceClassification (#22209)
* Add LlamaForSequenceClassification

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Add docstring

* Add test

* Add input embedding getter and setter

* Remove dead code

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-17 14:39:26 +01:00
675d2a5a00 fix AutoTP in deepspeed could not work for bloom (#22196)
* fix AutoTP in deepspeed could not work for bloom

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add a method in BloomModel to build ailib

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-03-17 09:28:17 -04:00
00934026a4 LLaMA house-keeping (#22216)
* LLaMA house-keeping

* Doc links
2023-03-17 08:55:15 -04:00
42f8f76402 Depth estimation task guide (#22205)
* added doc to toc, auto tip with  supported models, mention of task guide in model docs

* make style

* removed "see also"

* minor fix
2023-03-17 08:36:23 -04:00
53218671d9 Use dash==2.8.1 for now for daily CI (#22227)
Use dash 2.8.1 for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-17 13:27:14 +01:00
af1c864cdc fix code example in mgp-str doc (#22219)
Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
2023-03-17 09:40:06 +00:00
33d033d694 fix typos in llama.mdx (#22223) 2023-03-17 08:43:18 +00:00
97a3d16a69 Hotfix for natten issue with torch 2.0.0 on CircleCI (#22218)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 23:57:26 +01:00
5110e5748e 🔥py38 + torch 2 🔥🔥🔥🚀 (#22204)
* py38 + torch 2

* increment cache versions

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 22:59:23 +01:00
fb366b9a2a fixes a typo in WhisperFeatureExtractor docs. (#22208)
* fixes a typo

* .
2023-03-16 16:08:05 +00:00
da3ba3a167 [XGLM] Add accelerate support for XGLM (#22207)
* add `accelerate` support for XGLM

* fix order
2023-03-16 16:18:05 +01:00
a88a4dae19 Temporarily fix ONNX model exporting error (#21830)
* Temporarily fix https://github.com/microsoft/onnx-converters-private/issues/143

* Reduced column width

* Fix formatting.

* Revert "Temporarily fix https://github.com/microsoft/onnx-converters-private/issues/143"

This reverts commit 6e95a108042118d204da447729f3834affa354fc.

* Fix export error.

* Revert "Fix formatting."

This reverts commit 8310f60da10358edbdf77a2a2f3c83ee55066cb8.

* Propagated changes made in SwinV2 to Swin2SR
2023-03-16 10:56:26 -04:00
4c5c0af7e5 Update tiny model creation script (#22202)
* Update UNCONVERTIBLE_MODEL_ARCHITECTURES

* Deal with 2 model tester classes in single test file

* Deal with 2 model tester classes in single test file

* Deal with 2 model tester classes in single test file

* make style and quality

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 14:21:58 +01:00
464d420775 LLaMA Implementation (#21955)
* LLaMA

* sharding and docs

* tweak

* black

* inits

* ruff

* LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP

* init

* no checkpoint

* docs

* ruff

* type_vocab_size

* tokenizer fixes

* tokenizer fixes

* Update tokenization_llama.py

* Update tokenization_llama.py

* Update configuration_llama.py

* Update modeling_llama.py

* tokenizer add_bos by default

* licenses

* remove decoder

* norms and mlp

* rope overhaul

* tweaks

* black

* mention OPT implementation

* off-by-one naming

* typo

* fix

* tokenization fix and slicing bug

* padding config

* cleanup

* black

* update tests

* undo typo

* fix vocab caching logic

* ruff

* docbuilder

* attn fix from BlackSamorez

* initial feedback

* typo

* docs

* llama case

* llama case

* load checkpoint docs

* comment about tokenizer

* tokenizer defaults

* clear past_key_values if use_cache=False

* last tweaks

* last tweaks

* last tweaks

* last tweaks

---------

Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
2023-03-16 09:01:15 -04:00
0041be5b3d LLaMA Implementation (#21955)
* LLaMA

* sharding and docs

* tweak

* black

* inits

* ruff

* LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP

* init

* no checkpoint

* docs

* ruff

* type_vocab_size

* tokenizer fixes

* tokenizer fixes

* Update tokenization_llama.py

* Update tokenization_llama.py

* Update configuration_llama.py

* Update modeling_llama.py

* tokenizer add_bos by default

* licenses

* remove decoder

* norms and mlp

* rope overhaul

* tweaks

* black

* mention OPT implementation

* off-by-one naming

* typo

* fix

* tokenization fix and slicing bug

* padding config

* cleanup

* black

* update tests

* undo typo

* fix vocab caching logic

* ruff

* docbuilder

* attn fix from BlackSamorez

* initial feedback

* typo

* docs

* llama case

* llama case

* load checkpoint docs

* comment about tokenizer

* tokenizer defaults

* clear past_key_values if use_cache=False

* last tweaks

* last tweaks

* last tweaks

* last tweaks

---------

Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
2023-03-16 09:00:53 -04:00
09922da4a7 Italian Translation of migration.mdx (#22183)
* Tranlstion Italian: migration

* Update migration.mdx

minor fixes

* Update _toctree.yml

* Delete migration.mdx

* Add italian translation of migration.mdx

* Update of migration.mdx translation and toctree
2023-03-16 12:00:07 +00:00
52a57f7c7c Update expected values in MgpstrModelIntegrationTest (#22195)
Update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 11:48:52 +00:00
1485bd9c02 Fix typo in Align docs (#22199)
Fix align docs typo
2023-03-16 13:41:48 +03:00
1c4a9acc73 Fix DeepSpeed CI (#22194)
* Deal with torch-tensorrt

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-16 05:52:40 +01:00
7c4999e495 t5 remove data dependency (#22097)
* t5 remove data dependency

* make style

* make fix-copies

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
2023-03-15 16:11:15 -04:00
16121bae5c Update BridgeTowerForContrastiveLearning (#22145)
* Use return_loss for BridgeTowerForContrastiveLearning, add example

* fix tests

* Update example in BridgeTowerForContrastiveLearning

* Update test_modeling_bridgetower.py

* update model output format

* minor update

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

* make style

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-15 20:54:38 +01:00
42ad693b7b Regression pipeline device (#22190)
* Fix regression in pipeline when device=-1 is passed

* Add regression test
2023-03-15 14:13:38 -04:00
737681477c Revert 22152 MaskedImageCompletionOutput changes (#22187)
Revert changes
2023-03-15 18:37:23 +01:00
7b0e2cfdfb Fix: unfinished_sequences with correct device (#22184)
Fix: unfinished_sequences with correct device 

The original code was causing errors when running torch.jit.trace due to the tensor options being incorrect. I fixed this by using torch.ones to create a tensor with the correct device and dtype. This should resolve the issue with running torch.jit.trace.
2023-03-15 16:27:19 +00:00
f7329751fe Run all tests by default (#22162) 2023-03-14 17:30:43 -04:00
b7036f4912 Load optimizer state on CPU to avoid CUDA OOM (#22159) 2023-03-14 17:30:32 -04:00
ebdb185bef v4.28.0.dev0 2023-03-14 13:49:10 -04:00
c52c5282ef Revert "Enforce same behavior as PyTorch 2.0 for older versions" (#22163)
Revert "Enforce same behavior as PyTorch 2.0 for older versions (#22136)"

This reverts commit 1c801d65eb42a71ea52db797af760bd96c8b113f.
2023-03-14 13:45:46 -04:00
085bf5c1fe [trainer] add --optim adamw_torch_fused for pt-2.0+ (#22144)
* [trainer] add --optim adamw_torch_fused

* change optim default

* deal with non-torch

* revert default change; prep; add fp16/amp assert

* typo

* typo
2023-03-14 10:22:03 -07:00
c6318c3788 to_pil - don't rescale if int and in range 0-255 (#22158)
* Don't rescale if in and in range 0-255

* Raise value error if int values too large

* Update tests/test_image_transforms.py

* Update tests/test_image_transforms.py
2023-03-14 15:43:44 +00:00
3b22bfbc6a Create MaskedImageCompletionOutput and fix ViT docs (#22152)
* create MaskedImageCompletionOutput

* fix bugs

* fix bugs
2023-03-14 13:55:18 +00:00
b45192ec47 Fix big model inference for T5 models in float16 (#22095)
* Fix big model inference for T5 models in float16

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Style

* Trigger CI with latest release

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-14 09:20:16 -04:00
7f5ad6c35b Translation Italian: perf_train_cpu and perf_train_cpu_many (#22151)
* added translated files

added perf_train_cpu and perf_train_cpu_many

* updated toctree
2023-03-14 11:09:36 +00:00
ff88703501 Update 2 doctest expected values for torch 2.0.0 (#22148)
update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-14 09:13:16 +00:00
cdddfbffa1 Add ConvNeXT V2 (#21679)
* Add ConvNeXt V2 to transformers
* TF model is separated from the PR to fix issues
2023-03-14 12:08:14 +03:00
6c2ad00c46 Move is_pipeline_test_to_skip to specific model test classes (#21999)
* Move `is_pipeline_test_to_skip` to specific model test classes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-14 10:03:02 +01:00
2beabd24f0 [🛠️] Fix-whisper-breaking-changes (#21965)
* temp fix

* temporary fix

* update

* fix tests

* fixup

* update based on reveiew

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* update to fix tests

* update docstring

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-03-14 09:23:48 +01:00
101a6cd276 docs: New terms and updates to glossary (#21982)
* Updated glossary with new terms, added abbreviations for certain terms and merged autoencoding models, autoregressive models and causal language modeling into encoder and decoder models

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added link to 'Pipeline for inference' tutorial

* Trigger CI

* Update docs/source/en/glossary.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added entry for self supervised learning, added deleted entries + fixed broken links

* Update docs/source/en/glossary.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 19:09:37 -04:00
ba9e0191de Prepare daily CI for torch 2.0.0 (#22135)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-13 22:21:15 +01:00
f780557a34 [Safetensors] Add explicit flag to from pretrained (#22083)
* [Safetensors] Add explicit  flag to from pretrained

* add test

* remove @

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 21:39:06 +01:00
3a35937ede Remove backend check for torch.compile (#22140)
* Remove backend enforcment for torch.compile

* Update error

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Style

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2023-03-13 16:34:00 -04:00
618697ef53 [deepspeed docs] Activation Checkpointing (#22099)
* [deepspeed docs] Activation Checkpointing

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update deepspeed.mdx

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-13 12:52:42 -07:00
5b85add7d5 [trainer] fix bug in grad accum with multiple epochs (#22098)
* [trainer] fix bug in grad accum

* comment out debug

* fix one-off

* rename counter
2023-03-13 12:51:40 -07:00
1c801d65eb Enforce same behavior as PyTorch 2.0 for older versions (#22136) 2023-03-13 15:50:50 -04:00
e16cbe88ae Trainer: let generate pick its inputs (#22108)
* Let generate pick its inputs

* fix squad seq2seq example
2023-03-13 19:00:25 +00:00
d979cf6efd [Whiper] add get_input_embeddings to WhisperForAudioClassification (#22133)
* add `get_input_embeddings` to `WhisperForAudioClassification`

* add common tests

* fix another common test

* Update tests/models/whisper/test_modeling_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-03-13 19:46:01 +01:00
987972377d Update configuration_align.py (projected_dim=640) (#22139)
Update configuration_align.py

updated projected_dim=640 from 512 in arguments of AlignConfig
2023-03-13 14:12:12 -04:00
54ee56b15b Add a new script to check model testers' config (#22063)
* Add script

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-13 19:11:19 +01:00
a096eaca65 Adding Type Hints to TF_Pegasus model (#21941)
* Adding Type Hints to TF_Pegasus model

* Updated some parameters per maintainer comments
2023-03-13 15:58:29 +00:00
6cb5132a7f Fix doc link for MGP-STR (#22138) 2023-03-13 15:26:50 +00:00
8def252de2 Zero-shot image classification task guide (#22132)
* WIP

* WIP

* manual inference example

* make style

* Apply suggestions from code review

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

---------

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2023-03-13 10:57:17 -04:00
e61081e725 Fix gradient checkpointing bug in trocr (#22126)
* Fix gradient checkpointing bug in trocr

* Fix format

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-13 15:45:47 +01:00
ef74e7e783 Fix gradient checkpointing bug in LongT5 (#22130) 2023-03-13 14:06:17 +00:00
c1db6a3bab Fix gradient checkpointing bug in xmod (#22129) 2023-03-13 15:05:11 +01:00
6652e7da0d [Blip2] skip accelerate test (#22124)
skip accelerate test
2023-03-13 15:03:21 +01:00
dd3a0580a6 Added big_models.mdx italian translation #17600 (#22115)
* updated toctree

* italian translation big_model.mdx

* italian translation big_models
2023-03-13 10:02:03 -04:00
0768c5e274 Fix gradient checkpointing bug in xlm_roberta_xl (#22128) 2023-03-13 13:52:34 +00:00
4c14c1f47b Fix gradient checkpointing bug in Trajectory Transformer (#22125) 2023-03-13 13:50:02 +00:00
d0876a095f Fix gradient checkpointing bug in xglm (#22127) 2023-03-13 13:49:23 +00:00
0c883766bd Add pr_checks.mdx Italian translation (#17459) (#22116)
* Add pr_checks.mdx Italian translation (#17459)

* Updated pr_checks.mdx Italian translation (#17459)
2023-03-13 09:24:34 -04:00
102b5ff4a8 add new model of MGP-STR (#21418)
* add new model of MGP-STR

* fix the check failings

* remove torch and numpy from mgp_tokenization

* remove unused import from modeling_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str.py

* add test_processing_mgp_str

* add test_processing_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str and add softmax outs to model

* rm test_processing_mgp_str and add softmax outs to model

* rewrite the code of mgp-str according to PR suggestions

* rewrite the code of mgp-str according to PR suggestions

* add new model of MGP-STR

* fix the check failings

* remove torch and numpy from mgp_tokenization

* remove unused import from modeling_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str.py

* add test_processing_mgp_str

* add test_processing_mgp_str

* add test_processing_mgp_str

* rm test_processing_mgp_str and add softmax outs to model

* rewrite the code of mgp-str according to PR suggestions

* rewrite the code of mgp-str according to PR suggestions

* remove representation_size from MGPSTRConfig

* reformat configuration_mgp_str.py

* format test_processor_mgp_str.py

* add test for tokenizer and complete model/processer test and model file

* rm Unnecessary tupple in modeling_mgp_str

* reduce hidden_size/layers/label_size in test_model

* add integration tests and change MGPSTR to Mgpstr

* add test for logit values

* reformat test model file

---------

Co-authored-by: yue kun <yuekun.wp@alibaba-inc.com>
2023-03-13 10:11:31 +00:00
32e3466d38 Add AutoModelForZeroShotImageClassification (#22087)
Adds AutoModelForZeroShotImageClassification to transformers
2023-03-13 12:46:14 +03:00
b90fbc7e0b [Whisper] Remove embed_tokens from encoder docstring (#21996)
* [Whisper] Remove embed_tokens from encoder docstring

* new line to retrigger CI

* remove new line
2023-03-11 14:03:36 +01:00
2f320661f3 Revert "[GPT2] Propose fix for #21080" (#22093)
Revert "[GPT2] Propose fix for #21080 (#21853)" to avoid CI failure

This reverts commit a3fef89b2694fac4dd642a3f77d3e96d0c3df82a.
2023-03-10 22:08:21 +01:00
499770c088 Fix imports of TF MobileViT (#22065)
* Fix imports of TF MobileViT

* Fix copies
2023-03-10 14:46:34 -05:00
bdec2768bd GPT-J specific half precision on CPU note (#22086)
* re: #21989

* update re: #21989

* removed cpu option

* make style
2023-03-10 14:03:43 -05:00
2f4cdd97f5 handle numpy inputs in whole word mask data collator (#22032) 2023-03-10 10:50:29 -05:00
a70da86b84 Fix hint in src/transformers/modeling_utils.py (#22074)
fix hint
2023-03-10 08:56:42 -05:00
419d979f7f Fix gradient checkpointing bug in Speecht5 (#22080)
* Fix gradient checkpointing bug in Speecht5

* Update modeling_speech_to_text.py

* Update src/transformers/models/speech_to_text/modeling_speech_to_text.py

* Fix change errors

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-10 13:36:09 +00:00
7014fc360d Generate - Fix broken documentation links (#22078)
fix broken links
2023-03-10 13:28:30 +00:00
ade26bf991 Fix small typo in flan-ul2.mdx (#22068)
* Update flan-ul2.mdx

* Update flan-ul2.mdx
2023-03-10 07:44:45 -05:00
a3fef89b26 [GPT2] Propose fix for #21080 (#21853)
* Make sure position ids are masked

* test that padded input produce the same results

* fix failing tests

* fixup

* fix batch test
2023-03-10 07:15:25 -05:00
eee195b3aa Fix gradient checkpointing bug in switch transformer (#22081) 2023-03-10 11:31:08 +00:00
b9273353dc Fix gradient checkpointing bug in Speech2Text (#22079)
* Fix gradient checkpointing bug in Speech2Text

* Update modeling_speech_to_text.py

* Update modeling_speech_to_text_2.py
2023-03-10 11:30:42 +00:00
a9bd5df16a Add a progress bar for the total download of shards (#22062)
* Add a progress bar for the total download of shards

* Check for no cache at all

* Fix check
2023-03-09 16:58:03 -05:00
1a5fc300f4 Fix case when using --gradient_accumulation_steps with DDP disabled. (#22007)
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-42-72.us-west-2.compute.internal>
2023-03-09 14:31:58 -05:00
6d9031f285 Update tiny model creation script (#22058)
Update the script

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 19:53:54 +01:00
7a2b915e92 Add setters by type of args to TrainingArguments (#21570)
* Add setters by type of args to TrainingArguments

* Define more setters
2023-03-09 13:13:23 -05:00
ab81d31d20 Skip 3 tests for WhisperEncoderModelTest (#22060)
* skip 3 tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 19:09:23 +01:00
8434cb878e Edit the docstring of image_processing_donut to match code (#22033)
* Edit the docstring of `image_processing_donut` to match code

* improve style

* more style improvement after installing quality
2023-03-09 17:35:43 +00:00
ec24132b6c [deepspeed] offload + non-cpuadam optimizer exception (#22043)
* [deepspeed] offload + non-cpuadam optimizer exception

* flip

* revert min version
2023-03-09 08:12:57 -08:00
d0c19b3303 rm $ symbol from code block from contributing.md (#22057)
rm $ symbol from code block 

Removed the $ symbol from the code block to make copy-pasting easier.
2023-03-09 11:09:46 -05:00
fdf8409656 pt-to-tf model architecture override (#22055)
* Add an argument to pt-to-tf to allow overriding the model class

* make fixup

* Minor fix to error message

* Remove unused extra conversion from the script
2023-03-09 15:36:29 +00:00
04bfac83b7 Return analysis for hyperparameter_search with Ray backend (#22040)
* return analysis for hyperparameter_search with ray backend

* Revert "return analysis for hyperparameter_search with ray backend"

This reverts commit cd5179070930e03020d96d98eb51dec3eb21ef75.

* add run_summary attribute to BestRun and return analysis for ray backend

* fix typo

* add doc for run_summary for ray backend
2023-03-09 09:44:17 -05:00
90a7c95496 Show the number of huggingface_hub warnings in CI report (#22054)
* show hfh warnings

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-09 15:39:05 +01:00
923110b74f Remove set_access_token usage + fail tests if FutureWarning (#22051)
* Remove set_access_token usage + fail tests if FutureWarning

* do not fail on FutureWarning in CI

---------

Co-authored-by: testbot <lucainp@hf.co>
2023-03-09 09:23:48 -05:00
684774306d Can't install tf2 on M1 Chip by default (#22046) 2023-03-09 07:44:58 -05:00
81cd655cab Docs Improvement - In ZSH, not using ' ' around pip install fails, fix it (#22045)
In ZSH, not using ' ' around pip install fails

Running 
```
pip install transformers[torch]
```
in the default ZSH terminal will fail with the error `zsh: no matches found: transformers[torch]`

The solution is to wrap the installation path in ' ' like 
```
pip install 'transformers[torch]'
```

Relevant StackOverflow: https://stackoverflow.com/questions/30539798/zsh-no-matches-found-requestssecurity
2023-03-09 07:43:49 -05:00
1a77a1a86f [21737][T5]: Fix gradient checkpoint bug (#22036)
* [21737][T5]: Fix gradient checkpoint bug

* [21737][T5]: Fix gradient checkpoint bug

* [21737][T5]: Fix gradient checkpoint bug

* Update src/transformers/models/mt5/modeling_mt5.py

* Update src/transformers/models/t5/modeling_t5.py

---------

Co-authored-by: njindal <njindal@adobe.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-09 12:17:44 +00:00
2055d737ad Update ALIGN docs (#22025)
* Fix typos and add code examples, resources
2023-03-09 14:12:17 +03:00
3ec8171bed Bug fix: token classification pipeline while passing offset_mapping (#22034)
fix slow tokenizers with passing offset_mapping
2023-03-08 16:21:46 -05:00
1cbac6867b Mark all BridgeTower tests slow for now (#22039)
* slow me

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 21:48:29 +01:00
bcc8d30aff Avoid text_config_dict and vision_config_dict being saved for CLIP-like models (#22035)
* Avoid text_config_dict and vision_config_dict being saved

* for other CLIP-like models

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 20:27:30 +01:00
998395061b fixes the gradient checkpointing of whisper (#22019)
* fixing

* Update modeling_whisper.py

* Update modeling_whisper.py

* Update src/transformers/models/whisper/modeling_whisper.py

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-08 14:21:38 -05:00
6192549c1f [examples/speech-recognition] Add SpecAugment to run_speech_recognition_seq2seq.py (#21942)
* Add specaugment to run_speech_recognition_seq2seq.py

* Remove useless argument: text_column

* Fix quality

* Update return_attention_mask condition

* Update specaugment arguments only for whisper models

* Remove SpecAugment arguments from ModelArguments, only leave default values for simplicity

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update apply_spec_augment only for whisper models

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Rename return_attention_mask to forward_attention_mask to avoid confusion with wav2vec2 models

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-03-08 17:59:31 +01:00
b427b263e2 Add tokenize_kwargs parameter definition in the FeatureExtractionPipeline (#22031)
add tokenize_kwargs doc in the FeatureExtractionPipeline
2023-03-08 11:43:31 -05:00
a5392ee747 Fix test for torchneuroncore in Trainer (#22028) 2023-03-08 09:12:43 -05:00
de81adf978 [WIP] Add BridgeTowerForContrastiveLearning (#21964)
* Add BridgeTower for ITC

* Fix review feedback

* Rename BridgeTowerForITC, cleanup

* Fix style and quality

* implement tests

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
2023-03-08 09:00:54 -05:00
edea08a6b0 [bnb] Fix bnb error message (#22026)
* fix error message

* make style
2023-03-08 14:51:44 +01:00
dfe9a31973 Update AudioClassificationPipelineTests::test_small_model_pt for PT 2.0.0 (#22023)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-08 13:56:47 +01:00
bbd949970d update: bertology paper (#22012) 2023-03-08 07:54:30 -05:00
4130e70367 VideoMAE doctest - use valid dummy pixel values (#22022)
Use valid dummy pixel values
2023-03-08 11:54:42 +00:00
jim
c1f85598eb Generate - add 1 to cur_len to make up the new beam length (#21993)
* add 1 to cur_len to make up the new beam length

cur_len is 1 token shorter comparing to the length of the sequence whose best_sum_logprobs is the numerator.

* cur_len+=1 before check if beam hyp is done

* format code

* reformat with black

---------

Co-authored-by: Chiming <chiming@biomap.com>
2023-03-08 11:47:55 +00:00
b338414e61 Update tiny model creation script and some others files (#22006)
* Update 1

* Update 2

* Update 3

* Update 4

* Update 5

* Update 6

* Update 7

* Update 8

* Update 9

* Update 10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 22:31:14 +01:00
8abe4930d3 [Time-Series] informer model (#21099)
* added informer to gitignore

* added informer to gitignore

* WIP informer2020

* added checking that instantiate works

* added config using gluonTS by kashif

* WIP config

* adding informeConfig. need to remove FeatureEmbedder

* done InformerConfig, but need to change the names

* Done informer model init. working on enc-dec

* added things to address, after reading again enc-dec in the paper

* done modeling - checking initialization work

* added informer to gitignore

* WIP informer2020

* added checking that instantiate works

* added config using gluonTS by kashif

* WIP config

* adding informeConfig. need to remove FeatureEmbedder

* done InformerConfig, but need to change the names

* Done informer model init. working on enc-dec

* added things to address, after reading again enc-dec in the paper

* done modeling - checking initialization work

* moved enc-dec init to InformerEncoder/Decoder init

* added 'init_std' to config, now model init works!

* WIP conversion script, and added code sources

* WIP conversion script: loading original informer pth works

* WIP conversion script: change defaults in the config

* WIP conversion script: supporting Informer input embedding

* WIP conversion script: added parameters for the informer embed

* WIP conversion script: change dim_feedforward=2048

* WIP conversion script: remove unused args for loading checkpoint

* just cleaning up

* DataEmbedding removed, after thinking with Kashif

* working on forward pass

* WIP forward pass: trying to establish working batch for forward pass

* cleaning and finalizing

* adding HF names and docs

* init after cleaning works

* WIP in tests

* added docs for the informer specific args

* fix style

* undo change

* cleaning informer, now need to work only enc-dec

* initial enc-dec classes

* added encoder and decoder

* added todo

* add todos for conv_layers

* added decoder docs from vanilla

* added encoder docs from vanilla

* remove encoder decoder from the original informer

* removed AttentionLayer from the original paper

* removed TriangularCausalMask, same as decoder_attention_mask

* initial sparse attention

* use conv_layers

* fixed test_config test

* fix parenthesis when itearting zip(layers, conv_layers)

* error found in prob attention, added sizes as comments

* fix sizes

* added proposal for q_reduce indexing, and remove unused

* WIP ProbMask, and changed factor=2 for testing

* remove unused libs for this PR for creating the env

* fix checking the attn_weights.size() after bmm

* Q_reduce: changed from torch.gather to simple slicing

* WIP calculate final attn_output

* finish adding v_aggregated, attn_output ready

* changed tgt_len to u in attention_mask, need to fix the size error

* comment attention_mask for encoder, and fix if cond for v_agg

* added ProbMask support (wip), removed old original code

* finished ProbMask 😃

* Revert "remove unused libs for this PR for creating the env"

This reverts commit 11a081e09e92771e51a5d2758d53a9afb59547f0.

* fixes

* make style

* fix initial tests

* fix more tests

* dry

* make style

* remove unused files

* style

* added integration tests

* fix num_static_real_features

* fix header

* remove unused function

* fix example

* fix docs

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/modeling_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/informer/configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixes for reviewer

* use prediction_length from model

* fix style

* fixed informer.mdx

* added to index

* updated readme

* undo

* make fix-copies

* typo

* fix copy

* added Informer to toctree

* in order

* fixed comments

* remove unneeded new lines in docs

* make static real and cat optional

* fix use of distil conv layers

* fixed integration test

* added checkpoint for convlayer

* make fix-copies

* updated from time series model

* make fix-copies

* copy decoder

* fix unit tests

* updated scaling config

* fix integration tests

* IGNORE_NON_TESTED

* IGNORE_NON_AUTO_CONFIGURED

* IGNORE_NON_AUTO_CONFIGURED

* updated check configs

* fix formatting

* undo change from time series

* prediction_length should not be None

* aliign with the blog: prettify ProbSparse and change attention_factor  to sampling_factor

* make style

* make fix-copies

* niels CR: update contributed by

* niels CR: update configuration_informer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* niels CR: update kashif -> huggingface

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* niels CR: `sampling_factor` only relevant when `attention_type`=prob

* make style

* fixed U_part: added multiplication by `L_Q`

* fixed bug: remove `is not None` from `if config.distil`

* fixed test: `decoder_seq_length` to `encoder_seq_length` in cross_attentions check

* fix integration tests

* updated model hub

* do not shift as in training

* undo

* fix make-copies

* make fix-copies

* added `if prediction_length is None`

* changed `ProbSparseAttention` to `InformerProbSparseAttention`

* changed `V_sum` -> `v_mean_dim_time`

* changed `ConvLayer` to `InformerConvLayer` and fixed `super()`

* TimeSeriesTansformer->Informer in decoder's Copied from

* more descriptive in ProbSparse

* make style

* fix coped from

* Revert "added `if prediction_length is None`"

This reverts commit b4cbddfa05e3bd739b79569cd3c3b89e316f2451.

* fixed indent

* use InformerSinusoidalPositionalEmbedding

* make fix-style

* fix from #21860

* fix name

* make fix-copies

* use time series utils

* fix dec num_heads

* docstring

* added time series util doc

* _import_structure

* formatting

* changes from review

* make style

* fix docs

* fix doc

* removed NegativeLogLikelihood

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-07 21:36:38 +01:00
dde718e7a6 [DETR and friends] Remove is_timm_available (#21814)
* First draft

* Fix to_dict

* Improve conversion script

* Update config

* Remove timm dependency

* Fix dummies

* Fix typo, add integration test

* Upload 101 model as well

* Remove timm dummies

* Fix style

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-03-07 15:19:39 -05:00
2156662dea [TF] Fix creating a PR while pushing in TF framework (#21968)
* add create pr arg

* style

* add test

* ficup

* update test

* last nit fix typo

* add `is_pt_tf_cross_test` marker for the tsts
2023-03-07 17:32:08 +01:00
d128f2ffab Stop requiring Torch for our TF examples! (#21997)
* Stop requiring Torch for our TF examples!

* Slight tweak to logging in the example itself
2023-03-07 15:54:10 +00:00
7c39318136 [Whisper] Add model for audio classification (#21754)
* [Whisper] Add model for audio classification

* make fix-copies

* add to docs

* add docstring

* empty returns

* add code example

* switch to fleurs

* stick everything on one line
2023-03-07 16:20:21 +01:00
9402788b34 Skip test_multi_gpu_data_parallel_forward for some model tests (#21991)
skip test_multi_gpu_data_parallel_forward for some model tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 14:23:36 +01:00
99c5c6079d Update notification_service.py (#21992)
* better check

* better check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 14:20:39 +01:00
10bcbcae30 Remove unneeded casts to bool (#21983)
Remove cast to Bool
2023-03-07 07:35:49 -05:00
95408e9953 [DETR, YOLOS] Fix device bug (#21974)
* Fix integration test

* Add test

* Add test
2023-03-07 07:34:04 -05:00
eec46b4f75 Fix MinNewTokensLengthLogitsProcessor when used with a list of eos tokens (#21959)
* Fix MinNewTokensLengthLogitsProcessor when used with a list of eos tokens

* fix docs

* Empty commit

* formatting
2023-03-07 11:59:22 +00:00
4063fd9cba Add check before int casting for PIL conversion (#21969)
* Add check before int casting for PIL conversion

* Line length

* Tidier logic
2023-03-07 11:14:09 +00:00
5b28b78332 Update Jukebox tests (#21984)
* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

* update expected values for jukebox

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-07 04:20:14 +01:00
31e3c6c393 docs: improve clarity for language modeling (#21952)
* docs: improve clarity for clm/mlm

* docs: remove incorrect explanation

* docs: remove incorrect explanation

---------

Co-authored-by: pdhall99 <pdhall99>
2023-03-06 13:13:43 -05:00
0ce5236dd1 Fix gradient checkpointing bug in ESM (#21980) 2023-03-06 17:44:53 +00:00
de496ef08b Fix gradient checkpointing bug in Codegen (#21979) 2023-03-06 17:44:31 +00:00
4a545d18e2 Fix gradient checkpointing bug in BlipText (#21978)
Make Format
2023-03-06 17:43:52 +00:00
451263b841 Fix gradient checkpointing bug in Blenderbot Small (#21977) 2023-03-06 17:43:25 +00:00
4f84dedc03 Fix gradient checkpointing bug in BigBird Pegasus (#21976) 2023-03-06 17:42:52 +00:00
f2a2616b74 Update expected values for test_xglm_sample (#21975)
update expected values for xglm

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 18:07:31 +01:00
5d8efc79db Add TF contrastive image text finetuning example (#21939)
* Initial commit

* stash commit

* Add model checkpointing and pushing

* Fix model name inference

* Update README

* Update README

* Remove a couple of Torch references

* Update copyright date

* make fixup

* Update PushToHubCallback args!

* Remove the torch summary

* Add strategy.scope
2023-03-06 16:57:40 +00:00
9474abdf47 Use larger atol in torch.allclose for some tests (#21966)
Use larger atol

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 17:41:00 +01:00
64d95c44ec Add missing parameter definition in layoutlm config (#21960)
Four parameters in `LayoutLM` config were missing definitions, Added their definition (copied from BertConfig).
2023-03-06 15:20:11 +00:00
f3c75f8b44 [Generate] Fix gradient_checkpointing and use_cache bug for BLOOM (#21956)
Step 1 - Change use_cache fix
2023-03-06 14:56:40 +00:00
934d0b8bdd Fix bert issue (#21963)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-06 14:55:31 +00:00
0bb17295f0 Disable DDP for neuron (#21953)
Disable DDp for neuron

Co-authored-by: EC2 Default User <ec2-user@ip-172-31-42-72.us-west-2.compute.internal>
2023-03-06 09:33:44 -05:00
bc33fbf956 [CI] Fix ci (#21940)
* fix `get_proposal_pos_embed`

* fix order

* style

* zero shot simplify test

* add approximate values for zero shot audio classification
2023-03-06 15:22:27 +01:00
fcf813417a Update expected values in XLMProphetNetModelIntegrationTest (#21957)
update values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-06 09:15:44 +01:00
699a2293cc Fixed gradient_checkpointing/use_cache bug in blenderbot (#21833)
* Fixed gradient_checkpointing/use_cache bug in blenderbot

* Update modeling_blenderbot.py

* Added back if statement

* Formatted using black
2023-03-04 15:45:53 +00:00
6feb39b43c Fix gradient checkpointing bug in Roformer (#21946) 2023-03-04 15:44:33 +00:00
6386eb9721 Fix gradient checkpointing bug in Rembert (#21945) 2023-03-04 15:44:06 +00:00
f12c74f51e Fix gradient checkpointing bug in Pegasus (#21944) 2023-03-04 15:43:32 +00:00
f932ee61b9 Fix gradient checkpointing bug in OPT (#21943) 2023-03-04 15:42:57 +00:00
003a7cc608 [Whisper] Fix feature normalization in WhisperFeatureExtractor (#21938)
Fix feature normalization in WhisperFeatureExtractor
2023-03-03 14:21:13 -05:00
718e9d777f [CLAP] Support batched inputs for CLAP. Fixes pipeline issues (#21931)
* fix pipeline

* fix feature_extraction clap

* you can now batch the `is_longer` attribute

* add tests

* fixup

* add expected scores

* comment on is_longert
2023-03-03 18:42:18 +01:00
c5fe06c59d Update README logo (#21933) 2023-03-03 11:57:39 -05:00
82aac00e0f [Flan-UL2] Add-flan-ul2 (#21929)
* add doc and readme

* add model docs

* update toctree and fix copies

* update

* update doc file

* fix

* add FLAN-UL2 to configuration mapping

* fixup

* Apply suggestions from code review

* more clarification

---------

Co-authored-by: younesbelakda <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-03-03 17:57:24 +01:00
956ae62139 Fix wrong documentation about DataCollator padding defaults (#21919)
* Fix wrong documentation about DataCollator padding defaults

* Fix styling
2023-03-03 11:51:54 -05:00
8c40ba73d8 Avoid failure in check_repo.py due to missing backends (#21930)
* Update utils/check_repo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update utils/check_repo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-03 15:34:20 +01:00
d4306daea1 Fix AlignModelTest tests (#21923)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:47:09 +01:00
c5a1ff9ef0 feat: filter try/except when looking at custom code (#21914)
* feat: filter try/except

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-03 08:43:59 -05:00
02a77fa04c Cleanup more auto mapping names (#21909)
* fix auto 2

* fix auto 2

* fix task guide issue

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:43:44 +01:00
b05e0bec88 Use large VM for repo_utils_job (#21928)
upgrade to large VM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:43:03 +01:00
fa9d2ad7ec Update model_split_percents for WhisperModelTest (#21922)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-03 14:35:08 +01:00
c82bd37169 Fix gradient checkpointing megatron bert (#21921) 2023-03-03 11:50:21 +00:00
99a62347fb Fix gradient checkpointing bug in mvp (#21920) 2023-03-03 11:49:49 +00:00
e407b5a323 Fix gradient checkpointing bug in MBart (#21918) 2023-03-03 11:49:27 +00:00
dcec3277cd faster forward following what is done for images (#21906)
* faster forward following what is done for images

* add missing licence
2023-03-03 06:18:18 +01:00
37e0974afc Fix doctests for TFVisionTextDualEncoder (#21910) 2023-03-03 00:18:11 +00:00
9f5bfe1b99 Avoid modeling tests run in pipeline CI jobs (#21911)
* rework is_pipeline_test

* bring back 3 tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 21:23:06 +01:00
db979f7588 [time series] Add Time series inputs tests (#21846)
* intial test of inputs

* added test for generation

* remove asserts

* fixed test

* Update tests/models/time_series_transformer/test_modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-03-02 20:43:35 +01:00
b2a41d2be4 Faster zero shot image (#21897)
* Make ZeroShotImageClassificationPipeline faster

The pipeline makes separate calls to model for each candidate label.
This commit combines all labels into one call.
Original code takes more that 60 seconds to process one image and 1000
candidate labels. Updated code takes less than 2 seconds.

* implement batching

* code formatting

* Creating an even faster zero-shot-image-classifiction.

Unfortunately super tailored towards CLIP.

Co-Authored-By: Yessen Kanapin <yessen@deepinfra.com>

* Quality.

* Cleanup.

* Order different on the CI it seems.

* Cleanup.

* Quality.

---------

Co-authored-by: Yessen Kanapin <yessen@deepinfra.com>
2023-03-02 19:46:22 +01:00
88e5c51a15 Temporarily skip 3 tests in BridgeTowerModelTest (#21908)
skip for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 19:16:03 +01:00
e6de918676 Add Blip and Blip2 for pipeline tests (#21904)
* fix

* add to tests

* style and quality

* add missing

---------

Co-authored-by: NielsRogge <NielsRogge@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 18:20:34 +01:00
1325459105 Refactor whisper asr pipeline to include language too. (#21427)
* [WIP] whisper refacto to support language output.

* Handling merges.

* A bit more cleanup and comments.

* Many improvements.

Lots of details everywhere.

* Cleanup old code and tests.

* Handle lone timestamp tokens (just recover when something bad happens).

* Adding return_language example.

* No ffmpeg.

* Hmm.

* Some corrections.

* Both fast and slow.

* New black.

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove print.

* Undoing tests modifications.

* Smaller test modifications.

* Rename.

* Remove maxDiff.

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-03-02 18:12:19 +01:00
8e5a1b2abb Make schedulers picklable by making lr_lambda fns global (#21768)
* Make schedulers picklable by making lr_lambda fns global

* add unused _get_constant_schedule_lr_lambda arg

* remove unneeded _get_constant_schedule_lr_lamda

* add test

* make style

* rebase, remove torch dep, put lambda back

* repo-consistency and style
2023-03-02 12:08:43 -05:00
6bf885375a Prophetnet batch dimension inversion fix (#21870)
* decoder forward pass is working

* no model has forward pass returning attentions

* decoder ngram changed to not mix batch size

* current basic forward pass returns identical result

* passed test_model attentions

* passed test_encoder_decoder_model_generate

* passed test_headmasking

* removed old block

* removed comments bug/fixme

* removed bug comments

* applied styling

* applied fix-copies

* applied ngram forward comments

* corrected dimension notation

* applied styling and comment fixes

* changed asserts for raise ValueError

* changed question gen test

* updated hidden_states integration test

* applied styling
2023-03-02 12:07:45 -05:00
99ba36e72f Clean up auto mapping names (#21903)
* add new test

* fix after new test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-02 17:14:50 +01:00
50a8ed3ee0 Mark pipeline tests to skip them easily (#21887)
* Mark pipeline tests to skip them easily

* Mark the mixin as pipeline test

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-03-02 10:55:36 -05:00
d9e28d91a8 Fix gradient checkpointing bug marian (#21842)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:41:15 +00:00
b405b62f4a Fix gradient checkpointing bug M2M 100 (#21841)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:40:56 +00:00
7e6dd664e8 Fix gradient checkpointing bug LED (#21840)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-02 15:40:35 +00:00
b6f47b5393 fsdp bf16 enable autocast (#21847) 2023-03-02 20:18:07 +05:30
fb76994c41 [GPT-J] add deprecation warning (#21869)
* add deprecation warning

* remove pos ids from args docstirng

* fix failing test
2023-03-02 14:51:59 +01:00
648d0deb1d fix typo in Bart's attention (#21898) 2023-03-02 08:49:26 -05:00
c87654dca1 [Whisper] Add rescaling function with do_normalize (#21263)
* add `zero_mean_unit_var_norm` function

* normalize before MEL computation

* fixup

* add simple test

* quality

* Update tests/models/whisper/test_feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixup

* use attention masks if padding was applied

* Update based on review

Co-authored-by: bofeng huang <bofenghuang7@gmail.com>

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
2023-03-02 14:17:21 +01:00
b48c7f7b3f [T5 doc] Fix confusing documentation about d_kv (#21896)
* Confusing documentation in T5

* Fix onfusing documentation in T5 configuration file
2023-03-02 14:07:25 +01:00
edbb37f736 Add inputs_embeds functionality when generating with BioGPT (#21889)
* initial commit to add inputs_embeds to generation

* formatting
2023-03-02 07:43:19 -05:00
3412f5979d Use PyAV instead of Decord in examples (#21572)
* Use PyAV instead of Decord

* Get frame indices

* Fix number of frames

* Update src/transformers/models/videomae/image_processing_videomae.py

* Fix up

* Fix copies

* Update timesformer doctests

* Update docstrings
2023-03-02 12:30:38 +00:00
c256bc6d10 [ZAC] fix ci daily (#21893)
add correct revision after model was overwritten
2023-03-02 10:46:03 +01:00
633e5e89f7 [Refactor] Relative imports wherever we can (#21880)
* initial commit

* update

* second batch

* style

* fix imports

* fix relative import on pipeline
2023-03-02 09:45:42 +01:00
43299c63ca fix checkpoint (#21874) 2023-03-02 08:47:20 +01:00
89359e4c63 Fix test_load_default_pipelines_pt for ClapModel (#21886)
* fix tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 21:52:26 +01:00
36ee128375 Fix WhisperModelTest (#21883)
* force on the same device

* fix tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 20:41:27 +01:00
4edfd2d4d2 Fix Gradient checkpointing bug BigBird (#21882)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-01 19:10:03 +00:00
269b054939 Add ALIGN to transformers (#21741)
Adds the ALIGN model to transformers. ALIGN is introduced in "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision" by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
2023-03-01 21:23:31 +03:00
f7c618e3b0 Add TFVisionTextDualEncoder (#21873)
* Temporary commit to stash everything so far

* Temporary commit to stash everything so far

* stash commit

* Refactor from_pretrained

* Fix final test, make fixup

* Update dummies

* Add model to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add TFVisionTextDualEncoder to utils/documentation_tests.txt

* make fixup

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-03-01 18:00:48 +00:00
45e11091e5 Make loading of pretrained gpt2 faster by avoiding initialization of Conv1D's weights (#21879)
apply normal_ after assigning weight as nn.Parameter to avoid unnecessary initialization computation
2023-03-01 11:59:21 -05:00
1d3a1cc44b Add check for different embedding types in examples (#21881)
* Add check for different embedding types in examples

* Correctly update summarization example
2023-03-01 16:57:06 +00:00
53735d7c3b Add an utility file to get information from test files (#21856)
* Add an utility file to get information from test files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-03-01 17:53:29 +01:00
3eba1dd27e [doc] deepspeed tests (#21859) 2023-03-01 08:52:49 -08:00
571dd693b5 update FSDP and add XLA-FSDP documentation (#21812)
* update FSDP and add XLA-FSDP documentation

* resolving comments

* minor update

* fix xla-fsdp docs
2023-03-01 19:51:07 +05:30
9c1d59882b Removed BLIP mention from the troubleshooting guide (#21872)
removed BLIP mention from the troubleshooting guide
2023-03-01 08:26:25 -05:00
72787c5b68 [Blip] Fix blip doctest (#21868)
fix blip doctest
2023-03-01 14:05:53 +01:00
619d831848 Italian translation of community.mdx (#21871)
Italian translation of community.mdx gh-17459
2023-03-01 07:49:56 -05:00
ebd5258975 Change the way tensor is reshaped in BartAttention (from .view to .reshape) (#21860)
* Change the .view call to .reshape

* Change the .view call to .reshape to all the copies from bart attention

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Fix copies and style

* Revert unneccessary changes

* Revert unneccessary changes

* Revert unneccessary changes

* Revert unneccessary changes
2023-03-01 07:47:17 -05:00
f71873c5fc [deepspeed] check whether model is NLP one instead of counting on input type (#21800)
* trying to figure out whether model is NLP

* drop my changes and apply easier fix

* trying to handle all int input types

* fix logic

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-03-01 07:41:35 -05:00
72e9ca7519 Fix gradient checkpointing bug Bart (#21866)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-03-01 11:41:58 +00:00
5e6cd51bec Flax beam search fix (#21857) 2023-03-01 10:25:33 +00:00
b599b19289 [ConvBert] Fix #21523 (#21849)
* fix reshaping
Fixes #21523

* add test

* styling

* last fixes

* Update src/transformers/models/convbert/modeling_convbert.py

* code quallity
2023-03-01 11:11:04 +01:00
44e3e3fb49 prepare for "__floordiv__ is deprecated and its behavior will change in a future version of pytorch" (#20211)
* rounding_mode = "floor"  instead of // to prevent behavioral change

* add other TODO

* use `torch_int_div` from pytrch_utils

* same for tests

* fix copies

* style

* use relative imports when needed

* Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-03-01 10:49:21 +01:00
b29e2dcaff Fix flaky test for log level (#21776)
* Fix flaky test for log level

* Fix other flaky test
2023-02-28 16:24:14 -05:00
acfb714bdf Improve TF weight loading, especially PT crossloading (#21792)
* First commit for the improved PT-TF weight loading

* Remove workarounds from TFEncoderDecoder tests

* Allow a custom weight renaming function in from_pretrained and use that to clean up EncoderDecoder

* make fixup

* First attempt at visionencoderdecoder

* Disable tensorfloat32 in tests to get consistent outputs

* Quick fix to tf_vision_encoder_decoder tests

* make fixup

* Update Blenderbot tests

* Remove unused arg in modeling_tf_opt

* load_tf_sharded_weights had strict=True! This meant transfer learning was impossible, so I'm setting it to False.

* Support prefixes when loading sharded TF checkpoints

* make fixup

* Add test to load sharded models with a weight prefix

* Fix sharded weight loading test

* Add a test for transfer from a sharded checkpoint

* make fixup

* Add test to check that crossloading from PT with a prefix works

* Refactor from_pretrained in the encoderdecoder classes

* Refactor from_pretrained in the encoderdecoder classes

* missmatched -> mismatched

* Explicitly check for None

* No comments showing my very impressive and attractive knowledge of Py3.9+

* Disable TF32 across all TF tests
2023-02-28 18:41:34 +00:00
871c31a6f1 🔥Rework pipeline testing by removing PipelineTestCaseMeta 🚀 (#21516)
* Add PipelineTesterMixin

* remove class PipelineTestCaseMeta

* move validate_test_components

* Add for ViT

* Add to SPECIAL_MODULE_TO_TEST_MAP

* style and quality

* Add feature-extraction

* update

* raise instead of skip

* add tiny_model_summary.json

* more explicit

* skip tasks not in mapping

* add availability check

* Add Copyright

* A way to diable irrelevant tests

* update with main

* remove disable_irrelevant_tests

* skip tests

* better skip message

* better skip message

* Add all pipeline task tests

* revert

* Import PipelineTesterMixin

* subclass test classes with PipelineTesterMixin

* Add pipieline_model_mapping

* Fix import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix one more import after adding pipieline_model_mapping

* Fix style and quality after adding pipieline_model_mapping

* Fix test issues

* Fix import requirements

* Fix mapping for MobileViTModelTest

* Update

* Better skip message

* pipieline_model_mapping could not be None

* Remove some PipelineTesterMixin

* Fix typo

* revert tests_fetcher.py

* update

* rename

* revert

* Remove PipelineTestCaseMeta from ZeroShotAudioClassificationPipelineTests

* style and quality

* test fetcher for all pipeline/model tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 19:40:57 +01:00
4cb5ffa93d Add loss for BridgeTowerForMaskedLM and BridgeTowerForImageAndTextRetrieval (#21684)
* Add loss for BridgeTowerForMaskedLM and BridgeTowerForImageAndTextRetrieval

* minor fix return_dict

* implement test for loss computation

---------

Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
2023-02-28 12:21:48 -05:00
7f4f8b97d0 [Blip2] Fix Blip-2 multi gpu (#21707)
* fix blip multi gpu

* fix

* final changes

* adapt suggestions

* fix failing slow test

* forward contrib credits from testing and suggestions

* reformat

---------

Co-authored-by: akkikiki <akkikiki@users.noreply.github.com>
2023-02-28 17:28:58 +01:00
aab895c396 Make Slack CI reporting stronger (#21823)
* Use token

* Avoid failure

* better error

* Fix

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 17:12:44 +01:00
6ca844582c Add: task guide for zero shot object detection (#21829)
* zero shot object detection part 1

* added batch prediction section

* added image guided object detection section

* make style

* added the task guide to the TOC

* minor polishing

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* added embedded owlvit demo

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor fix

* make style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 10:23:08 -05:00
31fa2b6c68 [GPTJ] Fix gradient checkpointing bug (#21794)
* If applied, this commit fixes generate bug in gptj

* Remove extra same code block

* formatting and test fix

* Conflict fix and declaration error fix

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 10:12:42 -05:00
eec76042f4 Fix the issue of blip model returning loss even when the label is not provided. (#21811)
* Fix the issue of blip model returning loss even when the label is not provoided

* Fix ruff failure

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-28 09:54:08 -05:00
b8de7e448e [Blip2] Add Blip2Model (#21817)
* add v1

* add `Blip2Model`

- add relevant functions
- add tests
- add on automapping

* fix docs

* fix doctest
2023-02-28 15:42:55 +01:00
ae9230af40 [T5] Fix torchquant issue (#21843)
* fix torchquant issue

* add tests
2023-02-28 15:09:44 +01:00
2d506ea4c4 Fix tf random token masking probability in data collator (#21834)
* fix tf random mask tokens probability

* fix tf random mask tokens probability in collator for langauge modelling
2023-02-28 07:55:47 -05:00
4fe744f528 Fix gradient checkpointing imagegpt (#21816)
* Fix gradient checkpointing bug in gptneox

* Fix gradient checkpointing bug in modeling_imagegpt.py

* Revert gpt neox changes

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 07:47:04 -05:00
e07a3d95f8 Fix gradient checkpointing bug in git (#21818)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-28 07:46:33 -05:00
50db741417 check for None forced tokens (#21793) 2023-02-28 13:24:43 +01:00
50644cf624 Fix gradient checkpointing bug BioGpt (#21844)
Co-authored-by: saswatmeher <saswatmeher@cse.iitb.ac.in>
2023-02-28 11:56:25 +00:00
a9dd124346 Rename MobileViTModelTest to TFMobileViTModelTest (#21825)
Let's give TF a bit more love ❤️ 🙏

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-28 08:10:29 +01:00
c7f3abc257 introduce logger.warning_once and use it for grad checkpointing code (#21804)
* logger.warning_once

* style
2023-02-27 13:25:06 -08:00
f95f60c829 Fix quality with ruff==0.0.253 (#21828)
fix quality with ruff 0.0.253

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-27 19:38:44 +01:00
92dfceb124 Inheritance-based framework detection (#21784) 2023-02-27 15:31:55 +00:00
7811bf7e73 Fix gradient checkpointing bug in gptneox (#21815)
* Fix gradient checkpointing bug in gptneox

* Remove use_cache block
2023-02-27 14:49:32 +00:00
0c7f93f5f1 Fix nn.init.trunc_normal_ call on torch.float16 data (#21789)
fix nn.init.trunc_normal_ call on half data
2023-02-27 13:31:29 +01:00
ebf84f07ba Fix PyTorch Perceiver PerceiverFourierPositionEncoding with fp16 (#21787)
* fix perceiver fp16

* hopefully fix tests
2023-02-27 11:43:57 +00:00
831f3144a6 [tests] add accelerate marker (#21743)
* add `accelerate` marker

* add to docs

* Update docs/source/en/testing.mdx
2023-02-27 12:33:34 +01:00
c51dc4f927 [torch] remove deprecated uint8 in favor of bool (#21384)
* uint8 -> bool

* fix copies

* style

* update test modeling commen when checking attention buffers

* style

* use logical not on random mask instead of subtraction with 1

* remove torch uint8

* quality

* remove modified modeling utils

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

---------

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-02-27 11:46:02 +01:00
cc44e72d14 [Pipeline] Add zero shot audio classificatoin pipeline (#21600)
* add pipeline

* update init

* add zero shot to init

* update inits and correct checkpoints

* update base to support input features

* add tests

* Update src/transformers/pipelines/zero_shot_audio_classification.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/pipelines/zero_shot_audio_classification.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* update pieline code

* use tiny checkpoint

* nits and expected value with tiny model

* style

* last nit on tests values

* fix styling

* fix collate fn that was casting t float

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-02-27 11:43:44 +01:00
2ea1ef9090 [FX tracer] Make concrete_args from outside available (#21775)
make concrete_args from outside available
2023-02-27 08:57:57 +01:00
ba2a5f13f7 Fix en documentation typos (#21799)
* fix wrong url

* typos in english documentation
2023-02-27 08:36:36 +01:00
a36983653e Fix type in gpt2 config docstring (#21782)
Fix docstring gpt2 config
2023-02-27 08:19:19 +01:00
3c0ce60855 [examples/summarization] deal with max_length and num_beams (#21740)
* Override the decoding parameters of Seq2SeqTrainer

* Fix quality

* Fix max_length parameter

* Fix quality

* Remove redundant parameter max_length

* Separate the preprocess of train and validation to use different max_target_length
2023-02-27 08:18:14 +01:00
9ddf4f4f03 Fix resume_from_checkpoint for deepspeed (#21735)
* Fix resume_from_checkpoint for deepspeed

Fix resume_from_checkpoint for deepspeed, by ensuring that the deepspeed engine is the one to load the checkpoint.

* Empty commit to trigger CI

* Removed deepspeed skipping 

Removed deepspeed skipping inside the _load_from_checkpoint function, as it is obsolete

* another adjustment

* Trigger CI

* trigger circleci

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2023-02-25 11:30:54 -08:00
3dae0d7b4f [SpeechT5] Fix HiFiGAN tests (#21788) 2023-02-24 16:55:38 +01:00
59c1d5b96b [GPT2, ProphetNet] Fix gradient checkpointing bug (#21772)
* fix gradient checkpointing bug

* fix gradient checkpointing bug

* ran make fix-copies

* fixed bug

* fixed bug
2023-02-24 15:37:22 +00:00
ba0e370dc1 [time series] updated expected values for integration test. (#21762)
* updated expected

* prediction_length fix

* prediction_length default value

* default prediction_length 24

* revert back prediction_length default

* move prediction_length test
2023-02-24 12:36:54 +01:00
440f39754b Generate - update cookie cutters to not initialize cache with training and gradient checkpointing (#21759) 2023-02-24 11:21:00 +00:00
087436c98e Fix-ci-whisper (#21767)
* fix history

* input_features instead of input ids for TFWhisport doctest

* use translate intead of transcribe
2023-02-24 11:39:25 +01:00
c8545d2a9c [Whisper] Add SpecAugment (#21298)
* Return and rescale attention_mask

* Add SpecAugment to Whisper modeling

* Fix test

* Update docstring

* Add SpecAug related parameters to model config

* Add the _mask_input_features function to doc

* Fix quality

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove dev comments

* Add test

* Resolve conflict

* feat: mask {feature, time} prob fast tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-24 11:07:52 +01:00
75bd49ff88 [Flax] Fix erroneous kwargs being passed to generate config (#21765) 2023-02-24 09:59:18 +01:00
14f33205a7 Different behavior in DistilBERT when using "inputs_embeds" (#21752)
* Different behavior in DistilBERT when using "inputs_embeds"
Fixes #21089

* fix failing test
2023-02-24 09:48:07 +01:00
13489248fa [Examples] Generalise run audio classification for log-mel models (#21756)
* [Examples] Generalise run audio classification for log-mel models

* batch feature extractor

* make style
2023-02-24 09:19:07 +01:00
f7ca656f07 [Flax] adding support for batch norm layers (#21581)
* [flax] adding support for batch norm layers

* fixing bugs related to pt+flax integration

* cleanup, batchnorm support in sharded pt to flax

* support for batchnorm tests in pt+flax integration

* simplifying checking batch norm layer
2023-02-24 08:47:33 +01:00
279008adc3 fix: Change is_last chunk calc and add conditional break in chunk_iter (#21612)
* fix: Change is_last chunk calc and add conditional break

* format fix

* account for 0 and full stride_rights, add comment

* add new test

* make style

* update slow whisper asr test timestamps

* use nested_simplify on output and round timestamp to hundreths place
2023-02-24 08:30:32 +01:00
4446b6b094 Graphormer fix (#21699)
* Removed useless check for backend

* fix style check for graphormer

* Reverted change and corrected requires_backend for cython

* code qual
2023-02-24 08:20:52 +01:00
633062639b [deepspeed tests] fix issues introduced by #21700 (#21769)
* [deepspeed tests] fix issues introduced by #21700

* fix

* fix
2023-02-23 13:22:25 -08:00
04d90ac49e Auto api Value Error addition to Troubleshoot (#21708)
* troubleshooting guide: added an error description for missing auto-mapping

* minor polishing

* changed the example

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/troubleshooting.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-23 11:51:18 -05:00
0ffa22f9f6 Added Type Hints for modeling_tf_encoder_decoder.py (#21673)
* Ran Black formatting

* Added imports and reformatted

* Update src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-02-23 14:08:26 +00:00
aa3787c8f0 Skip test_log_level for now 2023-02-23 12:11:20 +01:00
1d4b797852 Generate: Fix GIT batched captioning (#21738) 2023-02-23 09:50:37 +00:00
78a93d17c0 [GPTNeo] Fix gradient checkpointing bug (#21733)
* fix bug

* forward contrib credits from discussions

* change logic

---------

Co-authored-by: edbeeching <edbeeching@users.noreply.github.com>
2023-02-23 09:48:19 +01:00
36a6a1adb6 Fix 2 quicktour file doctest (#21742)
* Update expect output values - as Hub repo. files are updated

* Update expect output values - as librosa is from 0.9.2 to 0.10.0 on CI docker

* fix

* update one more

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-23 09:41:28 +01:00
ff143ae10e Update doctest GH workflow file (#21744)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-23 09:40:53 +01:00
448e050b0d Make ImageProcessorMixin compatible with subfolder kwarg (#21725)
* Add subfolder support

* Add kwarg docstring

* formatting fix

* Add test
2023-02-23 09:28:18 +01:00
064f374874 typos in french documentation (#21750) 2023-02-23 09:17:01 +01:00
619d51e01f Added "Open in Colab" to task guides (#21729)
added Open in Colab to task guides
2023-02-22 08:32:35 -05:00
d913f4aa40 Fix to KerasMetricCallback when the model returns unstructured output (#21727)
* Stop doing dict-things to non-dict inputs

* Add a debug check

* Add a debug check

* Remove debug checks, looks good now!

* make fixup
2023-02-22 13:15:14 +00:00
82e61f3445 [SpeechT5HifiGan] Handle batched inputs (#21702)
* [SpeechT5HifiGan] Handle batched inputs

* fix docstring

* rebase and new ruff style
2023-02-22 11:16:56 +01:00
09127c5713 Fix GPTSanJapaneseModel (#21731)
* fix

* skip test_model_parallelism

* skip test_model_parallelism

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 11:09:04 +01:00
aff87da15b Fix ErnieMEmbeddings device issue (#21726)
* remove .parameters()).device

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:57:34 +01:00
2f2b19ff40 Change doc example for BigBirdForQuestionAnswering (#21723)
Change doc example for BigBirdForQuestionAnswering

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:55:12 +01:00
354b338316 Remove gptsan_japanese from doctest list to avoid GPU OOM (#21722)
remove from doctest list to avoid GPU OOM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-22 10:51:00 +01:00
b19d64d852 Respect documentation on passive log level (#21700)
* Respect documentation on passive log level

* Fix test and set log level in examples

* Add doc
2023-02-22 09:39:18 +01:00
ee6e71e29c Fix quality 2023-02-22 03:36:15 -05:00
24b930ad1d [MBart] Fix cross attention mask check (#21730)
fix typo
2023-02-22 09:21:25 +01:00
5e8c8eb5ba Apply ruff flake8-comprehensions (#21694) 2023-02-22 09:14:54 +01:00
df06fb1f0b Time series transformer: input projection and Std scaler (#21020)
* added loc and scale outputs from scalers

* fix typo

* fix tests

* fixed formatting

* initial StdScaler

* move scaling to optional str

* calculate std feature for scalers

* undid change as it does not help

* added StdScaler with weights

* added input projection layer and d_model hyperparam

* use linear proj

* add back layernorm_embedding

* add sin-cos pos embeddings

* updated scalers

* formatting

* fix type

* fixed test

* fix repeated_past_values cal.

* fix when keepdim=false

* fix default_scale

* backward compatibility of scaling config

* update integration test expected output

* fix style

* fix docs

* use the actual num_static_real_features in feature_dim cal

* clarified docs

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* prediction_length is not optional

* fix for reviewer

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* get rid of un-needed new lines

* fix doc

* remove unneeded new lines

* fix style

* static_categorical_features and static_real_features are optional

* fix integration test

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixing docs for multivariate setting

* documentation for generate

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-22 07:50:13 +01:00
bb5a2f2fc3 Adding type hints to call() functions in this file (#21548)
* Adding type hints to call() functions in this file

* make fixup

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

* Update src/transformers/models/marian/modeling_tf_marian.py

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2023-02-21 16:28:33 +00:00
78a53d59cb Adding task guides to resources (#21704)
* added resources: links to task guides that support these models

* minor polishing

* conflict resolved

* link fix

* Update docs/source/en/model_doc/vision-encoder-decoder.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-21 10:35:11 -05:00
03aaac3502 Fix TVLT (torch device issue) (#21710)
* fix tvlt ci

* fix tvlt ci

* fix tvlt ci

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 11:37:49 +01:00
4c6346cc3e Fix get_class_in_module (#21709)
Fix get_class_in_module

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 09:39:15 +01:00
ed6ceb7649 Fix typo in PROCESSOR_MAPPING_NAMES and add tests (#21703)
* Add test

* Fix GITProcessor

* Update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-21 09:38:26 +01:00
4deaa534f5 remove position ids and token type ids from forward args in docstring (#21701) 2023-02-21 07:01:36 +01:00
c40e3581c7 Fix axial positional encoding calculations for reformer.mdx (#21649)
* Update reformer.mdx

Fix axial positional encoding calculations

* Update docs/source/en/model_doc/reformer.mdx

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-21 06:59:51 +01:00
deafc24388 Add WhisperTokenizerFast (#21222)
* Add WhisperTokenizerFast

* Fixup

* Up

* Up

* Improve tests

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Keep stride in whisper pipelien test

* Remove unknown token special case

* Reduce vocabulary size in tests

* Fix vocab size assertion

* Sync copied changes from WhisperTokenizer

* Skip pipeline tests

* Update assertion

* Remove Whisper tokenizer dependency on sentencepiece

* Format

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-21 06:58:54 +01:00
8b3db33a76 Pass along revision in dynamic code fetch (#21698) 2023-02-20 21:21:42 +01:00
4194e5f42b Fix-rag-finetune-project-requirement (#21697)
pin pytorch lightning requirement
2023-02-20 17:23:39 +01:00
49ab16239c Add EfficientNet (#21563)
* Add EfficientNet to transformers
2023-02-20 16:37:11 +03:00
c9a0671477 [bnb] fix bnb decoders bug (#21688)
* fix `bnb` decoders bug

* make fixup
2023-02-20 12:21:58 +00:00
f56174ac5b add GPTSAN model (reopen) (#21291)
* add GPTSAN-Japanese

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN (update for review)

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* fix typo in comment text

* add GPTSAN

* add GPTSAN

* add GPTSAN

* add GPTSAN

* fix document and comments

* fix class name GPTSAN->GPTSan

* fix import and test for tokenizer
2023-02-20 11:25:27 +01:00
c87bbe1ff0 Fix quality 2023-02-20 03:27:09 -05:00
011cc17a81 Fix for non-contiguous label tensors in VisonEncoderDecoder (#21582)
* add prints

* add shape

* add reshape

* clean up
2023-02-20 09:23:46 +01:00
2840272c5f add flax whisper implementation (#20479)
* add flax whisper implementation

* rever change to setup

* remove unused imports

* revert generation changes

* flax whisper docs

* docs

* import order

* import sorting

* isort

* add dummy objects

* doc formatting

* formatting

* remove trailing whitespaces

* fix flax whisper docs

* add generation logic to unlock flax whisper

* remove scans

* give credits to Flax Bart implementation

* remove unused imports

* add license

* remove assert

* more credits to Bart

* fix style

* formatting

* support left padding

* add flax whisper generation test

* remove copied from comments whenever not a full copy

* fix docstrings for logits processors

* revert change to FlaxForceTokensLogitsProcessor

* revert doc changes

* improve generation docs

* reorganize

* formatting

* cleanup docs

* add tests

* handle empty list case

* fix forced decoder ids in flax tests

* add flax whisper to inits

* upate dummy objects

* docs for FlaxAutoModelForSpeechSeq2Seq

* fix decoder_position_ids computation in pretrained model decode/__call__ fns

* add Copied from statements as necessary

* compute position_ids only in __call__ and decode methods of pretrained model subclasses

* improve readabilityof compute positional embeddings

* check dimensionality of input_features instead of hidden_states

* copied from statement for init_cache

* formatting

* fix copies

* fix copies

* pass attention mask to encoder layers

* fix decoder module outputs

* set dtype

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* smaller flax model for whisper test

* Update src/transformers/generation/flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/whisper/test_modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* cleanup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* bias cleanup

* doc fix

* align style for force tokens processor

* readability

* fix input shape in tests

* revert FlaxGenerationMixin docstring

* formatting

* fix tests

* fix imports

* consistent encoder hidden states

* consistent hidden states

* input shapes

* typo

* partial class trick

* partial class for input shape

* base_class with correct input shape

* partial base classes

* match by name

* set main_input_name

* compare on names

* formatting

* remove unused import

* safer position ids computation

* safer position id computation

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove identical inherited tests

* fix prompt ids in tests

* use generation config

* use jnp array

* better var names

* more explicit bias use

* import transformers

* formatting

* test formatting

* remove unused imports

* remove unused imports

* formatting

* isort

* docs

* fix ln orders for encoder hidden states

* whisper unique generation stuff

* flake

* use finfo for attention bias

* docs

* Update src/transformers/generation/flax_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* docs

* add timestamp flax test

* jit for timestamps

* formatting

* clean up timestamps processor

* formatting

* remove if_true

* cleanup

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-02-20 09:17:40 +01:00
7735e0406f Enable PyTorch/XLA Fully Sharded Data Parallel (FSDP) (#21406)
* Reinserted import statement accidentally removed during rebasing.

* Added auto_wrap functionality, restructured XLA FSDP logic to more closely match PyTorch FSDP logic.

* Fixed flag descriptions; changed several instances of fsdp_ to xla_fsdp_; pass in auto_wrap_policy and auto_wrapper_callable directly to avoid lambda saving.

* Moved XLA FSDP logic to be adjacent to Fairscale FSDP logic in trainer.

* Formatted changes in accordance with HF style requirements.

* Added back in warning which was accidentally removed.

* - Merged XLA FSDP training arguments into `fsdp_config`
- Added `xla` boolean flag to `fsdp_config` to specify XLA FSDP wrapping
- Merged XLA FSDP wrapping logic into FSDP wrapping logic within trainer
  class

* Cleaned up errors, moved argument to fsdp_config

- Set `xla` and `xla_fsdp_grad_ckpt` flags by default in fsdp_config
- Added missing colons following conditionals
- Moved `fsdp_transformer_layer_cls_to_wrap` to `fsdp_config`
- Modified `fsdp_transformer_layer_cls_to_wrap` to be list of strings,
  not just one string
- Changed Fairscale FSDP logic to allow for set of layer classes to wrap
- Removed unnecessary checks for `xla_fsdp`

* Corrected small errors, improved layer class flag

- Correctly set default values for `xla` and `xla_fsdp_grad_ckpt`
  arguments
- Made `fsdp_transformer_layer_cls_to_wrap` a list of strings instead of
  a single string
- Added processing to ensure that `fsdp_transformer_layer_cls_to_wrap`
  works as expected if passed as a single string
- Updated PyTorch FSDP logic to accept a list of layers to wrap, as done
  with XLA FSDP
- Replaced instances of `getattr()` with `.get()` for dictionary
  retrievals with default values, including when setting
  `fsdp_min_num_params`
- Corrected `self.fsdp is not None` to `len(self.fsdp) > 0`
- Removed extraneous `xla_fsdp` argument descriptions from outside
  `fsdp_config`

* Changed xla-fsdp-settings to be dictionary

- Modified xla-fsdp-settings to be entered directly as dictionary
  instead of loaded through JSON file
- Made small style corrections

* Reverted unintentional local_rank TPU check

* Do not block XLA FSDP if local rank is -1

* Rebased and applied automatic formatting

- Rebased
- Applied automatic formatting changes via `make style`

* Applied automatic formatting with latest version of black

* Replaced  expression with

* Reran black examples tests src utils
ruff examples tests src utils --fix
make autogenerate_code
make[1]: Entering directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers'
make[1]: Leaving directory '/usr/local/google/home/awertheim/HF-FSDP-PR/transformers' after additional formatting changes

* Additionall automatic formatting changes

* Remove unnecessary whitespace characters from src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-20 09:06:23 +01:00
7f1cdf1895 Fix dynamic module import error (#21646)
* fix dynamic module import error

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-17 21:22:39 +01:00
8a4c319d33 [BLIP] update blip path on slow tests (#21476)
* update blip path

* Update tests/models/blip/test_modeling_blip.py
2023-02-17 18:26:36 +00:00
087fd5f368 [ImageProcessor] Refactor default mean & std to OPENAI_CLIP_MEAN & OPENAI_CLIP_STD (#21425)
* fix default value

* add the fix on other models
2023-02-17 18:57:05 +01:00
005b515754 Generate: eta sampling numerical stability (#21676) 2023-02-17 17:09:37 +00:00
bb6a664e14 Fix multi-gpu training error for LayoutLMv2 (#21675)
Co-authored-by: Yoshinari Fujinuma <fujinuy@amazon.com>
2023-02-17 17:04:11 +00:00
a8eb4f79f9 [CLAP] Fix few broken things (#21670)
* add `is_longer`

* fix docstring

* fix config class

* fix loss

* fix all doctests

* fix order

* fix last failing tests

---------

Co-authored-by: arthur.zucker@gmail.com <arthur.zucker@gmail.com>
2023-02-17 11:32:14 +01:00
3668ec1716 [bnb] Introducing BitsAndBytesConfig (#21579)
* v1 `BitsandbytesConfig`

- add v1
- add tests
- more user-friendly API
- add docs

* change to `BitsAndBytesConfig`

* replace logic

* changes

* make fixup

* quality

* make fixup

* fix doc

* fix test

* update toctree

* fix slow test

* add tips

* add warning

* change title

* oops

* Update docs/source/en/main_classes/quantization.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove unused file

* adapt suggestion

- add also tests
- change logic

* update docs

* adapt suggestions

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-17 09:44:01 +01:00
f16d29b337 Adapt PerceiverIO Multimodal class to work with arbitrary modalities (#20054)
* * Properly register parameters in PerceiverMultimodalPreprocessor
* Adapt PerceiverTextPreprocessor to work with PerceiverMultimodalPreprocessor
* Change a few type hints

* Fix formatting; incorrect return type

* Return embeddings_wo_pos

---------

Co-authored-by: Steven Anton <antonstv@amazon.com>
2023-02-16 16:51:00 -05:00
c236a62172 [CLAP] Add CLAP to the library (#21370)
* add model like clip

* update

* text model ok

* clap text works

* some refactor

- `CLAPVision` to `CLAPAudio`
- refactor kwargs of audio modules

* more refactor

* more refactor

* more refactor

* correct fusion

* more refactor

* new modules

* add basic processor

* fixup

* remove whisper copioed from

* audio logits match

* add doc

* correct filters mel and add maxlength

* style

* few fixes

* forward passes

* fixup

* fixup

* some clean up

* remove mels form the dictionnary

* pad after the repeat

* update padding when dsmaller

* fix padding

* style

* use swin patch merging

* use copied from swin

* processor with any tokenizer

* more copied from

* some clean up

* more refactor

* fix mel when rand_trunc

* style

* remove unused imports

* update processing

* remove image processing tests

* add testing fiel

* fixmodeling issues

* replace with `is_longer`

* clap in serialization

* more refactor

* `make fixup`

* make fixup

* fix feature extractor

* update test feature extractor

* `make fixup`

* clean up config

* more clean up

* more cleanup

* update tests

* refactor tests and inits

* removeCLAP vision config

* remove CLAP from image procssing auto and dummy vision objects

* update inits

* style

* re order classes in modeling clap

* Use roberta tokenizer as the other weights are not open sourced

* small cleaup

* remove tokenization CLAP

* processor tokenizr is roberta

* update feature extraction doc

* remove vclap from model zero shot

* update f_min and f_max to frequency_xx

* some changes

- fix modeling keys
- add `is_longer` in the forward pass
- make fixup

* make fixup

* consistent behavior ebtween rand_crop and fusion

* add numpy resize and bilinear and documentation

* move resizing to image utils

* clean feature extraction

* import resize from correct file

* resize in image transforms

* update

* style

* style

* nit

* remove unused arguments form the feature extractor

* style

* few fixes + make fixup

* oops

* fix more tests

* add zero shot audio classification pipeline

* update zeroshot classification pipeline

* fixup

* fix copies

* all CI tests pass

* make fixup + fix docs

* fix docs

* fix docs

* update tests pip;eline

* update zero shot pipeline

* update feature extraction clap

* update tokenization auto

* use nested simplify

* update pipeline tests

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* split in two lines

* fixes

* refactor

* clean up

* add integration tests

* update config docstring

* style

* update processor

* fix processor test

* fix feat extractor tests

* update docs

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix readmes

* fix tips

* Update src/transformers/models/auto/configuration_auto.py

* update doc and remove todo -> properly explained

* fix idx and typo

* typoe

* cleanup config

* cleanup tests, styles and doc

* ignore docstyle on image transform

* add conversion script

* remove the `clap` indx in favor of `CLAP`

* update __init

* nits

* Update src/transformers/pipelines/__init__.py

* fix bug

* clarifiy config

* fix copy

* fix init

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix model output

* fix comment

* make fixup

* make fixup

* rename to `Clap`

* replace to `Clap`

* replace to `Clap`

* repo consistency

* again repo-consistency

* make fixup

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add config

* changes

* update conversion

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unused function

* update based on code reviews

* style

* more comments

* cleanup

* clean up

* style

* apply suggestions

* Empty commit

* pipeline will be added in a different PR

* update calls to audio utils functions

* update pipeline init

* style

* style

* styling again

* use pad

* fix repo-consistency

* update utils and add doc for audio utils

* clean up resize by using torch. update inits accordingly

* style

* CLap's  tokenizer is RobertA

* add audio utils to internal toctreee

* update totctree

* style

* update documentation and normalize naming accross audio utils and feature extraction clap

* style

* clean up

* update doc and typos

* fix doctest

* update modelin code, got rid of a lot of reshaping

* style on added doc audio utils

* update modeling clap

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* docstringvariables with CLAP

* rename key

* update modeling CLAP

* update audio utils docstring

* update processing clap

* fix readmes

* fix toctree

* udpate configuration clap

* fix init

* make fixup

* fix

* fix

* update naming

* update

* update checkpoint path

* Apply suggestions from code review

* Major refactoring

* Update src/transformers/models/clap/configuration_clap.py

* merge

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-02-16 20:59:27 +01:00
6b0257de42 Sort deps alphabetically 2023-02-16 13:27:27 -05:00
b0f0086fa4 Add OPT resources to the transformers documentation (#21625)
* Add resources to OPT

* Add additional resources for OPT

* Remove -{" "} after <PipelineTag pipeline="question-answering" />

* Change bitsnbytes to bitsandbytes

* Revert formatting

* Revert automatic format changes

* Remove - sign after <PipelineTag pipeline="question-answering" />
2023-02-16 12:44:28 -05:00
61d7fec87a [bloom] gradient_checkpointing fix (#21655)
Update modeling_bloom.py
2023-02-16 08:57:19 -08:00
0f96c26de6 refactor: Make direct_transformers_import util (#21652)
* refactor: Make direct_import util

* edit direct import fn

* add docstring

* make import function specific to transformers only

* edit doc string
2023-02-16 11:32:32 -05:00
96d4fa46ed [WhisperModel] fix bug in reshaping labels (#21653)
fix bug in reshaping labels
2023-02-16 16:00:46 +01:00
fcfd4ec789 Bump werkzeug from 2.0.3 to 2.2.3 in /examples/research_projects/decision_transformer (#21658)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.0.3 to 2.2.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.0.3...2.2.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-16 09:23:43 -05:00
212c42a1e3 Update document of WhisperDecoderLayer (#21621)
* Update document of WhisperDecoderLayer

* Update modeling_mbart.py

* Update doc with utils/check_copies.py --fix_and_overwrite

* Update modeling_xlm_prophetnet.py
2023-02-16 09:19:59 -05:00
61abe3290b [WIP] Move X-MOD models to facebook organization (#21640)
Move X-MOD models to facebook org
2023-02-16 09:18:25 -05:00
751f17aa48 Fix typos in contrastive-image-text example README (#21665) 2023-02-16 09:10:25 -05:00
9d1116e995 Update deprecated load_module (#21651) 2023-02-15 15:57:24 -05:00
1567bef3b3 Generate: PT Dynamo without graph breaks in the main greedy/sample loop (#21648) 2023-02-15 20:16:46 +00:00
7a5533b2c3 Refactor model summary (#21408)
* first draft of model summary

* restructure docs

* finish first draft

* minor reviews and edits

* apply feedbacks

* save important info, create new page for attention

* add attention doc to toctree

*  few more minor fixes
2023-02-15 10:35:14 -08:00
a0e69a9375 Add TVLT (#20725)
* Update image_processing_tvlt.py

* Update modeling_tvlt.py

* Update

* Update modeling_tvlt.py

* Create tvlt.mdx

* Update configuration_tvlt.py

* Update modeling_tvlt.py

* Update test_modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update image_processing_tvlt.py

* Update feature_extraction_tvlt.py

* Update tvlt models

* Update tests

* Update

* Update

* Update tests

* Update README_ko.md

* Update README_ja.md

* Update README_ko.md

* Update README_zh-hans.md

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tvlt.mdx

* Update modeling_tvlt.py

* Update configuration_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Add files via upload

* Update model

* Update modeling_tvlt.py

* Update tvlt models

* Update src/transformers/models/tvlt/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Delete modeling_tvlt.py

* Delete feature_extraction_tvlt.py

* Delete configuration_tvlt.py

* Delete image_processing_tvlt.py

* Delete processing_tvlt.py

* Update tvlt

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README_es.md

* Update README_hd.md

* Update README_ja.md

* Update README_ko.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update index.mdx

* Update tvlt.mdx

* Update tvlt.mdx

* Update configuration_tvlt.py

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_tvlt.py

* Add files via upload

* Update tvlt.mdx

* Update modeling_auto.py

* Add files via upload

* Add files via upload

* Update dummy_pt_objects.py

* Update __init__.py

* Update feature_extraction_tvlt.py

* Update feature_extraction_tvlt.py

* Update image_processing_tvlt.py

* Update modeling_auto.py

* Update test_feature_extraction_tvlt.py

* Update test_processor_tvlt.py

* Update test_feature_extraction_tvlt.py

* Add files via upload

* Update test_image_processor_tvlt.py

* Update tests/models/tvlt/test_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_image_processor_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update feature_extraction_tvlt.py

* Update feature_extraction_tvlt.py

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_processing_tvlt.py

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update test_image_processor_tvlt.py

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/tvlt/test_modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Add files via upload

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_processing_tvlt.py

* Add files via upload

* Add files via upload

* Update tvlt.mdx

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update docs/source/en/model_doc/tvlt.mdx

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Update modeling_auto.py

* Update tvlt.mdx

* Update dummy_pt_objects.py

* Update feature_extraction_tvlt.py

* Update modeling_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_image_processor_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update modeling_tvlt.py

* Update dummy_pt_objects.py

* Update dummy_speech_objects.py

* Add files via upload

* Update README_hd.md

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update test_modeling_tvlt.py

* Update src/transformers/models/tvlt/configuration_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/feature_extraction_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/image_processing_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update MAE processing

* Update modeling_tvlt.py

* Update modeling_tvlt.py

* Update modeling

* Update style

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/tvlt/modeling_tvlt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update check_repo.py

* Update tvlt.mdx

* Update __init__.py

* Update tests

* Update tvlt models

* Update configuration_tvlt.py

* Update configuration_tvlt.py

* Update image_processing_tvlt.py

* Update dummy_pt_objects.py

* Add files via upload

* Update test_modeling_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

* Update test_feature_extraction_tvlt.py

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-02-15 18:10:30 +00:00
7bac51837b Pass parent exception as context exception to provide clearer stack trace (#21636)
* Pass parent exception as context exception to provide clearer stack trace

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-15 11:34:02 -05:00
3499c49c17 Skipping more high mem tests - Wav2Vec2 Hubert (#21647)
Skipping more tests
2023-02-15 16:00:50 +00:00
0c9c8472e6 Add Ernie-M Model to huggingface (#21349)
* config and tokenization(fast too) changed and ErnieEncoder added

* Slow Tokenization Added

* Tokenizer(slow) is now working and Fast Tokenizer removed

* Added Config code

* Added Base Model and utils

* ErnieMModel is now working

* All added except tests

* All tests passed except ErnieUIEM

* All tests passed

* all fixes done

* all fixes done

* fixed MAP

* fixed check_code_quality

* fixed Build PR Documentation issue

* Added changes(comments) and also updated to the latest upstream/main

* Added fixup

* Added # Copied comments

* Added fixup

* Added more comments and some nits

* Added fixup

* Fixed README_hd.md

* Added more fixes

* ErnieMTokenizer (being sentencepiece) protected and other docs edited

* Added code_quality fix

* Fixed for

* Added more fix

* modified AZ

* ernie-m tokenization test added!

* attention mask part fixed(with 0->self.config.pad_token_id)

* applied make fixup
2023-02-15 09:24:56 -05:00
40ca13367e Fix passing kwargs to TFBertTokenizer (#21619) 2023-02-15 09:18:48 -05:00
fc28c006a6 Skip wav2vec2 hubert high mem tests (#21643)
* Skip high memory tests

* Skip high memory tests

* Remove unused import
2023-02-15 14:17:26 +00:00
e3d832ff87 Fix Blip-2 CI again (#21637)
* fix blip-2 ci

* fix blip-2 ci

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-15 10:59:42 +01:00
762dda44de Remove extra "max_length is reached." from InfNaNLogitsProcessor documentation (#21634)
* Fix typo in documentation.

* Remove trailing words typo in documentation.
2023-02-14 16:12:22 -05:00
26ef0f1991 fix: Race Condition when using Sagemaker Checkpointing and Model Repository (#21614)
* Add _add_sm_patterns_to_gitignore

* Add _is_world_process_zero() call and move patterns arg to constant

* Update git status time.sleep

* Apply make style
2023-02-14 16:11:37 -05:00
7bce804260 Fix typo in QA task guide (#21608)
fix typo
2023-02-14 12:02:19 -08:00
bad8300837 Error (also in original) model, scaling only q matrix not qk.T dot product (qk.T/sqrt(dim_per_head)) (#21627)
* Error in model, scaling only q matrix not qK.T dot product (qk.T/sqrt(dim_per_head))

As per Vaswani et al, 2017 p.4
Is torch.matmul(q, k.transpose(2, 3)) / math.sqrt(dim_per_head) not q / math.sqrt(dim_per_head)
https://arxiv.org/pdf/1912.05372.pdf

Error was in original FlauBERT repo and effectively scales queries but not values
cf. 6d176880ca

* Update modeling_flaubert.py

Update to https://github.com/huggingface/transformers/pull/21627
make fixup
make repo_consistency

* Update modeling_xlm.py

* Update modeling_flaubert.py

* Update modeling_xlm.py
2023-02-14 14:39:32 -05:00
aaf6795f92 Fix typo in documentation. (#21632) 2023-02-14 14:00:30 -05:00
d3b1adf59f Removes duplicate computations in DETR post processing (#21592)
* Remove redundant computations, comb variable names

* Fix scores to cur_scores
2023-02-14 13:00:02 -05:00
d4ba6e1a0e Fix generation config for empty state dict (#21630) 2023-02-14 10:57:28 -05:00
317282927d Fix the real failing test 2023-02-14 10:52:23 -05:00
22888d3082 Remove Niels from templates (#21564) 2023-02-14 09:47:43 -05:00
68b21b37ea Final cleanup of TOKENIZER_FOR_DOC (#21565)
FInal cleanup of TOKENIZER_FOR_DOC
2023-02-14 09:47:32 -05:00
c6f163c786 Skip failing test 2023-02-14 09:20:47 -05:00
a81fe4e1df Generate: input expansion for any model input (#21624) 2023-02-14 14:16:22 +00:00
13e03e619d Generate: filter encoder inputs when its signature does not accept wildcards (#21603) 2023-02-14 10:46:46 +00:00
41fa672df1 Enable requires_grad on input embedding to train on top of frozen layers (#21598)
* v1

* make fixup

* add more methods
2023-02-14 09:43:06 +01:00
8c5026628a Add in big model inference to issue template (#21611)
* Add in big model inference to issue template

* Trigger

* Untrigger

* empty test commit
2023-02-13 16:40:34 -05:00
56b03c96b8 Fix TF CTC tests (#21606) 2023-02-13 21:23:00 +00:00
cbecf121cd Fix env. variable type issue in testing (#21609)
* fix env issue

* fix env issue

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-13 20:53:26 +01:00
5987e0ab69 Clarify available pipelines in quicktour (#21607)
clarify available pipelines
2023-02-13 11:37:48 -08:00
101b9a7eb1 [deepspeed] performance docs (#21573)
* [deepspeed] performance docs

* fix

* re-org

* update

* update

* a new NCCL Collectives section

* inference

* Update docs/source/en/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* suggestion

* Update docs/source/en/main_classes/deepspeed.mdx

* suggestion

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-13 10:29:12 -08:00
68eff4036d Update setup.py (#21584)
* Update setup.py

* suggestions
2023-02-13 10:12:14 -08:00
a27074abb5 [i18n-fr] Translate quicktour page to French (#21589)
* Translate quicktour to French

* Traduction missing task
2023-02-13 13:05:31 -05:00
fa4bdb0a40 Generate: correct default model input creation for decoder-only models (#21580) 2023-02-13 17:04:49 +00:00
edc1e734bf Fix Blip-2 CI (#21595)
* use fp16

* use fp16

* use fp16

* use fp16

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-13 16:44:27 +01:00
fd5320bb57 Add missing arguemtn to run_clip.py (#21588) 2023-02-13 10:27:23 -05:00
1210c72e82 Correct Markdown bullets indentation (#21583) 2023-02-13 10:22:29 -05:00
92487f5d0b Bump ipython from 8.1.1 to 8.10.0 in /examples/research_projects/decision_transformer (#21577)
Bump ipython in /examples/research_projects/decision_transformer

Bumps [ipython](https://github.com/ipython/ipython) from 8.1.1 to 8.10.0.
- [Release notes](https://github.com/ipython/ipython/releases)
- [Commits](https://github.com/ipython/ipython/compare/8.1.1...8.10.0)

---
updated-dependencies:
- dependency-name: ipython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-13 10:21:50 -05:00
dee4d72e72 annotated TFvisionEncoderDecoder input type hints (#21432)
* annotated TFvisionEncoderDecoder input type hints

Co-authored-by: JuheonChu <chuj@dickinson.edu>
Co-authored-by: AdiaWu <wua@dickinson.edu>

* fixed failing tests

* make fix-copies

* failed test fix

* style fix

* revert

---------

Co-authored-by: JuheonChu <chuj@dickinson.edu>
Co-authored-by: AdiaWu <wua@dickinson.edu>
Co-authored-by: Matt <rocketknight1@gmail.com>
2023-02-13 15:20:18 +00:00
1666c42f0b [bnb] Let's make the daily CI green 🍏 (#21597)
* fix bnb slow test

* make fixup
2023-02-13 16:18:50 +01:00
24273268b7 Generate: Fix flaky indexing error in test_constrained_beam_search_generate_dict_output (#21561) 2023-02-13 15:12:07 +00:00
93ed89bf40 Add inputs_embeds support when generating with GPT-J (#21575) 2023-02-13 15:11:40 +00:00
dcb5e01197 [MINOR] Fix link in timeseries transformer docs (#21602)
[MINOR] Fix link

I'm not sure this will also fix the currently broken link in the docs (Specifically here: https://huggingface.co/docs/transformers/model_doc/time_series_transformer) whereby clicking on `kashif` attempts to link to the following non-existent URL: https://huggingface.co/docs/transformers/model_doc/%3Chttps://huggingface.co/kashif
2023-02-13 10:11:16 -05:00
dd7429d645 Remove trailing 'extractive' word from en documentation (#21594)
remove trailing word
2023-02-13 10:09:00 -05:00
4be75e9728 CI: skip failing TF hubert test (#21601)
skip test
2023-02-13 09:34:23 -05:00
3baa407f92 Add: document question answering task guide (#21518)
* document question answering guide

* Added the list of supported models

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* switched to AutoProcessor

* feedback addressed

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/document_question_answering.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* more feedback addressed

* addressed comments about evaluation loss

* added appropriate image link

* make style

* typo fix

* resolving toc conflict

* fixed the image link

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-13 09:24:56 -05:00
eb6c59bc78 Generate: TF supports multiple eos tokens (#21571) 2023-02-13 12:24:22 +00:00
c836f77266 Fix quality on main (ruff release) 2023-02-11 20:09:16 -05:00
75a208ef66 [Blip2] Add int8 support for blip2-flan-t5-xxl (#21574)
add int8 support
2023-02-10 23:28:24 +01:00
b47a16743b Remove more unused attributes in config classes (#21543)
* Remove unused decoder_layerdrop

* Update SPECIAL_CASES_TO_ALLOW for MT5Config

* Remove unused position_embedding_init_scale

* Remove unused decoder_max_relative_position

* Use unused decoder_max_relative_position

* Remove unused init_std

* Remove unused forgotten attributes

* Remove unused patch_norm

* Remove unused max_seq_len

* Update SPECIAL_CASES_TO_ALLOW for OneFormerConfig

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-10 22:57:28 +01:00
862e8e4f4a Added timesformer configuration (#21446)
* Added timesformer configuration

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Create documentation_tests.txt

* Update documentation_tests.txt

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Delete documentation_tests.txt

Updates, Deleting "src/transformers/utils/documentation_tests.txt" file.

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Create documentation_tests.txt

Co-authored-by: JuheonChu <chuj@dickinson.edu>

* Delete documentation_tests.txt


Co-authored-by: JuheonChu <chuj@dickinson.edu>

---------

Co-authored-by: JuheonChu <chuj@dickinson.edu>
2023-02-10 22:54:40 +01:00
cb56590111 Replace input_values_processing with unpack_inputs (#21502)
* Replace input_values_prrocessing with unpack_inputs

* Skip test failing with OOM

* Update tests
2023-02-10 18:19:39 +00:00
557125637d improving contributing tests section (#21569)
* improving tests section

* documenting other  env variables
2023-02-10 13:17:01 -05:00
3b7ed25da9 [deepspeed] deal with models w/o config.hidden_size (#21504)
* [deepspeed] deal with models w/o config.hidden_size

* typo

* typo
2023-02-10 09:44:19 -08:00
4f831e661b Goodbye to Blip-2 doctests (#21566)
Byebye Blip-2 doctest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-10 18:37:06 +01:00
e2ec3089ce [Tasks] Adds image captioning (#21512)
* add: task guide on image cpationing.

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address additional comments from the PR.

* fix: wording.

* Update docs/source/en/tasks/image_captioning.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-10 22:52:12 +05:30
2f5507580b [from_pretrained] extend torch_dtype="auto" to look up config.torch_dtype first, expand docs (#21524)
* [from_pretrained] expand on torch_dtype entry

* fold 4 into 1

* style

* support torch_dtype='config' plus tests

* style

* oops

* fold config into auto, fix bug

* fix check

* better log

* better log

* clean up
2023-02-10 09:09:21 -08:00
9e40bba6ba [Tests] Improve flax test_attention_outputs (#21486)
improving flax tests
2023-02-10 11:31:49 -05:00
c88b11c591 Add _mp_fn to run_mae.py for XLA testing (#21551)
Update run_mae.py
2023-02-10 09:53:55 -05:00
b20147a3c8 [Variant] Make sure variant files are not incorrectly deleted (#21562)
* [Variant] Make sure variant files are not incorrectly deleted

* Apply suggestions from code review

* fix
2023-02-10 15:44:51 +01:00
51c3f42d8e Replace inefficient torch.sqrt taking scalar input with numpy.sqrt (#21496)
* fix rsqrt

* fix typo
2023-02-10 09:44:14 -05:00
b0d539ccad Add X-MOD (#20939)
* Add X-MOD to Readme

* Add documentation for X-MOD

* Implement X-MOD

* Fix formatting of X-MOD docs

* Change signature of X-MOD forward methods to use lang_ids

* Minor changes

* Rebase with main and run make fix-copies

* Make suggested changes to docstrings

* Improve code readability

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Fix code style

* Conversion script: Remove asserts and type annotations

* Remove _TOKENIZER_FOR_DOC

* XMOD -> Xmod

* Update copyright note

* Fix doctests

* Fix docstring

* Add integration test for FillMaskPipeline

* Revert "Add integration test for FillMaskPipeline"

This reverts commit 4381eb3b1d0f5d85785f89caba83928e6efa6d1f.

* Add end-to-end integration test for mask fill

* make style

* Rebase with main and make fix-copies

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-02-10 15:32:06 +01:00
adb2503ea3 Fix stuff related to the causal_mask in CodeGen. (#21527)
* Fix stuff related to the causal_mask in CodeGen.

1. Line 613, `_keys_to_ignore_on_load_missing  =  [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]` => `_keys_to_ignore_on_load_missing  =  [r"h\.\d+\.attn\.causal_mask"]` to load correctly from CodeGen checkpoint without `causal_mask`.
2. Line 152, `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
` => `causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length].bool()
` to alleviate potential user warning saying like `UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead.`.

* Revert the .bool()

Revert the .bool() and leave it to the future PR.
2023-02-10 09:16:23 -05:00
5b72b3412b Remove CLI spams with Whisper FeatureExtractor (#21267)
* Remove CLI spams with Whisper FeatureExtractor

Whisper feature extractor representation includes the MEL filters, a list of list that is represented as ~16,000 lines. This needlessly spams the command line. I added a `__repr__` method that replaces this list with a string "<array of shape (80, 201)>"

* Remove mel_filters from to_dict output  

Credits to @ArthurZucker

* remove unused import

* update feature extraction tests for the changes in to_dict
2023-02-10 09:15:16 -05:00
129011c20b adding a tip for deepspeed integration in multi-node environment (#21459)
* adding note concerning use_node_local_storage

* overriding checkpoint.use_node_local_storage if save_on_each_node == True

* add more content

* add more content

* improve

* style

---------

Co-authored-by: Stas Bekman <stas@stason.org>
2023-02-10 09:12:56 -05:00
21a2d900ec Added with torch.no_grad() to Camembert integration test (#21544)
add with torch.no_grad() to Camembert integration test

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-10 10:58:29 +01:00
f83942684d [pipeline] A simple fix for half-precision & 8bit models (#21479)
* v1 fix

* adapt from suggestions

* make style

* fix tests

* add gpu tests

* update docs

* fix other tests

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* better fix

* make fixup

* better example

* revert changes

* proposal

* more elegant solution

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-10 10:26:17 +01:00
97d3390fc8 Skip failing test for now 2023-02-09 20:11:26 -05:00
23c146c38b Added with torch.no_grad() to XLM-Roberta integration test (#21547)
* added with torch.no_grad() to the integration tests and applied make style

* added with torch.no_grad() to xlm roberta forward pass

---------

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-09 21:49:54 +01:00
04b2f13c37 🚨🚨🚨 Enforce single model initialization (#21431)
* Enforce single model initialization

* Add OneFormer example for problem 3

* Do it the Stas way

* Actually rename the uses...

* Rewrite test

* Try to change the test this way

* Fix all init slow/fast tests

* Break connection

* Fix more tests

* Fix test for initialization

* Remove custom test

* Quality

* Fix last failing tests

* The end?
2023-02-09 15:46:26 -05:00
2020ac4bd6 Fix from_pretrained API with config and state_dict (#21542) 2023-02-09 15:44:02 -05:00
1efe9c0b24 Fix inclusion of non py files in package (#21546)
* Fix inclusion of non py files in package

* No need for the **
2023-02-09 14:15:10 -05:00
7927732ff8 Align BLIP-2 winit with others 2023-02-09 12:03:27 -05:00
d7f1e7c009 Add BLIP-2 (#21441)
* First draft

* More improvements

* More improvements

* Improve conversion script

* Convert all weights

* Make forward pass work

* Make logits match

* More improvements

* More improvements

* More improvements

* Use get_input_embeddings

* Improve some more

* Improve model tests

* Improve model tests

* More improvements

* Fix processor

* Update files

* Update prepare_inputs_for_generation

* More improvements

* Fix copies

* More fixes

* Make fixup

* More improvements

* Add support for seq2seq language model

* More improvements

* Fix test

* More improvements

* Improve conversion script

* Remove some todo's

* Fix README's

* Improve conversion script

* Fix generation

* Fix style and remove Blip2Model

* Fix model outputs

* More improvements

* Set eos_token_id in config

* Fix quality

* Small improvements

* Add processor tests

* More improvements

* Apply suggestions

* Apply suggestions

* Add integration test

* Update image URL

* Add integration test

* Fix model_type

* Update style

* Improve docs

* Add doc tests

* Fix copies

* Remove tests which are passing

* Improve some more

* Add tests for seq2seq language models

* Minor fix

* Convert more checkpoints

* finalize CI

* Fix blip and blip2 processors

* add `accelerate` support for `blip2`

* clean up

* make style

* Update conversion script

* Update conversion script some more

* Update organization

* revert toc file

* add blip-2 to toc file

* Some more improvements

* Fix docstring

* Improve docs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-02-09 16:52:11 +01:00
b31cee6727 fix typo in run_speech_recognition_ctc.py (#21528)
Update run_speech_recognition_ctc.py

There should be `# limitations under the License` line at the end of the documentation section.
2023-02-09 09:46:40 -05:00
0d33381fad Tag tests as slow (#21537)
begone slow tests
2023-02-09 14:46:15 +00:00
3a726777ca Fix ClearML Integration to run in ClearML pipelines and external Tasks. (#21531)
* Added clearml pipeline fix for when task is already initialized

* Correctly initialize
2023-02-09 09:28:55 -05:00
17109ecfb8 Fix missing unfinished_sequences (#21529)
fix missing unfinished_sequences
2023-02-09 09:06:22 -05:00
2edf9a857b Generate: TF .generate() can now be exported with dynamic length (#21474) 2023-02-09 12:52:30 +00:00
e69f9715eb Generate: make TF .generate() signature == PT .generate() signature (#21525) 2023-02-09 11:10:13 +00:00
c35bb6de54 Add __len__ method to _LazyAutoMapping (#21522)
Add `__len__` method to `_LazyAutoMapping`

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-08 20:35:14 +01:00
9960506cbe Fix multiple eos_token_ids in model.generate(...) (#21461)
* add tests with multiple eos_token_ids

* make math.prod instead of sum

* make fixup

* fix long and also use np.prod since math.prod does not exist <python 3.8

* make fixup

* add prod util

* use prod util instead of np.prod

* make fixup

* previous .long location

* use tensor ops

* remove prod

* remove prod

* update device

* make fixup

* fix none
2023-02-08 13:48:46 -05:00
06d940efc3 Fixing backward compatiblity image_processor in pipeline. (#21513) 2023-02-08 19:36:20 +01:00
8ea994d3c5 [tests] add missing report_to none (#21505)
[tests] report_to none
2023-02-08 09:32:40 -08:00
98d5b72727 Update OPT conversion script to work for OPT-IML (#21519) 2023-02-08 18:31:10 +01:00
fe616f35c8 no more dummies for speech processors (#21517) 2023-02-08 11:41:54 -05:00
1d9c26a4b8 Generate: TF compute_transition_scores (#21341) 2023-02-08 16:36:43 +00:00
d3046dad80 [Doc] Minor URL fixes in PyTorch Text Classification Readme (#21511)
docs: fix some references in PyTorch text classification readme
2023-02-08 09:39:52 -05:00
e024cd715e Bump cryptography from 36.0.2 to 39.0.1 in /examples/research_projects/decision_transformer (#21507)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 36.0.2 to 39.0.1.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/36.0.2...39.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-08 09:25:06 -05:00
ca905ba28e Exclude the madeup words from M2M100Tokenizer.vocab_size (#20976) 2023-02-08 09:19:06 -05:00
cc1d0685b3 Wrap RemBert integration test forward passes with torch.no_grad() (#21503)
added with torch.no_grad() to the integration tests and applied make style

Co-authored-by: Bibi <Bibi@katies-mac.local>
2023-02-08 14:00:52 +01:00
5b67ab9924 Fix import in Accelerate for find_exec_bs (#21501) 2023-02-07 16:45:59 -05:00
eb1771ef1f Check for mapping/dict in distributed_concat function (#21500)
check for mapping/dict in distributed_concat function

Co-authored-by: prajwal967 <user.email>
2023-02-07 16:45:37 -05:00
7e51a441e4 Add XLM-V to Model Doc (#21498)
* doc: introduce new section for XLM-V model

* doc: mention more details for XLM-V integration

* docs: paper abstract in italics, model identifier for base model added

* doc: mention new XLM-V support

* auto: add XLM-V mapping

* doc: run make fix-copies ;)
2023-02-07 16:43:19 -05:00
a3034c7004 Add inverse sqrt learning rate scheduler (#21495)
* added inverse sqrt lr scheduler

* Updated get_scheduler in src/transformers/optimization.py

* Updated src/transformers/__init__.py

* Added inverse sqrt lr scheduler test

* Updated docs/source/en/main_classes/optimizer_schedules.mdx

* Ran style and quality scripts

* Fix get_inverse_sqrt_schedule docstring

* Comment implementation URL
2023-02-07 15:00:50 -05:00
b9af152efb [tokenizer] sanitize saved config (#21483)
* [tokenizer] sanitize saved config

* rm config["name_or_path"] test
2023-02-07 10:51:45 -08:00
67d074874d Cleanup quality (#21493)
* Remove mentions of flake8/isort

* Clean up inits

* Deall with all other inits

* Last special rule for dummy files
2023-02-07 12:27:31 -05:00
571fa585b6 Add limit_all_gathers option to fsdp_config and fix forward_prefetch bug (#21489)
* Add limit_all_gathers option to fsdp_config and fix forward_prefetch bug

* Fix black issue

* Fix ruff failure

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-07 12:27:06 -05:00
479322bfaa A new test to check config attributes being used (#21453)
* Add a new test to check config attributes being used

* Add a new test to check config attributes being used

* Add a new test to check config attributes being used

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions

* Update allowed cases - part 1

* Update allowed cases - part 2

* final

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-07 17:49:30 +01:00
9e7f84a556 [OPT] Adds GPT2TokenizerFast to the list of tokenizer to use for OPT. (#20823)
* Add ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),

* skip failing test

* Add ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),

* skip failing test
2023-02-07 17:35:28 +01:00
8a303f527f Sanity check the type of id2label and label2id arguments of from_pretrained for TokenClassification models (#21490)
* Sanity check the type of id2label and label2id arguments of from_pretrained for TokenClassification models

* Incorporate PR feedbacks

* Incorporate PR feedbacks
2023-02-07 10:44:43 -05:00
28ec07d8ad Typos/fixes to link syntax (#21450)
* Typos/fixes to link syntax

* Trying section headers

* Add header formatting for Rule #3
2023-02-07 15:19:19 +00:00
bbe98ea9c3 🖊️ fix typo in pytorch semantic segmentation readme (#21492) 2023-02-07 09:39:24 -05:00
8581fbaa6d changed "ot" to "to" (#21488) 2023-02-07 09:31:32 -05:00
fa0ae17958 [Doc] Fix int8 docs (#21487)
fix int8 docs
2023-02-07 15:09:27 +01:00
1e4cf8bb44 Generate: TF can now generate from embeddings in encoder-decoder models (#21475) 2023-02-07 11:18:23 +00:00
12eb528b5a [CI ] Remove past in favor of pat_key_values (#21443)
* fix past renamed to past_key_value

* update more `past`that were ski^êd

* fixup

* remove changes made to rag

* refactor `_reorder_cache` to use `past_key_values`

* fix git `prepare_inputs_for_generation` to pass tests when false is needed in use_cache
2023-02-07 09:51:35 +01:00
5b49376202 Deprecate parallelize API (#21448)
* Deprecate parallelize API

* Add documentation

* Fix copies
2023-02-06 19:39:13 -05:00
cc8407522a Fix epoch number when resuming training (#21478) 2023-02-06 19:34:34 -05:00
35f93f299f Bump oauthlib from 3.2.1 to 3.2.2 in /examples/research_projects/decision_transformer (#21481)
Bump oauthlib in /examples/research_projects/decision_transformer

Bumps [oauthlib](https://github.com/oauthlib/oauthlib) from 3.2.1 to 3.2.2.
- [Release notes](https://github.com/oauthlib/oauthlib/releases)
- [Changelog](https://github.com/oauthlib/oauthlib/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/oauthlib/oauthlib/compare/v3.2.1...v3.2.2)

---
updated-dependencies:
- dependency-name: oauthlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-02-06 18:27:14 -05:00
6f79d26442 Update quality tooling for formatting (#21480)
* Result of black 23.1

* Update target to Python 3.7

* Switch flake8 to ruff

* Configure isort

* Configure isort

* Apply isort with line limit

* Put the right black version

* adapt black in check copies

* Fix copies
2023-02-06 18:10:56 -05:00
b7bb2b59f7 Add tips for generation with Int8 models (#21424)
* Add tips for generation with Int8 models

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/en/perf_infer_gpu_one.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 20:25:40 +01:00
10056d898e OPT: BLIP2-ready prepare_inputs_for_generation (#21477) 2023-02-06 18:19:17 +00:00
baf4bacb1f [i18n-fr] Translate index page to French (#21458)
* Translate index page to French

* Fix indent

* Fix toctree

* Replace missing file by in_translation

* Add index

* Update docs/source/fr/index.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 12:25:49 -05:00
3b9a1dc132 [examples] improve block_size warning message (#21463) 2023-02-06 08:36:12 -08:00
4435c7f52c Removing more_itertools dependency. (#21473)
* Removing `more_itertools` dependency.

* Update examples/research_projects/vqgan-clip/requirements.txt
2023-02-06 17:33:20 +01:00
4943331015 Generate: TF can now accept custom logits processors (#21454) 2023-02-06 15:44:47 +00:00
e215e6ded2 make SpeechT5 doc examples deterministic (#21470)
* make doc examples deterministic

* add IGNORE_RESULT
2023-02-06 15:43:55 +01:00
182afb7dc6 Fixed RAG script which was failing on dummy example (#21416)
* do not use prefix="val" for test

The dummy example fails when test_epoch_end is called. The prefix="test" should be dynamic in the log metrics too.

* Create test.source

* Create test.target
2023-02-06 09:27:34 -05:00
7dbee87e09 Fix PushToHubCallback import in Share a model docs (#21457)
docs: update PushToHubCallback import in docs
2023-02-06 09:26:22 -05:00
5ac1c7ea85 Added documentation for DagsHubCallback (#21452)
updated documentation
2023-02-06 09:24:18 -05:00
ae31831879 Add perf numbers for perf_train_cpu (#20974)
* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update docs/source/en/perf_train_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-06 09:20:43 -05:00
0db5d911fc Fix SpeechT5ForSpeechToSpeechIntegrationTests device issue (#21460)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-06 10:43:07 +01:00
59d5edef34 Avoid flaky generation sampling tests (#21445)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 22:01:25 +01:00
31c351c4d3 For IterableDataset, return DataLoader using self._train_batch_size. … (#21447)
For IterableDataset, return DataLoader using self._train_batch_size. This is consistent with how we generate a regular DataLoader, and leads to the correct args.per_device_train_batch_size eventually ending up on each GPU.
2023-02-03 15:32:48 -05:00
833174c929 Add tutorial doc for TF + TPU (#21429)
* Add tutorial doc for TF + TPU

* Fix all those extra asterisks in the markdown

* Use the actual Tip formatting

* Remove unnecessary spaces

* Reformat checklist

* Fix checklist and reformat tips slightly

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/perf_train_tpu_tf.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add link to TPU notebook in the notebooks list

* Add links to the TPU notebook in the tutorial doc

* Make the markdown table a bit less wild

* Fix notebook link

* More notebook links

* More fixes to wild tables

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-03 19:07:42 +00:00
6c62cfb2ef exclude deleted files in the fixup script (#21436)
exclude deleted files from fixup script
2023-02-03 12:57:02 -05:00
e4bacf6614 [WIP] add SpeechT5 model (#18922)
* make SpeechT5 model by copying Wav2Vec2

* add paper to docs

* whoops added docs in wrong file

* remove SpeechT5Tokenizer + put CTC back in the name

* remove deprecated class

* remove unused docstring

* delete SpeechT5FeatureExtractor, use Wav2Vec2FeatureExtractor instead

* remove classes we don't need right now

* initial stab at speech encoder prenet

* add more speech encoder prenet stuff

* improve SpeechEncoderPrenet

* add encoder (not finished yet)

* add relative position bias to self-attention

* add encoder CTC layers

* fix formatting

* add decoder from BART, doesn't work yet

* make it work with generate loop

* wrap the encoder into a speech encoder class

* wrap the decoder in a text decoder class

* changed my mind

* changed my mind again ;-)

* load decoder weights, make it work

* add weights for text decoder postnet

* add SpeechT5ForCTC model that uses only the encoder

* clean up EncoderLayer and DecoderLayer

* implement _init_weights in SpeechT5PreTrainedModel

* cleanup config + Encoder and Decoder

* add head + cross attention masks

* improve doc comments

* fixup

* more cleanup

* more fixup

* TextDecoderPrenet works now, thanks Kendall

* add CTC loss

* add placeholders for other pre/postnets

* add type annotation

* fix freeze_feature_encoder

* set padding tokens to 0 in decoder attention mask

* encoder attention mask downsampling

* remove features_pen calculation

* disable the padding tokens thing again

* fixup

* more fixup

* code review fixes

* rename encoder/decoder wrapper classes

* allow checkpoints to be loaded into SpeechT5Model

* put encoder into wrapper for CTC model

* clean up conversion script

* add encoder for TTS model

* add speech decoder prenet

* add speech decoder post-net

* attempt to reconstruct the generation loop

* add speech generation loop

* clean up generate_speech

* small tweaks

* fix forward pass

* enable always dropout on speech decoder prenet

* sort declaration

* rename models

* fixup

* fix copies

* more fixup

* make consistency checker happy

* add Seq2SeqSpectrogramOutput class

* doc comments

* quick note about loss and labels

* add HiFi-GAN implementation (from Speech2Speech PR)

* rename file

* add vocoder to TTS model

* improve vocoder

* working on tokenizer

* more better tokenizer

* add CTC tokenizer

* fix decode and batch_code in CTC tokenizer

* fix processor

* two processors and feature extractors

* use SpeechT5WaveformFeatureExtractor instead of Wav2Vec2

* cleanup

* more cleanup

* even more fixup

* notebooks

* fix log-mel spectrograms

* support reduction factor

* fixup

* shift spectrograms to right to create decoder inputs

* return correct labels

* add labels for stop token prediction

* fix doc comments

* fixup

* remove SpeechT5ForPreTraining

* more fixup

* update copyright headers

* add usage examples

* add SpeechT5ProcessorForCTC

* fixup

* push unofficial checkpoints to hub

* initial version of tokenizer unit tests

* add slow test

* fix failing tests

* tests for CTC tokenizer

* finish CTC tokenizer tests

* processor tests

* initial test for feature extractors

* tests for spectrogram feature extractor

* fixup

* more fixup

* add decorators

* require speech for tests

* modeling tests

* more tests for ASR model

* fix imports

* add fake tests for the other models

* fixup

* remove jupyter notebooks

* add missing SpeechT5Model tests

* add missing tests for SpeechT5ForCTC

* add missing tests for SpeechT5ForTextToSpeech

* sort tests by name

* fix Hi-Fi GAN tests

* fixup

* add speech-to-speech model

* refactor duplicate speech generation code

* add processor for SpeechToSpeech model

* add usage example

* add tests for speech-to-speech model

* fixup

* enable gradient checkpointing for SpeechT5FeatureEncoder

* code review

* push_to_hub now takes repo_id

* improve doc comments for HiFi-GAN config

* add missing test

* add integration tests

* make number of layers in speech decoder prenet configurable

* rename variable

* rename variables

* add auto classes for TTS and S2S

* REMOVE CTC!!!

* S2S processor does not support save/load_pretrained

* fixup

* these models are now in an auto mapping

* fix doc links

* rename HiFiGAN to HifiGan, remove separate config file

* REMOVE auto classes

* there can be only one

* fixup

* replace assert

* reformat

* feature extractor can process input and target at same time

* update checkpoint names

* fix commit hash
2023-02-03 12:43:46 -05:00
fb13a7df95 do not scale gradient in bf16 mode (#21428)
* no dot scale gradient in bf16 mode

* fix since args.fp16 might be none

* fixed typo

* typo

* only do if grad scaling is true

* self.amp_dtype == torch.float16 is true

* put back prop when fsdp is not none
2023-02-03 11:57:33 -05:00
197e7ce911 Fix device issue in a ConvBertModelTest test (#21438)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 15:12:28 +01:00
0df802822c Added model resources for LayoutLM Issue#19848 (#21377)
* updated resources for LayoutLM

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixed formatting, removed extra section

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-02-03 08:53:16 -05:00
f726d53ea3 Remove more unused attributes in config classes (#21392)
* * Remove unused type_vocab_size

* Remove unused initializer_factor

* Remove unused n_embd

* Remove unused scale_embedding

* Remove unused scale_attn_weights

* fix

* fix

* Remove unused head_hidden_scale

* Remove unused activation_dropout

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-03 13:41:15 +01:00
3560ae6d94 Add inputs_embeds support for .generate() with BLOOM models (#21430)
Add accepting `.generate()` calls with `inputs_embeds` on BLOOM models
2023-02-03 07:31:14 -05:00
f21af26279 🚨🚨 Generate: standardize beam search behavior across frameworks (#21368) 2023-02-03 10:24:02 +00:00
ea55bd86b9 Add VQGAN-CLIP research project (#21329)
* Add VQGAN-CLIP research project

* fixed style issues

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/requirements.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/loaders.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* replace CLIPProcessor with tokenizer, change asserts to exceptions

* rm unused import

* remove large files (jupyter notebook linked in readme, imgs migrated to hf dataset)

* add tokenizers dependency

* Remove comment

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* rm model checkpoints

---------

Co-authored-by: Erwann Millon <erwann@Erwanns-MacBook-Air.local>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-02-02 14:45:35 -05:00
fbee82951f Update task summary (#21067)
* first draft of audio section

* make style

* first draft of computer vision section

* add convnext and encoder tasks

* finish up nlp tasks

* minor edits

* add arch images, more edits

* fix image links

* apply sanchit feedback

* model naming convention

* apply niels vit feedback

* replace detr for segmentation with mask2former

* apply feedback

* apply feedback
2023-02-02 11:41:27 -08:00
6a3d1a98e0 Fixes bug in the creation of ExponentialDecayLengthPenalty (#21423)
input_ids_seq_length doesn't exist in the GenerationConfig, it exists as local variable in the function.

Setting exponential_decay_length_penalty therefore results in an error:
`AttributeError: 'GenerationConfig' object has no attribute 'input_ids_seq_length'`

This simple change fixes this issue, and the exponential_decay_length_penalty works as expected.
2023-02-02 18:51:53 +00:00
0a75717602 Fix task guide formatting (#21409)
fix formatting
2023-02-02 10:06:26 -08:00
a6d8a149a8 Fix some pipeline tests (#21401)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 19:03:31 +01:00
145bf41c13 Allow to add more information in is_flaky (#21426)
* Allow to add more information

* fix style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 17:41:22 +01:00
8298e4ec02 [bnb] Fine-tuning HF 8-bit models (#21290)
* force `memory_efficient_backward=True`

* enhancements

- trainer support
- add new flag

* some changes

- internal changes in `Trainer`
- small refactor

* make quality

* Fixes

- add new testing util
- add new test
- change test in Trainer

* fix CI test

* educate users on how to ft 8bit models

* more checks

* fix `logger` error

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* adapt from review

* fix

* add comment

* use return instead

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-02 16:39:23 +01:00
67a3920d85 Fix Graphormer test suite (#21419)
* [FIX] path for Graphormer checkpoint

* [FIX] Test suite for graphormer

* [FIX] Update graphormer default num_classes
2023-02-02 16:29:13 +01:00
e006ab51ac Add the GeLU activation from pytorch with the tanh approximation (#21345)
* gelu_python_tanh

* rename

* Version check, add test

* Pr comment
2023-02-02 09:33:04 -05:00
53d374f1b9 Add distinct section names for PyTorch and TF (#21422)
* Add distinct section names for PyTorch and TF

* Remove extra space
2023-02-02 14:29:58 +00:00
0ae8dc0adf Fix image_processor_class bug (#21410)
Co-authored-by: Shreshth Tuli <shreshthtuli@gmail.com>
2023-02-02 09:20:52 -05:00
db572b3854 Use torch 1.13.1 in push/schedule CI (#21421)
Use torch 1.13.1 in push/scheduled CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-02-02 14:58:52 +01:00
92ce53aab8 Generate: decoder-only models can generate with inputs_embeds (#21405) 2023-02-01 21:50:38 +00:00
e5db7051a8 Add TF image classification example script (#19956)
* TF image classification script

* Update requirements

* Fix up

* Add tests

* Update test fetcher
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix directory path

* Adding `zero-shot-object-detection` pipeline doctest. (#20274)

* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.

* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)

* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs

* Trigger CI

* Data collator returns np

* Update feature extractor -> image processor

* Bug fixes - updates to reflect changes in API

* Update flags to match PT & run faster

* Update instructions - Maria's comment

* Update examples/tensorflow/image-classification/README.md

* Remove slow decorator

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2023-02-01 19:09:36 +00:00
3fadb4b211 Added DagshubCallback (#21404)
* integrated logger

* bugifx

* added data

* bugfix

* model + state artifacts should log

* fixed paths

* i lied, trying again

* updated function call

* typo

this is painful :( what a stupid error

* typo

this is painful :( what a stupid error

* pivoted to adding a directory

* silly path bug

* multiple experiments

* migrated to getattr

* syntax fix

* syntax fix

* fixed repo pointer

* fixed path error

* added dataset if dataloader is present, uploaded artifacts

* variable in scope

* removed unnecessary line

* updated error type

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* trimmed unused variables, imports

* style formatting

* removed type conversion reliance

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* reverted accidental line deletion

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-02-01 13:51:46 -05:00
8d580779a3 Skip batches fast with accelerate (#21390)
* Skip batches fast with Accelerate

* remove debug statement

* Hack seed reload at the right time

* Reorganize RNG sync

* Fix accelerate version comp
2023-02-01 10:22:05 -05:00
77db257e2a Fix the issue of using only inputs_embeds in convbert model (#21398)
* Fix the input embeds issue with tests

* Fix black and isort issue

* Clean up tests

* Add slow tag to the test introduced

* Incorporate PR feedbacks
2023-02-01 09:47:25 -05:00
65b5035a1d Moved LiLT under multimodal models in TOC (#21393)
moved LiLT under multimodal models
2023-02-01 08:03:00 -05:00
90cddfa824 Add variant to transformers (#21332)
* Bump onnx in /examples/research_projects/decision_transformer

Bumps [onnx](https://github.com/onnx/onnx) from 1.11.0 to 1.13.0.
- [Release notes](https://github.com/onnx/onnx/releases)
- [Changelog](https://github.com/onnx/onnx/blob/main/docs/Changelog.md)
- [Commits](https://github.com/onnx/onnx/compare/v1.11.0...v1.13.0)

---
updated-dependencies:
- dependency-name: onnx
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

* adapt

* finish

* Update examples/research_projects/decision_transformer/requirements.txt

* up

* add tests

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix test

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-01 09:21:52 +01:00
bc44e947f3 Update Graphormer and fix its torchscript test failures (#21380)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 17:32:25 +01:00
19d67bfecb Generate: fix TF XLA tests on models with max_position_embeddings or max_target_positions (#21389) 2023-01-31 15:49:34 +00:00
6342427353 Remove more unused attributes in config classes (#21327)
* remove unused classifier_dropout

* remove unused dropout

* remove unused pooler_fn

* remove unnecessary is_encoder_decoder

* remove unnecessary drop_rate

* remove unused classifier_dropout

* remove unused classifier_dropout

* remove unused dropout

* remove unused dropout

* remove unused summary_* attributes

* remove unused tie_word_embeddings

* remove unused summary_* attributes

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 16:35:38 +01:00
da2a4d95a2 Add support of backward_prefetch and forward_prefetch (#21237)
* Add support of backward_prefetch and forward_prefetch

* Fix format issue

* Fix isort issue

* Fix doc style issue

* Update src/transformers/trainer.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Fix black issue

* Fix doc-style issue

* Make additional fsdp parameters into fsdp config

* Fix black issue

* Remove unused imports

* Fix doc style issues

* Incorporate PR feedbacks

* Remove unused imports

* Fix tests

* Fix tests

* Fix tests

* Fix tests

* Fix tests

* Update src/transformers/training_args.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Fix tests

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix black issues

---------

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
2023-01-31 09:51:35 -05:00
074d6b75fd Simplify column_names in run_clm/mlm (#21382)
* simplify column_names in run_clm

* simplify column_names in run_mlm

* minor
2023-01-31 15:23:47 +01:00
c21298a69b [Docs] Minor fixes (#21383)
* Improve docs

* Add DETA resources

---------

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-31 15:13:12 +01:00
d31497b196 Do not log the generation config for each prediction step in TrainerSeq2Seq (#21385)
Do not log the generation config for each iteration
2023-01-31 09:05:22 -05:00
98d40fed3a Cleanup the usage of layer_norm_eps in some models (#21336)
* fix

* fix

* make style

* For CLIP

* For OwlViT

* For XCLIP

* For CLIPSeg

* For GroupViT

* fix docstrings

* fix docstrings

* For AltCLIP

* For ChineseCLIP

* For Blip

* For GiT

* make style

* update

* update

* update

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-31 13:54:16 +01:00
623346ab18 Template for framework-agnostic tests (#21348) 2023-01-31 11:33:18 +00:00
5451f8896c Add DETA (#20983)
* First draft

* Add initial draft of conversion script

* Convert all weights

* Fix config

* Add image processor

* Fix DetaImageProcessor

* Run make fix copies

* Remove timm dependency

* Fix dummy objects

* Improve loss function

* Remove conv_encoder attribute

* Update conversion scripts

* Improve postprocessing + docs

* Fix copied from statements

* Add tests

* Improve postprocessing

* Improve postprocessing

* Update READMEs

* More improvements

* Fix rebase

* Add is_torchvision_available

* Add torchvision dependency

* Fix typo and README

* Fix bug

* Add copied from

* Fix style

* Apply suggestions

* Fix thanks to @ydshieh

* Fix another dependency check

* Simplify image processor

* Add scipy

* Improve code

* Add threshold argument

* Fix bug

* Set default threshold

* Improve integration test

* Add another integration test

* Update setup.py

* Address review

* Improve deformable attention function

* Improve copied from

* Use relative imports

* Address review

* Replace assertions

* Address review

* Update dummies

* Remove dummies

* Address comments, update READMEs

* Remove custom kernel code

* Add image processor tests

* Add requires_backends

* Add minor comment

* Update scripts

* Update organization name

* Fix defaults, add doc tests

* Add id2label for object 365

* Fix tests

* Update task guide
2023-01-31 10:43:10 +01:00
98d88b23f5 [run_(clm|mlm).py examples] add streaming dataset support (#21343)
* [run_clm example] add streaming dataset support

* unrefactor kwargs

* fix

* fix

* require datasets>=2.0.0

* port to mlm
2023-01-30 14:01:35 -08:00
95be242adc translate index to zh(#20095) (#21351)
translate index to zh

Co-authored-by: bfss <bfss@bfss.com>
2023-01-30 16:50:57 -05:00
914e5009fa Adding resource section to GPT-J docs (#21270)
* Added resource section to GPT-J docs

* Added most of the links found

* Addressing review comments

* Fixing formatting

* Update docs/source/en/model_doc/gptj.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fixing one of the labels

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-30 16:48:04 -05:00
14d989a91d Fixes path for Graphormer checkpoint (#21367)
[FIX] path for Graphormer checkpoint
2023-01-30 21:48:04 +01:00
42b60f8b02 Generate: Relaxed max_length and max_new_tokens coexistence (#21347)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-30 17:53:54 +00:00
6eb3c66a96 Add cPython files in build (#21372) 2023-01-30 11:19:30 -05:00
59611a0f3a Fix DETR tests after #21144 (#21365)
* Fix annotation check

* Fix annotation check

* Update type annotations
2023-01-30 15:55:00 +00:00
7a2e13204f Remove duplicate declarations in dummy inputs for TFLongformer (#21352)
Remove duplicate declarations
2023-01-30 10:03:19 -05:00
96addecff8 Corrected (#21350) 2023-01-30 09:38:15 -05:00
f3a7befffa fix the issue that the output dict of jit model could not get [0] (#21354) 2023-01-30 09:23:55 -05:00
c749bd405e Pipeline testing - using tiny models on Hub (#20426)
* rework pipeline tests

* run pipeline tests

* fix

* fix

* fix

* revert the changes in get_test_pipeline() parameter list

* fix expected error message

* skip a test

* clean up

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-30 10:39:43 +01:00
a582cfce3c Fix GitModelIntegrationTest.test_batched_generation device issue (#21362)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-30 10:37:56 +01:00
73a2ff6974 Automated compatible models list for task guides (#21338)
* initial commit. added tip placeholders and a script

* removed unused imports, fixed paths

* fixed generated links

* make style

* split language modeling doc into two: causal language modeling and masked language modeling

* added check_task_guides.py to make fix-copies

* review feedback addressed
2023-01-27 13:19:28 -05:00
8f3b4a1d5b Little cleanup: let huggingface_hub manage token retrieval (#21333)
* Let huggingface_hub manage token retrieval

* flake8

* code quality

* adapt in every PushToHubMixin children

* add explicit return type
2023-01-27 12:09:49 -05:00
0dff407d71 [Whisper] another patch (#21324)
* another patch

* fix timestamp test modeling

* let it be negative when the token is None
2023-01-27 16:35:16 +01:00
e5eb3e22ea Fix RobertaPreLayerNorm doctest (#21337)
* add mask="<mask>"

* update

* update

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-27 16:20:25 +01:00
36b668fa06 Bump onnx from 1.11.0 to 1.13.0 in /examples/research_projects/decision_transformer (#21331)
Bump onnx in /examples/research_projects/decision_transformer

Bumps [onnx](https://github.com/onnx/onnx) from 1.11.0 to 1.13.0.
- [Release notes](https://github.com/onnx/onnx/releases)
- [Changelog](https://github.com/onnx/onnx/blob/main/docs/Changelog.md)
- [Commits](https://github.com/onnx/onnx/compare/v1.11.0...v1.13.0)

---
updated-dependencies:
- dependency-name: onnx
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-27 10:13:13 -05:00
938f437c53 Fix M2M100 positional embedding creation for ONNX (#21328)
* Fix M2M100 positional embedding creation for ONNX

* Restore READMEs

* Trigger CI
2023-01-27 10:43:19 +01:00
7d2a5fa749 Update Hebrew language code to he per IANA registry (#21310)
Here's my original PR into whisper that changes the same: 
https://github.com/openai/whisper/pull/401

Per [IANA registry](https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry), `iw` was deprecated as the code for Hebrew in 1989 and the preferred code is `he`

The correct subtag: 
```
%%
Type: language
Subtag: he
Description: Hebrew
Added: 2005-10-16
Suppress-Script: Hebr
%%
``` 
And the deprecation
```
%%
Type: language
Subtag: iw
Description: Hebrew
Added: 2005-10-16
Deprecated: 1989-01-01
Preferred-Value: he
Suppress-Script: Hebr
%%
```
2023-01-26 13:34:39 -05:00
b225ee6ea0 [Doctest] Fix Perceiver doctest (#21318)
fix `Perceiver` doctest
2023-01-26 17:16:37 +01:00
2b8feffad5 Generate: better compute_transition_scores examples (#21323) 2023-01-26 16:06:05 +00:00
449df41f01 Fix TFEncoderDecoder tests (#21301)
remove max_length=None

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 16:56:42 +01:00
857bad6e53 check paths in utils/documentation_tests.txt (#21315)
* check paths in utils/documentation_tests.txt

* check paths in utils/documentation_tests.txt

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 15:33:47 +01:00
fd0ef8b66d Small QoL for qa. (#21316) 2023-01-26 14:50:09 +01:00
a01dd3818f [i18n-KO] Translated quicktour page to Korean (#20946)
docs: ko: quicktour page

review by @ArthurZucker
docs: fix: remove duplicate

Co-Authored-By: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-01-26 14:10:02 +01:00
31336dcf3f Fix 2 paths in the doctest list (#21314)
fix the list

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 12:07:08 +01:00
4e41b87e3d Use model_class.__name__ and compare against XXX_MAPPING_NAMES (#21304)
* update

* update all

* clean up

* make quality

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-26 11:31:31 +01:00
d18a1cba24 Accept batched tensor of images as input to image processor (#21144)
* Accept a batched tensor of images as input

* Add to all image processors

* Update oneformer
2023-01-26 10:15:26 +00:00
6f3faf3863 [WHISPER] Small patch (#21307)
* add small patch

* update tests, forced decoder ids is not prioritary against generation config

* fix two new tests
2023-01-25 22:49:23 +01:00
140c6edeb9 Small fix to ExponentialDecayLengthPenalty docstring (#21308)
Currently, it incorrectly states that the exponential_decay_length_penalty tuple parameter is optional.

Also changed the corresponding type hint to be more specific.
2023-01-25 14:46:08 -05:00
3a6e4a221c Add BridgeTower model (#20775)
* Commit with BTModel and latest HF code

* Placeholder classes for BTForMLM and BTForITR

* Importing Bert classes from transformers

* Removed objectives.py and dist_utils.py

* Removed swin_transformer.py

* Add image normalization, BridgeTowerForImageAndTextRetrieval

* Add center_crop

* Removing bert tokenizer and LCI references

* Tested config loading from HF transformers hub

* Removed state_dict updates and added path to hub

* Enable center crop

* Getting image_size from config, renaming num_heads and num_layers

* Handling max_length in BridgeTowerProcessor

* Add BridgeTowerForMaskedLM

* Add doc string for BridgeTowerConfig

* Add doc strings for BT config, processor, image processor

* Adding docs, removed swin

* Removed convert_bridgetower_original_to_pytorch.py

* Added doc files for bridgetower, removed is_vision

* Add support attention_mask=None and BridgeTowerModelOutput

* Fix formatting

* Fixes with 'make style', 'make quality', 'make fixup'

* Remove downstream tasks from BridgeTowerModel

* Formatting fixes, add return_dict to BT models

* Clean up after doc_test

* Update BTModelOutput return type, fix todo in doc

* Remove loss_names from init

* implement tests and update tuples returned by models

* Add image reference to bridgetower.mdx

* after make fix-copies, make fixup, make style, make quality, make repo-consistency

* Rename class names with BridgeTower prefix

* Fix for image_size in BTImageProcessor

* implement feature extraction bridgetower tests

* Update image_mean and image_std to be list

* remove unused import

* Removed old comments

* Rework CLIP

* update config in tests followed config update

* Formatting fixes

* Add copied from for BridgeTowerPredictionHeadTransform

* Update bridgetower.mdx

* Update test_feature_extraction_bridgetower.py

* Update bridgetower.mdx

* BridgeTowerForMaskedLM is conditioned on image too

* Add BridgeTowerForMaskedLM

* Fixes

* Call post_init to init weights

* Move freeze layers into method

* Remove BTFeatureExtractor, add BT under multimodal models

* Remove BTFeatureExtractor, add BT under multimodal models

* Code review feedback - cleanup

* Rename variables

* Formatting and style to PR review feedback

* Move center crop after resize

* Use named parameters

* Style fix for modeling_bridgetower.py

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/bridgetower/modeling_bridgetower.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rename config params, copy BERT classes, clean comments

* Cleanup irtr

* Replace Roberta imports, add BTTextConfig and Model

* Update docs, add visionconfig, consistent arg names

* make fixup

* Comments for forward in BTModel and make fixup

* correct tests

* Remove inconsistent roberta copied from

* Add BridgeTowerTextModel to dummy_pt_objects.py

* Add BridgeTowerTextModel to IGNORE_NON_TESTED

* Update docs for BT Text and Vision Configs

* Treat BridgeTowerTextModel as a private model

* BridgeTowerTextModel as private

* Run make fix-copies

* Adding BTTextModel to PRIVATE_MODELS

* Fix for issue with BT Text and Image configs

* make style changes

* Update README_ja.md

Add から to BridgeTower's description

* Clean up config, .mdx and arg names

* Fix init_weights. Remove nn.Sequential

* Formatting and style fixes

* Re-add tie_word_embeddings in config

* update test implementation

* update style

* remove commented out

* fix style

* Update README with abs for BridgeTower

* fix style

* fix mdx file

* Update bridgetower.mdx

* Update img src in bridgetower.mdx

* Update README.md

* Update README.md

* resolve style failed

* Update _toctree.yml

* Update README_ja.md

* Removed mlp_ratio, rename feats, rename BTCLIPModel

* Replace BTCLIP with BTVisionModel,pass in vision_config to BTVisionModel

* Add test_initialization support

* Add support for output_hidden_states

* Update support for output_hidden_states

* Add support for output_attentions

* Add docstring for output_hidden_states

* update tests

* add bridgetowervisionmodel as private model

* rerun the PR test

* Remove model_type, pass configs to classes, renames

* Change self.device to use weight device

* Remove image_size

* Style check fixes

* Add hidden_size and num_hidden_layers to BridgeTowerTransformer

* Update device setting

* cosmetic update

* trigger test again

* trigger tests again

* Update test_modeling_bridgetower.py

trigger tests again

* Update test_modeling_bridgetower.py

* minor update

* re-trigger tests

* Update docs/source/en/model_doc/bridgetower.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove pad, update max_text_len, doc cleanup, pass eps to LayerNorm

* Added copied to, some more review feedback

* make fixup

* Use BridgeTowerVisionEmbeddings

* Code cleanup

* Fixes for BridgeTowerVisionEmbeddings

* style checks

* re-tests

* fix embedding

* address comment on init file

* retrigger tests

* update import prepare_image_inputs

* update test_image_processing_bridgetower.py to reflect test_image_processing_common.py

* retrigger tests

Co-authored-by: Shaoyen Tseng <shao-yen.tseng@intel.com>
Co-authored-by: Tiep Le <tiep.le@intel.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Tiep Le <97980157+tileintel@users.noreply.github.com>
2023-01-25 14:04:32 -05:00
39799fbf85 [CI-Daily] replace past in prepare inputs for generation (#21296)
replace `past` in prepare inputs for generation
2023-01-25 18:25:59 +01:00
238449414f Documentation code sample fixes (#21302)
* Fixed the following:
pipe -> pipeline
out in pipe(data()) is a list of dict, not a dict

* Fixed the TypeError: __init__() missing 1 required positional argument: 'key'

* Added a tip: code sample requires additional libraries to run

* Fixed custom config's name

* added seqeval to the required libraries

* fixed a missing dependency,
fixed metric naming,
added checkpoint to fix the datacollator

* added checkpoint to fix the datacollator,
added missing dependency
2023-01-25 11:33:39 -05:00
015443f42b [Doctest] Fix Blenderbot doctest (#21297)
fix blenderbot doctest

- add correct expected value
2023-01-25 17:28:29 +01:00
cc714d74c4 Update OneFormerModelIntegrationTest expected values (#21295)
* update values

* update values

* update values

* Update tests/models/oneformer/test_modeling_oneformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-25 17:27:02 +01:00
63b204eadd [Hubert] Fix Hubert processing auto (#21299)
* fix Hubert processing auto

* remove unneeded space
2023-01-25 16:36:31 +01:00
de2d793e83 Fix EfficientFormer (#21294)
* fix

* fix checkpoint

* fix style

* tiny update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-25 16:09:15 +01:00
8788fd0ceb Moving to cleaner tokenizer version or oneformer. (#21292)
Moving to cleaner tokenizer version.
2023-01-25 15:46:10 +01:00
255257f3ea [Whisper] Refactor whisper (#21252)
* update whisper logit processor

* add generate for whisper

* remove part of the whisper specific code from pipeline

* update logit processes

* major update

* enforce first timestamp

* update generate

* add more tests

* update new decoding strategy

* Apply suggestions from code review

* update docstring

* fixup

* default config will not have multilingual ar

* update expected tokenizer size, see pull on the hub for whisper-tiny
2023-01-25 13:09:43 +01:00
f83135eb76 [Mask2Former] Add doc tests (#21232)
* Add doc tests

* Add OneFormer resourcesé

* Fix merge

* Fix style

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-25 12:34:43 +01:00
99e7905422 Supporting ImageProcessor in place of FeatureExtractor for pipelines (#20851)
* Fixing the pipeline with image processor.

* Update the slow test.

* Using only the first image processor.

* Include exclusion mecanism for Image processor.

* Do not handle Gitconfig, deemed as a bug.

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove `conversational` changes. They are not supposed to be here.

* Address first row of comments.

* Remove OneFormer modifications.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-01-25 10:16:31 +01:00
efdbad56ab [GIT] Add test for batched generation (#21282)
* Add test

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-25 10:14:18 +01:00
de1ca3a0c5 Update expected values for doctest (#21284)
update expected values
2023-01-24 13:32:31 -08:00
1f981215dd Fix TrainingArguments.label_names docs to reflect the correct default value behaviour (#21288)
* Update TrainingArguments.label_names docs

* Change wording

* Change wording
2023-01-24 14:48:24 -05:00
14d058b940 [W2V2 with LM] Fix decoder test with params (#21277) 2023-01-24 19:27:56 +01:00
94a7edd938 [GenerationConfig] add additional kwargs handling (#21269)
* add additional kwargs handling

* fix issue when serializing

* correct order of kwargs removal for serialization in from dict

* add `dict_torch_dtype_to_str` in case a dtype is needed for generation

* add condition when adding the kwargs : not from config

* Add comment based on review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add test function

* default None when poping arg

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-24 19:04:42 +01:00
9286039c2a [examples/deepspeed] fix renamed api (#21283) 2023-01-24 09:54:33 -08:00
e2e393c6f2 [t5] Fix T5 inference in float16 + bnb error (#21281)
* attempts to fix:

- upcast input for `T5DenseActDense`
- add the condition `self.wo.weight.dtype != torch.int8`
- added tests on `test/mixed_int8`
- `make fixup`

* fix ci test
2023-01-24 18:14:38 +01:00
f424b09410 Fix MaskFormerImageProcessor.post_process_instance_segmentation (#21256)
* fix instance segmentation post processing

* add Mask2FormerImageProcessor
2023-01-24 18:49:29 +03:00
767939af52 Use logger.info instead of print to emit a logging message in hub.py (#21273)
use logger.info() instead of print() to emit a debug message
2023-01-24 10:37:10 -05:00
67316444b0 Hotifx remove tuple for git config image processor. (#21278) 2023-01-24 16:07:50 +01:00
071529bd54 Use return_tensors="np" instead of "tf" (#21266)
Return NP instead of TF tensors for our data loading pipeline
2023-01-24 13:37:49 +00:00
f0fc791298 [Doc] fix broken link (#21276)
fix broken link
2023-01-24 11:18:48 +01:00
bde7378bf0 Skip test_multi_gpu_data_parallel_forward for UperNetModelTest (#21216)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-24 10:41:16 +01:00
7119bb052a v4.27.0.dev0 2023-01-23 16:52:35 -05:00
fd5cdaeea6 Models docstring (#21225)
* Clean all models

* Style

* Last to remove

* address review comments

* Address review comments
2023-01-23 14:33:18 -05:00
9e86c4e193 Supported pipeline tasks update (#21268)
* added tasks from SUPPORTED_TASKS to docstrings

* make style

* sorted the tasks in the docstrtings in alphabetical order
2023-01-23 14:23:20 -05:00
d8415ba42e [Whisper] fix all issues with unk token (#21250)
* fix all issues with unk token

* fixup
2023-01-23 20:19:57 +01:00
c18b4fbe9f Add class properties with warnings (#21195)
* Replace reduce_labels with do_reduce_labels

* Replace only for __init__ and preprocess

* Add class properties with warnings

* Update tests
2023-01-23 18:45:27 +00:00
b80b2218b5 [ci-daily] Fix pipeline tests (#21257)
* use streaming dataset

* fix whisper's test

* add rescale argument to chunk_iter
2023-01-23 19:32:49 +01:00
275ad9d80a Add: TensorFlow example for semantic segmentation task guide (#21223)
* wip: adding tf example for semantic segmentation guide

* completed the working example in tf

* make style

* Update docs/source/en/tasks/semantic_segmentation.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/semantic_segmentation.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixed a callback doc links

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-23 13:32:15 -05:00
2218dac5d2 Notebook examples grouping and update (#21265)
* Split the examples by modality, added missing examples

* fixed a link
2023-01-23 12:51:24 -05:00
e2bd7f80d0 Update tests: replace feature extractor tests with image processor (#20768)
* Update imports and test fetcher

* Revert but keep test fetcher update

* Fix imports

* Fix all imports

* Replace fe with ip names

* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)

* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs

* Update image processor parameters if creating with kwargs (#20866)

* Update parameters if creating with kwargs

* Shallow copy to prevent mutating input

* Pass all args in constructor dict - warnings in init

* Fix typo

* Rename tester class

* Rebase and tidy up

* Fixup

* Use ImageProcessingSavingTestMixin

* Update property ref in tests

* Update property ref in tests

* Update recently merged in models

* Small fix

Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
2023-01-23 17:25:41 +00:00
354ea44340 Replace reduce_labels with do_reduce_labels (#21218)
* Replace reduce_labels with do_reduce_labels

* Replace only for __init__ and preprocess

* Update tests
2023-01-23 17:21:33 +00:00
1eda4a4102 Generate: save generation config with the models' .save_pretrained() (#21264) 2023-01-23 16:21:44 +00:00
cf1a1eed70 Add missing checkpoint for doctest (#21258) 2023-01-23 15:27:25 +00:00
5603f78fc4 Add scikit-learn dependency to train langage-modeling (#21229) 2023-01-23 09:54:45 -05:00
929111698c Add Japanese translation installation.mdx (#21241)
* Add Japanese translation installation.mdx

* Fixed for consistency with english version
2023-01-23 15:38:30 +01:00
cb6b56859a Fix reformer CI (#21254)
* fix ReformerForSequenceClassification doc example

* fix ReformerForMaskedLM doc example

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-23 15:34:14 +01:00
eaace0c668 Optimize by not computing gradients for parameters set to requires_grad=False (#21236)
* Optimize by not computing gradients for parameters set to requires_grad=False

* Make change to retrigger the build

* Fix isort issue

* Fix issue
2023-01-23 09:27:59 -05:00
6e4d3f0859 [GIT] Convert more checkpoints (#21245)
* Extend conversion script

* Remove print statement

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-23 15:19:27 +01:00
66459ce319 Add test_image_processing_common.py (#20785)
* Add test_image_processing_common.py

* Fix typo

* Update imports and test fetcher

* Revert but keep test fetcher update

* Fix imports

* Fix all imports

* Formatting fix

* Update tests/test_image_processing_common.py
2023-01-23 13:48:30 +00:00
96b2b2de12 Extend Script to enable conversion of Encoder Only T5x Models to Pytorch (#20907)
* add converter for t5x_retrieval model

* update args

* Update src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style  editing -> convert t5x to pytorch

* make style

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-01-23 14:41:43 +01:00
91ff7efeeb [DETR and friends] Use AutoBackbone as alternative to timm (#20833)
* First draft

* More improvements

* Add conversion script

* More improvements

* Add docs

* Address review

* Rename class to ConvEncoder

* Address review

* Apply suggestion

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update all DETR friends

* Add corresponding test

* Improve test

* Fix bug

* Add more tests

* Set out_features to last stage by default

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-23 12:15:47 +01:00
c8d719ff7e Generate: precision fix in compute_transition_scores doctests (#21251) 2023-01-23 11:13:51 +00:00
e1cd78634a [BLIP] fix doctest (#21217)
* fix `blip` doctest

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-01-23 11:16:23 +01:00
4e730b3873 Skip failing test for now (#21226)
skip failing test for now
2023-01-20 20:46:11 -05:00
7fd902d335 [BLIP] fix docstring for BlipTextxxx (#21224)
* fix `blip` docstring

* fix typo

* fix another typo
2023-01-20 23:16:42 +01:00
d54d7598bd Microphone live inference catching up when inference is too slow (whisper). (#21219)
* Microphone live inference catching up when inference is too slow
(whisper).

* Adding copyright.
2023-01-20 21:33:43 +01:00
7fc1cb150c Remove all hf-internal-testing checkpoints that can be removed (#21199)
* Remove all hf-internal-testing checkpoints that can be removed

* Fix copies

* Put back processor_class in TF example

* Address review comment
2023-01-20 13:19:58 -05:00
142ad1a1cc Fix task summary doctest (#21200)
* add outputs to code snippets

* fix example text

* apply feedback

* style changes

* make style
2023-01-20 09:58:07 -08:00
425ff71c4e Fix OneFormer Docstrings (#21215)
* Fix processor

* Fix shape in docstring
2023-01-20 17:37:11 +01:00
b0969cafd0 Make parallelism for CircleCI jobs work - but keep it 1 for now (#21157)
* split tests

* test CI

* add if else

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 16:41:33 +01:00
2553363826 Fix code example in training tutorial (#21201)
change text to sentence
2023-01-20 07:38:15 -08:00
7419d807ff Declare __len__ method in PreTrainedTokenizerBase (#21210) 2023-01-20 15:54:33 +01:00
ef53017520 Fix GPTJ doctest (#21213)
Replace the checkpoint - the current one has shape issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 15:35:00 +01:00
6ee6993fd9 Fix CONFIG_ARCHIVE_MAP_MAPPING_NAMES (#21207)
fix typo + remove non-existent entry

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 15:22:10 +01:00
50540e18ff Update huggingface_hub version (#21212)
* update huggingface_hub version

* revert changes in setup.py

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-20 09:15:59 -05:00
202d6863ce deleted references of self.vocab_size and self.type_vocab_size for multiple models [TF implementation] (#21164) 2023-01-20 13:11:01 +00:00
af37d183b3 Generate: documented function to compute the transition scores (#21191)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-20 12:50:01 +00:00
91c2278b97 Update modeling doc strings FE -> IP (#21106)
* Update docs examples FE -> IP

* Remove _IMAGE_PROCESSOR_FOR_DOC
2023-01-20 11:18:10 +00:00
5d3cb760a0 [Whispe] Fix pipeline after timestamp merges (#21198)
* pass return_timestamps to pre-process

* add a test to test it

* test does not need device 0

* remove failing bit

* update test
2023-01-20 10:31:40 +01:00
5326460f14 Enabling live automatic-speech-recognition asr for Whisper. (#21196)
* Enabling live `automatic-speech-recognition` asr for Whisper.

* Dummy change.
2023-01-20 10:15:26 +01:00
1b37fb5e17 Efficientformer (#20459)
- Adds EfficientFormer V1 to transformers
- PR co-authored by @novice03  and @Bearnardd 

Co-authored-by: novice <pranavpulijala@gmail.com>
Co-authored-by: novice <44259234+novice03@users.noreply.github.com>
2023-01-20 11:35:42 +03:00
862888a358 Add disclaimer for necessary fake models (#21178)
* Add disclaimer for necessary fake models

* Address review comments

* Use for GPT-NeoX as well
2023-01-19 14:16:15 -05:00
87208a05af Graphormer model for Graph Classification (#20968)
* [FT] First commit for graphormer architecture.

The model has no tokenizer, as it uses a collator and preprocessing function for its input management.
Architecture to be tested against original one.
The arch might need to be changed to fit the checkpoint, but a revert to the original arch will make the code less nice to read.
TODO: doc

* [FIX] removed test model

* [FIX] import error

* [FIX] black and flake

* [DOC] added paper refs

* [FIX] [DOC]

* [FIX] black

* [DOC] Updated READMEs

* [FIX] Order of imports + rm Tokenizer calls

* [FIX] Moved assert in class to prevent doc build failure

* [FIX] make fix-copies

* [Doc] update from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [FIX] Removed Graphormer from Sequence classification model list

* [DOC] Added HF copyright to Cython file

* [DOC] Fixed comments

* [FIX] typos in class doc + removed config classes.

Todo: update doc from paper definitions

* [FIX] Removed dependency to fairseq, and replaced all asserts with Exception management

* [FIX] Homogeneized initialization of weights to pretrained constructor

* [FIX] [CP] Updated multi_hop parameter to get same results as in original implementation

* [DOC] Relevant parameter description in the configuration file

* [DOC] Updated doc and comments in main graphormer file

* [FIX] make style and quality checks

* [DOC] Fix doc format

* [FIX] [WIP] Updated part of the tests, though still a wip

* [FIX] [WIP]

* [FIX] repo consistency

* [FIX] Changed input names for more understandability

* [FIX] [BUG] updated num_classes params for propagation in the model

* simplified collator

* [FIX] Updated tests to follow new naming pattern

* [TESTS] Updated test suite along with model

* |FIX] rm tokenizer import

* [DOC] add link to graphormerdoc

* Changed section in doc from text model to graph model

* Apply suggestions from code review

Spacing, inits

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [DOC] Explain algos_graphormer functions

* Cython soft import protection

* Rm call to Callable in configuration graphormer

* [FIX] replaced asserts with Exceptions

* Add org to graphormer checkpoints

* Prefixed classes with Graphormer

* Management of init functions

* format

* fixes

* fix length file

* update indent

* relaunching ci

* Errors for missing cython imports

* fix style

* fix style doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-19 13:05:59 -05:00
758bd39e81 revert Copyright 2023 2023-01-19 18:23:59 +01:00
705e332b46 Add Japanese translation index.mdx (#21186)
* Add Japanese translation index.mdx

* Fix the year of the license

* Change the models list to Japanese
2023-01-19 17:53:28 +01:00
cbaaa2f6ac Flax dtype-dependent numerical masking (#21197) 2023-01-19 16:43:42 +00:00
0b86e330b1 [CVT] Fix module initialization issue (#21193)
fix cvt init
2023-01-19 17:36:38 +01:00
b9403e9516 Add hallucination filter (#18675)
* Add hallucination penalty

* Make quality changes

* Inverse penalty

* Fix imports & quality

* Fix name spelling issue

* set encoder_repetition_penalty and fix quality

* Fix failing test

* Add to config_common_kwargs

* Fix modelling_rag error

* Update src/transformers/generation_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove breakpoint

* Make style fixes

* Update encoder_repetition_penalty default value

* Merge latest main changes

* Make fixup changes

* Add EncoderRepetitionPenaltyLogitsProcessor to generation/__init__.py

* Fix repo-inconsistency

* Remove venv

* Remove tensorflow-macos & add tests

* Add documentation

* Fix quality issues

* move encoder_repetition_penalty to config

* Update src/transformers/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Remove encoder_repetition_penalty from tests

* Fix type error

* Fix format error

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-19 11:20:25 -05:00
e9b4800dda [Whisper] Fix timestamp processor (#21187)
* add draft logit processor

* add template functions

* update timesapmt processor parameters

* draft script

* simplify code

* cleanup

* fixup and clean

* update pipeline

* style

* clean up previous idea

* add tokenization utils

* update tokenizer and asr output

* fit whisper type

* style and update test

* clean test

* style test

* update tests

* update error test

* udpate code (not based on review yet)

* update tokenization

* update asr pipeline

* update code

* cleanup and update test

* fmt

* remove text verificatino

* cleanup

* cleanup

* add model test

* update tests

* update code add docstring

* update code and add docstring

* fix pipeline tests

* add draft logit processor

add template functions

update timesapmt processor parameters

draft script

simplify code

cleanup

fixup and clean

update pipeline

style

clean up previous idea

add tokenization utils

update tokenizer and asr output

fit whisper type

style and update test

clean test

style test

update tests

update error test

udpate code (not based on review yet)

update tokenization

update asr pipeline

update code

cleanup and update test

fmt

remove text verificatino

cleanup

cleanup

add model test

update tests

update code add docstring

update code and add docstring

fix pipeline tests

* Small update.

* Fixup.

* Tmp.

* More support.

* Making `forced_decoder_ids` non mandatory for users to set.

* update and fix first bug

* properly process sequence right after merge if last

* tofo

* allow list inputs + compute begin index better

* start adding tests

* add the 3 edge cases

* style

* format sequences

* fixup

* update

* update

* style

* test passes, edge cases should be good

* update last value

* remove Trie

* update tests and expec ted values

* handle bigger chunk_length

* clean tests a bit

* refactor chunk iter and clean pipeline

* update tests

* style

* refactor chunk iter and clean pipeline

* upade

* resolve comments

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* take stride right into account

* update test expected values

* Update code based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* major refactor

* add correct strides for tests

* Update src/transformers/pipelines/automatic_speech_recognition.py

* fix whisper timestamp test

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-01-19 16:25:56 +01:00
9b42c68f7c hertz is already per second (#21188) 2023-01-19 10:21:08 -05:00
4bc18e7a83 Update examples with image processors (#21155)
* Update examples to use image processors

* Small fixes

* Resolve conflicts
2023-01-19 15:14:58 +00:00
fc8a93507c Rename GLPN image processor tests (#21194) 2023-01-19 14:46:07 +00:00
0359e2e15f Updates to computer vision section of the Preprocess doc (#21181)
* Extended the CV preprocessing section with more details and refactored the example

* added padding to the CV section, though it is a special case

* Added a tip about post processing methods

* make style

* link update

* Apply suggestions from review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* review feedback

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-19 08:43:36 -05:00
5761ceb35a Fix device issue in UperNetModelIntegrationTest (#21192)
fix device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 14:26:14 +01:00
35920c9715 Trigger CI 2023-01-19 07:52:32 -05:00
9b468a7cd7 workaround documentation rendering bug (#21189) 2023-01-19 07:50:59 -05:00
464c86ac93 Update year 2020 to 2023 in one file (#21190)
* update year

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 13:16:28 +01:00
1d33f55cb8 Fix Mask2FormerForUniversalSegmentation (#21175)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-19 10:15:08 +01:00
5b949623c7 Add OneFormer Model (#20577)
* Add Oneformer Model

* Add OneFormer Tests

* Add UNIVERSAL_SEGMENTATION_MAPPING

* Fix config

* 🐛 Fix error encountered while writing tests

* 🔨 Fix instance segmentation post processing

* Format Files and Add Documentation

* Add Documentation mdx file

* Run make fixup

* Run make fix-copies

* Remove unnecessary code

* Format modeling_oneformer.py

* Add OneFormer to ImageSegmentationPipeline

* Format files

* Add Demo link to Readme

* Fix fomatting errors

* Fix test failures

* Update Table in index.mdx

* Fix version

* Fix style

* Remove OneFormer from TF

* Fix Imports

* Fix dummy objects

* Fix tests

* Add newline

* Remove OneFormerFeatureExtractor

* Remove CUDA Kernels

* Use AutoBackbone for Swin

* Fix description

* Use Image Processor

* Fix copies

* Fix formatting

* Fix import order

* Fix flake8 errors

* Fix doc errors

* Add Hindi Readme entry

* Update supported backbones

* Update supported backbones

* Undo Changes

* Fix type of config

* Fix isort

* Fix auto.mdx

* Fix swin config

* Replace DinatBackbone with AutoBackbone

* Use SwinBackbone

* Use SwinBackbone

* Fix conversion script

* Fix arguments

* Add argument description

* Fix style

* Add OneFormerProcessor

* Fix OneFormerProcessor Tests

* Fix mapping

* Fix imports

* Fix inits

* Fix style

* Fix comment

* Fix docstring

* Move OneFormer to MultiModal

* Fix Copies

* Remove size divisor

* Fix check_repo.py

* Fix copies

* Add Processor for Testing Pipeline

* Fix padding for tokens

* Fix variables

* Fix formatting with correct black version

* Add Image Processor Test

* Apply suggestions

* Revert common modeling

* Add check for task

* Fix conversion script

* Fix initialization order

* Fix tests

* Undo Pipeline Changes

* Fix layers in MLP

* Fix copies

* Update image paths

* Fix copies

* Apply suggestions
2023-01-19 09:31:07 +01:00
6d67664380 [issues template] update deepspeed owners (#21027)
* [issues template] update deepspeed owners

add the right contact for deepspeed@accelerate

* pr-template
2023-01-18 17:23:36 -08:00
00ba7cadd8 Rewrite a couple of lines in the TF XLA doc (#21177)
* Rewrite a couple of lines in the TF XLA doc to explain that jit_compile can be used in model.compile() too

* Remove extra )
2023-01-18 17:53:05 +00:00
c59d71b282 Add AWS Neuron torchrun support (#20806)
* Add XLA torchrun support

* Clarify that currently DDP doesn't work with torch.distributed XLA backend yet

* Enable DDP with torchrun and XLA (now available in PT-XLA 1.13)

* Add check for AWS Neuron availability and AWS Neuron specific compiler flag

* Change the new test's name to TestTrainerDistributedNeuronCore

* Remove "assert" and replace raised exception

* Remove compiler flag as it is optional. If needed, will be another PR.

* Use TORCHELASTIC_RUN_ID to determine whether torchrun is used
2023-01-18 11:21:19 -05:00
f70ee51029 Bump future from 0.18.2 to 0.18.3 in /examples/research_projects/visual_bert (#21173)
Bump future in /examples/research_projects/visual_bert

Bumps [future](https://github.com/PythonCharmers/python-future) from 0.18.2 to 0.18.3.
- [Release notes](https://github.com/PythonCharmers/python-future/releases)
- [Changelog](https://github.com/PythonCharmers/python-future/blob/master/docs/changelog.rst)
- [Commits](https://github.com/PythonCharmers/python-future/compare/v0.18.2...v0.18.3)

---
updated-dependencies:
- dependency-name: future
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-18 11:17:35 -05:00
0194665c33 Bump future from 0.18.2 to 0.18.3 in /examples/research_projects/lxmert (#21169)
Bumps [future](https://github.com/PythonCharmers/python-future) from 0.18.2 to 0.18.3.
- [Release notes](https://github.com/PythonCharmers/python-future/releases)
- [Changelog](https://github.com/PythonCharmers/python-future/blob/master/docs/changelog.rst)
- [Commits](https://github.com/PythonCharmers/python-future/compare/v0.18.2...v0.18.3)

---
updated-dependencies:
- dependency-name: future
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-18 11:16:43 -05:00
05e72aa0c4 Adapt repository creation to latest hf_hub (#21158)
* Adapt repository creation to latest hf_hub

* Update all examples

* Fix other tests, add Flax examples

* Address review comments
2023-01-18 11:14:00 -05:00
32525428e1 Fix doctest CI (#21166)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-18 16:54:24 +01:00
8ad06b7c13 using raw string for regex to search <extra_id> (#21162)
* using raw string for regex to search <extra_id>

* fix the same issue in test file:`tokenization_t5.py`
2023-01-18 09:43:54 -05:00
8a17da2f7f fix the issue that the output dict of jit model could not get [:2] (#21146)
"TypeError: unhashable type: 'slice'"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-18 09:41:28 -05:00
e1ad188641 Fix git model for generate with beam search. (#21071)
* Fix git model for generate with beam search.

* Update comment

* Fix bug on multi batch

* Add generate tests

* Clean up tests

* Fix style

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-18 09:40:24 -05:00
e15f0d73db OPT: Fix batched generation with FLAX (#21150)
* Fix Flax OPT numerical masking

* re-enable test

* add fix to bart and reintroduce copied from in opt
2023-01-18 14:24:53 +00:00
f4786d7f39 Fix typos in documentation (#21160)
* Fix typos in documentation

* Small fix

* Fix formatting
2023-01-18 09:05:25 -05:00
defdcd2862 Remove Roberta Dependencies from XLM Roberta Flax and Tensorflow models (#21047)
* Added flax model code

* Added tf changes

* missed some

* Added copy comments

* Added style hints

* Fixed copy statements

* Added suggested fixes

* Made some fixes

* Style fixup

* Added necessary copy statements

* Fixing copy statements

* Added more copies

* Final copy fix

* Some bugfixes

* Adding imports to init

* Fixed up all make fixup errors

* Fixed doc errors

* Auto model changes
2023-01-18 07:49:39 -05:00
023f51fe16 blip support for training (#21021)
* `blip` support for training

* remove labels creation

* remove unneeded `decoder_input_ids` creation

* final changes

- add colab link to documentation
- reduction = mean for loss

* fix nits

* update link

* clearer error message
2023-01-18 11:24:37 +01:00
c8849583ad Make test_save_pretrained_signatures slow test (#21105)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-18 10:43:05 +01:00
14154f7238 Add Japanese translation to multilingual.mdx (#21084)
* Create toctree for Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Copy English version

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add Japanese translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>
2023-01-18 10:08:18 +01:00
30c12301f8 🌐 [i18n-KO] Translated installation.mdx to Korean (#20948)
docs: ko: installation.mdx
2023-01-18 10:05:23 +01:00
44caf4f6f4 Fixed num_channels!=3 normalization training (#20630)
* Fixed num_channels!=3 normalization training

* empty commit to trigger CI

* Empty-Commit for CircleCI

* Empty-Commit

* Empty Commit try-3: https://discuss.circleci.com/t/github-code-checkout-suddenly-failing/31558

* Empty commit to trigger CI

Co-authored-by: Lay Jain <layjain@basil.csail.mit.edu>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-17 13:06:20 -05:00
865da84abb Add Epsilon- and Eta-Sampling (#21121)
* Add epsilon- and eta-sampling.

Add epsilon- and eta-sampling, following the official code from https://github.com/john-hewitt/truncation-sampling and adapting to be more configurable, as required by Huggingface transformers.

* Add unit tests for epsilon- and eta-sampling.

* Black: fix code formatting.

* Fix docstring spacing.

* Clean up newlines.

* Fix implementation bugs and their associated tests.

* Remove epsilon- and eta-sampling parameters from PretrainedConfig.

* Clarify and clean up the documentation.

* Remove parameters for PretrainedConfig test.
2023-01-17 13:04:32 -05:00
0248810300 Refactoring of the text generate API docs (#21112)
* initial commit, refactoring the text generation api reference

* removed repetitive code examples

* Refactoring the text generation docs to reduce repetition

* make style
2023-01-17 12:23:48 -05:00
d386fd646a Add: An introductory guide for text generation (#21090)
* Part of the "text generation" rework: adding a high-level overview of the text generation strategies

* code samples update via make style

* fixed a few formatting issues

* Apply suggestions from review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fixed spaces, and switched two links to markdown

* Apply Steven's suggestions from review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* new lines after headers to fix link rendering

* review feedback addressed. added links to image captioning and audio transcription examples

* minor capitalization fix

* addressed the review feedback

* Apply suggestions from review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Applied review suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-01-17 12:23:22 -05:00
868d37165f Add: tensorflow example for image classification task guide (#21038)
* Added TF example for image classification

* Code style polishing

* code style polishing

* minor polishing

* fixed a link in a tip, and a typo in the inference TF content

* Apply Amy's suggestions from review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_classification.mdx

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* review feedback addressed

* make style

* added PushToHubCallback with save_strategy="no"

* minor polishing

* added PushToHubCallback with save_strategy=no

* minor polishing

* Update docs/source/en/tasks/image_classification.mdx

* added data augmentation

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make style

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-01-17 12:20:08 -05:00
3a9bd972e2 Add resources (#20872)
* Add resources

* Add more resources

* Remove pipeline tag

* Add more resources

* Add more resources

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-17 17:42:33 +01:00
d96098c641 CLI: update hub PR URL (#21154) 2023-01-17 16:36:47 +00:00
f3feaf7f22 Change variable name to prevent shadowing (#21153)
fix: input -> input_string.
2023-01-17 11:29:23 -05:00
cf028d0c3d Add batch of resources (#20647)
* Add resources

* Add more resources

* Add more resources

* Add TAPAS

* Fix pipeline tag

* Fix pipeline tags

* Remove pipeline tag

* Remove depth-estimation tag

* Update docs/source/en/model_doc/segformer.mdx

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Apply suggestion

* Fix segformer

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-01-17 17:18:56 +01:00
bb300ac686 Whisper Timestamp processor and prediction (#20620)
* add draft logit processor

* add template functions

* update timesapmt processor parameters

* draft script

* simplify code

* cleanup

* fixup and clean

* update pipeline

* style

* clean up previous idea

* add tokenization utils

* update tokenizer and asr output

* fit whisper type

* style and update test

* clean test

* style test

* update tests

* update error test

* udpate code (not based on review yet)

* update tokenization

* update asr pipeline

* update code

* cleanup and update test

* fmt

* remove text verificatino

* cleanup

* cleanup

* add model test

* update tests

* update code add docstring

* update code and add docstring

* fix pipeline tests

* add draft logit processor

add template functions

update timesapmt processor parameters

draft script

simplify code

cleanup

fixup and clean

update pipeline

style

clean up previous idea

add tokenization utils

update tokenizer and asr output

fit whisper type

style and update test

clean test

style test

update tests

update error test

udpate code (not based on review yet)

update tokenization

update asr pipeline

update code

cleanup and update test

fmt

remove text verificatino

cleanup

cleanup

add model test

update tests

update code add docstring

update code and add docstring

fix pipeline tests

* Small update.

* Fixup.

* Tmp.

* More support.

* Making `forced_decoder_ids` non mandatory for users to set.

* update and fix first bug

* properly process sequence right after merge if last

* tofo

* allow list inputs + compute begin index better

* start adding tests

* add the 3 edge cases

* style

* format sequences

* fixup

* update

* update

* style

* test passes, edge cases should be good

* update last value

* remove Trie

* update tests and expec ted values

* handle bigger chunk_length

* clean tests a bit

* refactor chunk iter and clean pipeline

* update tests

* style

* refactor chunk iter and clean pipeline

* upade

* resolve comments

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* take stride right into account

* update test expected values

* Update code based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-01-17 15:50:09 +01:00
25ddd91b24 Fixing offline mode for pipeline (when inferring task). (#21113)
* Fixing offline mode for pipeline (when inferring task).

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updating test to reflect change in exception.

* Fixing offline mode.

* Clean.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-17 15:24:40 +01:00
8896ebb9a9 Clarify and add missing typical_p argument docstring. (#21095)
* Clarify and add missing typical_p docstring.

* Make the docstring easier to understand.

* Clarify typical_p docstring

Accept the suggestion by @stevhliu for paraphrasing the docstring.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Use the same docstring as in GenerationConfig

Follow the suggestion suggested by @stevhliu in the pull request conversation.

* Fix docstring spacing.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-17 09:23:47 -05:00
f30bcd5357 feat: add standalone guide on XLA support. (#21141)
* feat: add standalone guide on XLA support.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Empty commit to trigger CI

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address PR comments.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-17 15:07:59 +01:00
3bbc2451b1 Small simplification to TopKLogitsWarper (#21130)
The max of top_k and min_tokens_to_keep performed on every call can just be done once up-front.
2023-01-17 09:06:03 -05:00
0dde58978a Rename test_feature_extraction files (#21140)
* Rename files

* Update file names in tests
2023-01-17 14:04:07 +00:00
7b5e943cb6 Generate: TF contrastive search must pop use_cache from model_kwargs (#21149) 2023-01-17 13:42:52 +00:00
7f3dab39b5 TF: serializable hubert (#20966)
* serializable hubert
2023-01-17 13:07:37 +00:00
e5dcceb82c Fixes to TF collators (#21143)
* Add num_workers for prepare_tf_dataset

* Bugfix in the default collator and change default tensor type

* Remove the "num_workers" arg and move it to a new PR
2023-01-17 12:18:56 +00:00
2411f0e465 Add Mask2Former (#20792)
* Adds Mask2Former to transformers

Co-authored-by: Shivalika Singh <shivalikasingh95@gmail.com>
Co-authored-by: Shivalika Singh <73357305+shivalikasingh95@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-16 20:37:07 +03:00
9edf375834 [GIT] Fix training (#21133)
* Fix training

* Add test

* Fix failing tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-16 15:37:38 +01:00
0fb27dc988 Update TFTapasEmbeddings (#21107)
Update TFTapasEmbeddings

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-16 15:29:50 +01:00
4bbbabcb2c Added clefourrier as ref point for graph models in bug reports (#21139)
* Added clefourrier as ref point for graph models in bug reports

* Update PULL_REQUEST_TEMPLATE.md
2023-01-16 15:12:42 +01:00
a45914193a Fix RealmModelIntegrationTest.test_inference_open_qa (#21136)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-16 15:09:52 +01:00
a5327c6a9a Fixed issue #21053 (#21065)
Co-authored-by: susnato <susnato@tensorflow123456@gmail.com>
2023-01-16 15:06:35 +01:00
488a179ce1 Fixing batching pipelines on single items for ChunkPipeline (#21132)
* Fixing #20783

* Update src/transformers/pipelines/base.py

* Fixing some tests.

* Fixup.

* Remove ffmpeg dep + a bit more relaxed for bigbird QA precision.

* Better dataset.

* Prevent failing on TF.

* Better condition. We can't use `can_use_iterator` since we cannot use it
directly.
2023-01-16 15:04:27 +01:00
fa906a264b Add min_new_tokens argument in generate() (implementation based on MinNewTokensLengthLogitsProcessor) (#21044)
add a new parameter min_new_tokens for generate()
2023-01-16 15:02:08 +01:00
125f137562 [LongT5] Remove duplicate encoder_attention_mask default value check (#21124)
- Remove duplicate encoder_attention_mask default value assignment
2023-01-16 14:26:56 +01:00
05b8e25fff [VideoMAE] Fix docstring (#21111)
Fix docstring

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-16 09:39:35 +01:00
4ed89d48ab Add UperNet (#20648)
* First draft

* More improvements

* Add convnext backbone

* Add conversion script

* Add more improvements

* Comment out to_dict

* Add to_dict method

* Add default config

* Fix config

* Fix backbone

* Fix backbone some more

* Add docs, auto mapping, tests

* Fix some tests

* Fix more tests

* Fix more tests

* Add conversion script

* Improve conversion script

* Add support for getting reshaped undownsampled hidden states

* Fix forward pass

* Add print statements

* Comment out set_shift_and_window_size

* More improvements

* Correct downsampling layers conversion

* Fix style

* First draft

* Fix conversion script

* Remove config attribute

* Fix more tests

* Update READMEs

* Update ConvNextBackbone

* Fix ConvNext tests

* Align ConvNext with Swin

* Remove files

* Fix index

* Improve docs

* Add output_attentions to model forward

* Add backbone mixin, improve tests

* More improvements

* Update init_weights

* Fix interpolation of logits

* Add UperNetImageProcessor

* Improve image processor

* Fix image processor

* Remove print statements

* Remove script

* Update import

* Add image processor tests

* Remove print statements

* Fix test

* Add integration test

* Add convnext integration test

* Update docstring

* Fix README

* Simplify config

* Apply suggestions

* Improve docs

* Rename class

* Fix test_initialization

* Fix import

* Address review

* Fix confg

* Convert all checkpoints

* Fix default backbone

* Usage same processor as segformer

* Apply suggestions

* Fix init_weights, update conversion scripts

* Improve config

* Use Auto API instead of creating a new image processor

* Fix docs

* Add doctests

* Remove ResNetConfig dependency

* Add always_partition argument

* Fix rebaseé

* Improve docs

* Convert checkpoints

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2023-01-16 09:39:13 +01:00
5db9abde43 Fixed typo in docstring (#21115)
Fixed typo
2023-01-15 11:03:30 +01:00
15adc24208 Use raw string for regex in tokenization_t5_fast.py (#21125)
Suppress deprecation warning
2023-01-15 10:56:31 +01:00
056218dab1 [CI-doc-daily] Remove RobertaPreLayernorm random tests (#20992)
* Remove random output

* remove values

* fix copy statements
2023-01-14 19:47:32 +01:00
c8f35a9ce3 Rework automatic code samples in docstrings (#20757)
* Rework automatic code samples in docstrings

* ImageProcessor->AutoImageProcessor

* Add models to fix copies

* Last typos

* A couple more models

* Fix copies
2023-01-14 09:49:36 +01:00
7f65d2366a Add Spanish translation to community.mdx (#21055)
* Add community to toctree

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Copy English content

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add some translations

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Fix position of community

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Fix translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

* Add translation

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>

Signed-off-by: Shogo Hida <shogo.hida@gmail.com>
2023-01-14 09:25:05 +01:00
f58248b824 Update task summary part 1 (#21014)
* first draft of new task summary

* make style

* review

* apply feedback

* apply feedbacks

* final touches
2023-01-13 11:01:53 -08:00
95f0dd2123 [Tokenizers] Fix a small typo (#21104)
* typo

* change name in `__repr__`

* fix my mistake
2023-01-13 16:21:34 +01:00
b210c83a78 Fix torchscript tests for AltCLIP (#21102)
fix torchscript tests for AltCLIP

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-13 10:03:19 +01:00
b3a0aad37d Fix past CI (#20967)
* Fix for Past CI

* make style

* clean up

* unindent 2 blocks

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-12 18:04:21 +01:00
41b0564b35 [bnb optim] fixing test (#21030)
* [bnb optim] fixing test

* force 1 gpu

* fix

* fix

* fix

* finalize

* improve commentary

* fix

* cleanup

* more fixes
2023-01-12 08:52:54 -08:00
212829ade6 Remove more unused attributes in config classes (#21000)
* Remove gradient_checkpointing from MarkupLMConfig

* Remove predict_special_tokens from OpenAIGPTConfig

* Remove enable_cls from RoCBertConfig

* Remove batch_size from TrajectoryTransformerConfig

* Remove searcher_seq_len from RealmConfig

* Remove feat_quantizer_dropout from WavLMConfig

* Remove position_biased_input from SEWDConfig

* Remove max_source_positions from Speech2Text2Config

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-12 13:32:04 +01:00
b5be744d3c Fixed issue #21039 (#21062)
Fixed issue #21039 and added test for low_cpu_mem_usage
2023-01-12 10:03:13 +01:00
e849e5bb4a Optimize inference only mode memory if ipex is used (#21083)
* Optimize inference only mode memory if ipex is used

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix code style

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-12 10:01:17 +01:00
zzz
6767ce71d6 fix typo in comment (#21088)
fix typo

Signed-off-by: xiaoyang zhu <zhuxiaoyang1996@gmail.com>

Signed-off-by: xiaoyang zhu <zhuxiaoyang1996@gmail.com>
2023-01-11 17:51:41 +01:00
64b6b2b273 Update docstring for CLIPConfig (#21066)
Update doc for CLIPConfig
2023-01-11 14:22:26 +01:00
8f796960f6 Fix header level (#21072)
fix header level
2023-01-10 10:24:10 -08:00
07cde58bdb feature: update wandb callback to upload checkpoints (#21035)
* docs: add wandb metrics and model checkpointing to callback docstrings

* docs: update reference to wandb documentation

* fix: change default of `"WANDB_WATCH"` from ``"gradients"` to ``"false"`

* feature: add `on_save` method and update `"WANDB_LOG_MODEL` behaviour

* fix: use default wandb run names instead of `output_dir`

- removes duplicated run names from wandb workspace
- models can be logged with corresponding run names

* fix: edit deprecation warning based on review suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix: change indentation of docstrings

* fix: change indentation of docstrings and run fixup

* fix: empty commit for circleci permissions issue

* fix: format deprecation doc strings review suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs: Highlight WANDB_DISABLED arg in documentaion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: run fixup after updating docstrings

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-10 18:43:22 +01:00
a3c37825cc Make the attention_head_size in distilbert an object attribute (#20970)
* [Fix] Make the attention head size in distilbert an object attribute

* Fix code style

Co-authored-by: Felix Joehnk <fjoehnk@N73GCH2NDH.corp.proofpoint.com>
2023-01-09 18:17:16 +01:00
e3ecbaa4ab Patch-past-refactor (#21050)
* small patches, forgot a line

* refactor PT

* the actual fix
2023-01-09 18:12:13 +01:00
48d4e147d8 remove flax file from documentation_tests.txt (#21036)
remove flax file from `documentation_tests.txt`

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-08 12:33:25 +01:00
d0f324f1e1 Fix warning for MCTC model (#21049) 2023-01-08 10:55:23 +01:00
9a046cc14e Skip failing test until Athur looks at it. 2023-01-08 04:53:20 -05:00
f0577df6de Replace past with past_key_values (#20944)
* start cleanup

* more updates

* more models are affected

* more updates

* update generation utils

* style

* revert change that removed reorder cachce

* update generation utils

* style

* style

* remove reorder cache
2023-01-08 10:21:40 +01:00
7cb596fa22 fix typo (#21048)
Typo fix: Corrected the word metada --> metadata
2023-01-08 10:03:01 +01:00
bd9d51263a fix typo (#21042) 2023-01-07 10:13:26 +01:00
f93c90d217 fix levit timm conversion file (#20938)
* fix levit timm conversion file

* remove set_defaults
2023-01-06 13:27:30 +01:00
c29bec485e fix parameter name in docstring (#21032) 2023-01-06 07:23:16 -05:00
61e068e5a2 Support turning off the model uploading in ClearML (#20969)
* Add support for turning off the model uploading in ClearML

* Add documentation for the CLEARML_LOG_MODEL environment variable

* Adjust new doc addition to the new style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Dudu Lasry <dudu.lasry@viz.ai>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-06 07:22:19 -05:00
ff8dcb5efa Fix arguments passed to predict function in QA Seq2seq training script (#21026)
fix args passed to predict function
2023-01-06 07:19:42 -05:00
35a7052b61 [NumPy] Remove references to deprecated NumPy type aliases (#21022)
[NumPy] Remove references to deprecated NumPy type aliases.

This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str).

NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy.

Co-authored-by: Peter Hawkins <phawkins@google.com>

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-01-05 13:02:10 -05:00
1d21471c78 Added mask_time_prob and mask_time_length arguments to wav2vec2 pretraining script (#20985)
Added mask_time_prob and mask_time_length arguments to wav2vec2 pretraining script and readme - new branch
2023-01-05 16:24:55 +00:00
bc53fc6265 Generate: FLAX uses GenerationConfig as the basis for .generate() parametrization (#21007) 2023-01-05 15:41:37 +00:00
4f1c9d162e [CLIPSeg] Fix integration test (#20995)
Fix integration test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2023-01-05 14:30:32 +01:00
12313838d3 Make sure dynamic objects can be saved and reloaded (#21008)
* Make sure dynamic objects can be saved and reloaded

* Remove processor test
2023-01-05 07:30:25 -05:00
bf82c9b74f [BLIP] Fix daily CI failing test (#20877) 2023-01-05 13:24:31 +01:00
beb24f2a36 Generate: FLAX infers pad token in its absence and has functional example (#21009) 2023-01-05 11:52:58 +00:00
480799f718 Generate: post-generate config TF doctest fix (#21018) 2023-01-05 11:38:37 +00:00
8fb4d0e4b4 Fix callback docstrings (#21005)
* fix callback docstrings

* format as markdown list

* apply feedback
2023-01-04 12:59:23 -08:00
b7417bee87 Bump gitpython from 3.0.2 to 3.1.30 in /examples/research_projects/distillation (#21011)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.0.2 to 3.1.30.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.0.2...3.1.30)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-04 15:36:42 -05:00
05b736c16e Bump gitpython from 3.1.18 to 3.1.30 in /examples/research_projects/decision_transformer (#21010)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.18 to 3.1.30.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.18...3.1.30)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-01-04 15:36:33 -05:00
94db82573e Fix (DeepSpeed) docker image build issue (#21002)
* Fix docker image build issue

* remove comment

* Add comment

* Update docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2023-01-04 21:28:33 +01:00
b91048968b Generate: Fix CI related to #20727 (#21003) 2023-01-04 20:26:56 +00:00
263fd3c4c7 add: task guide on video classification model fine-tuning. (#20827)
* add: task guide on video classification model fine-tuning.

* apply make style from hf-formatting.

* add: toc entry.

* chore: address PR comments.

Co-authored-by Maria Khalusova

* Reflect Maria's contributions.

Co-authored-by: Maria Khalusova <1065417+MKhalusova@users.noreply.github.com>

* chore: minor correction.

* Apply suggestions from code review

Co-authored-by: Nathan Raw <nxr9266@g.rit.edu>

* PyTorch Video -> PyTorchVideo.

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change licensing year.

* minor rewording.

* apply make style.

* address Sylvain's comments.

* replace links.

Co-authored-by: Maria Khalusova <1065417+MKhalusova@users.noreply.github.com>
Co-authored-by: Nathan Raw <nxr9266@g.rit.edu>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-01-05 00:43:40 +05:30
d53f329d88 Update PR template (#21006)
add maria to pr template
2023-01-04 11:01:52 -08:00
7804177af9 Fix repo consistency 2023-01-04 14:00:45 -05:00
15e17c99f9 Remove T5 dependency from mT5 model (#20949)
make mt5 independent from t5
2023-01-04 13:51:54 -05:00
9dcc881fa6 Update bug report template (#21004)
add maria to bug report
2023-01-04 10:33:15 -08:00
a6c850e4f4 Generate: TF uses GenerationConfig as the basis for .generate() parametrization (#20994) 2023-01-04 18:23:20 +00:00
3b309818e7 Refactor the function get_results (#20999) 2023-01-04 12:05:36 -05:00
926452298d Fix model hub link (#20998) 2023-01-04 12:04:33 -05:00
56397471b4 Don't call deprecated method (#20904) 2023-01-04 16:59:11 +00:00
52c9e6af29 Fix bug in segmentation postprocessing (#20198)
* Fix post_process_instance_segmentation
* Add test for label fusing
2023-01-04 18:34:58 +03:00
292acd71d6 Update image processor parameters if creating with kwargs (#20866)
* Update parameters if creating with kwargs

* Shallow copy to prevent mutating input

* Pass all args in constructor dict - warnings in init

* Fix typo
2023-01-04 14:29:48 +00:00
f9e977be70 auxiliary_loss works for Deformable Detr (#20959)
fix: auxiliary_loss works

Co-authored-by: Jeongyeon Nam <jy.nam@navercorp.com>
2023-01-04 09:01:08 -05:00
b493fee958 Add: doc page for the object detection task (#20925)
* Added Object Detection task guide (new branch)

* Polished code examples after running make style

* Update docs/source/en/tasks/object_detection.mdx

Rephrasing suggestion from Sayak

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

A rephrasing suggestion from Sayak

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

typo

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Applied reviewers suggestions
>
>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* polished code examples

* Added a visualization of the inference result. Slightly changed hyperparameters, and updated the results.

* polished code examples

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Applying Steven's review suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor punctuation fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-01-04 08:36:37 -05:00
d7b66d9b44 update template (#20885)
* update template

* replace redme entries

* make style
2023-01-04 10:15:45 +01:00
ce85686a1f Add AltCLIP (#20446)
* add altclip

* update

* fix wrong title

* fix the copyright in readme

* add altclip model

* add altclip

* fix test_gradient_checkpointing_enable_disable

* code

* add return class

* add projection_state

* "fix pretrained model bug"

* delete print and fix 2 test instances.

* delete token

* rm xlmr

* one model one file.

* empty commit to trigger CI

* Fix modeling_outputs.py

* Fix __init__

* Fix quality

* Fix modeling file docstring

* Fix README.md

* Fix test file

* add vision model

* empty commit to trigger CI

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* del token in mdx file

* fix

* fix

* fix

* remove altrob from test list

* add vision test

* fix fx

* fix

* fix

* fix

* trigger CI

* fix copies

* fix tests

* fix style

* fix quality

* update

* recover import

* recover

* add ,

* recover

* fix copies

* trigger CI

* fix

* some of review

* update

* remove import

* last 2

* fix

* fix style

* fix style

* fix bug

* fix uncomment

* fix

* update

* fix

* second review

* empty commit to trigger CI

* empty commit to trigger CI

* fix position

* fix

* empty commit to trigger CI

* empty commit to trigger CI

* third comment

* Update docs/source/en/model_doc/altclip.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/altclip.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/configuration_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/modeling_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/processing_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/altclip/modeling_altclip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix merge

* fix copies

* update

* update

* empty commit to trigger CI

* fix code example

* empty commit to trigger CI

* fix

* empty commit to trigger CI

* empty commit to trigger CI

Co-authored-by: shunxing1234 <xw747777271@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: shunxing1234 <33774367+shunxing1234@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-01-04 09:18:57 +01:00
45da7cec5a Add custom stop token ids for generation (#20727)
* Add StopIdStoppingCriteria

* add a working test for stop id criteria

* add to global scope

* add stop_ids to generate

* add pipeline test

* use tokenizer encode in test

* add test to generation utils

* reformat

* fixup

* make-fix-copies

* rename to stop_token_id

* use stop_tokens instead

* add to text to text generation

* make fixup

* make repo-consistency

* Add support for list of ints for eos_token_id inside generation/utils.py

* Instead of having if elses, cast the eos_token_id into a List[int]

* Add List[int] support for logits_process.py

* add List[int] for beam_search.py

* add List[int] for forced_eos_token_id

* revert stop token id stopping criteria changes

* make fixup

* fix tests

* add eos_token_id to generation/utils.py and added tests test_utils.py

* add eos_token_id type hints and fix for pad tokens

* add comments

* remove some prints and remove forced false test

* fix

* put back test_stop_sequence_stopping_criteria

* remove unused import and make fixup

* add a none check

* update docstring

* add more docstring for list ints

* make fixup
2023-01-03 15:18:24 -05:00
cd918492c6 Fix race condition on cleaning checkpoints when save_total_limit set to 1 (#20989)
* Update trainer.py

* fix style

Co-authored-by: Radhwane Chebaane <rchebaane.external@epo.org>
2023-01-03 15:16:12 -05:00
cd2457809f Improve OWL-ViT postprocessing (#20980)
* add post_process_object_detection method

* style changes
2023-01-03 19:25:09 +03:00
e901914da7 Fix for LXMERT (#20986)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 17:16:52 +01:00
8f09dd89f6 Avoid CI runs under users' own CircleCI personal account (#20981)
* Avoid null CI

* Avoid null CI

* rename

* more clear error message

* Update .circleci/config.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-01-03 16:19:38 +01:00
7b0727a401 Ignore errors when deleting old checkpoints in trainer (#20984) 2023-01-03 10:10:59 -05:00
15c68c67f4 Enable decoder_attention_mask in generate function (#20726)
* Enable `decoder_attention_mask` in `generate` function

* Make style corrections

* Run `make repo-consistency`

* Add integration test
2023-01-03 09:59:08 -05:00
a9653400d3 Fix valid ratio for Deformable Detr (#20958)
* fix: valid ratio has right value

* chore: remove unnecessary line

Co-authored-by: Jeongyeon Nam <jy.nam@navercorp.com>
2023-01-03 09:43:26 -05:00
9c9fe89f84 [run_clm example] add torch_dtype option for model load. (#20971)
* [run_clm example] add torch_dtype option for model load.
for BLOOM 175B model. peak memory will reduce about 350G for inference. the weight of BLOOM in model hub is bfloat16

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add other type in option

* fix style

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2023-01-03 09:33:11 -05:00
e697c912c2 Remove more unused attributes in config classes (#20858)
Remove more unused attributes in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 14:37:40 +01:00
9c6f7485a6 Add GIT (GenerativeImage2Text) (#20295)
* First draft

* Make model instantiation work

* Fix copied from statement

* More fixes

* Add correct output head

* Improve configuration

* Add conversion script

* Improve conversion script

* Remove token_type_ids

* Fix conversion of projection layers

* Convert all weights

* Use cats image

* Make logits match

* Generate caption on cats image

* Add GITProcessor

* Update conversion script

* Add support for more checkpoints

* Fix conversion script

* Add initial tests

* Remove cross-attention

* More improvements

* Remove is_decoder

* Improve model tests

* Improve tests

* Improve model outputs

* Fix model outputs equivalence

* Fix more tests

* Remove unused code

* Use generate to generate text, no use of cache for now

* Use generate more appropriately

* Fix config tests

* Fix style

* Add support for use_cache

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix style

* Fix GIT vision encoder

* Update README

* Fix integration test

* Set bos and eos token ids

* Improve docs

* Improve code

* Add support for provided attention_mask

* Add copied from statement

* Fix gradient checkpointing test

* Set model_input_names

* Investigate model_input_names

* Remove script

* Fix model inputs

* Fix docstring

* Rename GIT to Git

* Support more models

* Add support for textvqa model

* Add video support

* Extend conversion script for video

* Add support for large variant

* Add support for more models

* Fix config archive map

* Update integration test

* Fix README

* Fix CLIP mean and std

* Update processor

* Fix use_cache for video, thanks @gante

* Remove print statements

* Remove assertion

* Add processor tests

* Fix model_input_names

* Use Auto API for processor

* Fix processor tests

* Fix integration test

* Fix pipeline test

* Make tests faster

* Update conversion script

* Update conversion script

* Convert more checkpoints

* Update conversion script

* Fix typo

* Update docstrings

* Improve code snippets

* Fix doc tests

* Add more code examplesé

* Fix doc tests

* Add integration tests

* Fix unused variable

* revert

* Add GIT to Japanese README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-01-03 14:17:18 +01:00
305f41e4de Fix post_process_object_detection method descriptions (#20977)
fix post_process_object_detection descriptions
2023-01-03 15:56:02 +03:00
367fdf3330 MinNewTokensLengthLogitsProcessor for .generate method #20814 (#20892)
* feat: add min new length logit processor

* test: add min new length logit processor

* docs: add MinNewTokensLengthLogitsProcessor

* feat: import MinNewTokensLengthLogitsProcessor

* fix: update pytorch dummy objects

* refactor & fix: rename attributes and var and get rid of dynamic attribute

* tests: align test with new interface

* docs: fix typo

* docs: minor clarification

* Empty-Commit

* empty commit

* run automated quality edits

Co-authored-by: Joao Gante <joao@huggingface.co>
2023-01-03 06:29:02 -05:00
4fd89e4978 Generate: delete unused TF _reorder_cache (#20964) 2023-01-03 10:54:56 +00:00
a3e8d3cb1c Fix T5 docstring (#20957)
Fix start_docstring for deparallelize method
2023-01-03 05:53:33 -05:00
588faad106 Generate: TF XLA beam sample (#20927)
* beam sample in beam search

* rag now works with the updated beam search

* delete legacy (non-XLA) generation code related to beam sample
2023-01-02 10:25:44 +00:00
375801d5e6 update pyknp to rhoknp (#20890)
* update pyknp to rhoknp

* fix linter

* fix linter

* fix linter

* fix linter

* fix linter

* support rhoknp==1.1.0, fix testcase
2022-12-31 01:22:26 -05:00
092d4d49dd Add generate kwargs to AutomaticSpeechRecognitionPipeline (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs
2022-12-31 01:13:39 -05:00
47c9b22d08 Add generate kwargs to AutomaticSpeechRecognitionPipeline (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline

* Add test for generation kwargs
2022-12-31 01:13:28 -05:00
9e6da0a7ed [trainer: distributed_concat] ensure all_gather's inputs are contiguous (#20951)
[trainer: distributed_concat] ensure all_gather's input are contiguous
2022-12-30 21:55:12 -08:00
17292440c0 Fixing DistilBert error message (#20945)
Fixing error message
2022-12-30 03:44:09 -05:00
881fa716c8 Fix error message in WhisperFeatureExtractor (#20936)
* Fix error message

* Fix code quality
2022-12-30 02:37:37 -05:00
491a33d138 Adds type checking to PreTrainedConfig. (#20926) 2022-12-30 02:35:01 -05:00
8637316e5e Remove Bert tokenizer dependency from DistillBert (slow/fast) tokenizers (#20933) 2022-12-29 02:36:27 -05:00
fe65657de1 Fix FP16 inference in TextGenerationPipeline (#20913)
* add torch_dtype attribute to Pipeline

* Use torch_dtype to cast input tensor type in AutomaticSpeechRecognitionPipeline

* Fix code quality

* Add TextGenerationPipeline fp16 test

* Fix code quality

* Remove useless require in tests

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-12-29 02:19:25 -05:00
11c49ed23b Load the state dict on CPU to prevent unnecessary GPU memory surge (#20920)
load the state dict on cpu.
2022-12-29 02:18:03 -05:00
0b686a8a1e Remove non-breaking spaces (#20929)
* Remove non-breaking space in comment

It was likely added unintionally.

* Remove remaining non-breaking spaces
2022-12-29 02:12:40 -05:00
bbcd961897 Generate: correctly detect default max length (#20911)
correctly detect default max length
2022-12-28 10:05:25 +00:00
5f9b2ce0ea Avoid collisions in writing metrics via 2 APIs - azureml + mlflow (#20837)
* Avoid collisions in writing metrics via 2 APIs - azureml + mlflow

MLflow tracking API is enabled by default in AzureML and HF MLflow integration is more fully featured. I'd remove the AzureML integration but leaving the current behavior for backwards compatibility (though it should really be removed)

* Trigger CI
2022-12-28 02:24:54 -05:00
5fa0b17c3d [Past CI] 🔥 Leave Past CI failures in the past 🔥 (#20861)
* torch.jit._state

* Fix past CI

* Fix for perceiver

* Fix REALM

* Fix for Bloom

* Fix for SwinMode

* Fix for TrajectoryTransformerModel

* Fix for test_wav2vec2_with_lm

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-27 18:37:25 +01:00
e35bc46af6 fix docs typos in "add_new_model" (#20900)
fix Jupyter typos
2022-12-27 02:49:15 -05:00
d1b3011292 Update flan-t5 original model link (#20897)
Update flan-t5.mdx
2022-12-27 02:26:14 -05:00
accad48e5b [ T5] fix fp16 loading issue (#20878)
* fix fp16 loading issue

* add backward compatibility

* better refactor

* better readability

- remove `force_upcast_dtype` as it is used once
- use `inspect`
- add `TODO`
2022-12-26 10:01:03 +01:00
47146721b8 typo fix (#20891) 2022-12-26 02:06:23 -05:00
3830b3f74a Fixes typo in the help text for --max_length (#20883) 2022-12-24 02:07:06 -05:00
a081f292ca [RobertaPreLayernom] Fixes the CI daily test (#20886)
get correct checkpoint
2022-12-23 19:55:17 +01:00
cab7799f7b Add japanese translation of template (#20870)
* add japanese translation of template

* fix japanese translation

- fix special cases
- fix typos
- manually translate special cases

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-12-23 14:39:42 +01:00
efed8a2794 Add script to convert T5X T5 (v1.0 and v1.1) checkpoints to PyTorch (#20801)
* Add script to convert T5X T5 (v1.0 and v1.1) checkpoints to PyTorch

* Remove unnecessary check and update docstring

* Format docstring

* Fix whitespace in docstring
2022-12-23 14:36:46 +01:00
f7f0ec2f54 Adding support for fp16 for asr pipeline. (#20864)
* Supporting `fp16` for asr pipeline

* Adding test.

* Style.

* Oops.

* Flake8 update ?

* Fixing flake8 ?

* Revert "Flake8 update ?"

This reverts commit 0b917fcb520e5f34d1933d9d37d8f32b64553048.

* Style (acctidentally deleted flake8 F401.)

* Move to a bigger test (no small whisper model, and s2t doesn't seem to
accept torch_dtype=fp16).

Also we need to use a GPU to actually compute on fp16.

* Using BatchFeature capability.
2022-12-23 10:18:45 +01:00
15bc776fec Add Onnx Config for PoolFormer (#20868)
poolformer onnx

Co-authored-by: syed <syed.abdul@sandlogic.com>
2022-12-23 01:30:57 -05:00
4a4cd6cd02 having new model entries in Hindi for Hindi README (#20869) 2022-12-23 12:00:48 +05:30
52dd2b61bf [MobileNet-v2] Fix ONNX typo (#20860)
* fix typo `onnx`

* fix test
2022-12-22 18:52:54 +01:00
4d10ffd506 [FSMT] Make it compatible with xxxForConditionalGeneration models (#20825)
* add `get_encoder` and `get_decoder`

* add additional kwargs support

* fix condition

* add better checks

* better checks

* fix embed positions

* better test to consider padding

* fix debug statement

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add arguments on docstring

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-12-22 11:11:19 +01:00
2222740f50 change strings to f-strings in image_processing_utils.py (#20865)
change strings to f-strings
2022-12-22 02:06:50 -05:00
829e889418 Generate: post-generate config doctest fix (#20804)
* fix doctests

* revert unwanted change
2022-12-21 19:18:45 +00:00
39e620c134 Update HubertModelIntegrationTest.test_inference_keyword_spotting (#20863)
fix ci

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 18:40:14 +01:00
4a433e321f Add-warning-tokenizer (#20826)
* add fast not use warning

* update
2022-12-21 18:18:34 +01:00
76d02feadb Fix doctest (#20843)
* fix doc for generation, dinat, nat and prelayernorm

* style

* update

* fix cpies

* use auto config and auto tokenizer

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* als modify roberta and the depending models

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2022-12-21 16:34:31 +01:00
aaa6296de2 Fix whisper export (#20800)
* fix_whisper_export

* update input

* update input
2022-12-21 16:28:42 +01:00
3090e70857 Fix past CI by skipping LevitModelTest.test_problem_types (#20859)
* Fix past CI

* Fix past CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 14:29:13 +01:00
04c560225b Adding evaluate to the list of libraries required in generated notebooks (#20850)
Adding `evaluate` to the list of libraries to be installed for every generated notebook in transformers
2022-12-21 14:04:08 +01:00
0ae58204c6 Add visual prompt to processor of CLIPSeg model (#20816)
Adds visual_prompt argument to CLIPSegProcessor to enable image-guided segmentation
2022-12-21 15:23:45 +03:00
2da82bb4a7 fix past_key_values in GPTNeoXForCausalLM.prepare_inputs_for_generation (#20621)
* fix past_key_values in GPTNeoXForCausalLM.prepare_inputs_for_generation

* fix formatting
2022-12-21 11:46:04 +00:00
852e7ebaa2 Use config.num_channels in CLIP-like modeling files (#20857)
Use config.num_channels in CLIP-like modeling files

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-21 11:51:23 +01:00
d87e381f93 [Examples] Update big table (#20845)
Update big table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-21 11:34:31 +01:00
9efad4efed [Swin2SR] Add doc tests (#20829)
* Fix doc tests

* Use Auto API

* Apply suggestion

* Revert "Apply suggestion"

This reverts commit cd9507a86644b4877c3e4a3d6c2d5919d9272dd7.

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-21 10:09:50 +01:00
0d284bd574 Add BLIP (#20716)
* add new model like

* add v1

* v1

* v1

* vision encoder logits match

* v2

* fix

* add docstring

* CI tests pass

* fix tests

* make fixup

* add to `toctree`

* fix processors

* fix processors

* fix doc

* fill title

* add content doc

* remove from tokenization auto

* fix config

* change order

* add `# Copied from`

* few fixes

- add correct license on modeling text
- remove dummy argument

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* replace name

* refactor a bit

* more refactor

* remove unused arg

* make fixup + remove some `# Adapted from ...`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more `# Copied from`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* now `generate` supports no prefix

* remove `FeatureExtractor`

* fix path

* correct dependency

* fix tests

* few fixes

* add integration tests

* add correct conversion script

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add `blip` to tokenization auto

* fix docstrings

* fix test + add image

* remove processor from uncorrect place

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean up a bit

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean pixel mask

* clean pixel mask

* fix `F`

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix output

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix pad token id

* remove `token_type_ids`

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add comments

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove `token_type_ids`

* make fixup

* better name

* replace with `image_attention_mask`

* refactor

* make fixup

* better docstring

* replace `answer_xx`

* remove ununsed args

* add `labels`

* add `labels`

* fix processing tests

* make fixup

* make fixup

* put correct repo

* remove `pad`

* remove `crop` and `center_crop`

* Update src/transformers/models/blip/image_processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix

* remove `size_divisor`

* fix weights `init`

* remove unneeded functions

* add suggestions

* minor changes

- change slow test output for PT 1.13
- docstring order

* replace `feature_extractor` by `image_processor`

* fix doctests

* fix weight init order + add fp16 slow test

* add `blip` to doctest

* add correct repo name and fix test

* Update src/transformers/models/blip/processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix tests

* use `convert_to_rgb` from `image_transforms`

* make fixup

* fix large loading issue

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-21 09:39:10 +01:00
3be028bc9d Embed circle packing chart for model summary (#20791)
* embed circle packing chart

* trim whitespace from bottom

* explain bubble sizes
2022-12-20 10:26:52 -08:00
bd1a43b699 [S2T, Whisper] Add copied from statements (#20787)
* [S2T, Whisper] Add copied from statements

* rebase and fix-copies
2022-12-20 18:13:56 +00:00
5eecf3ff17 Clarify use_fast parameter in docstring (#20840)
* clarify use_fast parameter

* make style

* remove check frameworks, apply review
2022-12-20 08:42:26 -08:00
2875fa971c [SegFormer] Add support for segmentation masks with one label (#20279)
* Add support for binary segmentation

* Fix loss calculation and add test

* Remove space

* use fstring

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-12-20 16:46:50 +01:00
2280880cb7 remove unused use_cache in config classes (#20844)
remove unused use_cache in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-20 16:46:43 +01:00
d0bfdd20f4 TF AdamWeightDecay fix for 2.11 (#20848)
* Fix incorrect import for the base optimizer for AdamWeightDecay

* Fix incorrect import for the base optimizer for AdamWeightDecay
2022-12-20 13:40:45 +00:00
d1d3ac9403 [mBART] fix erroneous italics in docstring (#20835)
* [mBART] fix erroneous italics in docstring

* fix-copies
2022-12-20 10:23:36 +00:00
244dd0f150 Remove unused max_position_embeddings in config classes (#20836)
Removed unused max_position_embeddings in config classes

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-20 10:09:34 +01:00
ae3cbbcaf6 Fix tiny typo (#20841)
* Fix typo

* Update README.md

* Update run_mlm_flax_stream.py

* Update README.md
2022-12-20 03:17:59 -05:00
7ef3f19c3c fix typo output not ouput in bitsandbytes trainer test (#20839)
fix typo output not ouput

typo was causing an error on pytest collection
2022-12-20 03:16:26 -05:00
bdb84e2bad Add model resources for ViT (#20723)
* Set up overall resources documentation structure

* Update vit.mdx

* Removing irrelevant sections on text models

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx

* Update vit.mdx
2022-12-19 10:59:34 -08:00
f76518e56a [clip] fix error message (#20818)
* [clip] fix error message

* sync
2022-12-19 08:25:16 -08:00
76924384af Vilt - use image_transforms pad (#20780)
Use image_transforms pad
2022-12-19 11:43:07 +00:00
ecd7de3dff [Vision] [Refactor] Initialize weights on the correct place (#20803)
* fix nit

- initialization on `_init_weights`
- fix copies

* add copied from
2022-12-19 10:37:14 +01:00
6b5a8f83ce lazy import torch._softmax_backward_data for better compatibility (#20796)
lazy import torch._softmax_backward_data

Signed-off-by: daquexian <daquexian566@gmail.com>

Signed-off-by: daquexian <daquexian566@gmail.com>
2022-12-19 03:37:20 -05:00
b4b613b102 Implement Roberta PreLayerNorm (#20305)
* Copy RoBERTa

* formatting

* implement RoBERTa with prelayer normalization

* update test expectations

* add documentation

* add convertion script for DinkyTrain weights

* update checkpoint repo

Unfortunately the original checkpoints assumes a hacked roberta model

* add to RoBERTa-PreLayerNorm docs to toc

* run utils/check_copies.py

* lint files

* remove unused import

* fix check_repo reporting wrongly a test is missing

* fix import error, caused by rebase

* run make fix-copies

* add RobertaPreLayerNormConfig to ROBERTA_EMBEDDING_ADJUSMENT_CONFIGS

* Fix documentation <Facebook> -> Facebook

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup: Fix documentation <Facebook> -> Facebook

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add missing Flax header

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* expected_slice -> EXPECTED_SLICE

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update copies after rebase

* add missing copied from statements

* make fix-copies

* make prelayernorm explicit in code

* fix checkpoint path for the original implementation

* add flax integration tests

* improve docs

* update utils/documentation_tests.txt

* lint files

* Remove Copyright notice

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make fix-copies

* Remove EXPECTED_SLICE calculation comments

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-19 09:30:17 +01:00
7032e02032 Install sentencepiece in DeepSpeed CI image (#20795)
* Install sentencepiece in DS CI image

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-16 18:23:46 +01:00
26dd041c6e Add Swin2SR (#19784)
* First draft

* Add more improvements

* Improve forward pass

* Fix layernorm

* Add upscaler

* More improvements

* More improvements

* More improvements

* Improve conversion script

* Add preprocessing

* Make output match original implementation

* Add additional attributes

* Add support for more models

* Support more models

* Add support for real world sr

* Add initial Swin2SRFeatureExtractor

* Add ImageSuperResolutionOutput

* Make more tests pass

* Use BaseModelOutput

* Fix one more test

* Fix more tests

* Fix another test

* Fix all tests

* Rename to Swin2SRImageProcessor

* Fix toctree

* Fix toctree

* Fix rebase

* Improve Swin2SRImageProcessor

* Remove feature extractor file

* Improve model

* Improve conversion script

* Fix integration test

* Fix init

* Fix conversion script

* Address comments

* Improve upsampler

* Add NearestConvUpsampler

* Improve pixel shuffle upsampler

* Improve auxiliary upsampler

* Improve conversion script

* Rename conv_last to final_convolution

* Fix rebase

* Improve upsample module

* Add padding to image processor

* Fix bug

* Update padding

* Remove print statement and fix integration test

* Improve docs

* Add image processor tests

* Convert all checkpoints, fix testsé

* Remove print statements

* Fix import

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-16 16:24:01 +01:00
7f99861218 Add Universal Segmentation class + mapping (#20766)
* Add mapping

* Add mapping to pipeline

* Apply suggestions

* Fix feature extractor tests

* Use ForInstance, add model to universal mapping

* More fixes

* Remove model from deprecated objectsé

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-16 14:22:46 +01:00
e65445b4d6 Stop calling expand_1d on newer TF versions (#20786) 2022-12-16 13:10:07 +00:00
3ee958207a Fix object detection2 (#20798)
* Revert "Fixing object detection with `layoutlm` (#20776)"

This reverts commit fca66abe2af2dfd49a399b851e32a6ef8feda23b.

* Better fix for layoutlm object detection.

* Style.
2022-12-16 13:25:36 +01:00
4341f4e224 [Pipeline] skip feature extraction test if in IMAGE_PROCESSOR_MAPPING (#20790)
skip feature extraction test if in `IMAGE_PROCESSOR_MAPPING`
2022-12-16 12:46:58 +01:00
1543cee7c8 Recompile apex in DeepSpeed CI image (#20788)
Recompile apex in DeepSpeed CI image

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 21:35:27 +01:00
491e951875 Move convert_to_rgb to image_transforms module (#20784)
* Move convert_to_rgb to image_transforms module

* Fix tests
2022-12-15 18:47:04 +00:00
4bc723f87d Generate: use GenerationConfig as the basis for .generate() parametrization (#20388)
* generate from config mvp

* fix failing tests

* max_time test

* Load default gen config at model load time; Update docs

* further documentation; add tests

* adapt rag to the new structure

* handle models not instantiated with from_pretained (like in tests)

* better default generation config

* add can_generate fn

* handle legacy use case of ad hoc model config changes

* initialize gen config from config in individual methods, if gen config is none

* fix _get_decoder_start_token_id when called outside GenerationMixin

* correct model config load order (set attr > model config > decoder config)

* update rag to match latest changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* load gen config from model config in model.from_pretrained

* fix can_generate fn

* handle generate calls without a previous from_pretrained (e.g. tests)

* add legacy behavior (and a warning)

* lower logger severity

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-15 18:27:20 +00:00
b1706f6908 Install video dependency for pipeline CI (#20777)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 18:47:05 +01:00
fca66abe2a Fixing object detection with layoutlm (#20776)
* Fixing object detection with layoutlm.

* Fixup.
2022-12-15 18:46:43 +01:00
8891193e83 [Pipeline] fix failing bloom pipeline test (#20778)
fix failing `pipeline` test
2022-12-15 18:46:00 +01:00
b9b70b0e66 Patch for FlanT5-XXL 8bit support (#20760)
* Workaround for #20287: FlanT5-XXL 8bit support

* Make fix-copies

* revert unrelated change

* Dont apply to longt5 and switch transformers
2022-12-15 12:26:58 -05:00
fe9152f67c Install vision for TF pipeline tests (#20771)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-15 11:16:37 +01:00
a9912d2fca Even more validation. (#20762)
* Even more validation.

* Fixing order.
2022-12-15 10:05:54 +01:00
67acb07e9e Add Swin backbone (#20769)
* Add Swin backbone

* Remove line

* Add code example

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-14 19:35:28 +01:00
94f8e21c70 Install torch-tensorrt 1.3.0 for DeepSpeed CI (#20764)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-14 17:30:36 +01:00
7b23a582b9 Replaces xxx_required with requires_backends (#20715)
* Replaces xxx_required with requires_backends

* Fixup
2022-12-14 14:38:44 +00:00
7c9e2f248c [CI-Test] Fixes but also skips the mT5 tests (#20755)
* weight -> weights

* model embedding resize does not work with both v2 and noraml

* remove useless test
2022-12-14 15:36:04 +01:00
dfd818420d Fix attribute error problem (#20765)
fix: 修复Trainer无法使用use_legacy_prediction_loop参数的问题

解决使用use_legacy_prediction_loop参数在predict阶段使用prediction_loop进行预测时,遇到AttributeError: 'PredictionOutput' object has no attribute 'num_samples'的问题

Co-authored-by: ZhouHang <zhouhang@idataway.com>
2022-12-14 09:26:06 -05:00
11745b4e45 [Tests] Improve test_attention_outputs (#20701)
* Improve tests

* Improve TF tests

* Apply suggestion

* Fix test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-14 14:41:40 +01:00
722bf7efcc Fix missing () in some usage of is_flaky (#20749)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-14 11:37:29 +01:00
9bafedc0fa Remove image_transforms functions from init (#20704) 2022-12-14 10:17:11 +00:00
d994473b05 Uninstall torch_tensorrt in DeepSpeed CI image for now (#20758)
Uninstall torch_tensorrt for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 22:25:47 +01:00
ba9da49aa2 Fixing the pipeline tutorial test (#20746)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 19:08:30 +01:00
f28c918c7e Add docs xlm roberta (#20742)
* added model resources for xlm-roberta

* added model resources for xlm-roberta

* resolve suggested changes

* add resources to xlm-roberta
2022-12-13 09:25:55 -08:00
6ef42587ae [NAT, DiNAT] Add backbone class (#20654)
* Add first draft

* Add out_features attribute to config

* Add corresponding test

* Add Dinat backbone

* Add BackboneMixin

* Add Backbone mixin, improve tests

* Fix embeddings

* Fix bug

* Improve backbones

* Fix Nat backbone tests

* Fix Dinat backbone tests

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-13 17:06:59 +01:00
30d8919ab1 in the resize() function in image_transforms.py, the line 267: (#20728)
`image = to_channel_dimension_format(image, ChannelDimension.LAST)`
is redundant as this same conversion is also applied in to_pil_image().

This redundant call actually makes the training fail in rare cases.
The problem can be reproduced with the following code snippet:
```
from transformers.models.clip import CLIPFeatureExtractor
vision_processor = CLIPFeatureExtractor.from_pretrained('openai/clip-vit-large-patch14')
images = [
    torch.rand(size=(3, 2, 10), dtype=torch.float),
    torch.rand(size=(3, 10, 1), dtype=torch.float),
    torch.rand(size=(3, 1, 10), dtype=torch.float)
]
for image in images:
    processed_image = vision_processor(images=image, return_tensors="pt")['pixel_values']
    print(processed_image.shape)
    assert processed_image.shape == torch.Size([1, 3, 224, 224])
```

The last image has a height of 1 pixel.
The second call to to_channel_dimesion_format() will transpose the image, and the height
dimension is wrongly treated as the channels dimension afterwards.
Because of this, the following normalize() step will result in an
exception.
2022-12-13 08:55:08 -05:00
4f1788b34d Fix AdamWeightDecay for TF 2.11 (#20735)
* Fix AdamWeightDecay for TF

* Fix AdamWeightDecay for TF

* make fixup
2022-12-13 12:51:07 +00:00
a12c5cbcd8 Change a logic in pipeline test regarding TF (#20710)
* Fix the pipeline test regarding TF

* Fix the pipeline test regarding TF

* update comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-13 13:42:36 +01:00
1af4bee896 Add keep_in_fp32_modules support (#20683)
* add `keep_in_fp32_modules` support

* pass it as class attribute

* few modifs

- make tests `slow`
- fix logic

* better logic

* fix failing test

* `bfloat16` support

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* simplify tests

* simplify tests

* fix test

* modify message

* more checks

* fix failing tests

* add more conditions

- add `is_accelerate_available`
- fixes pipleine tests that failed

* add suggestions

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix failing `bnb` test

* add last safety checker

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-13 11:59:57 +01:00
d4bf9ee1ff Update CI to torch 1.13.0 (#20687)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 20:04:56 +01:00
f41a11a16f rename layoutlm_job to exotic_models_job (#20736)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 20:02:16 +01:00
1416b5d9d8 Add decorator for flaky Donut tests (#20739)
* Add decorator for flaky tests

* Fix up
2022-12-12 18:25:27 +00:00
a450789d9a Disambiguate test for required_input in tokenization base file. (#20731)
* Disambiguate test for required_input in tokenization base file.

* Add test for size
2022-12-12 13:13:09 -05:00
29ff8716a2 Add a progress bar for large model loading (#20713) 2022-12-12 13:12:56 -05:00
5f94855dc3 Add gpt-sw3 model to transformers (#20209)
* Add templates for gpt-sw3

* Add templates for gpt-sw3

* Added sentencepiece tokenizer

* intermediate commit with many changes

* fixed conflicts

* Init commit for tokenization port

* Tokenization progress

* Remove fast tokenizer

* Clean up and rename spm.model -> spiece.model

* Remove TF -> PT conversion script template, Clean up Megatron -> PT script

* Optimize encode & decode performance

* added new attention

* added new attention

* attention for gpt-sw3 working

* attention good

* Cache is now working

* fixed attention mask so that it works with causal attention

* fixed badbmm bug for cpu and caching

* updated config with correct parameters

* Refactor and leave optimizations as separate functions to avoid breaking expected functionality

* Fix special tokens mapping for both tokenizers

* cleaning up of code and comments

* HF compatible attention outputs

* Tokenizer now passing tests, add documentation

* Update documentation

* reverted back to base implementation after checking that it is identical to pretrained model

* updated gpt-sw3 config

* updated conversion script

* aligned parameters with gpt-sw3 config

* changed default scale_attn_by_inverse_layer_idx to true

* removed flag from conversion script

* added temporary model path

* reverted back to functioning convert script

* small changes to default config

* updated tests for gpt-sw3

* make style, make quality, minor cleanup

* Change local paths to testing online repository

* Change name: GptSw3 -> GPTSw3

* Remove GPTSw3TokenizerFast references

* Use official model repository and add more model sizes

* Added reference to 6.7b model

* Add GPTSw3DoubleHeadsModel to IGNORE_NON_AUTO_CONFIGURED, like GPT2DoubleHeadsModel

* Remove pointers to non-existing TFGPTSw3

* Add GPTSw3 to docs/_toctree.yml

* Remove TF artifacts from GPTSw3 in __init__ files

* Update README:s with 'make fix-copies'

* Add 20b model to archive list

* Add documentation for GPT-Sw3

* Fix typo in documentation for GPT-Sw3

* Do 'make fix-copies' again after having updated docs

* Fix some typos in docs

* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/configuration_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/gpt_sw3/test_tokenization_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/modeling_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Resolve comments from PR feedback

* Resolve more comments from PR feedback, also set use_cache=True in convert script

* Add '# Copied from' comments for GPTSw3 modeling

* Set 'is_parallelizable = False'

* Remove '# Copied from' where code was modified and add 'with x->y' when appropriate

* Remove parallelize in mdx

* make style, make quality

* Update GPTSw3Config default values and corresponding documentation

* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up and protect GPTSw3Tokenizer imports with is_sentencepiece_available

* Make style, make quality

* Add dummy object for GPTSw3Tokenizer via 'make fix-copies'

* make fix-copies

* Remove GPTSw3 modeling classes

* make style, make quality

* Add GPTSw3 auto-mappings for other GPT2 heads

* Update docs/source/en/model_doc/gpt-sw3.mdx

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt_sw3/tokenization_gpt_sw3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove old TODO-comment

* Add example usage to GPTSw3Tokenizer docstring

* make style, make quality

* Add implementation details and example usage to gpt-sw3.mdx

Co-authored-by: JoeyOhman <joeyoh@kth.se>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-12 13:12:13 -05:00
b58beebe72 Add vision requirement to image transforms (#20712)
* Add require_vision decorator

* Fixup

* Use requires_backends

* Add requires_backend to utils functions
2022-12-12 17:43:45 +00:00
fd2bed7f9f Clarify return_tensor and return_text parameters (#20662)
* clarify docstring

* make style
2022-12-12 09:16:13 -08:00
c1b9a11dd4 Convert tokenizer outputs for Keras in doc example (#20732)
* Convert tokenizer outputs for Keras in doc example

* Das deutsche Beispiel auch korrigieren
2022-12-12 16:14:04 +00:00
0ba94aceb6 Spanish translation of the file debugging.mdx (#20566)
* Create and translate to Spanish debugging.mdx

* solved typo error in a header

* Update debugging.mdx

* Update debugging.mdx

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/debugging.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update _toctree.yml

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-12 10:38:56 -05:00
a413c725d4 fsdp fix (#20719) 2022-12-12 20:37:52 +05:30
17c742bbf5 Very small edit to change name to OpenAI GPT (#20722) 2022-12-12 09:43:43 -05:00
8f1f59ce86 Add type hints for Whisper models (#20396)
* Initial commit

* Add type hints for two major classes

* Run make fixup

* Fix output type for Whisper

* Run isort to fix imports
2022-12-12 14:39:21 +00:00
53357e8196 Adding ValueError when imcompatible parameters are used. (#20729) 2022-12-12 15:39:13 +01:00
5ba2dbd9b1 Fix AutoModelTest.test_model_from_pretrained (#20730)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-12 15:37:43 +01:00
a3345c1f13 Add accelerate support for LongT5 models (#20341)
*  add accelerate support for LongT5 models

Signed-off-by: peter szemraj <peterszemraj@gmail.com>

* fix `accelerate` tests

* Trigger CI test

Signed-off-by: peter szemraj <peterszemraj@gmail.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2022-12-12 09:25:52 -05:00
8286af6f54 Spanish translation of asr.mdx and add_new_pipeline.mdx (#20569)
* Fix minor typo in question_answering.mdx

* Fixes minor typo in the english version of tasks/asr.mdx

* Update _toctree.yml

* Translate add_new_pipeline.mdx into Spanish

* Fixes some typos in the English version of add_new_pipeline.mdx

* Translate asr.mdx into Spanish

* Fixes small typos in add_new_pipeline.mdx

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero: use "biblioteca" instead of "librería."

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Suggestion by @osanseviero.

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/add_new_pipeline.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update docs/source/es/tasks/asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update asr.mdx

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
2022-12-12 09:23:23 -05:00
8d2fca07e8 Made LUKE Tokenizer independent from RoBERTa (#20720) 2022-12-12 09:22:08 -05:00
799cea64ac Fix rendering issue in quicktour (#20708)
* Fix rendering issue in quicktour

* Separate in two blocks
2022-12-09 13:51:35 -05:00
74330083b5 [ViTHybrid] fix last accelerate slow test (#20705)
* fix last slow test

* revert deletion

* Update src/transformers/models/vit_hybrid/modeling_vit_hybrid.py
2022-12-09 16:46:32 +01:00
7319850902 Replace FE references (#20702) 2022-12-09 12:24:00 +00:00
a95fd35426 Vision processors - replace FE with IPs (#20590)
* Replace FE references with IPs

* Update processor tests

* Update src/transformers/models/clip/processing_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/clip/processing_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update warning messages v4.27 -> v5

* Fixup

* Update Chinese CLIP processor

* Add feature_extractor property

* Add attributes

* Add tests

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-09 10:48:34 +00:00
704027f0ef skip test_multi_gpu_data_parallel_forward for MaskFormerSwinModelTest (#20688)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-09 11:10:00 +01:00
6a062a3ed9 Change transformers.onnx to use optimum.exporters.onnx (#20529)
* Change transformers.onnx to use optimum.exporters.onnx

* Update doc

* Remove print

* Fix transformers.onnx cli

* Update documentation

* Update documentation

* Small fixes

* Fix log message

* Apply suggestions

* Update src/transformers/onnx/__main__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions

* Add missing line break

* Ran make fix-copies

* Update src/transformers/onnx/__main__.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/onnx/__main__.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: Michael Benayoun <michael@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-12-09 10:42:02 +01:00
9a6c6ef97f [Backbones] Improve out features (#20675)
* Improve ResNet backbone

* Improve Bit backbone

* Improve docstrings

* Fix default stage

* Apply suggestions from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-09 09:14:52 +01:00
9e56aff58a Add video classification pipeline (#20151)
* 🚧 wip video classification pipeline

* 🚧 wip - add is_decord_available check

* 🐛 add missing import

*  add tests

* 🔧 add decord to setup extras

* 🚧 add is_decord_available

*  add video-classification pipeline

* 📝 add video classification pipe to docs

* 🐛 add missing VideoClassificationPipeline import

* 📌 add decord install in test runner

*  fix url inputs to video-classification pipeline

*  updates from review

* 📝 add video cls pipeline to docs

* 📝 add docstring

* 🔥 remove unused import

* 🔥 remove some code

* 📝 docfix
2022-12-08 16:22:43 -05:00
c56ebbbea6 Add deprecation warning when image FE instantiated (#20427)
* Add deprecation warning when image FE instantiated

* Update src/transformers/models/beit/feature_extraction_beit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update v2.7 -> v5 and add for new IPs

* Add message to Chinese CLIP

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-08 20:47:35 +00:00
183af58b11 Added missing test_tokenization_led (#20568)
* Create test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py

* Update test_tokenization_led.py
2022-12-08 20:55:22 +01:00
cf1b8c34cc Fix donut image processor (#20625)
* fix donut image processor

* Update test values

* Apply lower bound on resizing size

* Add in missing size param

* Resolve resize channel_dimension bug

* Update src/transformers/image_transforms.py
2022-12-08 19:10:40 +00:00
e3cc4487fe Fix CIs for PyTorch 1.13 (#20686)
* fix 1

* fix 2

* fix 3

* fix 4

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-08 18:51:54 +01:00
bcc069ddb8 Enable bf16 option for XLA devices (#20684) 2022-12-08 12:34:40 -05:00
9858ecd706 [ViTHybrid] Fix accelerate slow tests (#20679)
* fix failing `accelerate` tests

* make fixup

* smaller values

* even lower
2022-12-08 17:39:32 +01:00
69038ce009 Whilelist Transformers private method in DummyObject (#20681) 2022-12-08 11:19:11 -05:00
9cc65f8701 Migrate torchdynamo to torch.compile (#20634)
* Migrate torchdynamo to torch.compile

* Add docstring and generic option

* Properly use the function...

* Reorg args
2022-12-08 11:18:52 -05:00
da95f6ca4c Bump certifi in /examples/research_projects/visual_bert (#20673)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2020.6.20 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2020.06.20...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:15:42 -05:00
efd7c021ee Bump certifi in /examples/research_projects/decision_transformer (#20677)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2021.10.8 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2021.10.08...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:15:11 -05:00
9e33e19bf5 Bump certifi in /examples/research_projects/lxmert (#20672)
Bumps [certifi](https://github.com/certifi/python-certifi) from 2020.6.20 to 2022.12.7.
- [Release notes](https://github.com/certifi/python-certifi/releases)
- [Commits](https://github.com/certifi/python-certifi/compare/2020.06.20...2022.12.07)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-12-08 11:14:54 -05:00
6eae3f7801 Add BackboneMixin (#20660)
* add BackboneBaseModel

* add BackboneBaseModel

* Rename to BackboneMixin

* remove nn.Module

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-08 16:55:48 +01:00
be3d6c84cc Fix expected values for TF-ESM tests (#20680) 2022-12-08 15:26:09 +00:00
c83703cbdb Update the list of contributors to reflect current organization (#20603)
* Update the list of contributors to reflect current organization

* Proper indent
2022-12-08 10:05:43 -05:00
a03f7514db Fix load from PT-formatted checkpoint in composite TF models (#20661)
* Fix load from PT-formatted checkpoint in composite TF models

* Leave the from_pt part as it was
2022-12-08 09:33:07 -05:00
521da6518f Fix gpt2 fp16 training when tracing is enabled (#20656)
* ONNX tracing fix

* Remove conditional
2022-12-08 08:55:59 -05:00
93b54368f5 [BiT] Small patch fix (#20657)
* patch fix for `fp16`

* use `np` instead
2022-12-08 12:41:33 +01:00
0526a075c5 run_speech_recognition_seq2seq.py: add cache_dir param to dataset (#20540) 2022-12-07 18:23:16 +00:00
fc95386ea1 Add TFBartForSequenceClassification (#20570)
* read to load

* base functionality

* revert init

* fix dummy data

* moving right along

* moving right along

* finally

* cleanup

* pull out comment

* add test

* update docstring for main class

* flake comments and rewriting copies from make repo-consistency`

* remove irrelevant differences/accidental spaces

* put copies back after space removals

* mid

* final test pass

* stray comment

* update test file

* update test file

* fixup

* black

* missed

* black missed one more

* sytle

* add doc update

* fix order of output class

* comment

* Revert "comment"

This reverts commit 03f86b6948808461939cc8ad4ad74305dfb67700.

* remove redundant function, and redundant reshape

* move change out of common

* style

* put common spaces back

* reorder kwargs in output

* doc style
2022-12-07 18:05:39 +01:00
77382e918d [Whisper] Fix forced decoder ids (#20652)
* [Whisper] Fix forced decoder ids

* fix test
2022-12-07 16:44:13 +00:00
7c5eaf9e5a Add dpt-hybrid support (#20645)
* add `dpt-hybrid` support

* refactor

* final changes, all tests pass

* final cleanups

* final changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix docstring

* fix typo

* change `vit_hybrid` to `hybrid`

* replace dataclass

* add docstring

* move dataclasses

* fix test

* add `PretrainedConfig` support for `backbone_config`

* fix docstring

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove `embedding_type` and replace it by `is_hybrid`

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-07 17:01:55 +01:00
3ac040bca1 Updated Trainer args typing (#20655) 2022-12-07 09:57:39 -05:00
3994c04585 Speed up git-lfs detection on error (#20641)
Prevent read and discard of entire checkpoint file.
2022-12-07 09:51:02 -05:00
147fa37fb1 pin TF 2.11 in docker files (#20642)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-07 15:46:48 +01:00
cec5f7abd1 Update summarization run_pipeline_test (#20623)
* update summarization run_pipeline_test

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-07 15:46:12 +01:00
3e4c9e5c64 [ViTHybrid] + [BiT] cleaner __init__ (#20649)
* cleaner `__init__`

* add docstring for `backbone_config`
2022-12-07 15:35:37 +01:00
aac7b0d232 [Trainer] add error when passing 8bitmodels (#20651)
* add error when passing `8bit`models

* fix

* improve message
2022-12-07 15:30:56 +01:00
d151a8c550 Add BiT + ViT hybrid (#20550)
* First draft

* More improvements

* Add backbone, first draft of ViT hybrid

* Add AutoBackbone

* More improvements

* Fix bug

* More improvements

* More improvements

* Convert ViT-hybrid

* More improvements

* add patch bit

* Fix style

* Improve code

* cleaned v1

* more cleaning

* more refactoring

* Improve models, add tests

* Add docs and tests

* Make more tests pass

* Improve default backbone config

* Update model_type

* Fix more tests

* Add more copied from statements

* More improvements

* Add push to hub to conversion scripts

* clean

* more cleanup

* clean

* replace to

* fix

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix base model prefix

* more cleaning

* get rid of stem

* clean

* replace flag

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/bit/configuration_bit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add check

* another check

* fix for hybrid vit

* final fix

* update config

* fix class name

* fix `make fix-copies`

* remove `use_activation`

* Update src/transformers/models/bit/configuration_bit.py

* rm unneeded file

* Add BiT image processor

* rm unneeded file

* add doc

* Add image processor to conversion script

* Add ViTHybrid image processor

* Add resources

* Move bit to correct position

* Fix auto mapping

* Rename hybrid to Hybrid

* Fix name in toctree

* Fix READMEs'

* Improve config

* Simplify GroupNormActivation layer

* fix test + make style

* Improve config

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove comment

* remove comment

* replace

* replace

* remove all conv_layer

* refactor norm_layer

* revert x

* add copied from

* last changes + integration tests

* make fixup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix name

* fix message

* remove assert and refactor

* refactor + make fixup

* refactor - add  + sfety checker

* fix docstring + checkpoint names

* fix merge issues

* fix function name

* fix copies

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix model checkpoint

* fix doctest output

* vit name on doc

* fix name on doc

* fix small nits

* fixed integration tests

* final changes - slow tests pass

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-07 11:03:39 +01:00
b610c47f89 [MaskFormer] Add support for ResNet backbone (#20483)
* Add SwinBackbone

* Add hidden_states_before_downsampling support

* Fix Swin tests

* Improve conversion script

* Add id2label mappings

* Add vistas mapping

* Update comments

* Fix backbone

* Improve tests

* Extend conversion script

* Add Swin conversion script

* Fix style

* Revert config attribute

* Remove SwinBackbone from main init

* Remove unused attribute

* Use encoder for ResNet backbone

* Improve conversion script and add integration test

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-07 09:42:38 +01:00
6c1a0b3931 Pin TensorFlow to the next release (#20635) 2022-12-06 18:28:59 -05:00
c95f84700c Clip floating point constants to bf16 range to avoid inf conversion (#20605)
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-40-169.us-west-2.compute.internal>
2022-12-06 17:25:26 -05:00
f68796bd60 Fix natten installation in docker file (#20632)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 22:23:06 +01:00
f821bea0ad Fix link to speech encoder decoder model in speech recognition readme (#20633) 2022-12-06 15:46:41 -05:00
4f78bcb287 add missing is_decoder param (#20631) 2022-12-06 12:18:58 -08:00
7586a1a367 Fix dtype of weights in from_pretrained when device_map is set (#20602) 2022-12-06 12:16:17 -05:00
bf9a5882a7 Update some GH action versions (#20537)
* update actions versions

* update actions versions

* update actions versions

* update actions versions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 16:54:40 +01:00
acc439ba17 Ci-jukebox (#20613)
* fix cuda OOM by using single Prior

* only send to device when used

* use custom model

* Skip the big slow test

* Update tests/models/jukebox/test_modeling_jukebox.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-12-06 16:14:03 +01:00
9b14c1b6bf Fix AutomaticSpeechRecognitionPipelineTests.run_pipeline_test (#20597)
* Remove assert exception not triggered

* Fix wrong expected exception string

* fix

* use assertRaisesRegex

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-06 15:48:49 +01:00
6a707cf586 Repo consistency 2022-12-06 08:08:37 -05:00
97a51b0c7d updating T5 and BART models to support Prefix Tuning (#20601)
* updating T5 and BART models to support Prefix Tuning

* `make fix-copies`

* address comments

* address comments
2022-12-06 18:24:39 +05:30
b9a0ede6ab Check if docstring is None before formating it (#20592)
docstrings could be `None` if Python optimize level is set to 2.
2022-12-06 07:44:17 -05:00
ae06bce888 exclude jit time from the speed metric calculation of evaluation and prediction (#20553)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-12-06 07:37:01 -05:00
25e10da427 Adding anchor links to Hindi README (#20606) 2022-12-06 18:06:25 +05:30
e842e181df Documentation fixes (#20607) 2022-12-06 07:32:46 -05:00
28f3d431d4 Rework the pipeline tutorial (#20437)
* [WIP] Rework the pipeline tutorial

- Switch to `asr` instead of another NLP task.
- It also has simpler to understand results.
- Added a section with interaction with `datasets`.
- Added a section with writing a simple webserver.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Addressing comments.

* Links.

* Fixing docs format.

* Adding pipeline_webserver to _toctree.

* Warnig -> Tip warnings={true}.

* Fix link ?

* Links ?

* Fixing link, adding chunk batching.

* Oops.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-12-06 10:47:31 +01:00
5764efe544 Fix test for file not found (#20604) 2022-12-05 18:33:56 -05:00
720e9599c1 Split autoclasses on modality (#20559)
* split autoclasses on modality

* apply review

* auto classes
2022-12-05 12:28:44 -08:00
7d1c1c5b21 Fix code sample in preprocess (#20561)
* change to image_processor

* apply review
2022-12-05 11:49:43 -08:00
73ec12eafb README in Hindi 🇮🇳 (#20097)
* Created README_hd.md

A Hindi Translation for README

* updated check_copies.py

Added the Proper info for Hindi Translation of README File !

* updated README_hd.md

Fixed some translation issues !

* Update README_hd.md

* Update README_hd.md

* Update README_hd.md

* fixing 🐛 for `make fix-copies`

* run `make fix-copies`

* `make fix-copies` 😅

Co-authored-by: Akshit Gulyan <103456810+AkshitGulyan@users.noreply.github.com>
2022-12-06 01:04:40 +05:30
aef9aac312 Add-whisper-conversion (#20600)
* add whisper conversion scrip

* update conversion script

* update arg names

* fix missing encoder_ffn_dim

* fixup

* ast nits
2022-12-05 20:02:57 +01:00
74fb524e20 [Whisper] Fix decoder ids methods (#20599)
* [Whisper] Fix decoder ids methods

* enum property
2022-12-05 18:45:22 +00:00
ef0f85cd57 [Vision] .to function for ImageProcessors (#20536)
* add v1 with tests

* add checker

* simplified version

* update docstring

* better version

* fix docstring + change order

* make style

* tests + change conditions

* final tests

* modify docstring

* Update src/transformers/feature_extraction_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* replace by `ValueError`

* fix logic

* apply suggestions

* `dtype` is not needed

* adapt suggestions

* remove `_parse_args_to_device`

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-12-05 19:10:54 +01:00
67d32f4649 Replace set-output by $GITHUB_OUTPUT (#20547)
* remove set-output

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 18:25:13 +01:00
9763f829a5 Fix whisper and speech to text doc (#20595)
* Fix whisper and speech to text doc
# What does this PR do?
Previously the documentation was badly indented for both models and indicated that
> If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`.`
Which is on valid for the forward pass of the `ForConditionnalGeneration` not for the model alone.

* other fixes
2022-12-05 18:23:36 +01:00
4430b91298 clean up unused classifier_dropout in config (#20596)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 18:04:33 +01:00
eefae413d1 Fix link to table transformer detection microsoft model (#20560)
* Fix link to table transformer detection microsoft model

* Fix doc styles
2022-12-05 11:43:27 -05:00
d5af5a0c87 Fix link to swin transformers v2 microsoft model (#20558) 2022-12-05 11:43:04 -05:00
ac3bccdc74 Fix link to Swin Model contributor novice03 (#20557) 2022-12-05 11:42:29 -05:00
87282cb73c Add RemBERT ONNX config (#20520)
* rembert onnx config

* formatting

Co-authored-by: Ho <erincho@bcd0745f972b.ant.amazon.com>
2022-12-05 11:39:09 -05:00
afe2a466bb ESM openfold_utils type hints (#20544)
* add type annotations for esm chunk_utils

use isinstance builtin instead of 'type(x) is y'; add assertions to aid in type inferencing; use bools instead of ints in _get_minimal_slice_set for improved type clarity; refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm data_transforms

refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm feats utils

refactor to avoid re-assigning to the same variable with a different type

* add type annotations for esm loss utils

* add/fix type annotations for esm rigit_utils

refactor to avoid re-assigning to the same variable with a different type; fix Callable, Tuple type hints; match conditional structure to other methods; fix return type on Rotation.cat and Rotation.unsqueeze

* add type annotations for esm tensor_utils

overload for tree_map; use insinstance builtin instead of 'type(x) is y'; export dict_multimap, flatten_final_dims, permute_final_dims in openfold_utils

* add type annotations for esm protein utils

add FIXME for attempted string mutation; add missing None check in get_pdb_headers; fix potentially unbound variable 'chain_tag' in to_pdb; modify get_pdb_headers return type

* add type annotations for esm residue constants

hints on collection constants; remove magic trailing comma to reduce number of lines; change list -> tuple for rigid_group_atom_positions for improved hinting

* code style fixup

Co-authored-by: Matt <rocketknight1@gmail.com>
2022-12-05 16:23:15 +00:00
8ea6694d92 Make convert_to_onnx runable as script again (#20009)
* Make convert_to_onnx runable as script again

Fix `convert_graph_to_onnx.py` relative import so it can be run as a script again.

* Trigger CI
2022-12-05 11:08:39 -05:00
84c9bf7421 cross platform from_pretrained (#20538)
* add support for `from_pt`

* add tf_flax utility file

* Update src/transformers/modeling_tf_flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove flax related modifications

* add test

* remove FLAX related commits

* fixup

* remove safetensor todos

* revert deletion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-05 16:56:17 +01:00
538e5248b0 Ci-whisper-asr (#20588)
* Expected output for the test changed

* fix failing asr test
2022-12-05 16:50:38 +01:00
13e736685a Add BioGPT (#20420)
* biogpt initial commit

* updated init

* fix faster decoding with use_cache

* 1. fix input_ids and input_embeds with correct device
2. added _keys_to_ignore_on_load_missing
3. updated prepare_inputs_for_generation

* add activation_dropout and scale_embedding

* replace fsmt attention with bart attention

* added test

* run make fix-copies

* doc init and fix build

* updated README with proper information

* 1. added tips to docs
2. updated BioGptTokenizer func

* 1. added tokenizer test
2. refactor tokenizer

* make fixup

* add biogpt fairseq to hf converter

* updated layer names more
similar to original checkpoints

* config update doc string and set defaults

* added "#copied" from bart model and
updated doc strings

* enable model_input_names in tokenizer

* 1.  positionalembedding depending on attention_mask
2. added attention mask to prepare for generation

* added test to verify past and generation

* BioGptLMHeadModel -> BioGptForCausalLM

* fix typo

* tokenization and test
Copyright and updated assertion

* updated Copyright and
one func at time in line

* Copyright updates and
minor doc fix

* replace assertion with ValueError

* rm extra space

* added code syntax

* revert cmnt position change

* add tokenizer to auto

* updated doc string

* tokenizer doc string update

* biogpt hub model update to microsoft/biogpt

* make fixup

* rm cmnt to fix flake8 5.0.4 vs 6 error
2022-12-05 10:12:03 -05:00
91182e3a70 Install tensorflow_probability for TF pipeline CI (#20586)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 16:07:25 +01:00
cc8aec6740 Add require_torch to 2 pipeline tests (#20585)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 16:06:39 +01:00
e7e6d1818a [Whisper] Move decoder id method to tokenizer (#20589) 2022-12-05 14:54:04 +00:00
9ffbed26c0 Cleanup some config attributes (#20554)
* Remove is_encoder_decoder from some vision models

* cleanup more

* cleanup more

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:12:10 +01:00
e17826539b Add entries to FEATURE_EXTRACTOR_MAPPING_NAMES (#20551)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:10:17 +01:00
8639cfb4c2 Install natten with CUDA version (#20546)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 15:08:32 +01:00
6276b437a6 Fix repo consistency 2022-12-05 09:02:56 -05:00
0911057744 [Vision] fix small nit on BeitDropPath layers (#20587)
* fix small nit

* add last file
2022-12-05 14:53:49 +01:00
e135a6c931 Fix flax GPT-J-6B linking model in tests (#20556) 2022-12-05 14:00:05 +01:00
24124709ca Fix torch device issues (#20584)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-05 13:57:34 +01:00
699e90437f flan-t5.mdx: fix link to large model (#20555) 2022-12-02 19:27:46 +01:00
c54646b13d Add ESM contact prediction (#20535)
* Draft addition of new head

* Finish adding contact heads + tests for ESM

* Add TF contact prediction head

* make fixup

* Minor fix to convert_esm.py

* Clean up function names and comments
2022-12-02 14:03:30 +00:00
cc3d0e1b01 [New Model] Add TimeSformer model (#18908)
* init timesformer

* apply fix-copies

* reformat style

* revert back some incoorect style updates

* init timesformer

* apply fix-copies

* reformat style

* revert back some incoorect style updates

* update timseformer doc

* add some functions and classes

* add new config params

* implement multiple classes

* update TimeSformerLayer

* update TimeSformerModel, TimeSformerPreTrainedModel, TimeSformerEncoder

* several fixes

* reformat

* temporary update

* fix some typos

* fix weight converter

* more fixes

* fix a typo

* fix typo

* remove redundant params

* fix for latest hf-hub

* merge fix

* fix some checks

* video classification works with einops

* add paper info to docs

* merge fix

* remove redundant line

* remove redundant docstring

* update config

* fix some typos

* fix converter

* update some test constants

* refactor einops functions

* reformat

* fix a comment

* remove redundat imports

* reformat

* fix a typo

* remove comment

* remove unused imports

* remove redundant doc line

* reformat

* add missing line

* fix docs

* fix timesformer auto feat ext

* add unittests

* reformat

* fix docs

* some fixes and updates

* fix readme

* fix modeling

* fix readme

* update index

* revert _toctree.yml changes

* update timseformer.mdx

* update drop_path_prob to drop_path_rate

* add dosctring for drop_path_rate

* update TimeSformerPatchEmbed naming

* remove to_2tuple

* explicit use of nn.functional

* reformat

* many updates from review comments

* fix a typo

* reformat

* remove assert, better variable name

* make variable names more explicit

* add some adapted from

* more explicit variable names

* remove redundant docstring

* fix initilaization

* move permute inside embedding

* update class names

* remove unused imports

* add test for video classification

* update PretrainedModel with PreTrainedModel

* remove double permute

* update based on sylvain's review

* aply auto fix

* update image_processing_auto for timesformer

* update hub urls

* reformat

* remove duplicate import

* update doc link
2022-12-02 09:13:25 +01:00
3a9476d1b4 fix cuda OOM by using single Prior (#20486)
* fix cuda OOM by using single Prior

* only send to device when used

* use custom model
2022-12-02 09:05:45 +01:00
60d1f31bb0 v4.26.0.dev0 2022-12-01 16:19:33 -05:00
5011efbec8 Fix link in pipeline device map (#20517)
* fix link in pipeline device map

* oops this is the correct link

* make style
2022-12-01 09:58:44 -08:00
504ae9181c Fix Hubert models in TFHubertModel and TFHubertForCTC documentation code (#20516) 2022-12-01 12:22:23 -05:00
6cb7d6ec36 Fix doctest (#20534)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-12-01 18:19:37 +01:00
d752337baa QnA example: add speed metric (#20522) 2022-12-01 12:04:19 -05:00
b67ac44296 update post_process_image_guided_detection (#20521) 2022-12-01 12:03:17 -05:00
d51e7c7e82 Update ZeroShotObjectDetectionPipeline doc example (#20528)
* Update ZeroShotObjectDetectionPipeline expect output

* Update src/transformers/pipelines/zero_shot_object_detection.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-12-01 16:53:24 +01:00
8b486c0310 add doc for (#20525) 2022-12-01 16:52:13 +01:00
cdb7eeca46 Fix ConditionalDetrForSegmentation doc example (#20531)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:49:59 +01:00
876a9e084e Fix PLBart doctest (#20527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:49:04 +01:00
373bfe70a0 Change Doctests CI launch time (#20523)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-12-01 16:38:41 +01:00
55ab71ee5b [modelcard] Update dataset tags (#20506) 2022-12-01 10:52:17 +00:00
e342ac7e03 Add some warning for Dynamo and enable TF32 when it's set (#20515) 2022-11-30 15:42:17 -05:00
68cfffc4b4 Fix Data2VecTextForCasualLM example code documentation (#20510)
* Fix Data2VecTextForCasualLM example code documentation

* Change RobertaTokenizer to AutoTokenizer in data2vectext example code
2022-11-30 15:03:46 -05:00
dd6fb1319b Add natten for CI (#20511)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:49:34 +01:00
afb66749a6 Update AutomaticSpeechRecognitionPipeline doc example (#20512)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:48:18 +01:00
04c653a354 Fix style 2022-11-30 13:32:19 -05:00
721764028e Add Chinese-CLIP implementation (#20368)
* init chinese-clip model from clip

* init model tests and docs

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* implement chinese-clip into hf

* update usecase example in model implementation

* fix codestyle

* fix model_type typo in readme

* add placeholder in doc

* add placeholder in doc

* update the init script

* update usecase

* fix codestyle

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* update testcase

* forward the convert_rgb

* update testcase

* update testcase

* update testcase

* merge the recent update from clip about model_input_name property

* update the doc

* update the doc

* update the doc

* update the doc

* remove unused imports

* reformat code style

* update the doc

* fix isort style

* bypass a weird failed unit test which is unrelated with my PR

* update the doc

* implement independent vision config class

* implement independent vision model class

* fix refactor bug

* fix refactor bug

* fix refactor bug

* make style

* fix refactor bug

* make style

* fix refactor bug

* fix refactor bug

* make style

* fix refactor bug

* fix refactor bug

* doc-build restyle

* implement independent text config class

* implement independent text model class

* implement independent text model class

* make style

* make fix-copies

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* fix refactor bug

* make style

* update doc

* black and isort

* update doc

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* modify the model type from chinese-clip to chinese_clip

* format the example comment of ChineseCLIPVisionConfig

* correct the copyright comment

* fix the tokenizer specification

* add copied from for loss function

* remove unused class

* update CHINESE_CLIP_TEXT_INPUTS_DOCSTRING

* update CHINESE_CLIP_INPUTS_DOCSTRING

* update doc

* update doc

* update code comment in config

* update copied from statement

* make style

* rename the doc file

* add copied statement

* remove unused attention_mask, causal_attention_mask in ChineseCLIPVisionEncoder

* remove ChineseCLIPTextPreTrainedModel

* fix bug

* fix bug

* fix bug

* update doc

* make style

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/chinese_clip/configuration_chinese_clip.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update ChineseCLIPImageProcessor in image_processing_auto

* fix config_class of chinesecliptextmodel

* fix the test case

* update the docs

* remove the copied from comment for ChineseCLIPTextModel, since it has diverged from BertModel with customed config_class

* update the testcase

* final fix

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 19:22:23 +01:00
396a6a2ed0 Fix minimum version for device_map (#20489) 2022-11-30 11:10:55 -05:00
08b4621899 Repurpose torchdynamo training args towards torch._dynamo (#20498)
* Repurpose torchdynamo training args towards torch._dynamo

* Add doc
2022-11-30 11:10:45 -05:00
829374e4fc Fix Typo in Docs for GPU (#20509) 2022-11-30 10:41:18 -05:00
17a7b49bda Update doc examples feature extractor -> image processor (#20501)
* Update doc example feature extractor -> image processor

* Apply suggestions from code review
2022-11-30 14:50:55 +00:00
afad0c18d9 Fix TF nightly tests (#20507)
* Fixed test_saved_model_extended

* Fix TFGPT2 tests

* make fixup

* Make sure keras-nlp utils are available for type hinting too

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-11-30 14:47:54 +00:00
761b3fad92 Expected output for the test changed (#20493) 2022-11-30 15:07:28 +01:00
a4beb37b81 fix ipex+fp32 jit trace error in ipex 1.13 (#20504)
error show like: “Currently the auto_kernel_selection does not support the grad mode! Please add torch.no_grad() before the inference runtime..”
since jit mode only work in inference mode, it's safe to add such logic.
2022-11-30 08:58:01 -05:00
105c3a48be Support extraction of both train and eval XLA graphs (#20492)
Neuron supports extraction of XLA graphs for compilation.
However, when both do_train and do_eval options are enabled,
sizes returned by tensor operator can be 0. To avoid
INVALID_ARGUMENT error, we use inequality in the check whether
a tensor needs padding or not.
2022-11-30 08:43:46 -05:00
b75255cd9d [OPT/Galactica] Load large galactica models (#20390)
* fix `opt` bias

* revert unneeded assignment
2022-11-30 13:55:15 +01:00
293991d44b Make add_special_tokens more clear (#20424)
* make add_special_tokens more clear

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 12:56:32 +01:00
d0c1ded5f3 remove attention_mask truncation in whisper (#20488)
* remove truncation

* For TFWhisper

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-30 11:46:01 +01:00
de6d19ea92 Add segmentation + object detection image processors (#20160)
* Add transforms for object detection

* DETR models + Yolos

* Scrappy additions

* Maskformer image processor

* Fix up; MaskFormer tests

* Update owlvit processor

* Add to docs

* OwlViT tests

* Update pad logic

* Remove changes to transforms

* Import fn directly

* Update to include pad transformation

* Remove uninstended changes

* Add new owlvit post processing function

* Tidy up

* Fix copies

* Fix some copies

* Include device fix

* Fix scipy imports

* Update _pad_image

* Update padding functionality

* Fix bug

* Properly handle ignore index

* Fix up

* Remove defaults to None in docstrings

* Fix docstrings & docs

* Fix sizes bug

* Resolve conflicts in init

* Cast to float after resizing

* Tidy & add size if missing

* Allow kwards when processing for owlvit

* Update test values
2022-11-30 10:24:03 +00:00
ae3cbc9548 [modelcard] Set model name if empty (#20496)
* [modelcard] Set model name if empty

* no magic

Co-authored-by: Sylvain Gugger <sylvain@huggingface.co>

Co-authored-by: Sylvain Gugger <sylvain@huggingface.co>
2022-11-30 09:55:43 +00:00
08fad080e3 [modelcard] Check for IterableDataset (#20495) 2022-11-30 09:55:07 +00:00
ab9fe45236 Fix disk offload for full safetensors checkpoints (#20497) 2022-11-29 14:58:30 -05:00
4aa630eeab Fix documentation code to import facebook/detr-resnet-50 model (#20491) 2022-11-29 13:30:26 -05:00
86e435bbb1 fixed small typo (#20490)
Co-authored-by: Sandeep Kumar <sandeep.kumar@woven-planet.global>
2022-11-29 11:35:12 -05:00
73e2faa6c2 Replace assert statements with raise exceptions (#20478)
* replace assert statements with exceptions

* made conditions more readable
2022-11-29 11:34:08 -05:00
fb2b45e562 add in layer gpt2 tokenizer (#20421)
* add minimal working gpt2 tokenizer

* graph mode and output equivalence tests working

* not today tensorflow. serialization test passing!

* fix style, documentation, docstrings and all that jazz

* passing consistency checks

* move keras nlp to tf dependencies

* fix tf modeling utils and gpt2 attention to enable compiling

* fix (I hope) keras nlp dependencies

* rever changes on generation

* remove debug prints

* remove redundant tf dummy objects

* add from config, get config and max length settings to address review

* let flake ignore the error on distillation you are welcome

* test from config

* add padding test

* address sgugger review
2022-11-29 10:02:40 -05:00
e8d448edcf extract warnings in GH workflows (#20487)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-29 15:58:54 +01:00
bbcd5eea3b Fix init import_structure sorting (#20477)
* Fix init import_structure sorting

* Fix rebase
2022-11-29 09:46:10 -05:00
3b91f96fc9 Fix torch meshgrid warnings (#20475)
* fix torch meshgrid warnings

* support lower torch versions

* don't edit examples

* dont edit examples

* fix ci

* fix style

* rebase cleanup

* fix ci again
2022-11-29 08:38:23 -05:00
ae1cffaf3c Add Donut image processor (#20425)
* Add Donut image processor

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Fix docstrings

* Full var names in docstring

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2022-11-29 10:38:01 +00:00
28247e7881 Extract warnings from CI artifacts (#20474)
* extract warning from CI artifacts

* fix path

* fix logic

* fix comment

* update default values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 21:14:33 +01:00
6dc884abc8 [Maskformer] Add MaskFormerSwin backbone (#20344)
* First draft

* Fix backwards compatibility

* More fixes

* More fixes

* Make backbone more general

* Improve backbone

* Improve test

* Fix config checkpoint

* Address comments

* Use model_type

* Address more comments

* Fix special model names

* Remove MaskFormerSwinModel and MaskFormerSwinPreTrainedModel from main init

* Fix typo

* Update backbone

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-28 20:33:49 +01:00
955780d3ab add timeout option for deepspeed engine (#20443) 2022-11-28 10:23:25 -08:00
d59d5a618b chore: add link to the video cls notebook. (#20386)
* chore: add link to the video cls notebook.

* chore: segregate as resources.
2022-11-28 12:10:24 -05:00
321ef388fe Include image processor in add-new-model-like (#20439) 2022-11-28 16:46:02 +00:00
0bae286de9 [AutoBackbone] Improve API (#20407)
* Add hidden states and attentions to backbone outputs

* Update ResNet

* Fix more tests

* Debug test

* Fix test_determinism

* Fix test_save_load

* Remove file

* Disable fx tests

* Test

* Add fx support for backbones

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-28 17:20:24 +01:00
39a72125e7 fix both failing RoCBert tests (#20469) 2022-11-28 17:08:57 +01:00
30163921ae Safetensors offload (#20321)
* INtegrate safetensos in weight offloading

* Use safetensors checkpoint for offload when available

* Make naming consistent

* Make load faster

* Quality

* Add default
2022-11-28 10:35:52 -05:00
ac2f6674a3 [FLAX] Add dtype to embedding for bert/bart/opt/t5 (#20340)
* [FLAX] Add dtype to embedding for bert/bart/opt/t5

* Fix all copies

* Add a test case
2022-11-28 10:21:42 -05:00
667ccea722 Replace assertion with ValueError exceptions in run_image_captioning_flax.py (#20365)
* replace 4 asserts with ValueError exception for control flow

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* reformatted file

* uninstalled trasformers and applied make style

Co-authored-by: Bibi <Bibi@katies-mac.local>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-11-28 15:06:25 +00:00
0a6193252e [Doctest] Add configuration_fsmt.py (#19936)
* fsmt doctest

* Update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 09:47:45 -05:00
98122794d4 Replace assertions with value errors on distilbert model (#20463)
* Changed assert into 7-8 exceptions

* updated syntax error

* updated error

* updated file (Co-autho: Batese2001)

* Successful test on test_modeling_distilbert.py 

Successful raising errors and exceptions on the revised code in test_modeling_distilbert.py .

Co-credit: @batese2001

* Delete test_modeling_distilbert.ipynb

* Update modeling_distilbert.py

* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)

* Successful raising of exceptions with the conditions that are contrary to defined condition that asserts statements (Co-author: Batese2001)

* committing the reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model

* reformatted distilbert model with black

* Changed comments that explain better about raising exceptions for not having the even number of multi heads

* Changed comments that explain better about raising exceptions for not having the even number of multi heads

* changed based on the feedback

* Changed line 833 based on the suggestion made from @younesbelkada

* Changed line 833 based on the suggestion made from @younesbelkada draft2

* reformatted file

* Update src/transformers/models/distilbert/modeling_distilbert.py

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-11-28 09:44:03 -05:00
134a8e21ae [CLIPTokenizer] Improve warning (#20458) 2022-11-28 15:20:14 +01:00
de53e4bf1f with pytorch cpu only version. without --no_cuda, using --bf16 will trigger error like "Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0" (#20445) 2022-11-28 08:56:09 -05:00
ca3b652bbd update cpu related doc (#20444) 2022-11-28 08:54:35 -05:00
8f7078e822 make tensors in function build_relative_position created on proper device instead of always on cpu (#20434)
Co-authored-by: wenhanli <wenhanli@tencent.com>
2022-11-28 08:45:01 -05:00
de4159a318 More TF int dtype fixes (#20384)
* Add a test to ensure int dummy inputs are int64

* Move the test into the existing int64 test and update a lot of existing dummies

* Fix remaining dummies

* Fix remaining dummies

* Test for int64 serving sigs as well

* Update core tests to use tf.int64

* Add better messages to the assertions

* Update all serving sigs to int64

* More sneaky hiding tf.int32s

* Add an optional int32 signature in save_pretrained

* make fixup

* Add Amy's suggestions

* Switch all serving sigs back to tf.int32

* Switch all dummies to tf.int32

* Adjust tests to check for tf.int32 instead of tf.int64

* Fix base dummy_inputs dtype

* Start casting to tf.int32 in input_processing

* Change dtype for unpack_inputs test

* Add proper tf.int32 test

* Make the alternate serving signature int64
2022-11-28 13:24:44 +00:00
72b19ca680 Fix ESM checkpoints for tests (#20436)
* Re-enable TF ESM tests, make sure we use facebook checkpoints

* make fixup
2022-11-28 13:19:28 +00:00
f244a97801 Fix doctests for audio models (#20468)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 11:13:34 +01:00
df938fc1b4 Fix links for contrastive_loss (#20455)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 11:02:59 +01:00
2cdac665b0 Fix device issues in CLIPSegModelIntegrationTest (#20467)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-28 10:41:28 +01:00
61d3928bfb Fix typo in FSMT Tokenizer (#20456)
* Fix typo

* Update tokenization_fsmt.py
2022-11-25 16:04:01 -08:00
3c39c07f11 fix word_to_tokens docstring format (#20450)
* fix docstring

* fix 2

* add details
2022-11-25 20:28:00 +01:00
a547d5bda5 [AnyPrecisionAdamW] test fix (#20454) 2022-11-25 09:02:10 -08:00
a1d4563f7a accelerate support for OwlViT (#20411)
* `accelerate` support for `OwlViT`

- added `accelerate` support
- added slow `fp16` tests

* apply suggestions
2022-11-25 11:20:44 +01:00
afce73bd9d Fix ModelOutput instantiation when there is only one tuple (#20416) 2022-11-23 15:09:21 -05:00
993a187c6f fix device in longformer onnx path (#20419) 2022-11-23 15:07:01 -05:00
bc00c29d11 Add Spanish translation of pr_checks.mdx (#20339)
* Update _toctree and clone original doc

* Forgot to translate (lol)

* Translate documentation and update toctree

* Add suggested changes from review
2022-11-23 15:06:29 -05:00
9a5b84a007 Use updated model_max_length when saving tokenizers (#20401)
* Use updated values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-23 18:16:26 +01:00
ad654e4484 [BNB] Throw ValueError when trying to cast or assign (#20409)
* `bnb` ValueError when tries to cast or assign

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove docstrings

* change error log

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-23 15:51:50 +01:00
03ae1f060b change the way sentinel tokens can retrived (#20373)
* change the way sentinel tokens can retrived

* Fix line length for doc string

* Fix line length for doc string

* Add more stronger test for t5 tokenization

* Format file changes

* Make a stronger test for filtering sentinel tokens

* fix file format issues
2022-11-23 09:35:44 -05:00
81d82e4f78 fix nasty bnb bug (#20408) 2022-11-23 08:31:08 -05:00
658e5d8f58 make daily CI happy (#20410) 2022-11-23 14:24:56 +01:00
81c46679bd [Image Transformers] to_pil fix float edge cases (#20406)
* Correct type checking

* up
2022-11-23 13:47:59 +01:00
1c6309bf79 Fix doctest file path (#20400)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-23 13:40:34 +01:00
0ee71188ff [bloom] convert script tweaks (#18593)
* [bloom] convert script tweaks

* Update src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* improve the 2nd assert

* add conversion readme

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-11-22 16:09:43 -08:00
e53331c905 Generate: fix plbart generation tests (#20391) 2022-11-22 17:56:04 +00:00
2e17db8a86 [ESM] fix accelerate tests for esmfold (#20387)
* fix `accelerate` tests for esmfold

* cleaner solution
2022-11-22 18:26:55 +01:00
d2357a0133 Use tiny models for ONNX tests - text modality (#20333)
* Use tiny ONNX models

* Fix broken tests

* Add tiny perceiver

* Add tiny convbert
2022-11-22 17:11:17 +01:00
3d0c0ae437 Fix longformer onnx broken export (#20292)
* fix controlflow for onnx export

* fix warning

* fix the case padding_len = 0, explicit the recorded control flows

* style

* style

* fix bug

* fix copy

* nits
2022-11-22 11:07:19 -05:00
9ef46659da Improve backbone (#20380)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-22 17:00:08 +01:00
5efd074af0 Indicate better minimal version of PyTorch in big model inference (#20385) 2022-11-22 10:41:50 -05:00
dfc3deafa3 Optimizes DonutProcessor token2json method for speed (#20283)
* Optimizes DonutProcessor token2json method for speed

* Applies black formatting

* Updates Donut pretrained model name in test file

* remaining pytorch type hints (#20217)

* Update modeling_flava.py

* Update modeling_markuplm.py

* Update modeling_glpn.py

* Update modeling_roc_bert.py

* Update modeling_segformer.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_trocr.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_yolos.py

* Update modeling_wav2vec2.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Data collator for token classification pads labels column when receives pytorch tensors (#20244)

* token cls data_collator pads labels column

* remove walrus operator for code quality

* remove redundat space

* remove comment that was fixed

* PR comments fix

Co-authored-by: Alexander Markov <amarkov.me@gmail.com>

* [Doctest] Add configuration_deformable_detr.py (#20273)

* Update configuration_deformable_detr.py comment

* Add DeformableDetrConfig to documentation_tests.txt

* Fix summarization script (#20286)

* [DOCTEST] Fix the documentation of RoCBert (#20142)

* update part of the doc

* add temp values, fix part of the doc

* add template outputs

* add correct models and outputss

* style

* fixup

* [bnb] Let's warn users when saving 8-bit models (#20282)

* add warning on 8-bit models

- added tests
- added wrapper

* move to a private attribute

- remove wrapper
- changed `save_pretrained` method

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding `zero-shot-object-detection` pipeline doctest. (#20274)

* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.

* Adding doctest for `object-detection` pipeline. (#20258)

* Adding doctest for `object-detection` pipeline.

* Removed nested_simplify.

* Image transforms functionality used instead (#20278)

* Image transforms functionality used instead

* Import torch

* Import rather than copy

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

* TF: add test for `PushToHubCallback` (#20231)

* test hub tf callback

* create repo before cloning it

* Generate: general TF XLA constrastive search are now slow tests (#20277)

* move contrastive search test to slow

* Fixing the doctests failures. (#20294)

* Fixing the doctests failures.

* Fixup.

* set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289)

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Add docstrings for canine model (#19457)

* Add docstrings for canine model

* Update CanineForTokenClassification

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add AutoBackbone + ResNetBackbone (#20229)

* Add ResNetBackbone

* Define channels and strides as property

* Remove file

* Add test for backbone

* Update BackboneOutput class

* Remove strides property

* Fix docstring

* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE

* Fix auto mapping name

* Add sanity check for out_features

* Set stage names based on depths

* Update to tuple

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Add missing report button for Example test (#20293)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* refactor test (#20300)

- simplifies the devce checking test

* [Tiny model creation] deal with `ImageProcessor` (#20298)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix blender bot missleading doc (#20301)

* fix the doc to specify that add_prefix_space = False

* add correct expected output

* remove two tokens that should not be suppressed (#20302)

* [ASR Examples] Update README for Whisper (#20230)

* [ASR Examples] Update README for seq2seq

* add language info

* add training results

* re-word

* Add padding image transformation (#19838)

* Add padding transformation

* Add in upstream changes

* Update tests & docs

* Code formatting tuples in docstring

* Pin TensorFlow (#20313)

* Pin to the right version...

* Also pin TensorFlow CPU

* Add AnyPrecisionAdamW optimizer (#18961)

* Add AnyPrecisionAdamW optimizer

* Add optim_args argument to TrainingArgs

* Add tests for AnyPrecisionOptimizer

* Change AnyPrecisionAdam default params to float32

* Move default_anyprecision_kwargs in trainer test

* Rename AnyPrecisionAdamW

* [Proposal] Breaking change `zero-shot-object-detection` for improved     consistency. (#20280)

* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.

This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.

The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.

The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.

The pipeline is changed to `ChunkPipeline` to support batching cleanly.

This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.

**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.

**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.

**Breaking change**: The types is now simplified and flattened:

`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.

It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.

* Fixing the doctests.

* Behind is_torch_available.

* Fix flakey test with seed (#20318)

* Pin TF 2.10.1 for Push CI (#20319)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove double brackets (#20307)

* remove double brackets

* oops get other bracket

* TF: future proof our keras imports (#20317)

* future proof our tf code

* parse tf versions

* Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219)

* Add DiNAT

* Adds DiNAT + tests

* Minor fixes

* Added HF model

* Add natten to dependencies.

* Cleanup

* Minor fixup

* Reformat

* Optional NATTEN import.

* Reformat & add doc to _toctree

* Reformat (finally)

* Dummy objects for DiNAT

* Add NAT + minor changes

Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.

* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests

* Minor fixes.

* Fix READMEs.

* Requested changes to docs + minor fixes.

* Requested changes.

* Add NAT/DiNAT tests to layoutlm_job

* Correction to Dinat doc.

* Requested changes.

* organize pipelines by modality (#20306)

* Fix torch device issues (#20304)

* fix device issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: add generation config class (#20218)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* translate zh quicktour(#20095) (#20181)

* zh quicktour(#20095)

* add zh to doc workflow

* remove untranslation from toctree

Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>

* Add Spanish translation of serialization.mdx (#20245)

* Update _toctree and clone original content

* Translate first three sections

* Add more translated chapters. Only 3 more left.

* Finish translation

* Run style from doc-builder

* Address recommended changes from reviewer

* Add LayerScale to NAT/DiNAT (#20325)

* Add LayerScale to NAT/DiNAT.

Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.

* Add LayerScale to NAT/DiNAT.

Minor error fixed.

Co-authored-by: Ali Hassani <ahassanijr@gmail.com>

* [Switch Transformers] Fix failing slow test (#20346)

* run slow test on GPU

* remove unnecessary device assignment

* use `torch_device` instead

* fix: "BigSicence" typo in docs (#20331)

* add MobileNetV1 model (#17799)

* add model files etc for MobileNetV2

rename files for MobileNetV1

initial implementation of MobileNetV1

fix conversion script

cleanup

write docs

tweaks

fix conversion script

extract hidden states

fix test cases

make fixup

fixup it all

remove main from doc link

fixes

fix tests

fix up

use google org

fix weird assert

* fixup

* use google organization for checkpoints

* Generate: `model_kwargs` can also be an input to `prepare_inputs_for_generation` (#20353)

* Update Special Language Tokens for PLBART (#19980)

* Update Special Language Tokens for PLBART

* fix format

* making mapping for language codes and updating tests:

* fix format

* fix consistency

* add assert to both tokenizer tests.

* fix format

* Update src/transformers/models/plbart/tokenization_plbart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improvin readability, setting self.tgt_lang

* fixing

* readability

Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add resources (#20296)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Enhance HfArgumentParser functionality and ease of use (#20323)

* Enhance HfArgumentParser

* Fix type hints for older python versions

* Fix and add tests (+formatting)

* Add changes

* doc-builder formatting

* Remove unused import "Call"

* Add Audio Spectogram Transformer (#19981)

* First draft

* Make conversion script work

* Add id2label mapping, run code quality

* Fix copies

* Add first draft of feature extractor

* Update conversion script to use feature extractor

* Make more tests pass

* Add docs

* update input_features to input_values + pad by default to max length

* Fix doc tests

* Add feature extractor tests

* Add proper padding/truncation to feature extractor

* Add support for conversion of all audioset checkpoints

* Improve docs and extend conversion script

* Fix README

* Rename spectogram to spectrogram

* Fix copies

* Add integration test

* Remove dummy conv

* Update to ast

* Update organization

* Fix init

* Rename model to AST

* Add require_torchaudio annotator

* Move import of ASTFeatureExtractor under a is_speech_available

* Fix rebase

* Add pipeline config

* Update name of classifier head

* Rename time_dimension and frequency_dimension for clarity

* Remove print statement

* Fix pipeline test

* Fix pipeline test

* Fix index table

* Fix init

* Fix conversion script

* Rename to ForAudioClassification

* Fix index table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Add inference section to task guides (#18781)

* 📝 start adding inference section to task guides

*  make style

* 📝 add multiple choice

* add rest of inference sections

* make style

* add compute_metric, push_to_hub, pipeline

* make style

* add updated sequence and token classification

* make style

* make edits in token classification

* add audio classification

* make style

* add asr

* make style

* add image classification

* make style

* add summarization

* make style

* add translation

* make style

* add multiple choice

* add language modeling

* add qa

* make style

* review and edits

* apply reviews

* make style

* fix call to processor

* apply audio reviews

* update to better asr model

* make style

* Fix toctree for Section 3 in Spanish Documentation (#20360)

* Order and group topics in the right section

* Translate "Computer Vision"

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: IMvision12 <88665786+IMvision12@users.noreply.github.com>
Co-authored-by: Alexander Markov <almarkv@yandex.ru>
Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
Co-authored-by: Zachary Mueller <muellerzr@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: raghavanone <115454562+raghavanone@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: atturaioe <76523524+atturaioe@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Ali Hassani <68103095+alihassanijr@users.noreply.github.com>
Co-authored-by: BFSS <31245245+bfss@users.noreply.github.com>
Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
Co-authored-by: Ian C <7807897+donelianc@users.noreply.github.com>
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
Co-authored-by: Raj Rajhans <me@rajrajhans.com>
Co-authored-by: Matthijs Hollemans <mail@hollance.com>
Co-authored-by: Jordan Clive <jordan.clive19@imperial.ac.uk>
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Konstantin Dobler <konstantin.j.dobler@gmail.com>
2022-11-22 10:40:59 -05:00
72eaaf6d55 Fix nightly runs (#20352)
* Fix nightly runs

* Fix type

* Address review comment
2022-11-22 10:38:38 -05:00
f3a1efd1cf Skip failing test 2022-11-22 09:53:56 -05:00
624ae09f5c Bump pillow in /examples/research_projects/decision_transformer (#20378)
Bumps [pillow](https://github.com/python-pillow/Pillow) from 9.0.1 to 9.3.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/9.0.1...9.3.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-11-22 08:15:42 -05:00
ac3952b443 add accelerate support for ESM (#20379) 2022-11-22 14:06:00 +01:00
c0fe912840 revert keys_to_ignore for M2M100 (#20381) 2022-11-22 13:56:23 +01:00
f2e7d270ec Generate: shorter XLA contrastive search tests (#20354) 2022-11-22 11:47:12 +00:00
c3eb01013b Fix toctree for Section 3 in Spanish Documentation (#20360)
* Order and group topics in the right section

* Translate "Computer Vision"
2022-11-21 16:44:34 -05:00
d896029e27 Add inference section to task guides (#18781)
* 📝 start adding inference section to task guides

*  make style

* 📝 add multiple choice

* add rest of inference sections

* make style

* add compute_metric, push_to_hub, pipeline

* make style

* add updated sequence and token classification

* make style

* make edits in token classification

* add audio classification

* make style

* add asr

* make style

* add image classification

* make style

* add summarization

* make style

* add translation

* make style

* add multiple choice

* add language modeling

* add qa

* make style

* review and edits

* apply reviews

* make style

* fix call to processor

* apply audio reviews

* update to better asr model

* make style
2022-11-21 10:06:21 -08:00
4973d2a04c Add Audio Spectogram Transformer (#19981)
* First draft

* Make conversion script work

* Add id2label mapping, run code quality

* Fix copies

* Add first draft of feature extractor

* Update conversion script to use feature extractor

* Make more tests pass

* Add docs

* update input_features to input_values + pad by default to max length

* Fix doc tests

* Add feature extractor tests

* Add proper padding/truncation to feature extractor

* Add support for conversion of all audioset checkpoints

* Improve docs and extend conversion script

* Fix README

* Rename spectogram to spectrogram

* Fix copies

* Add integration test

* Remove dummy conv

* Update to ast

* Update organization

* Fix init

* Rename model to AST

* Add require_torchaudio annotator

* Move import of ASTFeatureExtractor under a is_speech_available

* Fix rebase

* Add pipeline config

* Update name of classifier head

* Rename time_dimension and frequency_dimension for clarity

* Remove print statement

* Fix pipeline test

* Fix pipeline test

* Fix index table

* Fix init

* Fix conversion script

* Rename to ForAudioClassification

* Fix index table

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-21 18:58:54 +01:00
1e3f17b5ab Enhance HfArgumentParser functionality and ease of use (#20323)
* Enhance HfArgumentParser

* Fix type hints for older python versions

* Fix and add tests (+formatting)

* Add changes

* doc-builder formatting

* Remove unused import "Call"
2022-11-21 12:33:37 -05:00
96783e53b4 Add resources (#20296)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-21 18:24:32 +01:00
149483b252 Update Special Language Tokens for PLBART (#19980)
* Update Special Language Tokens for PLBART

* fix format

* making mapping for language codes and updating tests:

* fix format

* fix consistency

* add assert to both tokenizer tests.

* fix format

* Update src/transformers/models/plbart/tokenization_plbart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improvin readability, setting self.tgt_lang

* fixing

* readability

Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-11-21 11:53:08 -05:00
4cf38148dc Generate: model_kwargs can also be an input to prepare_inputs_for_generation (#20353) 2022-11-21 16:20:27 +00:00
d21c97cc0f add MobileNetV1 model (#17799)
* add model files etc for MobileNetV2

rename files for MobileNetV1

initial implementation of MobileNetV1

fix conversion script

cleanup

write docs

tweaks

fix conversion script

extract hidden states

fix test cases

make fixup

fixup it all

remove main from doc link

fixes

fix tests

fix up

use google org

fix weird assert

* fixup

* use google organization for checkpoints
2022-11-21 10:21:28 -05:00
22d7161a52 fix: "BigSicence" typo in docs (#20331) 2022-11-21 09:44:54 -05:00
74297d0a55 [Switch Transformers] Fix failing slow test (#20346)
* run slow test on GPU

* remove unnecessary device assignment

* use `torch_device` instead
2022-11-21 15:36:49 +01:00
11f3ec7224 Add LayerScale to NAT/DiNAT (#20325)
* Add LayerScale to NAT/DiNAT.

Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.

* Add LayerScale to NAT/DiNAT.

Minor error fixed.

Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
2022-11-21 09:08:35 -05:00
d28448c5cd Add Spanish translation of serialization.mdx (#20245)
* Update _toctree and clone original content

* Translate first three sections

* Add more translated chapters. Only 3 more left.

* Finish translation

* Run style from doc-builder

* Address recommended changes from reviewer
2022-11-21 08:46:54 -05:00
05d80d856c translate zh quicktour(#20095) (#20181)
* zh quicktour(#20095)

* add zh to doc workflow

* remove untranslation from toctree

Co-authored-by: BeifangSusu <BeifangSusu@bfss.com>
2022-11-21 08:44:18 -05:00
3de07473da Generate: add generation config class (#20218)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-21 13:30:15 +00:00
8503cc7550 Fix torch device issues (#20304)
* fix device issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-21 10:12:25 +01:00
d316037ad7 organize pipelines by modality (#20306) 2022-11-18 12:06:25 -08:00
fc4a993e1b Add Neighborhood Attention Transformer (NAT) and Dilated NAT (DiNAT) models (#20219)
* Add DiNAT

* Adds DiNAT + tests

* Minor fixes

* Added HF model

* Add natten to dependencies.

* Cleanup

* Minor fixup

* Reformat

* Optional NATTEN import.

* Reformat & add doc to _toctree

* Reformat (finally)

* Dummy objects for DiNAT

* Add NAT + minor changes

Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.

* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests

* Minor fixes.

* Fix READMEs.

* Requested changes to docs + minor fixes.

* Requested changes.

* Add NAT/DiNAT tests to layoutlm_job

* Correction to Dinat doc.

* Requested changes.
2022-11-18 13:08:26 -05:00
8d6de0b9cf TF: future proof our keras imports (#20317)
* future proof our tf code

* parse tf versions
2022-11-18 17:38:48 +00:00
b2c863a319 Remove double brackets (#20307)
* remove double brackets

* oops get other bracket
2022-11-18 09:29:23 -08:00
f10cdba22e Pin TF 2.10.1 for Push CI (#20319)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-18 18:24:35 +01:00
9d1ef009b8 Fix flakey test with seed (#20318) 2022-11-18 11:33:25 -05:00
8e777b3ba4 [Proposal] Breaking change zero-shot-object-detection for improved consistency. (#20280)
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.

This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.

The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.

The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.

The pipeline is changed to `ChunkPipeline` to support batching cleanly.

This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.

**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.

**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.

**Breaking change**: The types is now simplified and flattened:

`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.

It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.

* Fixing the doctests.

* Behind is_torch_available.
2022-11-18 15:57:28 +01:00
84c9cc6d15 Add AnyPrecisionAdamW optimizer (#18961)
* Add AnyPrecisionAdamW optimizer

* Add optim_args argument to TrainingArgs

* Add tests for AnyPrecisionOptimizer

* Change AnyPrecisionAdam default params to float32

* Move default_anyprecision_kwargs in trainer test

* Rename AnyPrecisionAdamW
2022-11-18 09:27:08 -05:00
37e016331f Also pin TensorFlow CPU 2022-11-18 08:50:56 -05:00
a3f7458066 Pin to the right version... 2022-11-18 07:12:55 -05:00
f7ab8c4251 Pin TensorFlow (#20313) 2022-11-18 06:57:15 -05:00
b98269425e Add padding image transformation (#19838)
* Add padding transformation

* Add in upstream changes

* Update tests & docs

* Code formatting tuples in docstring
2022-11-18 11:27:21 +00:00
c29a2f7c9c [ASR Examples] Update README for Whisper (#20230)
* [ASR Examples] Update README for seq2seq

* add language info

* add training results

* re-word
2022-11-18 11:24:25 +00:00
95754b47a6 remove two tokens that should not be suppressed (#20302) 2022-11-18 08:57:42 +01:00
532e60bedf Fix blender bot missleading doc (#20301)
* fix the doc to specify that add_prefix_space = False

* add correct expected output
2022-11-18 08:57:07 +01:00
df56c843be [Tiny model creation] deal with ImageProcessor (#20298)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 20:49:46 +01:00
4bb0764750 refactor test (#20300)
- simplifies the devce checking test
2022-11-17 15:59:22 +01:00
700e0cd65f Add missing report button for Example test (#20293)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 15:55:00 +01:00
6b217c52e6 Add AutoBackbone + ResNetBackbone (#20229)
* Add ResNetBackbone

* Define channels and strides as property

* Remove file

* Add test for backbone

* Update BackboneOutput class

* Remove strides property

* Fix docstring

* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE

* Fix auto mapping name

* Add sanity check for out_features

* Set stage names based on depths

* Update to tuple

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-17 15:43:20 +01:00
904ac21020 Add docstrings for canine model (#19457)
* Add docstrings for canine model

* Update CanineForTokenClassification

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-17 09:41:11 -05:00
8b8b23a8cd set the default cache_enable to True, aligned with the default value in pytorch cpu/cuda amp autocast (#20289)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-11-17 09:21:06 -05:00
07b8f249cd Fixing the doctests failures. (#20294)
* Fixing the doctests failures.

* Fixup.
2022-11-17 15:13:32 +01:00
0f78529f98 Generate: general TF XLA constrastive search are now slow tests (#20277)
* move contrastive search test to slow
2022-11-17 12:34:46 +00:00
2062c28552 TF: add test for PushToHubCallback (#20231)
* test hub tf callback

* create repo before cloning it
2022-11-17 12:33:44 +00:00
3a780cc57a Image transforms functionality used instead (#20278)
* Image transforms functionality used instead

* Import torch

* Import rather than copy

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py
2022-11-17 11:16:13 +00:00
3fad6ae3fd Adding doctest for object-detection pipeline. (#20258)
* Adding doctest for `object-detection` pipeline.

* Removed nested_simplify.
2022-11-17 11:59:59 +01:00
6c2be845dd Adding zero-shot-object-detection pipeline doctest. (#20274)
* Adding `zero-shot-object-detection` pipeline doctest.

* Remove nested_simplify.
2022-11-17 10:55:55 +01:00
7d65efec29 [bnb] Let's warn users when saving 8-bit models (#20282)
* add warning on 8-bit models

- added tests
- added wrapper

* move to a private attribute

- remove wrapper
- changed `save_pretrained` method

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-17 08:16:36 +01:00
0a144b8c6b [DOCTEST] Fix the documentation of RoCBert (#20142)
* update part of the doc

* add temp values, fix part of the doc

* add template outputs

* add correct models and outputss

* style

* fixup
2022-11-17 06:40:47 +01:00
441811ecd7 Fix summarization script (#20286) 2022-11-16 15:57:07 -05:00
5e012f8e3c [Doctest] Add configuration_deformable_detr.py (#20273)
* Update configuration_deformable_detr.py comment

* Add DeformableDetrConfig to documentation_tests.txt
2022-11-16 18:20:06 +01:00
610acc5ae9 Data collator for token classification pads labels column when receives pytorch tensors (#20244)
* token cls data_collator pads labels column

* remove walrus operator for code quality

* remove redundat space

* remove comment that was fixed

* PR comments fix

Co-authored-by: Alexander Markov <amarkov.me@gmail.com>
2022-11-16 12:18:46 -05:00
d4d23141c4 remaining pytorch type hints (#20217)
* Update modeling_flava.py

* Update modeling_markuplm.py

* Update modeling_glpn.py

* Update modeling_roc_bert.py

* Update modeling_segformer.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_tapas.py

* Update modeling_trocr.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_videomae.py

* Update modeling_yolos.py

* Update modeling_wav2vec2.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py

* Update modeling_jukebox.py
2022-11-16 16:53:40 +00:00
9ea1dbd2be Adding doctest for token-classification pipeline. (#20265)
* Adding doctest for `token-classification` pipeline.

* Adding doctest to `token-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:22:00 +01:00
21b0ad05a0 Adding doctest for image-to-text pipeline. (#20257)
* Adding `zero-shot-object-detection` pipeline doctest.

* Adding doctest for `image-to-text` pipeline.

* Remove nested_simplify.
2022-11-16 17:17:40 +01:00
389702242d [Docs] Add resources of OpenAI GPT (#20084)
* Add resources of OpenAI GPT

* Delete Deploy section and add .

* Add scripts

* Update docs/source/en/model_doc/openai-gpt.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete causal-language-modeling section

* Add TFOpenAIGPTLMHeadModel

* Add resources from community

* Delete a link

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-11-16 11:17:32 -05:00
9accbe531e Adding doctest for question-answering pipeline. (#20259)
* Adding doctest for `question-answering` pipeline.

* Remove nested simplify.
2022-11-16 17:16:19 +01:00
d9efb36cf6 Adding doctest for text-classification pipeline. (#20262)
* Adding doctest for `text-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:15:34 +01:00
c282e93a74 Adding doctest for visual-question-answering pipeline. (#20266)
* Adding doctest for `visual-question-answering` pipeline.

* Remove nested_simplify.
2022-11-16 17:15:25 +01:00
e06657a798 Adding doctest for zero-shot-classification pipeline. (#20268)
* Adding doctest for `zero-shot-classification` pipeline.

* Removing nested_simplify.
2022-11-16 17:15:01 +01:00
69715f2ee0 Adding doctest for zero-shot-image-classification pipeline. (#20272)
* Adding doctest for `zero-shot-image-classification` pipeline.

* Remove nested_simplify.
2022-11-16 17:14:48 +01:00
291c17f608 Adding doctest example for image-classification pipeline. (#20254)
* adding doctest example for `image-classification` pipeline.

* Remove nested simplify.
2022-11-16 17:09:57 +01:00
a239bdd28f Rephrasing the link. (#20253)
* Rephrasing the link.

* Removing `nested_simplify` within doctests.

* Fixup.
2022-11-16 17:09:45 +01:00
e9d9982e7c Add TF protein notebook to notebooks doc (#20271) 2022-11-16 16:08:51 +00:00
5ca479d252 Adding doctest for text-generation pipeline. (#20264) 2022-11-16 16:57:46 +01:00
449f2ae459 Adding doctest for text2text-generation pipeline. (#20261) 2022-11-16 16:57:08 +01:00
f6490180eb Adding doctest for image-segmentation pipeline. (#20256)
* Adding doctest for `image-segmentation` pipeline.

* Fixup.
2022-11-16 16:56:54 +01:00
c389d35a7f Adding a doctest for table-question-answering pipeline. (#20260) 2022-11-16 16:45:42 +01:00
9681f052a1 Fix result saving errors of pytorch examples (#20276) 2022-11-16 09:51:04 -05:00
e627e9b5ae Complete doc migration (#20267) 2022-11-16 08:43:37 -05:00
4fb34de99e Adding an example for depth-estimation pipeline. (#20237)
* Adding an example for `depth-estimation` pipeline.

* Adding missing internal link to tutorial.
2022-11-16 09:52:45 +01:00
1f029b6ae7 Adding doctest for document-question-answering (#20239)
* Adding doctest for doc qa.

* Adding doctest for doc qa.

* Fixup.
2022-11-16 09:52:35 +01:00
443aaaa1a7 Adding ASR pipeline example. (#20226)
* Adding ASR pipeline example.

* De indent.

* Example deindent.

* Fixing example ?

* Putting the example in a more prominent place.

* Fixup.

* Adding the file.

* Adding the doctest to the daily test.

* Fixing comments.

* transcriber name.

* Adding `>>>`.

* Removing assert.
2022-11-16 09:51:45 +01:00
e434627858 Adding doctest for feature-extraction. (#20240)
* Adding doctest for `feature-extraction`.

* Update feature_extraction.py
2022-11-16 09:51:31 +01:00
529037fda5 Adding doctest for fill-mask pipeline. (#20241) 2022-11-16 09:51:20 +01:00
5e080c11bf Updating the doctest for conversational. (#20236)
* Updating the doctest for conversational.

- Make it tested against
- Add explicit output in the test.

* Removing assert.

* Adding missing link.
2022-11-16 09:51:12 +01:00
860ea8a574 Adding audio-classification example in the doc. (#20235)
* Adding `audio-classification` example in the doc.

* Adding `>>>` to get the real test.

* Removing assert.

* Fixup.
2022-11-16 09:51:03 +01:00
a00b7e85ea Adds image-guided object detection support to OWL-ViT (#20136)
Adds image-guided object detection method to OwlViTForObjectDetection class as described in the original paper. One-shot/ image-guided object detection enables users to use a query image to search for similar objects in the input image.

Co-Authored-By: Dhruv Karan k4r4n.dhruv@gmail.com
2022-11-16 09:07:46 +03:00
0d0d77693f Allow trainer to return eval. loss for CLIP-like models (#20214)
* Allow trainer to return loss for CLIP-like models

* Apply suggestions

* update

* update

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 19:47:10 +01:00
822ae69c1b Update reqs to include min gather_for_metrics Accelerate version (#20242)
* Update reqs to include min gather_for_metrics Accelerate version

* Other reqs
2022-11-15 13:28:00 -05:00
c19aa7acce Add clip resources to the transformers documentation (#20190)
* WIP: Added CLIP resources from HuggingFace blog

* ADD: Notebooks documentation to clip

* Add link straight to notebook

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Change notebook links to colab

Co-authored-by: Ambuj Pawar <your_email@abc.example>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-11-15 13:26:46 -05:00
5b62f8ea2b Add to DeBERTa resources (#20155)
* Add to DeBERTa resources

* Fix mistakes with chapter number

* Add fill-mask pipeline

* Add sequence, token and QA pipeline

* Change token classification pipeline order

* Remove flax script and notebook links
2022-11-15 13:26:07 -05:00
26ec7928d0 Slightly alter Keras dummy loss (#20232)
* Slightly alter Keras dummy loss

* Slightly alter Keras dummy loss

* Add sample weight to test_keras_fit

* Fix test_keras_fit for datasets

* Skip the sample_weight stuff for models where the model tester has no batch_size
2022-11-15 16:58:43 +00:00
7f74433814 [CLIP] allow loading projection layer in vision and text model (#18962)
* allow loading projection in text and vision model

* begin tests

* finish test for CLIPTextModelTest

* style

* add slow tests

* add new classes for projection heads

* remove with_projection

* add in init

* add in doc

* fix tests

* fix some more tests

* fix copies

* fix docs

* remove leftover from fix-copies

* add the head models in IGNORE_NON_AUTO_CONFIGURED

* fix docstr

* fix tests

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add docstr for models

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-11-15 17:50:07 +01:00
9643ecf8ca Enable PyTorch 1.13 (#20168)
* Try PT1.13 by removing torch scatter

* Skip failing tests

* Style

* Remvoe testing extras for repo utils

* Try with all decorators

* Try to wipe the cache

* Fix all tests?

* Try this way

* Fix comma

* Update to main

* Try with less deps

* Quality
2022-11-15 11:33:09 -05:00
777b1bfe62 New logging support to "Trainer" Class (ClearML Logger) (#20184)
* Init Update

* ClearML Callbacks integration

* update corrections

* args reporting updated

* {'tensorboard': False, 'pytorch': False}

* ClearML Tests added

* add clearml

* output_uri=True in Task.init

* reformatted integrations.py

* reformatted and fixed

* IF-ELSE statement issue on "has_clearml" resolved

* Add clearml in main callback docs

* Add additional clearml documentation

* Update src/transformers/integrations.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Small change in comments

* Make style clearml

* Accept suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Victor Sonck <victor.sonck@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-15 10:08:59 -05:00
b4997382da Fix MaskformerFeatureExtractor (#20100)
* Fix bug

* Add another fix

* Add print statement

* Apply fix

* Fix feature extractor

* Fix feature extractor

* Add print statements

* Add print statements

* Remove print statements

* Add instance segmentation integration test

* Add integration test for semantic segmentation

* Add draft for panoptic segmentation integration test

* Fix integration test for panoptic segmentation

* Remove slow annotator

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-15 16:00:37 +01:00
6e3b014471 Fix docstring of CLIPTokenizer(Fast) (#20233) 2022-11-15 10:00:16 -05:00
cf7b98b807 Fix run_clip.py (#20234)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 15:45:21 +01:00
683cbc4c34 fixed spelling error in testing.mdx (#20220) 2022-11-15 09:40:06 -05:00
6ed6ed29b1 fix device issue (#20227)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 15:21:16 +01:00
d3d5fa3e85 Add missing ESM autoclass (#20177)
* Add missing ESM autoclass

* Correct ESMFold checkpoint
2022-11-15 14:20:22 +00:00
92cfe8b074 Remove authorized_missing_keysin favor of _keys_to_ignore_on_load_missing (#20228) 2022-11-15 15:12:41 +01:00
2d92001076 Typo on doctring in ElectraTokenizer (#20192)
* chore: typo on docstring in tokenization_electra

* chore: typo on docstring in tokenization_electra

* update for check copies
2022-11-15 09:10:20 -05:00
4c7e8d0900 Add object detection + segmentation transforms (#20003)
* Add transforms for object detection

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Better var names & docstring

* Remove unused var desc in docstring

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-15 12:50:03 +00:00
163ac3d3ee Add Switch transformers (#19323)
* first commit

* add more comments

* add router v1

* clean up

- remove `tf` modeling files

* clean up

- remove `tf` modeling files

* clean up

* v0 routers

* added more router

- Implemented `ExpertsChooseMaskedRouter`

- added tests
- 2 more routers to implement

* last router

* improved docstring

- completed the docstring in `router.py`
- added more args in the config

* v0 sparse mlp

* replace wrong naming

* forward pass run

* update MOE layer

* small router update

* fixup

* consistency

* remove scatter router

* remove abstract layer

* update test and model for integration testing

* v1 conversion

* update

* hardcode hack

* all keys match

* add gin conversion, without additional libraries

* update conversion sctipy

* delete router file

* update tests wrt router deletion

* fix router issues

* update expert code

* update, logits match, code needsREFACTORING

* Refactor code

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* add generate tests

Co-authored-by: younesbelkada <younesbelkada@gmail.com>

* add support for router loss

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix forward error

* refactor a bit

* remove `FlaxSwitchTransformers` modules

* more tests pass

* Update code

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fixup

* fix tests

* fix doc

* fix doc + tokenization

* fix tokenizer test

* fix test

* fix loss output

* update code for backward pass

* add loss support

* update documentation

* fix documentation, clean tokenizer

* more doc fix, cleanup example_switch

* fix failing test

* fix test

* fix test

* fix loss issue

* move layer

* update doc and fix router capacity usage

* fixup

* add sparse mlp index for documentation on hub

* fixup

* test sparse mix architecture

* Apply suggestions from code review

* Update docs/source/en/model_doc/switch_transformers.mdx

* fixup on update

* fix tests

* fix another test

* attempt fix

* Update src/transformers/models/switch_transformers/configuration_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/switch_transformers/convert_switch_transformers_original_flax_checkpoint_to_pytorch.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* try

* all tests pass

* fix jitter noise

* Apply suggestions from code review

* doc tests pass

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/switch_transformers/modeling_switch_transformers.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove assert

* change config order

* fix readme japanese

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove parallelizable tests + add one liners

* remove ONNX config

* fix nits

- add `T5Tokenizer` in auto mapping
- remove `Switch Transformers` from ONNX supported models

* remove `_get_router`

* remove asserts

* add check in test for `router_dtype`

* add `SwitchTransformersConfig` in `run_pipeline_test`

* Update tests/pipelines/test_pipelines_summarization.py

* add huge model conversion script

* fix slow tests

- add better casting for `Linear8bitLt`
- remove `torchscript` tests

* add make dir

* style on new script

* fix nits

- doctest
- remove `_keys_to_ignore_on_load_unexpected`

* Update src/transformers/models/switch_transformers/configuration_switch_transformers.py

* add google as authors

* fix year

* remove last `assert` statements

* standardize vertical spaces

* fix failing import

* fix another failing test

* Remove strange àuthorized_keys`

* removing todo and padding that is never used

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: ybelkada <younes@huggingface.co>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur Zucker <arthur@huggingface.co>
2022-11-15 13:06:45 +01:00
55ba31908a Add param_name to size_dict logs & tidy (#20205) 2022-11-15 10:52:58 +00:00
f1e8c48c5e Add accelerate support for ViT family (#20174)
* add `accelerate` support for `ViT` family

- add `_no_split_modules`
- manually cast to the right `dtype`: to change

* enable `float16` for `deit`

* fix `make fixup`

* add `slow` test for `fp16` inference

* another safety check

* Update src/transformers/models/deit/modeling_deit.py
2022-11-15 11:06:01 +01:00
11b2e45ccc [WHISPER] Update modeling tests (#20162)
* Update modeling tests

* update tokenization test

* typo

* nit

* fix expected attention outputs

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests from review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* remove problematics kwargs passed to the padding function

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 11:04:58 +01:00
f60eec4003 update relative positional embedding (#20203)
* update relative positional embedding

* make fix copies

* add `use_cache` to list of arguments

* fixup

* 1line fucntion

* add `test_decoder_model_past_with_large_inputs_relative_pos_emb`

* add relative pos embedding test for more models

* style
2022-11-15 10:46:34 +01:00
f9909fbf85 Make ImageSegmentationPipelineTests less flaky (#20147)
* Fix ImageSegmentationPipelineTests

* Use 0.9

* no zip

* links to show images

* links to show images

* rebase

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-15 09:14:55 +01:00
9625924c60 Update tokenizer_summary.mdx (#20135) 2022-11-15 01:18:13 +01:00
8fadfd5035 [docs] set overflowing image width to auto-scale (#20197)
* docs: fix: set overflowing image width to auto-scale

* docs: fix: new language Korean is also affected

* docs: fix: unnecessary line break in index page
2022-11-15 01:13:40 +01:00
25c451e5a0 Adding chunking for whisper (all seq2seq actually). Very crude matching algorithm. (#20104)
* Very crude matching algorithm.

* Fixing tests.

* Removing comments

* Adding warning + fix short matches.

* Cleanup tests.

* Quality.

* Less noisy.

* Fixup.
2022-11-14 22:32:50 +01:00
938cb04789 Generate: add Bloom fixes for contrastive search (#20213) 2022-11-14 18:34:11 +00:00
fda125638f Downgrade log warning -> info (#20202) 2022-11-14 17:56:52 +00:00
36b063ed4f Update README.md (#20188)
There is typo in the original hyperlink.

Below is the original version:
Based on the script [`run_translation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/translation/**run_translationn_no_trainer.py**).
2022-11-14 12:53:02 -05:00
536e60d2c7 mark test_save_load_fast_init_from_base as is_flaky (#20200)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-14 18:51:33 +01:00
af1a7c8ca3 [Examples] Generalise Seq2Seq ASR to handle Whisper (#19519)
* merge conflicts

* bos and eos in datacollator

* (temp) hardcode removal of attention mask

* freeze encoder

* actually freeze encoder

* set max length / num beams according to gen kwargs

* (temp) fix tests

* don't pop attn mask

* override return attention mask config from Hub

* Hub configs updated 🤗

* final fixes

* update type annotations

* backward comp
2022-11-14 17:45:46 +00:00
7ecb039176 feat: add i18n issue template (#20199)
Part of #20183
docs: add relevant labels to i18n issue template
fix: typo on completion count
2022-11-14 12:36:58 -05:00
07d8d6e2f7 docs: translated index page to korean (#20180)
docs: i18n: first draft of index page
docs: fix: first revision of index page
docs: i18n: missed section - supported frameworks
docs: fix: second revision of index page
review by @ArthurZucker

refactor: remove untranslated files from korean
docs: fix: remove untranslated references from toctree.yml
feat: enable korean docs in gh actions
docs: feat: add in_translation page as placeholder
docs: bug: testing if internal toc need alphabet chars
docs: fix: custom english anchor for non-alphanumeric headings
review by @sgugger

docs: i18n: translate comments on install methods in _config.py
docs: refactor: more concise wording for translations
2022-11-14 12:09:21 -05:00
c149d366bb add _keys_to_ignore_on_load_unexpected = [r"pooler"] (#20210) 2022-11-14 18:05:19 +01:00
8dcf494ef1 [ROC_BERT] Make CI happy (#20175)
* fix slow test

* Update tests/models/roc_bert/test_modeling_roc_bert.py
2022-11-14 18:04:25 +01:00
7b55bb4540 Generate: TF sample doctest result update (#20208) 2022-11-14 15:42:48 +00:00
d24e84d9ed Pytorch type hints (#20112)
* initial commit

* Update modeling_whisper.py

* Fixing Tests

* modeling_vision_text_dual_encoder

* modeling_vision_encoder_decoder

* Update modeling_vit.py

* Update modeling_vit_msn.py

* Update modeling_trajectory_transformer.py

* style

* Update modeling_time_series_transformer.py

* Update modeling_time_series_transformer.py

* Update modeling_segformer.py

* Update modeling_plbart.py

* Update modeling_dpt.py

* Update modeling_deit.py

* Update modeling_dpt.py

* Update modeling_esm.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_fnet.py

* Update modeling_flava.py

* Update modeling_flava.py

* Update modeling_layoutlmv3.py

* Update modeling_levit.py
2022-11-14 12:39:18 +00:00
03bc6ece1b Proposal Remove the weird inspect in ASR pipeline and make WhisperEncoder just nice to use. (#19571)
* Proposal Remove the weird `inspect` in ASR pipeline and make
WhisperEncoder just nice to use.

It seems that accepting `attention_mask` is kind of an invariant of our
models. For Seq2Seq ASR models, we had a special comment on how it
actually was important to send it.

`inspecting` seems pretty brittle way to handle this case.
My suggestion is to simply add it as an kwarg that and just ignoring
it with the docstring explaining why it's ignored.

* Fixup.

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Doc fixing .

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2022-11-14 09:34:30 +01:00
2308f3d42c Update README.md (#19530)
Fixed a grammatical error.
2022-11-14 01:36:38 -05:00
78a471ff71 Fix tapas scatter (#20149)
* First draft

* Remove scatter dependency

* Add require_torch

* update vectorized sum test, add clone call

* remove artifacts

* fix style

* fix style v2

* remove "scatter" mentions from the code base

* fix isort error

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-14 01:04:26 -05:00
f711d683b5 add MobileNetV2 model (#17845)
* add model files etc for MobileNetV2

* rename files for MobileNetV1

* initial implementation of MobileNetV1

* fix conversion script

* cleanup

* write docs

* tweaks

* fix conversion script

* extract hidden states

* fix test cases

* make fixup

* fixup it all

* rename V1 to V2

* fix checkpoints

* fixup

* implement first block + weight conversion

* add remaining layers

* add output stride and dilation

* fixup

* add tests

* add deeplabv3+ head

* a bit of fixup

* finish deeplab conversion

* add link to doc

* fix issue with JIT trace

in_height and in_width would be Tensor objects during JIT trace, which caused Core ML conversion to fail on the remainder op. By making them ints, the result of the padding calculation becomes a constant value.

* cleanup

* fix order of models

* fix rebase error

* remove main from doc link

* add image processor

* remove old feature extractor

* fix converter + other issues

* fixup

* fix unit test

* add to onnx tests (but these appear broken now)

* add post_process_semantic_segmentation

* use google org

* remove unused imports

* move args

* replace weird assert
2022-11-14 01:00:10 -05:00
6cc06d1739 Fix type - update any PIL.Image.Resampling (#20172) 2022-11-11 16:55:59 +00:00
cbbeca3d17 [OWL-ViT] Make model consistent with CLIP (#20144)
* Apply fix

* Fix test

* Remove another argument which is not used

* Fix pipeline test

* Add argument back, add deprecation warning

* Add warning add other location

* Use warnings instead

* Add num_channels to config

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-11-11 11:36:17 +01:00
d3c0566679 Fix object-detection bug (height, width inversion). (#20167) 2022-11-11 10:14:48 +01:00
61a51f5f23 Add Jukebox model (replaces #16875) (#17826) 2022-11-10 21:05:27 +01:00
9740a03f61 Skip broken test 2022-11-10 14:59:32 -05:00
905e5773a3 [processor] Add 'model input names' property (#20117)
* [processor] Add 'model input names' property

* add test

* no f string

* add generic property method to mixin

* copy to multimodal

* copy to vision

* tests for all audio

* remove ad-hoc tests

* style

* fix flava test

* fix test

* fix processor code
2022-11-10 19:29:20 +00:00
68187c4642 Fix arg names for our models (#20166)
* Fix arg names for our models

* Clean out the other uses of "residx" in infer()

* make fixup
2022-11-10 16:47:58 +00:00
6dda14dc47 Generate: fix TF doctests (#20159) 2022-11-10 15:30:39 +00:00
e0d7c831c7 Update OnnxConfig.generate_dummy_inputs to check ImageProcessingMixin (#20157)
* Check ImageProcessingMixin in OnnxConfig.generate_dummy_inputs

* Check ImageProcessingMixin in OnnxConfig.generate_dummy_inputs

* Add back

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-10 16:04:51 +01:00
daf4436e07 doc comment fix: Args was in wrong place (#20164) 2022-11-10 10:02:24 -05:00
9f0c72f93b Add doc tests (#20158)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-11-10 15:25:30 +01:00
d066c3731b Adding support for LayoutLMvX variants for object-detection. (#20143)
* Adding support for LayoutLMvX variants for `object-detection`.

* Revert bogs `layoutlm` feature extractor which does not exist (it was a
V2 model) .

* Updated condition.

* Handling the comments.
2022-11-10 11:33:38 +01:00
7ec1dc8817 Add RoCBertTokenizer to TOKENIZER_MAPPING_NAMES (#20141)
* Add RoCBertTokenizer to TOKENIZER_MAPPING_NAMES

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 20:58:56 +01:00
67b3789133 Make DummyObject more robust (#20146) 2022-11-09 12:57:27 -05:00
93e14486d6 [CLIPSeg] Add resources (#20118)
* Add resource

* Add tag

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-09 18:31:22 +01:00
f3d99e49d4 Update VisionEncoderDecoder to use an image processor (#20137)
* TrOCR processor uses an image processor

* Update VisionEncoderDecoder

* Add feature_extractor_class property
2022-11-09 16:31:05 +00:00
a44985b41c add cv + audio labels (#20114) 2022-11-09 07:40:15 -08:00
f270b960d6 Generate: move generation_*.py src files into generation/*.py (#20096)
* move generation_*.py src files into generation/*.py

* populate generation.__init__ with lazy loading

* move imports and references from generation.xxx.object to generation.object
2022-11-09 15:34:08 +00:00
bac2d29a80 Attempting to test automatically the _keys_to_ignore. (#20042)
* Attempting to test automatically the `_keys_to_ignore`.

* Style.

* First fix pass.

* Moving test on its own.

* Another batch.

* Second round removing BatchNorm

* Fixing layoutlmv{2,3} + support older Python.

* Disable miss missing warning.

* Removing dodgy additions.

* Big pass.

* mbart.

* More corrections.

* Fixup.

* Updating test_correct_missing_keys

* Add escape hatch for when the head has no extra params so doesn't need

the missing keys check.

* Fixing test.

* Greener.

* Green ! (except for weird splinter bug).

* Adding a test about `named_parameters` usage.

* Shorten message.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* After rebase modifications.

* More explicit condition checking.

* Fixing slow tests issues.

* Remove extra pdb.

* Remove print.

* Attempt to make failure consistent + fixing roc_bert.

* Removing the seed  (all tests passing with it).

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-09 16:03:36 +01:00
d606d566ab Update SwinForMaskedImageModeling doctest values (#20139)
* Update doctest values

* Update copy statement
2022-11-09 14:53:01 +00:00
c4cad8e301 Update CLIPSegModelTester (#20134)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 15:21:52 +01:00
0946ed94fd Remove BertConfig inheritance from RobertaConfig (#20124)
* Remove BertConfig inheritance from RobertaConfig

* Fix Typo: BERT to RoBERTa
2022-11-09 08:51:12 -05:00
316bf04d3d Improve tiny model creation script (#20119)
* Improve tiny model creation script

* sort the list of models to upload

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-09 11:34:35 +01:00
4eb918e656 AutoImageProcessor (#20111)
* AutoImageProcessor skeleton

* Update references

* Add mapping in init

* Add model image processors to __init__ for importing

* Add AutoImageProcessor tests

* Fix up

* Image Processor documentation

* Remove pdb

* Update docs/source/en/model_doc/mobilevit.mdx

* Update docs

* Don't add whitespace on json files

* Remove fixtures

* Move checking model config down

* Fix up

* Add check for image processor

* Remove FeatureExtractorMixin in docstrings

* Rename model_tmpfile to config_tmpfile

* Don't make None if not in image processor map
2022-11-08 19:54:41 +00:00
c08a1e26ab Adapt has_labels test when no labels were found (#20113)
* Make default labels for non-pretrained models

* Fix the has_labels test instead
2022-11-08 13:53:04 -05:00
e2a23b6ce9 Update github pr docs actions (#20125) 2022-11-08 10:37:24 -05:00
2d6a92f22a Fix repo consistency 2022-11-08 10:04:30 -05:00
efa889d2e4 Add RocBert (#20013)
* add roc_bert

* update roc_bert readme

* code style

* change name and delete unuse file

* udpate model file

* delete unuse log file

* delete tokenizer fast

* reformat code and change model file path

* add RocBertForPreTraining

* update docs

* delete wrong notes

* fix copies

* fix make repo-consistency error

* fix files are not present in the table of contents error

* change RocBert -> RoCBert

* add doc, add detail test

Co-authored-by: weiweishi <weiweishi@tencent.com>
2022-11-08 10:03:43 -05:00
258963062b Add CLIPSeg (#20066)
* Add first draft

* Update conversion script

* Improve conversion script

* Improve conversion script some more

* Add conditional embeddings

* Add initial decoder

* Fix activation function of decoder

* Make decoder outputs match original implementation

* Make decoder outputs match original implementation

* Add more copied from statements

* Improve model outputs

* Fix auto tokenizer file

* Fix more tests

* Add test

* Improve README and docs, improve conditional embeddings

* Fix more tests

* Remove print statements

* Remove initial embeddings

* Improve conversion script

* Add interpolation of position embeddings

* Finish addition of interpolation of position embeddings

* Add support for refined checkpoint

* Fix refined checkpoint

* Remove unused parameter

* Improve conversion script

* Add support for training

* Fix conversion script

* Add CLIPSegFeatureExtractor

* Fix processor

* Fix CLIPSegProcessor

* Fix conversion script

* Fix most tests

* Fix equivalence test

* Fix README

* Add model to doc tests

* Use better variable name

* Convert other checkpoint as well

* Update config, add link to paper

* Add docs

* Update organization

* Replace base_model_prefix with clip

* Fix base_model_prefix

* Fix checkpoint of config

* Fix config checkpoint

* Remove file

* Use logits for output

* Fix tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-08 10:55:47 +01:00
3e39fd09a9 [Audio Processor] Only pass sr to feat extractor (#20022)
* [Audio Processor] Only pass sr to feat extractor

* move out of if/else

* copy to other processors
2022-11-08 08:59:03 +00:00
fb1c8db78a Fix AutoTokenizer with subfolder passed (#20110) 2022-11-07 17:59:46 -05:00
6156bffa2b Replace awkward timm link with the expected one (#20109) 2022-11-07 13:57:39 -05:00
71f772ebd0 Add new terms to the glossary (#20051)
* add new terms

* apply review
2022-11-07 10:45:27 -08:00
d44ac47bac docs: Fixed variables in f-strings (#20087)
* docs: Fixed variables in f-strings

* Replace unknown `block` with known `block_type` in ValueError

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add missing torch import in docs code block

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-07 13:18:09 -05:00
2bdd9fa284 Fix generate_dummy_inputs for ImageGPTOnnxConfig (#20103)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-07 16:31:26 +01:00
cfaeb1539e use huggingface_hub.model_inifo() to get pipline_tag (#20077) 2022-11-07 10:07:59 -05:00
3222fc645b docs: Resolve many typos in the English docs (#20088)
* docs: Fix typo in ONNX parser help: 'tolerence' => 'tolerance'

* docs: Resolve many typos in the English docs

Typos found via 'codespell ./docs/source/en'
2022-11-07 09:19:04 -05:00
b8112eddec Replace unsupported facebookresearch/bitsandbytes (#20093)
With https://github.com/TimDettmers/bitsandbytes, which is by the same author and is still being updated
2022-11-07 08:52:03 -05:00
4ab6e9e2f8 Skip 2 tests in VisionTextDualEncoderProcessorTest (#20098)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-07 14:51:05 +01:00
b77406bcb2 Removing RobertaConfig inheritance from CamembertConfig (#20059)
* swap RobertaConfig with PretrainedConfig

* Add camembert specific attributes

* Add PretrainedConfig docstring

* Add arguments docstring

* Change CamembertConfig docstring definition

* Fix typo CamembertConfig -> CamembertModel

* Fix typo BertModel -> CamembertModel

* Fix style of CamembertConfig
2022-11-07 08:50:10 -05:00
9617b1304e [Doctest] Add configuration_dpr.py (#20080)
* Add example docstring for DPRConfig

* Add DPRConfig to documentation_tests
2022-11-07 14:49:59 +01:00
a0f8674303 Generate: TF contrastive search with XLA support (#20050)
* Add contrastive search
2022-11-07 10:54:29 +00:00
504db92e7d Update hub.py (#20075) 2022-11-04 22:25:02 +01:00
4b86e44693 Update modeling_tf_utils.py (#20076) 2022-11-04 22:24:37 +01:00
d68c46026b Update defaults and logic to match old FE (#20065)
* Update defaults and logic to match old FE

* Use docker run rest values
2022-11-04 19:14:56 +00:00
c06d555647 Show installed libraries and their versions in GA jobs (#20069)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-04 18:03:18 +01:00
2d02178e5c Allow passing arguments to model testers for CLIP-like models (#20044)
* POC

* For more CLIP-like models

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-04 18:01:41 +01:00
3bd0007e87 Update documentation on seq2seq models with absolute positional embeddings, to be in line with Tips section for BERT and GPT2 (#20068)
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
2022-11-04 11:32:44 -04:00
6e1c5786dc Update READMEs for ESMFold and add notebooks (#20067)
* Update READMEs for ESMFold and add notebooks

* Fix PyCharm formatting

* make fix-copies
2022-11-04 15:10:13 +00:00
707b12a353 change constant torch.tensor to torch.full (#20061) 2022-11-04 10:41:56 -04:00
787620e2a2 [Swin] Add Swin SimMIM checkpoints (#20034)
* Fix Swin

* Remove file

* Update code snippet

* Add copied from to maskformer

* Fix docstring

* Add whole name to replace

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-11-04 15:32:44 +01:00
3936411b9d PoolformerImageProcessor defaults to match previous FE (#20048)
* Poolformer image processor defaults to previous FE

* Remove unnecessary math.floor
2022-11-04 13:52:58 +00:00
94e17c456c [Trainer] Fix model name in push_to_hub (#20064) 2022-11-04 13:40:21 +00:00
19067711e7 fix tokenizer_type to avoid error when loading checkpoint back (#20062) 2022-11-04 19:04:01 +05:30
3502c202f9 Update README.md (#20063) 2022-11-04 08:56:54 -04:00
1076d587b5 Fix ESM LM head test (#20045)
* Fix esm lm head test

* make fixup
2022-11-04 12:45:34 +00:00
d447c460b1 Speed up TF token classification postprocessing by converting complete tensors to numpy (#19976)
* Speed up TF postprocessing by converting to numpy before

* Fix bug that was triggered when offset_mapping was None

Co-authored-by: Patrick Deutschmann <patrick.deutschmann@dedalus.com>
2022-11-03 16:56:22 +00:00
06886d5a68 Only resize embeddings when necessary (#20043)
* Only resize embeddings when necessary

* Add comment
2022-11-03 12:05:04 -04:00
9080607b2c Fixed torch.finfo issue with torch.fx (#20040) 2022-11-03 16:14:44 +01:00
6f257bb3c2 Update esmfold conversion script (#20028)
* Update ESM conversion script for ESMfold

* Fix bug in ESMFold example

* make fixup and move restypes to one line
2022-11-03 14:58:06 +00:00
2564f0c21d fix jit trace error for model forward sequence is not aligned with jit.trace tuple input sequence, update related doc (#19891)
* fix jit trace error for classification usecase, update related doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add implementation in torch 1.14.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update_doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update_doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-11-03 10:50:03 -04:00
737bff6a36 [FuturWarning] Add futur warning for LEDForSequenceClassification (#19066)
* fix led eos_mask

* add Futur Warning

* revert uselesss cahnges

* Update src/transformers/models/led/modeling_led.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-03 15:26:09 +01:00
06d488061f [Whisper Tokenizer] Make more user-friendly (#19921)
* [Whisper Tokenizer] Make more user-friendly

* use property

* make indexing rigorous

* small clean-up

* tests

* skip seq2seq tests

* remove multilingual arg

* reorder args

* collapse to one function

Co-authored-by: ArthurZucker <arthur@huggingface.co>

* option to override attributes

Co-authored-by: ArthurZucker <arthur@huggingface.co>

* add to docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make comment more clear

Co-authored-by: sgugger <sylvain@huggingface.co>

* don't add special tokens in get_decoder_prompt_ids

* add test for set_prefix_tokens

Co-authored-by: ArthurZucker <arthur@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sgugger <sylvain@huggingface.co>
2022-11-03 14:22:40 +00:00
790ff2544a [Doctest] Add configuration_camembert.py (#20039)
* Add example docstring for CamembertConfig

* Add configuration_camembert to documentation_tests
2022-11-03 14:50:42 +01:00
9ccea7acb1 Fix some doctests after PR 15775 (#20036)
* Add skip_special_tokens=True in some doctest

* For T5

* Fix for speech_to_text.mdx

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-03 14:18:45 +01:00
a639ea9e8a Add **kwargs (#20037) 2022-11-03 12:51:49 +00:00
ec6878f6ca Now supporting pathlike in pipelines too. (#20030) 2022-11-03 09:14:45 +01:00
aa39967b28 reorganize glossary (#20010) 2022-11-02 16:58:17 -07:00
305e8718b4 Show installed libraries and their versions in CI jobs (#20026)
* Show versions

* check

* store outputs

* revert

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 20:52:39 +01:00
9f9ddcc2de 🚨 🚨 🚨 Fix Issue 15003: SentencePiece Tokenizers Not Adding Special Tokens in convert_tokens_to_string (#15775)
* Add test for SentencePiece not adding special tokens to strings

* Add SentencePieceStringConversionMixin to fix issue 15003

* Fix conversion from tokens to string for most SentencePiece tokenizers

Tokenizers fixed:
- AlbertTokenizer
- BarthezTokenizer
- CamembertTokenizer
- FNetTokenizer
- M2M100Tokenizer
- MBart50Tokenizer
- PegasusTokenizer
- Speech2TextTokenizer

* Fix MarianTokenizer, adjust SentencePiece test to accomodate vocab

* Fix DebertaV2Tokenizer

* Ignore LayoutXLMTokenizer in SentencePiece string conversion test

* Run 'make style' and 'make quality'

* Clean convert_tokens_to_string test

Instead of explicitly ignoring LayoutXLMTokenizer in the test,
override the test in LayoutLMTokenizationTest and do nothing in it.

* Remove commented out code

* Improve robustness of convert_tokens_to_string test

Instead of comparing lengths of re-tokenized text and input_ids,
check that converting all special tokens to string yields a string
with all special tokens.

* Inline and remove SentencePieceStringConversionMixin

The convert_tokens_to_string method is now implemented
in each relevant SentencePiece tokenizer.

* Run 'make style' and 'make quality'

* Revert removal of space in convert_tokens_to_string

* Remove redundant import

* Revert test text to original

* Uncomment the lowercasing of the reverse_text variable

* Mimic Rust tokenizer behavior for tokenizers

- Albert
- Barthez
- Camembert
- MBart50
- T5

* Fix accidentally skipping test in wrong tokenizer

* Add test for equivalent Rust and slow tokenizer behavior

* Override _decode in BigBirdTokenizer to mimic Rust behavior

* Override _decode in FNetTokenizer to mimic Rust behavior

* Override _decode in XLNetTokenizer to mimic Rust behavior

* Remove unused 're' import

* Update DebertaV2Tokenizer to mimic Rust tokenizer

* Deberta tokenizer now behaves like Albert and its `convert_tokens_to_string` is not tested.

* Ignore problematic tests in Deberta V2

* Add comment on why the Deberta V2 tests are skipped
2022-11-02 15:45:38 -04:00
fb7cbe236b Fix doctest (#20023)
* Fix doctest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 19:37:25 +01:00
f69eb24b5a Improve model tester (#19984)
* part 1

* part 2

* part 3

* fix

* For CANINE

* For ESMFold

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 17:38:44 +01:00
7487743793 [Doctest] Add configuration_deberta_v2.py (#19995)
* Add example docstring for DebertaV2Config

* Add DebertaV2Config to documentation_tests

* Fix mistake with directory name
2022-11-02 16:22:11 +01:00
9aedce99b0 Update auto processor to check image processor created (#20021) 2022-11-02 15:19:33 +00:00
49b77b89ea Quality (#20002) 2022-11-02 09:53:37 -04:00
c6c9db3d0c Fix gradient checkpoint test in encoder-decoder (#20017)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 14:15:09 +01:00
a6b7759880 Add Image Processors (#19796)
* Add CLIP image processor

* Crop size as dict too

* Update warning

* Actually use logger this time

* Normalize doesn't change dtype of input

* Add perceiver image processor

* Tidy up

* Add DPT image processor

* Add Vilt image processor

* Tidy up

* Add poolformer image processor

* Tidy up

* Add LayoutLM v2 and v3 imsge processors

* Tidy up

* Add Flava image processor

* Tidy up

* Add deit image processor

* Tidy up

* Add ConvNext image processor

* Tidy up

* Add levit image processor

* Add segformer image processor

* Add in post processing

* Fix up

* Add ImageGPT image processor

* Fixup

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Add VideoMAE image processor

* Tidy up

* Add ImageGPT image processor

* Fixup

* Add ViT image processor

* Tidy up

* Add beit image processor

* Add mobilevit image processor

* Tidy up

* Add postprocessing

* Fixup

* Fix up

* Fix flava and remove tree module

* Fix image classification pipeline failing tests

* Update feature extractor in trainer scripts

* Update pad_if_smaller to accept tuple and int size

* Update for image segmentation pipeline

* Update src/transformers/models/perceiver/image_processing_perceiver.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/image_processing_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/beit/image_processing_beit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PR comments - docstrings; remove accidentally added resize; var names

* Update docstrings

* Add exception if size is not in the right format

* Fix exception check

* Fix up

* Use shortest_edge in tuple in script

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-11-02 11:57:36 +00:00
2e3452af0f make sentencepiece import conditional in bertjapanesetokenizer (#20012) 2022-11-02 07:44:37 -04:00
8827e1b217 clean up vision/text config dict arguments (#19954)
* clean up

* For backward compatibility

* clean up

* Same changes for more models

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-11-02 12:03:43 +01:00
cb630ffab8 Update object detection pipeline to use post_process_object_detection methods(#20004) 2022-11-02 10:26:36 +03:00
79c720c062 fix typo (#20006) 2022-11-01 11:30:36 -07:00
831590f6a9 Generate: contrastive search with full optional outputs (#19963)
* Use beam search functionality; Add extra outputs and test

* Add full tests for contrastive search

* Add error message on unconventional cache format
2022-11-01 18:15:36 +00:00
ab74ac11e4 Add LayoutLMv3 resource (#19932)
* add layoutlmv3 resource

* add layoutlmv2 resources

* fix button
2022-11-01 11:10:46 -07:00
dec8578e70 Add BERT resources (#19852)
* add resources for bert

* add course chapters

* apply reviews

* add pipeline icons and community resource

* fix buttons
2022-11-01 11:09:53 -07:00
1f6885bad0 add dataset (#20005) 2022-11-01 10:37:20 -07:00
4f1e5e4efd Add ESMFold code sample (#20000)
* Add ESMFold code sample

* sorry sylvain

* make fixup

* sorry sylvain again
2022-11-01 13:21:12 +00:00
38e5b71abb Add Japanese translated README (#19945)
* Add japanese translated README.md

* Add README_ja.md link

* Add japanese transkate to check_copies.py

* Add guide to Japanese README.md

* Update README_ja.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update utils/check_copies.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-11-01 09:18:08 -04:00
4f90fc1db8 typo (#20001) 2022-11-01 09:04:53 -04:00
c87ae86a8f Update image_classification.mdx (#19996) 2022-11-01 07:54:41 -04:00
c796b6dea6 Added onnx config whisper (#19525)
* Added onnx config whisper

* added whisper support onnx

* add audio input data

* added whisper support onnx

* fixed the seqlength value

* Updated the whisper onnx ocnfig

* restore files to old version

* removed attention mask from inputs

* Updated get_dummy_input_onnxruntime docstring

* Updated relative imports and token generation

* update docstring
2022-11-01 07:50:42 -04:00
c3a93d8d82 v4.25.0.dev0 2022-10-31 21:48:40 -04:00
7f9b7b3f0e Add ESMFold (#19977)
* initial commit

* First draft that gets outputs without crashing!

* Add all the ported openfold dependencies

* testing

* Restructure config files for ESMFold

* Debugging to find output discrepancies

* Mainly style

* Make model runnable without extra deps

* Remove utils and merge them to the modeling file

* Use correct gelu and remove some debug prints

* More cleanup

* Update esm docs

* Update conversion script to support ESMFold properly

* Port some top-level changes from ESMFold repo

* Expand EsmFold docstrings

* Make attention_mask optional (default to all 1s)

* Add inference test for ESMFold

* Use config and not n kwargs

* Add modeling output class

* Remove einops

* Remove chunking in ESM FFN

* Update tests for ESMFold

* Quality

* REpo consistency

* Remove tree dependency from ESMFold

* make fixup

* Add an error in case my structure map function breaks later

* Remove needless code

* Stop auto-casting the LM to float16 so CPU tests pass

* Stop auto-casting the LM to float16 so CPU tests pass

* Final test updates

* Split test file

* Copyright and quality

* Unpin PyTorch to see built doc

* Fix config file to_dict() method

* Add some docstrings to the output

* Skip TF checkpoint tests for ESM until we reupload those

* make fixup

* More docstrings

* Unpin to get even with main

* Flag example to write

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-10-31 21:32:58 -04:00
4c9e0f029e Add support for gradient checkpointing (#19990)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-31 18:37:17 +01:00
8214a9f66a Pin torch to < 1.13 temporarily (#19989)
* pin torch to < 1.13

* pin torch to < 1.13

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-31 18:22:52 +01:00
6aede2d602 Tranformers documentation translation to Italian #17459 (#19988) 2022-10-31 13:19:15 -04:00
f38a145418 [ASR] Update 'tasks' for model card (#19986) 2022-10-31 16:50:17 +00:00
9406c7bc82 [modelcard] Update for ASR (#19985)
* [modelcard] Update for ASR

* style
2022-10-31 16:49:58 +00:00
225c36fbe5 gradient checkpointing for GPT-NeoX (#19946)
* gradient checkpointing for GPT-NeoX

* initialize gradient checkpointing flag

* must set flag before init
2022-10-31 12:32:46 -04:00
6176e13612 [Doctest] Add configuration_deberta.py (#19968)
* Add Example docstring to DebertaConfig

* Add configuration_deberta to documentation_tests

* Add microsoft/deberta-base to example docstring

* Fix example docstring mistake
2022-10-31 17:22:01 +01:00
b047472650 donut -> donut-swin (#19920)
* donut -> donut-swin

* remove ("donut-swin", "DonutProcessor")

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-31 14:56:16 +01:00
a83bb45fb8 Fix repo consistency 2022-10-31 06:42:46 -04:00
243439a827 Fix ONNX tests for ONNX Runtime v1.13.1 (#19950)
* Fix ONNX tests for ONNX Runtime v1.13.1

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-31 09:21:45 +01:00
0b294c2334 [Conditional, Deformable DETR] Add postprocessing methods (#19709)
* Add postprocessing methods

* Update docs

* Add fix

* Add test

* Add test for deformable detr postprocessing

* Add post processing methods for segmentation

* Update code examples

* Add post_process to make the pipeline work

* Apply updates

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-31 08:28:44 +01:00
2e35bac4e7 Add wav2vec2 resources (#19931)
* add wav2vec2 resources

* apply review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-10-28 13:28:18 -07:00
9d2788b46b add resources for distilbert (#19930) 2022-10-28 13:16:07 -07:00
b0a2c3a2d6 add resources for bart (#19928) 2022-10-28 13:15:43 -07:00
98c9c5add9 Update Code of Conduct to Contributor Covenant v2.1 (#19935)
* Update Code of Conduct to Contributor Covenant v2.1

* Update CODE_OF_CONDUCT.md
2022-10-28 11:03:38 -04:00
0d4c45c585 Add Onnx Config for ImageGPT (#19868)
* add Onnx Config for ImageGPT

* add generate_dummy_inputs for onnx config

* add TYPE_CHECKING clause

* Update doc for generate_dummy_inputs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-28 09:39:53 -04:00
9b1dcba94a Use self._trial to generate trial_name for Trainer. (#19874)
* Do not generate trial_name when trail is None

* Use (trial or self._trial) to generate trial_name

* Follow comments
2022-10-28 08:47:47 -04:00
347ba38cb4 Support segformer fx (#19924)
* Support segformer fx

* Add fx_compatible attribute to test_modeling_segformer.py

* Update glpn model (fx support)

glpn model was copied from segformer.

* Update utils/fx.py | add semantic-segmentation

for SegformerForSemanticSegmentation model

* Fix minor import order(isort)

* Add random input generation for segformer fx

Co-authored-by: noelbird <lduldu00228@gmail.com>
2022-10-28 08:44:38 -04:00
dcca71be61 Create dummy models (#19901)
* create dummy models

* quality

* update

* update

* Make Wav2Vec2Conformer work

* style

* deal with models with text_config and vision_config

* apply suggestions

* Composite models

* style

* style

* fix shape issue

* fix shape issue

* For VisionTextDualEncoderModel

* show_progress=False when converting tokenizers

* Fix for OwlViT

* Fix for VisualBert

* Update

* final

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-28 13:05:41 +02:00
4cef546ffc Add accelerate support for BART-like models (#19927)
* forward contrib credits from suggestion

* add `accelerate` support for BART-like models

Co-authored-by: sgugger <sgugger@users.noreply.github.com>
2022-10-27 23:14:53 +02:00
ebfd7229d2 Let inputs of fast tokenizers be tuples as well as lists (#19898)
* Let inputs of fast tokenizers be tuples as well as lists

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Style

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-27 16:03:11 -04:00
6c24443ff5 Safetensors tf (#19900)
* Wip

* Add safetensors support for TensorFlow

* First tests

* Add final test for now

* Retrigger CI like this

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-27 15:56:29 -04:00
e4132952a1 Add GPT2 resources (#19879)
* add resources for gpt2

* add pipeline icons and community resources
2022-10-27 11:34:00 -07:00
d818dd3a41 Add BLOOM resources (#19881)
* add bloom resources

* add pipeline icon
2022-10-27 11:33:52 -07:00
50f5266b2c Add T5 resources (#19878)
* add resources for t5

* add pipeline icons and community resources
2022-10-27 11:33:37 -07:00
536a8ae6ad Add RoBERTa resources (#19911)
* add roberta resources

* fix typo
2022-10-27 11:33:15 -07:00
d56d723fad Add accelerate support for M2M100 (#19912)
* add `accelerate` support for M2M100

* fix device set nit
2022-10-27 18:06:55 +02:00
c766a2d70a Remove embarrassing debug print() in save_pretrained (#19922) 2022-10-27 10:56:48 -04:00
1e6141c3d4 Add type hints to TFPegasusModel (#19858)
* added typing to call in TFPegasusModel and TFPegasusForConditionalGeneration

* fixed type for TFPegasusForConditionalGeneration call
2022-10-27 15:43:58 +01:00
ecf29db0e5 Fix warning when collating list of numpy arrays (#19846) 2022-10-27 09:00:39 -04:00
ea118ae2e1 Fix bug in Wav2Vec2's GPU tests (#19803)
* Fix tests when running on GPU

* Fix tests that require mp.set_start_method
2022-10-27 09:00:03 -04:00
f1e42bc50e Some fixes regarding auto mappings and test class names (#19923)
* Add pegasus_x

* ViTMSN

* ESM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-27 14:38:59 +02:00
bec78ba154 Convert None logits processor/stopping criteria to empty list. (#19880)
* Convert None logits processor/stopping criteria to empty list.

* Initialize stopping_criteria, logits_processor in generate.

* Default stopping_criteria, logits_processor to None.

Co-authored-by: Chandler May <chandler.j.may@gmail.com>
2022-10-27 08:00:18 -04:00
568e578310 Generate: contrastive search uses existing abstractions and conventions (#19896) 2022-10-27 12:20:14 +01:00
803475fb69 Add checkpoint links in a few config classes (#19910)
* For CLIP

* Others

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-27 09:26:10 +02:00
7629656926 accelerate support for RoBERTa family (#19906) 2022-10-26 22:41:53 +02:00
6d023270f6 Allow flax subfolder (#19902)
* add first generation tutorial

* [Flax] Add subfolder functionality

* [Flax] Add subfolder functionality

* up

* finish

* delete file and re-add test
2022-10-26 18:33:23 +02:00
7a1c68a845 Add flan-t5 documentation page (#19892)
* add `flan-t5` documentation page

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add more content

* revert `_toctree` modif

* revert `toctree` modif - 2

* Update README.md

* Revert "Update README.md"

This reverts commit 56607144299c5fdf7b18abdb776efd0d03287727.

* Update README_es.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update README_ko.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-26 17:22:57 +02:00
688c3e8e40 Update max_diff in test_save_load_fast_init_to_base (#19849)
* Fix test_save_load_fast_init_to_base

* Fix test_save_load_fast_init_to_base

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-26 17:09:47 +02:00
7829c890db Change the import of kenlm from github to pypi (#19770)
* Change the import of kenlm from github to pypi

* Change the import of kenlm from github to pypi in circleci config

* Fix code quality issues

* Fix isort issue, add kenlm in extras for audio

* Add kenlm to deps

* Add kenlm to deps

* Commit 'make fixup' changes

* Remove version from kenlm deps

* commit make fixup changes

* Remove manual installation of kenlm

* Remove manual installation of kenlm

* Remove manual installation of kenlm
2022-10-26 17:06:46 +02:00
aeae97829f Add missing information on token_type_ids for roberta model (#19766)
* Add missing information on token_type_ids for roberta model

* Fix code format issues

* Fix code format issues

* Add more explicit document for token_type_ids for roberta

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues

* Fix flake8 issues
2022-10-26 10:44:34 -04:00
fdffee8a60 No conv bn folding in ipex to avoid warning (#19870)
* no conv bn folding in ipex

* no flag in training

* comment

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-10-26 08:58:52 -04:00
802b98c72b Correct README image text (#19883)
swap "right" and "left" so description is correct.
2022-10-26 08:38:01 -04:00
5d2d51a0fb Fix LR (#19875) 2022-10-26 08:35:53 -04:00
1f1cc09df6 [DOCTEST] Config doctest for MCTCT, MBart and LayoutLM (#19889)
* Update documentation_tests.txt

* Update configuration_mbart.py

* Update configuration_mctct.py

* Update configuration_layoutlm.py

* Update configuration_layoutlmv2.py

* Update configuration_layoutlmv3.py

* Update documentation_tests.txt
2022-10-26 12:05:44 +02:00
5fd5990dce Factored out some code in the image-segmentation pipeline. (#19727)
* Factored out some code in the image-segmentation pipeline

Re-enable `small_model_pt`.

Re-enable `small_model_pt`.

Enabling the current test with the current values.

Debugging the values on the CI.

More logs ? Printing doesn't work ?

Using the CI values instead. Seems to be a Pillow sensitivity.

Added a test showcasing that models not supporting some tasks get a
clear error.

Factored out code.

Further factor out.

Fixup.

Bad rebase.

Put `panoptic` before `instance` as it should be a superset.

* Fixing tests.

* Adding subtasks tests

+ Fixes `instance` segmentation which was broken due to default and
non kwargs arguments.

* Fix bad replace.
2022-10-26 10:44:36 +02:00
2447672269 Update doc for revision and token (#19793)
* Update doc for revision and token

* Update src/transformers/configuration_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Push changes on other from_pretrained methods

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-10-25 12:32:15 -04:00
f9257843b5 Fix incorrect model<->tokenizer mapping in tokenization testing (#19872)
* Fix model-tokenizer mapping

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-25 16:02:13 +02:00
eedaba682f [Past CI] Vilt only supports PT >= v1.10 (#19851)
* Support for Vilt in v1.9

* Skip if not higher or equal than 1.10

* Move test :)

* I am bad at python
2022-10-25 15:59:35 +02:00
d39f794eda Generate: contrastive search cosmetic tweaks (#19871) 2022-10-25 14:43:06 +01:00
0a77249178 Added translation of serialization.mdx to Portuguese Issue #16824 (#19869)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ serialization.mdx ] - Translated to Portuguese the serialization tutorial.
2022-10-25 09:34:28 -04:00
ab108a0e31 Add missing lang tokens in M2M100Tokenizer.get_vocab (#18416) 2022-10-25 09:18:24 -04:00
0bd6d9340e Fix doctest for GenerationMixin.contrastive_search (#19863)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-25 14:51:16 +02:00
371337a95b Spanish translation of multiple_choice.mdx, question_answering.mdx. (#19821)
* Translated multiple_choice.mdx, question_answering.mdx. Added them to _toctree.yml

* Added translation for a missed line.

* Update _toctree.yml as per Omar's suggestions

* Update multiple_choice.mdx as per Omar's comments

* Updt question_answering.mdx as per Omar's comments
2022-10-24 20:11:34 -04:00
d4eb52d13d Refactor conversion function (#19799)
* Refactor conversion function

* Remove dupe line

* Fixes

* Fixes

* Use the right variable...

* Fix last test
2022-10-24 13:48:40 -04:00
9ecb13d63a add small updates only (#19847) 2022-10-24 10:18:20 -07:00
072ed01c38 Fix doctest for MarkupLM (#19845)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 17:54:23 +02:00
1f7e40d04f Improve check copies (#19829)
* print first diff line intead of first code part line

* fix style
2022-10-24 11:24:18 -04:00
8b2501b4b9 Update LEDModelIntegrationTests expected values (#19841)
* Update expected values

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 16:05:26 +02:00
5cbf1fa8ca fixed typo in fp16 training section for perf_train_gpu_one (#19736) 2022-10-24 10:04:28 -04:00
8db92dbe26 Fix nightly CircleCI (#19837)
* Fix nightly CircleCI

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 16:00:02 +02:00
743995e0e6 Added translation of converting_tensorflow_models.mdx to Portuguese Issue #16824 (#19824)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.

* [ converting_tensorflow_models.mdx ] - Translated to Portuguese the converting tensorflow models tutorial.
2022-10-24 09:50:16 -04:00
d3f4cef74d fix image2test args forwarding (#19648)
* fix image2test args forwarding

* fix issues

* Proposing the update to the PR.

* Fixup.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-10-24 09:49:24 -04:00
3b419cfc6f fix broken links in testing.mdx (#19820) 2022-10-24 09:48:02 -04:00
7ccd6fc47c Fix OOM in Config doctest (#19840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-24 15:33:00 +02:00
18adc40d87 replace reference to Datasets in metrics deprecation with Evaluate (#19812) 2022-10-24 09:25:57 -04:00
0b59ecdefd Display the number of trainable parameters when lauching a training (#19835) 2022-10-24 09:15:52 -04:00
536f338441 [Doctest] Add configuration_nezha.py (#19810)
* [Doctest] Add `configuration_nezha.py`

* Revert line order
2022-10-24 13:50:43 +02:00
f58b211ed3 [Doctest] Add configuration_electra.py (#19807) 2022-10-24 12:34:43 +02:00
c949188b9d [Doctest] Add configuration_poolformer.py (#19808) 2022-10-24 12:33:46 +02:00
82df83a96b [Doctest] Add configuration_plbart.py (#19809)
Additionally, I updated the doctest format to be consistent with BERT.
2022-10-24 12:32:55 +02:00
22502ebb85 [Doctest] MaskFormerConfig doctest (#19817) 2022-10-24 11:08:32 +02:00
6f8064da6b install GitPython 2022-10-24 09:54:15 +02:00
674f750a57 Generate: minor docstring fix (#19801) 2022-10-23 10:46:47 +01:00
74b3eb3dea Added translation of run_scripts.mdx to Portuguese Issue #16824 (#19800)
* [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial.

* [ run_scripts.mdx ] - Translated to Portuguese the run scripts tutorial.
2022-10-21 17:38:35 -04:00
3436842102 Run some TF Whisper tests in subprocesses to avoid GPU OOM (#19772)
* Run some TF Whisper tests in subprocesses to avoid GPU OOM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 21:59:18 +02:00
e0b825a8d0 Generate: contrastive search test updates (#19787)
* contrastive search test updates

* make fixup
2022-10-21 19:10:08 +01:00
c4a997cd85 Use None to detect if truncation was unset (#19794)
* Use None to detect if truncation was unset

* Fix repo consistency
2022-10-21 12:53:37 -04:00
2e5c6f5975 Fix error/typo in docstring of TokenClassificationPipeline (#19798) 2022-10-21 12:53:16 -04:00
cca51aa151 Fix image segmentation pipeline errors, resolve backward compatibility issues (#19768)
* Fix panoptic segmentation and pipeline
* Update ImageSegmentationPipeline tests and reenable test_small_model_pt
* Resolve backward compatibility issues
2022-10-21 18:09:58 +03:00
b58d4f70f6 Fix nightly test setup (#19792) 2022-10-21 10:26:30 -04:00
3a1aeea3c5 Fix CTRL test_torchscrip_xxx CI by updating _create_and_check_torchscript (#19786)
* Run inputs before trace

* Run inputs before trace

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 16:23:13 +02:00
31565ff0fd Add sentencepiece to BertJapaneseTokenizer (#19769)
* support sentencepiece for bertjapanesetokenizer

* add test vocab file for sentencepiece, bertjapanesetokenizer

* make BasicTokenizer be identical to transformers.models.bert.tokenization_bert.BasicTokenizer

* fix missing of \n in comment

* fix init argument missing in tests

* make spm_file be optional, exclude spiece.model from tests/fixtures, and add description comments

* make comment length less than 119

* apply doc style check
2022-10-21 10:04:49 -04:00
2ebf4e6a7b [ custom_models.mdx ] - Translated to Portuguese the custom models tutorial. (#19779) 2022-10-21 09:48:19 -04:00
c1f009ad9a Update training.mdx (#19791) 2022-10-21 09:46:44 -04:00
9151e649a5 Make public versions of private tensor utils (#19775)
* Make public versions of private utils

* I need sleep
2022-10-21 09:34:01 -04:00
3aaabaa214 Update ImageToTextPipelineTests.test_small_model_tf (#19785)
* update expected values for the correct TF checkpoint

* Run test

* Clean up

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 14:35:20 +02:00
7487829a23 Added support for multivariate independent emission heads (#19453)
* Added support for multivariate independent emission heads

* fix typo

* rename distr_cls

* scale is a vector for multivariate

* set affine transform event_dim

* fix typo

* added variable

* added beta in the config

* set beta

* remove beta-nll option in nll
2022-10-21 08:32:10 -04:00
a5da6f1817 Add warning about restarting runtime to import errors (#19774)
* Add warning about restarting runtime to import errors

* Fix some linebreaks
2022-10-21 11:52:29 +01:00
84f6bee5da PT <-> TF for composite models (#19732)
* First step of PT->TF for composite models

* Update the tests

* For VisionEncoderDecoderModel

* Fix

* Fix

* Add comment

* Fix

* clean up import

* Save memory

* For (TF)EncoderDecoderModel

* For (TF)EncoderDecoderModel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-21 12:40:39 +02:00
12ce2941c7 Fix docker image build (#19759)
* Use 2 jobs for the docker image build (latest torch + DS)

* fix

* Add comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-20 20:36:13 +02:00
15fd39ea0e Install tf2onnx dev version (#19755)
* pin tf2onnx<=1.12.0

* Install tf2onnx main

* Pin to a specific commit

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-20 20:24:39 +02:00
5ed9bd1896 TF: sample generation compatible with XLA and dynamic batch sizes (#19773) 2022-10-20 19:01:22 +01:00
c186e816bd [FLAX] Add dtype to embedding for gpt2 model (#18462)
* [FLAX] Add dtype to embedding for gpt2 model

* lint
2022-10-20 18:15:49 +02:00
baa00f65ae Fix exception thrown using MishActivation (#19739)
* Fix exception thrown using MishActivation

* Update activations.py
2022-10-20 09:13:35 -04:00
2dd1b8f0c5 adding key pair dataset (#19765) 2022-10-20 09:05:49 -04:00
17d7aec895 Update modeling_layoutlmv3.py (#19753) 2022-10-20 13:47:17 +01:00
a40386669f image-segmentation pipeline: re-enable small_model_pt test. (#19716)
* Re-enable `small_model_pt`.

Re-enable `small_model_pt`.

Enabling the current test with the current values.

Debugging the values on the CI.

More logs ? Printing doesn't work ?

Using the CI values instead. Seems to be a Pillow sensitivity.

* Update src/transformers/pipelines/image_segmentation.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
2022-10-20 11:57:11 +02:00
eb98da9880 [Doctest] OpenAIGPTConfig and OPTConfig (#19763) 2022-10-20 10:22:00 +02:00
506355ca75 [Doctest] SpeechToTextTransformer2 Config for doctest (#19756) 2022-10-20 10:19:06 +02:00
123f65eea6 [Doctest] SqueezeBERT Config for doctest (#19758) 2022-10-20 10:16:39 +02:00
cc03063366 [Doctest] SpeechToTextTransformer Config for doctest (#19757) 2022-10-20 10:15:07 +02:00
bbe2c8b126 All broken links were fixed in contributing file (#19760) 2022-10-19 16:44:03 -04:00
5602a3ae1e Fixed spacing errors (#19754)
Co-authored-by: Shreya <>
2022-10-19 14:54:30 -04:00
0a03741590 [Doctest] Add configuration_detr.py (#19752) 2022-10-19 18:13:34 +02:00
65d36ee861 [Doctest] Add configuration_decision_transformer.py (#19751) 2022-10-19 18:12:34 +02:00
5041bc3511 Image transforms add center crop (#19718)
* Add center crop to transforms library

* Return PIL images if PIL image input by default

* Fixup and add docstring

* Trigger CI

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR comments - move comments; unindent

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-19 16:15:01 +01:00
44a40c1466 Fix cache version file creation (#19750) 2022-10-19 10:55:57 -04:00
bed2edb99f Specify TF framework explicitly in more pipeline tests (#19748)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-19 16:24:03 +02:00
c206fc8779 [Doctest] Add configuration_wavlm.py (#19749)
* Change the import order of the model and configuration classes

* Add (with random weights) in the comment before model initialization

* Add configuration_wavlm to doctest
2022-10-19 16:10:13 +02:00
b17a5e0074 Fix issue #19300 (#19483)
* Fix issue #19300

* Fixing import order

* Fix issue #19300

* Fix formatting issues

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Refactor method

* Refactor method

* Fix the issue of sending wrong output dir

* Remove unused code

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-19 09:55:37 -04:00
d2ed8134f1 Update modeling_markuplm.py (#19723) 2022-10-19 13:46:11 +01:00
7df0751cc6 [Doctest] GPTNeoConfig , GPTNeoXConfig , GPTNeoXJapaneseConfig (#19741) 2022-10-19 14:22:41 +02:00
71786b10c5 Adding the state-of-the-art contrastive search decoding methods for the codebase of generation_utils.py (#19477)
* add: the contrastive search for generaton_utils

* add: testing scripts for contrastive search under examples/text-generation

* update the quality of codes

* revise the docstring; make the generation_contrastive_search.py scripts;

* revise the examples/pytorch/text-generation/run_generation_contrastive_search.py to the auto-APIs format

* revise the necessary documents

* fix: revise the docstring of generation_contrastive_search.py

* Fix the code indentation

* fix: revise the nits and examples in contrastive_search docstring.

* fix the copyright

* delete generation_contrastive_search.py

* revise the logic in contrastive_search

* update the intergration test and the docstring

* run the tests over

* add the slow decorate to the contrastive_search intergrate test

* add more test

* do the style, quality, consistency checks
2022-10-19 10:17:46 +01:00
fc5fdc109d [Doctest] Add configuration_clip.py (#19647)
* CLIP Config for doctest

* add doc example to CLIPConfig

* add from_text_vision_configs example

* added comment explaining objective
2022-10-19 09:51:26 +02:00
c9a0da1e12 [Doctest] XLM Config for doctest (#19685) 2022-10-19 07:10:30 +02:00
eccbdbcd4d [Doctest] Add wav2vec2_conformer for doctest (#19734) 2022-10-19 06:47:41 +02:00
32670805fc Update contribution guide (#19700)
* update the contribution guide

* apply review feedback

* fix checkboxes

* checkbox fix #2

* clarify force push
2022-10-18 17:20:12 -07:00
ebee0a2794 Remove debug statement 2022-10-18 13:58:09 -04:00
fa8ed9ca76 [Doctest] Add doctest for FlavaConfig and FNetConfig (#19724) 2022-10-18 19:56:49 +02:00
31ec424b3d Add decorator to flaky test (#19674) 2022-10-18 18:51:37 +01:00
a929f81e92 Repo utils test (#19696)
* Create repo utils test job

* Last occurence

* Add tests for tests_fetcher

* Better filtering

* Let's learn more

* Should fix

* Should fix

* Remove debug

* Style

* WiP

WiP

WiP

WiP

WiP

WiP

WiP

WiP

WiP

* Quality

* address review comments

* Fix link
2022-10-18 13:47:36 -04:00
a23819ed6a Clean up deprecation warnings (#19654)
* Clean up deprecation warnings

Notes:
Changed some strings in tests to raw strings, which will change the literal content of the strings as they are fed into whatever machine handles them.
Test cases for past in the past/past_key_values switch changed/removed due to warning of impending removal

* Add PILImageResampling abstraction for PIL.Image.Resampling
2022-10-18 13:34:47 -04:00
af556a09f6 add accelerate support for Whisper (#19697) 2022-10-18 18:25:49 +02:00
fb0bd7b7a8 Fix activations being all the same module (#19728) 2022-10-18 11:56:45 -04:00
14fe3e0410 Add docs (#19729)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-18 17:42:46 +02:00
06a82a49ae Specify TF framework in TF-related pipeline tests (#19719)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-18 17:40:28 +02:00
f3ed26a3fb [Doctest] Fixing doctest configuration_pegasus_x.py (#19725)
* Fixed pegasus_x config doctest

* Test commit

Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-18 17:19:31 +02:00
5864051109 [Doctest] Adding config files for convnext (#19717)
* Adding config files for configuration_clip.py

* Adding config files for convnext

* Undoing

* making the required changes

* Update documentation_tests.txt
2022-10-18 17:10:09 +02:00
63d13d768b Improving image-segmentation pipeline tests. (#19710)
This PR (https://github.com/huggingface/transformers/pull/19367) introduced a few breaking changes:

- Removed an argument `mask_threshold`.
- Broke the default behavior (instance vs panoptic in the function call)
  https://github.com/huggingface/transformers/pull/19367/files#diff-60f846b86fb6a21d4caf60f5b3d593a04accb8f248de3029cccae2ff898c5bc3R119-R120
- Broke the actual masks: https://github.com/huggingface/transformers/pull/1961

This PR is the start of a handful that will aim at bringing back the old
behavior(s).

- tests should not have to specify `task` by default, unless we want to
  modify the behavior and have a lower form of segmentation running)
- `test_small_model_pt` should be working.

This specific PR starts with adding more information to the masks hash
because missing the actual mask was actual easy to miss (the hashes do
change, but it was easy to miss that one code path wasn't properly
updated).

So we go from a simple `hash` to
```
{"hash": #smaller hash, "shape": (h, w), "white_pixels": n}
```

The `shape` should help make sure the interpolation of the mask works
correctly, the `white_pixels` hopefully helps detect big regressions in
their amount when the hash gets modified.
2022-10-18 16:33:53 +02:00
ee2a80ecc0 add return_tensors parameter for feature_extraction 2 (#19707)
* add return_tensors parameter for feature_extraction  w/ test

add return_tensor parameter for feature extraction

Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"

This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.

call parameter directly

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

Fixup.

Update src/transformers/pipelines/feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix the imports.

* Fixing the test by not overflowing the model capacity.

Co-authored-by: AJ San Joaquin <ajsanjoaquin@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 16:29:00 +02:00
02b63702d9 fix seq2seqtrainer predict without labels (#19721) 2022-10-18 09:42:15 -04:00
fac1f4b188 ]Fixed pegasus config doctest (#19722)
Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-18 15:38:57 +02:00
dd523da577 Add table transformer [v2] (#19614)
* First draft

* Add conversion script

* Make conversion work

* Upload checkpoints

* Add final fixes

* Revert changes of conditional and deformable detr

* Fix toctree, add and remove copied from

* Use model type

* Improve docs

* Improve code example

* Update copies

* Add copied formt

* Don't update conditional detr

* Don't update deformable detr
2022-10-18 15:20:09 +02:00
713eab45d3 🚨 🚨 🚨 [Breaking change] Deformable DETR intermediate representations (#19678)
* [Breaking change] Deformable DETR intermediate representations

- Fixes naturally the `object-detection` pipeline.
- Moves from `[n_decoders, batch_size, ...]` to `[batch_size,
  n_decoders, ...]` instead.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 09:00:39 -04:00
fd99ce3329 [Doctest] Add configuration_wav2vec2.py to documentation_tests.py (#19698) 2022-10-18 14:57:34 +02:00
8fcbbd3d53 [Doctest] CVT config for doctest (#19695) 2022-10-18 14:55:56 +02:00
af150e4a1c Allow user-managed Pool in Wav2Vec2ProcessorWithLM.batch_decode (#18351)
* [Wav2Vec2] Allow user-managed Pool in Wav2Vec2ProcessorWithLM.batch_decode

* [Wav2Vec2] Add user-managed LM's pool tests and usage examples

* Improve styling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Wav2Vec2] Fix hyperlink references

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-18 08:48:03 -04:00
bf0e094142 Fix redundant normalization of OWL-ViT text embeddings (#19712) 2022-10-18 15:15:36 +03:00
71ca79448c Fix typo in perf docs (#19705) 2022-10-18 12:18:19 +02:00
fd5eac5f71 Small fixes for TF-ESM1b and ESM-1b weight conversions (#19683) 2022-10-18 10:41:09 +01:00
90071fe42b Improve DETR models (#19644)
* Improve DETR models

* Fix Deformable DETR loss and matcher

* Fixup

* Fix integration tests

* Improve variable names

* Apply suggestion

* Fix copies

* Fix DeformableDetrLoss

* Make Conditional DETR copy from Deformable DETR

* Copy from deformable detr's hungarian matcher

* Fix bug
2022-10-18 10:29:14 +02:00
072dfdaee4 update documentation (#19706) 2022-10-18 10:07:15 +02:00
fd9a027aca Fix docs (#19687)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-18 09:52:51 +02:00
3e07196f89 check decoder_inputs_embeds is None before shifting labels (#19671) 2022-10-18 09:14:12 +02:00
d356b89f3c fix test whisper with new max length (#19668) 2022-10-18 08:56:37 +02:00
d51ca32404 fix tests (#19670) 2022-10-18 06:45:48 +02:00
344e2664d4 Fix dtype in radnomly initialized head (#19690) 2022-10-17 15:54:23 -04:00
07f6690206 Fix checkpoint used in VisualBertConfig doc example (#19692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 21:22:59 +02:00
2400eb4ca2 Fix some CI torch device issues for PyTorch 1.13 (#19681)
* fix some device issues for pt 1.13

* Update src/transformers/models/ctrl/modeling_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 20:57:38 +02:00
2add2007c1 [Doctest] Add configuration_data2vec_vision.py (#19637)
* Data2Vec Vision Config for doctest

* made suggested changes

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-10-17 20:56:42 +02:00
563b42faf0 Update CONTRIBUTING.md (#19689)
punctuation missing
2022-10-17 14:55:59 -04:00
684165b882 [Doctest] Add configuration_realm.py (#19646)
* Update configuration_realm.py

* realm config for doctest

* Update configuration_realm.py doc

* Update documentation_tests

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 20:53:24 +02:00
5ac2f82267 [Doctest] Add configuration_convbert.py (#19643)
* ConvBERT config for doctest

* Add empty lines
2022-10-17 20:29:18 +02:00
94d7c3ba44 [Examples] make default preprocessing_num_workers=1 (#19684)
* [Examples] make default preprocessing_num_workers=1

* [Examples] revert changes in research projects
2022-10-17 14:17:01 -04:00
c7edde1a69 Fix quality 2022-10-17 13:32:08 -04:00
ed858f5354 Removed XLMModel inheritance from FlaubertModel(torch+tf) (#19432)
* FlaubertModel inheritance from XLMModel removed

* Fix style and add FlaubertPreTrainedModel to __init__

* Fix formatting issue

* Fix Typo and repo-consistency

* Fix style

* add FlaubertPreTrainedModel to TYPE_HINT

* fix repo consistency

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed redundant Copied from comments

* added missing copied from comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 13:25:30 -04:00
5fda1fbd46 Update ESM checkpoints to point to facebook/ (#19675)
* Update checkpoints to point to `facebook/`

* make fixup
2022-10-17 18:09:24 +01:00
4d77f18cba [Doctest] Data2VecAudio Config for doctest (#19635) 2022-10-17 18:39:15 +02:00
4181320b8c Add normalize to image transforms module (#19544)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Add normalize method to transforms library

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

* Add normalize to docs

* Accept PIL.Image inputs with deprecation warning

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update warning to include version

* Trigger CI - hash clash on doc build

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-17 17:02:14 +01:00
82e360b7cb Fixed the docstring and type hint for forced_decoder_ids option in Ge… (#19640) 2022-10-17 17:00:02 +01:00
f2ecb9eec4 Revert "add return_tensor parameter for feature extraction (#19257)" (#19680)
This reverts commit 35bd089a241788a43a43e27de1ef3f5cede7954b.
2022-10-17 11:56:29 -04:00
bf0addc56e Fix code examples of DETR and YOLOS (#19669)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-17 17:48:22 +02:00
35bd089a24 add return_tensor parameter for feature extraction (#19257)
* add return_tensors parameter for feature_extraction  w/ test

add return_tensor parameter for feature extraction

Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"

This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.

* call parameter directly

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Fixup.

* Update src/transformers/pipelines/feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 11:17:26 -04:00
59e29be363 object-detection instead of object_detection (#19677) 2022-10-17 10:57:29 -04:00
aa629e7a7c Update perf_train_gpu_one.mdx (#19676) 2022-10-17 16:54:35 +02:00
0027edf905 [Doctest] Add configuration_transfo_xl.py (#19651)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 16:47:54 +02:00
f4e31a9aa1 word replacement line #231 (#19662)
install->installation
2022-10-17 10:40:35 -04:00
b6204c9e9b fix warnings in deberta (#19458)
* fix warnings in deberta

* fix copies

* Revert "fix copies"

This reverts commit 324cb3fed11e04190ba7b4662644baa8143b60be.

* fix copies

* fix copies again

* revert changes to whitespace that make style did since it results in an infinite chain of fix-copies

* argh

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-10-17 10:15:02 -04:00
de64d671dc Removed Bert interdependency from Funnel transformer (#19655)
* Removed Bert interdependency from Funnel transformer

* passed consistency check

* Revert "passed consistency check"

This reverts commit ba55a0813549938fc54626794e666ee13a85c2d8.

* Fixed docstrings

Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-17 10:04:11 -04:00
cbc1abc4af A few CI fixes for DocumentQuestionAnsweringPipeline (#19584)
* Fixes

* update expected values

* style

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 15:35:27 +02:00
0b7b07ef03 added type hints for Yolos Pytorch model (#19545)
* added type hints for Yolos Pytorch model

* make fixup

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:34:22 +01:00
3b3024da70 TF port of ESM (#19587)
* Partial TF port for ESM model

* Add ESM-TF tests

* Add the various imports for TF-ESM

* TF weight conversion almost ready

* Stop ignoring the decoder weights in PT

* Add tests and lots of fixes

* fix-copies

* Fix imports, add model docs

* Add get_vocab() to tokenizer

* Fix vocab links for pretrained files

* Allow multiple inputs with a sep

* Use EOS as SEP token because ESM vocab lacks SEP

* Correctly return special tokens mask from ESM tokenizer

* make fixup

* Stop testing unsupported embedding resizing

* Handle TF bias correctly

* Skip all models with slow tokenizers in the token classification test

* Fixing the batch/unbatcher of pipelines to accomodate the `None` being

passed around.

* Fixing pipeline bug caused by slow tokenizer  being different.

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update set_input_embeddings and the copyright notices

Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-17 14:16:16 +01:00
d7754c43d0 Type hints MCTCT (#19618)
* add type hints to mctct

* run auto style corrections

* change torch.bool to bool#

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove optional tags for attention_mask and head_mask'

* fix optional tags'

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:15:21 +01:00
8aad4363d8 Fix pipeline predict transform methods (#19657)
* Remove key word argument X from pipeline predict and transform methods

As __call__ of pipeline clasees require one positional argument, passing
the input as a keyword argument inside predict, transform methods, causing
__call__ to fail. Hence in this commit the keyword argument is modified
into positional argument.

* Implement basic tests for scikitcompat pipeline interface

* Seperate tests instead of running with parameterized based on framework as both frameworks will not be active at the same time
2022-10-17 09:06:20 -04:00
e4d56e818a add return types for tf gptj, xlm, and xlnet (#19638) 2022-10-17 13:47:21 +01:00
2af36f957f Add pillow to layoutlmv3 example requirements.txt (#19663) 2022-10-17 08:41:57 -04:00
d2e5b19b82 Add doctest info in testingmdx (#19623) 2022-10-17 11:23:20 +02:00
9bb26f2505 [Doctest] Add configuration_trocr.py (#19658)
* trocr Config for doctest

* ran make style
2022-10-17 10:53:36 +02:00
c06a5a3101 [Doctest] XLNet config for doctest (#19649) 2022-10-17 10:45:37 +02:00
57505b1def [Doctest] Conditional DETR config for doctest (#19641) 2022-10-17 10:42:55 +02:00
339c5a5d9a [Doctest] Add configuration_data2vec_text.py (#19636)
* Data2Vec Text Config for doctest

* typo fix

* made suggested changes
2022-10-17 10:34:33 +02:00
dd464e22a7 [Doctest] CodeGen config for doctest (#19633) 2022-10-15 12:35:35 +02:00
3e4900208a Tokenizer from_pretrained should not use local files named like tokenizer files (#19626) 2022-10-14 14:06:56 -04:00
8fcf562603 [Doctest] Add configuration_time_series_transformer.py (#19582)
* initial changes

* update the suggested order of import
2022-10-14 19:39:56 +02:00
31cfe9c429 [Doctest] Add configuration_vision_encoder_decoder.py (#19583)
* adds vision_encoder_decoder to Doc tests

* keep the initial order
2022-10-14 19:30:14 +02:00
7972f995b3 [Doctest] Add configuration_vision_text_dual_encoder.py (#19580)
* initial commit

* few suggested changes
2022-10-14 18:45:15 +02:00
2bd2de62c9 Sharding fails in TF when absolute scope was modified if . in layer name (#19124)
* simplify loop

* fix layer map split

* update

* update for special variables

* add rag test

* fixup

* revert change : for next PR
2022-10-14 18:34:33 +02:00
614f7d28a8 Fix whisper doc (#19608)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test

* Correct whisper processor

* make fix copies

* remove sample docstring as it does not fit whisper model

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix, doctests are passing

* Nit

* last nit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 18:12:32 +02:00
66dd80213c [Doctest] Add configuration_resnet.py (#19620)
* ResNet Config for doctest

* added empty lines as suggested

* ran make style
2022-10-14 18:10:17 +02:00
4e196df8c4 [Whisper] Fix gradient checkpointing (again!) (#19548)
* [Whisper] Fix gradient checkpointing (again!)

* [Whisper] Fix checkpointing (again!)
2022-10-14 17:08:36 +01:00
585f9c6d9e [Doctest] DistilBERT Config for doctest (#19621) 2022-10-14 17:22:29 +02:00
96f243c399 [Doctest] LeViT Config for doctest (#19622) 2022-10-14 17:21:24 +02:00
463226e2ee Improve error messaging for ASR pipeline. (#19570)
* Improve error messaging for ASR pipeline.

- Raise error early (in `_sanitize`) so users don't waste time trying to
  run queries with invalid params.

- Fix the error was after using `config.inputs_to_logits_ratio` so our
  check was masked by the failing property does not exist.

- Added some manual check on s2t for the error message.
  No non ctc model seems to be used by the default runner (they are all
  skipped).

* Removing pdb.

* Stop the early error it doesn't really work :(.
2022-10-14 17:12:21 +02:00
5ef2186692 fix: small error (#19612)
* fix: small error

* fix: another typo error
2022-10-14 11:10:33 -04:00
78c1e7d253 xlm roberta xl config for doctest (#19610)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 11:04:10 -04:00
10ea45b902 Ernie config for doctest (#19611) 2022-10-14 10:57:51 -04:00
637af90d7f xlm roberta config for doctest (#19609) 2022-10-14 10:48:38 -04:00
2d4572b5c9 GPTTokenizer dependency removed from deberta class (#19551)
* GPTTOkenizer dependency removed from deberta class

Fixup

made the Deberta Tokenizer fast independent of GPT-2 tokenizer

Copied annotation added

Done the dependency removal

* Added some missing copied statement

* Added some copied statements
2022-10-14 10:46:38 -04:00
f8244014a5 Visual Bert config for doctest (#19605) 2022-10-14 10:45:37 -04:00
db94b746db Fix FlaubertTokenizer (#19552)
* fix flaubert tokenizer

* update

* update

* Final cleanup

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:31:01 +02:00
62f28bc152 Fix ImageToTextPipelineTests.test_small_model_tf (#19565)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:29:54 +02:00
e82c1cb78e add gloo backend support for CPU DDP (#19555)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-14 10:18:16 -04:00
0e0b7cb72a Allow usage of TF Text BertTokenizer on TFBertTokenizer to make it servable on TF Serving (#19590)
* add suport for non fast tf bert tokenizer

* add tests for non fast tf bert tokenizer

* fix fast bert tf tokenizer flag

* double tokenizers list on tf tokenizers test to aovid breaking zip on test output equivalence

* reformat code with black to comply with code quality checks

* trigger ci
2022-10-14 15:18:02 +01:00
59b7334c87 Fix test_tf_encode_plus_sent_to_model for TAPAS (#19559)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:10:36 +02:00
1967be98fa fix BLOOM ONNX config (#19573)
* fix BLOOM ONNX config
- `value` params have `seq_len` as their 2nd axe as opposed to other models which have it as 3rd

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-14 16:04:48 +02:00
4f0337a08f [Time Series Transformer] Add doc tests (#19607)
* Add doc tests

* Make it more consistent

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-14 15:57:03 +02:00
c937f0b954 [Whisper] Don't return attention mask in feat extractor (#19521)
* [Whisper] Don't return attention mask in feat extractor

* remove attention mask from test

* fix failing tests

* quality
2022-10-14 14:36:03 +01:00
83a2e694f1 Cast masks to np.unit8 before converting to PIL.Image.Image (#19616)
* Cast masks to np.unit8 before converting to PIL.Image.Image

* Update tests

* Fixup
2022-10-14 09:30:45 -04:00
909f07092a [Doctest] Add configuration_bigbird_pegasus.py and configuration_big_bird.py (#19606)
* [Doctest] Add `configuration_bigbird_pegasus.py` and `configuration_big_bird`

[Doctest] Re-style `configuration_big_bird.py`

* [Doctest] One python instruction per line

* [Doctest] Fix styling

* [Doctest] More styling fixes
2022-10-14 15:17:36 +02:00
6deac5c824 Adding type hints for TFXLnet (#19344)
* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Add type hints for XLnet (TF)
* Added type hints for XLnet (TF)

* Update src/transformers/models/xlnet/modeling_tf_xlnet.py
2022-10-14 12:28:08 +01:00
7036c956fe [Doctest] fix doc test for megatron bert (#19600) 2022-10-14 12:08:55 +02:00
c7d1fb6964 [Doctest] SEW-D Config for doctest (#19598) 2022-10-14 12:07:32 +02:00
0ac6b90563 [Doctest] UniSpeech Config for doctest (#19596) 2022-10-14 12:03:35 +02:00
71a27e3952 [Doctest] SEW Config for doctest (#19597) 2022-10-14 11:47:29 +02:00
e64798296f [Doctest] Swin Config for doctest (#19594) 2022-10-14 11:37:37 +02:00
7178b29a8e [Doctest] Swin V2 Config for doctest (#19595) 2022-10-14 11:16:38 +02:00
76b4239ec8 [Doctests] add configuration_blenderbot_small.py (#19589)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations_blenderbot_small.py for doctests
2022-10-14 09:42:29 +02:00
3d320c78c3 [Doctest] adds trajectory_transformer config to Docs test (#19586) 2022-10-13 19:07:10 +02:00
1f6a28c71c [Doctests] add configuration_blenderbot.py (#19577)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations.blenderbot.py for doctests

* add configuration.blenderbot for doctest
2022-10-13 18:46:12 +02:00
f06a6f7e37 [WIP] Add type hints for Lxmert (TF) (#19441)
* Add type hints for Lxmert (TF)

* Update src/transformers/models/lxmert/modeling_tf_lxmert.py

Co-authored-by: Emmanuel Lusenji <elusenji@Emmanuels-MacBook-Pro.local>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-13 15:53:27 +01:00
036e808517 Added type hints to DebertaV2ForMultipleChoice Pytorch (#19536)
* Update modeling_deberta_v2.py

* Update modeling_deberta_v2.py
2022-10-13 14:52:43 +01:00
7180e17256 [Doctests] Config files for ViTMAE and YOSO (#19567) 2022-10-13 15:05:02 +02:00
05a287ec1a [Doctest] Add configuration_canine.py (#19575) 2022-10-13 14:12:49 +02:00
117098421c [Doctest] CTRL config (#19574) 2022-10-13 14:10:04 +02:00
0e83c9664b Fix fairseq wav2vec2-xls-r pretrained weights conversion scripts (#19508)
* fix loading fairseq wav2vec2 pretrained weights

Specified fairseq task as "audio_pretraining" when loading fairseq weights,
since loading wav2vec2-xls-r weights fails if the task is unspecified.

Resolves: #19319

* fix style
2022-10-13 11:48:42 +01:00
4212bb0d60 [Re-submit] Compute true loss Flax examples (#19504)
* Compute true loss

* fixup

* final

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

* Compute true loss

* final

* fixup

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-10-13 11:33:36 +01:00
0903fc80b5 [Doctest] bloom config update (#19566) 2022-10-13 12:14:38 +02:00
0ae3ec5b9d [Doctest] Add configuration_vit.py (#19561)
* ViT Config for doctest
2022-10-13 12:07:14 +02:00
f173ceefc0 [Doctest] RoBERTa Config for doctest (#19563) 2022-10-13 12:06:18 +02:00
2719599a22 [Doctest] Reformer Config for doctest (#19562) 2022-10-13 12:03:15 +02:00
4a3578f23f [Doctest] DeiT Config for doctest (#19560) 2022-10-13 12:02:40 +02:00
f4b386765d [Doctest] Fixing doctest bert_generation configuration (#19558)
* Added (with random weights) in the comment before model initialization line

* Added configuration_bert_generation.py to utils/documentation_tests.txt

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-13 11:59:02 +02:00
1d4d9dc3c9 [Doctest] Fixing mobile bert configuration doctest (#19557)
* Fixing mobile bert configuration doctest

* Fixed build failures by removing empty line
2022-10-13 11:56:35 +02:00
3ae21936e5 [Doctest] Fixing the Doctest for imageGPT config (#19556) 2022-10-13 11:54:35 +02:00
bbd150e92f [Whisper] Freeze params of encoder (#19527)
* [Whisper] Freeze params of encoder

* add tests
2022-10-13 09:50:02 +01:00
504cd71a6b add a note to whisper docs clarifying support of long-form decoding (#19497) 2022-10-13 10:39:03 +02:00
5dcb10d82a Fix checkpoint used in MarkupLMConfig (#19547)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 09:37:30 +02:00
5418e3cef0 Build Push CI images also in a daily basis (#19532)
* Build Push CI images also in a daily basis

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 07:31:12 +02:00
ef5899bf34 [Doctest] GPT2 Config for doctest (#19549) 2022-10-13 05:58:59 +02:00
f6fa0f0bf0 Create the arange tensor on device for enabling CUDA-Graph for Clip Encoder (#19503)
* create the arange tensor on device for enabling CUDA-Graph at higher-performace for SD

* sync

Co-authored-by: Stas Bekman <stas@stason.org>
2022-10-12 23:32:50 +02:00
6cd8676cf3 [Doctest] Beit Config for doctest (#19542) 2022-10-12 20:38:13 +02:00
096838836d Throw an error if getattribute_from_module can't find anything (#19535)
* return None to avoid recursive call

* Give error

* Give error

* Add test

* More tests

* Quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 20:09:45 +02:00
383ad81e68 [Doctest] Add configuration_whisper.py (#19540)
* Whisper Config for doctest

* restyle fix
2022-10-12 14:03:22 -04:00
4a5d63c958 Albert config update (#19541) 2022-10-12 14:02:55 -04:00
51d21b7619 [Doctest] Add configuration_yolos.py (#19539)
* YOLOS Config for doctest

* fix
2022-10-12 14:01:25 -04:00
209bec4636 Add a decorator for flaky tests (#19498)
* Add a decorator for flaky tests

* Quality

* Don't break the rest

* Address review comments

* Fix test name

* Fix typo and print to stderr
2022-10-12 14:00:17 -04:00
1973b7716b Image transforms library (#18520)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-12 18:32:02 +01:00
a2c90a7f7b Remove MarkupLMForMaskedLM from MODEL_WITH_LM_HEAD_MAPPING_NAMES (#19534)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 19:21:49 +02:00
f4ef78af54 using trunc_normal for weight init & cls_token (#19486) 2022-10-12 13:20:47 -04:00
5760a8fcf6 Syntax issues (paragraphs 122, 130, 147, 155) Documentation: @sgugger (#19437)
* Syntax issues (paragraphs 122, 130, 147, 155)

`preentramiento` > `preentrenamiento`
* semantic issue (paragraph 220 & 232 & 252)

* Update docs/source/es/create_a_model.mdx

with approval of @ignacioct and scrutiny of @sgugger

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>
2022-10-12 13:18:11 -04:00
bdfcbe60cc [Whisper] Fix gradient checkpointing (#19538) 2022-10-12 18:07:37 +01:00
4edb3e49f6 Make MobileBert tokenizers independent from Bert (#19531)
* Make `MobileBert` tokenizers independent from `Bert`

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fixed the name in the error message

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed extra space from the "copied" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 11:50:36 -04:00
c7ad3ff593 Update Marian config default vocabulary size (#19464)
* update marian default vocab size

* also update docstring
2022-10-12 16:15:11 +01:00
9e29080439 [X-CLIP] Fix doc tests (#19523)
* Fix XCLIP doc tests

* Add model to doc test list

* Fix tests
2022-10-12 17:05:12 +02:00
eefcecaa35 [Examples] Fix typos in run speech recognition seq2seq (#19514) 2022-10-12 15:33:22 +01:00
72153ba611 Remove bert fast dependency from electra (#19520)
* Replaced ElectraTokenizerFast with  BertTokenzier class

* Fixed Styling issue

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-12 10:14:38 -04:00
2720d5fc18 made tokenization_roformer independent of bert (#19426)
* made tokenization_roformer independent of bert

* added missing imports

* added missing function and import

* Fixed copy commands

* Update tokenization_roformer.py
2022-10-12 10:13:09 -04:00
af554e9de2 Remove roberta dependency from longformer fast tokenizer (#19501)
* remove roberta fast tokenizer dependency

* fix flake8

* Update src/transformers/models/longformer/tokenization_longformer_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:12:00 -04:00
3ccda6d0b0 [Doctest] Bart configuration update (#19524)
* Update configuration_bart.py

* Update documentation_tests.txt

* Update documentation_tests.txt

Putting this line in a sorted order
2022-10-12 15:11:46 +02:00
af539d6f0a fix MarkupLMProcessor option flag (#19526) 2022-10-12 15:08:48 +02:00
5a8a532dcf Adding links to pipelines parameters documentation (#19227)
* Adding links to pipelines parameters documentation

Adding PR based on suggestion in this issue https://github.com/huggingface/transformers/issues/19038#issuecomment-1259592359

* styling

* Updated config.yml

* Updated config.yml

* update README_es.md
2022-10-12 08:57:08 -04:00
e94384e4d8 Add depth estimation pipeline (#18618)
* Add initial files for depth estimation pipelines

* Add test file for depth estimation pipeline

* Update model mapping names

* Add updates for depth estimation output

* Add generic test

* Hopefully fixing the tests.

* Check if test passes

* Add make fixup and make fix-copies changes after rebase with main

* Rebase with main

* Fixing up depth pipeline.

* This is not used anymore.

* Fixing the test. `Image` is a module `Image.Image` is the type.

* Update docs/source/en/main_classes/pipelines.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:54:20 -04:00
4ed0fa3676 Fix pytorch seq2seq qa (#19258)
* fixed typo for SQuAD

* Fixed the preprocess_validation_function function for the labels to reflect the remaining truncated instances

* Rolled back the trainer_seq2seq_qa.py for UnboundLocalError: local variable 'metrics' referenced before assignment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:33:44 -04:00
c60381e90d Syntax issue (line 497, 526) Documentation @ssuggen (#19442) 2022-10-12 08:28:54 -04:00
84125d7e73 Fix whisper doc (#19518) 2022-10-12 12:44:30 +02:00
4d367a3c81 Add LiLT (#19450)
* First draft

* Fix more things

* Improve more things

* Remove some head models

* Fix more things

* Add missing layers

* Remove tokenizer

* Fix more things

* Fix copied from statements

* Make all tests pass

* Remove print statements

* Remove files

* Fix README and docs

* Add integration test and fix organization

* Add tips

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Make tests faster, improve docs

* Fix doc tests

* Add model to toctree

* Add docs

* Add note about creating new checkpoint

* Remove is_decoder

* Make tests smaller, add docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:11:20 +02:00
e2dc558e9c [Doctest] Add configuration_bert.py to doctest (#19485)
* BertConfig for doctest

* Change import order

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:44:07 +02:00
e81cb010f8 Avoid Push CI failing to report due to many commits being merged (#19496)
* Change the depth to 20

* Add comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:25:05 +02:00
7543e275d4 update doc for perf_train_cpu_many (#19506)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-11 22:54:19 -04:00
bb2cfd1824 Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py (#19502)
* Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py

* Code improvement
2022-10-11 22:48:56 -04:00
69b81c0a5f Use a dynamic configuration for circleCI tests (#19325)
* Generate config on the file

* Fake modif for all test launch

* Upload more artifacts

* Typo and quality

* Try converting th yml to txt

* Leave my long lines alone yaml

* Debug prints

* Debug prints v2

* Try without sorting

* Was it really working before?

* Typo

* Use a parameter

* Use a parameter?

* Typo

* Here is some JSON

* Another try

* Learning to read...

* Check default is used

* Does this work?

* With continuation

* WiP

* Use a parameter for test list

* Other fake modif

* With the comma

* Name the test step so it doesn't blow up

* Just one example modification

* Final steps

* Add nightlies

* Move config generator

* Add trigger for nightlies

* Better workflow

* Rebase on recent changes

* Fix config creation

* Fake modif in an example

* Now fake modif in one config file

* Fix install step in custom tokenizers test

* Fix generated config

* Better fix hopefully

* Finally test modif in setup

* final cleanup
2022-10-11 16:31:24 -04:00
fa9e18c65f Fix OPTForQuestionAnswering doctest (#19479)
* Fix doc example for OPTForQuestionAnswering

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 20:13:04 +02:00
957ce6465a New (#19481) 2022-10-11 13:46:25 -04:00
67a3511443 Update PT to TF CLI for audio models (#19465)
* Update PT to TF CLI model inputs

* Get padding strategy if specified

* Make False comparison explicit
2022-10-11 18:25:29 +01:00
8d68878cc0 python3 instead of python in push CI setup job (#19492)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 19:18:39 +02:00
5ca131f3d4 [CvT] Tensorflow implementation (#18597)
* implemented TFCvtModel and TFCvtForImageClassification and modified relevant files, added an exception in convert_tf_weight_name_to_pt_weight_name, added quick testing file to compare with pytorch model

* added docstring + testing file in transformers testing suite

* added test in testing file, modified docs to pass repo-consistency, passed formatting test

* refactoring + passing all test

* small refacto, removing unwanted comments

* improved testing config

* corrected import error

* modified acces to pretrained model archive list, to pass tf_test

* corrected import structure in init files

* modified testing for keras_fit with cpu

* correcting PR issues + Refactoring

* Refactoring : improving readability and reducing the number of permutations

* corrected momentum value + cls_token initialization

* removed from_pt as weights were added to the hub

* Update tests/models/cvt/test_modeling_tf_cvt.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-11 18:16:52 +01:00
0b7b4c60c6 Adding the README_es.md and reference to it in the others files readme (#19427)
* Adding the README_es.md and reference to it in the others files readme

* Updating the check_copies.py

* Updating README_es.md

* Updating chec_copies
2022-10-11 12:56:25 -04:00
70a058bc65 Added tokenize keyword arguments to feature extraction pipeline (#19382)
* Added tokenize keyword arguments to feature extraction pipeline

* Reverted truncation parameter

* Import numpy moved to top
2022-10-11 12:54:41 -04:00
d0d5aee1dd Make bert_japanese and cpm independent of their inherited modules (#19431)
* Make cpm tokenization independent of xlnet

* Make bert japanese tokenization independent of bert
2022-10-11 12:09:17 -04:00
462cd641d9 🚨🚨🚨 TF: Remove TFWrappedEmbeddings (breaking: TF embedding initialization updated for encoder-decoder models) (#19263)
* added test

* correct embedding init

* some changes in blenderbot (incomplete)

* update blenderbot (diff to be used as reference)

* update blenderbot_small

* update LED

* update marian

* update T5 and remove TFWrappedEmbeddings

* nullcontext() -> ContextManagers()

* fix embedding init
2022-10-11 16:48:03 +01:00
8e4ee28e34 Update TF whisper doc tests (#19484) 2022-10-11 16:05:31 +01:00
6c66c6c860 Add warning in generate & device_map=auto & half precision models (#19468)
* fix device mismatch

* make fixup

* added slow tests

- added slow tests on `bnb` models to make sure generate works correctly

* replace with `self.device`

* revert force device assign

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* set the warning in `generate` instead of `sample`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 16:58:49 +02:00
a3008c5a6d Implement multiple span support for DocumentQuestionAnswering (#19204)
* Implement multiple span support

* Address comments

* Add tests + fix bugs
2022-10-11 10:47:55 -04:00
h
ab856f68df Decouples XLMProphet model from Prophet (#19406)
* decouples xlm_prophet from prophet and adds copy patterns that pass the copy check

* adds copy patterns to copied docstrings too

* restores autodoc for XLMProphetNetModel

* removes all-casing in a bunch of places to ensure that the model is compatible with all checkpoints on the hub

* adds missing model to main init

* adds autodocs to make document checker happy

* adds missing pretrained model import

* adds missing pretrained model import to main init

* adds XLMProphetNetPreTrainedModel to the dummy pt objects

* removes examples from the source-doc file since docstrings contain them already

* adds a missing new line to make check_repo happy
2022-10-11 10:45:23 -04:00
c66466133a Fix get_embedding dtype at init. time (#19473)
* cast positions dtype in XGLMModel

* Get the correct dtype at init time

* Get the correct dtype at init time

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 16:05:39 +02:00
e38cf93e7c Make XLMRoberta model and config independent from Roberta (#19359)
* remove config dependence

* remove dependencies from xlm_roberta

* Fix style

* Fix comments

* various fixes

* Fix pre-trained model name
2022-10-11 09:56:42 -04:00
8cb44aaf17 Make LayoutLM tokenizers independent from BertTokenizer (#19351)
* fixing tokenizer

* adding all missing classes

* fast tokenizer | fixing format

* revert to full class copy flag

* fixing different casing
2022-10-11 09:49:23 -04:00
9ed80b0000 TF: TFBart embedding initialization (#19460)
* correct embedding init
2022-10-11 14:44:46 +01:00
b651efe59e [Swin] Replace hard-coded batch size to enable dynamic ONNX export (#19475)
* [Swin] Replace hard-coded batch size to enable dynamic ONNX export
2022-10-11 15:21:29 +02:00
440bbd44aa Update WhisperModelIntegrationTests.test_large_batched_generation (#19472)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:39:24 +02:00
e1a5cc338b Fix doctests for DeiT and TFGroupViT (#19466)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:30:42 +02:00
d7dc774a79 Fix TFGroupViT CI (#19461)
* Fix TFGroupViT CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:29:15 +02:00
a293a0e8a3 CLI: add import protection to datasets (#19470) 2022-10-11 13:19:32 +01:00
ae710425d2 Syntax issues (lines 126, 203) (#19444) 2022-10-11 08:14:21 -04:00
335f9bcd34 Extend nested_XXX functions to mappings/dicts. (#19455)
* Extend `nested_XXX` functions to mappings/dicts.

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Style updated file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 08:13:21 -04:00
b722a6be72 Fix whisper for pipeline (#19482)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test
2022-10-11 07:17:53 -04:00
df8faba4db Enabling custom TF signature draft (#19249)
* Custom TF signature draft

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Adding tf signature tests

* Fixing signature check and adding asserts

* fixing model load path

* Adjusting signature tests

* Formatting file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Dimitre Oliveira <dimitreoliveira@Dimitres-MacBook-Air.local>
2022-10-11 10:56:08 +01:00
10100979ed Dev version 2022-10-10 17:25:40 -04:00
df2f28120d wrap forward passes with torch.no_grad() (#19412) 2022-10-10 15:04:10 -04:00
5f5e264a12 wrap forward passes with torch.no_grad() (#19413) 2022-10-10 15:03:46 -04:00
c6a928cadb wrap forward passes with torch.no_grad() (#19414) 2022-10-10 15:03:24 -04:00
d739a707d9 wrap forward passes with torch.no_grad() (#19416) 2022-10-10 15:03:09 -04:00
870a9542be wrap forward passes with torch.no_grad() (#19438) 2022-10-10 14:54:54 -04:00
692c5be74e wrap forward passes with torch.no_grad() (#19439) 2022-10-10 14:54:36 -04:00
a7bc4221c0 fix (#19469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 14:35:23 -04:00
25cfd911d0 Fixed a non-working hyperlink in the README.md file (#19434)
* Fixed a non-working hyperlink in the README.md file

The hyperlink to the community notebooks was outdated.

* Fixing missing double slash in hyperlink
2022-10-10 12:57:28 -04:00
9df953a855 Fix misspelled word in docstring (#19415) 2022-10-10 17:33:57 +01:00
d866b4858a Generate: corrected exponential_decay_length_penalty type hint (#19376) 2022-10-10 17:32:03 +01:00
4dd784c32f Fix momentum and epsilon values (#19454)
The momentum value for PyTorch and TensorFlow batch normalization layers is not equivalent. The TensorFlow value should be (1 - pytorch_momentum) in order to ensure the correct updates are applied to the running mean and running variance calculations. We wouldn't observe a difference loading a pretrained model and performing inference, but evaluation outputs would change after some training steps.
2022-10-10 15:17:41 +01:00
b0b962ccca Add Italian translation for add_new_model.mdx (#18713)
* fix conflicts

* start translating

* proof check

* add toc

* fix errors and typos
2022-10-10 10:12:40 -04:00
e150c4e2fe Fix the error message in run_t5_mlm_flax.py (#19282) 2022-10-10 14:51:11 +01:00
e3f028f3af Add TF whisper (#19378)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* Add model to README

* Fix doc tests

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* remove torch depencies for feature extraction and style

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* All weights loading

* Remove hanging pdb

* Fixup and tidy up

* Use same copied from as PT model

* Remove whitespace changes

* Remove torch references

* Tie embeddings

* Remove logits processor input to generate

* Update logit values

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* Add logit processors and update generation code & tests

* Some tidy up

* Update docstring

* update

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update to reflect changes on the PT model branch

* Tidy up

* Remove extra whitespace

* Fix test - make input ids small enough we can append

* Include upstream changes on main

* PR comments - add batch tests, remove comments & defaults

* Fix model output imports

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/whisper/test_modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docstring example

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove changes to adjust_logits_during_generation function

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Tidy up imports that don't require TF

* Update tests - skip and no more skip

* Update tests/generation/test_generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Add training flags

* Add (skipped) XLA generation tests

* Add embedding correctness test

* Add constant ids for generation tests

* Make logits finding a bit tidier

* Remove unused args

* xla generation enabled

* Don't skip XLA tests anymore

* Fix tests - add position ids to expected signature and update rag generation

* Undo method reorder

* Remove added whitespace

* Remove copy-paste gradient checkopint ref

* Remove

* Trigger CI - (issue with refs when pulling)

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2022-10-10 14:48:17 +01:00
af69360bf9 Add OPTForQuestionAnswering (#19402)
* Add `OPTForQuestionAnswering`

- added `OPTForQuestionAnswering` class based on `BloomForQuestionAnswering`
- added `OPTForQuestionAnswering` in common tests
- all common tests pass
- make fixup done

* added docstrings for OPTForQuestionAnswering

* Fix docstrings for OPTForQuestionAnswering
2022-10-10 09:30:59 -04:00
ba71bf4cae fix: renamed variable name (#18850)
The sequence_masked variable is actually the part of the sequence that is kept unmasked for the encoder. This commit renames the variable.
2022-10-10 09:26:36 -04:00
4824741c4c Remove dependency of Roberta in Blenderbot (#19411)
* Remove dependency of Roberta in Blenderbot

* Move Copied from statements to each method of the Roberta classes

* Remove copied from line for mask_token.setter

* update output from example in docs
2022-10-10 09:25:22 -04:00
3080bb4754 Add onnx support for VisionEncoderDecoder (#19254)
* Add onnx support for VisionEncoderDecoder

* Add onnx support for VisionEncoderDecoder

* Removed unused import

* Rename encoder hidden state

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docstrings and removed redundant code

* Added test function for enc-dec models

* Update doc string text

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* fixed code style

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:20:19 -04:00
298f6a98c2 Stop relying on huggingface_hub's private methods (#19392)
* Leverage hfh for move cache

* Style
2022-10-10 15:19:33 +02:00
7d5ce6802e Fix typo in image-classification/README.md (#19424)
Fix link typo of the following content.
PyTorch version, Trainer
PyTorch version, no Trainer
2022-10-10 09:16:58 -04:00
c523a86929 fix marianMT convertion to onnx (#19287)
* fix marianMT convertion to onnx

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:11:29 -04:00
3410705730 Fixed duplicated line (paragraph #83) Documentation: @sgugger (#19436)
* Fixed duplicated line (paragraph #83) @omarespejel @sgugger

* Datasets map denomination fixed (paragraph 42)
2022-10-10 09:08:34 -04:00
83dc49b69b Backtick fixed (paragraph 68) (#19440) 2022-10-10 08:47:14 -04:00
1241a4993b remove RobertaConfig inheritance from MarkupLMConfig (#19404)
* remove RobertaConfig inheritance from MarkupLMConfig

* Update src/transformers/models/markuplm/configuration_markuplm.py

fixed typo in docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-10 08:44:59 -04:00
4107445a0f Fix repo names for ESM tests (#19451) 2022-10-10 13:20:00 +01:00
cbb8a37929 Skip BloomEmbeddingTest.test_embeddings for PyTorch < 1.10 (#19261)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 10:05:30 +02:00
8b6bba54a7 Fix ViTMSNForImageClassification doctest (#19275)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 09:51:30 +02:00
d92e22d1f2 Remove ref to is_pipeline_test 2022-10-07 21:38:07 -04:00
9ac586b3c8 Rework pipeline tests (#19366)
* Rework pipeline tests

* Try to fix Flax tests

* Try to put it before

* Use a new decorator instead

* Remove ignore marker since it doesn't work

* Filter pipeline tests

* Woopsie

* Use the fitlered list

* Clean up and fake modif

* Remove init

* Revert fake modif
2022-10-07 18:01:58 -04:00
983451a13e Improve and fix ImageSegmentationPipeline (#19367)
- Fixes the image segmentation pipeline test failures caused by changes to the postprocessing methods of supported models
- Updates the ImageSegmentationPipeline tests
- Improves docs, adds 'task' argument to optionally perform semantic, instance or panoptic segmentation
2022-10-07 23:34:41 +03:00
de4d71ea07 Removed Bert dependency from BertGeneration code base. (#19370)
* Copied all the code required from transformers.models.bert.modeling_bert to here

* Fixed styling issues

* Reformatted copied names with Model specific name.

* Reverted BertEncoder part as there is already a class called BertGenerationEncoder

* Added prefixes in missing places.

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-07 13:45:24 -04:00
34e0cc6d86 Make Camembert TF version independent from Roberta (#19364)
* camembert tf version independent

* fixup

* fixup, all working

* remove comments

* Adding copied from roberta

Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-07 13:42:24 -04:00
7418a48e34 Removed Bert interdependency in tokenization_electra.py (#19356)
* Copied from BertTokenizer() in tokenization_bert

* Added BasicTokenizer and WordPieceTokenizer Class

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Added copied from comments for basicTokenizer and WordPieceTokenizer

* Updated the comments for the tokenizerClasses

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Formatted tokenization_electra with `make style`

* Fix repo inconsistencies

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Set the logger

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 12:24:04 -04:00
6ef16f2b67 Remove Dependency between Bart and LED (slow/fast) (#19408)
* removed dependency from bart(slow)

* removed dependency from bart(slow)

* adding copying comments (copied from bart to led)

* updated led docstring

* updated led docstring

* removed dependency from Bart (fast)

* replaced bart with LED in docstrings

* complying flake8

* added more copy comments

* fixing copying comments

* added comments back

* fix copy comments

* fixing copied from comments

* fixing copied from comments
2022-10-07 12:19:50 -04:00
06514b3e1a Clip device map (#19409)
* add first generation tutorial

* uP

* [Clip] Add text model to device map
2022-10-07 18:19:15 +02:00
c2b83d540e Removed Bert and XML Dependency from Herbert (#19410)
Co-authored-by: harry7337 <hari.8jan@gmail.com>
2022-10-07 11:49:09 -04:00
e6fc2016ad Remove dependency of Bert from Squeezebert tokenizer (#19403)
* Remove dependency of Bert from Squeezebert tokenizer

* run style corrections

* update copies from BertTokenizers

* Update changes and style to Squeezebert files

* update copies for bert-fast
2022-10-07 11:32:55 -04:00
994b7a4eea update attention mask handling (#19385)
* update feature extractor params

* update attention mask handling
2022-10-07 16:54:08 +02:00
a26d71d6ae Export TensorFlow models to ONNX with dynamic input shapes (#19255)
* validate onnx models with a different input geometry than saved with

* only test working features for now

* simpler test skipping

* rm TODO

* expose batch_size/seq_length on vit

* skip certain name, feature, framework parameterizations known to fail validation

* Trigger CI

* Trigger CI
2022-10-07 10:53:03 -04:00
5fef17f490 Copy BertTokenizer dependency into retribert tokenizer (#19371) 2022-10-07 10:14:00 -04:00
fa4bcd5274 edit: cast attention_mask to long in DataCollatorCTCWithPadding (#19369)
* edit: casting attention_mask to long in DataCollatorCTCWithPadding

* edit: casting attention_mask to long in DataCollatorCTCWithPadding
2022-10-07 10:05:48 -04:00
e9a49babee [WIP] Add ZeroShotObjectDetectionPipeline (#18445) (#18930)
* Add ZeroShotObjectDetectionPipeline (#18445)

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add batching for ZeroShotObjectDetectionPipeline

* Fix doc-string ZeroShotObjectDetectionPipeline

* Fix output format: ZeroShotObjectDetectionPipeline
2022-10-07 10:00:19 -04:00
331ea019d7 Remove unneded words from audio-related feature extractors (#19405) 2022-10-07 15:52:52 +02:00
56af8df359 HF <-> megatron checkpoint reshaping and conversion for GPT (#19317)
* HF <-> megatron checkpoint conversion handling reshaping from different tensor and parallel sizes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* add doc strings and  🐛 fixes

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 19:16:55 +05:30
41ec5d0ced Added type hints for TF: TransfoXL (#19380)
* Added type hints for TF: TransfoXL
* Added type hints for TF: TransfoXL

* Change type hints for training

* Change type hints for training
2022-10-07 14:44:58 +01:00
h
b29ebdf4d8 removes prophet config dependencies from xlm-prophet (#19400) 2022-10-07 09:26:23 -04:00
e162cebfa3 add ONNX support for swin transformer (#19390)
* swin transformer onnx support

* Updated image dimensions as dynamic

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-07 09:23:24 -04:00
969534af4b Added Type hints for XLM TF (#19333)
* Update modeling_tf_xlm.py

* Updates

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-07 13:44:50 +01:00
46fd04b481 Fix gather for metrics (#19389) 2022-10-07 08:36:05 -04:00
7e348aac96 Making ConvBert Tokenizer independent from bert Tokenizer (#19347)
* ConvBert

* added comment

* Updated

* Final_updates

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Updates

* Updates

* Updated

* Final Updates
2022-10-07 07:59:02 -04:00
ae3e3bc60a fix docs example, add object_detection to DETR docs (#19377) 2022-10-07 00:02:26 +02:00
ce2620194b Change link of repojacking vulnerable link (#19393)
The link to https://github.com/vasudevgupta7/bigbird is vulnerable to repojacking (it redirects to the orignial project that changed name), you should change the link to the current name of the project. if you won't change the link, an attacker can open the linked repository and attacks users that trust your links
2022-10-06 23:06:39 +02:00
f0b490151e 🚨 🚨 🚨 Fix ViT parameter initialization (#19341)
This PR aims to rectify the discrepancy between the training performances of HF and Timm ViT implementations.

- Initializes torch and flax ViT dense layer weights with trunc_normal instead of normal (consistent with the TF implementation.
- Initializes cls_token and positional_embeddings with trunc_normal
- Updates DeiT copy to reflect the changes
2022-10-06 12:04:01 +03:00
7e7f62bfa7 Fix pipeline tests for Roberta-like tokenizers (#19365)
* Fix pipeline tests for Roberta-like tokenizers

* Fix fix
2022-10-05 17:48:14 -04:00
bad353cebf Fix DETR segmentation postprocessing output (#19363)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-06 00:16:36 +03:00
45e14038f2 Add WhisperModel to transformers (#19166)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* Add model to README

* Fix doc tests

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove torch depencies for feature extraction and style

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* update

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add batched tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-05 22:28:31 +02:00
7598791c09 Fix MaskFormer failing postprocess tests (#19354)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-05 23:25:58 +03:00
ad98642a82 Fix gather for metrics (#19360) 2022-10-05 14:52:01 -04:00
d9101b71bc Removes Roberta and Bert config dependencies from Longformer (#19343)
* removes roberta and bert config dependencies from longformer

* adds copied from statements

* fixes style

* removes excessive comments and replace bert with longformer in a couple places

* fixes style
2022-10-05 13:50:15 -04:00
226b8ef063 correct typos in README (#19304) 2022-10-05 10:40:38 -07:00
071df6eb13 Call _set_save_spec() when creating TF models (#19321)
* Add a build_from_serving_sig_and_dummies method and replace all calls like model(model.dummy_inputs) with it.

* make fixup

* Remove the overridden save() as this is no longer necessary

* Also call _set_save_spec(), the last missing piece

* Ensure we set the save spec when loading from config too

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

Co-authored-by: Your Name <you@example.com>
2022-10-05 18:03:49 +01:00
c875a96eb1 Test failing test while we resolve the issue. (#19355) 2022-10-05 12:23:48 -04:00
4cbc797b27 Change BloomConfig docstring (#19336)
* change `BloomConfig` docstring

- slightly change the docstring of the `BloomConfig`
- Use correct default vocab size
- Use correct default `hidden_dim`, `n_head`

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-10-05 18:12:13 +02:00
e794ca5b16 Frees LongformerTokenizer of the Roberta dependency (#19346)
* copies over roberta tokenizer to longformertokenizer since they are both identical

* adds Copied from patterns to pass copy check
2022-10-05 11:49:14 -04:00
2f53ab5745 Add sudachi and jumanpp tokenizers for bert_japanese (#19043)
* add sudachipy and jumanpp tokenizers for bert_japanese

* use ImportError instead of ModuleNotFoundError in SudachiTokenizer and JumanppTokenizer

* put test cases of test_tokenization_bert_japanese in one line

* add require_sudachi and require_jumanpp decorator for testing

* add sudachi and pyknp(jumanpp) to dependencies

* remove sudachi_dict_small and sudachi_dict_full from dependencies

* empty commit for ci
2022-10-05 11:41:37 -04:00
60db81ff60 Making camembert independent from roberta, clean (#19337)
Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-05 09:31:33 -04:00
c54bb1ad79 [WIP]remove XLMTokenizer inheritance from FlaubertTokenizer (#19330)
* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer: fixed styling

* removed repo-consistensy issue
2022-10-05 09:19:04 -04:00
e12bbe3b4d Remove bert interdependency from clip tokenizer (#19332) 2022-10-05 09:15:14 -04:00
512fa41c53 Removed interdependency of BERT's Tokenizer in tokenization of prophetnet (#19331)
* removed interdependency of BERTTokenizer in tokenization of prophetnet

* fix: style
2022-10-05 09:12:47 -04:00
07e94bf159 Maskformer post-processing fixes and improvements (#19172)
- Improves MaskFormer docs, corrects minor typos
- Restructures MaskFormerFeatureExtractor.post_process_panoptic_segmentation for better readability, adds target_sizes argument for optional resizing
- Adds post_process_semantic_segmentation and post_process_instance_segmentation methods.
- Adds a deprecation warning to post_process_segmentation method in favour of post_process_instance_segmentation
2022-10-05 15:27:15 +03:00
6268694e27 removing XLMConfig inheritance from FlaubertConfig (#19326)
* removing XLMConfig inheritance from FlaubertConfig

* removing XLMConfig inheritance from FlaubertConfig

* Fixed styling issue

* Update configuration_flaubert.py

Co-authored-by: Druhin Abrol <druhinabrol@192.168.1.6>
2022-10-04 19:39:47 -04:00
bf7eb0c9b3 Remove interdependency from OpenAI tokenizer (#19327)
* Remove interdependency from OpenAI tokenizer

* Adjust import order for linter
2022-10-04 17:51:55 -04:00
971da2e6ec Clamping hidden state values to allow FP16 (#19229)
* Clamping hidden state values to allow FP16

* Reformating

* Adding missing if condition

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Formating file

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-10-04 20:28:28 +02:00
587d84b178 Add BloomForQuestionAnswering (#19310)
* add bloom for question answering

- attempt to add Bloom for question answering
- adapted from `GPTJForQuestionAnswering`
- Fixed `num_labels` to `2` for common tests
- Added a bit of docstring
- All common tests pass

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes related to `num_labels`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-04 17:52:13 +02:00
6dce9e0cdd docker-build: Update actions/checkout to v3 (#19288) 2022-10-04 16:26:52 +02:00
6fd254a37d Removing BertConfig inheritance from LayoutLMConfig (#19307)
* removing BertConfig inheritance

* fix missing arguments
2022-10-04 10:24:07 -04:00
a9782881a4 wrap forward passes with torch.no_grad() (#19273) 2022-10-04 16:13:22 +02:00
d6e920449e wrap forward passes with torch.no_grad() (#19274) 2022-10-04 16:12:03 +02:00
2403dbd607 wrap forward passes with torch.no_grad() (#19278) 2022-10-04 16:09:23 +02:00
f134d38553 wrap forward passes with torch.no_grad() (#19279) 2022-10-04 16:08:29 +02:00
cd024da6f8 ci(workflows): update actions/checkout to v3 (#19280)
in stale.yml
2022-10-04 16:07:53 +02:00
ca3ebc44e0 ci(stale.yml): upgrade actions/setup-python to v4 (#19281) 2022-10-04 16:07:33 +02:00
cc263e9bb4 alter retrived to retrieved (#18863) 2022-10-04 16:00:47 +02:00
9b630168a9 Added type hints for TF: rag model (#19284)
* Added type hints for TF: rag model

* TFModelInputType added in place of TF.Tensor

* reformatting by black
2022-10-04 14:56:35 +01:00
ac5ea74ee8 Added Type hints for LED TF (#19315)
* Update modeling_tf_led.py

* Update modeling_tf_led.py
2022-10-04 14:55:15 +01:00
3a1a56a8fe Fix for sequence regression fit() in TF (#19316)
Co-authored-by: Your Name <you@example.com>
2022-10-04 14:48:27 +01:00
fe10796f4f [Docs] Fix link (#19313) 2022-10-04 09:00:52 -04:00
534cd8ff94 Update README.md (#19309) 2022-10-04 07:46:50 -04:00
4c962d5e79 Bump joblib in /examples/research_projects/visual_bert (#19269)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:50 +02:00
c7ec0afce0 Bump joblib in /examples/research_projects/decision_transformer (#19270)
Bumps [joblib](https://github.com/joblib/joblib) from 1.1.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/1.1.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:37 +02:00
ca26277e33 Bump joblib from 0.16.0 to 1.2.0 in /examples/research_projects/lxmert (#19268)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:49:35 +02:00
008531c18a Update Protobuf dependency version to fix known vulnerability (#19247)
* Update protobuf dependency to fix vulnerability

* Update `dependency_versions_table.py` to include updated protobuf.
2022-10-03 23:37:09 +02:00
68f50f3453 Breakup export guide (#19271)
* split onnx and torchscript docs

* make style

* apply reviews
2022-10-03 13:18:29 -07:00
18c06208c4 Don't automatically add bug label (#19302) 2022-10-03 12:42:04 -04:00
c28d04e9e2 Update no_trainer script for summarization (#19277)
* Update no_trainer script for summarization

* removed unnecessary import

* fixes notation mistake

* removed: unused variable
2022-10-03 09:21:51 -04:00
36f52e9593 Restructure DETR post-processing, return prediction scores (#19262)
* Restructure DetrFeatureExtractor post-processing methods
* Update post_process_instance_segmentation and post_process_panoptic_segmentation methods to return prediction scores
* Update DETR models docs
2022-10-03 12:02:51 +03:00
5cd16f01db time series forecasting model (#17965)
* initial files

* initial model via cli

* typos

* make a start on the model config

* ready with configuation

* remove tokenizer ref.

* init the transformer

* added initial model forward to return dec_output

* require gluonts

* update dep. ver table and add as extra

* fixed typo

* add type for prediction_length

* use num_time_features

* use config

* more config

* typos

* opps another typo

* freq can be none

* default via transformation is 1

* initial transformations

* fix imports

* added transform_start_field

* add helper to create pytorch dataloader

* added inital val and test data loader

* added initial distr head and loss

* training working

* remove TimeSeriesTransformerTokenizer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed copyright

* removed docs

* remove time series tokenizer

* fixed docs

* fix text

* fix second

* fix default

* fix order

* use config directly

* undo change

* fix comment

* fix year

* fix import

* add additional arguments for training vs. test

* initial greedy inference loop

* fix inference

* comment out token inputs to enc dec

* Use HF encoder/decoder

* fix inference

* Use Seq2SeqTSModelOutput output

* return Seq2SeqTSPredictionOutput

* added default arguments

* fix return_dict true

* scale is a tensor

* output static_features for inference

* clean up some unused bits

* fixed typo

* set return_dict if none

* call model once for both train/predict

* use cache if future_target is none

* initial generate func

* generate arguments

* future_time_feat is required

* return SampleTSPredictionOutput

* removed unneeded classes

* fix when params is none

* fix return dict

* fix num_attention_heads

* fix arguments

* remove unused shift_tokens_right

* add different dropout configs

* implement FeatureEmbedder, Scaler and weighted_average

* remove gluonts dependency

* fix class names

* avoid _variable names

* remove gluonts dependency

* fix imports

* remove gluonts from configuration

* fix docs

* fixed typo

* move utils to examples

* add example requirements

* config has no freq

* initial run_ts_no_trainer

* remove from ignore

* fix output_attentions and removed unsued getters/setters

* removed unsed tests

* add dec seq len

* add test_attention_outputs

* set has_text_modality=False

* add config attribute_map

* make style

* make fix-copies

* add encoder_outputs to TimeSeriesTransformerForPrediction forward

* Improve docs, add model to README

* added test_forward_signature

* More improvements

* Add more copied from

* Fix README

* Fix remaining quality issues

* updated encoder and decoder

* fix generate

* output_hidden_states and use_cache are optional

* past key_values returned too

* initialize weights of distribution_output module

* fixed more tests

* update test_forward_signature

* fix return_dict outputs

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed commented out tests

* added neg. bin and normal output

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* move to one line

* Add docstrings

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add try except for assert and raise

* try and raise exception

* fix the documentation formatting

* fix assert call

* fix docstring formatting

* removed input_ids from DOCSTRING

* Update input docstring

* Improve variable names

* Update order of inputs

* Improve configuration

* Improve variable names

* Improve docs

* Remove key_length from tests

* Add extra docs

* initial unittests

* added test_inference_no_head test

* added test_inference_head

* add test_seq_to_seq_generation

* make style

* one line

* assert mean prediction

* removed comments

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix order of args

* make past_observed_mask optional as well

* added Amazon license header

* updated utils with new fieldnames

* make style

* cleanup

* undo position of past_observed_mask

* fix import

* typo

* more typo

* rename example files

* remove example for now

* Update docs/source/en/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_time_series_transformer.py

fix style

* fixed typo

* fix typo and grammer

* fix style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:32:59 -04:00
cfb777f27c Docs - Guide to add a new TensorFlow model (#19256)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-09-30 20:30:38 +01:00
6a08162ad4 Fix cached lookup filepath on windows for hub (#19178)
* Update hub.py commit_hash extraction

Add safety mechanism for windows systems to unify logic (replace double backslashes with /)

* Fix string quotetype

* Aaaa circleci is messing with me.

* Switch to using as_posix() method from pathlib

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:13:39 -04:00
f33858d18a Fix Encoder-Decoder testing issue about repo. names (#19250)
* Change "../gpt2" to "gpt2"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:15:07 +02:00
2fba98e585 Add beautifulsoup4 to the dependency list (#19253)
* Add `beautifulsoup4` to extras["testing"]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:14:01 +02:00
3e2dd7f92d Poc to use safetensors (#19175)
* Poc to use safetensors

* Typo

* Final version

* Add tests

* Save with the right name!

* Update tests/test_modeling_common.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Support for sharded checkpoints

* Test from Hub part 1

* Test from hub part 2

* Fix regular checkpoint sharding

* Bump for fixes

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-09-30 10:58:04 -04:00
dad578e4c3 Add notebooks (#19259) 2022-09-30 10:04:36 -04:00
e396358104 Add stop sequence to text generation pipeline (#18444) 2022-09-30 14:26:51 +01:00
582d085bb2 Add expected output to the sample code for ViTMSNForImageClassification (#19183)
* chore: add expected output to the sample code.

* add: imagenet-1k labels to the model config.

* chore: apply code formatting.

* chore: change the expected output.
2022-09-30 15:25:41 +02:00
368b649af6 Rebase ESM PR and update all file formats (#19055)
* Rebase ESM PR and update all file formats

* Fix test relative imports

* Add __init__.py to the test dir

* Disable gradient checkpointing

* Remove references to TFESM... FOR NOW >:|

* Remove completed TODOs from tests

* Convert docstrings to mdx, fix-copies from BERT

* fix-copies for the README and index

* Update ESM's __init__.py to the modern format

* Add to _toctree.yml

* Ensure we correctly copy the pad_token_id from the original ESM model

* Ensure we correctly copy the pad_token_id from the original ESM model

* Tiny grammar nitpicks

* Make the layer norm after embeddings an optional flag

* Make the layer norm after embeddings an optional flag

* Update the conversion script to handle other model classes

* Remove token_type_ids entirely, fix attention_masking and add checks to convert_esm.py

* Break the copied from link from BertModel.forward to remove token_type_ids

* Remove debug array saves

* Begin ESM-2 porting

* Add a hacky workaround for the precision issue in original repo

* Code cleanup

* Remove unused checkpoint conversion code

* Remove unused checkpoint conversion code

* Fix copyright notices

* Get rid of all references to the TF weights conversion

* Remove token_type_ids from the tests

* Fix test code

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add credit

* Remove _ args and __ kwargs in rotary embedding

* Assertively remove asserts

* Replace einsum with torch.outer()

* Fix docstring formatting

* Remove assertions in tokenization

* Add paper citation to ESMModel docstring

* Move vocab list to single line

* Remove ESMLayer from init

* Add Facebook copyrights

* Clean up RotaryEmbedding docstring

* Fix docstring formatting

* Fix docstring for config object

* Add explanation for new config methods

* make fix-copies

* Rename all the ESM- classes to Esm-

* Update conversion script to allow pushing to hub

* Update tests to point at my repo for now

* Set config properly for tests

* Remove the gross hack that forced loss of precision in inv_freq and instead copy the data from the model being converted

* make fixup

* Update expected values for slow tests

* make fixup

* Remove EsmForCausalLM for now

* Remove EsmForCausalLM for now

* Fix padding idx test

* Updated README and docs with ESM-1b and ESM-2 separately (#19221)

* Updated README and docs with ESM-1b and ESM-2 separately

* Update READMEs, longer entry with 3 citations

* make fix-copies

Co-authored-by: Your Name <you@example.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Tom Sercu <tsercu@fb.com>
Co-authored-by: Your Name <you@example.com>
2022-09-30 14:16:25 +01:00
4fd32a1f49 Catch HFValidationError in TrainingSummary (#19252)
* Catch HfValidationError in TrainingSummary

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 13:45:56 +02:00
f3d2f7a6e0 Add MarkupLM (#19198)
* First draft

* Make basic test work

* Fix most tokenizer tests

* More improvements

* Make more tests pass

* Fix more tests

* Fix some code quality

* Improve truncation

* Implement feature extractor

* Improve feature extractor and add tests

* Improve feature extractor tests

* Fix pair_input test partly

* Add fast tokenizer

* Improve implementation

* Fix rebase

* Fix rebase

* Fix most of the tokenizer tests.

* propose solution for fast

* add: integration test for fasttokenizer, warning for decode, fix template in slow tokenizer

* add: modify markuplmconverter

* add: some modify on converter and tokenizerfast

* Fix style, copies

* Make fixup

* Update tokenization_markuplm.py

* Update test_tokenization_markuplm.py

* Update markuplm related

* Improve processor, add integration test

* Add processor test file

* Improve processor

* Improve processor tests

* Fix more processor tests

* Fix processor tests

* Update docstrings

* Add Copied from statements

* Add more Copied from statements

* Add code examples

* Improve code examples

* Add model to doc tests

* Adding dependency check

* Add dummy file

* Add requires_backends

* Add model to toctree

* Fix more things, disable dependency check for now

* Apply more suggestions

* Add soft dependency

* Add annotators to tests

* Fix style

* Remove from_slow=True

* Remove print statements

* Add sanity check

* Fix processor test

* Fix processor tests, add more docs

* Add doc tests for mdx file

* Add more tips

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: lockon-n <45759388+lockon-n@users.noreply.github.com>
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: lockon-n <dd098309@126.com>
2022-09-30 08:25:43 +02:00
49d62b0178 [Wav2Vec2] Fix None loss in doc examples (#19218)
* pass sampled_negative_indices parameter to the model to avoid getting a None loss
* concerns doc examples for Wav2Vec2ForPreTraining and Wav2Vec2ConformerForPreTraining
2022-09-29 19:23:14 +02:00
1a1893e5d8 Update Past CI report script (#19228)
* Simplify the error report

* Add status placeholder

* Add job links

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:22:23 +02:00
163cd15279 Add job names in Past CI artifacts (#19235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:18:24 +02:00
f16bbf1475 Skip pipeline tests (#19248) 2022-09-29 12:25:15 -04:00
cca6e6fea1 Cast TF generate() inputs (#19232)
* Just stick a couple of casts into generate()

* Cast decoder_input_ids too

* Don't accidentally cast floats

* Move to _generate()

* Move to after input validation

Co-authored-by: Your Name <you@example.com>
2022-09-29 16:51:08 +01:00
01eb34ab45 Improve DETR post-processing methods (#19205)
* Ensures consistent arguments and outputs with other post-processing methods
* Adds post_process_semantic_segmentation, post_process_instance_segmentation, post_process_panoptic_segmentation, post_process_object_detection methods to DetrFeatureExtractor
* Adds deprecation warnings to post_process, post_process_segmentation and post_process_panoptic
2022-09-29 17:33:13 +03:00
655f72a689 Fix test fetching for examples (#19237)
* Fix test fetching for examples

* Fake example modif

* Debug statements

* Typo

* You need to persist the file...

* Revert change in example

* Remove debug statements
2022-09-29 09:36:42 -04:00
b79028f0b6 Fix TrainingArgs argument serialization (#19239) 2022-09-29 09:13:56 -04:00
902d30b31a Use hf_raise_for_status instead of deprecated _raise_for_status (#19244)
* Use  instead of  from huggingface_hub

* bump huggingface_hub to 0.10.0 + make deps_table_update
2022-09-29 08:58:39 -04:00
3a27ba3d18 Fix opt softmax small nit (#19243)
* fix opt softmax nit

- Use the same logic as 1eb09537550734a783c194e416029cb9bc4cb119 for consistency

* Update src/transformers/models/opt/modeling_opt.py
2022-09-29 13:40:55 +02:00
ba9e336fa3 Fix m2m_100.mdx doc example missing labels (#19149)
The `labels` variable is not defined, the `model_inputs` already contain this information.
2022-09-29 13:27:58 +02:00
0dc7b3a785 [TensorFlow] Adding GroupViT (#18020)
* chore: initial commit

* chore: adding util methods

yet to work on the nn.functional.interpolate port with align_corener=True

* chore: refactor the utils

* used tf.compat.v1.image.resize to align the F.interpolate function
* added type hints to the method signatures
* added references to the gists where one 2 one alignment of torch and tf has been shown

* chore: adding the layers

* chore: porting all the layers from torch to tf

This is the initial draft, nothing is tested yet.

* chore: aligning the layers with reference to tf clip

* chore: aligning the modules

* added demaraction comments
* added copied and adapted from comments

* chore: aligning with CLIP

* chore: wrangling the layers to keep it tf compatible

* chore: aligning the names of the layers for porting

* chore: style changes

* chore: adding docs and inits

* chore: adding tfp dependencis

the code is taken from TAPAS

* chore: initial commit for testing

* chore: aligning the vision embeddings with the vit implementatino

* chore: changing model prefix

* chore: fixing the name of the model and the layer normalization test case

* chore: every test passes but the slow ones

* chore: fix style and integration test

* chore: moving comments below decorators

* chore: make fixup and fix-copies changes

* chore: adding the Vision and Text Model to check_repo

* chore: modifying the prefix name to align it with the torch implementation

* chore: fix typo in configuration

* choer: changing the name of the model variable

* chore: adding segmentation flag

* chore: gante's review

* chore: style refactor

* chore: amy review

* chore: adding shape_list to parts that have been copied from other snippets

* chore: init batchnorm with torch defaults

* chore: adding shape_list to pass the tests

* test fix: adding seed as 0

* set seed

* chore: changing the straight through trick to fix -ve dimensinos

* chore: adding a dimension to the loss

* chore: adding reviewers and contributors names to the docs

* chore: added changes after review

* chore: code quality fixup

* chore: fixing the segmentation snippet

* chore: adding  to the layer calls

* chore: changing int32 to int64 for inputs of serving

* chore: review changes

* chore: style changes

* chore: remove from_pt=True

* fix: repo consistency

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 10:48:04 +01:00
bb6fa06f2d Add a getattr method, which replaces _module_getattr in torch.fx.Tracer from PyTorch 1.13+ (#19233) 2022-09-29 11:04:49 +02:00
9d732fd2dd XGLM - Fix Softmax NaNs when using FP16 (#18057)
* fix fp16 for xglm

* Removed misleading comment

* Fix undefined variable

Co-authored-by: Gabriele Sarti <gsarti@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-09-29 10:42:07 +02:00
99c32493e0 Fix confusing working directory in Push CI (#19234)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 08:36:46 +02:00
6957350c2b Focus doc around preprocessing classes (#18768)
* 📝 reframe docs around preprocessing classes

* small edits

* edits and review

* fix typo

* apply review

* clarify processor
2022-09-28 17:09:44 -07:00
990936a868 Move AutoClasses under Main Classes (#19163)
* move autoclasses to main classes

* keep auto.mdx in model_doc
2022-09-28 17:09:29 -07:00
0fc68a7e14 Fix seq2seq QA example 2022-09-28 15:45:49 -04:00
64998a57fb Fix cache names in CircleCI jobs (#19223)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 18:26:12 +02:00
4a0b958d61 Fix trainer seq2seq qa.py evaluate log and ft script (#19208)
* fix args option

* fix trainer eval log

* fix out of memory qa script

* do isort, black, flake

* fix tokenize target

* take it back.

* fix: comment
2022-09-28 10:55:46 -04:00
9c6aeba353 Document and validate typical_p in generation (#19128)
* Document and validate typical_p in generation
2022-09-28 15:45:05 +01:00
de359c4593 Fix doctest for TFDeiTForImageClassification (#19173)
* Fix doctest for TFDeiTForImageClassification

* Remove unnecessary tf.random.set_seed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 15:53:21 +02:00
22d37a9d2c Fix deprecation warning for return_all_scores (#19217)
* Improve deprecation warning for return_all_scores

* Fix formatting
2022-09-28 08:57:43 -04:00
a357ed50e7 Generate: add warning when left padding should be used (#19067)
* add warning when left padding should be used

* PT: check for pad token; FLAX: can only check while not tracing
2022-09-28 13:07:08 +01:00
942fa8ced8 Fix small use_cache typo in the docs (#19191) 2022-09-28 13:03:20 +01:00
2df602870b Added tests for yaml and json parser (#19219)
* Added tests for yaml and json

* Added tests for yaml and json
2022-09-27 16:25:57 -04:00
2d95695825 Use math.pi instead of torch.pi in MaskFormer (#19201)
* Use math.pi

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-27 17:30:58 +02:00
34be08efcd More tests for regression in cached non existence (#19216)
* More tests for regression in cached non existence

* Style
2022-09-27 09:36:34 -04:00
e3a30e2b99 translated add_new_pipeline (#19215) 2022-09-27 08:55:41 -04:00
226b0e46d5 Add a use_parallel_residual argument to control the residual computing way (#18695)
* Add a gpt_j_residual argument to control the residual computing way

* Put duplicate code outside of the if block

* Rename parameter "gpt_j_residual" to "use_parallel_residual" and set the default value to True
2022-09-27 07:54:05 -04:00
88f597ba6a add doc for hyperparameter search (#19192)
* add doc for hyperparameter search

* update doc
2022-09-27 07:51:51 -04:00
ea540a5977 add wav2vec2_alignment (#16782)
* add wav2vec2_alignment

* Update alignment.py

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README.md

* fix style

* fix imports

* fix multithread

* fix bash script

* [@anton-l] Style fixes and docstrings

* [@anton-l] Style fixes and docstrings

* Update alignment.py

fix blank id in backtrack

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: anton-l <aglozhkov@gmail.com>
2022-09-27 13:12:56 +02:00
7132d55ca1 Remove unused cur_len in generation_utils.py (#18874)
* remove unused cur_len in generation_utils.py

* linting
2022-09-27 10:39:31 +02:00
a32f97c37d Fix cached_file in offline mode for cached non-existing files (#19206)
* Fix cached_file in offline mode for cached non-existing files

* Add tests

* Test with offline mode
2022-09-26 18:01:00 -04:00
ca0886395b Add warning for torchaudio <= 0.10 in MCTCTFeatureExtractor (#19203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 23:58:02 +02:00
be4f269979 Updated hf_argparser.py (#19188)
* Changed json_file_parser function and added yaml parser function

* update hf_argparser

* Added allow_extra_keys argument
2022-09-26 17:02:57 -04:00
c20b2c7e18 Use repo_type instead of deprecated datasets repo IDs (#19202)
* Use repo_type instead of deprecated datasets repo IDs

* Add missing one in doc
2022-09-26 09:50:48 -04:00
216b2f9e80 Move the model type check (#19027)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-26 09:43:34 -04:00
ea75e9f10e Use assertAlmostEqual in BloomEmbeddingTest.test_logits (#19200)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 14:56:41 +02:00
98af4f9b54 Bump protobuf in /examples/research_projects/decision_transformer (#19176)
Bumps [protobuf](https://github.com/protocolbuffers/protobuf) from 3.19.4 to 3.19.5.
- [Release notes](https://github.com/protocolbuffers/protobuf/releases)
- [Changelog](https://github.com/protocolbuffers/protobuf/blob/main/generate_changelog.py)
- [Commits](https://github.com/protocolbuffers/protobuf/compare/v3.19.4...v3.19.5)

---
updated-dependencies:
- dependency-name: protobuf
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-26 14:55:16 +02:00
408b5e307b Remove pos arg from Perceiver's Pre/Postprocessors (#18602)
* Remove pos arg from Perceiver's Pre/Postprocessors

* Revert the removed pos args in public methods
2022-09-26 08:50:58 -04:00
71fc331746 Separate Push CI images from Scheduled CI (#19170)
* separate images

* Fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 10:55:42 +02:00
fa4eeb4fd3 german training, accelerate and model sharing (#19171)
* correct spelling in README

* processing

* german training

* accelerate

* german model sharing

* build doc

* ttf links

* casing
2022-09-23 14:52:09 -04:00
5da6afdd8d Update run_clip.py (#19130)
The overwrite_cache parameter is declared twice.
2022-09-23 20:48:41 +02:00
6395d1227f Fixed type hint for pipelines/check_task (#19150) 2022-09-23 20:35:19 +02:00
ece762443e Fix incorrect comments about atten mask for pytorch backend (#18728)
* fix incorrect comments about atten mask

* typo

* Update for CodeGen

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 13:52:27 -04:00
0cea8d5555 Add offline runners info in the Slack report (#19169)
* send slack report for offline runners

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:23:05 +02:00
49bf569830 Add doctests to Perceiver examples (#19129)
* Fix bug in example and add to tests

* Fix failing tests

* Check the size of logits

* Code style

* Try again...

* Add expected loss for PerceiverForMaskedLM doctest

Co-authored-by: Steven Anton <antonstv@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:19:35 +02:00
fe01ec343b Detr preprocessor fix (#19007)
* fix in-place preprocessing of inputs
2022-09-23 18:49:31 +03:00
7e84723fe4 Add semantic segmentation post-processing method to MobileViT (#19105)
* add post-processing method for semantic segmentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-23 16:24:28 +03:00
905635f5d3 [WIP] Trainer supporting evaluation on multiple datasets (#19158)
* support for multiple eval datasets

* support multiple datasets in seq2seq trainer

* add documentation

* update documentation

* make fixup

* revert option for multiple compute_metrics

* revert option for multiple compute_metrics

* revert added empty line
2022-09-23 09:14:53 -04:00
49629e7ba8 fix HPO DDP GPU problem (#19168)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-23 09:13:35 -04:00
8d59385f12 Fix TrainingArguments documentation (#19162)
* Fix TrainingArguments documentation

* Fix TFTrainingArguments documentation
2022-09-22 14:38:32 -04:00
3a396c59b8 fix: ckpt paths. (#19159) 2022-09-22 11:03:01 -04:00
74a3ea4737 Bump oauthlib in /examples/research_projects/decision_transformer (#19080)
Bumps [oauthlib](https://github.com/oauthlib/oauthlib) from 3.2.0 to 3.2.1.
- [Release notes](https://github.com/oauthlib/oauthlib/releases)
- [Changelog](https://github.com/oauthlib/oauthlib/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/oauthlib/oauthlib/compare/v3.2.0...v3.2.1)

---
updated-dependencies:
- dependency-name: oauthlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-22 17:01:40 +02:00
e5b7cff5fe update perf_train_cpu_many doc (#19151)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-22 09:20:15 -04:00
83dc6377d0 Reduce LR for TF MLM example test (#19156) 2022-09-22 08:51:27 -04:00
1b5ab39cf4 TF: check embeddings range (#19102) 2022-09-22 13:21:51 +01:00
cf6308ef9b Improve conditional detr docs (#19154)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 13:21:05 +02:00
2d9853b226 MSN (Masked Siamese Networks) for ViT (#18815)
* feat: modeling and conversion scripts for msn.

* chore: change license year.

* chore: remove unneeded modules.

* feat: direct loading of state_dict from remote url.

* fix: import paths.

* add: rest of the files.

* add and fix rest of the files.

Co-authored-by: Niels <niels.rogge1@gmail.com>

* chore: formatting.

* code quality fix.

* chore: remove pooler.

* feat: add classification top.

* fix: configuration object.

* add: initial test cases (one failing).

* fix: basemodeloutput.

* add: caution on using the classification head.

* add: rest of the model related files.

* add: vit msn readme.

* fix: copied from statement.

* fix: dummy objects.

* add: ViTMSNPreTrainedModel to inits.

* fix: repo consistency.

* minor change in the model doc.

* fix: tests.

* Empty-Commit

* Update src/transformers/models/vit_msn/configuration_vit_msn.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address PR comments.

* Update src/transformers/models/vit_msn/modeling_vit_msn.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* chore: put model in no_grad() and formatting.

Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-22 07:15:03 -04:00
4d0f8c05f5 Add accelerate support for ViLT (#18683) 2022-09-22 13:14:39 +02:00
9393f966bc [fix] Add DeformableDetrFeatureExtractor (#19140)
* Add DeformableDetrFeatureExtractor

* Fix post_process

* Fix name

* Add tests for feature extractor

* Fix doc tests

* Fix name

* Address comments

* Apply same fix to DETR and YOLOS as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 09:45:24 +02:00
126a739058 Add support for conditional detr (#18948)
* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* fixed style

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* rebased

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Depu Meng <depumeng@Depus-MacBook-Pro.local>
2022-09-22 09:45:04 +02:00
c7fd28999f Fixed typo in generation_utils.py (#19145)
Changed "unfeasable" to "unfeasible"
2022-09-21 20:59:52 +02:00
3c7b965bcd Add some tests for check_dummies (#19146) 2022-09-21 14:54:09 -04:00
d5848a574a Allowing users to use the latest tokenizers release ! (#19139)
* Allowing users to use the latest `tokenizers` release !

* Upgrading the versions table too.
2022-09-21 17:46:04 +02:00
451df725d6 Fix dummy creation for multi-frameworks objects (#19144) 2022-09-21 11:41:45 -04:00
66154a6c87 suppoer deps from github (#19141) 2022-09-21 16:15:31 +02:00
114295c010 Refuse Datasets 2.5.0 while waiting for a patch 2022-09-21 09:37:53 -04:00
486134e5a0 Fix FlaxPretTrainedModel pt weights check (#19133)
* Fix FlaxPretTrainedModel pt weights check

* Update src/transformers/modeling_flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix raise comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-21 14:17:04 +02:00
e7fdfc720a Add post_process_semantic_segmentation method to DPTFeatureExtractor (#19107)
* add post-processing method for semantic segmentation

* add test for post-processing
2022-09-21 15:15:26 +03:00
da6a1b6ca1 [BugFix] Fix fsdp option on shard_grad_op. (#19131) 2022-09-21 07:56:22 -04:00
9e95706648 Add post_process_semantic_segmentation method to SegFormer (#19072)
* add post_process_semantic_segmentation method to SegformerFeatureExtractor
* add test for semantic segmentation post-processing
2022-09-21 11:40:35 +03:00
ef6741fe65 Fix GLUE MNLI when using max_eval_samples (#18722) 2022-09-21 09:33:22 +02:00
18643ff29a Skip test_export_to_onnx for LongT5 if torch < 1.11 (#19122)
* Skip if torch < 1.11

* fix quality

* fix import

* fix typo

* fix condition

* fix condition

* fix condition

* fix quality

* fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 21:52:18 +02:00
06f341de4f Add a missing space in a script arg documentation (#19113) 2022-09-20 21:43:32 +02:00
36b9a99433 Fix BeitFeatureExtractor postprocessing (#19119)
* return post-processed segmentations as list, add test
* use torch to resize logits
* fix assertion error if no target_size is specified
2022-09-20 18:53:40 +03:00
36e356caa4 Fix: update ltp word segmentation call in mlm_wwm (#19047)
* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm
2022-09-20 09:20:38 -04:00
de26241645 german processing (#19121)
* correct spelling in README

* processing
2022-09-20 09:18:21 -04:00
67403413bd Change document question answering pipeline to always return an array (#19071)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-20 15:17:57 +02:00
cc567e0063 Fix the wrong schedule (#19117)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 13:46:55 +02:00
c81ebd1c39 Beit postprocessing (#19099)
* add post_process_semantic_segmentation method to BeiTFeatureExtractor
2022-09-20 10:41:56 +03:00
261301d388 Added type hints for YolosForObjectDetection (#19086) 2022-09-20 00:04:25 +02:00
801ebd045d Add documentation of Trainer.create_model_card (#19110)
* Add documentation of Trainer.create_model_card

* Expand to TF version
2022-09-19 16:55:50 -04:00
6227078d0a HPO: keep the original logic if there's only one process, pass the trial to trainer (#19096)
need to find out solution for following cases
     *if we need to use trial in model_init, how to do it for non-main rank, sync the model with rank0 in app?
     *how to use optuna prune feature for DDP, if we do it in rank0, how does other rank know it.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-19 16:42:18 -04:00
3b0cecb627 Don't warn of move if cache is empty (#19109) 2022-09-19 15:27:18 -04:00
6be338f1b9 correct spelling in README (#19092) 2022-09-19 19:51:43 +02:00
e7206ceab9 Improve vision models docs (#19103)
* Add tips

* Add BEiT figure

* Fix URL

* Move tip to start

* Add tip to TF model as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-19 19:22:34 +02:00
0d1ba2dd0b added type hints (#19076) 2022-09-19 14:10:21 +01:00
6f25d107fd Added type hints to ResNetForImageClassification (#19084)
* Added type hints to ResNetForImageClassification

* Resolved check_repository_consistency failure issue

Running fix-copies changed the type hints for RegNetForImageClassification in modeling_regnet.py file
2022-09-19 13:42:13 +01:00
fe5e7cea4a Add type hints for TF MPNet models (#19089)
* Added type hints for TFMPNetModel

* Added type hints for TFMPNetForMaskedLM

* Added type hints for TFMPNetForSequenceClassification

* Added type hints for TFMPNetForMultipleChoice

* Added type hints for TFMPNetForTokenClassification

* Added Type hints for TFMPNetForQuestionAnswering
2022-09-19 13:37:32 +01:00
1bbad7a2da Added Type hints for VIT MAE (#19085)
* Added Type hints for VIT MAE

* Ran make fixup
2022-09-19 13:37:18 +01:00
fbe8464b5b Added type hints for TFConvBertModel (#19088) 2022-09-19 13:28:13 +01:00
22264f933d fix working dir (#19101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 07:09:24 -04:00
ba7f2173cc Add runner availability check (#19054)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 12:27:06 +02:00
ca485e562b Add tests for legacy load by url and fix bugs (#19078) 2022-09-16 23:20:02 +02:00
ae219532e3 german autoclass (#19049)
* german autoclass

* Update _toctree.yml
2022-09-16 16:16:00 -04:00
7d0486c106 Bump mako in /examples/research_projects/decision_transformer (#19077)
Bumps [mako](https://github.com/sqlalchemy/mako) from 1.2.0 to 1.2.2.
- [Release notes](https://github.com/sqlalchemy/mako/releases)
- [Changelog](https://github.com/sqlalchemy/mako/blob/main/CHANGES)
- [Commits](https://github.com/sqlalchemy/mako/commits)

---
updated-dependencies:
- dependency-name: mako
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-16 22:15:02 +02:00
56c548f17c Note about developer mode (#19075) 2022-09-16 22:12:59 +02:00
9017ba4ca4 Fix tokenizer load from one file (#19073)
* Fix tokenizer load from one file

* Add a test

* Style

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-09-16 16:11:47 -04:00
773314ab80 replace logger.warn by logger.warning (#19068) 2022-09-16 21:01:57 +02:00
5e636eee4a Add type hints for PyTorch UniSpeech, MPNet and Nystromformer (#19039)
* added type hints pytorch unispeech

* added type hints pytorch  MPNet

* added type hints nystromformer

* resolved copy inconsistencies

* make fix-copies

Co-authored-by: matt <rocketknight1@gmail.com>
2022-09-16 17:59:40 +01:00
658010c739 TF: tests for (de)serializable models with resized tokens (#19013)
* resized models that we can actually load

* separate embeddings check

* add test for embeddings out of bounds

* add fake slows
2022-09-16 16:38:08 +01:00
70ba10e6d4 Fix LeViT checkpoint (#19069)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-16 16:23:58 +02:00
bc5d0b1046 Automatically tag CLIP repos as zero-shot-image-classification (#19064)
* Add CLIP to zero-shot-image-classification

* Make mapping private as it's not used for AutoClassing
2022-09-16 15:40:38 +02:00
820cb97a3f Organize test jobs (#19058)
* Tests conditional run

* Syntax

* Deps

* Try early exit

* Another way

* Test with no tests to run

* Test all

* Typo

* Try this way

* With tests to run

* Mostly finished

* Typo

* With a modification in one file only

* No change, no tests

* Final cleanup

* Address review comments
2022-09-16 09:19:51 -04:00
d63bdf78d4 Add FP32 cast in ConvNext LayerNorm to prevent rounding errors with FP16 input (#18746)
* Adding cast to fp32 in convnext layernorm to prevent rounding errors in the case of fp16 input

* Trigger CI
2022-09-16 08:42:57 -04:00
532ca05079 [doc] Fix link in PreTrainedModel documentation (#19065) 2022-09-16 07:31:39 -04:00
c603c80f46 FX support for ConvNext, Wav2Vec2 and ResNet (#19053)
* Support for ConvNext

* Support for Wav2Vec2

* Support for Resnet

* Fix small issue in test_modeling_convnext
2022-09-16 10:57:41 +02:00
c8e40d6fa1 fix use_cache (#19060)
- set `use_cache` to `True` for consistency with other `transformers` models
2022-09-16 09:07:02 +02:00
0b5c7e4838 Adds package and requirement spec output to version check exception (#18702)
* Adds package and requirement spec output to version check exception

It's difficult to understand what package is affected when `got_ver`
here comes back None, so output the requirement and the package. The
requirement probably contains the package but let's output both for good
measure.

Non-exhaustive references for this problem aside from my own encounter:

* https://stackoverflow.com/questions/70151167/valueerror-got-ver-is-none-when-importing-tensorflow
* https://discuss.huggingface.co/t/valueerror-got-ver-is-none/17465
* https://github.com/UKPLab/sentence-transformers/issues/1186
* https://github.com/huggingface/transformers/issues/13356

I speculate that the root of the error comes from a conflict of
conda-managed and pip-managed Python packages but I've not yet proven
this.

* Combines version presence check and streamlines exception message

See also: https://github.com/huggingface/transformers/pull/18702#discussion_r953223275

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-15 12:53:36 -07:00
f3d3863255 fix arg name in BLOOM testing and remove unused arg document (#18843) 2022-09-15 20:25:32 +02:00
16242e1bf0 Run torchdynamo tests (#19056)
* Enable torchdynamo tests

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 11:10:16 -07:00
f7ce4f1ff7 Fix custom tokenizers test (#19052)
* Fix CI for custom tokenizers

* Add nightly tests

* Run CI, run!

* Fix paths

* Typos

* Fix test
2022-09-15 11:31:09 -04:00
68bb33d770 Fixing OPT fast tokenizer option. (#18753)
* Fixing OPT fast tokenizer option.

* Remove dependency on `pt`.

* Move it to GPT2 tokenization tests.

* Added a few tests.
2022-09-15 17:12:58 +02:00
578e18e002 🚨🚨🚨 Optimize Top P Sampler and fix edge case (#18984)
* init PR

* optimize top p and add edge case

* styling

* style

* revert tf and flax test

* add edge case test for FLAX and TF

* update doc with smallest set sampling for top p

* make style
2022-09-15 15:50:11 +02:00
2700ba66d9 Move cache: expand error message (#19051) 2022-09-15 09:39:59 -04:00
2322eb8e2f Update serving signatures and make sure we actually use them (#19034)
* Override save() to use the serving signature as the default

* Replace int32 with int64 in all our serving signatures

* Remember one very important line so as not to break every test at once

* Dtype fix for TFLED

* dtype fix for shift_tokens_right in general

* Dtype fixes in mBART and RAG

* Fix dtypes for test_unpack_inputs

* More dtype fixes

* Yet more mBART + RAG dtype fixes

* Yet more mBART + RAG dtype fixes

* Add a check that the model actually has a serving method
2022-09-15 14:34:22 +01:00
9b80a0bc18 Pin minimum PyTorch version for BLOOM ONNX export (#19046) 2022-09-15 15:22:31 +02:00
0a42b61ede Fix test_save_load for TFViTMAEModelTest (#19040)
* Fix test_save_load for TFViTMAEModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 15:21:57 +02:00
30a28f5227 Update image segmentation pipeline test (#18731)
* Updated test values

The image segmentation pipeline tests - tests/pipelines/test_pipelines_image_segmentation.py - were failing after the merging of #1849  (49e44b216b2559e34e945d5dcdbbe2238859e29b). This was due to the difference in rescaling. Previously the images were rescaled by `image = image / 255`. In the new commit, a `rescale` method was added, and images rescaled using `image = image * scale`. This was known to cause small differences in the processed images (see
[PR comment](https://github.com/huggingface/transformers/pull/18499#discussion_r940347575)).

Testing locally, changing the `rescale` method to divide by a scale factor (255) resulted in the tests passing. It was therefore decided the test values could be updated, as there was no logic difference between the commits.

* Use double quotes, like previous example

* Fix up
2022-09-15 07:32:31 -04:00
7743caccb9 [bnb] Small improvements on utils (#18646)
* Small replacement

- replace `modules_to_not_convert` by `module_to_not_convert`

* refactor a bit

- changed variables name
- now output a list
- change error message

* make style

* add list

* make style

* change args name

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* fix comment

* fix typo

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: stas00 <stas00@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-15 13:01:19 +02:00
8edf196310 [doc] debug: fix import (#19042)
correct the import statement
2022-09-14 16:29:58 -07:00
abca1741cf Fix a broken link for deepspeed ZeRO inference in the docs (#19001)
* Fix a broken link for deepspeed ZeRO inference

* fix link

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-14 16:21:06 -07:00
16913b3c92 Dev version 2022-09-14 14:58:20 -04:00
3774010161 Automate check for new pipelines and metadata update (#19029)
* Automate check for new pipelines and metadata update

* Add Datasets to quality extra
2022-09-14 14:06:49 -04:00
0efbb6e93e fix GPT2 token's special_tokens_mask when used with add_bos_token=True (#19036) 2022-09-14 19:32:12 +02:00
0e24548081 Add safeguards for CUDA kernel load in Deformable DETR (#19037) 2022-09-14 13:28:40 -04:00
31be02f14b TF: tf.debugging assertions without tf.running_eagerly() protection (#19030) 2022-09-14 18:19:15 +01:00
693ba2cc79 Fix GPT-NeoX doc examples (#19033) 2022-09-14 17:53:42 +02:00
4eb36f2921 Mark right save_load test as slow (#19031) 2022-09-14 10:38:39 -04:00
f5f430e5c8 Add support for Japanese GPT-NeoX-based model by ABEJA, Inc. (#18814)
* add gpt-neox-japanese model and tokenizer as new model

* Correction to PR's comment for GPT NeoX Japanese
- Fix to be able to use gpu
- Add comment # Copied... at the top of RotaryEmbedding
- Implement nn.Linear instead of original linear class
- Add generation test under @slow

* fix bias treatment for gpt-neox-japanese

* Modidy gpt-neox-japanese following PR
- add doc for bias_dropout_add
- style change following a PR comment

* add document for gpt-neox-japanese

* remove unused import from gpt-neox-japanese

* fix README for gpt-neox-japanese
2022-09-14 10:17:40 -04:00
6a9726ec0e Fix DocumentQuestionAnsweringPipelineTests (#19023)
* Fix DocumentQuestionAnsweringPipelineTests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 16:13:20 +02:00
1207deb806 Typo fix 2022-09-14 10:02:14 -04:00
e1224a2a0f Making save_load test slow as it times out 2022-09-14 10:01:22 -04:00
0b567aa430 Add Document QA pipeline metadata (#19028) 2022-09-14 09:25:15 -04:00
77b18783c2 Fix CI for PegasusX (#19025)
* Skip test_torchscript_output_attentions for PegasusXModelTest

* fix test_inference_no_head

* fix test_inference_head

* fix test_seq_to_seq_generation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 14:45:00 +02:00
77ea35b93a added type hints (#19015) 2022-09-14 12:58:05 +01:00
fc21c9be62 [CookieCutter] Clarify questions (#18959)
* Clarify cookiecutter questions

* Update first question

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-14 13:52:54 +02:00
6f8f2f6a77 Make AutoProcessor a magic loading class for all modalities (#18963)
* Make AutoProcessor a magic loading class for all modalities

* Quality
2022-09-14 07:36:12 -04:00
a2a3afbc8d PyTorch >= 1.7.0 and TensorFlow >= 2.4.0 (#19016) 2022-09-14 07:19:02 -04:00
9f4acd059f Generate: add missing comments after refactoring of generate() (#18981) 2022-09-14 11:06:29 +01:00
59407bbeb3 Add Deformable DETR (#17281)
* First draft

* More improvements

* Improve model, add custom CUDA code

* Import torch before

* Add script that imports custom layer

* Add everything in new ops directory

* Import custom layer in modeling file

* Fix ARCHIVE_MAP typo

* Creating the custom kernel on the fly.

* Import custom layer in modeling file

* More improvements

* Fix CUDA loading

* More improvements

* Improve conversion script

* Improve conversion script

* Make it work until encoder_outputs

* Make forward pass work

* More improvements

* Make logits match original implementation

* Make implementation also support single_scale model

* Add support for single_scale and dilation checkpoint

* Add support for with_box_refine model

* Support also two stage model

* Improve tests

* Fix more tests

* Make more tests pass

* Upload all models to the hub

* Clean up some code

* Improve decoder outputs

* Rename intermediate hidden states and reference points

* Improve model outputs

* Move tests to dedicated folder

* Improve model outputs

* Fix retain_grad test

* Improve docs

* Clean up and make test_initialization pass

* Improve variable names

* Add copied from statements

* Improve docs

* Fix style

* Improve docs

* Improve docs, move tests to model folder

* Fix rebase

* Remove DetrForSegmentation from auto mapping

* Apply suggestions from code review

* Improve variable names and docstrings

* Apply some more suggestions from code review

* Apply suggestion from code review

* better docs and variables names

* hint to num_queries and two_stage confusion

* remove asserts and code refactor

* add exception if two_stage is True and with_box_refine is False

* use f-strings

* Improve docs and variable names

* Fix code quality

* Fix rebase

* Add require_torch_gpu decorator

* Add pip install ninja to CI jobs

* Apply suggestion of @sgugger

* Remove DeformableDetrForObjectDetection from auto mapping

* Remove DeformableDetrModel from auto mapping

* Add model to toctree

* Add model back to mappings, skip model in pipeline tests

* Apply @sgugger's suggestion

* Fix imports in the init

* Fix copies

* Add CPU implementation

* Comment out GPU function

* Undo previous change

* Apply more suggestions

* Remove require_torch_gpu annotator

* Fix quality

* Add logger.info

* Fix logger

* Fix variable names

* Fix initializaztion

* Add missing initialization

* Update checkpoint name

* Add model to doc tests

* Add CPU/GPU equivalence test

* Add Deformable DETR to pipeline tests

* Skip model for object detection pipeline

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-09-14 11:45:21 +02:00
5a70a77bfa Add Support to Gradient Checkpointing for LongT5 (#18977)
FlaxLongT5PreTrainedModel is missing "enable_gradient_checkpointing" function. This gives an error if someone tries to enable gradient checkpointing for longt5.
This pull request fixes it.
2022-09-14 09:12:51 +01:00
4157e3cd7e new length penalty docstring (#19006) 2022-09-13 13:16:36 -04:00
f89f16a51e Re-add support for single url files in objects download (#19014) 2022-09-13 13:11:24 -04:00
ad5045e3e3 add missing require_tf for TFOPTGenerationTest (#19010)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 18:10:11 +02:00
d14af22c5c add DDP HPO support for optuna (#19002)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-13 17:56:20 +02:00
00fc9217d1 Fixed bug which caused overwrite_cache to always be True (#19000)
* fixed bug which caused overwrite_cache to always be True (#18967).

* reformatting changes
2022-09-13 11:29:48 -04:00
420f6c5ee3 Update default revision for document-question-answering (#18938)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-13 10:04:03 -04:00
2886f7f08a Fix tokenizer for XLMRobertaXL (#19004)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 14:04:14 +02:00
2848c9ce42 Add type hints for M2M (#18998)
* added type hints

* fixed typo
2022-09-13 12:58:46 +01:00
4bd36f1853 Generate: add model class validation (#18902) 2022-09-13 09:19:43 +01:00
69df33f180 Fix MaskFormerFeatureExtractor instance segmentation preprocessing bug (#18997)
* fix preprocessing for instance segmentation maps

* add support for per-image instance2class_id mapping

* edit docstrings for clarity
2022-09-13 09:36:03 +03:00
470799b3a6 Removed issue in wav2vec link (#18945)
Fix connected to [this issue](https://github.com/huggingface/transformers/issues/18944)
2022-09-12 21:59:19 +02:00
4c2e983f44 Fixed typo (#18921)
Fixed typo itmes --> items
2022-09-12 21:03:48 +02:00
1182b945a6 TF: TF 2.10 unpin + related onnx test skips (#18995) 2022-09-12 19:30:27 +01:00
7f4708e1a2 added type hints (#18996) 2022-09-12 19:11:40 +01:00
39b5bb79d9 fix checkpoint name for wav2vec2 conformer (#18994)
* fix checkpoint name for wav2vec2 conformer

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 19:39:01 +02:00
8a6928e28b TF: correct TFBart embeddings weights name when load_weight_prefix is passed (#18993) 2022-09-12 18:35:45 +01:00
c126a239bc Fix tflongformer int dtype (#18907)
* Use int64 throughout TFLongFormer

* make style

* Do some more fixed casting in TFLongFormer

* Fix some wonky "is None" conditionals

* Cast all the dtypes, salt the earth

* Fix copies to TFLED as well and do some casting there

* dtype fix in TFLongformer test

* Make fixup

* Expand tolerances on the LED tests too (I think this is a TF32 thing)

* Expand test tolerances for LED a tiny bit (probably a Tensorfloat thing again)
2022-09-12 17:51:10 +01:00
f7ceda345d Align try_to_load_from_cache with huggingface_hub (#18966)
* Align try_to_load_from_cache with huggingface_hub

* Fix tests
2022-09-12 12:09:37 -04:00
cf450b776f Fix TF start docstrings (#18991)
* Update our TF 2.0 input format tip across all models

* make style
2022-09-12 16:33:56 +01:00
adbf3a40de Remove dropout in embedding layer of OPT (#18845) 2022-09-12 16:32:38 +02:00
367026000b create Past CI results as tables for GitHub issue (#18953)
* create Past CI results as tables for GitHub issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:20:31 +02:00
0b36970371 Remove decoder_position_ids from check_decoder_model_past_large_inputs (#18980)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:19:48 +02:00
a86acb75ad add DDP HPO support for sigopt (#18931)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-12 07:37:25 -04:00
9faa9f9dac remove unused activation dropout (#18842) 2022-09-12 11:00:24 +02:00
a26114777e Revert "TF: unpin maximum TF version (#18917)" (#18972)
This reverts commit d8cf3b20875baee97f4bea64ffd17670aa57c37b.
2022-09-10 09:11:46 -04:00
d8cf3b2087 TF: unpin maximum TF version (#18917) 2022-09-10 13:33:01 +01:00
00cbadb870 RFC: Replace custom TF embeddings by Keras embeddings (#18939) 2022-09-10 11:34:49 +01:00
855dcae8bb update black target version (#18955)
* update black target version

* add comment

as per https://github.com/huggingface/transformers/pull/18955#issuecomment-1242081649

* revert change

Will only update to 3.7 after black 2023 upgrade in January
2022-09-09 17:30:05 -04:00
645f174286 Exit early in load if no weights are in the sharded state dict (#18937) 2022-09-09 15:07:09 -04:00
660e0b97bd Fix train_step, test_step and tests for CLIP (#18684)
* Fix train_step and test_step, correctly enable CLIP fit test

* Stop using get_args on older Python versions

* Don't use get_origin either

* UnionType is actually even newer, don't use that either

* Apply the same fix to test_loss_computation

* Just realized I was accidentally skipping a bunch of tests!

* Fix test_loss_computation for models without separable labels

* Fix scalar losses in test_step and train_step

* Stop committing your breakpoints

* Fix Swin loss shape

* Fix Tapas loss shape

* Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE

* Add loss computation to TFMobileBertForPreTraining

* make fixup and move copied from statement

* make fixup and move copied from statement

* Correct copied from

* Add labels and next_sentence_label inputs to TFMobileBERT

* Make sure total_loss is always defined

* Update tests/test_modeling_tf_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copied from

* Ensure CTC models get labels in tests

* Ensure CTC models get labels in tests

* Fix tests for vit_mae

* Fix tests for vit_mae

* Fix tests for vit_mae

* Reduce batch size for wav2vec2 testing because it was causing OOM

* Skip some TAPAS tests that are failing

* Skip a failing HuBERT test

* make style

* Fix mobilebertforpretraining test

* Skip Wav2Vec2 tests that use huge amounts of mem

* Skip keras_fit for Wav2Vec2 as well

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-09 20:01:02 +01:00
f1a6df3210 Generate: Simplify is_pad_token_not_equal_to_eos_token_id (#18933) 2022-09-09 16:44:56 +01:00
85125fcffd Neptune.ai integration improvements (#18934)
* NeptuneCallback improvements

* After review suggestions and deduplication of initial run

* Added volatile checkpoints support due to missing post-rebase commit

* Update README per review comments

- Remove list formatting
- Correct Neptune docs link

Co-authored-by: Sabine <sabine.nyholm@neptune.ai>
2022-09-09 11:37:34 -04:00
e6f221c8d4 [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_* (#18361)
* [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_*

* fix double tree_util
2022-09-09 15:18:56 +02:00
22f7218560 add task_type_id to BERT to support ERNIE-2.0 and ERNIE-3.0 models (#18686)
* add_ernie

* remove Tokenizer in ernie

* polish code

* format code style

* polish code

* fix style

* update doc

* make fix-copies

* change model name

* change model name

* fix dependency

* add more copied from

* rename ErnieLMHeadModel to ErnieForCausalLM
do not expose ErnieLayer
update doc

* fix

* make style

* polish code

* polish code

* fix

* fix

* fix

* fix

* fix

* final fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-09 07:36:46 -04:00
895c528886 Update translation requests contact (#18941)
* Update TRANSLATING.md

Update the contact to @GuggerSylvain

* Update docs/TRANSLATING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-09 09:15:24 +02:00
bb6f6d5338 Add X-CLIP (#18852)
* First draft

* Improve conversion script

* Make vision encoder work

* More improvements

* Improve conversion script

* Fix quality

* Add MultiframeIntegrationTransformer

* More improvements

* Make MiT output work

* Fix quality

* Add prompts generator

* Add tests

* Fix some tests

* Fix some more tests

* Fix more tests

* Improve conversion script

* Fix model outputs

* Fix more tests

* Add XClipProcessor

* Use processor in conversion script

* Fix integration test

* Update README, fix docs

* Fix all tests

* Add MIT output to XClipOutput

* Create better variable names

* Rename XClip to XCLIP

* Extend conversion script

* Add support for large models

* Add support for 16 frame models

* Add another model'

* Fix module issue

* Apply suggestions from code review

* Add figure to docs

* Fix CLIPProcessor issue

* Apply suggestions from code review

* Delete file

* Convert more checkpoints

* Convert last checkpoint

* Update nielsr to microsoft
2022-09-08 14:50:30 +02:00
9832ac7c73 Fix LayoutXLM wrong link in README (#18932)
* fix LayoutXLM wrong link in README

* fix LayoutXLM worng link in index.mdx
2022-09-08 07:32:41 -04:00
90f6fe9155 Skip some doctests in quicktour (#18927)
* skip some code examples for doctests

* make style

* fix code snippet formatting

* separate code snippet into two blocks
2022-09-07 14:45:22 -07:00
6519150c31 Add image height and width to ONNX dynamic axes (#18915) 2022-09-07 22:42:46 +02:00
737f6ad1f7 Starts on a list of external deps required for dev (#18929)
* Starts on a list of external deps required for dev

I've found that I need to install MeCab manually on my AS Mac.

* Generalizes OS nascent dependency list

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 16:33:03 -04:00
6394221871 Fix XLA fp16 and bf16 error checking (#18913)
* Fix XLA fp16 and bf16 error checking

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 15:45:17 -04:00
6690ba3f4d pin TF 2.9.1 for self-hosted CIs (#18925)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 19:46:14 +02:00
2ef7742117 Add DocumentQuestionAnswering pipeline (#18414)
* [WIP] Skeleton of VisualQuestionAnweringPipeline extended to support LayoutLM-like models

* Fixup

* Use the full encoding

* Basic refactoring to DocumentQuestionAnsweringPipeline

* Cleanup

* Improve args, docs, and implement preprocessing

* Integrate OCR

* Refactor question_answering pipeline

* Use refactored QA code in the document qa pipeline

* Fix tests

* Some small cleanups

* Use a string type annotation for Image.Image

* Update encoding with image features

* Wire through the basic docs

* Handle invalid response

* Handle empty word_boxes properly

* Docstring fix

* Integrate Donut model

* Fixup

* Incorporate comments

* Address comments

* Initial incorporation of tests

* Address Comments

* Change assert to ValueError

* Comments

* Wrap `score` in float to make it JSON serializable

* Incorporate AutoModeLForDocumentQuestionAnswering changes

* Fixup

* Rename postprocess function

* Fix auto import

* Applying comments

* Improve docs

* Remove extra assets and add copyright

* Address comments

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-07 13:38:49 -04:00
3059d80d80 [DeepSpeed ZeRO3] Fix performance degradation in sharded models (#18911)
* [DeepSpeed] Fix performance degradation in sharded models

* style

* polish

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-07 07:44:20 -07:00
10c774cf60 remvoe _create_and_check_torch_fx_tracing in specific test files (#18667)
* remvoe _create_and_check_torch_fx_tracing defined in specific model test files

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 16:22:09 +02:00
0eabab0998 TF: final bias as a layer in seq2seq models (replicate TFMarian fix) (#18903) 2022-09-07 14:03:02 +01:00
2b9513fdab Update TF fine-tuning docs (#18654)
* Update TF fine-tuning docs

* Fix formatting

* Add some section headers so the right sidebar works better

* Squiggly it

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Explain things in the text, not the comments

* Make the two dataset creation methods into a list

* Move the advice about collation out of a <Tip>

* Edits for clarity

* Edits for clarity

* Edits for clarity

* Replace `to_tf_dataset` with `prepare_tf_dataset` in the fine-tuning pages

* Restructure the page a little bit

* Restructure the page a little bit

* Restructure the page a little bit

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 13:30:07 +01:00
d842f2d5b9 update the train_batch_size in case HPO change batch_size_per_device (#18918)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-07 08:01:30 -04:00
4f299b2446 Accelerator end training (#18910)
* add accelerator.end_training()

Some trackers need this to end their runs.

* fixup and quality

* add space

* add space again ?!?
2022-09-07 07:46:26 -04:00
7a8118947f Add checks for more workflow jobs (#18905)
* add check for scheduled CI

* Add check to other CIs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 12:51:37 +02:00
c25f27fa6a [VideoMAE] Improve code examples (#18919)
* Simplify code example

* Add seed
2022-09-07 12:24:12 +02:00
0a632f076d Fix incorrect size of input for 1st strided window length in Perplexity of fixed-length models (#18906)
* update the PPL for stride 512

* fix 1st strided window size

* linting

* fix typo

* styling
2022-09-06 15:20:12 -04:00
7d5fde991d unpin slack_sdk version (#18901)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 18:42:00 +02:00
71ff88fa4f Further reduce the number of alls to head for cached objects (#18871)
* Further reduce the number of alls to head for cached models/tokenizers/pipelines

* Fix tests

* Address review comments
2022-09-06 12:34:37 -04:00
6678350c01 fixes bugs to handle non-dict output (#18897) 2022-09-06 16:13:34 +03:00
998a90bc7d Fix test_tf_encode_plus_sent_to_model for LayoutLMv3 (#18898)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 14:51:03 +02:00
f85acb4d73 Fix decode_input_ids to bare T5Model and improve doc (#18791)
* use tokenizer to output tensor

* add preprocessing for decoder_input_ids for bare T5Model

* add preprocessing to tf and flax

* linting

* linting

* Update src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_tf_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 14:12:26 +02:00
3b19c0317b updating gather function with gather_for_metrics in run_wav2vec2_pretraining (#18877)
Co-authored-by: Arun Rajaram <arunrajaram@Aruns-MacBook-Pro.local>
2022-09-06 07:36:37 -04:00
Had
734b7e2a5a Mask t5 relative position bias then head pruned (#17968)
* add position bias head masking if heads pruned

* fix pruning function in t5 encoder

* make style

* make fix-copies

* Revert added folder

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 10:39:31 +02:00
d4dbd7ca59 Generate: get the correct beam index on eos token (#18851) 2022-09-05 19:35:47 +01:00
c6d3daba54 Update Chinese documentation (#18893)
* update the translation
2022-09-05 19:56:12 +02:00
cfd623a859 Add type hints to XLM-Roberta-XL models (#18475)
* Add type hints to XLM-Roberta-XL models

* Format
2022-09-05 13:38:08 +01:00
17c634fd5b Update perf_train_gpu_one.mdx (#18442) 2022-09-05 14:06:36 +02:00
badb9d2aaa Correct naming pegasus x (#18896)
* add first generation tutorial

* [Pegasus X] correct naming

* [Generation] Remove
2022-09-05 11:25:00 +02:00
591cfc6c90 Mention TF and Flax checkpoints (#18894) 2022-09-05 11:09:39 +02:00
7f27e002fd TF: TFMarianMTModel final logits bias as a layer (#18833)
* bias as a layer

* alias the bias (hah, it rhymes)

* add comment with info
2022-09-05 09:20:27 +01:00
65fb71bc76 Add Trainer to quicktour (#18723)
* 📝 update quicktour

* 📝 add trainer section

* 🖍 markdown table, apply feedbacks

*  make style

* add tf training section

* make style
2022-09-02 15:05:31 -05:00
ae32f3afef Finetune guide for semantic segmentation (#18640)
* 📝 first draft

* oops add to toctree

* make style

* 📝 add inference section

* 🖍 make style

* 📝 add images

* 🖍 apply feedbacks

* remove num_labels and pytorch block

* apply feedbacks, add colab notebook

Co-authored-by: Steven <stevhliu@gmail.com>
2022-09-02 14:29:51 -05:00
bf9d506137 Update docs landing page (#18590)
* 📝 update docs landing page

* 🖍 apply feedbacks

* apply feedbacks

* apply feedbacks, use <br> for list
2022-09-02 14:29:06 -05:00
53e33e6f1b PEGASUS-X (#18551)
* PegasusX Initial commit

* rename

* pegasus X implementation

* pegx update

* pegx fix

* pegasus-x fixes

* pegx updates

* cleanup

* cleanup

* cleanup

* tests

* stylefixes

* Documentation update

* Model hub fix

* cleanup

* update

* update

* testfix

* Check fix

* tweaks for merging

* style

* style

* updates for pr

* style

* change pegasus-x repo
2022-09-02 19:54:02 +02:00
ecdf9b06bc Remove cached torch_extensions on CI runners (#18868)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 18:17:58 +02:00
4e29b3f884 A script to download artifacts and perform CI error statistics (#18865)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 17:59:26 +02:00
9196f48b95 Generate: validate model_kwargs on TF (and catch typos in generate arguments) (#18651) 2022-09-02 16:25:26 +01:00
c5be7cae59 postpone bnb load until it's needed (#18859) 2022-09-02 08:22:46 -07:00
9e346f7436 Fix number of examples for iterable datasets in multiprocessing (#18856)
* Fix number of examples for iterable datasets in multiprocessing

* Add stronger check
2022-09-02 10:49:39 -04:00
0ab465a5d2 pin Slack SDK to 3.18.1 to avoid failing issue (#18869)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 16:49:08 +02:00
38c3cd52fb Clean up utils.hub using the latest from hf_hub (#18857)
* Clean up utils.hub using the latest from hf_hub

* Adapt test

* Address review comment

* Fix test
2022-09-02 10:30:06 -04:00
17981faf67 Add OWL-ViT to the appropriate section (#18867)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 15:59:25 +02:00
c60dd98e87 [LayoutLM] Add clarification to docs (#18716)
* Add clarification

* Add another clarification

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 14:48:19 +02:00
129d73294e Fix naming issue with ImageToText pipeline (#18864)
Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-02 07:55:30 -04:00
9b3eb81014 if learning rate is a tensor, get item (float) (#18861) 2022-09-02 07:46:31 -04:00
142e12afb4 Split docs on modality (#18205)
* update

* 🖍 add missing files

* 📝 add nested sections

* 🖍 align titles with tasks

* oops

* remove quotes from titles
2022-09-01 15:19:11 -05:00
23fab60b67 Pin revision for LayoutLMForQuestionAnswering and TFLayoutLMForQuestionAnswering tests (#18854)
* Pin revision for tests

* Fixup

* Update revision in models

* Shorten revisions

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-01 12:52:33 -04:00
ddb69e5af8 Add Image To Text Generation pipeline (#18821)
* Add Image2TextGenerationPipeline to supported pipelines

* Add Flax and Tensorflow support

* Add Flax and Tensorflow small tests

* Add default model for Tensorflow

* Add docstring

* Fix doc style

* Add tiny models for pytorch and flax

* Remove flax from pipeline.
Fix tests

* Use ydshieh/vit-gpt2-coco-en as a default for both PyTorch and Tensorflow

* Fix Tensorflow support

Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-01 12:07:14 -04:00
c61f116b63 Tie weights after preparing the model in run_clm (#18855) 2022-09-01 12:06:56 -04:00
1c381f3600 Cache results of is_torch_tpu_available() (#18777)
* Cache results of is_torch_tpu_available()

* Update src/transformers/utils/import_utils.py

* Update src/transformers/utils/import_utils.py
2022-09-01 11:45:33 -04:00
954e18ab97 TensorFlow MobileViT (#18555)
* initial implementation.

* add: working model till image classification.

* add: initial implementation that passes intg tests.

Co-authored-by: Amy <aeroberts4444@gmail.com>

* chore: formatting.

* add: tests (still breaking because of config mismatch).

Coo-authored-by: Yih <2521628+ydshieh@users.noreply.github.com>

* add: corrected tests and remaning changes.

* fix code style and repo consistency.

* address PR comments.

* address Amy's comments.

* chore: remove from_pt argument.

* chore: add full-stop.

* fix: TFLite model conversion in the doc.

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply formatting.

* chore: remove comments from the example block.

* remove identation in the example.

Co-authored-by: Amy <aeroberts4444@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-01 10:35:15 -04:00
fe58929ad6 Adds timeout argument to training_args to avoid socket timeouts in DDP (#18562)
* chore(training_args): Adds support for timeout argument.

* fix(training_args): Passes make style through changes.

* fix(training_args): Removes wrong docstring sentence.

* fix(training_args): Fixes timeout not being JSON serializable.

* fix(training_args_sm): Also updates timeout to timeout_delta.

* fix(training_args): Fixes PR according to suggestions.
2022-09-01 10:33:53 -04:00
ab663b2274 reflect max_new_tokens in Seq2SeqTrainer (#18786)
* reflect max_new_tokens in gen_kwargs to `trainer.generate()`

* reflect max_new_tokens in `Seq2SeqTrainer`

* remove unnecessary variable

* Trigger CI

* fix style
2022-09-01 09:12:38 -04:00
f719c0377f Minor typo in prose of model outputs documentation. (#18848) 2022-09-01 12:05:40 +02:00
fafbb57df1 Pin rouge_score (#18247)
* Pin rouge_score

* Pin also in dependency_versions_table

* Update excluded versions

* Revert "Update excluded versions"

This reverts commit 0d0362df30a816108835f5c061272ee2bafec270.

* Revert "Revert "Update excluded versions""

This reverts commit 66c47af8a6baff253575631b0ba392e0354b6d56.
2022-09-01 12:04:49 +02:00
e7da38f5dc add a script to get time info. from GA workflow jobs (#18822)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 12:02:52 +02:00
6e016634f1 Generate: smaller TF serving test (#18840) 2022-09-01 10:53:39 +01:00
563a8d58db Delete state_dict to release memory as early as possible (#18832)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 10:55:30 +02:00
a26c752353 Unpin fsspec (#18846) 2022-09-01 10:20:15 +02:00
359f7b4b8d Create pipeline_tutorial.mdx german docs (#18625)
* Create pipeline_tutorial.mdx

* Update _toctree.yml
2022-09-01 09:57:59 +02:00
5d81a56833 Owlvit memory leak fix (#18734)
* fix memory leak
* fix typos
* use singular last hidden state variable names
* eliminate double call to self.owlvit to return last hidden states
* eliminate 2nd call to self.vision_model in OwlViTModel
2022-09-01 10:31:08 +03:00
80367cd1fb Add security warning about the from_pretrained() method (#18801)
* Add security warning about from_pretrained() method

* Add sentence about malware scanner

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-31 21:48:40 +02:00
7e7f743481 Add SegFormer ONNX support (#18006)
* Add ONNX support

* Make height and width dynamic axes

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 20:58:44 +02:00
89514f0541 Improve Text Generation doc (#18788)
* fix args for bram search decoding in generation utils

* fix missing PAD token in gpt2

* add PAD EOS change to TF

* Update src/transformers/generation_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-31 20:30:29 +02:00
86387fe87f Add an option to HfArgumentParser.parse_{dict,json_file} to raise an Exception when there extra keys (#18692)
* Update parser to track unneeded keys, off by default

* Fix formatting

* Fix docstrings and defaults in HfArgparser

* Fix formatting
2022-08-31 20:26:45 +02:00
f210e2a414 Improve GPT2 doc (#18787)
* Minor typo in GPT2 doc

* improve gpt2 label doc

* update dim of label in GPT2ForTokenClassification

* add change to tf
2022-08-31 19:26:39 +02:00
74690b62a1 Pin ffspec (#18837)
* Pin ffspec

* Typo
2022-08-31 19:04:04 +02:00
3b6943e7a3 [DETR] Add num_channels attribute (#18714)
* Add num_channels attribute

* Fix code quality

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 18:04:42 +02:00
811c4c9f79 fix bug: register_for_auto_class should be defined on TFPreTrainedModel instead of TFSequenceSummary (#18607) 2022-08-31 16:37:18 +02:00
ee407024c4 Update location identification (#18834) 2022-08-31 15:10:25 +02:00
e4910213be Warn on TPUs when the custom optimizer and model device are not the same (#18668)
* Check optimizer for device on TPU

* Typo
2022-08-31 08:46:31 -04:00
cdde85a0a0 oob performance improvement for cpu DDP (#18595)
* oob performance improvement for cpu DDP

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add is_psutil_available check

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-08-31 14:35:10 +02:00
c3be98ebab Fix cost condition in DetrHungarianMatcher and YolosHungarianMatcher to allow zero-cost (#18647)
* Fix loss condition in DetrHungarianMatcher

* Fix costs condition in YolosHungarianMatcher
2022-08-31 14:28:58 +02:00
fea4636cfa Pin max tf version (#18818) 2022-08-31 10:07:53 +02:00
5c4c869014 Add LayoutLMForQuestionAnswering model (#18407)
* Add LayoutLMForQuestionAnswering model

* Fix output

* Remove TF TODOs

* Add test cases

* Add docs

* TF implementation

* Fix PT/TF equivalence

* Fix loss

* make fixup

* Fix up documentation code examples

* Fix up documentation examples + test them

* Remove LayoutLMForQuestionAnswering from the auto mapping

* Docstrings

* Add better docstrings

* Undo whitespace changes

* Update tokenizers in comments

* Fixup code and remove `from_pt=True`

* Fix tests

* Revert some unexpected docstring changes

* Fix tests by overriding _prepare_for_class

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-31 10:05:33 +02:00
e88e9ff045 Disable nightly CI temporarily (#18820)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-30 18:33:09 +02:00
73c6273d48 Improving the documentation for "word", within the pipeline. (#18763)
* Improving the documentation for "word", within the pipeline.

* Quality.
2022-08-30 15:29:48 +02:00
5727dfcebe Added Docstrings for Deberta and DebertaV2 [PyTorch] (#18610)
* Added Doctest for Deberta Pytorch

* Added path in documentation test file

* Added docstrings for DebertaV2

* Revert "Added docstrings for DebertaV2"

This reverts commit 307185e62a21b3bd0923444cc8a8af1747fd2600.

* Added DebertaV2 Docstrings
2022-08-30 14:46:21 +02:00
a98f6a1da0 LayoutXLMProcessor: ensure 1-to-1 mapping between samples and images, and add test for it (#18774) 2022-08-30 14:43:14 +02:00
220da3b8a1 Adds GroupViT to models exportable with ONNX (#18628)
* groupvit to onnx

* dynamic shape for pixel values dim
2022-08-30 14:31:35 +02:00
46d0e26a27 Adds OWLViT to models exportable with ONNX (#18588)
* onnx conversion for owlvit

* .T to .t()

* dynamic shapes for pixel values
2022-08-30 14:30:59 +02:00
b83796ded7 Remove ViltForQuestionAnswering from check_repo (#18762)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 14:15:36 +02:00
ef91a2d135 Run tests if skip condition not met (#18764)
* Run tests if skip condition not met

* Update comment - remove outdated ref to TF 2.8
2022-08-30 14:03:28 +02:00
de8548ebf3 [LayoutLMv3] Add TensorFlow implementation (#18678)
Co-authored-by: Esben Toke Christensen <esben.christensen@visma.com>
Co-authored-by: Lasse Reedtz <lasse.reedtz@visma.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-30 11:48:11 +01:00
7320d95d98 [Swin, Swinv2] Fix attn_mask dtype (#18803)
* Add dtype

* Fix Swinv2 as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 12:31:34 +02:00
5c702175eb up (#18805) 2022-08-30 12:30:46 +02:00
da02b4035c Add docstring for BartForCausalLM (#18795)
* add docstring for BartForCausalLM

* doc-style fic
2022-08-30 12:19:03 +02:00
8c4a11493f Revert to and safely handle flag in owlvit config (#18750) 2022-08-29 18:48:24 +02:00
da5bb29219 send model to the correct device (#18800)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 18:46:30 +02:00
f1fd460694 Add SegFormer and ViLT links (#18808)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-29 18:46:07 +02:00
169b8cde47 Fix mock in test_cached_files_are_used_when_internet_is_down (#18804) 2022-08-29 15:56:08 +02:00
8b67f20935 Fix memory leak issue in torch_fx tests (#18547)
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 11:43:20 +02:00
b10a3b3760 fix a possible typo in auto feature extraction (#18779) 2022-08-29 11:24:53 +02:00
5f06a09b9f fix missing block when there is no failure (#18775)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 09:10:13 +02:00
f2fbe44753 Fix broken link DeepSpeed documentation link (#18783)
* Fix broken link

* Trigger CI

Co-authored-by: Stas Bekman <stas@stason.org>
2022-08-28 19:32:19 -07:00
21f6f58721 Fix incomplete outputs of FlaxBert (#18772)
* Fix incomplete FlaxBert outputs

* fix big_bird electra roberta
2022-08-26 21:04:18 +02:00
62ceb4d661 [Wav2vec2 + LM Test] Improve wav2vec2 with lm tests and make torch version dependent for now (#18749)
* add first generation tutorial

* remove generation

* make version dependent expected values

* Apply suggestions from code review

* Update tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py

* fix typo
2022-08-26 14:11:55 +02:00
8869bf41fe [VisionEncoderDecoder] Add gradient checkpointing (#18697)
* add first generation tutorial

* VisionEnocderDecoder gradient checkpointing

* remove generation

* add tests
2022-08-26 14:11:27 +02:00
06a6a4bd51 CLI: Improved error control and updated hub requirement (#18752) 2022-08-25 17:08:05 +01:00
e9442440fc streamlining 'checkpointing_steps' parsing (#18755) 2022-08-25 11:00:38 -04:00
fbf382c84d Determine framework automatically before ONNX export (#18615)
* Automatic detection for framework to use when exporting to ONNX

* Log message change

* Incorporating PR comments, adding unit test

* Adding tf for pip install for run_tests_onnxruntime CI

* Restoring past changes to circleci yaml and test_onnx_v2.py, tests moved to tests/onnx/test_features.py

* Fixup

* Adding test to fetcher

* Updating circleci config to log more

* Changing test class name

* Comment typo fix in tests/onnx/test_features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Moving torch_str/tf_str to self.framework_pt/tf

* Remove -rA flag in circleci config

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-08-25 16:31:34 +02:00
3223d49354 Add ONNX support for Longformer (#17176)
* Implement ONNX support for Longformer

Fix repo consistency check complaints

Fix value mismatches

Add pooler output for default model

Increase validation atol to accommodate multiple-choice error

Fix copies

Fix chunking for longer sequence lengths

Add future comment

* Fix issue in mask_invalid_locations

* Remove torch imports in configuration_longformer

* Change config access to fix LED

* Push opset version to support tril

* Work in review comments (mostly style)

* Add Longformer to ONNX tests
2022-08-25 08:34:42 +02:00
c55d6e4e10 examples/run_summarization_no_trainer: fixed incorrect param to hasattr (#18720)
* fixed incorrect param to hasattr

* simplified condition checks

* code cleanup
2022-08-24 12:12:42 -04:00
6667b0d7bf add warning to let the user know that the __call__ method is faster than encode + pad for a fast tokenizer (#18693)
* add warning to let the user know that the  method is slower that  for a fast tokenizer

* user warnings

* fix layoutlmv2

* fix layout*

* change warnings into logger.warning
2022-08-24 06:27:56 -04:00
dcff504e18 fixed docstring typos (#18739)
* fixed docstring typos

* Added missing colon

Co-authored-by: 김주영 <juyoung@zezedu.com>
2022-08-24 06:20:27 -04:00
e49c71fc4c Bump nbconvert from 6.3.0 to 6.5.1 in /examples/research_projects/lxmert (#18742)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:56 -04:00
5b24949669 Bump nbconvert in /examples/research_projects/visual_bert (#18741)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:48 -04:00
c72d7d91bf Add TF implementation of XGLMModel (#16543)
* Add TFXGLM models 

* Add todo: self.supports_xla_generation = False

Co-authored-by: Daniel Stancl <stancld@Daniels-MacBook-Pro.local>
Co-authored-by: Daniel Stancl <stancld@daniels-mbp.home>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Daniel <daniel.stancl@rossum.ai>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-08-24 10:51:05 +01:00
cecf9f9b27 fix pipeline_tutorial.mdx doctest (#18717)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-24 05:38:03 -04:00
a442884b87 Add minor doc-string change to include hp_name param in hyperparameter_search (#18700)
* Add minor doc-string change to include hp_name

* fix: missing type-information for kwargs

* fix: missing white-space in hyperparameter_search doc-strings
2022-08-24 05:07:17 -04:00
c12dbdc246 Update perf_infer_gpu_many.mdx (#18744) 2022-08-24 10:37:52 +02:00
6faf283288 CLI: Don't check the model head when there is no model head (#18733) 2022-08-23 15:38:59 +01:00
438698085c improve add_tokens docstring (#18687)
* improve add_tokens documentation

* format
2022-08-23 07:23:51 -04:00
891704b3c2 Removing warning of model type for microsoft/tapex-base-finetuned-wtq (#18711)
and friends.
2022-08-23 13:17:06 +02:00
84beb8a49b Unpin detectron2 (#18727)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-23 11:10:07 +02:00
d90a36d192 remove check for main process for trackers initialization (#18706) 2022-08-22 11:16:27 -04:00
0f257a8774 Add missing tokenizer tests - Longformer (#17677) 2022-08-22 12:13:20 +02:00
3fa45dbd91 Fix Data2VecVision ONNX test (#18587)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-22 11:28:23 +02:00
30992ef0d9 [Hotfix] pin detectron2 5aeb252 to avoid test fix (#18701)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-20 00:37:38 +02:00
1f3c2282b5 Temp fix for broken detectron2 import (#18699)
* add first generation tutorial

* [Circle CI] Temporary fix for broken detectron2 import

* remove generation
2022-08-19 22:55:33 +02:00
e95d433d77 Generate: add missing **model_kwargs in sample tests (#18696) 2022-08-19 16:14:27 +01:00
e54a1b49aa model.tie_weights() should be applied after accelerator.prepare() (#18676)
* `model.tie_weights()` should be applied after `accelerator.prepare`

Weight tying should be done after the model has been moved to XLA device as mentioned on PyTorch/XLA Troubleshooting guide [here](https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks)

* format code
2022-08-18 13:46:57 -04:00
bbbb453e58 Add an examples folder for code downstream tasks (#18679)
* add examples subfolder

* mention examples in codeparrot readme

* use Trainer optimizer and scheduler type and add output_dir as argument

* add example of text-to-python and python-to-text models

* mention the downstream examples in the readme

* fix typo
2022-08-18 18:24:24 +02:00
a123eee9df [bnb] Move documentation (#18671)
* fix bnb documentation

- move bnb documentation to `infer_gpu_many`

* small refactoring

- added text on infer_gpu_one
- added a small note on infer_gpu_many
- added customized multi gpu example on infer_gpu_many

* Update docs/source/en/perf_infer_gpu_many.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-08-18 17:34:48 +02:00
358fc18613 Add evaluate to examples requirements (#18666) 2022-08-18 10:57:39 -04:00
d243112b65 Fix breaking change in onnxruntime for ONNX quantization (#18336)
* Fix quantization

* Save model

* Remove unused comments

* Fix formatting
2022-08-18 10:06:16 -04:00
5987c637ee Fix repo consistency (#18682) 2022-08-18 09:47:50 -04:00
76454b08c8 Rename second input dimension from "sequence" to "num_channels" for CV models (#17976) 2022-08-18 15:13:54 +02:00
780253ce3d Rename method to avoid clash with property (#18677) 2022-08-18 12:56:27 +01:00
2c947d2939 Ping detectron2 for CircleCI tests (#18680)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-18 12:57:18 +02:00
a541d97477 Generate: validate model_kwargs on FLAX (and catch typos in generate arguments) (#18653) 2022-08-18 10:56:21 +01:00
0ea53822f8 [LongT5] Correct docs long t5 (#18669)
* add first generation tutorial

* [LongT5 Docs] Correct docs

* correct expected string

* remove incorrect file
2022-08-18 10:03:50 +02:00
582c537175 Allow users to force TF availability (#18650)
* Allow users to force TF availability

* Correctly name the envvar!
2022-08-18 03:09:09 -04:00
49e44b216b Update feature extractor methods to enable type cast before normalize (#18499)
* Update methods to optionally rescale
This is necessary to allow for casting our images / videos to numpy arrays within the feature extractors' call. We want to do this to make sure the behaviour is as expected when flags like  are False. If some transformations aren't applied, then the output type can't be unexpected e.g. a list of PIL images instead of numpy arrays.

* Cast images to numpy arrays in call to enable consistent behaviour with different configs

* Remove accidental clip changes

* Update tests to reflect the scaling logic
We write a generic  function to handle rescaling of our arrays. In order for the API to be intuitive, we take some factor c and rescale the image values by that. This means, the rescaling done in normalize and to_numpy_array are now done with array * (1/255) instead of array / 255. This leads to small differences in the resulting image. When testing, this was in the order of 1e-8, and so deemed OK
2022-08-17 19:57:07 +01:00
86d0b26d6c Fix matmul inputs dtype (#18585) 2022-08-17 15:59:43 +02:00
c99e984657 Fix Yolos ONNX export test (#18606)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-17 10:04:49 +02:00
358478e729 Examples: add Bloom support for token classification (#18632)
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
2022-08-17 09:50:57 +02:00
6d175c1129 [bnb] Minor modifications (#18631)
* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-08-17 00:48:10 +02:00
25e651a2de Update run_translation_no_trainer.py (#18637)
* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
2022-08-16 13:25:57 -04:00
a27195b1de Update longt5.mdx (#18634) 2022-08-16 10:20:46 -05:00
fd9aa82b07 TF: Fix generation repetition penalty with XLA (#18648) 2022-08-16 13:30:52 +01:00
81ab11124f Add checks for some workflow jobs (#18583)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:53:47 +02:00
510c2a0b32 Change scheduled CIs to use torch 1.12.1 (#18644)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:41:37 +02:00
9cf274685a mac m1 mps integration (#18598)
* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
2022-08-16 16:34:51 +05:30
d6eeb87170 Flax Remat for LongT5 (#17994)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2022-08-14 16:27:13 +01:00
1ccd2515ed small change (#18584) 2022-08-12 20:04:38 +02:00
b3ff7c680c [fsmt] deal with -100 indices in decoder ids (#18592)
* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style
2022-08-12 10:50:52 -07:00
37c5991843 [doc] fix anchors (#18591)
the manual anchors end up being duplicated with automatically added anchors and no longer work.
2022-08-12 10:49:59 -07:00
56ef0ba447 Update BLOOM parameter counts (#18531)
* Update BLOOM parameter counts

* Update BLOOM parameter counts
2022-08-12 19:36:18 +02:00
153d1361c7 Fix URLs (#18604)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 18:52:49 +02:00
2ab790e82d Add Donut (#18488)
* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 16:40:58 +02:00
a5ca56ff15 Supporting seq2seq models for bitsandbytes integration (#18579)
* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!
2022-08-12 16:15:09 +02:00
ed1924e801 Generate: validate model_kwargs (and catch typos in generate arguments) (#18261)
* validate generate model_kwargs

* generate tests -- not all models have an attn mask
2022-08-12 14:53:51 +01:00
2156619f10 Add TFAutoModelForSemanticSegmentation to the main __init__.py (#18600)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-12 15:10:00 +02:00
4eed2beca0 FSDP bug fix for load_state_dict (#18596) 2022-08-12 08:48:37 -04:00
d344534bf6 typos (#18594) 2022-08-12 08:40:53 -04:00
3cdaea47ec update doc for perf_train_cpu_many, add intel mpi introduction (#18576)
* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 08:36:27 -04:00
46d09410eb Add type hints for ViLT models (#18577)
* Add type hints for Vilt models

* Add missing return type for TokenClassification class
2022-08-12 12:11:28 +01:00
bce36ee065 Load sharded pt to flax (#18419)
* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 09:48:10 +02:00
c8b6ae858d Return the permuted hidden states if return_dict=True (#18578) 2022-08-11 17:32:11 +01:00
f28f240828 fix owlvit tests, update docstring examples (#18586) 2022-08-11 19:10:25 +03:00
05d3a43c59 Bump nbconvert in /examples/research_projects/visual_bert (#18566)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:31 -04:00
713ab6fde5 Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:19 -04:00
c23cbdff4c Fix docstrings with last version of hf-doc-builder styler (#18581)
* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block
2022-08-11 10:35:47 -04:00
42b8940b34 [FX] _generate_dummy_input supports audio-classification models for labels (#18580)
* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES
2022-08-11 16:34:44 +02:00
d53dffec6e Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)
* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-11 09:54:43 -04:00
5d3f037433 german docs translation (#18544)
* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml
2022-08-11 09:52:27 -04:00
80468251bc Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)
* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
2022-08-11 09:45:04 -04:00
3f0707b2fe Skip broken tests 2022-08-11 09:33:41 -04:00
4c8ec66a74 Fix LayoutLMv3 documentation (#17932)
* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality
2022-08-11 08:51:39 -04:00
f762f373cc Fix resizing bug in OWL-ViT (#18573)
* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False
2022-08-11 15:44:23 +03:00
76568d24b6 Segformer TF: fix output size in documentation (#18572)
* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
2022-08-11 10:59:37 +02:00
051311ff66 fix string (#18568) 2022-08-10 15:28:19 -07:00
9a9a525be8 raise atol for MT5OnnxConfig (#18560)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-10 22:41:58 +02:00
f62cb8313c Adds CLIP to models exportable with ONNX (#18515)
* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 15:47:31 -04:00
50949fab74 Properly move cache when it is not in default path (#18563) 2022-08-10 15:46:03 -04:00
6936e7c487 Update philosophy to include other preprocessing classes (#18550)
* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks
2022-08-10 13:20:39 -05:00
9d4a45509a pipeline support for device="mps" (or any other string) (#18494)
* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 18:52:15 +02:00
0d0aada564 Use commit hash to look in cache instead of calling head (#18534)
* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-10 11:55:18 -04:00
6eb51450fa TF Examples Rewrite (#18451)
* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-10 16:49:51 +01:00
d7e2d7b40b Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)
* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement
2022-08-10 08:00:18 -04:00
34aad0dac0 TF: XLA-trainable DeBERTa v2 (#18546)
* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float
2022-08-10 12:57:21 +01:00
4a51075a96 bitsandbytes - Linear8bitLt integration into transformers models (#17901)
* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-10 09:13:36 +02:00
8cf4a6f0a6 📝 update documentation build section (#18548) 2022-08-09 18:22:55 -05:00
38a674599c Clean up comment 2022-08-09 15:15:01 -04:00
5e2f373705 Restore _init_weights value in no_init_weights (#18504)
* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 14:23:30 -04:00
0c183cc2f4 📝 update metric with evaluate (#18535) 2022-08-09 11:58:11 -05:00
9f5fe63548 Adding a new align_to_words param to qa pipeline. (#18010)
* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 18:50:02 +02:00
ab2006e3d6 BART - Fix attention mask device issue on copied models (#18540)
* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix
2022-08-09 14:47:18 +02:00
6bea7b8178 Minor update of run_call_with_unpacked_inputs (#18541)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-09 14:33:41 +02:00
8cb5ecd912 Add mt5 onnx config (#18394)
* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
2022-08-09 03:46:53 -04:00
fe785730dc fix: data2vec-vision Onnx ready-made configuration. (#18427)
* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config
2022-08-09 03:35:05 -04:00
ab62a23d8c Let's not cast them all (#18471)
* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
2022-08-08 23:48:49 +02:00
499450ed75 Spanish translation of summarization.mdx (#15947) (#18477)
* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-08-08 15:54:11 -04:00
ed70f24291 Add Spanish translation of converting_tensorflow_models.mdx (#18512)
* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review
2022-08-08 15:53:43 -04:00
a765b68aa6 Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
2022-08-08 15:52:47 -04:00
f1f5de31ed Update perf_train_gpu_one.mdx (#18532) 2022-08-08 20:33:34 +02:00
82bb682643 [VideoMAE] Add model to doc tests (#18523)
* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-08 19:28:51 +02:00
3632531ec6 Add example of multimodal usage to pipeline tutorial (#18498)
* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback
2022-08-08 11:31:31 -05:00
36b37990af update to use interlibrary links instead of Markdown (#18500) 2022-08-08 10:53:52 -05:00
ec8d26248f unpin resampy (#18527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 17:44:10 +02:00
47e1676255 New cache fixes: add safeguard before looking in folders (#18522) 2022-08-08 10:22:27 -04:00
7495924007 Specify en in doc-builder README example (#18526)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-08 10:22:17 -04:00
aff5117f46 Remove debug statement 2022-08-08 09:54:10 -04:00
70b0d4e193 Fix compatibility with 1.12 (#17925)
* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 09:53:08 -04:00
2fecde742d update fsdp docs (#18521)
* updating fsdp documentation

* typo fix
2022-08-08 18:56:51 +05:30
377cdded7a Clean up hub (#18497)
* Clean up utils.hub

* Remove imports

* More fixes

* Last fix
2022-08-08 08:48:10 -04:00
a4562552eb [DX fix] Fixing QA pipeline streaming a dataset. (#18516)
* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.
2022-08-08 14:25:56 +02:00
88a0ce57bb Add seed setting to image classification example (#18519) 2022-08-08 08:08:11 -04:00
9129fd0377 transformers-cli login => huggingface-cli login (#18490)
* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`
2022-08-06 09:42:55 +02:00
8d1f9039d0 Just re-reading the whole doc every couple of months 😬 (#18489)
* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task
2022-08-06 09:38:55 +02:00
b8c247b6d0 Typo reported by Joel Grus on TWTR (#18493) 2022-08-05 13:29:38 -04:00
38d656041b disable Onnx test for google/long-t5-tglobal-base (#18454)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:27:19 +02:00
56a55d3ce4 Forgot one new_ for cache migration 2022-08-05 13:24:53 -04:00
9d64f7f00c Update some expected values in quicktour.mdx for resampy 0.3.0 (#18484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:17:51 +02:00
faacdf007b Move cache folder to huggingface/hub for consistency with hf_hub (#18492)
* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one
2022-08-05 13:14:00 -04:00
280db2e39c Fix test_dbmdz_english by updating expected values (#18482)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 16:49:54 +02:00
5cd4032368 Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments
2022-08-05 10:12:40 -04:00
70fa1a8d26 Fix pipeline tests (#18487)
* Fix pipeline tests

* Make sure all pipelines tests run with init changes
2022-08-05 09:14:51 -04:00
c7849d9efc Remove py.typed (#18485) 2022-08-05 09:12:19 -04:00
893122f666 Add TF prefix to TF-Res test class (#18481)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 13:59:55 +02:00
bf174f916b Refactor TFSwinLayer to increase serving compatibility (#18352)
* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-08-05 07:40:14 -04:00
575aa6ef1a Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-08-05 07:39:40 -04:00
586dcf6b21 Fixing issue where generic model types wouldn't load properly with the pipeline (#18392)
* Adding a better error message when the model is improperly configured

within transformers.

* Update src/transformers/pipelines/__init__.py

* Black version.

* Overriding task aliases so that tokenizer+feature_extractor

values are correct.

* Fixing task aliases by overriding their names early

* X.

* Fixing feature-extraction.

* black again.

* Normalizing `translation` too.

* Fixing last few corner cases.

translation need to use its non normalized name (translation_XX_to_YY,
so that the task_specific_params are correctly overloaded).
This can be removed and cleaned up in a later PR.

`speech-encode-decoder` actually REQUIRES to pass a `tokenizer` manually
so the error needs to be discarded when the `tokenizer` is already
there.

* doc-builder fix.

* Fixing the real issue.

* Removing dead code.

* Do not import the actual config classes.
2022-08-05 08:45:07 +02:00
14928921e2 Add TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING (#18469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 20:41:15 +02:00
0bf1e1aca4 Update no trainer examples for QA and Semantic Segmentation (#18474)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen

* updated examples with gather_for_metrics
2022-08-04 13:22:19 -04:00
d2704c4143 Add machine type in the artifact of Examples directory job (#18459)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 18:52:01 +02:00
f9a0008d2d Add VideoMAE (#17821)
* First draft

* Add VideoMAEForVideoClassification

* Improve conversion script

* Add VideoMAEForPreTraining

* Add VideoMAEFeatureExtractor

* Improve VideoMAEFeatureExtractor

* Improve docs

* Add first draft of model tests

* Improve VideoMAEForPreTraining

* Fix base_model_prefix

* Make model take pixel_values of shape (B, T, C, H, W)

* Add loss computation of VideoMAEForPreTraining

* Improve tests

* Improve model testsé

* Make all tests pass

* Add VideoMAE to main README

* Add tests for VideoMAEFeatureExtractor

* Add integration test

* Improve conversion script

* Rename patch embedding class

* Remove VideoMAELayer from init

* Update design of patch embeddings

* Improve comments

* Improve conversion script

* Improve conversion script

* Add conversion of pretrained model

* Add loss verification of pretrained model

* Add loss verification of unnormalized targets

* Add integration test for pretraining model

* Apply suggestions from code review

* Fix bug to make feature extractor resize only shorter edge

* Address more comments

* Improve normalization of videos

* Add doc examples

* Move constants to dedicated script

* Remove scripts

* Transfer checkpoints, fix docs

* Update script

* Update image mean and std

* Fix doc tests

* Set return_tensors to NumPy by default

* Revert the previous change

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-04 18:02:55 +02:00
672b66262a Add FX support for torch.baddbmm andd torch.Tensor.baddbmm (#18363) 2022-08-04 16:02:16 +02:00
df28de0581 Fix load of model checkpoints in the Trainer (#18470) 2022-08-04 08:22:25 -04:00
330247ede2 Update no trainer scripts for multiple-choice (#18468)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen
2022-08-04 07:29:32 -04:00
c74befc9e3 HFTracer.trace can now take callables and torch.nn.Module (#18457)
* Enable HFTracer to trace with custom dummy inputs instead of pre-computed ones

* Add HFTracer.trace docstring, and make it possible to handle callable and torch.nn.Module in general

* Remove pdb comment

* Apply suggestions
2022-08-04 13:29:18 +02:00
fc1d841b2d change shape to support dynamic batch input in tf.function XLA generate for tf serving (#18372)
* change shape to support dynamic batch input in tf.generate

* add tests

Co-authored-by: nlpcatcode <nlpcodecat@gmail.com>
2022-08-04 11:26:11 +01:00
b69a62d579 [BLOOM] Clean modeling code (#18344)
* Cleanup some code

* Improve signatures

* Try to reduce the number of reshape/copies

* I don't think we actually need the layer_num scaling trick

* No need for duplication

* Try to fix beam_search

* Fix beam search

* Removing layer num normalization seems to be breaking

* Not sure self.layer_number normalization actually matters

* Try and be backward compatible

* Try to fix beam_search

* Revert attempt to be backward compatible

* Improve documentation on past_key_values format

* Optimize the device allocation in case of hidden_states in multiple devices

* No need to manually cast the values to a specific device

* Rename with long version of variables

* Improve type hinting

* Add comment that explains that some methods return views

* Actually i think the attention casting only makes sense when we use torch.float16

* We don't actually need layer_number to be passed anymore

* Fix FX test

* Bypass torch.baddbmm

* Apply suggestions from code review

* Add comment about support for torchScript v1.11

* fix ONNX support for bloom (#18456)

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-08-04 11:08:03 +02:00
02b176c4ce Fix torch version comparisons (#18460)
Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu

version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
2022-08-03 13:37:18 -04:00
be41eaf55f fix: keras fit tests for segformer tf and minor refactors. (#18412)
* fix: keras fit tests for segformer tf and minor refactors.

* refactor: test_keras_fit to make it simpler using the existing one.

* fix: styling issues.
2022-08-03 16:39:54 +01:00
fc546332d7 add zero-shot obj detection notebook to docs (#18453) 2022-08-03 17:14:39 +03:00
8fb7c908c8 Fix failing tests for XLA generation in TF (#18298)
* Fix failing test_xla_generate_slow tests

* Fix failing speech-to-text xla_generate tests
2022-08-03 09:45:15 -04:00
a507908cd3 Update pinned hhub version (#18448)
* Update pinned hhub version

* Make style
2022-08-03 08:37:42 -04:00
3db4378bd7 Update no trainer scripts for language modeling and image classification examples (#18443)
* Update no_trainer script for image-classification

* Update no_trainer scripts for language-modeling examples

* Remove unused variable

* Removing truncation from losses array for language modeling examples
2022-08-03 08:33:18 -04:00
10e1ec9a8c Add Spanish translation of run_scripts.mdx (#18415)
* Add file in spanish docs to be translated

* Translate first two sections to Spanish

* Translate four additional sections to Spanish

* Finish translation to Spanish

* Improve writing style in Spanish

* Add suggested changes from reviewer
2022-08-03 07:32:20 -04:00
9d7b70bcd7 support ONNX export of XDropout in deberta{,_v2} and sew_d (#17502)
* support ONNX export of XDropout in deberta{,_v2}

* black

* copy to sew_d

* add test

* isort

* use pytest.mark.filterwarnings

* review comments
2022-08-03 06:33:44 -04:00
92915ebec2 Update _toctree.yml (#18440)
This PR moves GroupViT and LXMert to their correct sections. As pointed out by @NielsRogge and @LysandreJik, GroupViT and LXMert are both multimodal models.
2022-08-03 12:26:01 +02:00
22a0dd2ef7 fixing error when using sharded ddp (#18435) 2022-08-03 08:39:58 +05:30
5096a654b7 Add programming languages (#18434)
The current wording makes it sound as if the programming languages are part of the 46 natural languages.
2022-08-02 16:02:25 -04:00
042f420364 Update pipeline word heuristic to work with whitespace in token offsets (#18402)
* Update pipeline word heuristic to work with whitespace in token offsets

This change checks for whitespace in the input string at either the
character preceding the token or in the first character of the token.
This works with tokenizers that return offsets excluding whitespace
between words or with offsets including whitespace.

fixes #18111

starting

* Use smaller model, ensure expected tokenization

* Re-run CI (please squash)
2022-08-02 15:31:01 -04:00
c382ed8a2f Accept trust_remote_code and ignore it in PreTrainedModel.from_pretrained (#18428)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 21:03:59 +02:00
dbd9641c8c Improve generate docstring (#18198)
* improve generate docstring

* Remove 'defaults to None' comment
2022-08-02 13:22:55 -04:00
5546fb61ab fix run_clip README (#18332)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 19:14:46 +02:00
2959d09072 Fix test_load_default_pipelines_tf test error (#18422)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 18:51:10 +02:00
8ae7784256 update maskformer docs (#18423)
* update maskformer docs

* fix typo
2022-08-02 18:43:58 +03:00
0b8c1b6994 Change audio kwarg to images in TROCR processor (#18421)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:45 +02:00
dd21fb378f Fix the hub user name in a longformer doctest checkpoint (#18418)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:10 +02:00
68a894a587 Fix uninitialized parameter in conformer relative attention. (#18368)
`torch.Tensor` creates an unitialized tensor (as via `torch.empty`), this leads to undeterministic behavior, poor initialization, and nans if you have unlucky init. The paper does not specify the initialization for bias terms, so I guess zero seems like a good choice - no bias initially. `torch.Tensor` is usually populated with zeros, so this fix will be close to the intended behavior:

```
>>> torch.Tensor(100, 100).sum()
tensor(0.)
>>> torch.Tensor(100, 100).sum()
tensor(nan)
>>> torch.Tensor(100, 100).sum()
tensor(0.)
```
2022-08-02 10:34:10 +01:00
df5e4232f5 fix: create a copy for tokenizer object (#18408) 2022-08-01 15:32:12 -04:00
24845aeb6d Layoutlmv2 tesseractconfig (#17733)
* Added option for users to modify config parameter used by pytesseract during feature extraction

- Added optional 'tess_config' kwarg when setting up LayoutLMV2 processor that is used by pytesseract during feature extraction
- Eg. Can be used to modify psm values by setting tess_config to '--psm 7'
- Different psm values significantly influences the output of layoutlmv2

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updated variable names to be more explicit

* Fixed styles

* Added option for users to modify config parameter when calling pytesseract during feature extraction

- Added option to set "tesseract_config" parameter during LayoutLMV3 processor initialization
- Can be used to modify PSM values, eg. by setting tesseract_config="--psm 6"

* Removed  from function signature

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-08-01 12:24:43 -04:00
151a2aaa4e Split model list on modality (#18328)
* 📝 split up model list

* Adapt script to reorg

* apply niels feedback

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-08-01 11:10:20 -05:00
01db72abd4 Rewrite push_to_hub to use upload_files (#18366)
* Rewrite push_to_hub to use upload_files

* Adapt the doc a bit

* Address review comments and clean doc
2022-08-01 12:07:30 -04:00
3909d7f139 Add Flax BART pretraining script (#18297)
* add bart pretraining flax script

* fixup

* add bart pretraining flax script

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add bos eos document

* Update README.md

* Update README.md

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* final

* final

* final

* remove use_auth_token ing from_config

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-08-01 12:06:30 -04:00
941d233153 Fix ROUGE add example check and update README (#18398)
* Fix ROUGE add example check and update README

* Stay consistent in values
2022-08-01 11:14:49 -04:00
62098b9348 Adding fine-tuning models to LUKE (#18353)
* add LUKE models for downstream tasks

* add new LUKE models to docs

* fix typos

* remove commented lines

* exclude None items from tuple return values
2022-08-01 11:09:47 -04:00
7b9e995b70 Fix docs (#18399)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 17:02:51 +02:00
e0bc4c73e8 Add balanced strategies for device_map in from_pretrained (#18349)
* Add balanced strategies for device_map in from_pretrained

* Add safeguards for Accelerate version

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Style

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-08-01 10:28:26 -04:00
39e76d76fd Fix doc tests (#18397)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 15:56:10 +02:00
1141371103 Fix OPT doc tests (#18365) 2022-08-01 15:19:45 +02:00
af1e6b4d87 Add evaluate to test dependencies (#18396) 2022-08-01 08:55:44 -04:00
bd6d1b4300 Add a check regarding the number of occurrences of ``` (#18389)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-01 14:23:02 +02:00
1cd7c6f154 Fix from_pretrained kwargs passing (#18387)
Fix #18385
I don't know whether `use_auth_token`, `cache_dir` and `local_files_only` should be passed to `(cls.slow_tokenizer_class)._from_pretrained`, but I guess it should.
2022-08-01 08:16:24 -04:00
96b5d7db9c Remove pt-like calls on tf tensor (#18393) 2022-08-01 13:06:30 +01:00
679d68a11b Correct the spelling of bleu metric (#18375) 2022-08-01 07:51:27 -04:00
1f84399171 Migrate metric to Evaluate in Pytorch examples (#18369)
* Migrate metric to Evaluate in pytorch examples

* Remove unused imports
2022-08-01 07:40:25 -04:00
25ec12eaf7 Bump mistune from 0.8.4 to 2.0.3 in /examples/research_projects/lxmert (#18370)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:57 -04:00
a7360385f4 Bump mistune in /examples/research_projects/visual_bert (#18371)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:31 -04:00
b2e4b091f0 fix FSDP ShardedGradScaler (#18358)
renaming it
2022-07-30 10:07:56 +05:30
51227e26ab Fix TFSegformerForSemanticSegmentation doctest (#18362)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 16:30:59 +02:00
4e2f4a92dd [FX] Symbolic trace for Bloom (#18356)
* Bloom model can now be traced

* Bloom traced model can be torch scripted and serialized

* Bloom can be traced with variable keyword arguments

* Enable XLNet support

* Disable XLNet for now
2022-07-29 16:12:27 +02:00
1763770bd9 Fix some doctests (#18359)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 14:13:28 +02:00
986526a0e4 Replace as_target context managers by direct calls (#18325)
* Preliminary work on tokenizers

* Quality + fix tests

* Treat processors

* Fix pad

* Remove all uses of  in tests, docs and examples

* Replace all as_target_tokenizer

* Fix tests

* Fix quality

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: amyeroberts <amy@huggingface.co>

* Style

Co-authored-by: amyeroberts <amy@huggingface.co>
2022-07-29 08:09:09 -04:00
a64bcb564d Fix OwlViT torchscript tests (#18347)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 10:36:04 +02:00
a4ee463d95 [Docs] Fix Speech Encoder Decoder doc sample (#18346)
* [Docs] Fix Speech Encoder Decoder doc sample

* improve pre-processing comment

* make style
2022-07-29 09:11:28 +01:00
da503ea02f Migrate metrics used in flax examples to Evaluate (#18348)
Currently, tensorflow examples use the `load_metric` function from
Datasets library, commit migrates function call to `load` function
from Evaluate library.
2022-07-28 15:06:23 -04:00
a2586795e5 Migrate metric to Evaluate library for tensorflow examples (#18327)
* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate `metric` to Evaluate for all tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
2022-07-28 14:24:27 -04:00
7b0908769b [BLOOM] Deprecate position_ids (#18342) 2022-07-28 20:21:43 +02:00
9c336657a9 Include tensorflow-aarch64 as a candidate (#18345)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-07-28 12:45:02 -04:00
b53dab601c Remove Flax OPT from doctest for now (#18338)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-28 11:50:44 -04:00
286a18fa00 Fix codeparrot deduplication - ignore whitespaces (#18023)
* ignore whitspaces for hash

* reformat code

* Update README.md
2022-07-28 15:58:26 +02:00
5d1fed0740 Update automatic_speech_recognition.py (#18339) 2022-07-28 09:53:03 -04:00
985c7e3ac9 Updated _toctree.yml (#18337) 2022-07-28 09:04:32 -04:00
a8e279579b updated translation (#18333)
Left the term fine-tuning since there is no correct translation into Italian and the English term is generally used. The same was done with some terms like "learning rate"
2022-07-28 08:14:15 -04:00
1e380c7dcb fixed typo (#18331) 2022-07-28 06:14:56 -04:00
96be1b7f49 Update feature extractor docs (#18324)
As pointed out by @NielsRogge, a feature extractor is used to prepare inputs for a model with a single modality rather than multimodal models.
2022-07-27 15:32:57 -05:00
2b81f72be9 start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch … (#18229)
* start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch and should import it before use

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add doc for perf_train_cpu_many

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-27 11:15:41 -04:00
e87ac9d18b Add swin transformer v2 (#17469)
* Add files generated using transformer-cli add-new-model-like command

* Add changes for swinv2 attention and forward method

* Add fixes

* Add modifications for weight conversion and remaining args in swin model

* Add changes for patchmerging

* Add changes for SwinV2selfattention

* Update conversion script

* Add final fixes for the swin_v2 model

* Add changes for conversion script for pretrained window size case

* Add pretrained window size value from config in SwinV2Encoder class

* Make fixup

* Add swinv2 to models_not_in_readme to utils/check_copies.py

* Modify Swinv2v2 to Swin Transformer V2

* Remove copied from, to run make fixup command

* Add updates to swinv2tf from main branch

* Add pretrained_window_size to config, to make tests pass

* Add modified weights from nandwalritik profile for swinv2

* Update model weights from swinv2 from nandwalritik profile

* Add fix for build_pr_documentation CI fix

* Add fixes for weight conversion

* Add change to make input with padding work

* Add fixes for test cases

* Add few changes from swin to swinv2 to pass test cases

* Remove tests for tensorflow as swinv2 for TF is not added yet

* Overide test_pt_tf_model_equivalence function as TF implementation for swinv2 is not added yet

* Add modeling_tf_swinv2 to _ignore_modules as test file is removed for this one right now.

* Update docs url for swinv2 in README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Undo changes for check_repo

* Update url in readme.md

* Remove overrided function to test pt_tf_model_equivalence

* Remove TF model imports for Swinv2 as its not implemented in this PR

* Add changes for index.mdx

* Add swinv2 papers link,abstract and contributors details

* Rename cpb_mlp to continous_position_bias_mlp

* Add tips for swinv2 model

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix indentation for docstring example in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update import order in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copyright statements in weights conversion script.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove Swinv2 from models_not_in_readme

* Reformat code

* Remove TF implementation file for swinv2

* Update start docstring.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add changes for docstring

* Update orgname for weights to microsoft

* Remove to_2tuple function

* Add copied from statements wherever applicable

* Add copied from to Swinv2ForMaskedImageModelling class

* Reformat code.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add unittest.skip(with reason.) for test_inputs_embeds test case.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add updates for test_modeling_swinv2.py

* Add @unittest.skip() annotation for clarity to create_and_test_config_common_properties function

* Add continuous_position_bias_mlp parameter to conversion script

* Add test for testing masked_image_modelling for swinv2

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add suggested changes

* Add copied from to forward methods of Swinv2Stage and Swinv2Encoder

* Add push_to_hub flag to weight conversion script

* Change order or Swinv2DropPath class

* Add id2label mapping for imagenet 21k

* Add updated url for SwinV2 functions and classes used in implementation

* Update input_feature dimensions format, mentioned in comments.

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Add suggested changes for modeling_swin2.py

* Update docs

* Remove create_and_test_config_common_properties function, as test_model_common_attributes is sufficient.

* Fix indentation.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes for making Nit objects in code style

* Add suggested changes

* Add suggested changes for test_modelling_swinv2

* make fix-copies

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 11:14:47 -04:00
c89a592e87 Dev version 2022-07-27 17:13:57 +02:00
7490a97cac [Flax] Fix incomplete batches in example scripts (#17863)
* [Flax] Fix incomplete batches in example scripts

* fix dataloader batching

* convert jnp batch idxs to np array

* add missing `pad_shard_unpad` to final prediction generate step

* only `pad_shard_unpad` at inference time

* merge conflicts

* remove incomplete batch step from eval

* fix run_qa.py

* add `pad_shard_unpad` to run_flax_ner.py

* add `pad_shard_unpad` to run_flax_glue.py

* add `pad_shard_unpad` to run_image_classification.py

* make style

* fix mlm flax eval batches

* remove redundant imports
2022-07-27 15:50:47 +01:00
9caf68a638 Owlvit test fixes (#18303)
* fix owlvit test assertion errors

* fix gpu test error

* remove redundant lines

* fix styling
2022-07-27 17:26:27 +03:00
0077360d67 Fix sacremoses sof dependency for Transformers XL (#18321)
* Fix sacremoses sof dependency for Transofmers XL

* Add function to the submodule init
2022-07-27 09:37:02 -04:00
5c5676cdf9 sentencepiece shouldn't be required for the fast LayoutXLM tokenizer (#18320) 2022-07-27 09:09:32 -04:00
cf32b2ee42 Remove all uses of six (#18318)
* Remove all uses of six

* fix quality
2022-07-27 08:39:09 -04:00
170fcaa604 Generalize decay_mask_fn to apply mask to all LayerNorm params (#18273)
* generalize decay_mask_fn to find all layernorm params

* fixup

* generalising decay_mask_fn
2022-07-27 12:23:57 +01:00
83d2d74509 fix loading from pretrained for sharded model with `torch_dtype="auto" (#18061) 2022-07-27 07:20:35 -04:00
7996ef74dd fix module order (#18312)
- put gelu before 4h to h
2022-07-27 07:06:01 -04:00
70e7d1d656 Fixes torch jit tracing for LayoutLMv2 model (re-open) (#18313)
* Fixes torch jit tracing for LayoutLMv2 model.
Pytorch seems to reuse memory for input_shape which caused a mismatch in shapes later in the forward pass.

* Fixed code quality

* avoid unneeded allocation of vector for shape
2022-07-27 06:38:40 -04:00
1d71ad8905 Update CodeParrot readme to include training in Megatron (#17798)
* add info about megatron training

* upload models and datasets from CodeParrot organization

* upload models and datasets from CodeParrot organization

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* fix typo and add comment about codeparrot vs megatron

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-07-27 11:59:08 +02:00
d5610b53fa [XLA] Improve t5 model performance (#18288) 2022-07-27 10:44:14 +02:00
e318cda9ee Apply type correction to TFSwinModelOutput (#18295)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-07-27 04:35:56 -04:00
ccd4180f8a [EncoderDecoder] Improve docs (#18271)
* Improve docs

* Improve docs of speech one as well

* Apply suggestions from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-27 10:08:59 +02:00
5dfec704da Remove duplicated line (#18310)
Removes a duplicated instantiation of device. I removed the second instance of the line to maintain code alignment with the GPT-J implementation of forward.
2022-07-27 04:00:47 -04:00
47c2af0951 [DETR] Improve code examples (#18262)
* Improve doc test

* Improve code example of segmentation model

* Apply suggestion

* Update src/transformers/models/detr/modeling_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 09:54:41 +02:00
ee67e7ad4f patch for smddp import (#18244)
* add import

* format
2022-07-26 16:00:24 -04:00
68097dcce0 Fix Sylvain's nits on the original KerasMetricCallback PR (#18300)
* Fix Sylvain's nits on the original PR

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Re-add "optional" to docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 17:08:16 +01:00
6649133124 Add PYTEST_TIMEOUT for CircleCI test jobs (#18251)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 17:57:59 +02:00
a5d504834d Add Spanish translation of custom_models.mdx (#17807)
* Update index

* Translate to Spanish two sections from custom_models

* Translate to Spanish custom models documentation

* Fixing typos and grammatical errors

* Add requested changes from reviewer
2022-07-26 10:10:37 -04:00
7ea7eba39d Add Italian translation of sharing_custom_models.mdx (#17631)
* work in progress: custom_models

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 09:48:58 -04:00
c4c6b4dbda Add PyTorch 1.11 to past CI (#18302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 15:47:23 +02:00
bbc28106e0 Add Italian translation of converting_tensorflow_models.mdx (#18283)
* Add Italian translation of converting_tensorflow_models.mdx

* Update _toctree.yml

* Update converting_tensorflow_models.mdx

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 08:37:34 -04:00
a649de5551 Raise a TF-specific error when importing Torch classes (#18280)
* Raise a TF-specific error when importing Torch classes

* Update src/transformers/utils/import_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Add an inverse error for PyTorch users

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-26 13:28:59 +01:00
5e0ffd9183 [ create_a_model.mdx ] translate to pt (#18098)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

* Finishing create_a_model

* [ create_a_model.mdx ] finishing create a model in pt-br

* [ Changing _toctree.yml ] adding create a model in pt

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-07-26 08:01:08 -04:00
f58b9c0522 Update translation.mdx (#18169)
* Update translation.mdx

* update translation.mdx by running make style
2022-07-26 07:56:40 -04:00
b51695274a Add TFAutoModelForImageClassification to pipelines.py (#18292)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 13:44:54 +02:00
f374d3918f Adding type hints of TF:OpenAIGPT (#18263) 2022-07-26 12:30:06 +01:00
5bb211be6e Adding type hints of TF:CTRL (#18264) 2022-07-26 12:27:02 +01:00
c8ed1b8b59 Replace false parameter by a buffer (#18259) 2022-07-26 13:02:58 +02:00
2844c5de10 Fix ORTTrainer failure on gpt2 fp16 training (#18017)
* Ensure value and attn weights have the same dtype

* Remove prints

* Modify decision transformers copied from gpt2

* Nit device

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix style

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-07-26 04:14:08 -04:00
2b09650885 Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER) (#17924)
* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* provide classifier only text hidden states

* add test_for_token_classification

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add test_for_token_classification

Co-authored-by: gfuchs <gfuchs@ebay.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-07-26 10:11:32 +02:00
002915aa2a Owlvit docs test (#18257)
* fix docs and add owlvit docs test

* fix minor bug in post_process, add to processor

* improve owlvit code examples

* fix hardcoded image size
2022-07-26 10:55:14 +03:00
d32558cc7a Good difficult issue override for the stalebot (#18094) 2022-07-26 03:39:14 -04:00
f65307e498 Fix dtype of input_features in docstring (#18258)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 09:34:06 +02:00
bd87480d20 Fix command of doc tests for local testing (#18236)
* Fix command of doc tests for local testing

* Fix command for after running doc tests locally
2022-07-26 03:07:11 -04:00
45a1475462 Fix TF bad words filter with XLA (#18286)
* Fix bad words filter in XLA generation

* Remove my cool debug breakpoints (again)
2022-07-25 20:19:39 +01:00
f4e172716b Allows KerasMetricCallback to use XLA generation (#18265)
* Allows `KerasMetricCallback` to use XLA generation

* make fixup

* Slightly reword docstring
2022-07-25 12:51:37 +01:00
bbb62f2924 Skip passes report for --make-reports (#18250)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-25 11:09:23 +02:00
7e44226fc7 Generate: deprecate default max_length (#18018) 2022-07-23 18:02:03 +01:00
8e8384663d Update serving code to enable saved_model=True (#18153)
* Add serving_output and serving methods to some vision models

* Add serving outputs for DeiT

* Don't convert hidden states - differing shapes

* Make saveable

* Fix up

* Make swin saveable

* Add in tests

* Fix funnel tests (can't convert to tensor)

* Fix numpy call

* Tidy up a bit

* Add in hidden states - resnet

* Remove numpy

* Fix failing tests - tensor shape and skipping tests

* Remove duplicated function

* PR comments - formatting and var names

* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic

* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float

* Types consistent with docs; disable test on swin (slow)

* CI trigger

* Change input_features to float32

* Add serving_output for segformer

* Fixup

Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-22 18:05:38 +01:00
07505358ba Change how take_along_axis is computed in DeBERTa to stop confusing XLA (#18256)
* Change how `take_along_axis` is computed in DeBERTa to stop confusing XLA

* Greatly simplify take_along_axis() since the code wasn't using most of it
2022-07-22 17:01:30 +01:00
d95a32cc60 Fix torch version check in Vilt (#18260)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-22 16:24:49 +02:00
7cb4da13fe change bloom parameters to 176B (#18235) 2022-07-22 10:17:48 -04:00
1fc4b2a132 TF: use the correct config with (...)EncoderDecoder models (#18097) 2022-07-22 13:31:45 +01:00
4935409757 Add Italian translation of create_model.mdx and serialization.mdx (#17640)
* First commit

* final changes

* Changed create_model to create_a_model
Translated into crea un'architettura personalizzata in the file it/_toctree.yml

* Added _toctree.yml in the italian translation loca: serialization title Esporta modelli transformers

* Edit translation for create_model.mdx

* t with '#' will be ignored, and an empty message aborts the commit.

* Added file serialization for translation in italian

* Fix toctree serialization position

I checked the eng toctree and realized I made a mistake.

* Update _toctree.yml

Correct spacing

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-22 13:53:54 +02:00
06d98e272e Fix OwlViT tests (#18253)
* Fix OwlViT tests

* Forgot one
2022-07-22 13:32:19 +02:00
12d66b4701 Add OWL-ViT model for zero-shot object detection (#17938)
* add owlvit model skeleton

* add class and box predictor heads

* convert modified flax clip to pytorch

* fix box and class predictors

* add OwlViTImageTextEmbedder

* convert class and box head checkpoints

* convert image text embedder checkpoints

* add object detection head

* fix bugs

* update conversion script

* update conversion script

* fix q,v,k,out weight conversion conversion

* add owlvit object detection output

* fix bug in image embedder

* fix bugs in text embedder

* fix positional embeddings

* fix bug in inference mode vision pooling

* update docs, init tokenizer and processor files

* support batch processing

* add OwlViTProcessor

* remove merge conflicts

* readd owlvit imports

* fix bug in OwlViTProcessor imports

* fix bugs in processor

* update docs

* fix bugs in processor

* update owlvit docs

* add OwlViTFeatureExtractor

* style changes, add postprocess method to feature extractor

* add feature extractor and processor tests

* add object detection tests

* update conversion script

* update config paths

* update config paths

* fix configuration paths and bugs

* fix bugs in OwlViT tests

* add import checks to processor

* fix docs and minor issues

* fix docs and minor issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* update docs and examples

* fix bugs and issues

* update conversion script, fix positional embeddings

* process 2D input ids, update tests

* fix style and quality issues

* update docs

* update docs and imports

* update OWL-ViT index.md

* fix bug in OwlViT feature ext tests

* fix code examples, return_dict by default

* return_dict by default

* minor fixes, add tests to processor

* small fixes

* add output_attentions arg to main model

* fix bugs

* remove output_hidden_states arg from main model

* update self.config variables

* add option to return last_hidden_states

* fix bug in config variables

* fix copied from statements

* fix small issues and bugs

* fix bugs

* fix bugs, support greyscale images

* run fixup

* update repo name

* merge OwlViTImageTextEmbedder with obj detection head

* fix merge conflict

* fix merge conflict

* make fixup

* fix bugs

* fix bugs

* add additional processor test
2022-07-22 13:35:32 +03:00
99eb9b523f Fix no_trainer CI (#18242)
* Fix all tests
2022-07-21 14:44:57 -04:00
561b9a8c00 [SegFormer] TensorFlow port (#17910)
* add: segformer utils and img. classification.

* add: segmentation layer.

* feat: working implementation of segformer.

* chore: remove unused variable.

* add test, remaining modifications.

* remove: unnecessary files.

* add: rest of the files.

Co-authored-by: matt <rocketknight1@gmail.com>

* chore: remove ModuleList comment.

* chore: apply make style.

* chore: apply make fixup-copies.

* add  to check_repo.py

* add decode head to IGNORE_NON_TESTED

* chore: run make style.

* chore: PR comments.

* chore: minor changes to model doc.

* tests: reduction across samples.

* add a note on the space.

* sort importats.

* fix: reduction in loss computation.

* chore: align loss function with that of NER.

* chore: correct utils/documentation_tests.txt

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* chore: simplify the interpolation of logits in loss computation.

* chore: return transposed logits when return_dict=False.

* chore: add link to the tf fine-tuning repo.

* address pr comments.

* address niels's comments.

* remove from_pt=True since tf weights are in.

* remove comment from pt model.

* address niels's comments.

Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-07-21 18:22:37 +01:00
2c5747edfe Update notification service (#17921)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-21 15:03:50 +02:00
07575e869d Italian/accelerate (#17698)
* Add 'accelerate' to _toctree file

* Fix 'training with a nb' title

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:23:47 +02:00
8881e58b22 Italian/model sharing (#17828)
* Add Italian translation of the doc file model_sharing.mdx

* Fix style

* Fix typo

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:07:53 +02:00
0d971be84f Italian translation of run_scripts.mdx gh-17459 (#17642)
* Run_scripts Italian translation gh-17459

* Updated run_scripts gh-17642

* Updated run_scripts gh-17642

Made the text more gender-neutral.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 12:02:08 +02:00
ba552dd027 Make errors for loss-less models more user-friendly (#18233) 2022-07-21 11:52:33 +02:00
43a5375cc1 Fix TrainingArguments help section (#18232) 2022-07-21 11:03:25 +02:00
9f787ce874 Translation/debugging (#18230)
* added debugging.mdx

* updated debugging.mdx

* updated translation

* updated translation debugging

* translated debugging

* updated _toctree.yml
2022-07-21 11:02:26 +02:00
5e2f2d7dd2 Better messaging and fix for incorrect shape when collating data. (#18119)
* More informative error message

* raise dynamic error

* remove_excess_nesting application

* incorrect shape assertion for collator & function to remove excess nesting from DatasetDict

* formatting

* eliminating datasets import

* removed and relocated remove_excess_nesting to the datasets library and updated docs accordingly

* independent assert instructions

* inform user of excess nesting
2022-07-21 10:35:41 +02:00
d23cf5b1f1 Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API (#18221)
* Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API

* Support loading checkpoints saved with SMP < 1.10 in SMP < 1.10 and SMP >= 1.10

* Support loading checkpoints saved with SMP >= 1.10 in SMP >= 1.10

* Fix bug and styling

* Update based on reviewer feedback
2022-07-21 07:56:20 +02:00
dbfeffd7c9 Update add_new_pipeline.mdx (#18224)
fix typo
2022-07-21 07:55:30 +02:00
ff56b8fbff Add custom config to quicktour (#18115)
* 📝 first draft of new quicktour

* make style

* 🖍 edit and review

* 🖍 small fixes

* 🖍 only add custom config section

* 🖍 use autoclass instead
2022-07-20 12:23:03 -05:00
9edff45362 skip some test_multi_gpu_data_parallel_forward (#18188)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 15:54:44 +02:00
bc6fe6fbcf Change to FlavaProcessor in PROCESSOR_MAPPING_NAMES (#18213)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 12:30:14 +02:00
dcec4c4387 Adding OPTForSeqClassification class (#18123)
* Adding OPTForSeqClassification class

* Fix import issues

* Add documentation for optforseqclassification

* Remove checkout

* fix failing tests

* fix typo

* Fix code formatting

* Incorporating the PR feedbacks

* Incorporate PR Feedbacks

* Fix failing test and add new test for multi label setup

* Fix formatting issue

* Fix failing tests

* Fix formatting issues

* Fix failing tests

* Fix failing tests

* Fix failing tests

* Fix failing tests

* PR feedback
2022-07-20 10:14:21 +02:00
0ed4d0dfb6 Fix LayoutXLM docstrings (#17038)
* Fix docstrings

* Fix legacy issue

* up

* apply suggestions

* up

* quality
2022-07-20 09:49:57 +02:00
4b1ed7979f update cache to v0.5 (#18203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 08:14:10 +02:00
8a61fe0234 Reduce console spam when using the KerasMetricCallback (#18202)
* Reduce console spam when using the KerasMetricCallback

* Switch to predict_on_batch to improve performance
2022-07-19 17:00:35 +01:00
ec6cd7633f TF: Add missing cast to GPT-J (#18201)
* Fix TF GPT-J tests

* add try/finally block
2022-07-19 15:58:42 +01:00
05ed569c79 Use next-gen CircleCI convenience images (#18197)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 15:43:05 +02:00
9f12ec7d87 Typo in readme (#18195) 2022-07-19 15:28:37 +02:00
dc9147ff36 Custom pipeline (#18079)
* Initial work

* More work

* Add tests for custom pipelines on the Hub

* Protect import

* Make the test work for TF as well

* Last PyTorch specific bit

* Add documentation

* Style

* Title in toc

* Bad names!

* Update docs/source/en/add_new_pipeline.mdx

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Auto stash before merge of "custom_pipeline" and "origin/custom_pipeline"

* Address review comments

* Address more review comments

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-19 12:02:35 +02:00
3bb6356d4d [From pretrained] Allow download from subfolder inside model repo (#18184)
* add first generation tutorial

* [from_pretrained] Allow loading models from subfolders

* remove gen file

* add doc strings

* allow download from subfolder

* add tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply comments

* correct doc string

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 11:53:53 +02:00
ce0152819d Update docs README with instructions on locally previewing docs (#18196)
* Update docs README with instructions on locally previewing docs

* Add instructions to install `watchdog` before previewing the docs
2022-07-19 11:47:26 +02:00
798384467b bugfix: div-->dim (#18135) 2022-07-19 10:24:56 +02:00
e630dad555 Add vision example to README (#18194) 2022-07-19 09:46:18 +02:00
4bea6584e3 Remove use_auth_token from the from_config method (#18192)
* remove use_auth_token from from_config

* restore use_auth_token from_pretrained run_t5_mlm_flax
2022-07-19 08:13:20 +02:00
29fd471556 Use smaller variant of BLOOM for doc to fix tests 2022-07-18 15:17:29 -04:00
bc8e30bab9 FSDP integration enhancements and fixes (#18134)
* FSDP integration enhancements and fixes

* resolving comments

* fsdp fp16 mixed precision requires `ShardedGradScaler`
2022-07-19 00:02:10 +05:30
8e445ca51d Translation/training: italian translation training.mdx (#17662)
* added training.mdx

* updated training.mdx

* updated training.mdx

* updated training.mdx

* updated _toctree.yml

* fixed typos after review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 19:21:07 +02:00
6a1b1bf7a6 BLOOM minor fixes small test (#18175)
* minor fixes

- add correct revision
- corrected dosctring for test
- removed a test

* contrib credits

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-07-18 19:18:19 +02:00
c4cc894086 Translation italian: multilingual.mdx (#17768)
* added multilingual.mdx

* updated multilingual.mdx

* italian translation multilingual.mdx

* updated _toctree.yml

* fixed typos _toctree.yml

* fixed typos after review

* fixed error after review
2022-07-18 19:09:08 +02:00
0a5b61d004 Added preprocessing.mdx italian translation (#17600)
* updated _toctree.yml

* added preprocessing

* updated preprocessing.mdx

* updated preprocessing.mdx

updated after review
2022-07-18 19:06:10 +02:00
ced1f1f5db fix typo inside bloom documentation (#18187) 2022-07-18 17:43:52 +02:00
edadfc58af Better default for offload_state_dict in from_pretrained (#18183) 2022-07-18 16:02:41 +02:00
aeeab1ffd0 Fix template for new models in README (#18182) 2022-07-18 16:01:51 +02:00
45255814a2 FIX: Typo (#18156) 2022-07-18 15:46:08 +02:00
6561fbcc6e Update TF(Vision)EncoderDecoderModel PT/TF equivalence tests (#18073)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:29:14 +02:00
cb19c2afdc Fix expected loss values in some (m)T5 tests (#18177)
* fix expected loss values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:26:21 +02:00
7417f3acb7 [HPO] update to sigopt new experiment api (#18147)
* [HPO] update to sigopt new experiment api
* follow https://docs.sigopt.com/experiments

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* [HPO] use new API if sigopt version >= 8.0.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-18 15:19:40 +02:00
8c14b342aa add ONNX support for LeVit (#18154)
Co-authored-by: Guilhem Chéron <guilhemc@authentifier.com>
2022-07-18 15:17:07 +02:00
c1c79b0655 NLLB tokenizer (#18126)
* NLLB tokenizer

* Apply suggestions from code review - Thanks Stefan!

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Final touches

* Style :)

* Update docs/source/en/model_doc/nllb.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR reviews

* Auto models

Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 08:12:34 -04:00
a4f97e6ce0 Fix incorrect type hint for lang (#18161) 2022-07-18 09:53:18 +02:00
c46d39f390 Fix check for falsey inputs in run_summarization (#18155) 2022-07-18 09:50:32 +02:00
ccc0897804 Adding support for device_map directly in pipeline(..) function. (#17902)
* Adding support for `device_map` directly in `pipeline(..)` function.

* Updating the docstring.

* Adding a better docstring

* Put back type hints.

* Blacked. (`make fixup` didn't work ??!!)
2022-07-15 15:54:26 +02:00
fca66ec4ef Fixing a hard to trigger bug for text-generation pipeline. (#18131)
* Fixing a bug where attention mask was not passed to generate.

* Fixing zero-size prompts.

* Comment on top.
2022-07-15 15:54:07 +02:00
8581a798c0 Add TF DeiT implementation (#17806)
* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Fixup

* Fix import

* Fix import

* Fix import

* Fix weight loading for tests whilst not on hub

* Add doc tests and remove to_2tuple

* Add back to_2tuple
Removing to_2tuple results in many downstream changes needed because of the copies checks

* Incorporate updates in Improve vision models #17731 PR

* Don't hard code num_channels

* Copy PyTorch DeiT embeddings and remove pytorch operations with mask

* Fix patch embeddings & tidy up

* Update PixelShuffle to move logic into class layer

* Update doc strings - remove PT references

* Use NHWC format in internal layers

* Fix up

* Use linear activation layer

* Remove unused import

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Move dataclass to top of file

* Remove from_pt now weights on hub

* Fixup

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-13 18:04:08 +01:00
Wei
7ea6ccc2b3 Enable torchdynamo with torch_tensorrt(fx path) (#17765)
* enable fx2trt

* Update perf_train_gpu_one.mdx

* Update perf_train_gpu_one.mdx

* add lib check

* update

* format

* update

* fix import check

* fix isort

* improve doc

* refactor ctx manager

* fix isort

* black format

* isort fix

* fix format

* update args

* update black

* cleanups

* Update perf_train_gpu_one.mdx

* code refactor

* code refactor to init

* remove redundancy

* isort

* replace self.args with args

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-13 12:43:28 -04:00
37aeb5787a Make sharded checkpoints work in offline mode (#18125)
* Make sharded checkpoints work in offline mode

* Add test
2022-07-13 12:43:08 -04:00
0a21a48564 Revert "Make sharded checkpoints work in offline mode"
This reverts commit 3564c6578630a3bef29d2c7c36c7d29b68acd874.
2022-07-13 10:53:25 -04:00
3564c65786 Make sharded checkpoints work in offline mode 2022-07-13 10:51:56 -04:00
56e6487c40 add dataset split and config to model-index in TrainingSummary.from_trainer (#18064)
* added metadata to training summary

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 16:07:20 +02:00
fde22c75a1 Add summarization name mapping for MultiNews (#18117)
* Add summarization name mapping for MultiNews

* Add summarization name mapping for MultiNews
2022-07-13 08:19:20 -04:00
195133363e supported python versions reference (#18116)
* supported python versions reference

* Update CONTRIBUTING.md

removing commit hash from link

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 08:18:44 -04:00
20509ab0e0 TF: unpack_inputs decorator independent from main_input_name (#18110) 2022-07-13 10:43:41 +01:00
fcefa200b2 TF: remove graph mode distinction when processing boolean options (#18102) 2022-07-12 19:05:31 +01:00
bc34c21191 Fix BLOOM dtype (#17995)
* Add fp16 option

* Fix BLOOM dtype

* Formatting

* Remove torch_dtype arg

* Revert formatting

* Apply formatting

* Add n_embed backward compat
2022-07-12 10:36:08 -04:00
981714efe1 CLI: reenable pt_to_tf test (#18108) 2022-07-12 13:38:05 +01:00
f5221c06e4 Report value for a step instead of epoch. (#18095)
* Report value for a step instead of epoch.

Report an objective function value for a step instead of epoch to optuna.
I made this modification for the following reason:
If "eval_steps" is less than steps per epoch, there maybe warnings like this: "optuna/trial/_trial.py:592: UserWarning: The reported value is ignored because this `step` 0 is already reported.". So "step" are more appropriate than "epoch" here.

* MOD: make style.

Co-authored-by: zhaowei01 <zhaowei01@yuanfudao.com>
2022-07-12 08:18:35 -04:00
d4ebd4e112 speed up test (#18106) 2022-07-12 04:28:28 -04:00
b7d8bd378c Enhance IPEX integration in Trainer (#18072)
* enhance ipex import

* refine codes

* refine style

* add link

* style

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-11 21:34:09 -07:00
a462fc9232 Bloom Optimize operations (#17866)
* fix tolerance for a bloom slow test

* enhance alibi padding

- get rid of for loops
- deals better with padded batched input
- avoid useless cpu/gpu communication when creating alibi

Co-authored-by: justheuristic <justheuristic@gmail.com>

* optimize attention mask

* fix scaled softmax limit values

* optimize building alibi tensor

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix attention_mask shape when it's None

* minor fixes

- fix docstring + arg names

* remove colons in docstring

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply suggestion

* remove unsued arg

* refactor a bit

- use [:, None] for consistency

* refactor attention block

Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

* quick fixes

* first attempt

* refactor attention block and fix all tests except "test_simple_generation"

- added comments to better explain attention block

* remove debug lines and add TODO comment

* change `torch.bmm` to `torch.baddbmm`
- fixes `test_simple_generation`but breaks `test_batch_generation_padd`

* styling

* all tests are passing now
- use `bmm`
- add explanation for `allow_fp16_reduced_precision_reduction`

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* styling

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix support for accelerate

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove attn softmax in fp32

* refactor comments

* refactor a bit

- remove warning message
- remove print on test

* refer to pytorch t5

* change the slow tests

- do the tests in fp32
- remove some comments
- keep large comments

* update expected output for `test_simple_generation`
- we now test using fp32

* make style + change comments a bit

* fix dtype padd test

Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-11 13:16:13 -04:00
5ff6f853d7 Mark slow test as such 2022-07-11 12:48:57 -04:00
b1b8222d80 Add filename to info diaplyed when downloading things in from_pretrained (#18099) 2022-07-11 12:45:06 -04:00
6c8017a5c8 Fix image segmentation and object detection pipeline tests (#18100) 2022-07-11 12:41:56 -04:00
b0520f594c Skip failing tests 2022-07-11 10:16:54 -04:00
1e8140caad Fix RESOURCE_EXHAUSTED error when dealing with large datasets in Flax example scripts (#18069)
* Fix RESOURCE_EXHAUSTED error for large datasets on Flax example scripts

* using np.permutation for creating batch_idx

* train_samples_idx -> training_samples_idx

* fix type hints
2022-07-11 15:59:08 +02:00
ac98a88fbc Fix torchscript tests for GPT-NeoX (#18012)
* fix dtype issue in _attn

* fix RotaryEmbedding

* fix RotaryEmbedding 2

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-11 05:02:54 -04:00
95113d1365 Fix some typos. (#17560)
* Fix some typos.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* Fix typo.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* make fixup.
2022-07-11 05:00:13 -04:00
ad28ca291b [bloom] fix alibi device placement (#18087) 2022-07-10 09:11:46 -07:00
8b332a6a16 Make predict() close progress bars after finishing (#17952) (#18078)
* Make Trainer.predict call on_evaluate (#17952)

* Add on_predict

* Small fix

* Small and different fix

* Add tests
2022-07-08 16:44:24 -04:00
7c046c5c22 Update localized READMES when template is filled. (#18062) 2022-07-08 11:08:52 -04:00
94ca7d2faa Fix type issue in using bucketing with Trainer (#18051)
* Fix type issue in using bucketing with Trainer

- Fix type issues in LengthGrouperSampler,
  DistributedLengthGroupedSampler

refs: #18003

* Change logging type in LengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Change logging type in DistributedLengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in LengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in DistributedLengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply black, isort to modified codes in the script

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-08 11:06:00 -04:00
9bd3968509 Fix slow CI by pinning resampy (#18077)
* Fix slow CI by pinning resampy

* Actually put it in the speech dependencies
2022-07-08 10:51:24 -04:00
de46cde14b Drop columns after loading samples in prepare_tf_dataset (#17967)
* Drop columns after loading samples, rather than before, to avoid breaking transforms

* make fixup

* Add workaround so this PR can work with current datasets version
2022-07-07 18:02:22 +01:00
2544c1434f [Generate Tests] Make sure no tokens are force-generated (#18053) 2022-07-07 15:08:34 +02:00
91c4a3ab1a Added Command for windows VENV activation in installation docs (#18008)
* Added command for windows VENV activation

* changed linux and macos  specification
2022-07-07 08:18:44 -04:00
1b749a7f8d Sort doc toc (#18034)
* Add script to sort doc ToC

* Style and fixes

* Add check to quality job
2022-07-07 08:17:58 -04:00
1b5ea74783 Place inputs on device when include_inputs_for_metrics is True (#18046) 2022-07-07 08:17:49 -04:00
870ff9e1da Skip failing test until @gante fix it. 2022-07-06 15:13:28 -04:00
2e90c3df8f Doc to dataset (#18037)
* Link to the Datasets doc

* Remove unwanted file
2022-07-06 12:10:06 -04:00
be79cd7d8e Protect TFGenerationMixin.seed_generator so it's not created at import (#18044) 2022-07-06 16:36:28 +01:00
360719a6a4 TF: GPT-J compatible with XLA generation (#17986) 2022-07-06 15:02:07 +01:00
bf37e5c7f6 Fix T5 incorrect weight decay in Trainer and official summarization example (#18002)
* Add ALL_LAYERNORM_LAYERS for LayerNorm

* fix bug of appending layer norm
2022-07-06 09:44:19 -04:00
22edb68d49 Squash commits (#17981)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-06 08:11:48 -04:00
f681437203 Enable Past CI (#17919)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 18:08:36 +02:00
5ae087cf8e Fix T5/mT5 tests (#18029) 2022-07-05 16:22:03 +01:00
ec07eccc7d [Flax] Bump to v0.4.1 (#17966) 2022-07-05 15:17:17 +01:00
97db5b4223 Update expected values in DecisionTransformerModelIntegrationTest (#18016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 14:53:43 +02:00
f0982682bd TF: T5 can now handle a padded past (i.e. XLA generation) (#17969)
* get the right slicing index for position_bias
2022-07-04 19:47:43 +01:00
e3139ad301 fixed calculation of ctc loss in TFWav2Vec2ForCTC (#18014)
Co-authored-by: Sreyan-G@NVIDIA <sreyang@nvidia.com>
2022-07-04 17:36:36 +01:00
96d833b211 Return scalar losses instead of per-sample means (#18013)
* Return scalar losses instead of per-sample means

* Make loss shape (1,) instead of scalar

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Remove XLA loss function for RAG
2022-07-04 17:26:19 +01:00
6cb19540c9 sort list of models (#18011) 2022-07-04 09:20:55 -04:00
7498db06a1 Replace BloomTokenizer by BloomTokenizerFast in doc (#18005) 2022-07-04 08:40:13 -04:00
3cfdefaa4d Fix typo in error message in generation_utils (#18000) 2022-07-04 06:04:58 -04:00
cf2578ae00 Refactor to inherit from nn.Module instead of nn.ModuleList (#17501)
* Refactor to inherit from nn.Module instead of nn.ModuleList

* Fix typo

* Empty to trigger CI re-run

Blender Bot tests failing (should be unrelated to this PR) and pass locally). I don't have sufficient permisisons to re-run the CI workflow (totally or from failed)
2022-07-04 06:03:42 -04:00
77ea5130a1 Add TF ResNet model (#17427)
* Rought TF conversion outline

* Tidy up

* Fix padding differences between layers

* Add back embedder - whoops

* Match test file to main

* Match upstream test file

* Correctly pass and assign image_size parameter

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add in MainLayer

* Correctly name layer

* Tidy up AdaptivePooler

* Small tidy-up

More accurate type hints and remove whitespaces

* Change AdaptiveAvgPool

Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)

Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Use updated AdaptiveAvgPool

Co-authored-by: matt <rocketknight1@gmail.com>

* Make AdaptiveAvgPool compatible with CPU

* Remove image_size from configuration

* Fixup

* Tensorflow -> TensorFlow

* Fix pt references in tests

* Apply suggestions from code review - grammar and wording

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add TFResNet to doc tests

* PR comments - GlobalAveragePooling and clearer comments

* Remove unused import

* Add in keepdims argument

* Add num_channels check

* grammar fix: by -> of

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove transposes - keep NHWC throughout forward pass

* Fixup look sharp

* Add missing layer names

* Final tidy up - remove from_pt now weights on hub

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-07-04 10:59:15 +01:00
7b18702ca7 Add link to existing documentation (#17931) 2022-07-04 04:13:05 -04:00
a045cbd6c9 only a stupid typo, but it can lead to confusion (#17930) 2022-07-04 04:04:16 -04:00
49c8c67fb8 Exclude Databricks from notebook env only if the runtime is below 11.0 (#17988)
* Exclude Databricks from notebook env only if the runtime is below 11.0

* Dummy commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI
2022-07-01 16:17:40 -04:00
6890d1960f Shifting labels for causal LM when using label smoother (#17987)
* Shifting labels for causal LM when using label smoother

When training CausalLM, loss is computed within model's foward() function and
labels are shifted internally. However, if label smoothing is applied, loss is
computed in trainer's compute_loss function and labels are not shifted.
This causes unintended confusion during the alignment of labels and corresponding
inputs. This commit is for resolving this confusion.

Resolves #17960

On branch shift_labels_for_causalLM
Changes to be committed:
	modified:   src/transformers/trainer.py
	modified:   src/transformers/trainer_pt_utils.py

* Update trainer.py

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 14:55:35 -04:00
6f0723a9be Restore original task in test_warning_logs (#17985)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 20:44:27 +02:00
009171d1ba Ensure PT model is in evaluation mode and lightweight forward pass done (#17970) 2022-07-01 19:33:47 +01:00
d6cec45801 XLA train step fixes (#17973)
* Copy inputs to train and test step before modifying them, as this breaks things

* Add XLA tests, fix our loss functions to be XLA-compatible

* make fixup

* Update loss computation test to expect vector of per-sample losses

* Patch loss for TFLED

* Patch loss for TFAlbert

* Add a tf_legacy_loss config flag that enables old loss functions

* Stop using config.get() because it's not a dict

* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it

* make fixup

* Add XLA-compatible RAG loss

* Fix dtype of loss mask for TFAlbert

* Fix test for XLNet too because it overrides the default one

* make fixup

* Fix config test

* No more depending on GPU NaN behaviour

* Add test, avoid potential zero division

* Fix test item assignment

* Fix loss computation masking test

* make fixup

* Fix dtype bugs
2022-07-01 19:11:14 +01:00
485bbe79d5 [Flax] Add remat (gradient checkpointing) (#17843)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* make fix-copies

* fix big-bird, electra, roberta

* cookie-cutter

* fix flax big-bird

* move test to common
2022-07-01 18:33:54 +01:00
664688b94f higher atol to avoid flaky trainer test failure (#17979)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 17:53:16 +02:00
8bb2c387f4 Fix FlaxBigBirdEmbeddings (#17842)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 16:46:01 +02:00
b68d408f1b add ONNX support for BLOOM (#17961)
* add onnx support for BLOOM

* use TYPE_CHECKING for type annotations

* fix past_shape for bloom (different from gpt2)

* use logical_or instead of `+` for onnx support

* bigger `atol_for_validation` for larger bloom models

* copied -> taken because it's no longer an exact copy

* remove "copied from" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 10:44:42 -04:00
462b7f3a94 fixing fsdp autowrap functionality (#17922)
* fixing fsdp autowrap functionality

* update version and quality

* update torch version to latest stable version
2022-07-01 19:40:55 +05:30
3a064bd4dd fix bias keyword argument in TFDebertaEmbeddings (#17940) 2022-07-01 14:48:43 +01:00
569b679adb Update expected values in CodeGen tests (#17888)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 15:33:36 +02:00
cb42502410 Fix typo in perf_train_gpu_one.mdx (#17983) 2022-07-01 09:19:13 -04:00
14fb8a63b9 skip some gpt_neox tests that require 80G RAM (#17923)
* skip some gpt_neox tests that require 80G RAM

* remove tests

* fix quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 09:04:38 -04:00
49cd736a28 feat: add pipeline registry abstraction (#17905)
* feat: add pipeline registry abstraction

- added `PipelineRegistry` abstraction
- updates `add_new_pipeline.mdx` (english docs) to reflect the api addition
- migrate `check_task` and `get_supported_tasks` from
  transformers/pipelines/__init__.py to
  transformers/pipelines/base.py#PipelineRegistry.{check_task,get_supported_tasks}

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: update with upstream/main

chore: Apply suggestions from sgugger's code review

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR updates

- revert src/transformers/dependency_versions_table.py from upstream/main
- updates pipeline registry to use global variables

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add tests for pipeline registry

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add test for output warning.

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* chore: fmt and cleanup unused imports

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: change imports to top of the file and address comments

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 12:11:08 -04:00
9cb7cef285 Add ONNX support for LayoutLMv3 (#17953)
* Add ONNX support for LayoutLMv3

* Update docstrings

* Update empty description in docstring

* Fix imports and type hints
2022-06-30 12:09:52 -04:00
fe14046421 skip some ipex tests until it works with torch 1.12 (#17964)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-30 18:05:29 +02:00
91e1f24ef3 CLI: convert sharded PT models (#17959)
* sharded conversion; add flag to control max hidden error

* better hidden name matching

* Add test: load TF from PT shards

* fix test (PT data must be local)
2022-06-30 16:51:03 +01:00
f25457b273 Fix number of examples for iterable dataset in distributed training (#17951) 2022-06-30 11:01:40 -04:00
e4d2588573 [Pipelines] Add revision tag to all default pipelines (#17667)
* trigger test failure

* upload revision poc

* Update src/transformers/pipelines/base.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* up

* add test

* correct some stuff

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct require flag

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 16:37:18 +02:00
4f8361afe7 Unifying training argument type annotations (#17934)
* doc: Unify training arg type annotations

* wip: extracting enum type from Union

* blackening
2022-06-30 08:53:32 -04:00
205bc4152c Fix GPT-NeoX-20B past handling, attention computation (#17811)
* Fix GPT-NeoX-20B past handling, swap attention computation to hopefully avoid NaN, update docs

* 20B tests
2022-06-30 08:47:40 -04:00
692e61e91a Flax t5 Encoder (#17784)
* first draft adding Flax-t5-encoder and Flax-mt5-encoder

* imports

* after make fixup

* flax t5 encoder test

* black on test

* make fix-copies

* clean

* all_model_classes -> tuple

* clean test

* is_encoder_decoder=False in t5-enc tester

* remove file docstring before FlaxT5Encoder

* black

* isort

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* remove _get_encoder_module

* self.decoder_seq_length -> self.encoder_seq_length as t5-enc does not have decoder

* bugfix - self.module_class is class itself, not instance;

* docs for mt5 and t5

* call -> __call__ in t5 doc

* FlaxMT5EncoderModel to TYPE_HINT

* run doc-builder to allow change the files

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-06-30 00:49:02 +02:00
eb1493b15d Fix #17893, removed dead code (#17917)
* Removed dead position_id code, fix #17893

* Removed unused var

* Now ignores removed (dead) dict key for backward comp
2022-06-29 17:54:26 -04:00
fbc7598bab add MobileViT model (#17354)
* add MobileViT

* fixup

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove empty line

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* use clearer variable names

* rename to MobileViTTransformerLayer

* no longer inherit from nn.Sequential

* fixup

* fixup

* not sure why this got added twice

* rename organization for checkpoints

* fix it up

* Update src/transformers/models/mobilevit/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/mobilevit/test_modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code style improvements

* fixup

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* download labels from hub

* rename layers

* rename more layers

* don't compute loss in separate function

* remove some nn.Sequential

* replace nn.Sequential with new MobileViTTransformer class

* replace nn.Sequential with MobileViTMobileNetLayer

* fix pruning since model structure changed

* fixup

* fix doc comment

* remove custom resize from feature extractor

* fix ONNX import

* add to doc tests

* use center_crop from image_utils

* move RGB->BGR flipping into image_utils

* fix broken tests

* wrong type hint

* small tweaks

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-29 16:07:51 -04:00
5feac3d080 Fix prepare_tf_dataset when drop_remainder is not supplied (#17950) 2022-06-29 19:23:39 +01:00
bc019b0e5f ExplicitEnum subclass str (JSON dump compatible) (#17933)
* ExplicitEnum subclass str (JSON dump compatible)

* allow union if one of the types is str
2022-06-29 13:49:31 -04:00
b089cca347 PyTorch 1.12.0 for scheduled CI (#17949)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 19:32:19 +02:00
d444edb3f6 OPT - Fix Softmax NaN in half precision mode (#17437) 2022-06-29 19:15:32 +02:00
9fe2403bc5 Use explicit torch version in deepspeed CI (#17942)
* use explicit torch version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 18:20:34 +02:00
4c722e9e22 fix regexes with escape sequence (#17943) 2022-06-29 08:55:22 -07:00
7c4c6f6084 Fix all is_torch_tpu_available issues (#17936)
* Fix all is_torch_tpu_available
2022-06-29 11:03:33 -04:00
77b76672e2 Fix img seg tests (load checkpoints from hf-internal-testing) (#17939)
* Revert "Skip failing test until they are fixed."

This reverts commit 8f400775fc5bc1011a2674dcfd5408d30d69f678.

* Use `tiny-detr` checkpts from `hf-internal-testing`
2022-06-29 10:19:37 -04:00
3cff4cc587 Add MVP model (#17787)
* Add MVP model

* Update README

* Remove useless module

* Update docs

* Fix bugs in tokenizer

* Remove useless test

* Remove useless module

* Update vocab

* Remove specifying

* Remove specifying

* Add #Copied ... statement

* Update paper link

* Remove useless TFMvp

* Add #Copied ... statement

* Fix style in test mvp model

* Fix some typos

* Fix properties of unset special tokens in non verbose mode

* Update paper link

* Update MVP doc

* Update MVP doc

* Fix README

* Fix typos in docs

* Update docs
2022-06-29 09:30:55 -04:00
8f400775fc Skip failing test until they are fixed. 2022-06-29 09:11:29 -04:00
47b9165109 Remove imports and use forward references in ONNX feature (#17926) 2022-06-29 09:02:53 -04:00
5cdfff5df3 Fix job links in Slack report (#17892)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 14:53:13 +02:00
a7eba83161 TF implementation of RegNets (#17554)
* chore: initial commit

Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.

* chore: porting the rest of the modules to tensorflow

did not change the documentation yet, yet to try the playground on the model

* Fix initilizations (#1)

* fix: code structure in few cases.

* fix: code structure to align tf models.

* fix: layer naming, bn layer still remains.

* chore: change default epsilon and momentum in bn.

* chore: styling nits.

* fix: cross-loading bn params.

* fix: regnet tf model, integration passing.

* add: tests for TF regnet.

* fix: code quality related issues.

* chore: added rest of the files.

* minor additions..

* fix: repo consistency.

* fix: regnet tf tests.

* chore: reorganize dummy_tf_objects for regnet.

* chore: remove checkpoint var.

* chore: remov unnecessary files.

* chore: run make style.

* Update docs/source/en/model_doc/regnet.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR feedback I.

* fix: pt test. thanks to @ydshieh.

* New adaptive pooler (#3)

* feat: new adaptive pooler

Co-authored-by: @Rocketknight1

* chore: remove image_size argument.

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: matt <rocketknight1@gmail.com>

* Empty-Commit

* chore: remove image_size comment.

* chore: remove playground_tf.py

* chore: minor changes related to spacing.

* chore: make style.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* chore: refactored __init__.

* chore: copied from -> taken from./g

* adaptive pool -> global avg pool, channel check.

* chore: move channel check to stem.

* pr comments - minor refactor and add regnets to doc tests.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor fix in the xlayer.

* Empty-Commit

* chore: removed from_pt=True.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-29 13:45:14 +01:00
e6d27ca5c8 TF: XLA beam search + most generation-compatible models are now also XLA-generate-compatible (#17857)
* working beam search 🎉

* XLA generation compatible with ALL classes

* add xla generation slow test
2022-06-29 12:41:01 +01:00
b8142753f9 Add missing comment quotes (#17379) 2022-06-29 06:16:36 -04:00
e113c5cb64 Remove render tags (#17897)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-29 06:06:42 -04:00
90415475bb Fix the Conda package build (#16737)
* Fix the Conda package build

* Update build.sh

* Update release-conda.yml
2022-06-29 06:03:16 -04:00
babd7b1a92 Remove DT_DOUBLE from the T5 graph (#17891) 2022-06-29 10:23:49 +01:00
6aae59d0b5 Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 10:30:20 +02:00
776855c752 Fixing a regression with return_all_scores introduced in #17606 (#17906)
Fixing a regression with `return_all_scores` introduced in #17606

- The legacy test actually tested `return_all_scores=False` (the actual
  default) instead of `return_all_scores=True` (the actual weird case).

This commit adds the correct legacy test and fixes it.

Tmp legacy tests.

Actually fix the regression (also contains lists)

Less diffed code.
2022-06-28 17:24:45 -04:00
5f1e67a566 Pin PyTorch in requirements as well 2022-06-28 15:56:10 -04:00
5a3d0cbdda Pin PyTorch while we fix compatibility with 1.12 2022-06-28 15:07:26 -04:00
6c8f4c9a93 Adding GroupViT Models (#17313)
* add group vit and fixed test (except slow)

* passing slow test

* addressed some comments

* fixed test

* fixed style

* fixed copy

* fixed segmentation output

* fixed test

* fixed relative path

* fixed copy

* add ignore non auto configured

* fixed docstring, add doc

* fixed copies

* Apply suggestions from code review

merge suggestions

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolve comment, renaming model

* delete unused attr

* use fix copies

* resolve comments

* fixed attn

* remove unused vars

* refactor tests

* resolve final comments

* add demo notebook

* fixed inconsitent default

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename stage->stages

* Create single GroupViTEncoderLayer class

* Update conversion script

* Simplify conversion script

* Remove cross-attention class in favor of GroupViTAttention

* Convert other model as well, add processor to conversion script

* addressing final comment

* fixed args

* Update src/transformers/models/groupvit/modeling_groupvit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-28 20:51:47 +02:00
b424f0b4a3 Mrbean/codegen onnx (#17903) 2022-06-28 14:57:53 +02:00
76d13de5ae Add ONNX support for DETR (#17904) 2022-06-28 14:48:43 +02:00
bfcd5743ee In group_texts function, drop last block if smaller than block_size (#17908) 2022-06-28 08:34:55 -04:00
f71895a633 Move logic into pixelshuffle layer (#17899)
* Move all pixelshuffle logic into layer

* Rename layer

* Use correct input to function
2022-06-28 13:04:19 +01:00
0094565fc5 Fix loss computation in TFBertForPreTraining (#17898) 2022-06-28 12:44:56 +01:00
1dfa03f12b Pin black to 22.3.0 to benefit from a stable --preview flag (#17918) 2022-06-28 04:32:18 -04:00
9eec4e937e [M2M100] update conversion script (#17916) 2022-06-28 10:15:07 +02:00
db2644b9eb Fix PyTorch/TF Auto tests (#17895)
* add loading_info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:56:24 +02:00
f717d47fe0 Fix test_number_of_steps_in_training_with_ipex (#17889)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:55:02 +02:00
0b0dd97737 Update expected values in constrained beam search tests (#17887)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:53:53 +02:00
e02037b352 Fix bug in gpt2's (from-scratch) special scaled weight initialization (#17877)
* only special scale init each gpt2 c_proj weight once, on exact match

* fix double quotes

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
2022-06-27 15:01:49 -04:00
6dd00f6bd4 Update README_zh-hans.md (#17861) 2022-06-27 13:09:20 -04:00
71b2839fd3 bert: add conversion script for BERT Token Dropping TF2 checkpoints (#17142)
* bert: add conversion script for BERT Token Dropping TF2 checkpoints

* bert: rename conversion script for BERT Token Dropping checkpoints

* bert: fix flake errors in BERT Token Dropping conversion script

* bert: make doc-builder happy!!1!11

* bert: fix pytorch_dump_path of BERT Token Dropping conversion script
2022-06-27 13:08:32 -04:00
98742829d3 Fix add new model like frameworks (#17869)
* Add new model like adds only the selected frameworks object in init

* Small fix
2022-06-27 13:07:34 -04:00
afb71b6726 Add type annotations for RoFormer models (#17878) 2022-06-27 14:50:43 +01:00
9a3453846b fix (#17890)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 14:36:11 +02:00
3ec7d4cfe4 fix mask (#17837) 2022-06-27 14:08:18 +02:00
ee0d001de7 Add a TF in-graph tokenizer for BERT (#17701)
* Add a TF in-graph tokenizer for BERT

* Add from_pretrained

* Add proper truncation, option handling to match other tokenizers

* Add proper imports and guards

* Add test, fix all the bugs exposed by said test

* Fix truncation of paired texts in graph mode, more test updates

* Small fixes, add a (very careful) test for savedmodel

* Add tensorflow-text dependency, make fixup

* Update documentation

* Update documentation

* make fixup

* Slight changes to tests

* Add some docstring examples

* Update tests

* Update tests and add proper lowercasing/normalization

* make fixup

* Add docstring for padding!

* Mark slow tests

* make fixup

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* make fixup

* Properly handle tensorflow-text dummies
2022-06-27 12:06:21 +01:00
401fcca6c5 Fix TF GPT2 test_onnx_runtime_optimize (#17874)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 09:27:30 +02:00
cc5c061e34 CLI: handle multimodal inputs (#17839) 2022-06-25 16:17:11 +01:00
e8eb699ee8 Properly get tests deps in test_fetcher (#17870)
* Properly get tests deps in test_fetcher

* Remove print
2022-06-24 16:56:46 -04:00
b03be78a4b Fix test_inference_instance_segmentation_head (#17872)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:36:45 +02:00
494aac65a7 Skip test_multi_gpu_data_parallel_forward for MaskFormer (#17864)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:35:00 +02:00
0e0f1f4692 Use higher value for hidden_size in Flax BigBird test (#17822)
* Use higher value for hidden_size in Flax BigBird test

* remove 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:31:30 +02:00
2ef94ee039 Fix: torch.utils.checkpoint import error. (#17849) 2022-06-24 13:23:29 -04:00
ef28a402a9 Add type hints for gptneox models (#17858)
* feat: Add type hints for GPTNeoxForCausalLM and GPTNeoXModel

* fix: removed imported Dict type

* fix: Removed unused List import
2022-06-24 17:12:36 +01:00
061a73d16f [CodeGen] support device_map="auto" for sharded checkpoints (#17871) 2022-06-24 18:06:30 +02:00
d6b6fb9963 Add CodeGen model (#17443)
* Add CodeGen model

* Add missing key and switch order of super()

* Fix torch.ones init with uint8 instead of bool

* Address comments: copy statements and doc

* update tests

* remove old model parallel

* fix batch gen tests

* fix batch gen test

* update test_gpt2_sample_max_time

* fix codgen test and revert gpt2 test change

* Fix incorrect tie_word_embedding value, typo, URL

* Fix model order in README and styling

* Reorder model list alphabetically

* Set tie_word_embedding to False by default

* Apply suggestions from code review

* Better attn mask name & remove attn masked_bias

* add tokenizer for codegen

* quality

* doc tokenizer

* fix-copies

* add CodeGenTokenizer in converter

* make truncation optional

* add test for truncation

* add copyright

* fix-copies

* fix fast tokenizer decode

* Update src/transformers/models/codegen/tokenization_codegen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* increase vocab_size in tests

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-24 17:10:38 +02:00
447490015a Fix Splinter test (#17854)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 16:26:14 +02:00
73a0496c2f [tests/VisionEncoderDecoder] import to_2tuple from test utils (#17865) 2022-06-24 15:23:30 +02:00
NaN
bc7a6fdc02 Fix Constrained beam search duplication and weird output issue (#17814)
* fix(ConstrainedBeamSearchScorer.step_sentence_constraint): avoid hypothesis duplication between topk and advance

* fix(GenerationMixin.constrained_beam_search): appropriately assign beam scores instead of token scores
2022-06-24 14:56:08 +02:00
c2c0d9db5f Improve encoder decoder model docs (#17815)
* Copied all the changes from the last PR

* added in documentation_tests.txt

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-06-24 14:48:19 +02:00
0917870510 Improve vision models (#17731)
* Improve vision models

* Add a lot of improvements

* Remove to_2tuple from swin tests

* Fix TF Swin

* Fix more tests

* Fix copies

* Improve more models

* Fix ViTMAE test

* Add channel check for TF models

* Add proper channel check for TF models

* Apply suggestion from code review

* Apply suggestions from code review

* Add channel check for Flax models, apply suggestion

* Fix bug

* Add tests for greyscale images

* Add test for interpolation of pos encodigns

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-24 11:34:51 +02:00
893ab12452 Auto-build Docker images before on-merge if setup.py was changed (#17573)
* Auto-build on setup modification

* Modify push-caller

* Make adjustments based on code review
2022-06-23 16:51:33 -04:00
75259b44bf Properly calculate the total train iterations and recalculate num epochs in no_trainer scripts (#17856) 2022-06-23 15:46:01 -04:00
7c1b91281f Index RNG states by global rank in saves (#17852) 2022-06-23 12:53:50 -04:00
7cf52a49de Nezha Pytorch implementation (#17776)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* wip

* wip

* wip

* most basic tests passes

* all tests pass now

* relative embedding

* wip

* running make fixup

* remove bert changes

* fix doc

* fix doc

* fix issues

* fix doc

* address comments

* fix CI

* remove redundant copied from

* address comments

* fix broken test

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-23 12:36:22 -04:00
acb709d551 Change no trainer image_classification test (#17635)
* Adjust test arguments and use a new example test
2022-06-23 11:11:16 -04:00
e70abdad1b Update modeling_cvt.py (#17846)
As shown in the colab notebook I added the missing type hints for " CvtForImageClassification
CvtModel
"
2022-06-23 16:08:36 +01:00
1a7ef3349f Fix broken test for models with batchnorm (#17841)
* Fix tests that broke when models used batchnorm

* Initializing the model twice does not actually...
...give you the same weights each time.
I am good at machine learning.

* Fix speed regression
2022-06-23 15:59:53 +01:00
18c263c4b6 BLOOM minor changes on tokenizer (#17823)
* few fixes:

- hardcode tokenizer padding side
- remove unused args

* few fixes:

- added new attribute on TokenizerTesterMixin
- added new slow test
- remove unused arg on tokenizer class

* make style

* Update src/transformers/models/bloom/tokenization_bloom_fast.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make quality

* apply changes

- remove new attribute
- redefine test on the class

* add comments

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 15:57:12 +02:00
6f29029b05 Improve performance docs (#17750)
* add skeleton files

* fix cpu inference link

* add hint to make clear that single gpu section contains general info

* add new files to ToC

* update toctree to have subsection for performance

* add "coming soon" to the still empty sections

* fix missing title

* fix typo

* add reference to empty documents

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-23 14:51:54 +02:00
5bc779ae28 Fix an error message in BigBird (#17840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 14:43:53 +02:00
3eed5530ec Fix properties of unset special tokens in non verbose mode (#17797)
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 14:40:13 +02:00
b2fdbaccdd change message (#17836) 2022-06-23 14:39:48 +02:00
d37a68e685 Add missing type hints for QDQBertModel (#17783)
* Feat: add missing type hints for QDQBertModel

* fix: ran black and isort

* feat: Add missing output type for QDQBertModel

* feat: Add type hints for QDQBertLMHeadModel and models starting with QDQBertFor

* fix: add missing return type for QDQBertModel

* fix: remove wrong return type for QDQBertEmbeddings

* fix: readded config argument to load_tf_weights_in_qdqbert

* fix: add BertConfig type to BertEmbeddings config due t checko error in ci

* fix: removed config type hints to avoid copy checks
2022-06-23 12:58:43 +01:00
4297f44b63 Update type hints modeling_yoso.py (#17827)
* Update modeling_yoso.py

* make fixup

* Update modeling_yoso.py

That should be it copied from previous PR
2022-06-23 12:37:29 +01:00
5cce3076c4 TF: generate without tf.TensorArray (#17801) 2022-06-23 12:28:08 +01:00
ab223fc148 add doctests for DETR (#17786)
* add: check labels for detr object detection doctests

* add: check shapes

* add: add detr to documentation_tests.py

* fix: make fixup output

* fix: add a comment
2022-06-23 13:26:14 +02:00
8d634b70e0 Fix push CI artifact path (#17788)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 12:31:22 +02:00
df8e6804c0 Offload fixes (#17810)
* Offload fixes

* Add a test
2022-06-22 12:23:07 -04:00
0d0c392c45 CLI: use hub's create_commit (#17755)
* use create_commit

* better commit message and description

* touch setup.py to trigger cache update

* add hub version gating
2022-06-22 16:50:21 +01:00
c366ce1011 Bump numpy from 1.21.0 to 1.22.0 in /examples/research_projects/lxmert (#17817)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:40 -04:00
af0d21e741 Bump numpy in /examples/research_projects/visual_bert (#17816)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:28 -04:00
56b83cf049 initial commit (#17818) 2022-06-22 14:26:03 +02:00
1357038164 Add logits_processor parameter, used by generate, to Seq2SeqTrainer methods evaluate and predict (#17805)
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`

* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it

* Remove `self._num_beams` from trainer classes

* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param

* Use kwargs

* Copy kwargs before making changes to it

* Fix style issues unused imports
2022-06-22 08:11:39 -04:00
16c6eb7ca1 Flax sharded (#17760) 2022-06-22 07:04:35 +02:00
3b00b623b7 Fix top_k_top_p_filtering having unexpected behavior (#17744)
- Fix `top_k_top_p_filtering` not passing `filter_value` to
   `TopPLogitsWarper` causing any top-p filtered logits to be -inf
   instead of specified value

 - Add corresponding test
2022-06-21 21:35:55 +02:00
3ccff0d400 Remove duplicate code (#17708) 2022-06-21 21:30:40 +02:00
26a6a42608 Improve error message Union not allowed (#17769)
* Improve error message Union not allowed

* make style

* Update src/transformers/hf_argparser.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 14:27:01 -04:00
abc400b06a Add final_layer_norm to OPT model (#17785)
* Add final_layer_norm to OPT model

* Add JAX and TF version

* Fix Keras name

* Woops

* Allow for non breaking change

* Apply suggestions from code review

* add tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-21 20:26:36 +02:00
52404cbad4 Properly check for a TPU device (#17802) 2022-06-21 13:39:55 -04:00
ef23fae596 Fix test for BF16 detection (#17803) 2022-06-21 18:31:15 +02:00
7cced021fa TF Sharded (#17713)
* initial commit

* update modeeling tf utils

* quality

* clean and update args

* update

* remove potential bug

* code quality

* update

* update max shard

* update tests for sharding from pretrained

* fix remaining test

* make style

* h5py if tf available

* update and fix test

* fix test

* style

* modified push to hub to support shard for TF

* quick fix

* update code

* merge branch main and style

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update based on reviews

* update doc

* update and style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* fix typo

* style

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 18:01:08 +02:00
f47afefb21 Use 5e-5 For BigBird PT/Flax equivalence tests (#17780)
* rename to check_pt_flax_outputs

* update check_pt_flax_outputs

* use 5e-5 for BigBird PT/Flax test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-21 17:55:26 +02:00
6a5272b205 Prepare transformers for v0.8.0 huggingface-hub release (#17716)
* Prepare CI for v0.8.0

* pin hfh (revert before merge)

* Revert "pin hfh (revert before merge)"

This reverts commit a0103140e1c77b810ffcb735192968bc03be3e1f.

* Test rc3

* Test latest rc

* Unpin to the RC

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-21 11:51:18 -04:00
7bc88c0511 Fix forward reference imports in DeBERTa configs (#17800) 2022-06-21 11:21:06 -04:00
27e907386a Fix Automatic Download of Pretrained Weights in DETR (#17712)
* added use_backbone_pretrained

* style fixes

* update

* Update detr.mdx

* Update detr.mdx

* Update detr.mdx

* update using doc py

* Update detr.mdx

* Update src/transformers/models/detr/configuration_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 16:45:35 +02:00
b681e12d59 [ViTMAE] Fix docstrings and variable names (#17710)
* Fix docstrings and variable names

* Rename x to something better

* Improve messages

* Fix docstrings and add test for greyscale images

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 15:56:00 +02:00
3fab17fce8 Add link to notebook (#17791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 14:53:08 +02:00
da2bd2ae96 [CodeParrot] Near-deduplication with jaccard similarity (#17054)
* deduplication draft

* update style

* update style test

* dummy test main

* rename modules

* rename functions

* return extremes in deduplicate_clusters

* update style

* cast str for gzip

* update doc string

* time processing

* use dataset map to compute minhash

* fill value for short token

* remove da map method

* update style

* use share object to multiprocess

* update style

* use f-string and minor fix

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* update style

* use module parameters

* change ds_dedup to ds_filter

* save ds_dedup

* mv test to script tests

* make jaccard threshold a parameter of deduplicate_dataset

* update style

* add doc strings

* update style

* add doc string for DuplicationIndex

* save files into data dir

* update readme

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* make near deduplication optional

* move near deduplication in README

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use f string

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2022-06-21 14:23:36 +02:00
eb16be415a add onnx support for deberta and debertav2 (#17617)
* add onnx support for debertav2

* debertav2 -> deberta-v2 in onnx features file

* remove causal lm

* add deberta-v2-xlarge to onnx tests

* use self.type().dtype() in xsoftmax

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* remove hack for deberta

* remove unused imports

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* use generate dummy inputs

* linter

* add imports

* add support for deberta v1 as well

* deberta does not support multiple choice

* Update src/transformers/models/deberta/configuration_deberta.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* one line ordered dict

* fire build

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>
2022-06-21 11:04:15 +02:00
8fcbe275c3 Add UL2 (just docs) (#17740)
* Add UL2
Co-authored-by: Daniel Hesslow <Daniel.Hesslow@gmail.com>

* Correct naming

* sort better

* up

* apply sylvains suggestion
2022-06-21 10:24:50 +02:00
da27c4b398 Update modeling_longt5.py (#17777)
On line 180, `torch.tensor(-1.0, xxx)` gives the error "TypeError: 'float' object cannot be interpreted as an integer" 
This is because the dtype here is `int64`.  For `dtype=int64`, this needs to simply be `-1`.  
This impacts the long-t5-tglogbal-x model.  It does not impact the long-t5-local-x version which does not appear to call this line.
2022-06-20 18:49:08 +02:00
d3cb28886a Not use -1e4 as attn mask (#17306)
* Use torch.finfo(self.dtype).min

* for GPTNeoX

* for Albert

* For Splinter

* Update src/transformers/models/data2vec/modeling_data2vec_audio.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix -inf used in Bart-like models

* Fix a few remaining -inf

* more fix

* clean up

* For CLIP

* For FSMT

* clean up

* fix test

* Add dtype argument and use it for LayoutLMv3

* update FlaxLongT5Attention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-20 16:16:16 +02:00
fdb120805c Fix cache for GPT-Neo-X (#17764)
* Fix cache for GPT-Neo-X

* Add more tests
2022-06-20 08:43:36 -04:00
a2d34b7c04 deprecate is_torch_bf16_available (#17738)
* deprecate is_torch_bf16_available

* address suggestions
2022-06-20 08:40:11 -04:00
132402d752 TF: BART compatible with XLA generation (#17479)
* Also propagate changes to blenderbot, blenderbot_small, marian, mbart, and pegasus
2022-06-20 11:07:46 +01:00
6589e510fa Attempt to change Push CI to workflow_run (#17753)
* Use workflow_run event for push CI

* change to workflow_run

* Add comments

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-18 08:35:03 +02:00
0d92798b45 Added translation of index.mdx to Portuguese Issue #16824 (#17565)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

* [ index.mdx ] - Translated to Portuguese the index apresentation page.

* [ docs/source/pt ] - Updated _toctree.yml to match newest translations.

* Fix build_pr_documentation.yml

* Fix index nits

* nits in _toctree

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-17 20:06:05 -04:00
522a9ece4b Save huggingface checkpoint as artifact in mlflow callback (#17686)
* Fix eval to compute rouge correctly for rouge_score

* styling

* moving sentence tokenization to utils from run_eval

* saving ckpt in mlflow

* use existing format of args

* fix documentation

Co-authored-by: Swetha Mandava <smandava@nvidia.com>
2022-06-17 14:14:03 -04:00
21a772426d Migrate HFDeepSpeedConfig from trfrs to accelerate (#17623)
* Migrate HFDeepSpeedConfig from trfrs to accelerate

* add `accelerate` to testing dep

* addressing comments

* addressing comments

Using `_shared_state` and avoiding object creation. This is necessary as `notebook_launcher` in `launcers.py` checks `len(AcceleratorState._shared_state)>0` to throw an error.

* resolving comments

1. Use simple API from accelerate to manage the deepspeed config integration
2. Update the related documentation

* reverting changes and addressing comments

* docstring correction

* addressing nits

* addressing nits

* addressing nits 3

* bumping up the accelerate version to 0.10.0

* resolving import

* update setup.py to include deepspeed dependencies

* Update dependency_versions_table.py

* fixing imports

* reverting changes to CI dependencies for "run_tests_pipelines_tf*" tests

These changes didn't help with resolving the failures and I believe this needs to be addressed in another PR.

* removing `accelerate` as hard dependency

Resolves issues related to CI Tests

* adding `accelerate` as dependency for building docs

resolves failure in Build PR Documentation test

* adding `accelerate` as dependency in "dev" to resolve doc build issue

* resolving comments

1. adding `accelerate` to extras["all"]
2. Including check for accelerate too before import HFDeepSpeedConfig from there

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-17 23:29:35 +05:30
e44a569fef Bump notebook in /examples/research_projects/lxmert (#17743)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:33 -04:00
5089a2d412 Bump notebook in /examples/research_projects/visual_bert (#17742)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:17 -04:00
2d7c1bb192 feat: add num_workers arg to DataLoader (#17751) 2022-06-17 10:53:45 -04:00
ca169dbdf1 Enable PyTorch nightly build CI (#17335)
* nightly build pytorch CI

* fix working dir

* change time and event name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-17 16:42:27 +02:00
3c7e56fbb1 Remove needless file 2022-06-16 12:21:12 -04:00
7c6ec195ad v4.21.0.dev0 2022-06-16 12:20:53 -04:00
36d4647993 Refine Bf16 test for deepspeed (#17734)
* Refine BF16 check in CPU/GPU

* Fixes

* Renames
2022-06-16 11:27:58 -04:00
f44e2c2b6f Fix tf shared embedding (#17730)
* fix the naming

* from pt in test for now

* make style

* slow test and removed from_pt
2022-06-16 14:17:47 +02:00
2eadb7e54a Fix mask token in the example (#17725)
VIsualBert uses bert-base-uncased tokenizer, therefore, instead of {mask}, the mask token should be [MASK]
2022-06-16 07:54:45 -04:00
3981ee8650 Sort the model doc Toc Alphabetically (#17723) 2022-06-15 16:11:56 -04:00
66f893320c normalize keys_to_ignore (#17722) 2022-06-15 11:59:11 -07:00
c3c62b5d2c CLI: Add flag to push TF weights directly into main (#17720)
* Add flag to push weights directly into main
2022-06-15 19:25:50 +01:00
6ebeeeef81 Update requirements.txt (#17719) 2022-06-15 13:51:41 -04:00
2915 changed files with 538494 additions and 69735 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,629 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import glob
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import yaml
COMMON_ENV_VARIABLES = {
"OMP_NUM_THREADS": 1,
"TRANSFORMERS_IS_CI": True,
"PYTEST_TIMEOUT": 120,
"RUN_PIPELINE_TESTS": False,
"RUN_PT_TF_CROSS_TESTS": False,
"RUN_PT_FLAX_CROSS_TESTS": False,
}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "s": None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
class EmptyJob:
job_name = "empty"
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.7"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 1
pytest_num_workers: int = 8
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
tests_to_run: Optional[List[str]] = None
working_directory: str = "~/transformers"
# This should be only used for doctest job!
command_timeout: Optional[int] = None
def __post_init__(self):
# Deal with defaults for mutable attributes.
if self.additional_env is None:
self.additional_env = {}
if self.cache_name is None:
self.cache_name = self.name
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
if self.install_steps is None:
self.install_steps = []
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
self.tests_to_run = [self.tests_to_run]
if self.parallelism is None:
self.parallelism = 1
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
env.update(self.additional_env)
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
"environment": env,
}
if self.resource_class is not None:
job["resource_class"] = self.resource_class
if self.parallelism is not None:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}-site-packages',
f"v{self.cache_version}-{self.cache_name}-site-packages",
]
}
},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}-site-packages',
"paths": ["~/.pyenv/versions/"],
}
}
)
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
pytest_flags.append(
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
)
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
else:
test_command += " " + " ".join(self.tests_to_run)
else:
# We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime)
tests = self.tests_to_run
if tests is None:
folder = os.environ["test_preparation_dir"]
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
tests = f.read().split(" ")
# expand the test list
if tests == ["tests"]:
tests = [os.path.join("tests", x) for x in os.listdir("tests")]
expanded_tests = []
for test in tests:
if test.endswith(".py"):
expanded_tests.append(test)
elif test == "tests/models":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
elif test == "tests/pipelines":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
else:
expanded_tests.append(test)
# Avoid long tests always being collected together
random.shuffle(expanded_tests)
tests = " ".join(expanded_tests)
# Each executor to run ~10 tests
n_executors = max(len(tests) // 10, 1)
# Avoid empty test list on some executor(s) or launching too many executors
if n_executors > self.parallelism:
n_executors = self.parallelism
job["parallelism"] = n_executors
# Need to be newline separated for the command `circleci tests split` below
command = f'echo {tests} | tr " " "\\n" >> tests.txt'
steps.append({"run": {"name": "Get tests", "command": command}})
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
steps.append({"run": {"name": "Split tests", "command": command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}})
test_command = ""
if self.timeout:
test_command = f"timeout {self.timeout} "
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += " $(cat splitted_tests.txt)"
if self.marker is not None:
test_command += f" -m {self.marker}"
if self.name == "pr_documentation_tests":
# can't use ` | tee tee tests_output.txt` as usual
test_command += " > tests_output.txt"
# Save the return code, so we can check if it is timeout in the next step.
test_command += '; touch "$?".txt'
# Never fail the test step for the doctest job. We will check the results in the next step, and fail that
# step instead if the actual test failures are found. This is to avoid the timeout being reported as test
# failure.
test_command = f"({test_command}) || true"
else:
test_command += " | tee tests_output.txt"
steps.append({"run": {"name": "Run tests", "command": test_command}})
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
checkout_doctest_command = 'if [ -s reports/tests_pr_documentation_tests/failures_short.txt ]; '
checkout_doctest_command += 'then echo "some test failed"; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/failures_short.txt; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/summary_short.txt; exit -1; '
checkout_doctest_command += 'elif [ -s reports/tests_pr_documentation_tests/stats.txt ]; then echo "All tests pass!"; '
checkout_doctest_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; else echo "other fatal error)"; exit -1; fi;'
steps.append({"run": {"name": "Check doctest results", "command": checkout_doctest_command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
job["steps"] = steps
return job
@property
def job_name(self):
return self.name if "examples" in self.name else f"tests_{self.name}"
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
parallelism=1,
pytest_num_workers=3,
)
tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
parallelism=1,
pytest_num_workers=6,
pytest_options={"rA": None},
)
flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
pytest_options={"rA": None},
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
)
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
{
"name": "install jumanpp",
"command":
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
"mkdir jumanpp-2.0.0-rc3/bld\n"
"cd jumanpp-2.0.0-rc3/bld\n"
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
parallelism=None,
resource_class=None,
tests_to_run=[
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
"./tests/models/openai/test_tokenization_openai.py",
"./tests/models/clip/test_tokenization_clip.py",
],
)
examples_torch_job = CircleCIJob(
"examples_torch",
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
],
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
],
)
examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
],
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
],
marker="is_staging_test",
pytest_num_workers=1,
)
onnx_job = CircleCIJob(
"onnx",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
)
exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install -U --upgrade-strategy eager natten",
# TODO (ydshieh): Remove this line once `https://github.com/facebookresearch/detectron2/issues/5010` is resolved
'pip install -U --upgrade-strategy eager "Pillow<10.0.0"',
],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
"tests/models/deta",
],
pytest_num_workers=1,
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
],
parallelism=None,
pytest_num_workers=1,
resource_class="large",
tests_to_run="tests/repo_utils",
)
# We also include a `dummy.py` file in the files to be doc-tested to prevent edge case failure. Otherwise, the pytest
# hangs forever during test collection while showing `collecting 0 items / 21 errors`. (To see this, we have to remove
# the bash output redirection.)
py_command = 'from utils.tests_fetcher import get_doctest_files; to_test = get_doctest_files() + ["dummy.py"]; to_test = " ".join(to_test); print(to_test)'
py_command = f"$(python3 -c '{py_command}')"
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
doc_test_job = CircleCIJob(
"pr_documentation_tests",
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pytest pytest-sugar",
"pip install -U --upgrade-strategy eager natten",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"touch dummy.py",
{
"name": "Get files to test",
"command": command,
},
{
"name": "Show information in `Get files to test`",
"command":
"cat pr_documentation_tests_temp.txt"
},
{
"name": "Get the last line in `pr_documentation_tests.txt`",
"command":
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests.txt"
},
],
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
command_timeout=1200, # test cannot run longer than 1200 seconds
pytest_num_workers=1,
)
REGULAR_TESTS = [
torch_and_tf_job,
torch_and_flax_job,
torch_job,
tf_job,
flax_job,
custom_tokenizers_job,
hub_job,
onnx_job,
exotic_models_job,
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
examples_flax_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,
pipelines_tf_job,
]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
def create_circleci_config(folder=None):
if folder is None:
folder = os.getcwd()
# Used in CircleCIJob.to_dict() to expand the test list (for using parallelism)
os.environ["test_preparation_dir"] = folder
jobs = []
all_test_file = os.path.join(folder, "test_list.txt")
if os.path.exists(all_test_file):
with open(all_test_file) as f:
all_test_list = f.read()
else:
all_test_list = []
if len(all_test_list) > 0:
jobs.extend(PIPELINE_TESTS)
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
test_list = f.read()
else:
test_list = []
if len(test_list) > 0:
jobs.extend(REGULAR_TESTS)
extended_tests_to_run = set(test_list.split())
# Extend the test files for cross test jobs
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
for test_path in copy.copy(extended_tests_to_run):
dir_path, fn = os.path.split(test_path)
if fn.startswith("test_modeling_tf_"):
fn = fn.replace("test_modeling_tf_", "test_modeling_")
elif fn.startswith("test_modeling_flax_"):
fn = fn.replace("test_modeling_flax_", "test_modeling_")
else:
if job.job_name == "test_torch_and_tf":
fn = fn.replace("test_modeling_", "test_modeling_tf_")
elif job.job_name == "test_torch_and_flax":
fn = fn.replace("test_modeling_", "test_modeling_flax_")
new_test_file = str(os.path.join(dir_path, fn))
if os.path.isfile(new_test_file):
if new_test_file not in extended_tests_to_run:
extended_tests_to_run.add(new_test_file)
extended_tests_to_run = sorted(extended_tests_to_run)
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
job.tests_to_run = extended_tests_to_run
fn = "filtered_test_list_cross_tests.txt"
f_path = os.path.join(folder, fn)
with open(f_path, "w") as fp:
fp.write(" ".join(extended_tests_to_run))
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
with open(example_file, "r", encoding="utf-8") as f:
example_tests = f.read().split(" ")
for job in EXAMPLES_TESTS:
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
if example_tests == "all":
job.tests_to_run = [f"examples/{framework}"]
else:
job.tests_to_run = [f for f in example_tests if f.startswith(f"examples/{framework}")]
if len(job.tests_to_run) > 0:
jobs.append(job)
doctest_file = os.path.join(folder, "doctest_list.txt")
if os.path.exists(doctest_file):
with open(doctest_file) as f:
doctest_list = f.read()
else:
doctest_list = []
if len(doctest_list) > 0:
jobs.extend(DOC_TESTS)
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
jobs.extend(REPO_UTIL_TESTS)
if len(jobs) == 0:
jobs = [EmptyJob()]
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--fetcher_folder", type=str, default=None, help="Only test that all tests and modules are accounted for."
)
args = parser.parse_args()
create_circleci_config(args.fetcher_folder)

View File

@ -1,13 +1,11 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
labels: [ "bug" ]
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
render: shell
placeholder: transformers version, platform, python version, ...
validations:
required: true
@ -19,58 +17,55 @@ body:
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
Models:
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: `@LysandreJik`
- T5, Pegasus, EncoderDecoder: `@patrickvonplaten`
- Blenderbot, MBART, BART, Marian, Pegasus: `@patil-suraj`
- Reformer, TransfoXL, XLNet, FNet: `@patrickvonplaten`
- Longformer, BigBird: `@ydshieh`
- FSMT: `@stas00`
- Funnel: `@sgugger`
- GPT-2, GPT: `@patil-suraj`, `@patrickvonplaten`, `@LysandreJik`
- RAG, DPR: `@patrickvonplaten`, `@lhoestq`
- TensorFlow: `@Rocketknight1`
- JAX/Flax: `@patil-suraj`
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: `@NielsRogge`
- GPT-Neo, GPT-J, CLIP: `@patil-suraj`
- Wav2Vec2, HuBERT, UniSpeech, UniSpeechSAT, SEW, SEW-D: `@patrickvonplaten`, `@anton-l`
- SpeechEncoderDecoder, Speech2Text, Speech2Text2: `@sanchit-gandhi`, `@patrickvonplaten`, `@anton-l`
If the model isn't in the list, ping `@LysandreJik` who will redirect you to the correct contributor.
- text models: @ArthurZucker and @younesbelkada
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- Benchmarks: `@patrickvonplaten`
- Deepspeed: `@stas00`
- Ray/raytune: `@richardliaw`, `@amogkam`
- Text generation: `@patrickvonplaten`, `@Narsil`, `@gante`
- Tokenizers: `@SaulLu`
- Trainer: `@sgugger`
- Pipelines: `@Narsil`
- Speech: `@patrickvonplaten`, `@anton-l`, `@sanchit-gandhi`
- Vision: `@NielsRogge`, `@sgugger`
Documentation: `@sgugger`, `@stevhliu`
- flax: @sanchit-gandhi
- generate: @gante
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @sgugger
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @sgugger @muellerzr
Documentation: @sgugger, @stevhliu and @MKhalusova
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: @sgugger
- TensorFlow: @Rocketknight1
Examples:
Research projects are not maintained and should be taken as is.
- maintained examples (not research project or legacy): `@sgugger`, `@patil-suraj`
For research projetcs, please ping the contributor directly. For example, on the following projects:
- research_projects/bert-loses-patience: `@JetRunner`
- research_projects/distillation: `@VictorSanh`
placeholder: "@Username ..."
- type: checkboxes
@ -118,4 +113,3 @@ body:
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
render: shell

46
.github/ISSUE_TEMPLATE/i18n.md vendored Normal file
View File

@ -0,0 +1,46 @@
---
name: 🌐 Translating a new language?
about: Start a new translation effort in your language
title: '[i18n-<languageCode>] Translating docs to <languageName>'
labels: WIP
assignees: ''
---
<!--
Note: Please search to see if an issue already exists for the language you are trying to translate.
-->
Hi!
Let's bring the documentation to all the <languageName>-speaking community 🌐 (currently 0 out of 267 complete)
Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
Some notes:
* Please translate using an informal tone (imagine you are talking with a friend about transformers 🤗).
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @ArthurZucker, @sgugger for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
## Get Started section
- [ ] [index.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.md) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.md) (waiting for initial PR to go through)
- [ ] [installation.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.md).
## Tutorial section
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)
- [ ] [model_sharing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.md)
- [ ] [multilingual.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.md)
<!--
Keep on adding more as you go 🔥
-->

View File

@ -39,36 +39,38 @@ members/contributors who may be interested in your PR.
Models:
- albert, bert, xlm: @LysandreJik
- blenderbot, bart, marian, pegasus, encoderdecoder, t5: @patrickvonplaten, @patil-suraj
- longformer, reformer, transfoxl, xlnet: @patrickvonplaten
- fsmt: @stas00
- funnel: @sgugger
- gpt2: @patrickvonplaten, @LysandreJik
- rag: @patrickvonplaten, @lhoestq
- tensorflow: @LysandreJik
- text models: @ArthurZucker and @younesbelkada
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- benchmarks: @patrickvonplaten
- deepspeed: @stas00
- ray/raytune: @richardliaw, @amogkam
- text generation: @patrickvonplaten
- tokenizers: @n1t0, @LysandreJik
- flax: @sanchit-gandhi
- generate: @gante
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @sgugger
- pipelines: @LysandreJik
Documentation: @sgugger
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
Documentation: @sgugger, @stevhliu and @MKhalusova
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
Maintained examples (not research project or legacy):
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
- research_projects/bert-loses-patience: @JetRunner
- research_projects/distillation: @VictorSanh
- Flax: @sanchit-gandhi
- PyTorch: @sgugger
- TensorFlow: @Rocketknight1
-->

View File

@ -16,7 +16,6 @@ requirements:
- pip
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
@ -25,13 +24,12 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
run:
- python
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
@ -40,7 +38,7 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
test:

View File

@ -16,7 +16,7 @@ jobs:
name: "Add new model like template tests"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- name: Install dependencies
run: |
@ -27,7 +27,7 @@ jobs:
id: cache
with:
path: ~/venv/
key: v3-tests_model_like-${{ hashFiles('setup.py') }}
key: v4-tests_model_like-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
@ -41,10 +41,12 @@ jobs:
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
transformers_install=$(pip list -e | grep transformers)
transformers_install_array=($transformers_install)
transformers_loc=${transformers_install_array[-1]}
transformers_repo_loc=$(pwd .)
if [ "$transformers_loc" != "$transformers_repo_loc" ]; then
echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
@ -72,7 +74,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: run_all_tests_new_models_test_reports
path: reports/tests_new_models

View File

@ -3,10 +3,15 @@ name: Build docker images (scheduled)
on:
push:
branches:
- docker-image*
- build_ci_docker_image*
repository_dispatch:
workflow_call:
inputs:
image_postfix:
required: true
type: string
schedule:
- cron: "0 1 * * *"
- cron: "17 0 * * *"
concurrency:
group: docker-images-builds
@ -17,73 +22,149 @@ jobs:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v2
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v2
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v2
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-doc-builder
push: true
@ -91,23 +172,35 @@ jobs:
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v2
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
@ -117,23 +210,25 @@ jobs:
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v2
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |

View File

@ -0,0 +1,85 @@
name: Build docker images (Nightly CI)
on:
workflow_call:
push:
branches:
- build_nightly_ci_docker_image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=pre
push: true
tags: huggingface/transformers-all-latest-torch-nightly-gpu
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-nightly-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu

View File

@ -0,0 +1,99 @@
name: Build docker images (Past CI)
on:
push:
branches:
- build_past_ci_docker_image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
past-pytorch-docker:
name: "Past PyTorch Docker"
strategy:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11", "1.10"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
id: get-base-image
name: Get Base Image
env:
framework_version: ${{ matrix.version }}
run: |
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["pytorch"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
-
name: Print Base Image
run: |
echo ${{ steps.get-base-image.outputs.base_image }}
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
FRAMEWORK=pytorch
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu
past-tensorflow-docker:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
id: get-base-image
name: Get Base Image
env:
framework_version: ${{ matrix.version }}
run: |
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["tensorflow"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
-
name: Print Base Image
run: |
echo ${{ steps.get-base-image.outputs.base_image }}
-
name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu

View File

@ -15,6 +15,7 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: en es it pt
languages: de en es fr it ko pt zh
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -14,4 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: en es it pt
languages: de en es fr it ko pt zh

View File

@ -0,0 +1,68 @@
name: Self-hosted runner (check runner status)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
schedule:
# run per hour
- cron: "0 */1 * * *"
env:
TRANSFORMERS_IS_CI: yes
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
outputs:
offline_runners: ${{ steps.set-offline_runners.outputs.offline_runners }}
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker,single-gpu-scheduled-ci-runner-docker,multi-scheduled-scheduled-ci-runner-docker,single-gpu-doctest-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
- id: set-offline_runners
name: Set output for offline runners
if: ${{ always() }}
run: |
offline_runners=$(python3 -c 'fp = open("offline_runners.txt"); failed = fp.read(); fp.close(); print(failed)')
echo "offline_runners=$offline_runners" >> $GITHUB_OUTPUT
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
needs: check_runner_status
if: ${{ failure() }}
steps:
- name: Preliminary job status
shell: bash
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: runner status check
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
OFFLINE_RUNNERS: ${{ needs.check_runner_status.outputs.offline_runners }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py

82
.github/workflows/check_tiny_models.yml vendored Normal file
View File

@ -0,0 +1,82 @@
name: Check Tiny Models
on:
push:
branches:
- check_tiny_models*
repository_dispatch:
schedule:
- cron: "0 2 * * *"
env:
TOKEN: ${{ secrets.TRANSFORMERS_HUB_BOT_HF_TOKEN }}
jobs:
check_tiny_models:
name: Check tiny models
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- uses: actions/checkout@v3
- name: Set up Python 3.8
uses: actions/setup-python@v4
with:
# Semantic version range syntax or exact version of a Python version
python-version: '3.8'
# Optional - x64 or x86 architecture, defaults to x64
architecture: 'x64'
- name: Install
run: |
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake
pip install --upgrade pip
python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu]
pip install tensorflow_probability
python -m pip install -U natten
- name: Create all tiny models (locally)
run: |
python utils/create_dummy_models.py tiny_local_models --all --num_workers 2
- name: Local tiny model reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: tiny_local_model_creation_reports
path: tiny_local_models/reports
# GitHub-hosted runners have 2-core CPUs
- name: Run pipeline tests against all new (local) tiny models
run: |
OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: tiny_local_model_creation_reports
path: reports/tests_pipelines
- name: Create + Upload tiny models for new model architecture(s)
run: |
python utils/update_tiny_models.py --num_workers 2
- name: Full report
run: cat tiny_models/reports/tiny_model_creation_report.json
- name: Failure report
run: cat tiny_models/reports/simple_failed_report.txt
- name: Summary report
run: cat tiny_models/reports/tiny_model_summary.json
- name: New tiny model creation reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: tiny_model_creation_reports
path: tiny_models/reports

View File

@ -1,13 +1,14 @@
name: Delete dev documentation
name: Delete doc comment
on:
pull_request:
types: [ closed ]
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
with:
pr_number: ${{ github.event.number }}
package: transformers
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@ -0,0 +1,12 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@ -6,7 +6,7 @@ on:
- doctest*
repository_dispatch:
schedule:
- cron: "0 0 * * *"
- cron: "17 2 * * *"
env:
@ -25,26 +25,27 @@ jobs:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/checkout@v2
- name: uninstall transformers (installed during docker image build)
run: python3 -m pip uninstall -y transformers
- uses: actions/checkout@v3
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install transformers in edit mode
run: python3 -m pip install -e .
- name: GPU visibility
run: |
python3 utils/print_env.py
- name: Prepare files for doctests
run: |
python3 utils/prepare_for_doc_test.py src docs
- name: Show installed libraries and their versions
run: pip freeze
- name: Run doctests
run: |
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
- name: Clean files after doctests
run: |
python3 utils/prepare_for_doc_test.py src docs --remove_new_line
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
- name: Failure short reports
if: ${{ failure() }}
@ -53,7 +54,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: doc_tests_gpu_test_reports
path: reports/doc_tests_gpu
@ -65,8 +66,8 @@ jobs:
if: always()
needs: [run_doctests]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}

View File

@ -10,7 +10,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
uses: actions/checkout@v3
- name: Install dependencies
run: |
@ -21,7 +21,7 @@ jobs:
id: cache
with:
path: ~/venv/
key: v3-tests_templates-${{ hashFiles('setup.py') }}
key: v4-tests_templates-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
@ -75,7 +75,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: run_all_tests_templates_test_reports
path: reports/tests_templates

View File

@ -0,0 +1,145 @@
name: Self-hosted runner (nightly-past-ci-caller)
on:
schedule:
# 2:17 am on each Sunday and Thursday
- cron: "17 2 * * 0,4"
push:
branches:
- run_nightly_ci*
- run_past_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
run_nightly_ci:
name: Nightly CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-nightly-scheduled.yml
secrets: inherit
run_past_ci_pytorch_1-13:
name: PyTorch 1.13
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_nightly_ci]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.13"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-12:
name: PyTorch 1.12
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-13]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.12"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-12]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-10:
name: PyTorch 1.10
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-11]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.10"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-10:
name: TensorFlow 2.10
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-11]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.10"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-9:
name: TensorFlow 2.9
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-10]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.9"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-9]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.8"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.7"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.6"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.5"
sha: ${{ github.sha }}
secrets: inherit

View File

@ -1,250 +1,322 @@
name: Self-hosted runner; Nightly (scheduled)
name: Self-hosted runner (nightly-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
push:
branches:
- nightly_ci*
repository_dispatch:
schedule:
- cron: "0 0 */3 * *"
repository_dispatch:
workflow_call:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
PYTEST_TIMEOUT: 600
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_all_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env.py
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_gpu/failures_short.txt
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
if: ${{ always() }}
env:
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: Failure short reports
if: ${{ always() }}
run: cat reports/examples_torch_gpu/failures_short.txt
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu/failures_short.txt
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Run all tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu/failures_short.txt
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
run_all_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Install dependencies
run: |
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
pip install .[deepspeed-testing]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install git+https://github.com/microsoft/DeepSpeed
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_gpu_test_reports
path: reports
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
run_all_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
- name: Install dependencies
run: |
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
pip install .[testing,fairscale]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install git+https://github.com/microsoft/DeepSpeed # testing bleeding edge
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env.py
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu/failures_short.txt
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
path: reports
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
run_all_tests_torch_gpu,
run_all_tests_torch_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_all_tests_torch_cuda_extensions_multi_gpu
]
steps:
- uses: actions/checkout@v2
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- uses: actions/download-artifact@v2
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_PAST_FUTURE: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
run: |
pip install slack_sdk
python utils/notification_service.py scheduled nightly-torch
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Nightly CI
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

377
.github/workflows/self-past.yml vendored Normal file
View File

@ -0,0 +1,377 @@
name: Self-hosted runner (past-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
working-directory: /transformers
name: Identify models to test
run: |
cd tests
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
if: inputs.framework == 'pytorch'
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Install
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
# Create a directory to store test failure tables in the next step
- name: Create directory
run: mkdir test_failure_tables
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
path: test_failure_tables
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

View File

@ -1,3 +1,4 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
@ -12,18 +13,42 @@ on:
- "utils/**"
jobs:
run_push_ci:
name: Run Push CI
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
ssh-key: "${{ secrets.COMMIT_KEY }}"
check-for-setup:
runs-on: ubuntu-latest
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v22.2
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
- name: Checkout to branch push-ci
# A more strict way to make sure`push-ci` is exactly the same as `main` at the push event commit.
run: |
git checkout -b push-ci
git push -u origin push-ci --force
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-latest
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,9 +1,12 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- push-ci
- ci_*
- ci-*
paths:
@ -24,38 +27,111 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
runs-on: ubuntu-latest
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: test_fetched
path: test_preparation.txt
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
@ -69,8 +145,8 @@ jobs:
fi
echo $keys
echo $test_map
echo "::set-output name=matrix::$keys"
echo "::set-output name=test_map::$test_map"
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
@ -84,9 +160,45 @@ jobs:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -99,10 +211,6 @@ jobs:
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -112,6 +220,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
@ -124,7 +236,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
@ -141,9 +253,45 @@ jobs:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -156,10 +304,6 @@ jobs:
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -169,6 +313,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
@ -183,7 +331,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
@ -198,68 +346,54 @@ jobs:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace/transformers
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
run: |
python utils/print_env.py
- name: Run all non-slow selected tests on GPU
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace/transformers
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -270,6 +404,10 @@ jobs:
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
@ -283,7 +421,97 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
@ -293,6 +521,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -300,8 +530,53 @@ jobs:
run_tests_torch_cuda_extensions_multi_gpu
]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v3
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
@ -309,11 +584,18 @@ jobs:
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_TITLE: ${{ github.event.head_commit.message }}
CI_COMMIT_URL: ${{ github.event.head_commit.url }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -9,7 +9,10 @@ name: Self-hosted runner (scheduled)
on:
repository_dispatch:
schedule:
- cron: "0 2 * * *"
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*
env:
HF_HOME: /mnt/cache
@ -22,8 +25,36 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
@ -46,11 +77,15 @@ jobs:
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI
run: |
@ -84,6 +119,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -93,6 +132,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
@ -104,7 +147,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
@ -137,6 +180,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -146,6 +193,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
@ -157,14 +208,18 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_examples_gpu:
name: Examples directory
runs-on: [self-hosted, single-gpu-docker]
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -174,6 +229,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -183,23 +242,27 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=examples_gpu examples/pytorch
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/examples_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: run_examples_gpu
path: /transformers/reports/examples_gpu
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
run_pipelines_torch_gpu:
name: PyTorch pipelines
@ -217,6 +280,10 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -226,12 +293,14 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
env:
RUN_PIPELINE_TESTS: yes
run: |
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
@ -240,7 +309,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
@ -262,6 +331,10 @@ jobs:
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -271,12 +344,14 @@ jobs:
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
env:
RUN_PIPELINE_TESTS: yes
run: |
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ always() }}
@ -285,7 +360,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
@ -306,12 +381,19 @@ jobs:
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace/transformers
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -322,6 +404,10 @@ jobs:
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
@ -334,19 +420,88 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v3
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_tf_gpu, run_pipelines_torch_gpu, run_all_tests_torch_cuda_extensions_gpu]
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
@ -354,9 +509,25 @@ jobs:
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: test_failure_tables
path: test_failure_tables

View File

@ -12,16 +12,16 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v1
uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.8
- name: Install requirements
run: |
pip install PyGithub
- name: Close stale issues
run: |
python scripts/stale.py
python scripts/stale.py

View File

@ -4,7 +4,7 @@ on:
push:
branches:
- main
- update_transformers_metadata
- update_transformers_metadata*
jobs:
build_and_package:
@ -14,27 +14,14 @@ jobs:
shell: bash -l {0}
steps:
- uses: actions/checkout@v2
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v2-metadata-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip
- uses: actions/checkout@v3
- name: Setup environment
run: |
. ~/venv/bin/activate
pip install git+https://github.com/huggingface/transformers#egg=transformers[dev]
pip install --upgrade pip
pip install datasets pandas
pip install .[torch,tf,flax]
- name: Update metadata
run: |
. ~/venv/bin/activate
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}

View File

@ -0,0 +1,16 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: transformers
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

5
.gitignore vendored
View File

@ -163,4 +163,7 @@ tags
*.lock
# DS_Store (MacOS)
.DS_Store
.DS_Store
# ruff
.ruff_cache

View File

@ -7,8 +7,8 @@ We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
@ -23,17 +23,17 @@ community include:
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
@ -83,15 +83,15 @@ behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
@ -107,23 +107,27 @@ Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

View File

@ -14,341 +14,337 @@ See the License for the specific language governing permissions and
limitations under the License.
-->
# How to contribute to transformers?
# Contribute to 🤗 Transformers
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
contributions are not the only way to help the community. Answering questions, helping
others, and improving the documentation are also immensely valuable.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
It also helps us if you spread the word! Reference the library in blog posts
about the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply ⭐️ the repository to say thank you.
Whichever way you choose to contribute, please be mindful to respect our
However you choose to contribute, please be mindful and respect our
[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
There are 4 ways you can contribute to transformers:
* Fixing outstanding issues with the existing code;
* Implementing new models;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
## Ways to contribute
In particular there is a special [Good First
There are several ways you can contribute to 🤗 Transformers:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Implement new models.
* Contribute to the examples or to the documentation.
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
typically slightly more complicated than the Issues with just `Good First Issue` label. But if you
feel you know what you're doing, go for it.
open issues that are beginner-friendly and help you start contributing to open-source. Just comment in the issue that you'd like to work
on it.
*All are equally valuable to the community.*
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
## Submitting a new issue or feature request
> All contributions are equally valuable to the community. 🥰
Do your best to follow these guidelines when submitting an issue or a feature
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request) and open a Pull Request!
## Submitting a bug-related issue or feature request
Do your best to follow these guidelines when submitting a bug-related issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The 🤗 Transformers library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask on the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
Did not find it? :( So we can act quickly on it, please follow these steps:
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
* Include your **OS type and version**, the versions of **Python**, **PyTorch** and
**Tensorflow** when applicable;
* Your **OS type and version** and **Python**, **PyTorch** and
**TensorFlow** versions when applicable.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s;
* Provide the *full* traceback if an exception is raised.
less than 30s.
* The *full* traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
To get the OS and software versions automatically, you can run the following command:
To get the OS and software versions automatically, run the following command:
```bash
transformers-cli env
```
or from the root of the repository the following command:
You can also run the same command from the root of the repository:
```bash
python src/transformers/commands/transformers_cli.py env
```
### Do you want a new feature?
### Do you want to implement a new model?
If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe:
Awesome! Please provide the following information:
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
* Short description of the model and link to the paper;
* Link to the implementation if it is open-source;
Whatever it is, we'd love to hear about it!
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
3. Provide a *code snippet* that demonstrates the features usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue.
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information
* A short description of the model and link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can best
guide you.
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them
in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates) folder.
We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
### Do you want a new feature (that is not a model)?
## Do you want to add documentation?
A world-class feature request addresses the following points:
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested!
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs).
If your issue is well written we're already 80% of the way there by the time you
post it.
## Create a Pull Request
We have added **templates** to guide you in the process of adding a new example script for training or testing the
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates)
folder.
## Start contributing! (Pull Requests)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
Before writing any code, we strongly advise you to search through the existing PRs or
issues to make sure nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🤗 Transformers. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
You will need basic `git` proficiency to contribute to
🤗 Transformers. While `git` is not the easiest tool to use, it has the greatest
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your Github handle>/transformers.git
$ cd transformers
$ git remote add upstream https://github.com/huggingface/transformers.git
git clone git@github.com:<your Github handle>/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
🚨 **Do not** work on the `main` branch!
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -e ".[dev]"
pip install -e ".[dev]"
```
(If transformers was already installed in the virtual environment, remove
If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.)
To run the full test suite, you might need the additional dependency on `datasets` which requires a separate source
install:
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
```bash
$ git clone https://github.com/huggingface/datasets
$ cd datasets
$ pip install -e .
pip install -e ".[quality]"
```
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets`
library.
which should be enough for most use cases.
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this:
As you work on your code, you should make sure the test suite
passes. Run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
You can also run the full suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Transformers has grown a lot. Here is the command for it:
```bash
$ make test
pytest tests/<TEST_TO_RUN>.py
```
For more information about tests, check out the
[dedicated documentation](https://huggingface.co/docs/transformers/testing)
[Testing](https://huggingface.co/docs/transformers/testing) guide.
🤗 Transformers relies on `black` and `isort` to format its source code
🤗 Transformers relies on `black` and `ruff` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash
$ make fixup
make fixup
```
This target is also optimized to only work with files modified by the PR you're working on.
If you prefer to run the checks one after the other, the following command apply the
If you prefer to run the checks one after the other, the following command applies the
style corrections:
```bash
$ make style
make style
```
🤗 Transformers also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
🤗 Transformers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
controls are run by the CI, but you can run the same checks with:
```bash
$ make quality
make quality
```
Finally we have a lot of scripts that check we didn't forget to update
some files when adding a new model, that you can run with
Finally, we have a lot of scripts to make sure we didn't forget to update
some files when adding a new model. You can run these scripts with:
```bash
$ make repo-consistency
make repo-consistency
```
To learn more about those checks and how to fix any issue with them, check out the
[documentation](https://huggingface.co/docs/transformers/pr_checks)
To learn more about those checks and how to fix any issues with them, check out the
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under `docs/source`, make sure to validate that
they can still be built. This check also runs in CI. To run a local check
make sure you have installed the documentation builder requirements. First you will need to clone the
repository containing our tools to build the documentation:
If you're modifying documents under `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
$ pip install git+https://github.com/huggingface/doc-builder
pip install ".[docs]"
```
Then, make sure you have all the dependencies to be able to build the doc with:
```bash
$ pip install ".[docs]"
```
Finally run the following command from the root of the repository:
Run the following command from the root of the repository:
```bash
$ doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build
```
This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
Markdown files with your favorite editor. You won't be able to see the final rendering on the website
before your PR is merged, we are actively working on adding a tool for this.
Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request.
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
Once you're happy with your changes, add changed files with `git add` and
record your changes locally with `git commit`:
```bash
$ git add modified_file.py
$ git commit
git add modified_file.py
git commit
```
Please write [good commit
messages](https://chris.beams.io/posts/git-commit/).
Please remember to write [good commit
messages](https://chris.beams.io/posts/git-commit/) to clearly communicate the changes you made!
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
To keep your copy of the code up to date with the original
repository, rebase your branch on `upstream/branch` *before* you open a pull request or if requested by a maintainer:
```bash
$ git fetch upstream
$ git rebase upstream/main
git fetch upstream
git rebase upstream/main
```
Push the changes to your account using:
Push your changes to your branch:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
6. Now you can go to your fork of the repository on GitHub and click on **Pull request** to open a pull request. Make sure you tick off all the boxes in our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
7. It's ok if maintainers request changes, it happens to our core contributors
too! So everyone can see the changes in the pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Pull request checklist
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
4. Make sure existing tests pass;
5. Add high-coverage tests. No quality testing = no merge.
- If you are adding a new model, make sure that you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)`, which triggers the common tests.
☐ The pull request title should summarize your contribution.<br>
☐ If your pull request addresses an issue, please mention the issue number in the pull
request description to make sure they are linked (and people viewing the issue know you
are working on it).<br>
☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
☐ Make sure existing tests pass.<br>
☐ If adding a new feature, also add tests for it.<br>
- If you are adding a new model, make sure you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests, and make sure
`RUN_SLOW=1 python -m pytest tests/test_tokenization_{your_model_name}.py` passes.
CircleCI does not run the slow tests, but github actions does every night!
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_bert.py` for an
example.
7. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
See more about the checks run on a pull request in our [PR guide](pr_checks)
☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
for an example).<br>
☐ Due to the rapidly growing repository, don't add any images, videos and other
non-text files that'll significantly weigh down the repository. Instead, use a Hub
repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-testing)
to host these files and reference them by URL. We recommend placing documentation
related images in the following repository:
[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
You can open a PR on this dataset repostitory and ask a Hugging Face member to merge it.
For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/transformers/tree/main/tests) and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/main/examples).
the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the
[examples](https://github.com/huggingface/transformers/tree/main/examples) folder.
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
repository, specify a *path to a subfolder or a test file* to run the test.
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
```
and for the examples:
Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory:
```bash
$ pip install -r examples/xxx/requirements.txt # only needed the first time
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/
pip install -r examples/xxx/requirements.txt # only needed the first time
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
In fact, that's how `make test` and `make test-examples` are implemented (sans the `pip install` line)!
You can specify a smaller set of tests in order to test only the feature
In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)!
You can also specify a smaller set of tests in order to test only the feature
you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models make sure you
have enough disk space and a good Internet connection, or a lot of patience!
By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models so make sure you
have enough disk space, a good internet connection or a lot of patience!
<Tip warning={true}>
Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
</Tip>
```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
Likewise, set the `RUN_CUSTOM_TOKENIZERS` environment variable to `yes` to run
tests for custom tokenizers, which don't run by default either.
Like the slow tests, there are other environment variables available which not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself.
@ -357,43 +353,43 @@ This means `unittest` is fully supported. Here's how to run tests with
`unittest`:
```bash
$ python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v
python -m unittest discover -s tests -t . -v
python -m unittest discover -s examples -t examples -v
```
### Style guide
For documentation strings, 🤗 Transformers follows the [google style](https://google.github.io/styleguide/pyguide.html).
For documentation strings, 🤗 Transformers follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html).
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)
for more information.
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
### Develop on Windows
On windows, you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
`git config core.autocrlf input`
```bash
git config core.autocrlf input
```
One way one can run the make command on Window is to pass by MSYS2:
One way to run the `make` command on Windows is with MSYS2:
1. [Download MSYS2](https://www.msys2.org/), we assume to have it installed in C:\msys64
2. Open the command line C:\msys64\msys2.exe (it should be available from the start menu)
3. Run in the shell: `pacman -Syu` and install make with `pacman -S make`
1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`.
2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu).
3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`.
4. Add `C:\msys64\usr\bin` to your PATH environment variable.
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉
You can now use `make` from any terminal (Powershell, cmd.exe, etc.)! 🎉
### Syncing forked main with upstream (HuggingFace) main
### Sync a forked repository with upstream main (the Hugging Face repository)
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked main.
When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs.
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```bash
git checkout -b your-branch-for-syncing
git pull --squash --no-commit upstream main
git commit -m '<your message without GitHub references>'
git push --set-upstream origin your-branch-for-syncing
```

View File

@ -18,7 +18,7 @@ limitations under the License.
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
@ -158,7 +158,7 @@ You are not required to read the following guidelines before opening an issue. H
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \
--fp16 --sharded_ddp
--fp16
```
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.

View File

@ -1 +0,0 @@
include LICENSE

View File

@ -9,9 +9,8 @@ modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
black --preview $(modified_py_files); \
isort $(modified_py_files); \
flake8 $(modified_py_files); \
black $(modified_py_files); \
ruff $(modified_py_files) --fix; \
else \
echo "No library .py files were modified"; \
fi
@ -40,17 +39,20 @@ repo-consistency:
python utils/check_repo.py
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/tests_fetcher.py --sanity_check
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
# this target runs checks on all files
quality:
black --check --preview $(check_dirs)
isort --check-only $(check_dirs)
black --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
flake8 $(check_dirs)
ruff $(check_dirs) setup.py conftest.py
doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing
@ -58,12 +60,13 @@ extra_style_checks:
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them
style:
black --preview $(check_dirs)
isort $(check_dirs)
black $(check_dirs) setup.py conftest.py
ruff $(check_dirs) setup.py conftest.py --fix
${MAKE} autogenerate_code
${MAKE} extra_style_checks
@ -77,6 +80,7 @@ fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_task_guides.py --fix_and_overwrite
# Run tests for the library
@ -107,3 +111,10 @@ post-release:
post-patch:
python utils/release.py --post_release --patch
build-release:
rm -rf dist
rm -rf build
python setup.py bdist_wheel
python setup.py sdist
python utils/check_build.py

244
README.md
View File

@ -15,10 +15,15 @@ limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -43,7 +48,10 @@ limitations under the License.
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
@ -55,13 +63,13 @@ limitations under the License.
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
@ -87,13 +95,36 @@ Here are a few examples:
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Image Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Depth Estimation with DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
In Audio:
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities.
In Multimodal tasks:
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-shot Image Classification with CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## If you are looking for custom support from the Hugging Face team
@ -116,24 +147,48 @@ To immediately use a model on a given input (text, image, audio, ...), we provid
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
>>> from transformers import AutoTokenizer, AutoModel
@ -143,6 +198,7 @@ To download and use any of the pretrained models on your given task, all it take
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
@ -156,7 +212,7 @@ And here is the equivalent code for TensorFlow:
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers?
@ -169,7 +225,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.
- Dozens of architectures with over 60,000 pretrained models across all modalities.
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
@ -184,21 +240,21 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
## Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
### With pip
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
This repository is tested on Python 3.7+, Flax 0.4.1+, PyTorch 1.9+ and TensorFlow 2.4+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific install command for your platform.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -220,15 +276,22 @@ conda install -c huggingface transformers
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -238,72 +301,134 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/main/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/main/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/main/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/main/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/main/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/main/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/main/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/main/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/main/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/main/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
@ -311,52 +436,76 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/main/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/main/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/main/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/docs/transformers/examples).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## Learn more
@ -369,7 +518,6 @@ These implementations have been tested on several datasets (see the example scri
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
## Citation

515
README_es.md Normal file
View File

@ -0,0 +1,515 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<b>Español</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>Lo último de Machine Learning para JAX, PyTorch y TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers aporta miles de modelos preentrenados Para realizar tareas en diferentes modalidades como texto, vision, y audio.
Estos modelos pueden ser aplicados en:
* 📝 Texto, Para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder pregunstas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
## Demostraciones en línea
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
Aquí hay algunos ejemplos:
En procesamiento del lenguaje natural:
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Generación de texto con GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traducción con T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En visión de ordenador:
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En Audio:
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
En tareas multimodales:
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
## Si está buscando soporte personalizado del equipo de Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour rápido
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object_detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Y aquí está el código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
## ¿Por qué debo usar transformers?
1. Modelos de última generación fáciles de usar:
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
- Baja barrera de entrada para educadores y profesionales.
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
- Una API unificada para usar todos nuestros modelos preentrenados.
1. Menores costes de cómputo, menor huella de carbono:
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
- Entrene modelos de última generación en 3 líneas de código.
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
- Los internos del modelo están expuestos lo más consistentemente posible..
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
## ¿Por qué no debería usar transformers?
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
## Instalación
### Con pip
Este repositorio está probado en Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ y TensorFlow 2.3+.
Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
Luego, deberás instalar al menos uno de Flax, PyTorch o TensorFlow.
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
```bash
pip install transformers
```
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Con conda
Desde la versión v4.0.0 de Transformers, ahora tenemos un canal conda: `huggingface`.
🤗 Transformers se puede instalar usando conda de la siguiente manera:
```shell script
conda install -c huggingface transformers
```
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquitecturas modelo
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR.
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers , ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
## Aprender más
| Sección | Descripción |
|-|-|
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
| [Tutorial de preprocesAmiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
## Citación
Ahora nosotros tenemos un [papel](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

487
README_hd.md Normal file
View File

@ -0,0 +1,487 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Hindi translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Hindi characters. E.g., कुल मिलाकर 100 से अधिक भाषाएँ; ट्रांसफॉर्मर लाइब्रेरी का उपयोग करता है।
- वर्गाकार उद्धरणों का प्रयोग करें, जैसे, "उद्धरण"
Dictionary
Hugging Face: गले लगाओ चेहरा
token: शब्द (और मूल अंग्रेजी को कोष्ठक में चिह्नित करें)
tokenize: टोकननाइज़ करें (और मूल अंग्रेज़ी को चिह्नित करने के लिए कोष्ठक का उपयोग करें)
tokenizer: Tokenizer (मूल अंग्रेजी में कोष्ठक के साथ)
transformer: transformer
pipeline: समनुक्रम
API: API (अनुवाद के बिना)
inference: विचार
Trainer: प्रशिक्षक। कक्षा के नाम के रूप में प्रस्तुत किए जाने पर अनुवादित नहीं किया गया।
pretrained/pretrain: पूर्व प्रशिक्षण
finetune: फ़ाइन ट्यूनिंग
community: समुदाय
example: जब विशिष्ट गोदाम example कैटलॉग करते समय "केस केस" के रूप में अनुवादित
Python data structures (e.g., list, set, dict): मूल अंग्रेजी को चिह्नित करने के लिए सूचियों, सेटों, शब्दकोशों में अनुवाद करें और कोष्ठक का उपयोग करें
NLP/Natural Language Processing: द्वारा NLP अनुवाद के बिना प्रकट होते हैं Natural Language Processing प्रस्तुत किए जाने पर प्राकृतिक भाषा संसाधन में अनुवाद करें
checkpoint: जाँच बिंदु
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<b>हिन्दी</b> |
<p>
</h4>
<h3 align="center">
<p>Jax, PyTorch और TensorFlow के लिए उन्नत मशीन लर्निंग</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब] (https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। ) . इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
## ऑनलाइन डेमो
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई] भी प्रदान करते हैं।(https://huggingface.co/pricing)。
यहाँ कुछ उदाहरण हैं:
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。
## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## जल्दी शुरू करें
हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है:
```python
>>> from transformers import pipeline
# भावना विश्लेषण पाइपलाइन का उपयोग करना
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है।
कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं:
``` python
>>> from transformers import pipeline
# प्रश्नोत्तर पाइपलाइन का उपयोग करना
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं।
अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
यहाँ समकक्ष है TensorFlow कोड:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https ://pytorch.org/docs/stable/nn.html#torch.nn.Module) ://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
## ट्रांसफार्मर का उपयोग क्यों करें?
1. उपयोग में आसानी के लिए उन्नत मॉडल:
- एनएलयू और एनएलजी पर बेहतर प्रदर्शन
- प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल
- उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है
- सभी मॉडलों के लिए एकीकृत एपीआई
1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन:
- शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं
- इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं
- दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन
1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है:
- कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें
- मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं
- निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें
1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें:
- हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं
- मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है
- मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है
## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए?
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका] (https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
## स्थापित करना
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ और TensorFlow 2.3+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट] (https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश] (https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started /locally/# देखें) start-locally) या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
```bash
pip install transformers
```
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from- स्रोत)।
### कोंडा का उपयोग करना
ट्रांसफॉर्मर संस्करण 4.0.0 के बाद से, हमारे पास एक कोंडा चैनल है: `हगिंगफेस`।
ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है:
```shell script
conda install -c huggingface transformers
```
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
## मॉडल आर्किटेक्चर
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models) /users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
चौकियों की वर्तमान संख्या: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं (मॉडल के अवलोकन के लिए [यहां] देखें (https://huggingface.co/docs/transformers/model_summary))
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago) साथ थीसिस [ALBERT: A Lite BERT for Self-supervised भाषा प्रतिनिधित्व सीखना](https://arxiv.org/abs/1909.11942), झेंझोंग लैन, मिंगदा चेन, सेबेस्टियन गुडमैन, केविन गिम्पेल, पीयूष शर्मा, राडू सोरिकट
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ] (https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT इमेज ट्रांसफॉर्मर्स का प्री-ट्रेनिंग](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा।
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [बीईआरटी: प्री-ट्रेनिंग ऑफ डीप बिडायरेक्शनल ट्रांसफॉर्मर्स फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, ​​केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। .
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https ://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: अंग्रेजी ट्वीट्स के लिए एक पूर्व-प्रशिक्षित भाषा मॉडल] (https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv .org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा।
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया।
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [एक ओपन-डोमेन चैटबॉट बनाने की विधि](https://arxiv.org /abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [एक ओपन-डोमेन चैटबॉट बनाने की रेसिपी](https://arxiv .org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce से) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. द्वाराअनुसंधान पत्र [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) के साथ जारी किया गया
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [बीईआरटी के लिए ऑप्टिमल सबआर्किटेक्चर एक्सट्रैक्शन](https://arxiv.org/abs/ 2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [ब्रिजटॉवर: विजन-लैंग्वेज रिप्रेजेंटेशन लर्निंग में एनकोडर्स के बीच ब्रिज बनाना](<https://arxiv.org/abs/2206.08657>) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: पूर्व-प्रशिक्षित बाइट-टू-बाइट मॉडल के साथ एक टोकन-मुक्त भविष्य की ओर] (https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: एक टेस्टी फ्रेंच लैंग्वेज मॉडल](https:// arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा।
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [कैनाइन: प्री-ट्रेनिंग ए एफिशिएंट टोकनाइजेशन-फ्री एनकोडर फॉर लैंग्वेज रिप्रेजेंटेशन]( https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा।
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI से) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. द्वाराअनुसंधान पत्र [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) के साथ जारी किया गया
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [लर्निंग ट्रांसफरेबल विजुअल मॉडल फ्रॉम नेचुरल लैंग्वेज सुपरविजन](https://arxiv.org /abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा।
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [प्रोग्राम सिंथेसिस के लिए एक संवादात्मक प्रतिमान](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [फास्ट ट्रेनिंग कन्वर्जेंस के लिए सशर्त डीईटीआर](https://arxiv. org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: स्पैन-आधारित डायनेमिक कनवल्शन के साथ BERT में सुधार](https://arxiv .org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs /2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (सिंघुआ यूनिवर्सिटी से) साथ में पेपर [सीपीएम: ए लार्ज-स्केल जेनेरेटिव चाइनीज प्री-ट्रेंड लैंग्वेज मॉडल](https : //arxiv.org/abs/2012.00413) झेंग्यान झांग, जू हान, हाओ झोउ, पेई के, युक्सियन गु, डेमिंग ये, युजिया किन, युशेंग सु, हाओझे जी, जियान गुआन, फैंचाओ क्यूई, ज़ियाओझी वांग, यानान झेंग द्वारा , गुओयांग ज़ेंग, हुआनकी काओ, शेंगकी चेन, डाइक्सुआन ली, ज़ेनबो सन, ज़ियुआन लियू, मिनली हुआंग, वेंटाओ हान, जी तांग, जुआनज़ी ली, ज़ियाओयान झू, माओसोंग सन।
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: ए कंडिशनल ट्रांसफॉर्मर लैंग्वेज मॉडल फॉर कंट्रोलेबल जेनरेशन](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: इंट्रोड्यूसिंग कनवॉल्यूशन टू विजन ट्रांसफॉर्मर्स](https://arxiv.org/ एब्स/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: भाषण, दृष्टि और भाषा में स्व-पर्यवेक्षित सीखने के लिए एक सामान्य ढांचा] (https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERta: डिकोडिंग-एन्हांस्ड BERT विद डिसेंटैंगल्ड अटेंशन](https://arxiv. org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: डिकोडिंग-एन्हांस्ड BERT विथ डिसेंन्गल्ड अटेंशन](https: //arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [डिसीजन ट्रांसफॉर्मर: रीनफोर्समेंट लर्निंग वाया सीक्वेंस मॉडलिंग](https : //arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [डिफॉर्मेबल डीईटीआर: डिफॉर्मेबल ट्रांसफॉर्मर्स फॉर एंड-टू-एंड ऑब्जेक्ट डिटेक्शन] (https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया।
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [ट्रेनिंग डेटा-एफिशिएंट इमेज ट्रांसफॉर्मर और डिस्टिलेशन थ्रू अटेंशन](https://arxiv .org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा।
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv. org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https ://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [डिस्टिलबर्ट, बीईआरटी का डिस्टिल्ड वर्जन: छोटा, तेज, सस्ता और हल्का] (https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: सेल्फ सुपरवाइज्ड प्री-ट्रेनिंग फॉर डॉक्यूमेंट इमेज ट्रांसफॉर्मर](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-मुक्त डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर](https://arxiv.org/abs /2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा।
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (फेसबुक से) साथ में पेपर [ओपन-डोमेन क्वेश्चन आंसरिंग के लिए डेंस पैसेज रिट्रीवल](https://arxiv. org/abs/2004.04906) व्लादिमीर करपुखिन, बरलास ओज़ुज़, सेवन मिन, पैट्रिक लुईस, लेडेल वू, सर्गेई एडुनोव, डैनकी चेन, और वेन-ताऊ यिह द्वारा।
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (इंटेल लैब्स से) साथ में कागज [विज़न ट्रांसफॉर्मर्स फॉर डेंस प्रेडिक्शन](https://arxiv.org /abs/2103.13413) रेने रैनफ्टल, एलेक्सी बोचकोवस्की, व्लादलेन कोल्टन द्वारा।
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [इलेक्ट्रा: जेनरेटर के बजाय भेदभाव करने वाले के रूप में टेक्स्ट एन्कोडर्स का पूर्व-प्रशिक्षण] (https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https:/ /arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: एन्हांस्ड रिप्रेजेंटेशन थ्रू नॉलेज इंटीग्रेशन](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [ अलेक्जेंडर राइव्स, जोशुआ मेयर, टॉम सर्कु, सिद्धार्थ गोयल, ज़ेमिंग लिन द्वारा जैविक संरचना और कार्य असुरक्षित सीखने को 250 मिलियन प्रोटीन अनुक्रमों तक स्केल करने से उभरता है] (https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं] (https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (FLAVA: A फाउंडेशनल लैंग्वेज एंड विजन अलाइनमेंट मॉडल) (https://arxiv) साथ वाला पेपर .org/abs/2112.04482) अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले ​​द्वारा रिहाई।
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://blog .openai.com/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/ EleutherAI /gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया।
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI से) पेपर के साथ जारी किया गया [GPT-NeoX-20B: एक ओपन-सोर्स ऑटोरेग्रेसिव लैंग्वेज मॉडल] (https://arxiv.org/abs/2204.06745) सिड ब्लैक, स्टेला बिडरमैन, एरिक हैलाहन, क्वेंटिन एंथोनी, लियो गाओ, लॉरेंस गोल्डिंग, होरेस हे, कॉनर लेही, काइल मैकडोनेल, जेसन फांग, माइकल पाइलर, यूएसवीएसएन साई प्रशांत द्वारा , शिवांशु पुरोहित, लारिया रेनॉल्ड्स, जोनाथन टो, बेन वांग, सैमुअल वेनबैक
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (अबेजा के जरिए) शिन्या ओटानी, ताकायोशी मकाबे, अनुज अरोड़ा, क्यो हटोरी द्वारा।
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (ओपनएआई से) साथ में पेपर [लैंग्वेज मॉडल्स अनसुपरवाइज्ड मल्टीटास्क लर्नर्स हैं](https://blog.openai.com/better-language-models/) एलेक रैडफोर्ड*, जेफरी वू*, रेवन चाइल्ड, डेविड लुआन, डारियो एमोडी* द्वारा * और इल्या सुत्सकेवर** ने पोस्ट किया।
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI से) साथ वाला पेपर [kingoflolz/mesh-transformer-jax](https://github. com/kingoflolz/mesh-transformer-jax/) बेन वांग और अरन कोमात्सुजाकी द्वारा।
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode से) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. द्वाराअनुसंधान पत्र [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) के साथ जारी किया गया
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: टेक्स्ट सुपरविजन से सिमेंटिक सेगमेंटेशन इमर्जेस](https://arxiv .org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [ह्यूबर्ट: सेल्फ सुपरवाइज्ड स्पीच रिप्रेजेंटेशन लर्निंग बाय मास्क्ड प्रेडिक्शन ऑफ हिडन यूनिट्स](https ://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https:// arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा।
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [लेआउटएलएमवी3: यूनिफाइड टेक्स्ट और इमेज मास्किंग के साथ दस्तावेज़ एआई के लिए पूर्व-प्रशिक्षण](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया।
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https:/ /arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: एक सरल लेकिन प्रभावी भाषा-स्वतंत्र लेआउट ट्रांसफार्मर संरचित दस्तावेज़ समझ के लिए](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: डीप कॉन्टेक्स्टुअलाइज्ड एंटिटी रिप्रेजेंटेशन विद एंटिटी-अवेयर सेल्फ-अटेंशन](https ://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC चैपल हिल से) साथ में पेपर [LXMERT: ओपन-डोमेन क्वेश्चन के लिए ट्रांसफॉर्मर से क्रॉस-मोडलिटी एनकोडर रिप्रेजेंटेशन सीखना Answering](https://arxiv.org/abs/1908.07490) हाओ टैन और मोहित बंसल द्वारा।
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (फेसबुक से) साथ देने वाला पेपर [बियॉन्ड इंग्लिश-सेंट्रिक मल्टीलिंगुअल मशीन ट्रांसलेशन](https://arxiv.org/ एब्स/2010.11125) एंजेला फैन, श्रुति भोसले, होल्गर श्वेन्क, झी मा, अहमद अल-किश्की, सिद्धार्थ गोयल, मनदीप बैनेस, ओनूर सेलेबी, गुइल्लाम वेन्जेक, विश्रव चौधरी, नमन गोयल, टॉम बर्च, विटाली लिपचिंस्की, सर्गेई एडुनोव, एडौर्ड द्वारा ग्रेव, माइकल औली, आर्मंड जौलिन द्वारा पोस्ट किया गया।
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg द्वारा [OPUS](http://opus.nlpl.eu/) डेटा से प्रशिक्षित मशीनी अनुवाद मॉडल पोस्ट किया गया टाइडेमैन द्वारा। [मैरियन फ्रेमवर्क](https://marian-nmt.github.io/) माइक्रोसॉफ्ट ट्रांसलेटर टीम द्वारा विकसित।
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ में पेपर [मार्कअपएलएम: विजुअली-रिच डॉक्यूमेंट अंडरस्टैंडिंग के लिए टेक्स्ट और मार्कअप लैंग्वेज का प्री-ट्रेनिंग] (https://arxiv.org/abs/2110.08518) जुनलॉन्ग ली, यिहेंग जू, लेई कुई, फुरु द्वारा वी द्वारा पोस्ट किया गया।
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC से) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. द्वाराअनुसंधान पत्र [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) के साथ जारी किया गया
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (मेटा और UIUC से) पेपर के साथ जारी किया गया [प्रति-पिक्सेल वर्गीकरण वह सब नहीं है जिसकी आपको सिमेंटिक सेगमेंटेशन की आवश्यकता है] (https://arxiv.org/abs/2107.06278) बोवेन चेंग, अलेक्जेंडर जी. श्विंग, अलेक्जेंडर किरिलोव द्वारा >>>>>> रिबेस ठीक करें
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI से) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. द्वाराअनुसंधान पत्र [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) के साथ जारी किया गया
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [न्यूरल मशीन ट्रांसलेशन के लिए मल्टीलिंगुअल डीनोइजिंग प्री-ट्रेनिंग](https://arxiv. org/abs/2001.08210) यिनहान लियू, जियाताओ गु, नमन गोयल, जियान ली, सर्गेई एडुनोव, मार्जन ग़ज़विनिनेजाद, माइक लुईस, ल्यूक ज़ेटलमॉयर द्वारा।
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [एक्स्टेंसिबल बहुभाषी प्रीट्रेनिंग और फाइनट्यूनिंग के साथ बहुभाषी अनुवाद](https://arxiv युकिंग टैंग, चाउ ट्रान, जियान ली, पेंग-जेन चेन, नमन गोयल, विश्रव चौधरी, जियाताओ गु, एंजेला फैन द्वारा .org/abs/2008.00401)।
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook से) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. द्वाराअनुसंधान पत्र [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) के साथ जारी किया गया
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: मॉडल का उपयोग करके बहु-अरब पैरामीटर भाषा मॉडल का प्रशिक्षण Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा।
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: ट्रेनिंग मल्टी-बिलियन पैरामीटर लैंग्वेज मॉडल्स यूजिंग मॉडल पैरेललिज़्म] (https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: द पावर ऑफ एंटिटी रिप्रेजेंटेशन इन मल्टीलिंगुअल प्रीट्रेन्ड लैंग्वेज मॉडल्स](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [मोबाइलबर्ट: संसाधन-सीमित उपकरणों के लिए एक कॉम्पैक्ट टास्क-अज्ञेय बीईआरटी] (https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: लाइट-वेट, जनरल-पर्पस, और मोबाइल-फ्रेंडली विजन ट्रांसफॉर्मर] (https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: एक व्यापक बहुभाषी पूर्व-प्रशिक्षित टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर]( https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [पर्सीवर आईओ: संरचित इनपुट और आउटपुट के लिए एक सामान्य वास्तुकला] (https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: वियतनामी के लिए पूर्व-प्रशिक्षित भाषा मॉडल](https://www .aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया।
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [प्रोग्राम अंडरस्टैंडिंग एंड जेनरेशन के लिए यूनिफाइड प्री-ट्रेनिंग](https://arxiv .org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू-सीक्वेंस प्री-ट्रेनिंग ](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [डीप लर्निंग इंफ़ेक्शन के लिए इंटीजर क्वांटिज़ेशन: प्रिंसिपल्स एंड एम्पिरिकल इवैल्यूएशन](https:// arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [रिट्रीवल-ऑगमेंटेड जेनरेशन फॉर नॉलेज-इंटेंसिव एनएलपी टास्क](https://arxiv .org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा।
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: रिट्रीवल-ऑगमेंटेड लैंग्वेज मॉडल प्री-ट्रेनिंग](https://arxiv.org/abs/2002.08909)।
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META रिसर्च से) [डिज़ाइनिंग नेटवर्क डिज़ाइन स्पेस] (https://arxiv.org/) पेपर के साथ जारी किया गया एब्स/2003.13678) इलिजा राडोसावोविक, राज प्रतीक कोसाराजू, रॉस गिर्शिक, कैमिंग ही, पिओटर डॉलर द्वारा।
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (गूगल रिसर्च से) साथ वाला पेपर [पूर्व-प्रशिक्षित भाषा मॉडल में एम्बेडिंग कपलिंग पर पुनर्विचार](https://arxiv .org/pdf/2010.12821.pdf) ह्युंग वोन चुंग, थिबॉल्ट फ़ेवरी, हेनरी त्साई, एम. जॉनसन, सेबेस्टियन रुडर द्वारा।
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (माइक्रोसॉफ्ट रिसर्च से) [डीप रेसिडुअल लर्निंग फॉर इमेज रिकग्निशन] (https://arxiv. org/abs/1512.03385) कैमिंग हे, जियांग्यु झांग, शाओकिंग रेन, जियान सन द्वारा।
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (फेसबुक से), साथ में कागज [मजबूत रूप से अनुकूलित BERT प्रीट्रेनिंग दृष्टिकोण](https://arxiv.org/abs /1907.11692) यिनहान लियू, मायल ओट, नमन गोयल, जिंगफेई डू, मंदार जोशी, डैनकी चेन, ओमर लेवी, माइक लुईस, ल्यूक ज़ेटलमॉयर, वेसेलिन स्टोयानोव द्वारा।
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [रोफॉर्मर: रोटरी पोजिशन एंबेडिंग के साथ एन्हांस्ड ट्रांसफॉर्मर] (https://arxiv.org/pdf/2104.09864v1.pdf) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित।
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स](https ://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा।
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP से) साथ में पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स] (https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योआव आर्टज़ी द्वारा पोस्ट किया गया।
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (फेसबुक से), साथ में पेपर [फेयरसेक S2T: फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग विद फेयरसेक](https: //arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https:// arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https: //arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv .org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https:// ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा arxiv.org/abs/2111.09883।
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI)कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग और माइकल मटेना द्वारा साथ में पेपर [एक एकीकृत टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर के साथ स्थानांतरण सीखने की सीमा की खोज] (https://arxiv.org/abs/1910.10683) और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI से) साथ वाला पेपर [google-research/text-to-text-transfer- ट्रांसफॉर्मर](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग द्वारा और माइकल मटेना और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [पबटेबल्स-1एम: टूवर्ड्स कॉम्प्रिहेंसिव टेबल एक्सट्रैक्शन फ्रॉम अनस्ट्रक्चर्ड डॉक्यूमेंट्स ](https://arxiv.org/abs/2110.00061) ब्रैंडन स्मॉक, रोहित पेसाला, रॉबिन अब्राहम द्वारा पोस्ट किया गया।
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI से) साथ में कागज [TAPAS: पूर्व-प्रशिक्षण के माध्यम से कमजोर पर्यवेक्षण तालिका पार्सिंग](https:// arxiv.org/abs/2004.02349) जोनाथन हर्ज़िग, पावेल क्रिज़िस्तोफ़ नोवाक, थॉमस मुलर, फ्रांसेस्को पिकिन्नो और जूलियन मार्टिन ईसेन्च्लोस द्वारा।
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [TAPEX: टेबल प्री-ट्रेनिंग थ्रू लर्निंग अ न्यूरल SQL एक्ज़ीक्यूटर](https: //arxiv.org/abs/2107.07653) कियान लियू, बेई चेन, जियाकी गुओ, मोर्टेज़ा ज़ियादी, ज़ेकी लिन, वीज़ू चेन, जियान-गुआंग लू द्वारा पोस्ट किया गया।
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU की ओर से) कागज के साथ [संस्करण-एक्स: एक ब्लॉग मॉडल चौकस चौक मॉडल मॉडल] (https://arxivorg/abs/1901.02860) क्वोकोक वी. ले, रुस्लैन सलाखुतदी
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: यूनिफाइड स्पीच रिप्रेजेंटेशन लर्निंग विद लेबलेड एंड अनलेबल्ड डेटा](https:/ /arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: यूनिवर्सल स्पीच रिप्रेजेंटेशन लर्निंग विद स्पीकर अवेयर प्री-ट्रेनिंग ](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (सिंघुआ यूनिवर्सिटी और ननकाई यूनिवर्सिटी से) साथ में पेपर [विजुअल अटेंशन नेटवर्क](https://arxiv.org/ pdf/2202.09741.pdf) मेंग-हाओ गुओ, चेंग-ज़े लू, झेंग-निंग लियू, मिंग-मिंग चेंग, शि-मिन हू द्वारा।
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (मल्टीमीडिया कम्प्यूटिंग ग्रुप, नानजिंग यूनिवर्सिटी से) साथ में पेपर [वीडियोएमएई: मास्क्ड ऑटोएन्कोडर स्व-पर्यवेक्षित वीडियो प्री-ट्रेनिंग के लिए डेटा-कुशल सीखने वाले हैं] (https://arxiv.org/abs/2203.12602) ज़ान टोंग, यिबिंग सॉन्ग, जुए द्वारा वांग, लिमिन वांग द्वारा पोस्ट किया गया।
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain से) साथ में कागज [ViLT: Vision-and-Language Transformer बिना कनवल्शन या रीजन सुपरविजन](https://arxiv.org/abs/2102.03334) वोनजे किम, बोक्यूंग सोन, इल्डू किम द्वारा पोस्ट किया गया।
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन] (https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: FAIRSEQ के साथ फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https:/ /arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: फुल स्टैक के लिए बड़े पैमाने पर स्व-पर्यवेक्षित पूर्व-प्रशिक्षण स्पीच प्रोसेसिंग] (https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [बड़े पैमाने पर कमजोर पर्यवेक्षण के माध्यम से मजबूत भाषण पहचान](https://cdn. openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [एक्सपैंडिंग लैंग्वेज-इमेज प्रीट्रेन्ड मॉडल फॉर जनरल वीडियो रिकग्निशन](https: //arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [क्रॉस-लिंगुअल लैंग्वेज मॉडल प्रीट्रेनिंग] (https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा।
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में कागज [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू- सीक्वेंस प्री-ट्रेनिंग](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा।
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (फेसबुक एआई से), साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग एट स्केल] (https://arxiv.org/abs/1911.02116) एलेक्सिस कोन्यू*, कार्तिकेय खंडेलवाल*, नमन गोयल, विश्रव चौधरी, गिलाउम वेनज़ेक, फ्रांसिस्को गुज़मैन द्वारा , एडौर्ड ग्रेव, मायल ओट, ल्यूक ज़ेटलमॉयर और वेसेलिन स्टोयानोव द्वारा।
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI से) साथ में कागज [बहुभाषी नकाबपोश भाषा के लिए बड़े पैमाने पर ट्रांसफॉर्मर ] मॉडलिंग](https://arxiv.org/abs/2105.00572) नमन गोयल, जिंगफेई डू, मायल ओट, गिरि अनंतरामन, एलेक्सिस कोनो द्वारा पोस्ट किया गया।
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU से) साथ वाला पेपर [XLNet: जनरलाइज्ड ऑटोरेग्रेसिव प्रीट्रेनिंग फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv ज़ीलिन यांग*, ज़िहांग दाई*, यिमिंग यांग, जैम कार्बोनेल, रुस्लान सलाखुतदीनोव, क्वोक वी. ले ​​द्वारा .org/abs/1906.08237)।
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI से) साथ वाला पेपर [XLS-R: सेल्फ सुपरवाइज्ड क्रॉस-लिंगुअल स्पीच रिप्रेजेंटेशन लर्निंग एट स्केल](https://arxiv.org/abs/2111.09296) अरुण बाबू, चांगहान वांग, एंड्रोस तजंद्रा, कुशाल लखोटिया, कियानटोंग जू, नमन गोयल, कृतिका सिंह, पैट्रिक वॉन प्लैटन, याथार्थ सराफ, जुआन पिनो, एलेक्सी बेवस्की, एलेक्सिस कोन्यू, माइकल औली द्वारा पोस्ट किया गया।
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग फॉर स्पीच रिकग्निशन] (https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [यू ओनली लुक एट वन सीक्वेंस: रीथिंकिंग ट्रांसफॉर्मर इन विज़न थ्रू ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया।
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश] (./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका] (https://huggingface.co/ docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।
## अधिक समझें
|अध्याय | विवरण |
|-|-|
| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल |
| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य |
| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना |
| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें |
| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें |
| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें |
| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना |
## उद्धरण
हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

549
README_ja.md Normal file
View File

@ -0,0 +1,549 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Traditional Japanese translation of Hugging Face documentation
- Use square quotes, e.g.,「引用」
Dictionary
API: API(翻訳しない)
add: 追加
checkpoint: チェックポイント
code: コード
community: コミュニティ
confidence: 信頼度
dataset: データセット
documentation: ドキュメント
example: 例
finetune: 微調整
Hugging Face: Hugging Face(翻訳しない)
implementation: 実装
inference: 推論
library: ライブラリ
module: モジュール
NLP/Natural Language Processing: NLPと表示される場合は翻訳されず、Natural Language Processingと表示される場合は翻訳される
online demos: オンラインデモ
pipeline: pipeline(翻訳しない)
pretrained/pretrain: 学習済み
Python data structures (e.g., list, set, dict): リスト、セット、ディクショナリと訳され、括弧内は原文英語
repository: repository(翻訳しない)
summary: 概要
token-: token-(翻訳しない)
Trainer: Trainer(翻訳しない)
transformer: transformer(翻訳しない)
tutorial: チュートリアル
user: ユーザ
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<b>日本語</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>JAX、PyTorch、TensorFlowのための最先端機械学習</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗Transformersは、テキスト、視覚、音声などの異なるモダリティに対してタスクを実行するために、事前に学習させた数千のモデルを提供します。
これらのモデルは次のような場合に適用できます:
* 📝 テキストは、テキストの分類、情報抽出、質問応答、要約、翻訳、テキスト生成などのタスクのために、100以上の言語に対応しています。
* 🖼️ 画像分類、物体検出、セグメンテーションなどのタスクのための画像。
* 🗣️ 音声は、音声認識や音声分類などのタスクに使用します。
トランスフォーマーモデルは、テーブル質問応答、光学文字認識、スキャン文書からの情報抽出、ビデオ分類、視覚的質問応答など、**複数のモダリティを組み合わせた**タスクも実行可能です。
🤗Transformersは、与えられたテキストに対してそれらの事前学習されたモデルを素早くダウンロードして使用し、あなた自身のデータセットでそれらを微調整し、私たちの[model hub](https://huggingface.co/models)でコミュニティと共有するためのAPIを提供します。同時に、アーキテクチャを定義する各Pythonモジュールは完全にスタンドアロンであり、迅速な研究実験を可能にするために変更することができます。
🤗Transformersは[Jax](https://jax.readthedocs.io/en/latest/)、[PyTorch](https://pytorch.org/)、[TensorFlow](https://www.tensorflow.org/)という3大ディープラーニングライブラリーに支えられ、それぞれのライブラリをシームレスに統合しています。片方でモデルを学習してから、もう片方で推論用にロードするのは簡単なことです。
## オンラインデモ
[model hub](https://huggingface.co/models)から、ほとんどのモデルのページで直接テストすることができます。また、パブリックモデル、プライベートモデルに対して、[プライベートモデルのホスティング、バージョニング、推論API](https://huggingface.co/pricing)を提供しています。
以下はその一例です:
自然言語処理にて:
- [BERTによるマスクドワード補完](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electraによる名前実体認識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2によるテキスト生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [RoBERTaによる自然言語推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BARTによる要約](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERTによる質問応答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5による翻訳](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
コンピュータビジョンにて:
- [ViTによる画像分類](https://huggingface.co/google/vit-base-patch16-224)
- [DETRによる物体検出](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormerによるセマンティックセグメンテーション](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [DETRによるパプティックセグメンテーション](https://huggingface.co/facebook/detr-resnet-50-panoptic)
オーディオにて:
- [Wav2Vec2による自動音声認識](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2によるキーワード検索](https://huggingface.co/superb/wav2vec2-base-superb-ks)
マルチモーダルなタスクにて:
- [ViLTによる視覚的質問応答](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
Hugging Faceチームによって作られた **[トランスフォーマーを使った書き込み](https://transformer.huggingface.co)** は、このリポジトリのテキスト生成機能の公式デモである。
## Hugging Faceチームによるカスタム・サポートをご希望の場合
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## クイックツアー
与えられた入力(テキスト、画像、音声、...)に対してすぐにモデルを使うために、我々は`pipeline`というAPIを提供しております。pipelineは、学習済みのモデルと、そのモデルの学習時に使用された前処理をグループ化したものです。以下は、肯定的なテキストと否定的なテキストを分類するためにpipelineを使用する方法です:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
2行目のコードでは、pipelineで使用される事前学習済みモデルをダウンロードしてキャッシュし、3行目では与えられたテキストに対してそのモデルを評価します。ここでは、答えは99.97%の信頼度で「ポジティブ」です。
自然言語処理だけでなく、コンピュータビジョンや音声処理においても、多くのタスクにはあらかじめ訓練された`pipeline`が用意されている。例えば、画像から検出された物体を簡単に抽出することができる:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
ここでは、画像から検出されたオブジェクトのリストが得られ、オブジェクトを囲むボックスと信頼度スコアが表示されます。左側が元画像、右側が予測結果を表示したものです:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
[このチュートリアル](https://huggingface.co/docs/transformers/task_summary)では、`pipeline`APIでサポートされているタスクについて詳しく説明しています。
`pipeline`に加えて、与えられたタスクに学習済みのモデルをダウンロードして使用するために必要なのは、3行のコードだけです。以下はPyTorchのバージョンです:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
トークナイザは学習済みモデルが期待するすべての前処理を担当し、単一の文字列 (上記の例のように) またはリストに対して直接呼び出すことができます。これは下流のコードで使用できる辞書を出力します。また、単純に ** 引数展開演算子を使用してモデルに直接渡すこともできます。
モデル自体は通常の[Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) または [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (バックエンドによって異なる)で、通常通り使用することが可能です。[このチュートリアル](https://huggingface.co/docs/transformers/training)では、このようなモデルを従来のPyTorchやTensorFlowの学習ループに統合する方法や、私たちの`Trainer`APIを使って新しいデータセットで素早く微調整を行う方法について説明します。
## なぜtransformersを使う必要があるのでしょうか
1. 使いやすい最新モデル:
- 自然言語理解・生成、コンピュータビジョン、オーディオの各タスクで高いパフォーマンスを発揮します。
- 教育者、実務者にとっての低い参入障壁。
- 学習するクラスは3つだけで、ユーザが直面する抽象化はほとんどありません。
- 学習済みモデルを利用するための統一されたAPI。
1. 低い計算コスト、少ないカーボンフットプリント:
- 研究者は、常に再トレーニングを行うのではなく、トレーニングされたモデルを共有することができます。
- 実務家は、計算時間や生産コストを削減することができます。
- すべてのモダリティにおいて、60,000以上の事前学習済みモデルを持つ数多くのアーキテクチャを提供します。
1. モデルのライフタイムのあらゆる部分で適切なフレームワークを選択可能:
- 3行のコードで最先端のモデルをトレーニング。
- TF2.0/PyTorch/JAXフレームワーク間で1つのモデルを自在に移動させる。
- 学習、評価、生産に適したフレームワークをシームレスに選択できます。
1. モデルやサンプルをニーズに合わせて簡単にカスタマイズ可能:
- 原著者が発表した結果を再現するために、各アーキテクチャの例を提供しています。
- モデル内部は可能な限り一貫して公開されています。
- モデルファイルはライブラリとは独立して利用することができ、迅速な実験が可能です。
## なぜtransformersを使ってはいけないのでしょうか
- このライブラリは、ニューラルネットのためのビルディングブロックのモジュール式ツールボックスではありません。モデルファイルのコードは、研究者が追加の抽象化/ファイルに飛び込むことなく、各モデルを素早く反復できるように、意図的に追加の抽象化でリファクタリングされていません。
- 学習APIはどのようなモデルでも動作するわけではなく、ライブラリが提供するモデルで動作するように最適化されています。一般的な機械学習のループには、別のライブラリ(おそらく[Accelerate](https://huggingface.co/docs/accelerate))を使用する必要があります。
- 私たちはできるだけ多くの使用例を紹介するよう努力していますが、[examples フォルダ](https://github.com/huggingface/transformers/tree/main/examples) にあるスクリプトはあくまで例です。あなたの特定の問題に対してすぐに動作するわけではなく、あなたのニーズに合わせるために数行のコードを変更する必要があることが予想されます。
## インストール
### pipにて
このリポジトリは、Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+ でテストされています。
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
まず、使用するバージョンのPythonで仮想環境を作成し、アクティベートします。
その後、Flax, PyTorch, TensorFlowのうち少なくとも1つをインストールする必要があります。
[TensorFlowインストールページ](https://www.tensorflow.org/install/)、[PyTorchインストールページ](https://pytorch.org/get-started/locally/#start-locally)、[Flax](https://github.com/google/flax#quick-install)、[Jax](https://github.com/google/jax#installation)インストールページで、お使いのプラットフォーム別のインストールコマンドを参照してください。
これらのバックエンドのいずれかがインストールされている場合、🤗Transformersは以下のようにpipを使用してインストールすることができます:
```bash
pip install transformers
```
もしサンプルを試したい、またはコードの最先端が必要で、新しいリリースを待てない場合は、[ライブラリをソースからインストール](https://huggingface.co/docs/transformers/installation#installing-from-source)する必要があります。
### condaにて
Transformersバージョン4.0.0から、condaチャンネルを搭載しました: `huggingface`。
🤗Transformersは以下のようにcondaを使って設置することができます:
```shell script
conda install -c huggingface transformers
```
Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それぞれのインストールページに従ってください。
> **_注意:_** Windowsでは、キャッシュの恩恵を受けるために、デベロッパーモードを有効にするよう促されることがあります。このような場合は、[このissue](https://github.com/huggingface/huggingface_hub/issues/1062)でお知らせください。
## モデルアーキテクチャ
🤗Transformersが提供する **[全モデルチェックポイント](https://huggingface.co/models)** は、[ユーザー](https://huggingface.co/users)や[組織](https://huggingface.co/organizations)によって直接アップロードされるhuggingface.co [model hub](https://huggingface.co)からシームレスに統合されています。
現在のチェックポイント数: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗Transformersは現在、以下のアーキテクチャを提供していますそれぞれのハイレベルな要約は[こちら](https://huggingface.co/docs/transformers/model_summary)を参照してください):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago から) Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut から公開された研究論文: [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft から) Hangbo Bao, Li Dong, Furu Wei から公開された研究論文: [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254)
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (Google から) Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova から公開された研究論文: [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (Google から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research から) Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen から公開された研究論文: [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/)
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (Microsoft Research AI4Science から) Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu から公開された研究論文: [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9)
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (Google AI から) Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil から公開された研究論文: [Big Transfer (BiT)](https://arxiv.org/abs/1912.11370)Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (Salesforce から) Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi から公開された研究論文: [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086)
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce から) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. から公開された研究論文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (BigScience workshop から) [BigScience Workshop](https://bigscience.huggingface.co/) から公開されました.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499)
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys から) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou から公開された研究論文: [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335)
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI から) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. から公開された研究論文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University から) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun から公開された研究論文: [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413)
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (OpenBMB から) [OpenBMB](https://www.openbmb.org/) から公開されました.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159)
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877)
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook から) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih から公開された研究論文: [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906)
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs から) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun から公開された研究論文: [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413)
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/)
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo)
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI から) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach から公開された研究論文: [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745)
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (ABEJA から) Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori からリリース.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI から) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** から公開された研究論文: [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/)
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI から) Ben Wang and Aran Komatsuzaki から公開されたレポジトリー [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/)
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden から) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren から公開された研究論文: [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf)
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode から) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. から公開された研究論文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) 坂本俊之(tanreinama)からリリースされました.
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234).
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387)
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia から) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei から公開された研究論文: [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill から) Hao Tan and Mohit Bansal から公開された研究論文: [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490)
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook から) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert から公開された研究論文: [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161)
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook から) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin から公開された研究論文: [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125)
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg Tiedemann から. [OPUS](http://opus.nlpl.eu/) を使いながら学習された "Machine translation" (マシントランスレーション) モデル. [Marian Framework](https://marian-nmt.github.io/) はMicrosoft Translator Team が現在開発中です.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia から) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei から公開された研究論文: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518)
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC から) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. から公開された研究論文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC から) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov から公開された研究論文: [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278)
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI から) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. から公開された研究論文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer から公開された研究論文: [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210)
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan から公開された研究論文: [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401)
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook から) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. から公開された研究論文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook から) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. から公開された研究論文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/)
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research から) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya から公開された研究論文: [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451)
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Platforms から) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár から公開された研究論文: [Designing Network Design Space](https://arxiv.org/abs/2003.13678)
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research から) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder から公開された研究論文: [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821)
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research から) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun から公開された研究論文: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook から), Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov から公開された研究論文: [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook から) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli から公開された研究論文: [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038)
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf)
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM)
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203)
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research から) Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. から公開された研究論文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook から), Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino から公開された研究論文: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google から) William Fedus, Barret Zoph, Noam Shazeer から公開された研究論文: [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961)
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開された研究論文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開されたレポジトリー [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511)
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research から) Brandon Smock, Rohith Pesala, Robin Abraham から公開された研究論文: [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061)
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI から) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos から公開された研究論文: [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349)
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research から) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou から公開された研究論文: [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653)
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (HuggingFace から).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook から) Gedas Bertasius, Heng Wang, Lorenzo Torresani から公開された研究論文: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley から) Michael Janner, Qiyang Li, Sergey Levine から公開された研究論文: [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039)
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU から) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov から公開された研究論文: [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860)
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University から) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu から公開された研究論文: [Visual Attention Network](https://arxiv.org/abs/2202.09741)
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University から) Zhan Tong, Yibing Song, Jue Wang, Limin Wang から公開された研究論文: [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602)
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain から) Wonjae Kim, Bokyung Son, Ildoo Kim から公開された研究論文: [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334)
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research から) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei から公開された研究論文: [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI から) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever から公開された研究論文: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research から) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling から公開された研究論文: [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816)
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI から) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. から公開された研究論文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li から公開された研究論文: [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668)
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook から) Guillaume Lample and Alexis Conneau から公開された研究論文: [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291)
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI から), Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov から公開された研究論文: [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116)
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI から), Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau から公開された研究論文: [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572)
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI から) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa から公開された研究論文: [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU から) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le から公開された研究論文: [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237)
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI から) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli から公開された研究論文: [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296)
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI から) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979)
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology から) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu から公開された研究論文: [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666)
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh から公開された研究論文: [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714)
1. 新しいモデルを投稿したいですか?新しいモデルを追加するためのガイドとして、**詳細なガイドとテンプレート**が追加されました。これらはリポジトリの[`templates`](./templates)フォルダにあります。PRを始める前に、必ず[コントリビューションガイド](./CONTRIBUTING.md)を確認し、メンテナに連絡するか、フィードバックを収集するためにissueを開いてください。
各モデルがFlax、PyTorch、TensorFlowで実装されているか、🤗Tokenizersライブラリに支えられた関連トークナイザを持っているかは、[この表](https://huggingface.co/docs/transformers/index#supported-frameworks)を参照してください。
これらの実装はいくつかのデータセットでテストされており(サンプルスクリプトを参照)、オリジナルの実装の性能と一致するはずである。性能の詳細は[documentation](https://github.com/huggingface/transformers/tree/main/examples)のExamplesセクションで見ることができます。
## さらに詳しく
| セクション | 概要 |
|-|-|
| [ドキュメント](https://huggingface.co/docs/transformers/) | 完全なAPIドキュメントとチュートリアル |
| [タスク概要](https://huggingface.co/docs/transformers/task_summary) | 🤗Transformersがサポートするタスク |
| [前処理チュートリアル](https://huggingface.co/docs/transformers/preprocessing) | モデル用のデータを準備するために`Tokenizer`クラスを使用 |
| [トレーニングと微調整](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlowの学習ループと`Trainer`APIで🤗Transformersが提供するモデルを使用 |
| [クイックツアー: 微調整/使用方法スクリプト](https://github.com/huggingface/transformers/tree/main/examples) | 様々なタスクでモデルの微調整を行うためのスクリプト例 |
| [モデルの共有とアップロード](https://huggingface.co/docs/transformers/model_sharing) | 微調整したモデルをアップロードしてコミュニティで共有する |
| [マイグレーション](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`または`pytorch-pretrained-bert`から🤗Transformers に移行する |
## 引用
🤗 トランスフォーマーライブラリに引用できる[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)が出来ました:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -43,7 +43,10 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<b>한국어</b>
<b>한국어</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
@ -59,7 +62,7 @@ limitations under the License.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모
@ -74,7 +77,7 @@ limitations under the License.
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면
@ -210,6 +213,11 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -219,121 +227,207 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/main/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/main/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/main/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/main/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/main/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/main/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/main/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다.
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 의 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/main/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/main/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/main/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/main/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 논문과 함께 발표했습니다.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 논문과 함께 발표했습니다.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/main/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/main/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다.
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 논문과 함께 발표했습니다.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
@ -366,4 +460,4 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```
```

View File

@ -26,7 +26,7 @@ token: 词符(并用括号标注原英文)
tokenize: 词符化(并用括号标注原英文)
tokenizer: 词符化器(并用括号标注原英文)
transformer: transformer不翻译
pipeline: 流水线
pipeline: 流水线
API: API (不翻译)
inference: 推理
Trainer: 训练器。当作为类名出现时不翻译。
@ -68,7 +68,10 @@ checkpoint: 检查点
<a href="https://github.com/huggingface/transformers/">English</a> |
<b>简体中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
@ -80,11 +83,11 @@ checkpoint: 检查点
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
## 在线演示
@ -173,7 +176,7 @@ checkpoint: 检查点
- 对所有模型统一的API
1. 更低计算开销,更少的碳排放:
- 研究人员可以分享亿训练的模型而非次从头开始训练
- 研究人员可以分享训练的模型而非次从头开始训练
- 工程师可以减少计算用时和生产环境开销
- 数十种模型架构、两千多个预训练模型、100多种语言支持
@ -234,6 +237,11 @@ conda install -c huggingface transformers
🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
@ -243,72 +251,134 @@ conda install -c huggingface transformers
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/main/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (来自 Salesforce) 伴随论文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 由 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (来自 OFA-Sys) 伴随论文 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 由 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 发布。
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/main/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[CvT](https://huggingface.co/docs/transformers/main/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/main/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/main/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/main/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/main/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/main/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/main/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
1. **[MaskFormer](https://huggingface.co/docs/transformers/main/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
@ -316,46 +386,70 @@ conda install -c huggingface transformers
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/main/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/main/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/main/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
@ -368,10 +462,10 @@ conda install -c huggingface transformers
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docstransformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |
@ -391,4 +485,4 @@ conda install -c huggingface transformers
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```
```

View File

@ -80,7 +80,10 @@ user: 使用者
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<b>繁體中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
@ -185,7 +188,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
- 對所有模型使用的制式化API
1. 更低的運算成本,更少的碳排放:
- 研究人員可以分享訓練的模型而非從頭開始訓練
- 研究人員可以分享訓練的模型而非每次從頭開始訓練
- 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
@ -246,6 +249,11 @@ conda install -c huggingface transformers
🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -255,72 +263,134 @@ conda install -c huggingface transformers
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/main/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/main/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/main/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/main/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/main/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/main/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/main/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/main/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/main/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/main/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/main/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/main/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/main/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
@ -328,46 +398,70 @@ conda install -c huggingface transformers
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/main/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/main/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/main/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
@ -403,4 +497,4 @@ conda install -c huggingface transformers
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```
```

603
awesome-transformers.md Normal file
View File

@ -0,0 +1,603 @@
# Awesome projects built with Transformers
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [lama-cleaner](https://github.com/Sanster/lama-cleaner)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
Keywords: Database, low-code, AI table
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
Keywords: Declarative, Data-driven, ML Framework
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
Keywords: Stable-Diffusion, WebUI, CLI
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
Keywords: NLP, Chinese, Research, Industry
## [stanza](https://github.com/stanfordnlp/stanza)
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
Keywords: NLP, Multilingual, CoreNLP
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Keywords: Conversational, Chatbot, Dialog
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
Keywords: LoRA, Parameter-efficient fine-tuning
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
Keywords: Imagen, Text-to-image
## [adapter-transformers](https://github.com/adapter-hub/adapter-transformers)
[adapter-transformers](https://github.com/adapter-hub/adapter-transformers) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
## [NeMo](https://github.com/NVIDIA/NeMo)
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
Keywords: Conversational, ASR, TTS, LLMs, NLP
## [Runhouse](https://github.com/run-house/runhouse)
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
## [MONAI](https://github.com/Project-MONAI/MONAI)
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Keywords: Healthcare imaging, Training, Evaluation
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
## [bumblebee](https://github.com/elixir-nx/bumblebee)
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Keywords: Elixir, Axon
## [argilla](https://github.com/argilla-io/argilla)
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Keywords: NLP, Labeling, Monitoring, Workspaces
## [haystack](https://github.com/deepset-ai/haystack)
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
Keywords: NLP, Framework
## [speechbrain](https://github.com/speechbrain/speechbrain)
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
Keywords: Visualization, Transformers
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
Keywords: Haiku, Model parallelism, LLM, TPU
## [deepchem](https://github.com/deepchem/deepchem)
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
Keywords: Neural Relation Extraction, Framework
## [pycorrector](https://github.com/shibing624/pycorrector)
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
## [dream-textures](https://github.com/carson-katri/dream-textures)
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Keywords: Stable-Diffusion, Blender
## [seldon-core](https://github.com/SeldonIO/seldon-core)
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
Keywords: Optimized models, Demos
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
Keywords: Java, Framework
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
Keywords: LLM, Evaluation, Few-shot
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
Keywords: Music understanding, Music generation
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
## [lightseq](https://github.com/bytedance/lightseq)
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
Keywords: Training, Inference, Sequence Processing, Sequence Generation
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
Keywords: OCR, LaTeX, Math formula
## [open_clip](https://github.com/mlfoundations/open_clip)
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
Keywords: CLIP, Open-source, Contrastive, Image-text
## [dalle-playground](https://github.com/saharmor/dalle-playground)
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Keywords: LLM, Code
## [TextAttack](https://github.com/QData/TextAttack)
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
Keywords: Adversarial attacks, Data augmentation, NLP
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
## [fast-bert](https://github.com/utterworks/fast-bert)
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Keywords: Data processing pipeline, Optimization
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
## [aitextgen](https://github.com/minimaxir/aitextgen)
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Keywords: Training, Generation
## [diffgram](https://github.com/diffgram/diffgram)
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
Keywords: Speech, Training
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchemalow-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Keywords: Optimization, Performance, Monitoring
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
Keywords: Stable Diffusion, CLI, Python API
## [sparseml](https://github.com/neuralmagic/sparseml)
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Keywords: Audio transcription, Translation
## [rust-bert](https://github.com/guillaume-be/rust-bert)
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
Keywords: Optimization, Performance
## [hivemind](https://github.com/learning-at-home/hivemind)
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
Keywords: Model deployment, CLoud, Mobile, Edge
## [underthesea](https://github.com/undertheseanlp/underthesea)
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Keywords: Vietnamese, NLP
## [hasktorch](https://github.com/hasktorch/hasktorch)
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Keywords: Document Understanding
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
Keywords: MLOps
## [FederatedScope](https://github.com/alibaba/FederatedScope)
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
Keywords: Federated learning, Event-driven
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
Keywords: Thai, NLP, NLTK
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
## [pyserini](https://github.com/castorini/pyserini)
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
Keywords: Active Learning, Research, Labeling
## [cleanlab](https://github.com/cleanlab/cleanlab)
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications

View File

@ -20,6 +20,10 @@ import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
@ -32,14 +36,16 @@ warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipeline are tested")
config.addinivalue_line(
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested"
)
config.addinivalue_line(
"markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested"
)
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule")
def pytest_addoption(parser):
@ -63,7 +69,7 @@ def pytest_sessionfinish(session, exitstatus):
# Doctest custom flag to ignore output.
IGNORE_RESULT = doctest.register_optionflag('IGNORE_RESULT')
IGNORE_RESULT = doctest.register_optionflag("IGNORE_RESULT")
OutputChecker = doctest.OutputChecker
@ -76,3 +82,5 @@ class CustomOutputChecker(OutputChecker):
doctest.OutputChecker = CustomOutputChecker
_pytest.doctest.DoctestModule = HfDoctestModule
doctest.DocTestParser = HfDocTestParser

View File

@ -1,16 +1,19 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='1.11.0'
ARG PYTORCH='2.0.1'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
@ -21,18 +24,36 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.12 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$PYTORCH+$CUDA.html
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# For bettertransformer
RUN python3 -m pip install --no-cache-dir optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
# For `dinat` model
RUN python3 -m pip install --no-cache-dir natten -f https://shi-labs.com/natten/wheels/$CUDA/
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -23,4 +23,4 @@ COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
CMD ["/bin/bash"]

View File

@ -10,8 +10,7 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
# Torch needs to be installed before deepspeed
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python -c "from torch import version; print(version.__version__.split('+')[0])")+cpu.html
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -0,0 +1,59 @@
ARG BASE_DOCKER_IMAGE
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
# We will install `accelerate@main` in Past CI workflow file
RUN python3 -m pip uninstall -y accelerate
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,8 +1,13 @@
FROM nvcr.io/nvidia/pytorch:21.03-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.0.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
@ -10,19 +15,40 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Pre-build DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt
# recompile apex
RUN python3 -m pip uninstall -y apex
RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
RUN cd apex && git checkout 82ee367f3da74b4cd62a1fb47aa9806f0f47b58b && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -0,0 +1,64 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
## For `torchdynamo` tests
## (see https://github.com/huggingface/transformers/pull/17765)
#RUN git clone https://github.com/pytorch/functorch
#RUN python3 -m pip install --no-cache-dir ./functorch[aot]
#RUN cd functorch && python3 setup.py develop
#
#RUN git clone https://github.com/pytorch/torchdynamo
#RUN python3 -m pip install -r ./torchdynamo/requirements.txt
#RUN cd torchdynamo && python3 setup.py develop
#
## install TensorRT
#RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex
#RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2
#
## install torch_tensorrt (fx path)
#RUN git clone https://github.com/pytorch/TensorRT.git
#RUN cd TensorRT/py && python3 setup.py install --fx-only
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed.
# RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,21 +9,22 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# If set to nothing, will install the latest version
ARG PYTORCH=''
ARG PYTORCH='2.0.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+cu113.html
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.

View File

@ -22,4 +22,4 @@ COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
CMD ["/bin/bash"]

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -12,12 +12,14 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
# If set to nothing, will install the latest version
ARG TENSORFLOW=''
ARG TENSORFLOW='2.12'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -16,7 +16,7 @@ limitations under the License.
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
@ -33,7 +33,7 @@ pip install git+https://github.com/huggingface/doc-builder
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look like before committing for instance). You don't have to commit the built documentation.
check how they look before committing for instance). You don't have to commit the built documentation.
---
@ -43,33 +43,54 @@ Once you have setup the `doc-builder` and additional packages, you can generate
typing the following command:
```bash
doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name} {path_to_docs}
```
For example:
```bash
doc-builder preview transformers docs/source/en/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
It's not possible to see locally how the final documentation will look like for now. Once you have opened a PR, you
will see a bot add a comment to a link where the documentation with your changes lives.
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md or .mdx).
Accepted files are Markdown (.md or .md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd be make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
@ -78,7 +99,7 @@ Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course if you moved it to another file, then:
and of course, if you moved it to another file, then:
```
Sections that were moved:
@ -88,7 +109,7 @@ Sections that were moved:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/main_classes/trainer.mdx).
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
## Writing Documentation - Specification
@ -105,7 +126,7 @@ Adding a new tutorial or section is done in two steps:
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
four.
### Translating
@ -117,7 +138,7 @@ When translating, refer to the guide at [./TRANSLATING.md](https://github.com/hu
When adding a new model:
- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/_toctree.yml`.
- Write a short overview of the model:
- Overview with paper & authors
@ -156,8 +177,8 @@ not to be displayed in the documentation, you can do so by specifying which meth
- save_vocabulary
```
If you just want to add a method that is not documented (for instance magic method like `__call__` are not documented
byt default) you can put the list of methods to add in a list that contains `all`:
If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented
by default) you can put the list of methods to add in a list that contains `all`:
```
## XXXTokenizer
@ -170,9 +191,9 @@ byt default) you can put the list of methods to add in a list that contains `all
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
and objects like True, None, or any strings should usually be put in `code`.
When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
@ -186,7 +207,7 @@ The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\
#### Defining arguments in a method
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```
@ -195,7 +216,7 @@ description:
```
If the description is too long to fit in one line, another indentation is necessary before writing the description
after th argument.
after the argument.
Here's an example showcasing everything so far:
@ -245,7 +266,7 @@ Multi-line code blocks can be useful for displaying examples. They are done betw
````
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
the results stay consistent with the library.
the results to stay consistent with the library.
#### Writing a return block
@ -253,27 +274,27 @@ The return block should be introduced with the `Returns:` prefix, followed by a
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
Here's an example for a single value return:
Here's an example of a single value return:
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example for tuple return, comprising several objects:
Here's an example of a tuple return, comprising several objects:
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
#### Adding an image
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
@ -291,13 +312,13 @@ easily.
# Testing documentation examples
Good documentation oftens comes with an example of how a specific function or class should be used.
Good documentation often comes with an example of how a specific function or class should be used.
Each model class should contain at least one example showcasing
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
includes an example of how to transcribe speech to text in the
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
## Writing documenation examples
## Writing documentation examples
The syntax for Example docstrings can look as follows:
@ -333,7 +354,7 @@ The docstring should give a minimal, clear example of how the respective model
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore it is of utmost importance that the example
or class definitions. Therefore, it is of utmost importance that the example
works as expected.
## Docstring testing
@ -343,25 +364,12 @@ We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to v
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
To include your example in the daily doctests, you need add the filename that
To include your example in the daily doctests, you need to add the filename that
contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt).
### For Python files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files):
```bash
python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py
```
(`utils/doc.py` should always be included)
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
@ -373,30 +381,12 @@ If you want to isolate a specific docstring, just add `::` after the file name t
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### For Markdown files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
You can test locally a given file with this command (here testing the quicktour):
```bash
python utils/prepare_for_doc_test.py src docs
```
Then you can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"
```
### Writing doctests
@ -405,6 +395,6 @@ Here are a few tips to help you debug the doctests and make them pass:
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configure to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.

View File

@ -54,5 +54,4 @@ The fields you should add are `local` (with the name of the file containing the
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you can either [open an issue](https://github.com/huggingface/transformers/issues) or tag @[espejelomar](https://twitter.com/espejelomar)
on Twitter to gain some visibility.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger.

View File

@ -1,7 +1,7 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
! pip install transformers datasets evaluate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""

14
docs/source/de/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -0,0 +1,22 @@
- sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Schnellstart
- local: installation
title: Installation
title: Erste Schritte
- sections:
- local: pipeline_tutorial
title: Pipelines für Inferenzen
- local: autoclass_tutorial
title: Laden von vortrainierten Instanzen mit einer AutoClass
- local: preprocessing
title: Vorverarbeiten
- local: training
title: Optimierung eines vortrainierten Modells
- local: accelerate
title: Verteiltes Training mit 🤗 Accelerate
- local: model_sharing
title: Ein Modell teilen
title: Tutorials

View File

@ -0,0 +1,136 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Verteiltes Training mit 🤗 Accelerate
Da die Modelle immer größer werden, hat sich die Parallelität als Strategie zum Trainieren größerer Modelle auf begrenzter Hardware und zur Beschleunigung der Trainingsgeschwindigkeit um mehrere Größenordnungen erwiesen. Bei Hugging Face haben wir die Bibliothek [🤗 Accelerate](https://huggingface.co/docs/accelerate) entwickelt, um Nutzern zu helfen, ein 🤗 Transformers-Modell auf jeder Art von verteiltem Setup zu trainieren, egal ob es sich um mehrere GPUs auf einer Maschine oder mehrere GPUs auf mehreren Maschinen handelt. In diesem Tutorial lernen Sie, wie Sie Ihre native PyTorch-Trainingsschleife anpassen, um das Training in einer verteilten Umgebung zu ermöglichen.
## Einrichtung
Beginnen Sie mit der Installation von 🤗 Accelerate:
```bash
pip install accelerate
```
Dann importieren und erstellen Sie ein [`~accelerate.Accelerator`]-Objekt. Der [`~accelerate.Accelerator`] wird automatisch Ihre Art der verteilten Einrichtung erkennen und alle notwendigen Komponenten für das Training initialisieren. Sie müssen Ihr Modell nicht explizit auf einem Gerät platzieren.
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## Vorbereiten auf die Beschleunigung
Der nächste Schritt ist die Übergabe aller relevanten Trainingsobjekte an die Methode [`~accelerate.Accelerator.prepare`]. Dazu gehören Ihre Trainings- und Evaluierungs-DataLoader, ein Modell und ein Optimierer:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## Rückwärts
Die letzte Ergänzung besteht darin, das typische `loss.backward()` in der Trainingsschleife durch die 🤗 Accelerate-Methode [`~accelerate.Accelerator.backward`] zu ersetzen:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
Wie Sie im folgenden Code sehen können, müssen Sie nur vier zusätzliche Codezeilen zu Ihrer Trainingsschleife hinzufügen, um verteiltes Training zu ermöglichen!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## Trainieren
Sobald Sie die entsprechenden Codezeilen hinzugefügt haben, starten Sie Ihr Training in einem Skript oder einem Notebook wie Colaboratory.
### Trainieren mit einem Skript
Wenn Sie Ihr Training mit einem Skript durchführen, führen Sie den folgenden Befehl aus, um eine Konfigurationsdatei zu erstellen und zu speichern:
```bash
accelerate config
```
Dann starten Sie Ihr Training mit:
```bash
accelerate launch train.py
```
### Trainieren mit einem Notebook
🤗 Accelerate kann auch in einem Notebook laufen, wenn Sie planen, die TPUs von Colaboratory zu verwenden. Verpacken Sie den gesamten Code, der für das Training verantwortlich ist, in eine Funktion und übergeben Sie diese an [`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
Weitere Informationen über 🤗 Accelerate und seine umfangreichen Funktionen finden Sie in der [Dokumentation](https://huggingface.co/docs/accelerate).

View File

@ -0,0 +1,131 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vortrainierte Instanzen mit einer AutoClass laden
Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist.
<Tip>
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/bert-base-uncased) eine Architektur, während `bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
</Tip>
In dieser Anleitung lernen Sie, wie man:
* Einen vortrainierten Tokenizer lädt.
* Einen vortrainierten Merkmalsextraktor lädt.
* Einen vortrainierten Prozessor lädt.
* Ein vortrainiertes Modell lädt.
## AutoTokenizer
Nahezu jede NLP-Aufgabe beginnt mit einem Tokenizer. Ein Tokenizer wandelt Ihre Eingabe in ein Format um, das vom Modell verarbeitet werden kann.
Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
Für Audio- und Bildverarbeitungsaufgaben verarbeitet ein Merkmalsextraktor das Audiosignal oder Bild in das richtige Eingabeformat.
Laden Sie einen Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Multimodale Aufgaben erfordern einen Prozessor, der zwei Arten von Vorverarbeitungswerkzeugen kombiniert. Das Modell [LayoutLMV2](model_doc/layoutlmv2) beispielsweise benötigt einen Feature-Extraktor für Bilder und einen Tokenizer für Text; ein Prozessor kombiniert beide.
Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
<Tip warning={true}>
Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG.
TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen.
</Tip>
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</pt>
<tf>
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</tf>
</frameworkcontent>

View File

@ -8,50 +8,55 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for PyTorch, TensorFlow and JAX.
Maschinelles Lernen auf dem neuesten Stand der Technik für PyTorch, TensorFlow und JAX.
🤗 Transformers provides APIs to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you time from training a model from scratch. The models can be used across different modalities such as:
🤗 Transformers bietet APIs zum einfachen Herunterladen und Trainieren von vortrainierten Modellen auf dem neuesten Stand der Technik. Die Verwendung von vortrainierten Modellen kann Rechenkosten sparen und den CO2-Fußabdruck reduzieren und Zeit sparen, die für das Training eines Modells von Grund auf benötigt wird. Die Modelle können für verschiedene Modalitäten verwendet werden, wie z. B.:
* 📝 Text: text classification, information extraction, question answering, summarization, translation, and text generation in over 100 languages.
* 🖼️ Images: image classification, object detection, and segmentation.
* 🗣️ Audio: speech recognition and audio classification.
* 🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
* 📝 Text: Textklassifizierung, Informationsextrahierung, Beantwortung von Fragen, Zusammenfassung, Übersetzung und Texterstellung in über 100 Sprachen.
* 🖼️ Bilder: Bildklassifizierung, Objekterkennung und Segmentierung.
* 🗣️ Audio: Spracherkennung und Audioklassifizierung.
* 🐙 Multimodal: Beantwortung von Tabellenfragen, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und Beantwortung visueller Fragen.
Our library supports seamless integration between three of the most popular deep learning libraries: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) and [JAX](https://jax.readthedocs.io/en/latest/). Train your model in three lines of code in one framework, and load it for inference with another.
Unsere Bibliothek unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) und [JAX](https://jax.readthedocs.io/en/latest/). Trainieren Sie Ihr Modell in drei Codezeilen in einem Framework und laden Sie es zur Inferenz mit einem anderen.
Each 🤗 Transformers architecture is defined in a standalone Python module so they can be easily customized for research and experiments.
Jede 🤗 Transformers-Architektur ist in einem eigenständigen Python-Modul definiert, so dass sie leicht für Forschung und Experimente angepasst werden kann.
## If you are looking for custom support from the Hugging Face team
## Wenn Sie auf der Suche nach individueller Unterstützung durch das Hugging Face-Team sind
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## Contents
## Inhalt
The documentation is organized in five parts:
Die Dokumentation ist in fünf Teile gegliedert:
- **GET STARTED** contains a quick tour and installation instructions to get up and running with 🤗 Transformers.
- **TUTORIALS** are a great place to begin if you are new to our library. This section will help you gain the basic skills you need to start using 🤗 Transformers.
- **HOW-TO GUIDES** will show you how to achieve a specific goal like fine-tuning a pretrained model for language modeling or how to create a custom model head.
- **CONCEPTUAL GUIDES** provides more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes each class and function, grouped in:
- **GET STARTED** enthält eine kurze Tour und Installationsanweisungen, um mit 🤗 Transformers loszulegen.
- **TUTORIALS** sind ein hervorragender Ausgangspunkt, wenn Sie neu in unserer Bibliothek sind. Dieser Abschnitt hilft Ihnen, die grundlegenden Fähigkeiten zu erlangen, die Sie benötigen, um mit 🤗 Transformers zu arbeiten.
- **HOW-TO GUIDES** zeigen Ihnen, wie Sie ein bestimmtes Ziel erreichen können, z. B. die Feinabstimmung eines vortrainierten Modells für die Sprachmodellierung oder die Erstellung eines benutzerdefinierten Modellkopfs.
- **KONZEPTUELLE ANLEITUNGEN** bietet weitere Diskussionen und Erklärungen zu den zugrunde liegenden Konzepten und Ideen hinter Modellen, Aufgaben und der Designphilosophie von 🤗 Transformers.
- **API** beschreibt jede Klasse und Funktion, gruppiert in:
- **MAIN CLASSES** for the main classes exposing the important APIs of the library.
- **MODELS** for the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** for the classes and functions we use internally.
- **MAIN CLASSES** für die Hauptklassen, die die wichtigsten APIs der Bibliothek darstellen.
- MODELLE** für die Klassen und Funktionen, die zu jedem in der Bibliothek implementierten Modell gehören.
- **INTERNAL HELPERS** für die Klassen und Funktionen, die wir intern verwenden.
The library currently contains JAX, PyTorch and TensorFlow implementations, pretrained model weights, usage scripts and conversion utilities for the following models.
Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen, vortrainierte Modellgewichte, Nutzungsskripte und Konvertierungsprogramme für die folgenden Modelle.
### Supported models
### Unterstütze Modelle
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -63,14 +68,16 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
@ -85,6 +92,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientNet](model_doc/efficientnet)** (from Google Research) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan and Quoc V. Le.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -97,13 +105,15 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPTSAN-japanese](model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
@ -113,6 +123,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
@ -120,10 +131,16 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
@ -147,6 +164,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
@ -154,9 +172,12 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
@ -170,6 +191,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
@ -177,11 +199,11 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Supported frameworks
### Unterstützte Frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
Die folgende Tabelle zeigt die derzeitige Unterstützung in der Bibliothek für jedes dieser Modelle, unabhängig davon, ob sie einen Python
Tokenizer haben (als "langsam" bezeichnet), ein "schneller" Tokenizer, der von der 🤗 Tokenizers Bibliothek unterstützt wird, ob sie Unterstützung in Jax (via
Flax), PyTorch, und/oder TensorFlow haben.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
@ -200,6 +222,7 @@ Flax), PyTorch, and/or TensorFlow.
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
@ -210,7 +233,7 @@ Flax), PyTorch, and/or TensorFlow.
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | | ❌ |
| DeiT | ❌ | ❌ | ✅ | | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
@ -226,6 +249,7 @@ Flax), PyTorch, and/or TensorFlow.
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
@ -245,12 +269,16 @@ Flax), PyTorch, and/or TensorFlow.
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
@ -260,13 +288,13 @@ Flax), PyTorch, and/or TensorFlow.
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | | |
| RegNet | ❌ | ❌ | ✅ | | |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | | |
| ResNet | ❌ | ❌ | ✅ | | |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| SegFormer | ❌ | ❌ | ✅ | | ❌ |
| SegFormer | ❌ | ❌ | ✅ | | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
@ -275,6 +303,7 @@ Flax), PyTorch, and/or TensorFlow.
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
@ -283,6 +312,7 @@ Flax), PyTorch, and/or TensorFlow.
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |

View File

@ -0,0 +1,250 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation
Installieren Sie 🤗 Transformers für die Deep-Learning-Bibliothek, mit der Sie arbeiten, richten Sie Ihren Cache ein und konfigurieren Sie 🤗 Transformers optional für den Offline-Betrieb.
🤗 Transformers wurde unter Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, und Flax getestet. Folgen Sie den Installationsanweisungen unten für die von Ihnen verwendete Deep-Learning-Bibliothek:
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Installation mit pip
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, werfen Sie einen Blick auf diese [Anleitung](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Eine virtuelle Umgebung macht es einfacher, verschiedene Projekte zu verwalten und Kompatibilitätsprobleme zwischen Abhängigkeiten zu vermeiden.
Beginnen wir mit der Erstellung einer virtuellen Umgebung in Ihrem Projektverzeichnis:
```bash
python -m venv .env
```
Aktivieren wir die virtuelle Umgebung. Unter Linux und MacOs:
```bash
source .env/bin/activate
```
Aktivieren wir die virtuelle Umgebung unter Windows
```bash
.env/Scripts/activate
```
Jetzt können wir die 🤗 Transformers mit dem folgenden Befehl installieren:
```bash
pip install transformers
```
Bei reiner CPU-Unterstützung können wir 🤗 Transformers und eine Deep-Learning-Bibliothek bequem in einer Zeile installieren. Installieren wir zum Beispiel 🤗 Transformers und PyTorch mit:
```bash
pip install transformers[torch]
```
🤗 Transformers und TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers und Flax:
```bash
pip install transformers[flax]
```
Überprüfen wir abschließend, ob 🤗 Transformers ordnungsgemäß installiert wurde, indem wir den folgenden Befehl ausführen. Es wird ein vortrainiertes Modell heruntergeladen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Dann wird die Kategorie und die Wahrscheinlichkeit ausgegeben:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Installation aus dem Code
Installieren wir 🤗 Transformers aus dem Quellcode mit dem folgenden Befehl:
```bash
pip install git+https://github.com/huggingface/transformers
```
Dieser Befehl installiert die aktuelle `main` Version und nicht die neueste `stable` Version. Die `main`-Version ist nützlich, um mit den neuesten Entwicklungen Schritt zu halten. Zum Beispiel, wenn ein Fehler seit der letzten offiziellen Version behoben wurde, aber eine neue Version noch nicht veröffentlicht wurde. Das bedeutet jedoch, dass die "Hauptversion" nicht immer stabil ist. Wir bemühen uns, die Hauptversion einsatzbereit zu halten, und die meisten Probleme werden normalerweise innerhalb weniger Stunden oder eines Tages behoben. Wenn Sie auf ein Problem stoßen, öffnen Sie bitte ein [Issue] (https://github.com/huggingface/transformers/issues), damit wir es noch schneller beheben können!
Überprüfen wir, ob 🤗 Transformers richtig installiert wurde, indem Sie den folgenden Befehl ausführen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Editierbare Installation
Sie benötigen eine bearbeitbare Installation, wenn Sie:
* die "Haupt"-Version des Quellcodes verwenden möchten.
* Zu 🤗 Transformers beitragen und Änderungen am Code testen wollen.
Klonen Sie das Repository und installieren 🤗 Transformers mit den folgenden Befehlen:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`.
<Tip warning={true}>
Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
</Tip>
Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren:
```bash
cd ~/transformers/
git pull
```
Ihre Python-Umgebung wird beim nächsten Ausführen die `main`-Version von 🤗 Transformers finden.
## Installation mit conda
Installation von dem conda Kanal `huggingface`:
```bash
conda install -c huggingface transformers
```
## Cache Einrichtung
Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter: `~/.cache/huggingface/hub`. Dies ist das Standardverzeichnis, das durch die Shell-Umgebungsvariable "TRANSFORMERS_CACHE" vorgegeben ist. Unter Windows wird das Standardverzeichnis durch `C:\Benutzer\Benutzername\.cache\huggingface\hub` angegeben. Sie können die unten aufgeführten Shell-Umgebungsvariablen - in der Reihenfolge ihrer Priorität - ändern, um ein anderes Cache-Verzeichnis anzugeben:
1. Shell-Umgebungsvariable (Standard): `HUGGINGFACE_HUB_CACHE` oder `TRANSFORMERS_CACHE`.
2. Shell-Umgebungsvariable: `HF_HOME`.
3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
</Tip>
## Offline Modus
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren.
<Tip>
Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
</Tip>
So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Führen Sie das gleiche Programm in einer Offline-Instanz mit aus:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Das Skript sollte nun laufen, ohne sich aufzuhängen oder eine Zeitüberschreitung abzuwarten, da es weiß, dass es nur nach lokalen Dateien suchen soll.
### Abrufen von Modellen und Tokenizern zur Offline-Verwendung
Eine andere Möglichkeit, 🤗 Transformers offline zu verwenden, besteht darin, die Dateien im Voraus herunterzuladen und dann auf ihren lokalen Pfad zu verweisen, wenn Sie sie offline verwenden müssen. Es gibt drei Möglichkeiten, dies zu tun:
* Laden Sie eine Datei über die Benutzeroberfläche des [Model Hub](https://huggingface.co/models) herunter, indem Sie auf das ↓-Symbol klicken.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png)
* Verwenden Sie den [PreTrainedModel.from_pretrained] und [PreTrainedModel.save_pretrained] Workflow:
1. Laden Sie Ihre Dateien im Voraus mit [`PreTrainedModel.from_pretrained`] herunter:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Speichern Sie Ihre Dateien in einem bestimmten Verzeichnis mit [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. Wenn Sie nun offline sind, laden Sie Ihre Dateien mit [`PreTrainedModel.from_pretrained`] aus dem bestimmten Verzeichnis:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* Programmatisches Herunterladen von Dateien mit der [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) Bibliothek:
1. Installieren Sie die "huggingface_hub"-Bibliothek in Ihrer virtuellen Umgebung:
```bash
python -m pip install huggingface_hub
```
2. Verwenden Sie die Funktion [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub), um eine Datei in einen bestimmten Pfad herunterzuladen. Der folgende Befehl lädt zum Beispiel die Datei "config.json" aus dem Modell [T0](https://huggingface.co/bigscience/T0_3B) in den gewünschten Pfad herunter:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie den lokalen Pfad an, um sie zu laden und zu verwenden:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt] (https://huggingface.co/docs/hub/how-to-downstream).
</Tip>

View File

@ -0,0 +1,232 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Ein Modell teilen
Die letzten beiden Tutorials haben gezeigt, wie man ein Modell mit PyTorch, Keras und 🤗 Accelerate für verteilte Setups feinabstimmen kann. Der nächste Schritt besteht darin, Ihr Modell mit der Community zu teilen! Bei Hugging Face glauben wir an den offenen Austausch von Wissen und Ressourcen, um künstliche Intelligenz für alle zu demokratisieren. Wir ermutigen Sie, Ihr Modell mit der Community zu teilen, um anderen zu helfen, Zeit und Ressourcen zu sparen.
In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder verfeinertes Modell auf dem [Model Hub](https://huggingface.co/models) teilen können:
- Programmgesteuertes Übertragen Ihrer Dateien auf den Hub.
- Ziehen Sie Ihre Dateien per Drag-and-Drop über die Weboberfläche in den Hub.
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
<Tip>
Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
</Tip>
## Repository-Funktionen
Jedes Repository im Model Hub verhält sich wie ein typisches GitHub-Repository. Unsere Repositorys bieten Versionierung, Commit-Historie und die Möglichkeit, Unterschiede zu visualisieren.
Die integrierte Versionierung des Model Hub basiert auf Git und [git-lfs](https://git-lfs.github.com/). Mit anderen Worten: Sie können ein Modell als ein Repository behandeln, was eine bessere Zugriffskontrolle und Skalierbarkeit ermöglicht. Die Versionskontrolle ermöglicht *Revisionen*, eine Methode zum Anheften einer bestimmten Version eines Modells mit einem Commit-Hash, Tag oder Branch.
Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" laden:
```py
>>> model = AutoModel.from_pretrained(
... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash
... )
```
Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können die Commit-Historie sowie die Unterschiede einsehen:
![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
## Einrichtung
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
```bash
huggingface-cli login
```
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
```bash
pip install huggingface_hub
```
Verwenden Sie dann `notebook_login`, um sich beim Hub anzumelden, und folgen Sie dem Link [hier](https://huggingface.co/settings/token), um ein Token für die Anmeldung zu generieren:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Ein Modell für alle Frameworks konvertieren
Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit einem anderen Framework arbeitet, empfehlen wir Ihnen, Ihr Modell sowohl mit PyTorch- als auch mit TensorFlow-Checkpoints zu konvertieren und hochzuladen. Während Benutzer immer noch in der Lage sind, Ihr Modell von einem anderen Framework zu laden, wenn Sie diesen Schritt überspringen, wird es langsamer sein, weil 🤗 Transformers den Checkpoint on-the-fly konvertieren müssen.
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
<frameworkcontent>
<pt>
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## Ein Modell während des Trainings hochladen
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
```py
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
```
Übergeben Sie Ihre Trainingsargumente wie gewohnt an [`Trainer`]:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_hub`] auf [`Trainer`] auf, um das trainierte Modell an den Hub zu übertragen. Transformers fügt sogar automatisch Trainings-Hyperparameter, Trainingsergebnisse und Framework-Versionen zu Ihrer Modellkarte hinzu!
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
- Ein Ausgabeverzeichnis für Ihr Modell.
- Einen Tokenizer.
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## Verwenden Sie die Funktion `push_to_hub`.
Sie können `push_to_hub` auch direkt für Ihr Modell aufrufen, um es in den Hub hochzuladen.
Geben Sie den Namen Ihres Modells in "push_to_hub" an:
```py
>>> pt_model.push_to_hub("my-awesome-model")
```
Dadurch wird ein Repository unter Ihrem Benutzernamen mit dem Modellnamen `my-awesome-model` erstellt. Benutzer können nun Ihr Modell mit der Funktion `from_pretrained` laden:
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
Wenn Sie zu einer Organisation gehören und Ihr Modell stattdessen unter dem Namen der Organisation pushen wollen, fügen Sie diesen einfach zur `repo_id` hinzu:
```py
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
```
Die Funktion "push_to_hub" kann auch verwendet werden, um andere Dateien zu einem Modell-Repository hinzuzufügen. Zum Beispiel kann man einen Tokenizer zu einem Modell-Repository hinzufügen:
```py
>>> tokenizer.push_to_hub("my-awesome-model")
```
Oder vielleicht möchten Sie die TensorFlow-Version Ihres fein abgestimmten PyTorch-Modells hinzufügen:
```py
>>> tf_model.push_to_hub("my-awesome-model")
```
Wenn Sie nun zu Ihrem Hugging Face-Profil navigieren, sollten Sie Ihr neu erstelltes Modell-Repository sehen. Wenn Sie auf die Registerkarte **Dateien** klicken, werden alle Dateien angezeigt, die Sie in das Repository hochgeladen haben.
Weitere Einzelheiten zum Erstellen und Hochladen von Dateien in ein Repository finden Sie in der Hub-Dokumentation [hier](https://huggingface.co/docs/hub/how-to-upstream).
## Hochladen mit der Weboberfläche
Benutzer, die einen no-code Ansatz bevorzugen, können ein Modell über das Webinterface des Hubs hochladen. Besuchen Sie [huggingface.co/new](https://huggingface.co/new) um ein neues Repository zu erstellen:
![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png)
Fügen Sie von hier aus einige Informationen über Ihr Modell hinzu:
- Wählen Sie den **Besitzer** des Repositorys. Dies können Sie selbst oder eine der Organisationen sein, denen Sie angehören.
- Wählen Sie einen Namen für Ihr Modell, der auch der Name des Repositorys sein wird.
- Wählen Sie, ob Ihr Modell öffentlich oder privat ist.
- Geben Sie die Lizenzverwendung für Ihr Modell an.
Klicken Sie nun auf die Registerkarte **Dateien** und klicken Sie auf die Schaltfläche **Datei hinzufügen**, um eine neue Datei in Ihr Repository hochzuladen. Ziehen Sie dann eine Datei per Drag-and-Drop hoch und fügen Sie eine Übergabemeldung hinzu.
![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
## Hinzufügen einer Modellkarte
Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verzerrungen und ethischen Aspekte Ihres Modells verstehen, fügen Sie bitte eine Modellkarte zu Ihrem Repository hinzu. Die Modellkarte wird in der Datei `README.md` definiert. Sie können eine Modellkarte hinzufügen, indem Sie:
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).

View File

@ -0,0 +1,175 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipelines für Inferenzen
Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://huggingface.co/models) für die Inferenz auf jede Sprache, Computer Vision, Sprache und multimodale Aufgaben zu verwenden. Selbst wenn Sie keine Erfahrung mit einer bestimmten Modalität haben oder nicht mit dem zugrundeliegenden Code hinter den Modellen vertraut sind, können Sie sie mit der [`pipeline`] für Inferenzen verwenden! In diesem Beispiel lernen Sie, wie:
* Eine [`pipeline`] für Inferenz zu verwenden.
* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden.
* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden.
<Tip>
Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
</Tip>
## Verwendung von Pipelines
Obwohl jede Aufgabe eine zugehörige [`pipeline`] hat, ist es einfacher, die allgemeine [`pipeline`]-Abstraktion zu verwenden, die alle aufgabenspezifischen Pipelines enthält. Die [`pipeline`] lädt automatisch ein Standardmodell und eine Vorverarbeitungsklasse, die für Ihre Aufgabe inferenzfähig ist.
1. Beginnen Sie mit der Erstellung einer [`pipeline`] und geben Sie eine Inferenzaufgabe an:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation")
```
2. Übergeben Sie Ihren Eingabetext an die [`pipeline`]:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}]
```
Wenn Sie mehr als eine Eingabe haben, übergeben Sie die Eingabe als Liste:
```py
>>> generator(
... [
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne",
... ]
... ) # doctest: +SKIP
```
Alle zusätzlichen Parameter für Ihre Aufgabe können auch in die [`pipeline`] aufgenommen werden. Die Aufgabe `Text-Generierung` hat eine [`~generation.GenerationMixin.generate`]-Methode mit mehreren Parametern zur Steuerung der Ausgabe. Wenn Sie zum Beispiel mehr als eine Ausgabe erzeugen wollen, setzen Sie den Parameter `num_return_sequences`:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... num_return_sequences=2,
... ) # doctest: +SKIP
```
### Wählen Sie ein Modell und einen Tokenizer
Die [`pipeline`] akzeptiert jedes Modell aus dem [Hub] (https://huggingface.co/models). Auf dem Hub gibt es Tags, mit denen Sie nach einem Modell filtern können, das Sie für Ihre Aufgabe verwenden möchten. Sobald Sie ein passendes Modell ausgewählt haben, laden Sie es mit der entsprechenden `AutoModelFor` und [`AutoTokenizer`] Klasse. Laden Sie zum Beispiel die Klasse [`AutoModelForCausalLM`] für eine kausale Sprachmodellierungsaufgabe:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
```
Erstellen Sie eine [`pipeline`] für Ihre Aufgabe, und geben Sie das Modell und den Tokenizer an, die Sie geladen haben:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
```
Übergeben Sie Ihren Eingabetext an die [`pipeline`] , um einen Text zu erzeugen:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}]
```
## Audio-Pipeline
Die [`pipeline`] unterstützt auch Audioaufgaben wie Audioklassifizierung und automatische Spracherkennung.
Lassen Sie uns zum Beispiel die Emotion in diesem Audioclip klassifizieren:
```py
>>> from datasets import load_dataset
>>> import torch
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> audio_file = ds[0]["audio"]["path"]
```
Finden Sie ein [Audioklassifikation](https://huggingface.co/models?pipeline_tag=audio-classification) Modell auf dem Model Hub für Emotionserkennung und laden Sie es in die [`pipeline`]:
```py
>>> from transformers import pipeline
>>> audio_classifier = pipeline(
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
Übergeben Sie die Audiodatei an die [`pipeline`]:
```py
>>> preds = audio_classifier(audio_file)
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
```
## Bildverarbeitungs-Pipeline
Die Verwendung einer [`pipeline`] für Bildverarbeitungsaufgaben ist praktisch identisch.
Geben Sie Ihre Aufgabe an und übergeben Sie Ihr Bild an den Klassifikator. Das Bild kann ein Link oder ein lokaler Pfad zu dem Bild sein. Zum Beispiel: Welche Katzenart ist unten abgebildet?
![pipeline-cat-chonk](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg)
```py
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> preds = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
```
## Multimodale Pipeline
Die [`pipeline`] unterstützt mehr als eine Modalität. Eine Aufgabe zur Beantwortung visueller Fragen (VQA) kombiniert zum Beispiel Text und Bild. Verwenden Sie einen beliebigen Bildlink und eine Frage, die Sie zu dem Bild stellen möchten. Das Bild kann eine URL oder ein lokaler Pfad zu dem Bild sein.
Wenn Sie zum Beispiel das gleiche Bild wie in der obigen Vision-Pipeline verwenden:
```py
>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> question = "Where is the cat?"
```
Erstellen Sie eine Pipeline für "vqa" und übergeben Sie ihr das Bild und die Frage:
```py
>>> from transformers import pipeline
>>> vqa = pipeline(task="vqa")
>>> preds = vqa(image=image, question=question)
>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds]
>>> preds
[{'score': 0.9112, 'answer': 'snow'}, {'score': 0.8796, 'answer': 'in snow'}, {'score': 0.6717, 'answer': 'outside'}, {'score': 0.0291, 'answer': 'on ground'}, {'score': 0.027, 'answer': 'ground'}]
```

View File

@ -8,35 +8,39 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Preprocess
# Vorverarbeiten
[[open-in-colab]]
Before you can use your data in a model, the data needs to be processed into an acceptable format for the model. A model does not understand raw text, images or audio. These inputs need to be converted into numbers and assembled into tensors. In this tutorial, you will:
Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie:
* Preprocess textual data with a tokenizer.
* Preprocess image or audio data with a feature extractor.
* Preprocess data for a multimodal task with a processor.
* Textdaten mit einem Tokenizer vorverarbeiten.
* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten.
* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten.
## NLP
<Youtube id="Yffk5aydLzg"/>
The main tool for processing textual data is a [tokenizer](main_classes/tokenizer). A tokenizer starts by splitting text into *tokens* according to a set of rules. The tokens are converted into numbers, which are used to build tensors as input to a model. Any additional inputs required by a model are also added by the tokenizer.
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
<Tip>
If you plan on using a pretrained model, it's important to use the associated pretrained tokenizer. This ensures the text is split the same way as the pretraining corpus, and uses the same corresponding tokens-to-index (usually referrred to as the *vocab*) during pretraining.
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
</Tip>
Get started quickly by loading a pretrained tokenizer with the [`AutoTokenizer`] class. This downloads the *vocab* used when a model is pretrained.
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
### Tokenize
Load a pretrained tokenizer with [`AutoTokenizer.from_pretrained`]:
Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
@ -44,7 +48,7 @@ Load a pretrained tokenizer with [`AutoTokenizer.from_pretrained`]:
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
```
Then pass your sentence to the tokenizer:
Dann übergeben Sie Ihren Satz an den Tokenizer:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
@ -54,23 +58,23 @@ Then pass your sentence to the tokenizer:
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
The tokenizer returns a dictionary with three important itmes:
Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück:
* [input_ids](glossary#input-ids) are the indices corresponding to each token in the sentence.
* [attention_mask](glossary#attention-mask) indicates whether a token should be attended to or not.
* [token_type_ids](glossary#token-type-ids) identifies which sequence a token belongs to when there is more than one sequence.
* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen.
* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht.
* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt.
You can decode the `input_ids` to return the original input:
Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben:
```py
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
```
As you can see, the tokenizer added two special tokens - `CLS` and `SEP` (classifier and separator) - to the sentence. Not all models need
special tokens, but if they do, the tokenizer will automatically add them for you.
Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen
spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu.
If there are several sentences you want to process, pass the sentences as a list to the tokenizer:
Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer:
```py
>>> batch_sentences = [
@ -93,9 +97,9 @@ If there are several sentences you want to process, pass the sentences as a list
### Pad
This brings us to an important topic. When you process a batch of sentences, they aren't always the same length. This is a problem because tensors, the input to the model, need to have a uniform shape. Padding is a strategy for ensuring tensors are rectangular by adding a special *padding token* to sentences with fewer tokens.
Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird.
Set the `padding` parameter to `True` to pad the shorter sequences in the batch to match the longest sequence:
Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen:
```py
>>> batch_sentences = [
@ -116,13 +120,13 @@ Set the `padding` parameter to `True` to pad the shorter sequences in the batch
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
Notice the tokenizer padded the first and third sentences with a `0` because they are shorter!
Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind!
### Truncation
### Kürzung
On the other end of the spectrum, sometimes a sequence may be too long for a model to handle. In this case, you will need to truncate the sequence to a shorter length.
Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen.
Set the `truncation` parameter to `True` to truncate a sequence to the maximum length accepted by the model:
Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen:
```py
>>> batch_sentences = [
@ -143,11 +147,11 @@ Set the `truncation` parameter to `True` to truncate a sequence to the maximum l
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
### Build tensors
### Tensoren erstellen
Finally, you want the tokenizer to return the actual tensors that are fed to the model.
Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden.
Set the `return_tensors` parameter to either `pt` for PyTorch, or `tf` for TensorFlow:
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
<frameworkcontent>
<pt>
@ -199,13 +203,13 @@ array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
## Audio
Audio inputs are preprocessed differently than textual inputs, but the end goal remains the same: create numerical sequences the model can understand. A [feature extractor](main_classes/feature_extractor) is designed for the express purpose of extracting features from raw image or audio data and converting them into tensors. Before you begin, install 🤗 Datasets to load an audio dataset to experiment with:
Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können:
```bash
pip install datasets
```
Load the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset (see the 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub.html) for more details on how to load a dataset):
Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub.html)):
```py
>>> from datasets import load_dataset, Audio
@ -213,7 +217,7 @@ Load the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset (see
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Access the first element of the `audio` column to take a look at the input. Calling the `audio` column will automatically load and resample the audio file:
Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt:
```py
>>> dataset[0]["audio"]
@ -223,17 +227,17 @@ Access the first element of the `audio` column to take a look at the input. Call
'sampling_rate': 8000}
```
This returns three items:
Dies gibt drei Elemente zurück:
* `array` is the speech signal loaded - and potentially resampled - as a 1D array.
* `path` points to the location of the audio file.
* `sampling_rate` refers to how many data points in the speech signal are measured per second.
* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde.
* Pfad" zeigt auf den Speicherort der Audiodatei.
* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden.
### Resample
For this tutorial, you will use the [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) model. As you can see from the model card, the Wav2Vec2 model is pretrained on 16kHz sampled speech audio. It is important your audio data's sampling rate matches the sampling rate of the dataset used to pretrain the model. If your data's sampling rate isn't the same, then you need to resample your audio data.
Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten.
For example, the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset has a sampling rate of 8000kHz. In order to use the Wav2Vec2 model with this dataset, upsample the sampling rate to 16kHz:
Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen:
```py
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
@ -244,13 +248,13 @@ For example, the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) data
'sampling_rate': 8000}
```
1. Use 🤗 Datasets' [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.cast_column) method to upsample the sampling rate to 16kHz:
1. Verwenden Sie die Methode [~datasets.Dataset.cast_column] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. Load the audio file:
2. Laden Sie die Audiodatei:
```py
>>> dataset[0]["audio"]
@ -260,13 +264,13 @@ For example, the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) data
'sampling_rate': 16000}
```
As you can see, the `sampling_rate` is now 16kHz!
Wie Sie sehen können, ist die Abtastrate jetzt 16kHz!
### Feature extractor
### Merkmalsextraktor
The next step is to load a feature extractor to normalize and pad the input. When padding textual data, a `0` is added for shorter sequences. The same idea applies to audio data, and the audio feature extractor will add a `0` - interpreted as silence - to `array`.
Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu.
Load the feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
@ -274,7 +278,7 @@ Load the feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
Pass the audio `array` to the feature extractor. We also recommend adding the `sampling_rate` argument in the feature extractor in order to better debug any silent errors that may occur.
Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben.
```py
>>> audio_input = [dataset[0]["audio"]["array"]]
@ -283,9 +287,9 @@ Pass the audio `array` to the feature extractor. We also recommend adding the `s
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
### Pad and truncate
### Auffüllen und Kürzen
Just like the tokenizer, you can apply padding or truncation to handle variable sequences in a batch. Take a look at the sequence length of these two audio samples:
Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele:
```py
>>> dataset[0]["audio"]["array"].shape
@ -295,7 +299,7 @@ Just like the tokenizer, you can apply padding or truncation to handle variable
(106496,)
```
As you can see, the first sample has a longer sequence than the second sample. Let's create a function that will preprocess the dataset. Specify a maximum sample length, and the feature extractor will either pad or truncate the sequences to match it:
Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen:
```py
>>> def preprocess_function(examples):
@ -310,13 +314,13 @@ As you can see, the first sample has a longer sequence than the second sample. L
... return inputs
```
Apply the function to the the first few examples in the dataset:
Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an:
```py
>>> processed_dataset = preprocess_function(dataset[:5])
```
Now take another look at the processed sample lengths:
Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an:
```py
>>> processed_dataset["input_values"][0].shape
@ -326,13 +330,13 @@ Now take another look at the processed sample lengths:
(100000,)
```
The lengths of the first two samples now match the maximum length you specified.
Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge.
## Vision
## Bildverarbeitung
A feature extractor is also used to process images for vision tasks. Once again, the goal is to convert the raw image into a batch of tensors as input.
Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren.
Let's load the [food101](https://huggingface.co/datasets/food101) dataset for this tutorial. Use 🤗 Datasets `split` parameter to only load a small sample from the training split since the dataset is quite large:
Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist:
```py
>>> from datasets import load_dataset
@ -340,7 +344,7 @@ Let's load the [food101](https://huggingface.co/datasets/food101) dataset for th
>>> dataset = load_dataset("food101", split="train[:100]")
```
Next, take a look at the image with 🤗 Datasets [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) feature:
Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) an:
```py
>>> dataset[0]["image"]
@ -348,32 +352,32 @@ Next, take a look at the image with 🤗 Datasets [`Image`](https://huggingface.
![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png)
### Feature extractor
### Merkmalsextraktor
Load the feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
Laden Sie den Merkmalsextraktor mit [`AutoImageProcessor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> from transformers import AutoImageProcessor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
### Data augmentation
### Datenerweiterung
For vision tasks, it is common to add some type of data augmentation to the images as a part of preprocessing. You can add augmentations with any library you'd like, but in this tutorial, you will use torchvision's [`transforms`](https://pytorch.org/vision/stable/transforms.html) module.
Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden.
1. Normalize the image and use [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) to chain some transforms - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) and [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - together:
1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen:
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... [RandomResizedCrop(image_processor.size["height"]), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```
2. The model accepts [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) as it's input. This value is generated by the feature extractor. Create a function that generates `pixel_values` from the transforms:
2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt:
```py
>>> def transforms(examples):
@ -381,13 +385,13 @@ For vision tasks, it is common to add some type of data augmentation to the imag
... return examples
```
3. Then use 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process.html#format-transform) to apply the transforms on-the-fly:
3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process.html#format-transform), um die Transformationen im laufenden Betrieb anzuwenden:
```py
>>> dataset.set_transform(transforms)
```
4. Now when you access the image, you will notice the feature extractor has added the model input `pixel_values`:
4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat:
```py
>>> dataset[0]["image"]
@ -418,7 +422,7 @@ For vision tasks, it is common to add some type of data augmentation to the imag
[-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])}
```
Here is what the image looks like after you preprocess it. Just as you'd expect from the applied transforms, the image has been randomly cropped and it's color properties are different.
Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders.
```py
>>> import numpy as np
@ -432,12 +436,12 @@ Here is what the image looks like after you preprocess it. Just as you'd expect
## Multimodal
For multimodal tasks. you will use a combination of everything you've learned so far and apply your skills to a automatic speech recognition (ASR) task. This means you will need a:
Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen:
* Feature extractor to preprocess the audio data.
* Tokenizer to process the text.
* Feature Extractor zur Vorverarbeitung der Audiodaten.
* Tokenizer, um den Text zu verarbeiten.
Let's return to the [LJ Speech](https://huggingface.co/datasets/lj_speech) dataset:
Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück:
```py
>>> from datasets import load_dataset
@ -445,13 +449,13 @@ Let's return to the [LJ Speech](https://huggingface.co/datasets/lj_speech) datas
>>> lj_speech = load_dataset("lj_speech", split="train")
```
Since you are mainly interested in the `audio` and `text` column, remove the other columns:
Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten:
```py
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
Now take a look at the `audio` and `text` columns:
Schauen Sie sich nun die Spalten "Audio" und "Text" an:
```py
>>> lj_speech[0]["audio"]
@ -464,15 +468,15 @@ Now take a look at the `audio` and `text` columns:
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
Remember from the earlier section on processing audio data, you should always [resample](preprocessing#audio) your audio data's sampling rate to match the sampling rate of the dataset used to pretrain a model:
Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird:
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
### Processor
### Prozessor
A processor combines a feature extractor and tokenizer. Load a processor with [`AutoProcessor.from_pretrained]:
Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained]:
```py
>>> from transformers import AutoProcessor
@ -480,25 +484,23 @@ A processor combines a feature extractor and tokenizer. Load a processor with [`
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. Create a function to process the audio data to `input_values`, and tokenizes the text to `labels`. These are your inputs to the model:
1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example["input_values"] = processor(audio["array"], sampling_rate=16000)
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... with processor.as_target_processor():
... example["labels"] = processor(example["text"]).input_ids
... return example
```
2. Apply the `prepare_dataset` function to a sample:
2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an:
```py
>>> prepare_dataset(lj_speech[0])
```
Notice the processor has added `input_values` and `labels`. The sampling rate has also been correctly downsampled to 16kHz.
Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet.
Awesome, you should now be able to preprocess data for any modality and even combine different modalities! In the next tutorial, learn how to fine-tune a model on your newly preprocessed data.
Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können.

432
docs/source/de/quicktour.md Normal file
View File

@ -0,0 +1,432 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Schnellstart
[[open-in-colab]]
Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen.
<Tip>
Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
</Tip>
## Pipeline
[`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell für eine bestimmte Aufgabe zu verwenden.
<Youtube id="tiZFewofSLM"/>
Die [`pipeline`] unterstützt viele gängige Aufgaben:
**Text**:
* Stimmungsanalyse: Klassifizierung der Polarität eines gegebenen Textes.
* Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe.
* Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entität, die es repräsentiert (Person, Datum, Ort usw.).
* Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind.
* Fill-mask: Ausfüllen von Lücken in einem Text mit maskierten Wörtern.
* Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz.
* Übersetzung: Übersetzen eines Textes in eine andere Sprache.
* Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes.
**Bild**:
* Bildklassifizierung: Klassifizierung eines Bildes.
* Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild.
* Objekterkennung: Erkennen von Objekten innerhalb eines Bildes.
**Audio**:
* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment.
* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text.
<Tip>
Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
</Tip>
### Verwendung der Pipeline
Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verwenden.
Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```
Die Pipeline lädt ein standardmäßiges [vortrainiertes Modell] (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer für die Stimmungs-Analyse herunter und speichert sie. Jetzt können Sie den "Klassifikator" auf Ihren Zieltext anwenden:
```py
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
[{'label': 'POSITIVE', 'score': 0.9998}]
```
For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries:
```py
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
>>> for result in results:
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
label: POSITIVE, with score: 0.9998
label: NEGATIVE, with score: 0.5309
```
Die [`pipeline`] kann auch über einen ganzen Datensatz iterieren. Starten wir mit der Installation der [🤗 Datasets](https://huggingface.co/docs/datasets/) Bibliothek:
```bash
pip install datasets
```
Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lösen und dem Modell welches wir nutzen möchten.
```py
>>> import torch
>>> from transformers import pipeline
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
```
Als nächstes laden wir den Datensatz (siehe 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart.html) für mehr Details) welches wir nutzen möchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
```
Wir müssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde.
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
```
Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird.
Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und übergeben wir sie als Liste an die Pipeline:
```py
>>> result = speech_recognizer(dataset[:4]["audio"])
>>> print([d["text"] for d in result])
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT']
```
Bei einem größeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste übergeben, der alle Eingaben in den Speicher lädt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines).
### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden
Die [`pipeline`] kann jedes Modell aus dem [Model Hub] (https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] für andere Anwendungsfälle anzupassen. Wenn Sie beispielsweise ein Modell wünschen, das französischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. Großartig, verwenden wir dieses Modell!
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` below):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` below):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
Wenn Sie kein Modell für Ihren Anwendungsfall finden können, müssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schließlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP für alle zu demokratisieren! 🤗
## AutoClass
<Youtube id="AhChOFRegn4"/>
Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkürzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie müssen nur die passende `AutoClass` für Ihre Aufgabe und den zugehörigen Tokenizer mit [`AutoTokenizer`] auswählen.
Kehren wir zu unserem Beispiel zurück und sehen wir uns an, wie Sie die `AutoClass` verwenden können, um die Ergebnisse der [`pipeline`] zu replizieren.
### AutoTokenizer
Ein Tokenizer ist für die Vorverarbeitung von Text in ein für das Modell verständliches Format zuständig. Zunächst zerlegt der Tokenisierer den Text in Wörter, die *Token* genannt werden. Es gibt mehrere Regeln für den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen über Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren müssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde.
Laden sie einen Tokenizer mit [`AutoTokenizer`]:
```py
>>> from transformers import AutoTokenizer
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
Anschließend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe für das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet.
Übergeben Sie Ihren Text an den Tokenizer:
```py
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
>>> print(encoding)
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält:
* [input_ids](./glossary#input-ids): numerische Repräsentationen Ihrer Token.
* [atttention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen.
Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung.
### AutoModel
<frameworkcontent>
<pt>
🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
</Tip>
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
🤗 Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] für die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
</Tip>
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben, indem Sie die Wörterbuchschlüssel direkt an die Tensoren übergeben:
```py
>>> tf_outputs = tf_model(tf_batch)
```
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
</Tip>
Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details.
<Tip>
Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
</Tip>
### Modell speichern
<frameworkcontent>
<pt>
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</tf>
</frameworkcontent>
## Custom model builds
Sie können die Konfigurationsklasse des Modells ändern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitsköpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufällig initialisiert, und Sie müssen das Modell trainieren, bevor Sie es verwenden können, um aussagekräftige Ergebnisse zu erhalten.
Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie ändern möchten. Innerhalb von [`AutoConfig.from_pretrained`] können Sie das Attribut angeben, das Sie ändern möchten, z. B. die Anzahl der Aufmerksamkeitsköpfe:
```py
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
Create a model from your custom configuration with [`AutoModel.from_config`]:
```py
>>> from transformers import AutoModel
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
Create a model from your custom configuration with [`TFAutoModel.from_config`]:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model).
## Wie geht es weiter?
Nachdem Sie nun die 🤗 Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun können, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells für eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr über die Kernkonzepte von 🤗 Transformers erfahren möchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfäden!

433
docs/source/de/training.md Normal file
View File

@ -0,0 +1,433 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimierung eines vortrainierten Modells
[[open-in-colab]]
Die Verwendung eines vorab trainierten Modells hat erhebliche Vorteile. Es reduziert die Rechenkosten und den CO2-Fußabdruck und ermöglicht Ihnen die Verwendung von Modellen, die dem neuesten Stand der Technik entsprechen, ohne dass Sie ein Modell von Grund auf neu trainieren müssen. Transformers bietet Zugang zu Tausenden von vortrainierten Modellen für eine Vielzahl von Aufgaben. Wenn Sie ein vorab trainiertes Modell verwenden, trainieren Sie es auf einem für Ihre Aufgabe spezifischen Datensatz. Dies wird als Feinabstimmung bezeichnet und ist eine unglaublich leistungsfähige Trainingstechnik. In diesem Tutorial werden Sie ein vortrainiertes Modell mit einem Deep-Learning-Framework Ihrer Wahl feinabstimmen:
* Feinabstimmung eines vorab trainierten Modells mit 🤗 Transformers [`Trainer`].
* Feinabstimmung eines vorab trainierten Modells in TensorFlow mit Keras.
* Feinabstimmung eines vorab trainierten Modells in nativem PyTorch.
<a id='data-processing'></a>
## Vorbereitung eines Datensatzes
<Youtube id="_BZearw7f0w"/>
Bevor Sie die Feinabstimmung eines vortrainierten Modells vornehmen können, müssen Sie einen Datensatz herunterladen und für das Training vorbereiten. Im vorangegangenen Leitfaden haben Sie gelernt, wie man Daten für das Training aufbereitet, und jetzt haben Sie die Gelegenheit, diese Fähigkeiten zu testen!
Laden Sie zunächst den Datensatz [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
```
Wie Sie nun wissen, benötigen Sie einen Tokenizer, um den Text zu verarbeiten und eine Auffüll- und Abschneidungsstrategie einzubauen, um mit variablen Sequenzlängen umzugehen. Um Ihren Datensatz in einem Schritt zu verarbeiten, verwenden Sie die 🤗 Methode Datasets [`map`](https://huggingface.co/docs/datasets/process.html#map), um eine Vorverarbeitungsfunktion auf den gesamten Datensatz anzuwenden:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def tokenize_function(examples):
... return tokenizer(examples["text"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```
Wenn Sie möchten, können Sie eine kleinere Teilmenge des gesamten Datensatzes für die Feinabstimmung erstellen, um den Zeitaufwand zu verringern:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
<a id='trainer'></a>
## Training
An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, den Sie verwenden möchten. Sie können über die Links
in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten,
klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks!
<frameworkcontent>
<pt>
<Youtube id="nvBXf7s7vTI"/>
## Trainieren mit PyTorch Trainer
🤗 Transformers bietet eine [`Trainer`]-Klasse, die für das Training von 🤗 Transformers-Modellen optimiert ist und es einfacher macht, mit dem Training zu beginnen, ohne manuell eine eigene Trainingsschleife zu schreiben. Die [`Trainer`]-API unterstützt eine breite Palette von Trainingsoptionen und Funktionen wie Logging, Gradientenakkumulation und gemischte Präzision.
Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten Labels an. Aus dem Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields) wissen Sie, dass es fünf Labels gibt:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
<Tip>
Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
</Tip>
### Hyperparameter für das Training
Als Nächstes erstellen Sie eine Klasse [`TrainingArguments`], die alle Hyperparameter enthält, die Sie einstellen können, sowie Flags zur Aktivierung verschiedener Trainingsoptionen. Für dieses Lernprogramm können Sie mit den Standard- [Hyperparametern](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) beginnen, aber Sie können mit diesen experimentieren, um Ihre optimalen Einstellungen zu finden.
Geben Sie an, wo die Kontrollpunkte Ihres Trainings gespeichert werden sollen:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer")
```
### Auswerten
Der [`Trainer`] wertet die Leistung des Modells während des Trainings nicht automatisch aus. Sie müssen [`Trainer`] eine Funktion übergeben, um Metriken zu berechnen und zu berichten. Die [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) Bibliothek bietet eine einfache [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) Funktion, die Sie mit der [`evaluate.load`] Funktion laden können (siehe diese [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) für weitere Informationen):
```py
>>> import numpy as np
>>> import evaluate
>>> metric = evaluate.load("accuracy")
```
Rufen Sie [`~evaluate.compute`] auf `metric` auf, um die Genauigkeit Ihrer Vorhersagen zu berechnen. Bevor Sie Ihre Vorhersagen an `compute` übergeben, müssen Sie die Vorhersagen in Logits umwandeln (denken Sie daran, dass alle 🤗 Transformers-Modelle Logits zurückgeben):
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... predictions = np.argmax(logits, axis=-1)
... return metric.compute(predictions=predictions, references=labels)
```
Wenn Sie Ihre Bewertungsmetriken während der Feinabstimmung überwachen möchten, geben Sie den Parameter `evaluation_strategy` in Ihren Trainingsargumenten an, um die Bewertungsmetrik am Ende jeder Epoche zu ermitteln:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
```
### Trainer
Erstellen Sie ein [`Trainer`]-Objekt mit Ihrem Modell, Trainingsargumenten, Trainings- und Testdatensätzen und einer Evaluierungsfunktion:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Trainer.train`] optimieren:
```py
>>> trainer.train()
```
</pt>
<tf>
<a id='keras'></a>
<Youtube id="rnTGBy2ax1c"/>
## Trainieren Sie ein TensorFlow-Modell mit Keras
Sie können auch 🤗 Transformers Modelle in TensorFlow mit der Keras API trainieren!
### Laden von Daten für Keras
Wenn Sie ein 🤗 Transformers Modell mit der Keras API trainieren wollen, müssen Sie Ihren Datensatz in ein Format konvertieren, das
Keras versteht. Wenn Ihr Datensatz klein ist, können Sie das Ganze einfach in NumPy-Arrays konvertieren und an Keras übergeben.
Probieren wir das zuerst aus, bevor wir etwas Komplizierteres tun.
Laden Sie zunächst ein Dataset. Wir werden den CoLA-Datensatz aus dem [GLUE-Benchmark](https://huggingface.co/datasets/glue) verwenden,
da es sich um eine einfache Aufgabe zur Klassifizierung von binärem Text handelt, und nehmen vorerst nur den Trainingssplit.
```py
from datasets import load_dataset
dataset = load_dataset("glue", "cola")
dataset = dataset["train"] # Just take the training split for now
```
Als nächstes laden Sie einen Tokenizer und tokenisieren die Daten als NumPy-Arrays. Beachten Sie, dass die Beschriftungen bereits eine Liste von 0 und 1en sind,
Wir können sie also ohne Tokenisierung direkt in ein NumPy-Array konvertieren!
```py
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["text"], return_tensors="np", padding=True)
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
```
Schließlich laden, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) und [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) Sie das Modell:
```py
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
# Load and compile our model
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
# Lower learning rates are often better for fine-tuning transformers
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
```
<Tip>
Sie müssen Ihren Modellen kein Verlustargument übergeben, wenn Sie sie `compile()`! Hugging-Face-Modelle wählen automatisch
einen Loss, der für ihre Aufgabe und Modellarchitektur geeignet ist, wenn dieses Argument leer gelassen wird. Sie können jederzeit außer Kraft setzen, indem Sie selbst einen Loss angeben, wenn Sie das möchten!
</Tip>
Dieser Ansatz eignet sich hervorragend für kleinere Datensätze, aber bei größeren Datensätzen kann er zu einem Problem werden. Warum?
Weil das tokenisierte Array und die Beschriftungen vollständig in den Speicher geladen werden müssten, und weil NumPy nicht mit
"gezackte" Arrays nicht verarbeiten kann, so dass jedes tokenisierte Sample auf die Länge des längsten Samples im gesamten Datensatz aufgefüllt werden müsste.
Datensatzes aufgefüllt werden. Dadurch wird das Array noch größer, und all die aufgefüllten Token verlangsamen auch das Training!
### Laden von Daten als tf.data.Dataset
Wenn Sie eine Verlangsamung des Trainings vermeiden wollen, können Sie Ihre Daten stattdessen als `tf.data.Dataset` laden. Sie können zwar Ihre eigene
tf.data"-Pipeline schreiben können, wenn Sie wollen, haben wir zwei bequeme Methoden, um dies zu tun:
- [`~TFPreTrainedModel.prepare_tf_dataset`]: Dies ist die Methode, die wir in den meisten Fällen empfehlen. Da es sich um eine Methode
Ihres Modells ist, kann sie das Modell inspizieren, um automatisch herauszufinden, welche Spalten als Modelleingaben verwendet werden können, und
verwirft die anderen, um einen einfacheren, leistungsfähigeren Datensatz zu erstellen.
- [~datasets.Dataset.to_tf_dataset`]: Diese Methode ist eher auf niedriger Ebene angesiedelt und ist nützlich, wenn Sie genau kontrollieren wollen, wie
Dataset erstellt wird, indem man genau angibt, welche `columns` und `label_cols` einbezogen werden sollen.
Bevor Sie [~TFPreTrainedModel.prepare_tf_dataset`] verwenden können, müssen Sie die Tokenizer-Ausgaben als Spalten zu Ihrem Datensatz hinzufügen, wie in
dem folgenden Codebeispiel:
```py
def tokenize_dataset(data):
# Keys of the returned dictionary will be added to the dataset as columns
return tokenizer(data["text"])
dataset = dataset.map(tokenize_dataset)
```
Denken Sie daran, dass Hugging Face-Datensätze standardmäßig auf der Festplatte gespeichert werden, so dass dies nicht zu einem erhöhten Arbeitsspeicherbedarf führen wird! Sobald die
Spalten hinzugefügt wurden, können Sie Batches aus dem Datensatz streamen und zu jedem Batch Auffüllungen hinzufügen, was die Anzahl der Auffüllungs-Token im Vergleich zum Auffüllen des gesamten Datensatzes reduziert.
```py
>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer)
```
Beachten Sie, dass Sie im obigen Codebeispiel den Tokenizer an `prepare_tf_dataset` übergeben müssen, damit die Stapel beim Laden korrekt aufgefüllt werden können.
Wenn alle Stichproben in Ihrem Datensatz die gleiche Länge haben und kein Auffüllen erforderlich ist, können Sie dieses Argument weglassen.
Wenn Sie etwas Komplexeres als nur das Auffüllen von Stichproben benötigen (z. B. das Korrumpieren von Token für die maskierte Sprachmodellierung), können Sie das Argument
Modellierung), können Sie stattdessen das Argument `collate_fn` verwenden, um eine Funktion zu übergeben, die aufgerufen wird, um die
Liste von Stichproben in einen Stapel umwandelt und alle gewünschten Vorverarbeitungen vornimmt. Siehe unsere
[examples](https://github.com/huggingface/transformers/tree/main/examples) oder
[notebooks](https://huggingface.co/docs/transformers/notebooks), um diesen Ansatz in Aktion zu sehen.
Sobald Sie einen `tf.data.Dataset` erstellt haben, können Sie das Modell wie zuvor kompilieren und anpassen:
```py
model.compile(optimizer=Adam(3e-5))
model.fit(tf_dataset)
```
</tf>
</frameworkcontent>
<a id='pytorch_native'></a>
## Trainieren in nativem PyTorch
<frameworkcontent>
<pt>
<Youtube id="Dh9CL8fyG80"/>
[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen.
An diesem Punkt müssen Sie möglicherweise Ihr Notebook neu starten oder den folgenden Code ausführen, um etwas Speicher freizugeben:
```py
del model
del pytorch_model
del trainer
torch.cuda.empty_cache()
```
Als Nächstes müssen Sie den Datensatz `tokenized_dataset` manuell nachbearbeiten, um ihn für das Training vorzubereiten.
1. Entfernen Sie die Spalte "Text", da das Modell keinen Rohtext als Eingabe akzeptiert:
```py
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
```
2. Benennen Sie die Spalte "Label" in "Labels" um, da das Modell erwartet, dass das Argument "Labels" genannt wird:
```py
>>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
```
3. Stellen Sie das Format des Datensatzes so ein, dass PyTorch-Tensoren anstelle von Listen zurückgegeben werden:
```py
>>> tokenized_datasets.set_format("torch")
```
Erstellen Sie dann eine kleinere Teilmenge des Datensatzes, wie zuvor gezeigt, um die Feinabstimmung zu beschleunigen:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
### DataLoader
Erstellen Sie einen `DataLoader` für Ihre Trainings- und Testdatensätze, damit Sie über die Datenstapel iterieren können:
```py
>>> from torch.utils.data import DataLoader
>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
```
Laden Sie Ihr Modell mit der Anzahl der erwarteten Kennzeichnungen:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
### Optimierer und Lernratensteuerung
Erstellen Sie einen Optimierer und einen Scheduler für die Lernrate, um das Modell fein abzustimmen. Wir verwenden den Optimierer [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) aus PyTorch:
```py
>>> from torch.optim import AdamW
>>> optimizer = AdamW(model.parameters(), lr=5e-5)
```
Erstellen Sie den Standard-Lernratenplaner aus [`Trainer`]:
```py
>>> from transformers import get_scheduler
>>> num_epochs = 3
>>> num_training_steps = num_epochs * len(train_dataloader)
>>> lr_scheduler = get_scheduler(
... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
... )
```
Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn Sie Zugang zu einem solchen haben. Andernfalls kann das Training auf einer CPU mehrere Stunden statt ein paar Minuten dauern.
```py
>>> import torch
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
>>> model.to(device)
```
<Tip>
Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
</Tip>
Großartig, Sie sind bereit für das Training! 🥳
### Trainingsschleife
Um Ihren Trainingsfortschritt zu verfolgen, verwenden Sie die [tqdm](https://tqdm.github.io/) Bibliothek, um einen Fortschrittsbalken über die Anzahl der Trainingsschritte hinzuzufügen:
```py
>>> from tqdm.auto import tqdm
>>> progress_bar = tqdm(range(num_training_steps))
>>> model.train()
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... outputs = model(**batch)
... loss = outputs.loss
... loss.backward()
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
### Auswertung
Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müssen Sie dasselbe tun, wenn Sie Ihre eigene Trainingsschleife schreiben. Aber anstatt die Metrik am Ende jeder Epoche zu berechnen und zu melden, werden Sie dieses Mal alle Stapel mit [`~evaluate.add_batch`] akkumulieren und die Metrik ganz am Ende berechnen.
```py
>>> import evaluate
>>> metric = evaluate.load("accuracy")
>>> model.eval()
>>> for batch in eval_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... with torch.no_grad():
... outputs = model(**batch)
... logits = outputs.logits
... predictions = torch.argmax(logits, dim=-1)
... metric.add_batch(predictions=predictions, references=batch["labels"])
>>> metric.compute()
```
</pt>
</frameworkcontent>
<a id='additional-resources'></a>
## Zusätzliche Ressourcen
Weitere Beispiele für die Feinabstimmung finden Sie unter:
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte
um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren.
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.

File diff suppressed because it is too large Load Diff

View File

@ -8,11 +8,15 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Distributed training with 🤗 Accelerate
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate/index.html) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
## Setup
@ -22,7 +26,7 @@ Get started by installing 🤗 Accelerate:
pip install accelerate
```
Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) object. `Accelerator` will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
```py
>>> from accelerate import Accelerator
@ -32,7 +36,7 @@ Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate
## Prepare to accelerate
The next step is to pass all the relevant training objects to the [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare) method. This includes your training and evaluation DataLoaders, a model and an optimizer:
The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
@ -42,7 +46,7 @@ The next step is to pass all the relevant training objects to the [`prepare`](ht
## Backward
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`backward`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.backward) method:
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
```py
>>> for epoch in range(num_epochs):
@ -121,7 +125,7 @@ accelerate launch train.py
### Train with a notebook
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to `notebook_launcher`:
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
@ -129,4 +133,4 @@ accelerate launch train.py
>>> notebook_launcher(training_function)
```
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate/index.html).
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).

View File

@ -7,36 +7,34 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to add a model to 🤗 Transformers?
Adding a new model is often difficult and requires an in-depth knowledge of the 🤗 Transformers library and ideally also
of the model's original repository. At Hugging Face, we are trying to empower the community more and more to add models
independently. Thus, for some new models that the community wants to be added to 🤗 Transformers, we create a customized
*call-for-model-addition* that explains step-by-step how to add the requested model. With this
*call-for-model-addition*, we want to teach a motivated and experienced contributor of the community how to port a
model to 🤗 Transformers.
The 🤗 Transformers library is often able to offer new models thanks to community contributors. But this can be a challenging project and requires an in-depth knowledge of the 🤗 Transformers library and the model to implement. At Hugging Face, we're trying to empower more of the community to actively add models and we've put together this guide to walk you through the process of adding a PyTorch model (make sure you have [PyTorch installed](https://pytorch.org/get-started/locally/)).
If this sounds like something you would be interested in, feel free to check out the currently open
“calls-for-model-addition” [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model/open_model_proposals/README.md)
and to contact us.
<Tip>
If selected, you will then work closely with one member of the Hugging Face team to integrate the model into 🤗
Transformers. By doing so, you will both gain a theoretical and deep practical understanding of the proposed model. But
more importantly, you will have made a major open-source contribution to 🤗 Transformers. Along the way, you will:
If you're interested in implementing a TensorFlow model, take a look at the [How to convert a 🤗 Transformers model to TensorFlow](add_tensorflow_model) guide!
- get insights into open-source best practices
- understand the design principles of one of the most popular NLP libraries
- learn how to do efficiently test large NLP models
- learn how to integrate Python utilities like `black`, `isort`, `make fix-copies` into a library to always
ensure clean and readable code
</Tip>
We are also more than happy if you want to add a model that cannot be found in the “calls-for-model-addition” folder.
The following sections explain in detail how to add a new model. It might also be very helpful to check out already
added models to see if those resemble the model you would like to add [here](https://github.com/huggingface/transformers/pulls?q=is%3Apr+label%3A%22PR+for+Model+Addition%22+is%3Aclosed).
Along the way, you'll:
To start, let's try to get a general overview of the Transformers library.
- get insights into open-source best practices
- understand the design principles behind one of the most popular deep learning libraries
- learn how to efficiently test large models
- learn how to integrate Python utilities like `black`, `ruff`, and `make fix-copies` to ensure clean and readable code
A Hugging Face team member will be available to help you along the way so you'll never be alone. 🤗 ❤️
To get started, open a [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) issue for the model you want to see in 🤗 Transformers. If you're not especially picky about contributing a specific model, you can filter by the [New model label](https://github.com/huggingface/transformers/labels/New%20model) to see if there are any unclaimed model requests and work on it.
Once you've opened a new model request, the first step is to get familiar with 🤗 Transformers if you aren't already!
## General overview of 🤗 Transformers
@ -106,7 +104,7 @@ own regarding how code should be written :-)
for a good example).
2. The code should be fully understandable, even by a non-native English speaker. This means you should pick
descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`.
One-letter variable names are strongly discouraged unless it's an index in a for loop.
One-letter variable names are strongly discouraged unless it's an index in a for loop.
3. More generally we prefer longer explicit code to short magical one.
4. Avoid subclassing `nn.Sequential` in PyTorch but subclass `nn.Module` and write the forward pass, so that anyone
using your code can quickly debug it by adding print statements or breaking points.
@ -144,20 +142,20 @@ In the following, we try to give you a general recipe that we found most useful
The following list is a summary of everything that has to be done to add a model and can be used by you as a To-Do
List:
- 1. ☐ (Optional) Understood theoretical aspects
- 2. ☐ Prepared transformers dev environment
- 3. ☐ Set up debugging environment of the original repository
- 4. ☐ Created script that successfully runs forward pass using original repository and checkpoint
- 5. ☐ Successfully added the model skeleton to Transformers
- 6. ☐ Successfully converted original checkpoint to Transformers checkpoint
- 7. ☐ Successfully ran forward pass in Transformers that gives identical output to original checkpoint
- 8. ☐ Finished model tests in Transformers
- 9. ☐ Successfully added Tokenizer in Transformers
- 10. ☐ Run end-to-end integration tests
- 11. ☐ Finished docs
- 12. ☐ Uploaded model weights to the hub
- 13. ☐ Submitted the pull request
- 14. ☐ (Optional) Added a demo notebook
☐ (Optional) Understood the model's theoretical aspects<br>
☐ Prepared 🤗 Transformers dev environment<br>
☐ Set up debugging environment of the original repository<br>
☐ Created script that successfully runs the `forward()` pass using the original repository and checkpoint<br>
☐ Successfully added the model skeleton to 🤗 Transformers<br>
☐ Successfully converted original checkpoint to 🤗 Transformers checkpoint<br>
☐ Successfully ran `forward()` pass in 🤗 Transformers that gives identical output to original checkpoint<br>
☐ Finished model tests in 🤗 Transformers<br>
☐ Successfully added tokenizer in 🤗 Transformers<br>
☐ Run end-to-end integration tests<br>
☐ Finished docs<br>
☐ Uploaded model weights to the Hub<br>
☐ Submitted the pull request<br>
☐ (Optional) Added a demo notebook
To begin with, we usually recommend to start by getting a good theoretical understanding of `BrandNewBert`. However,
if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive
@ -208,7 +206,15 @@ source .env/bin/activate
pip install -e ".[dev]"
```
and return to the parent directory
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
```bash
pip install -e ".[quality]"
```
which should be enough for most use cases. You can then return to the parent directory
```bash
cd ..
@ -222,7 +228,7 @@ cd ..
5. To port *brand_new_bert*, you will also need access to its original repository:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
@ -274,7 +280,7 @@ In general, there are two possible debugging environments for running the origin
Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split
logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also,
notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging
Face team for help. If you are familiar with Jupiter notebooks, we strongly recommend you to work with them.
Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you to work with them.
The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend
some time adjusting to the new programming environment and that you might not be able to use your known debugging tools
@ -498,6 +504,48 @@ model = BrandNewBertModel(BrandNewBertConfig())
The above command will create a model according to the default parameters as defined in `BrandNewBertConfig()` with
random weights, thus making sure that the `init()` methods of all components works.
Note that all random initialization should happen in the `_init_weights` method of your `BrandnewBertPreTrainedModel`
class. It should initialize all leaf modules depending on the variables of the config. Here is an example with the
BERT `_init_weights` method:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
You can have some more custom schemes if you need a special initialization for some modules. For instance, in
`Wav2Vec2ForPreTraining`, the last two linear layers need to have the initialization of the regular PyTorch `nn.Linear`
but all the other ones should use an initialization as above. This is coded like this:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstnace(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
The `_is_hf_initialized` flag is internally used to make sure we only initialize a submodule once. By setting it to
`True` for `module.project_q` and `module.project_hid`, we make sure the custom initialization we did is not overridden later on,
the `_init_weights` function won't be applied to them.
**6. Write a conversion script**
Next, you should write a conversion script that lets you convert the checkpoint you used to debug *brand_new_bert* in
@ -634,7 +682,7 @@ model.save_pretrained("/path/to/converted/checkpoint/folder")
**7. Implement the forward pass**
Having managed to correctly load the pretrained weights into the 🤗 Transformers implementation, you should now make
sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward
sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#34-run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward
pass of the model using the original repository. Now you should write an analogous script using the 🤗 Transformers
implementation instead of the original one. It should look as follows:
@ -683,10 +731,11 @@ work left to be done should be a cakewalk 😊.
At this point, you have successfully added a new model. However, it is very much possible that the model does not yet
fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all
common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under
the same `tests/test_modeling_brand_new_bert.py`. Run this test file to verify that all common tests pass:
the same `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Run this test file to verify that all common
tests pass:
```bash
pytest tests/test_modeling_brand_new_bert.py
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that
@ -700,7 +749,7 @@ Cookiecutter, called `BrandNewBertModelIntegrationTests` and only has to be fill
tests are passing, run
```bash
RUN_SLOW=1 pytest -sv tests/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
@ -758,7 +807,8 @@ contain a couple of hard-coded integration tests.
**10. Run End-to-end integration tests**
Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the
tokenizer to `tests/test_modeling_brand_new_bert.py` in 🤗 Transformers. Such a test should show on a meaningful
tokenizer to `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
Such a test should show on a meaningful
text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can
include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc… If none
of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a
@ -771,7 +821,7 @@ tests for you.
Now, all the necessary functionality for *brand_new_bert* is added - you're almost done! The only thing left to add is
a nice docstring and a doc page. The Cookiecutter should have added a template file called
`docs/source/model_doc/brand_new_bert.rst` that you should fill out. Users of your model will usually first look at
`docs/source/model_doc/brand_new_bert.md` that you should fill out. Users of your model will usually first look at
this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for
the community to add some *Tips* to show how the model should be used. Don't hesitate to ping the Hugging Face team
regarding the docstrings.
@ -813,13 +863,9 @@ checkpoint and to get the required access rights to be able to upload the model
*brand_new_bert*. The `push_to_hub` method, present in all models in `transformers`, is a quick and efficient way to push your checkpoint to the hub. A little snippet is pasted below:
```python
brand_new_bert.push_to_hub(
repo_path_or_name="brand_new_bert",
# Uncomment the following line to push to an organization
# organization="<ORGANIZATION>",
commit_message="Add model",
use_temp_dir=True,
)
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the

View File

@ -7,9 +7,16 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to add a pipeline to 🤗 Transformers?
# How to create a custom pipeline?
In this guide, we will see how to create a custom pipeline and share it on the [Hub](hf.co/models) or add it to the
🤗 Transformers library.
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
@ -19,8 +26,8 @@ pipeline (`preprocess`).
Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of
`postprocess` method.
Start by inheriting the base class `Pipeline`. with the 4 methods needed to implement `preprocess`,
`_forward`, `postprocess` and `_sanitize_parameters`.
Start by inheriting the base class `Pipeline` with the 4 methods needed to implement `preprocess`,
`_forward`, `postprocess`, and `_sanitize_parameters`.
```python
@ -59,14 +66,14 @@ contain more information and is usually a `Dict`.
called method as it contains safeguards to make sure everything is working on the expected device. If anything is
linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess.
`postprocess` methods will take the output of `_forward` and turn it into the final output that were decided
`postprocess` methods will take the output of `_forward` and turn it into the final output that was decided
earlier.
`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization
time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`,
`_forward` and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
`_forward`, and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
allows to keep the default arguments in the function definition which is always more "natural".
A classic example would be a `top_k` argument in the post processing in classification tasks.
@ -99,7 +106,7 @@ def _sanitize_parameters(self, **kwargs):
postprocess_kwargs = {}
if "top_k" in kwargs:
preprocess_kwargs["top_k"] = kwargs["top_k"]
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
@ -111,19 +118,130 @@ of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
## Adding it to the list of supported tasks
Go to `src/transformers/pipelines/__init__.py` and fill in `SUPPORTED_TASKS` with your newly created pipeline.
If possible it should provide a default model.
To register your `new-task` to the list of supported tasks, you have to add it to the `PIPELINE_REGISTRY`:
## Adding tests
```python
from transformers.pipelines import PIPELINE_REGISTRY
Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
You can specify a default model if you want, in which case it should come with a specific revision (which can be the name of a branch or a commit hash, here we took `"abcdef"`) as well as the type:
```python
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome_model", "abcdef")},
type="text", # current support type: text, audio, image, multimodal
)
```
## Share your pipeline on the Hub
To share your custom pipeline on the Hub, you just have to save the custom code of your `Pipeline` subclass in a
python file. For instance, let's say we want to use a custom pipeline for sentence pair classification like this:
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
The implementation is framework agnostic, and will work for PyTorch and TensorFlow models. If we have saved this in
a file named `pair_classification.py`, we can then import it and register it like this:
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
tf_model=TFAutoModelForSequenceClassification,
)
```
Once this is done, we can use it with a pretrained model. For instance `sgugger/finetuned-bert-mrpc` has been
fine-tuned on the MRPC dataset, which classifies pairs of sentences as paraphrases or not.
```py
from transformers import pipeline
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
```
Then we can share it on the Hub by using the `save_pretrained` method in a `Repository`:
```py
from huggingface_hub import Repository
repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline")
classifier.save_pretrained("test-dynamic-pipeline")
repo.push_to_hub()
```
This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`,
along with saving the model and tokenizer of the pipeline, before pushing everything in the repository
`{your_username}/test-dynamic-pipeline`. After that anyone can use it as long as they provide the option
`trust_remote_code=True`:
```py
from transformers import pipeline
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
```
## Add the pipeline to 🤗 Transformers
If you want to contribute your pipeline to 🤗 Transformers, you will need to add a new module in the `pipelines` submodule
with the code of your pipeline, then add it in the list of tasks defined in `pipelines/__init__.py`.
Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
The `run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by `model_mapping` and `tf_model_mapping`.
This is very important to test future compatibility, meaning if someone adds a new model for
`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's
impossible to check for actual values, that's why There is a helper `ANY` that will simply attempt to match the
impossible to check for actual values, that's why there is a helper `ANY` that will simply attempt to match the
output of the pipeline TYPE.
You also *need* to implement 2 (ideally 4) tests.
@ -134,7 +252,7 @@ You also *need* to implement 2 (ideally 4) tests.
and test the pipeline outputs. The results should be the same as `test_small_model_pt`.
- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
sure there is no drift in future releases.
- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
sure there is no drift in future releases.

View File

@ -0,0 +1,357 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to convert a 🤗 Transformers model to TensorFlow?
Having multiple frameworks available to use with 🤗 Transformers gives you flexibility to play their strengths when
designing your application, but it implies that compatibility must be added on a per-model basis. The good news is that
adding TensorFlow compatibility to an existing model is simpler than [adding a new model from scratch](add_new_model)!
Whether you wish to have a deeper understanding of large TensorFlow models, make a major open-source contribution, or
enable TensorFlow for your model of choice, this guide is for you.
This guide empowers you, a member of our community, to contribute TensorFlow model weights and/or
architectures to be used in 🤗 Transformers, with minimal supervision from the Hugging Face team. Writing a new model
is no small feat, but hopefully this guide will make it less of a rollercoaster 🎢 and more of a walk in the park 🚶.
Harnessing our collective experiences is absolutely critical to make this process increasingly easier, and thus we
highly encourage that you suggest improvements to this guide!
Before you dive deeper, it is recommended that you check the following resources if you're new to 🤗 Transformers:
- [General overview of 🤗 Transformers](add_new_model#general-overview-of-transformers)
- [Hugging Face's TensorFlow Philosophy](https://huggingface.co/blog/tensorflow-philosophy)
In the remainder of this guide, you will learn what's needed to add a new TensorFlow model architecture, the
procedure to convert PyTorch into TensorFlow model weights, and how to efficiently debug mismatches across ML
frameworks. Let's get started!
<Tip>
Are you unsure whether the model you wish to use already has a corresponding TensorFlow architecture?
&nbsp;
Check the `model_type` field of the `config.json` of your model of choice
([example](https://huggingface.co/bert-base-uncased/blob/main/config.json#L14)). If the corresponding model folder in
🤗 Transformers has a file whose name starts with "modeling_tf", it means that it has a corresponding TensorFlow
architecture ([example](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert)).
</Tip>
## Step-by-step guide to add TensorFlow model architecture code
There are many ways to design a large model architecture, and multiple ways of implementing said design. However,
you might recall from our [general overview of 🤗 Transformers](add_new_model#general-overview-of-transformers)
that we are an opinionated bunch - the ease of use of 🤗 Transformers relies on consistent design choices. From
experience, we can tell you a few important things about adding TensorFlow models:
- Don't reinvent the wheel! More often that not, there are at least two reference implementations you should check: the
PyTorch equivalent of the model you are implementing and other TensorFlow models for the same class of problems.
- Great model implementations survive the test of time. This doesn't happen because the code is pretty, but rather
because the code is clear, easy to debug and build upon. If you make the life of the maintainers easy with your
TensorFlow implementation, by replicating the same patterns as in other TensorFlow models and minimizing the mismatch
to the PyTorch implementation, you ensure your contribution will be long lived.
- Ask for help when you're stuck! The 🤗 Transformers team is here to help, and we've probably found solutions to the same
problems you're facing.
Here's an overview of the steps needed to add a TensorFlow model architecture:
1. Select the model you wish to convert
2. Prepare transformers dev environment
3. (Optional) Understand theoretical aspects and the existing implementation
4. Implement the model architecture
5. Implement model tests
6. Submit the pull request
7. (Optional) Build demos and share with the world
### 1.-3. Prepare your model contribution
**1. Select the model you wish to convert**
Let's start off with the basics: the first thing you need to know is the architecture you want to convert. If you
don't have your eyes set on a specific architecture, asking the 🤗 Transformers team for suggestions is a great way to
maximize your impact - we will guide you towards the most prominent architectures that are missing on the TensorFlow
side. If the specific model you want to use with TensorFlow already has a TensorFlow architecture implementation in
🤗 Transformers but is lacking weights, feel free to jump straight into the
[weight conversion section](#adding-tensorflow-weights-to-hub)
of this page.
For simplicity, the remainder of this guide assumes you've decided to contribute with the TensorFlow version of
*BrandNewBert* (the same example as in the [guide](add_new_model) to add a new model from scratch).
<Tip>
Before starting the work on a TensorFlow model architecture, double-check that there is no ongoing effort to do so.
You can search for `BrandNewBert` on the
[pull request GitHub page](https://github.com/huggingface/transformers/pulls?q=is%3Apr) to confirm that there is no
TensorFlow-related pull request.
</Tip>
**2. Prepare transformers dev environment**
Having selected the model architecture, open an draft PR to signal your intention to work on it. Follow the
instructions below to set up your environment and open a draft PR.
1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the
repository's page. This creates a copy of the code under your GitHub user account.
2. Clone your `transformers` fork to your local disk, and add the base repository as a remote:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Set up a development environment, for instance by running the following command:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install TensorFlow then do:
```bash
pip install -e ".[quality]"
```
**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient.
4. Create a branch with a descriptive name from your main branch
```bash
git checkout -b add_tf_brand_new_bert
```
5. Fetch and rebase to current main
```bash
git fetch upstream
git rebase upstream/main
```
6. Add an empty `.py` file in `transformers/src/models/brandnewbert/` named `modeling_tf_brandnewbert.py`. This will
be your TensorFlow model file.
7. Push the changes to your account using:
```bash
git add .
git commit -m "initial commit"
git push -u origin add_tf_brand_new_bert
```
8. Once you are satisfied, go to the webpage of your fork on GitHub. Click on “Pull request”. Make sure to add the
GitHub handle of some members of the Hugging Face team as reviewers, so that the Hugging Face team gets notified for
future changes.
9. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page.
Now you have set up a development environment to port *BrandNewBert* to TensorFlow in 🤗 Transformers.
**3. (Optional) Understand theoretical aspects and the existing implementation**
You should take some time to read *BrandNewBert's* paper, if such descriptive work exists. There might be large
sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is
not to get a deep theoretical understanding of the paper, but to extract the necessary information required to
effectively re-implement the model in 🤗 Transformers using TensorFlow. That being said, you don't have to spend too
much time on the theoretical aspects, but rather focus on the practical ones, namely the existing model documentation
page (e.g. [model docs for BERT](model_doc/bert)).
After you've grasped the basics of the models you are about to implement, it's important to understand the existing
implementation. This is a great chance to confirm that a working implementation matches your expectations for the
model, as well as to foresee technical challenges on the TensorFlow side.
It's perfectly natural that you feel overwhelmed with the amount of information that you've just absorbed. It is
definitely not a requirement that you understand all facets of the model at this stage. Nevertheless, we highly
encourage you to clear any pressing questions in our [forum](https://discuss.huggingface.co/).
### 4. Model implementation
Now it's time to finally start coding. Our suggested starting point is the PyTorch file itself: copy the contents of
`modeling_brand_new_bert.py` inside `src/transformers/models/brand_new_bert/` into
`modeling_tf_brand_new_bert.py`. The goal of this section is to modify the file and update the import structure of
🤗 Transformers such that you can import `TFBrandNewBert` and
`TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` successfully loads a working TensorFlow *BrandNewBert* model.
Sadly, there is no prescription to convert a PyTorch model into TensorFlow. You can, however, follow our selection of
tips to make the process as smooth as possible:
- Prepend `TF` to the name of all classes (e.g. `BrandNewBert` becomes `TFBrandNewBert`).
- Most PyTorch operations have a direct TensorFlow replacement. For example, `torch.nn.Linear` corresponds to
`tf.keras.layers.Dense`, `torch.nn.Dropout` corresponds to `tf.keras.layers.Dropout`, etc. If you're not sure
about a specific operation, you can use the [TensorFlow documentation](https://www.tensorflow.org/api_docs/python/tf)
or the [PyTorch documentation](https://pytorch.org/docs/stable/).
- Look for patterns in the 🤗 Transformers codebase. If you come across a certain operation that doesn't have a direct
replacement, the odds are that someone else already had the same problem.
- By default, keep the same variable names and structure as in PyTorch. This will make it easier to debug, track
issues, and add fixes down the line.
- Some layers have different default values in each framework. A notable example is the batch normalization layer's
epsilon (`1e-5` in [PyTorch](https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d)
and `1e-3` in [TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)).
Double-check the documentation!
- PyTorch's `nn.Parameter` variables typically need to be initialized within TF Layer's `build()`. See the following
example: [PyTorch](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_vit_mae.py#L212) /
[TensorFlow](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_tf_vit_mae.py#L220)
- If the PyTorch model has a `#copied from ...` on top of a function, the odds are that your TensorFlow model can also
borrow that function from the architecture it was copied from, assuming it has a TensorFlow architecture.
- Assigning the `name` attribute correctly in TensorFlow functions is critical to do the `from_pt=True` weight
cross-loading. `name` is almost always the name of the corresponding variable in the PyTorch code. If `name` is not
properly set, you will see it in the error message when loading the model weights.
- The logic of the base model class, `BrandNewBertModel`, will actually reside in `TFBrandNewBertMainLayer`, a Keras
layer subclass ([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L719)).
`TFBrandNewBertModel` will simply be a wrapper around this layer.
- Keras models need to be built in order to load pretrained weights. For that reason, `TFBrandNewBertPreTrainedModel`
will need to hold an example of inputs to the model, the `dummy_inputs`
([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L916)).
- If you get stuck, ask for help - we're here to help you! 🤗
In addition to the model file itself, you will also need to add the pointers to the model classes and related
documentation pages. You can complete this part entirely following the patterns in other PRs
([example](https://github.com/huggingface/transformers/pull/18020/files)). Here's a list of the needed manual
changes:
- Include all public classes of *BrandNewBert* in `src/transformers/__init__.py`
- Add *BrandNewBert* classes to the corresponding Auto classes in `src/transformers/models/auto/modeling_tf_auto.py`
- Include the modeling file in the documentation test file list in `utils/documentation_tests.txt`
- Add the lazy loading classes related to *BrandNewBert* in `src/transformers/utils/dummy_tf_objects.py`
- Update the import structures for the public classes in `src/transformers/models/brand_new_bert/__init__.py`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.md`
When you're happy with your implementation, run the following checklist to confirm that your model architecture is
ready:
1. All layers that behave differently at train time (e.g. Dropout) are called with a `training` argument, which is
propagated all the way from the top-level classes
2. You have used `#copied from ...` whenever possible
3. `TFBrandNewBertMainLayer` and all classes that use it have their `call` function decorated with `@unpack_inputs`
4. `TFBrandNewBertMainLayer` is decorated with `@keras_serializable`
5. A TensorFlow model can be loaded from PyTorch weights using `TFBrandNewBert.from_pretrained(model_repo, from_pt=True)`
6. You can call the TensorFlow model using the expected input format
### 5. Add model tests
Hurray, you've implemented a TensorFlow model! Now it's time to add tests to make sure that your model behaves as
expected. As in the previous section, we suggest you start by copying the `test_modeling_brand_new_bert.py` file in
`tests/models/brand_new_bert/` into `test_modeling_tf_brand_new_bert.py`, and continue by making the necessary
TensorFlow replacements. For now, in all `.from_pretrained()` calls, you should use the `from_pt=True` flag to load
the existing PyTorch weights.
After you're done, it's time for the moment of truth: run the tests! 😬
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
The most likely outcome is that you'll see a bunch of errors. Don't worry, this is expected! Debugging ML models is
notoriously hard, and the key ingredient to success is patience (and `breakpoint()`). In our experience, the hardest
problems arise from subtle mismatches between ML frameworks, for which we have a few pointers at the end of this guide.
In other cases, a general test might not be directly applicable to your model, in which case we suggest an override
at the model test class level. Regardless of the issue, don't hesitate to ask for help in your draft pull request if
you're stuck.
When all tests pass, congratulations, your model is nearly ready to be added to the 🤗 Transformers library! 🎉
### 6.-7. Ensure everyone can use your model
**6. Submit the pull request**
Once you're done with the implementation and the tests, it's time to submit a pull request. Before pushing your code,
run our code formatting utility, `make fixup` 🪄. This will automatically fix any formatting issues, which would cause
our automatic checks to fail.
It's now time to convert your draft pull request into a real pull request. To do so, click on the "Ready for
review" button and add Joao (`@gante`) and Matt (`@Rocketknight1`) as reviewers. A model pull request will need
at least 3 reviewers, but they will take care of finding appropriate additional reviewers for your model.
After all reviewers are happy with the state of your PR, the final action point is to remove the `from_pt=True` flag in
`.from_pretrained()` calls. Since there are no TensorFlow weights, you will have to add them! Check the section
below for instructions on how to do it.
Finally, when the TensorFlow weights get merged, you have at least 3 reviewer approvals, and all CI checks are
green, double-check the tests locally one last time
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
and we will merge your PR! Congratulations on the milestone 🎉
**7. (Optional) Build demos and share with the world**
One of the hardest parts about open-source is discovery. How can the other users learn about the existence of your
fabulous TensorFlow contribution? With proper communication, of course! 📣
There are two main ways to share your model with the community:
- Build demos. These include Gradio demos, notebooks, and other fun ways to show off your model. We highly
encourage you to add a notebook to our [community-driven demos](https://huggingface.co/docs/transformers/community).
- Share stories on social media like Twitter and LinkedIn. You should be proud of your work and share
your achievement with the community - your model can now be used by thousands of engineers and researchers around
the world 🌍! We will be happy to retweet your posts and help you share your work with the community.
## Adding TensorFlow weights to 🤗 Hub
Assuming that the TensorFlow model architecture is available in 🤗 Transformers, converting PyTorch weights into
TensorFlow weights is a breeze!
Here's how to do it:
1. Make sure you are logged into your Hugging Face account in your terminal. You can log in using the command
`huggingface-cli login` (you can find your access tokens [here](https://huggingface.co/settings/tokens))
2. Run `transformers-cli pt-to-tf --model-name foo/bar`, where `foo/bar` is the name of the model repository
containing the PyTorch weights you want to convert
3. Tag `@joaogante` and `@Rocketknight1` in the 🤗 Hub PR the command above has just created
That's it! 🎉
## Debugging mismatches across ML frameworks 🐛
At some point, when adding a new architecture or when creating TensorFlow weights for an existing architecture, you
might come across errors compaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
model architecture code for the two frameworks, and find that they look identical. What's going on? 🤔
First of all, let's talk about why understanding these mismatches matters. Many community members will use 🤗
Transformers models out of the box, and trust that our models behave as expected. When there is a large mismatch
between the two frameworks, it implies that the model is not following the reference implementation for at least one
of the frameworks. This might lead to silent failures, in which the model runs but has poor performance. This is
arguably worse than a model that fails to run at all! To that end, we aim at having a framework mismatch smaller than
`1e-5` at all stages of the model.
As in other numerical problems, the devil is in the details. And as in any detail-oriented craft, the secret
ingredient here is patience. Here is our suggested workflow for when you come across this type of issues:
1. Locate the source of mismatches. The model you're converting probably has near identical inner variables up to a
certain point. Place `breakpoint()` statements in the two frameworks' architectures, and compare the values of the
numerical variables in a top-down fashion until you find the source of the problems.
2. Now that you've pinpointed the source of the issue, get in touch with the 🤗 Transformers team. It is possible
that we've seen a similar problem before and can promptly provide a solution. As a fallback, scan popular pages
like StackOverflow and GitHub issues.
3. If there is no solution in sight, it means you'll have to go deeper. The good news is that you've located the
issue, so you can focus on the problematic instruction, abstracting away the rest of the model! The bad news is
that you'll have to venture into the source implementation of said instruction. In some cases, you might find an
issue with a reference implementation - don't abstain from opening an issue in the upstream repository.
In some cases, in dicussion with the 🤗 Transformers team, we might find that the fixing the mismatch is infeasible.
When the mismatch is very small in the output layers of the model (but potentially large in the hidden states), we
might decide to ignore it in favor of distributing the model. The `pt-to-tf` CLI mentioned above has a `--max-error`
flag to override the error message at weight conversion time.

View File

@ -0,0 +1,61 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention mechanisms
Most transformer models use full attention in the sense that the attention matrix is square. It can be a big
computational bottleneck when you have long texts. Longformer and reformer are models that try to be more efficient and
use a sparse version of the attention matrix to speed up training.
## LSH attention
[Reformer](#reformer) uses LSH attention. In the softmax(QK^t), only the biggest elements (in the softmax
dimension) of the matrix QK^t are going to give useful contributions. So for each query q in Q, we can consider only
the keys k in K that are close to q. A hash function is used to determine if q and k are close. The attention mask is
modified to mask the current token (except at the first position), because it will give a query and a key equal (so
very similar to each other). Since the hash can be a bit random, several hash functions are used in practice
(determined by a n_rounds parameter) and then are averaged together.
## Local attention
[Longformer](#longformer) uses local attention: often, the local context (e.g., what are the two tokens to the
left and right?) is enough to take action for a given token. Also, by stacking attention layers that have a small
window, the last layer will have a receptive field of more than just the tokens in the window, allowing them to build a
representation of the whole sentence.
Some preselected input tokens are also given global attention: for those few tokens, the attention matrix can access
all tokens and this process is symmetric: all other tokens have access to those specific tokens (on top of the ones in
their local window). This is shown in Figure 2d of the paper, see below for a sample attention mask:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
Using those attention matrices with less parameters then allows the model to have inputs having a bigger sequence
length.
## Other tricks
### Axial positional encodings
[Reformer](#reformer) uses axial positional encodings: in traditional transformer models, the positional encoding
E is a matrix of size \\(l\\) by \\(d\\), \\(l\\) being the sequence length and \\(d\\) the dimension of the
hidden state. If you have very long texts, this matrix can be huge and take way too much space on the GPU. To alleviate
that, axial positional encodings consist of factorizing that big matrix E in two smaller matrices E1 and E2, with
dimensions \\(l_{1} \times d_{1}\\) and \\(l_{2} \times d_{2}\\), such that \\(l_{1} \times l_{2} = l\\) and
\\(d_{1} + d_{2} = d\\) (with the product for the lengths, this ends up being way smaller). The embedding for time
step \\(j\\) in E is obtained by concatenating the embeddings for timestep \\(j \% l1\\) in E1 and \\(j // l1\\)
in E2.

View File

@ -8,11 +8,15 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Load pretrained instances with an AutoClass
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
<Tip>
@ -23,6 +27,7 @@ Remember, architecture refers to the skeleton of the model and checkpoints are t
In this tutorial, learn to:
* Load a pretrained tokenizer.
* Load a pretrained image processor
* Load a pretrained feature extractor.
* Load a pretrained processor.
* Load a pretrained model.
@ -49,9 +54,20 @@ Then tokenize your input as shown below:
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoImageProcessor
For vision tasks, an image processor processes the image into the correct input format.
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
## AutoFeatureExtractor
For audio and vision tasks, a feature extractor processes the audio signal or image into the correct input format.
For audio tasks, a feature extractor processes the audio signal the correct input format.
Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
@ -65,7 +81,7 @@ Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
## AutoProcessor
Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires a feature extractor to handle images and a tokenizer to handle text; a processor combines both of them.
Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires an image processor to handle images and a tokenizer to handle text; a processor combines both of them.
Load a processor with [`AutoProcessor.from_pretrained`]:
@ -95,7 +111,15 @@ Easily reuse the same checkpoint to load an architecture for a different task:
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
<Tip warning={true}>
For PyTorch models, the `from_pretrained()` method uses `torch.load()` which internally uses `pickle` and is known to be insecure. In general, never load a model that could have come from an untrusted source, or that could have been tampered with. This security risk is partially mitigated for public models hosted on the Hugging Face Hub, which are [scanned for malware](https://huggingface.co/docs/hub/security-malware) at each commit. See the [Hub documentation](https://huggingface.co/docs/hub/security) for best practices like [signed commit verification](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) with GPG.
TensorFlow and Flax checkpoints are not affected, and can be loaded within PyTorch architectures using the `from_tf` and `from_flax` kwargs for the `from_pretrained` method to circumvent this issue.
</Tip>
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, image processor, feature extractor and processor to preprocess a dataset for fine-tuning.
</pt>
<tf>
Finally, the `TFAutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`TFAutoModelForSequenceClassification.from_pretrained`]:
@ -114,6 +138,6 @@ Easily reuse the same checkpoint to load an architecture for a different task:
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generally, we recommend using the `AutoTokenizer` class and the `TFAutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
Generally, we recommend using the `AutoTokenizer` class and the `TFAutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, image processor, feature extractor and processor to preprocess a dataset for fine-tuning.
</tf>
</frameworkcontent>

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Benchmarks

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERTology
@ -21,6 +25,7 @@ There is a growing field of study concerned with investigating the inner working
- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
help people access the inner representations, mainly adapted from the great work of Paul Michel

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Instantiating a big model
@ -72,7 +76,7 @@ On top of the configuration of the model, we see three different weights files,
The main advantage of doing this for big models is that during step 2 of the workflow shown above, each shard of the checkpoint is loaded after the previous one, capping the memory usage in RAM to the model size plus the size of the biggest shard.
Beind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary:
Behind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary:
```py
>>> import json
@ -86,7 +90,7 @@ Beind the scenes, the index file is used to determine which keys are in the chec
dict_keys(['metadata', 'weight_map'])
```
The metadata just consists of the total size of the model for now. We plan to add several other informations in the future:
The metadata just consists of the total size of the model for now. We plan to add other information in the future:
```py
>>> index["metadata"]
@ -114,15 +118,6 @@ If you want to directly load such a sharded checkpoint inside a model without us
## Low memory loading
Sharded checkpoints reduce the memory usage during step 2 of the worflow mentioned above, but when loadin a pretrained model, why keep the random weights in memory? The option `low_cpu_mem_usage` will destroy the weights of the randomly initialized model, then progressively load the weights inside, then perform a random initialization for potential missing weights (if you are loadding a model with a newly initialized head for a fine-tuning task for instance).
It's very easy to use, just add `low_cpu_mem_usage=True` to your call to [`~PreTrainedModel.from_pretrained`]:
```py
from transformers import AutoModelForSequenceClas
model = AutoModel.from_pretrained("bert-base-cased", low_cpu_mem_usage=True)
```
This can be used in conjunction with a sharded checkpoint.
Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library.
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)

View File

@ -1,4 +1,8 @@
# Community
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Community
This page regroups resources around 🤗 Transformers developed by the community.
@ -18,7 +22,7 @@ This page regroups resources around 🤗 Transformers developed by the community
| [Fine-tune T5 for Classification and Multiple Choice](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | How to fine-tune T5 for classification and multiple choice tasks using a text-to-text format with PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) |
| [Fine-tune DialoGPT on New Datasets and Languages](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | How to fine-tune the DialoGPT model on a new dataset for open-dialog conversational chatbots | [Nathan Cooper](https://github.com/ncoop57) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) |
| [Long Sequence Modeling with Reformer](https://github.com/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | How to train on sequences as long as 500,000 tokens with Reformer | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) |
| [Fine-tune BART for Summarization](https://github.com/ohmeow/ohmeow_website/blob/master/_notebooks/2020-05-23-text-generation-with-blurr.ipynb) | How to fine-tune BART for summarization with fastai using blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/_notebooks/2020-05-23-text-generation-with-blurr.ipynb) |
| [Fine-tune BART for Summarization](https://github.com/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | How to fine-tune BART for summarization with fastai using blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) |
| [Fine-tune a pre-trained Transformer on anyone's tweets](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | How to generate tweets in the style of your favorite Twitter account by fine-tuning a GPT-2 model | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) |
| [Optimize 🤗 Hugging Face models with Weights & Biases](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | A complete tutorial showcasing W&B integration with Hugging Face | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) |
| [Pretrain Longformer](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | How to build a "long" version of existing pretrained models | [Iz Beltagy](https://beltagy.net) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) |

View File

@ -1,162 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Converting Tensorflow Checkpoints
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
that can be loaded using the `from_pretrained` methods of the library.
<Tip>
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
transformers >= 2.3.0 installation.
The documentation below reflects the **transformers-cli convert** command format.
</Tip>
## BERT
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\
`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model:
```bash
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models).
## ALBERT
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will
need to have TensorFlow and PyTorch installed.
Here is an example of the conversion process for the pre-trained `ALBERT Base` model:
```bash
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models).
## OpenAI GPT
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\
)
```bash
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
```
## OpenAI GPT-2
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2))
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
```
## Transformer-XL
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
```bash
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers-cli convert --model_type transfo_xl \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config TRANSFO_XL_CONFIG] \
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
```
## XLNet
Here is an example of the conversion process for a pre-trained XLNet model:
```bash
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
```
## XLM
Here is an example of the conversion process for a pre-trained XLM model:
```bash
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
```
## T5
Here is an example of the conversion process for a pre-trained T5 model:
```bash
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin
```

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Create a custom architecture
@ -17,7 +21,8 @@ An [`AutoClass`](model_doc/auto) automatically infers the model architecture and
- Load and customize a model configuration.
- Create a model architecture.
- Create a slow and fast tokenizer for text.
- Create a feature extractor for audio or image tasks.
- Create an image processor for vision tasks.
- Create a feature extractor for audio tasks.
- Create a processor for multimodal tasks.
## Configuration
@ -94,7 +99,7 @@ Once you are satisfied with your model configuration, you can save it with [`~Pr
To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
```
<Tip>
@ -114,7 +119,7 @@ Load your custom configuration attributes into the model:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
>>> model = DistilBertModel(my_config)
```
@ -244,21 +249,21 @@ By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable
</Tip>
## Feature Extractor
## Image Processor
A feature extractor processes audio or image inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`ImageFeatureExtractionMixin`] class for processing image features or the [`SequenceFeatureExtractor`] class for processing audio inputs.
An image processor processes vision inputs. It inherits from the base [`~image_processing_utils.ImageProcessingMixin`] class.
Depending on whether you are working on an audio or vision task, create a feature extractor associated with the model you're using. For example, create a default [`ViTFeatureExtractor`] if you are using [ViT](model_doc/vit) for image classification:
To use, create an image processor associated with the model you're using. For example, create a default [`ViTImageProcessor`] if you are using [ViT](model_doc/vit) for image classification:
```py
>>> from transformers import ViTFeatureExtractor
>>> from transformers import ViTImageProcessor
>>> vit_extractor = ViTFeatureExtractor()
>>> vit_extractor = ViTImageProcessor()
>>> print(vit_extractor)
ViTFeatureExtractor {
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
@ -276,21 +281,21 @@ ViTFeatureExtractor {
<Tip>
If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters.
If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default image processor parameters.
</Tip>
Modify any of the [`ViTFeatureExtractor`] parameters to create your custom feature extractor:
Modify any of the [`ViTImageProcessor`] parameters to create your custom image processor:
```py
>>> from transformers import ViTFeatureExtractor
>>> from transformers import ViTImageProcessor
>>> my_vit_extractor = ViTFeatureExtractor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTFeatureExtractor {
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,
@ -306,7 +311,11 @@ ViTFeatureExtractor {
}
```
For audio inputs, you can create a [`Wav2Vec2FeatureExtractor`] and customize the parameters in a similar way:
## Feature Extractor
A feature extractor processes audio inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`SequenceFeatureExtractor`] class for processing audio inputs.
To use, create a feature extractor associated with the model you're using. For example, create a default [`Wav2Vec2FeatureExtractor`] if you are using [Wav2Vec2](model_doc/wav2vec2) for audio classification:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
@ -324,9 +333,34 @@ Wav2Vec2FeatureExtractor {
}
```
<Tip>
If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters.
</Tip>
Modify any of the [`Wav2Vec2FeatureExtractor`] parameters to create your custom feature extractor:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False)
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": false,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 8000
}
```
## Processor
For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps a feature extractor and tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer.
For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer.
Create a feature extractor to handle the audio inputs:
@ -352,4 +386,4 @@ Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]:
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.
With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, image processor, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Sharing custom models
@ -21,7 +25,7 @@ with the community (with the code it relies on) so that anyone can use it, even
Transformers library.
We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the
[timm library](https://github.com/rwightman/pytorch-image-models/tree/master/timm) into a [`PreTrainedModel`].
[timm library](https://github.com/rwightman/pytorch-image-models) into a [`PreTrainedModel`].
## Writing a custom configuration
@ -55,9 +59,9 @@ class ResnetConfig(PretrainedConfig):
**kwargs,
):
if block_type not in ["basic", "bottleneck"]:
raise ValueError(f"`block` must be 'basic' or bottleneck', got {block}.")
raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
if stem_type not in ["", "deep", "deep-tiered"]:
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {block}.")
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
self.block_type = block_type
self.layers = layers
@ -146,6 +150,9 @@ class ResnetModel(PreTrainedModel):
For the model that will classify images, we just change the forward method:
```py
import torch
class ResnetModelForImageClassification(PreTrainedModel):
config_class = ResnetConfig
@ -289,7 +296,7 @@ from huggingface_hub import notebook_login
notebook_login()
```
You can then push to to your own namespace (or an organization you are a member of) like this:
You can then push to your own namespace (or an organization you are a member of) like this:
```py
resnet50d.push_to_hub("custom-resnet50d")

View File

@ -0,0 +1,789 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Tools and Prompts
<Tip>
If you are not aware of what tools and agents are in the context of transformers, we recommend you read the
[Transformers Agents](transformers_agents) page first.
</Tip>
<Tip warning={true}>
Transformers Agent is an experimental API that is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
Creating and using custom tools and prompts is paramount to empowering the agent and having it perform new tasks.
In this guide we'll take a look at:
- How to customize the prompt
- How to use custom tools
- How to create custom tools
## Customizing the prompt
As explained in [Transformers Agents](transformers_agents) agents can run in [`~Agent.run`] and [`~Agent.chat`] mode.
Both the `run` and `chat` modes underlie the same logic. The language model powering the agent is conditioned on a long
prompt and completes the prompt by generating the next tokens until the stop token is reached.
The only difference between the two modes is that during the `chat` mode the prompt is extended with
previous user inputs and model generations. This allows the agent to have access to past interactions,
seemingly giving the agent some kind of memory.
### Structure of the prompt
Let's take a closer look at how the prompt is structured to understand how it can be best customized.
The prompt is structured broadly into four parts.
- 1. Introduction: how the agent should behave, explanation of the concept of tools.
- 2. Description of all the tools. This is defined by a `<<all_tools>>` token that is dynamically replaced at runtime with the tools defined/chosen by the user.
- 3. A set of examples of tasks and their solution
- 4. Current example, and request for solution.
To better understand each part, let's look at a shortened version of how the `run` prompt can look like:
````text
I will ask you to perform a task, your job is to come up with a series of simple commands in Python that will perform the task.
[...]
You can print intermediate results if it makes sense to do so.
Tools:
- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question.
- image_captioner: This is a tool that generates a description of an image. It takes an input named `image` which should be the image to the caption and returns a text that contains the description in English.
[...]
Task: "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French."
I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
Answer:
```py
translated_question = translator(question=question, src_lang="French", tgt_lang="English")
print(f"The translated question is {translated_question}.")
answer = image_qa(image=image, question=translated_question)
print(f"The answer is {answer}")
```
Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner."
I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
Answer:
```py
answer = document_qa(document, question="What is the oldest person?")
print(f"The answer is {answer}.")
image = image_generator("A banner showing " + answer)
```
[...]
Task: "Draw me a picture of rivers and lakes"
I will use the following
````
The introduction (the text before *"Tools:"*) explains precisely how the model shall behave and what it should do.
This part most likely does not need to be customized as the agent shall always behave the same way.
The second part (the bullet points below *"Tools"*) is dynamically added upon calling `run` or `chat`. There are
exactly as many bullet points as there are tools in `agent.toolbox` and each bullet point consists of the name
and description of the tool:
```text
- <tool.name>: <tool.description>
```
Let's verify this quickly by loading the document_qa tool and printing out the name and description.
```py
from transformers import load_tool
document_qa = load_tool("document-question-answering")
print(f"- {document_qa.name}: {document_qa.description}")
```
which gives:
```text
- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question.
```
We can see that the tool name is short and precise. The description includes two parts, the first explaining
what the tool does and the second states what input arguments and return values are expected.
A good tool name and tool description are very important for the agent to correctly use it. Note that the only
information the agent has about the tool is its name and description, so one should make sure that both
are precisely written and match the style of the existing tools in the toolbox. In particular make sure the description
mentions all the arguments expected by name in code-style, along with the expected type and a description of what they
are.
<Tip>
Check the naming and description of the curated Transformers tools to better understand what name and
description a tool is expected to have. You can see all tools with the [`Agent.toolbox`] property.
</Tip>
The third part includes a set of curated examples that show the agent exactly what code it should produce
for what kind of user request. The large language models empowering the agent are extremely good at
recognizing patterns in a prompt and repeating the pattern with new data. Therefore, it is very important
that the examples are written in a way that maximizes the likelihood of the agent to generating correct,
executable code in practice.
Let's have a look at one example:
````text
Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner."
I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
Answer:
```py
answer = document_qa(document, question="What is the oldest person?")
print(f"The answer is {answer}.")
image = image_generator("A banner showing " + answer)
```
````
The pattern the model is prompted to repeat has three parts: The task statement, the agent's explanation of
what it intends to do, and finally the generated code. Every example that is part of the prompt has this exact
pattern, thus making sure that the agent will reproduce exactly the same pattern when generating new tokens.
The prompt examples are curated by the Transformers team and rigorously evaluated on a set of
[problem statements](https://github.com/huggingface/transformers/blob/main/src/transformers/tools/evaluate_agent.py)
to ensure that the agent's prompt is as good as possible to solve real use cases of the agent.
The final part of the prompt corresponds to:
```text
Task: "Draw me a picture of rivers and lakes"
I will use the following
```
is a final and unfinished example that the agent is tasked to complete. The unfinished example
is dynamically created based on the actual user input. For the above example, the user ran:
```py
agent.run("Draw me a picture of rivers and lakes")
```
The user input - *a.k.a* the task: *"Draw me a picture of rivers and lakes"* is cast into the
prompt template: "Task: <task> \n\n I will use the following". This sentence makes up the final lines of the
prompt the agent is conditioned on, therefore strongly influencing the agent to finish the example
exactly in the same way it was previously done in the examples.
Without going into too much detail, the chat template has the same prompt structure with the
examples having a slightly different style, *e.g.*:
````text
[...]
=====
Human: Answer the question in the variable `question` about the image stored in the variable `image`.
Assistant: I will use the tool `image_qa` to answer the question on the input image.
```py
answer = image_qa(text=question, image=image)
print(f"The answer is {answer}")
```
Human: I tried this code, it worked but didn't give me a good result. The question is in French
Assistant: In this case, the question needs to be translated first. I will use the tool `translator` to do this.
```py
translated_question = translator(question=question, src_lang="French", tgt_lang="English")
print(f"The translated question is {translated_question}.")
answer = image_qa(text=translated_question, image=image)
print(f"The answer is {answer}")
```
=====
[...]
````
Contrary, to the examples of the `run` prompt, each `chat` prompt example has one or more exchanges between the
*Human* and the *Assistant*. Every exchange is structured similarly to the example of the `run` prompt.
The user's input is appended to behind *Human:* and the agent is prompted to first generate what needs to be done
before generating code. An exchange can be based on previous exchanges, therefore allowing the user to refer
to past exchanges as is done *e.g.* above by the user's input of "I tried **this** code" refers to the
previously generated code of the agent.
Upon running `.chat`, the user's input or *task* is cast into an unfinished example of the form:
```text
Human: <user-input>\n\nAssistant:
```
which the agent completes. Contrary to the `run` command, the `chat` command then appends the completed example
to the prompt, thus giving the agent more context for the next `chat` turn.
Great now that we know how the prompt is structured, let's see how we can customize it!
### Writing good user inputs
While large language models are getting better and better at understanding users' intentions, it helps
enormously to be as precise as possible to help the agent pick the correct task. What does it mean to be
as precise as possible?
The agent sees a list of tool names and their description in its prompt. The more tools are added the
more difficult it becomes for the agent to choose the correct tool and it's even more difficult to choose
the correct sequences of tools to run. Let's look at a common failure case, here we will only return
the code to analyze it.
```py
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.run("Show me a tree", return_code=True)
```
gives:
```text
==Explanation from the agent==
I will use the following tool: `image_segmenter` to create a segmentation mask for the image.
==Code generated by the agent==
mask = image_segmenter(image, prompt="tree")
```
which is probably not what we wanted. Instead, it is more likely that we want an image of a tree to be generated.
To steer the agent more towards using a specific tool it can therefore be very helpful to use important keywords that
are present in the tool's name and description. Let's have a look.
```py
agent.toolbox["image_generator"].description
```
```text
'This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which contains the image description and outputs an image.
```
The name and description make use of the keywords "image", "prompt", "create" and "generate". Using these words will most likely work better here. Let's refine our prompt a bit.
```py
agent.run("Create an image of a tree", return_code=True)
```
gives:
```text
==Explanation from the agent==
I will use the following tool `image_generator` to generate an image of a tree.
==Code generated by the agent==
image = image_generator(prompt="tree")
```
Much better! That looks more like what we want. In short, when you notice that the agent struggles to
correctly map your task to the correct tools, try looking up the most pertinent keywords of the tool's name
and description and try refining your task request with it.
### Customizing the tool descriptions
As we've seen before the agent has access to each of the tools' names and descriptions. The base tools
should have very precise names and descriptions, however, you might find that it could help to change the
the description or name of a tool for your specific use case. This might become especially important
when you've added multiple tools that are very similar or if you want to use your agent only for a certain
domain, *e.g.* image generation and transformations.
A common problem is that the agent confuses image generation with image transformation/modification when
used a lot for image generation tasks, *e.g.*
```py
agent.run("Make an image of a house and a car", return_code=True)
```
returns
```text
==Explanation from the agent==
I will use the following tools `image_generator` to generate an image of a house and `image_transformer` to transform the image of a car into the image of a house.
==Code generated by the agent==
house_image = image_generator(prompt="A house")
car_image = image_generator(prompt="A car")
house_car_image = image_transformer(image=car_image, prompt="A house")
```
which is probably not exactly what we want here. It seems like the agent has a difficult time
to understand the difference between `image_generator` and `image_transformer` and often uses the two together.
We can help the agent here by changing the tool name and description of `image_transformer`. Let's instead call it `modifier`
to disassociate it a bit from "image" and "prompt":
```py
agent.toolbox["modifier"] = agent.toolbox.pop("image_transformer")
agent.toolbox["modifier"].description = agent.toolbox["modifier"].description.replace(
"transforms an image according to a prompt", "modifies an image"
)
```
Now "modify" is a strong cue to use the new image processor which should help with the above prompt. Let's run it again.
```py
agent.run("Make an image of a house and a car", return_code=True)
```
Now we're getting:
```text
==Explanation from the agent==
I will use the following tools: `image_generator` to generate an image of a house, then `image_generator` to generate an image of a car.
==Code generated by the agent==
house_image = image_generator(prompt="A house")
car_image = image_generator(prompt="A car")
```
which is definitely closer to what we had in mind! However, we want to have both the house and car in the same image. Steering the task more toward single image generation should help:
```py
agent.run("Create image: 'A house and car'", return_code=True)
```
```text
==Explanation from the agent==
I will use the following tool: `image_generator` to generate an image.
==Code generated by the agent==
image = image_generator(prompt="A house and car")
```
<Tip warning={true}>
Agents are still brittle for many use cases, especially when it comes to
slightly more complex use cases like generating an image of multiple objects.
Both the agent itself and the underlying prompt will be further improved in the coming
months making sure that agents become more robust to a variety of user inputs.
</Tip>
### Customizing the whole prompt
To give the user maximum flexibility, the whole prompt template as explained in [above](#structure-of-the-prompt)
can be overwritten by the user. In this case make sure that your custom prompt includes an introduction section,
a tool section, an example section, and an unfinished example section. If you want to overwrite the `run` prompt template,
you can do as follows:
```py
template = """ [...] """
agent = HfAgent(your_endpoint, run_prompt_template=template)
```
<Tip warning={true}>
Please make sure to have the `<<all_tools>>` string and the `<<prompt>>` defined somewhere in the `template` so that the agent can be aware
of the tools, it has available to it as well as correctly insert the user's prompt.
</Tip>
Similarly, one can overwrite the `chat` prompt template. Note that the `chat` mode always uses the following format for the exchanges:
```text
Human: <<task>>
Assistant:
```
Therefore it is important that the examples of the custom `chat` prompt template also make use of this format.
You can overwrite the `chat` template at instantiation as follows.
```
template = """ [...] """
agent = HfAgent(url_endpoint=your_endpoint, chat_prompt_template=template)
```
<Tip warning={true}>
Please make sure to have the `<<all_tools>>` string defined somewhere in the `template` so that the agent can be aware
of the tools, it has available to it.
</Tip>
In both cases, you can pass a repo ID instead of the prompt template if you would like to use a template hosted by someone in the community. The default prompts live in [this repo](https://huggingface.co/datasets/huggingface-tools/default-prompts) as an example.
To upload your custom prompt on a repo on the Hub and share it with the community just make sure:
- to use a dataset repository
- to put the prompt template for the `run` command in a file named `run_prompt_template.txt`
- to put the prompt template for the `chat` command in a file named `chat_prompt_template.txt`
## Using custom tools
In this section, we'll be leveraging two existing custom tools that are specific to image generation:
- We replace [huggingface-tools/image-transformation](https://huggingface.co/spaces/huggingface-tools/image-transformation),
with [diffusers/controlnet-canny-tool](https://huggingface.co/spaces/diffusers/controlnet-canny-tool)
to allow for more image modifications.
- We add a new tool for image upscaling to the default toolbox:
[diffusers/latent-upscaler-tool](https://huggingface.co/spaces/diffusers/latent-upscaler-tool) replace the existing image-transformation tool.
We'll start by loading the custom tools with the convenient [`load_tool`] function:
```py
from transformers import load_tool
controlnet_transformer = load_tool("diffusers/controlnet-canny-tool")
upscaler = load_tool("diffusers/latent-upscaler-tool")
```
Upon adding custom tools to an agent, the tools' descriptions and names are automatically
included in the agents' prompts. Thus, it is imperative that custom tools have
a well-written description and name in order for the agent to understand how to use them.
Let's take a look at the description and name of `controlnet_transformer`:
```py
print(f"Description: '{controlnet_transformer.description}'")
print(f"Name: '{controlnet_transformer.name}'")
```
gives
```text
Description: 'This is a tool that transforms an image with ControlNet according to a prompt.
It takes two inputs: `image`, which should be the image to transform, and `prompt`, which should be the prompt to use to change it. It returns the modified image.'
Name: 'image_transformer'
```
The name and description are accurate and fit the style of the [curated set of tools](./transformers_agents#a-curated-set-of-tools).
Next, let's instantiate an agent with `controlnet_transformer` and `upscaler`:
```py
tools = [controlnet_transformer, upscaler]
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools)
```
This command should give you the following info:
```text
image_transformer has been replaced by <transformers_modules.diffusers.controlnet-canny-tool.bd76182c7777eba9612fc03c0
8718a60c0aa6312.image_transformation.ControlNetTransformationTool object at 0x7f1d3bfa3a00> as provided in `additional_tools`
```
The set of curated tools already has an `image_transformer` tool which is hereby replaced with our custom tool.
<Tip>
Overwriting existing tools can be beneficial if we want to use a custom tool exactly for the same task as an existing tool
because the agent is well-versed in using the specific task. Beware that the custom tool should follow the exact same API
as the overwritten tool in this case, or you should adapt the prompt template to make sure all examples using that
tool are updated.
</Tip>
The upscaler tool was given the name `image_upscaler` which is not yet present in the default toolbox and is therefore simply added to the list of tools.
You can always have a look at the toolbox that is currently available to the agent via the `agent.toolbox` attribute:
```py
print("\n".join([f"- {a}" for a in agent.toolbox.keys()]))
```
```text
- document_qa
- image_captioner
- image_qa
- image_segmenter
- transcriber
- summarizer
- text_classifier
- text_qa
- text_reader
- translator
- image_transformer
- text_downloader
- image_generator
- video_generator
- image_upscaler
```
Note how `image_upscaler` is now part of the agents' toolbox.
Let's now try out the new tools! We will re-use the image we generated in [Transformers Agents Quickstart](./transformers_agents#single-execution-run).
```py
from diffusers.utils import load_image
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png"
)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
Let's transform the image into a beautiful winter landscape:
```py
image = agent.run("Transform the image: 'A frozen lake and snowy forest'", image=image)
```
```text
==Explanation from the agent==
I will use the following tool: `image_transformer` to transform the image.
==Code generated by the agent==
image = image_transformer(image, prompt="A frozen lake and snowy forest")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter.png" width=200>
The new image processing tool is based on ControlNet which can make very strong modifications to the image.
By default the image processing tool returns an image of size 512x512 pixels. Let's see if we can upscale it.
```py
image = agent.run("Upscale the image", image)
```
```text
==Explanation from the agent==
I will use the following tool: `image_upscaler` to upscale the image.
==Code generated by the agent==
upscaled_image = image_upscaler(image)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter_upscale.png" width=400>
The agent automatically mapped our prompt "Upscale the image" to the just added upscaler tool purely based on the description and name of the upscaler tool
and was able to correctly run it.
Next, let's have a look at how you can create a new custom tool.
### Adding new tools
In this section, we show how to create a new tool that can be added to the agent.
#### Creating a new tool
We'll first start by creating a tool. We'll add the not-so-useful yet fun task of fetching the model on the Hugging Face
Hub with the most downloads for a given task.
We can do that with the following code:
```python
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
For the task `text-classification`, this returns `'facebook/bart-large-mnli'`, for `translation` it returns `'t5-base`.
How do we convert this to a tool that the agent can leverage? All tools depend on the superclass `Tool` that holds the
main attributes necessary. We'll create a class that inherits from it:
```python
from transformers import Tool
class HFModelDownloadsTool(Tool):
pass
```
This class has a few needs:
- An attribute `name`, which corresponds to the name of the tool itself. To be in tune with other tools which have a
performative name, we'll name it `model_download_counter`.
- An attribute `description`, which will be used to populate the prompt of the agent.
- `inputs` and `outputs` attributes. Defining this will help the python interpreter make educated choices about types,
and will allow for a gradio-demo to be spawned when we push our tool to the Hub. They're both a list of expected
values, which can be `text`, `image`, or `audio`.
- A `__call__` method which contains the inference code. This is the code we've played with above!
Here's what our class looks like now:
```python
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = (
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
"It takes the name of the category (such as text-classification, depth-estimation, etc), and "
"returns the name of the checkpoint."
)
inputs = ["text"]
outputs = ["text"]
def __call__(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
We now have our tool handy. Save it in a file and import it from your main script. Let's name this file
`model_downloads.py`, so the resulting import code looks like this:
```python
from model_downloads import HFModelDownloadsTool
tool = HFModelDownloadsTool()
```
In order to let others benefit from it and for simpler initialization, we recommend pushing it to the Hub under your
namespace. To do so, just call `push_to_hub` on the `tool` variable:
```python
tool.push_to_hub("hf-model-downloads")
```
You now have your code on the Hub! Let's take a look at the final step, which is to have the agent use it.
#### Having the agent use the tool
We now have our tool that lives on the Hub which can be instantiated as such (change the user name for your tool):
```python
from transformers import load_tool
tool = load_tool("lysandre/hf-model-downloads")
```
In order to use it in the agent, simply pass it in the `additional_tools` parameter of the agent initialization method:
```python
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool])
agent.run(
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)
```
which outputs the following:
```text
==Code generated by the agent==
model = model_download_counter(task="text-to-video")
print(f"The model with the most downloads is {model}.")
audio_model = text_reader(model)
==Result==
The model with the most downloads is damo-vilab/text-to-video-ms-1.7b.
```
and generates the following audio.
| **Audio** |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
<Tip>
Depending on the LLM, some are quite brittle and require very exact prompts in order to work well. Having a well-defined
name and description of the tool is paramount to having it be leveraged by the agent.
</Tip>
### Replacing existing tools
Replacing existing tools can be done simply by assigning a new item to the agent's toolbox. Here's how one would do so:
```python
from transformers import HfAgent, load_tool
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.toolbox["image-transformation"] = load_tool("diffusers/controlnet-canny-tool")
```
<Tip>
Beware when replacing tools with others! This will also adjust the agent's prompt. This can be good if you have a better
prompt suited for the task, but it can also result in your tool being selected way more than others or for other
tools to be selected instead of the one you have defined.
</Tip>
## Leveraging gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces to be designed with it.
We offer support for `gradio_tools` by using the `Tool.from_gradio` method. For example, we want to take
advantage of the `StableDiffusionPromptGeneratorTool` tool offered in the `gradio-tools` toolkit so as to
improve our prompts and generate better images.
We first import the tool from `gradio_tools` and instantiate it:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
gradio_tool = StableDiffusionPromptGeneratorTool()
```
We pass that instance to the `Tool.from_gradio` method:
```python
from transformers import Tool
tool = Tool.from_gradio(gradio_tool)
```
Now we can manage it exactly as we would a usual custom tool. We leverage it to improve our prompt
` a rabbit wearing a space suit`:
```python
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool])
agent.run("Generate an image of the `prompt` after improving it.", prompt="A rabbit wearing a space suit")
```
The model adequately leverages the tool:
```text
==Explanation from the agent==
I will use the following tools: `StableDiffusionPromptGenerator` to improve the prompt, then `image_generator` to generate an image according to the improved prompt.
==Code generated by the agent==
improved_prompt = StableDiffusionPromptGenerator(prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(improved_prompt)
```
Before finally generating the image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
<Tip warning={true}>
gradio-tools requires *textual* inputs and outputs, even when working with different modalities. This implementation
works with image and audio objects. The two are currently incompatible, but will rapidly become compatible as we
work to improve the support.
</Tip>
## Future compatibility with Langchain
We love Langchain and think it has a very compelling suite of tools. In order to handle these tools,
Langchain requires *textual* inputs and outputs, even when working with different modalities.
This is often the serialized version (i.e., saved to disk) of the objects.
This difference means that multi-modality isn't handled between transformers-agents and langchain.
We aim for this limitation to be resolved in future versions, and welcome any help from avid langchain
users to help us achieve this compatibility.
We would love to have better support. If you would like to help, please
[open an issue](https://github.com/huggingface/transformers/issues/new) and share what you have in mind.

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Debugging
@ -77,7 +81,7 @@ to the normal command line arguments, or pass `debug="underflow_overflow"` when
If you're using your own training loop or another Trainer you can accomplish the same with:
```python
from .debug_utils import DebugUnderflowOverflow
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
@ -271,12 +275,12 @@ Additionally, if you're instantiating the debugger in your own code, you can adj
its default, e.g.:
```python
from .debug_utils import DebugUnderflowOverflow
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```
### Specific batch absolute mix and max value tracing
### Specific batch absolute min and max value tracing
The same debugging class can be used for per-batch tracing with the underflow/overflow detection feature turned off.

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Use tokenizers from 🤗 Tokenizers

View File

@ -0,0 +1,386 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text generation strategies
Text generation is essential to many NLP tasks, such as open-ended text generation, summarization, translation, and
more. It also plays a role in a variety of mixed-modality applications that have text as an output like speech-to-text
and vision-to-text. Some of the models that can generate text include
GPT2, XLNet, OpenAI GPT, CTRL, TransformerXL, XLM, Bart, T5, GIT, Whisper.
Check out a few examples that use [`~transformers.generation_utils.GenerationMixin.generate`] method to produce
text outputs for different tasks:
* [Text summarization](./tasks/summarization#inference)
* [Image captioning](./model_doc/git#transformers.GitForCausalLM.forward.example)
* [Audio transcription](./model_doc/whisper#transformers.WhisperForConditionalGeneration.forward.example)
Note that the inputs to the generate method depend on the model's modality. They are returned by the model's preprocessor
class, such as AutoTokenizer or AutoProcessor. If a model's preprocessor creates more than one kind of input, pass all
the inputs to generate(). You can learn more about the individual model's preprocessor in the corresponding model's documentation.
The process of selecting output tokens to generate text is known as decoding, and you can customize the decoding strategy
that the `generate()` method will use. Modifying a decoding strategy does not change the values of any trainable parameters.
However, it can have a noticeable impact on the quality of the generated output. It can help reduce repetition in the text
and make it more coherent.
This guide describes:
* default generation configuration
* common decoding strategies and their main parameters
* saving and sharing custom generation configurations with your fine-tuned model on 🤗 Hub
## Default text generation configuration
A decoding strategy for a model is defined in its generation configuration. When using pre-trained models for inference
within a [`pipeline`], the models call the `PreTrainedModel.generate()` method that applies a default generation
configuration under the hood. The default configuration is also used when no custom configuration has been saved with
the model.
When you load a model explicitly, you can inspect the generation configuration that comes with it through
`model.generation_config`:
```python
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model.generation_config
GenerationConfig {
"_from_model_config": true,
"bos_token_id": 50256,
"eos_token_id": 50256,
"transformers_version": "4.26.0.dev0"
}
```
Printing out the `model.generation_config` reveals only the values that are different from the default generation
configuration, and does not list any of the default values.
The default generation configuration limits the size of the output combined with the input prompt to a maximum of 20
tokens to avoid running into resource limitations. The default decoding strategy is greedy search, which is the simplest decoding strategy that picks a token with the highest probability as the next token. For many tasks
and small output sizes this works well. However, when used to generate longer outputs, greedy search can start
producing highly repetitive results.
## Customize text generation
You can override any `generation_config` by passing the parameters and their values directly to the [`generate`] method:
```python
>>> my_model.generate(**inputs, num_beams=4, do_sample=True)
```
Even if the default decoding strategy mostly works for your task, you can still tweak a few things. Some of the
commonly adjusted parameters include:
- `max_new_tokens`: the maximum number of tokens to generate. In other words, the size of the output sequence, not
including the tokens in the prompt.
- `num_beams`: by specifying a number of beams higher than 1, you are effectively switching from greedy search to
beam search. This strategy evaluates several hypotheses at each time step and eventually chooses the hypothesis that
has the overall highest probability for the entire sequence. This has the advantage of identifying high-probability
sequences that start with a lower probability initial tokens and would've been ignored by the greedy search.
- `do_sample`: if set to `True`, this parameter enables decoding strategies such as multinomial sampling, beam-search
multinomial sampling, Top-K sampling and Top-p sampling. All these strategies select the next token from the probability
distribution over the entire vocabulary with various strategy-specific adjustments.
- `num_return_sequences`: the number of sequence candidates to return for each input. This options is only available for
the decoding strategies that support multiple sequence candidates, e.g. variations of beam search and sampling. Decoding
strategies like greedy search and contrastive search return a single output sequence.
## Save a custom decoding strategy with your model
If you would like to share your fine-tuned model with a specific generation configuration, you can:
* Create a [`GenerationConfig`] class instance
* Specify the decoding strategy parameters
* Save your generation configuration with [`GenerationConfig.save_pretrained`], making sure to leave its `config_file_name` argument empty
* Set `push_to_hub` to `True` to upload your config to the model's repo
```python
>>> from transformers import AutoModelForCausalLM, GenerationConfig
>>> model = AutoModelForCausalLM.from_pretrained("my_account/my_model")
>>> generation_config = GenerationConfig(
... max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id
... )
>>> generation_config.save_pretrained("my_account/my_model", push_to_hub=True)
```
You can also store several generation configurations in a single directory, making use of the `config_file_name`
argument in [`GenerationConfig.save_pretrained`]. You can later instantiate them with [`GenerationConfig.from_pretrained`]. This is useful if you want to
store several generation configurations for a single model (e.g. one for creative text generation with sampling, and
one for summarization with beam search). You must have the right Hub permissions to add configuration files to a model.
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
>>> translation_generation_config = GenerationConfig(
... num_beams=4,
... early_stopping=True,
... decoder_start_token_id=0,
... eos_token_id=model.config.eos_token_id,
... pad_token=model.config.pad_token_id,
... )
>>> translation_generation_config.save_pretrained("t5-small", "translation_generation_config.json", push_to_hub=True)
>>> # You could then use the named generation config file to parameterize generation
>>> generation_config = GenerationConfig.from_pretrained("t5-small", "translation_generation_config.json")
>>> inputs = tokenizer("translate English to French: Configuration files are easy to use!", return_tensors="pt")
>>> outputs = model.generate(**inputs, generation_config=generation_config)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Les fichiers de configuration sont faciles à utiliser !']
```
## Streaming
The `generate()` supports streaming, through its `streamer` input. The `streamer` input is compatible any instance
from a class that has the following methods: `put()` and `end()`. Internally, `put()` is used to push new tokens and
`end()` is used to flag the end of text generation.
<Tip warning={true}>
The API for the streamer classes is still under development and may change in the future.
</Tip>
In practice, you can craft your own streaming class for all sorts of purposes! We also have basic streaming classes
ready for you to use. For example, you can use the [`TextStreamer`] class to stream the output of `generate()` into
your screen, one word at a time:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
>>> tok = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt")
>>> streamer = TextStreamer(tok)
>>> # Despite returning the usual output, the streamer will also print the generated text to stdout.
>>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20)
An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
```
## Decoding strategies
Certain combinations of the `generate()` parameters, and ultimately `generation_config`, can be used to enable specific
decoding strategies. If you are new to this concept, we recommend reading [this blog post that illustrates how common decoding strategies work](https://huggingface.co/blog/how-to-generate).
Here, we'll show some of the parameters that control the decoding strategies and illustrate how you can use them.
### Greedy Search
[`generate`] uses greedy search decoding by default so you don't have to pass any parameters to enable it. This means the parameters `num_beams` is set to 1 and `do_sample=False`.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> prompt = "I look forward to"
>>> checkpoint = "distilgpt2"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['I look forward to seeing you all again!\n\n\n\n\n\n\n\n\n\n\n']
```
### Contrastive search
The contrastive search decoding strategy was proposed in the 2022 paper [A Contrastive Framework for Neural Text Generation](https://arxiv.org/abs/2202.06417).
It demonstrates superior results for generating non-repetitive yet coherent long outputs. To learn how contrastive search
works, check out [this blog post](https://huggingface.co/blog/introducing-csearch).
The two main parameters that enable and control the behavior of contrastive search are `penalty_alpha` and `top_k`:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> checkpoint = "gpt2-large"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> prompt = "Hugging Face Company is"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> outputs = model.generate(**inputs, penalty_alpha=0.6, top_k=4, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Hugging Face Company is a family owned and operated business. \
We pride ourselves on being the best in the business and our customer service is second to none.\
\n\nIf you have any questions about our products or services, feel free to contact us at any time.\
We look forward to hearing from you!']
```
### Multinomial sampling
As opposed to greedy search that always chooses a token with the highest probability as the
next token, multinomial sampling (also called ancestral sampling) randomly selects the next token based on the probability distribution over the entire
vocabulary given by the model. Every token with a non-zero probability has a chance of being selected, thus reducing the
risk of repetition.
To enable multinomial sampling set `do_sample=True` and `num_beams=1`.
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> checkpoint = "gpt2-large"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> prompt = "Today was an amazing day because"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> outputs = model.generate(**inputs, do_sample=True, num_beams=1, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today was an amazing day because we are now in the final stages of our trip to New York City which was very tough. \
It is a difficult schedule and a challenging part of the year but still worth it. I have been taking things easier and \
I feel stronger and more motivated to be out there on their tour. Hopefully, that experience is going to help them with \
their upcoming events which are currently scheduled in Australia.\n\nWe love that they are here. They want to make a \
name for themselves and become famous for what they']
```
### Beam-search decoding
Unlike greedy search, beam-search decoding keeps several hypotheses at each time step and eventually chooses
the hypothesis that has the overall highest probability for the entire sequence. This has the advantage of identifying high-probability
sequences that start with lower probability initial tokens and would've been ignored by the greedy search.
To enable this decoding strategy, specify the `num_beams` (aka number of hypotheses to keep track of) that is greater than 1.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> prompt = "It is astonishing how one can"
>>> checkpoint = "gpt2-medium"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs, num_beams=5, max_new_tokens=50)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['It is astonishing how one can have such a profound impact on the lives of so many people in such a short period of \
time."\n\nHe added: "I am very proud of the work I have been able to do in the last few years.\n\n"I have']
```
### Beam-search multinomial sampling
As the name implies, this decoding strategy combines beam search with multinomial sampling. You need to specify
the `num_beams` greater than 1, and set `do_sample=True` to use this decoding strategy.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> prompt = "translate English to German: The house is wonderful."
>>> checkpoint = "t5-small"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs, num_beams=5, do_sample=True)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Das Haus ist wunderbar.'
```
### Diverse beam search decoding
The diverse beam search decoding strategy is an extension of the beam search strategy that allows for generating a more diverse
set of beam sequences to choose from. To learn how it works, refer to [Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf).
This approach has three main parameters: `num_beams`, `num_beam_groups`, and `diversity_penalty`.
The diversily penalty ensures the outputs are distinct across groups, and beam search is used within each group.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> checkpoint = "google/pegasus-xsum"
>>> prompt = "The Permaculture Design Principles are a set of universal design principles \
>>> that can be applied to any location, climate and culture, and they allow us to design \
>>> the most efficient and sustainable human habitation and food production systems. \
>>> Permaculture is a design system that encompasses a wide variety of disciplines, such \
>>> as ecology, landscape design, environmental science and energy conservation, and the \
>>> Permaculture design principles are drawn from these various disciplines. Each individual \
>>> design principle itself embodies a complete conceptual framework based on sound \
>>> scientific principles. When we bring all these separate principles together, we can \
>>> create a design system that both looks at whole systems, the parts that these systems \
>>> consist of, and how those parts interact with each other to create a complex, dynamic, \
>>> living system. Each design principle serves as a tool that allows us to integrate all \
>>> the separate parts of a design, referred to as elements, into a functional, synergistic, \
>>> whole system, where the elements harmoniously interact and work together in the most \
>>> efficient way possible."
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs, num_beams=5, num_beam_groups=5, max_new_tokens=30, diversity_penalty=1.0)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'The aim of this project is to create a new type of living system, one that is more sustainable and efficient than the current one.'
```
This guide illustrates the main parameters that enable various decoding strategies. More advanced parameters exist for the
[`generate`] method, which gives you even further control over the [`generate`] method's behavior.
For the complete list of the available parameters, refer to the [API documentation](./main_classes/text_generation.md).
### Assisted Decoding
Assisted decoding is a modification of the decoding strategies above that uses an assistant model with the same
tokenizer (ideally a much smaller model) to greedily generate a few candidate tokens. The main model then validates
the candidate tokens in a single forward pass, which speeds up the decoding process. Currently, only greedy search
and sampling are supported with assisted decoding, and doesn't support batched inputs. To learn more about assisted
decoding, check [this blog post](https://huggingface.co/blog/assisted-generation).
To enable assisted decoding, set the `assistant_model` argument with a model.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> prompt = "Alice and Bob"
>>> checkpoint = "EleutherAI/pythia-1.4b-deduped"
>>> assistant_checkpoint = "EleutherAI/pythia-160m-deduped"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> assistant_model = AutoModelForCausalLM.from_pretrained(assistant_checkpoint)
>>> outputs = model.generate(**inputs, assistant_model=assistant_model)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
```
When using assisted decoding with sampling methods, you can use the `temperarure` argument to control the randomness
just like in multinomial sampling. However, in assisted decoding, reducing the temperature will help improving latency.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> prompt = "Alice and Bob"
>>> checkpoint = "EleutherAI/pythia-1.4b-deduped"
>>> assistant_checkpoint = "EleutherAI/pythia-160m-deduped"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> assistant_model = AutoModelForCausalLM.from_pretrained(assistant_checkpoint)
>>> outputs = model.generate(**inputs, assistant_model=assistant_model, do_sample=True, temperature=0.5)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Alice and Bob are sitting on the sofa. Alice says, 'I'm going to my room"]
```

491
docs/source/en/glossary.md Normal file
View File

@ -0,0 +1,491 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Glossary
This glossary defines general machine learning and 🤗 Transformers terms to help you better understand the
documentation.
## A
### attention mask
The attention mask is an optional argument used when batching sequences together.
<Youtube id="M6adb1j2jPI"/>
This argument indicates to the model which tokens should be attended to, and which should not.
For example, consider these two sequences:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
The encoded versions have different lengths:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
Therefore, we can't put them together in the same tensor as-is. The first sequence needs to be padded up to the length
of the second one, or the second one needs to be truncated down to the length of the first one.
In the first case, the list of IDs will be extended by the padding indices. We can pass a list to the tokenizer and ask
it to pad like this:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
We can see that 0s have been added on the right of the first sentence to make it the same length as the second one:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
This can then be converted into a tensor in PyTorch or TensorFlow. The attention mask is a binary tensor indicating the
position of the padded indices so that the model does not attend to them. For the [`BertTokenizer`], `1` indicates a
value that should be attended to, while `0` indicates a padded value. This attention mask is in the dictionary returned
by the tokenizer under the key "attention_mask":
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
### autoencoding models
See [encoder models](#encoder-models) and [masked language modeling](#masked-language-modeling-mlm)
### autoregressive models
See [causal language modeling](#causal-language-modeling) and [decoder models](#decoder-models)
## B
### backbone
The backbone is the network (embeddings and layers) that outputs the raw hidden states or features. It is usually connected to a [head](#head) which accepts the features as its input to make a prediction. For example, [`ViTModel`] is a backbone without a specific head on top. Other models can also use [`VitModel`] as a backbone such as [DPT](model_doc/dpt).
## C
### causal language modeling
A pretraining task where the model reads the texts in order and has to predict the next word. It's usually done by
reading the whole sentence but using a mask inside the model to hide the future tokens at a certain timestep.
### channel
Color images are made up of some combination of values in three channels - red, green, and blue (RGB) - and grayscale images only have one channel. In 🤗 Transformers, the channel can be the first or last dimension of an image's tensor: [`n_channels`, `height`, `width`] or [`height`, `width`, `n_channels`].
### connectionist temporal classification (CTC)
An algorithm which allows a model to learn without knowing exactly how the input and output are aligned; CTC calculates the distribution of all possible outputs for a given input and chooses the most likely output from it. CTC is commonly used in speech recognition tasks because speech doesn't always cleanly align with the transcript for a variety of reasons such as a speaker's different speech rates.
### convolution
A type of layer in a neural network where the input matrix is multiplied element-wise by a smaller matrix (kernel or filter) and the values are summed up in a new matrix. This is known as a convolutional operation which is repeated over the entire input matrix. Each operation is applied to a different segment of the input matrix. Convolutional neural networks (CNNs) are commonly used in computer vision.
## D
### decoder input IDs
This input is specific to encoder-decoder models, and contains the input IDs that will be fed to the decoder. These
inputs should be used for sequence to sequence tasks, such as translation or summarization, and are usually built in a
way specific to each model.
Most encoder-decoder models (BART, T5) create their `decoder_input_ids` on their own from the `labels`. In such models,
passing the `labels` is the preferred way to handle training.
Please check each model's docs to see how they handle these input IDs for sequence to sequence training.
### decoder models
Also referred to as autoregressive models, decoder models involve a pretraining task (called causal language modeling) where the model reads the texts in order and has to predict the next word. It's usually done by
reading the whole sentence with a mask to hide future tokens at a certain timestep.
<Youtube id="d_ixlCubqQw"/>
### deep learning (DL)
Machine learning algorithms which uses neural networks with several layers.
## E
### encoder models
Also known as autoencoding models, encoder models take an input (such as text or images) and transform them into a condensed numerical representation called an embedding. Oftentimes, encoder models are pretrained using techniques like [masked language modeling](#masked-language-modeling-mlm), which masks parts of the input sequence and forces the model to create more meaningful representations.
<Youtube id="H39Z_720T5s"/>
## F
### feature extraction
The process of selecting and transforming raw data into a set of features that are more informative and useful for machine learning algorithms. Some examples of feature extraction include transforming raw text into word embeddings and extracting important features such as edges or shapes from image/video data.
### feed forward chunking
In each residual attention block in transformers the self-attention layer is usually followed by 2 feed forward layers.
The intermediate embedding size of the feed forward layers is often bigger than the hidden size of the model (e.g., for
`bert-base-uncased`).
For an input of size `[batch_size, sequence_length]`, the memory required to store the intermediate feed forward
embeddings `[batch_size, sequence_length, config.intermediate_size]` can account for a large fraction of the memory
use. The authors of [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) noticed that since the
computation is independent of the `sequence_length` dimension, it is mathematically equivalent to compute the output
embeddings of both feed forward layers `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n`
individually and concat them afterward to `[batch_size, sequence_length, config.hidden_size]` with `n =
sequence_length`, which trades increased computation time against reduced memory use, but yields a mathematically
**equivalent** result.
For models employing the function [`apply_chunking_to_forward`], the `chunk_size` defines the number of output
embeddings that are computed in parallel and thus defines the trade-off between memory and time complexity. If
`chunk_size` is set to 0, no feed forward chunking is done.
### finetuned models
Finetuning is a form of transfer learning which involves taking a pretrained model, freezing its weights, and replacing the output layer with a newly added [model head](#head). The model head is trained on your target dataset.
See the [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) tutorial for more details, and learn how to fine-tune models with 🤗 Transformers.
## H
### head
The model head refers to the last layer of a neural network that accepts the raw hidden states and projects them onto a different dimension. There is a different model head for each task. For example:
* [`GPT2ForSequenceClassification`] is a sequence classification head - a linear layer - on top of the base [`GPT2Model`].
* [`ViTForImageClassification`] is an image classification head - a linear layer on top of the final hidden state of the `CLS` token - on top of the base [`ViTModel`].
* [`Wav2Vec2ForCTC`] ia a language modeling head with [CTC](#connectionist-temporal-classification-(CTC)) on top of the base [`Wav2Vec2Model`].
## I
### image patch
Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in it's configuration.
### inference
Inference is the process of evaluating a model on new data after training is complete. See the [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) tutorial to learn how to perform inference with 🤗 Transformers.
### input IDs
The input ids are often the only required parameters to be passed to the model as input. They are token indices,
numerical representations of tokens building the sequences that will be used as input by the model.
<Youtube id="VFp38yj8h3A"/>
Each tokenizer works differently but the underlying mechanism remains the same. Here's an example using the BERT
tokenizer, which is a [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) tokenizer:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
The tokenizer takes care of splitting the sequence into tokens available in the tokenizer vocabulary.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
The tokens are either words or subwords. Here for instance, "VRAM" wasn't in the model vocabulary, so it's been split
in "V", "RA" and "M". To indicate those tokens are not separate words but parts of the same word, a double-hash prefix
is added for "RA" and "M":
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
These tokens can then be converted into IDs which are understandable by the model. This can be done by directly feeding
the sentence to the tokenizer, which leverages the Rust implementation of [🤗
Tokenizers](https://github.com/huggingface/tokenizers) for peak performance.
```python
>>> inputs = tokenizer(sequence)
```
The tokenizer returns a dictionary with all the arguments necessary for its corresponding model to work properly. The
token indices are under the key `input_ids`:
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
```
Note that the tokenizer automatically adds "special tokens" (if the associated model relies on them) which are special
IDs the model sometimes uses.
If we decode the previous sequence of ids,
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
we will see
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
because this is the way a [`BertModel`] is going to expect its inputs.
## L
### labels
The labels are an optional argument which can be passed in order for the model to compute the loss itself. These labels
should be the expected prediction of the model: it will use the standard loss in order to compute the loss between its
predictions and the expected value (the label).
These labels are different according to the model head, for example:
- For sequence classification models, ([`BertForSequenceClassification`]), the model expects a tensor of dimension
`(batch_size)` with each value of the batch corresponding to the expected label of the entire sequence.
- For token classification models, ([`BertForTokenClassification`]), the model expects a tensor of dimension
`(batch_size, seq_length)` with each value corresponding to the expected label of each individual token.
- For masked language modeling, ([`BertForMaskedLM`]), the model expects a tensor of dimension `(batch_size,
seq_length)` with each value corresponding to the expected label of each individual token: the labels being the token
ID for the masked token, and values to be ignored for the rest (usually -100).
- For sequence to sequence tasks, ([`BartForConditionalGeneration`], [`MBartForConditionalGeneration`]), the model
expects a tensor of dimension `(batch_size, tgt_seq_length)` with each value corresponding to the target sequences
associated with each input sequence. During training, both BART and T5 will make the appropriate
`decoder_input_ids` and decoder attention masks internally. They usually do not need to be supplied. This does not
apply to models leveraging the Encoder-Decoder framework.
- For image classification models, ([`ViTForImageClassification`]), the model expects a tensor of dimension
`(batch_size)` with each value of the batch corresponding to the expected label of each individual image.
- For semantic segmentation models, ([`SegformerForSemanticSegmentation`]), the model expects a tensor of dimension
`(batch_size, height, width)` with each value of the batch corresponding to the expected label of each individual pixel.
- For object detection models, ([`DetrForObjectDetection`]), the model expects a list of dictionaries with a
`class_labels` and `boxes` key where each value of the batch corresponds to the expected label and number of bounding boxes of each individual image.
- For automatic speech recognition models, ([`Wav2Vec2ForCTC`]), the model expects a tensor of dimension `(batch_size,
target_length)` with each value corresponding to the expected label of each individual token.
<Tip>
Each model's labels may be different, so be sure to always check the documentation of each model for more information
about their specific labels!
</Tip>
The base models ([`BertModel`]) do not accept labels, as these are the base transformer models, simply outputting
features.
### large language models (LLM)
A generic term that refers to transformer language models (GPT-3, BLOOM, OPT) that were trained on a large quantity of data. These models also tend to have a large number of learnable parameters (e.g. 175 billion for GPT-3).
## M
### masked language modeling (MLM)
A pretraining task where the model sees a corrupted version of the texts, usually done by
masking some tokens randomly, and has to predict the original text.
### multimodal
A task that combines texts with another kind of inputs (for instance images).
## N
### Natural language generation (NLG)
All tasks related to generating text (for instance, [Write With Transformers](https://transformer.huggingface.co/), translation).
### Natural language processing (NLP)
A generic way to say "deal with texts".
### Natural language understanding (NLU)
All tasks related to understanding what is in a text (for instance classifying the
whole text, individual words).
## P
### pipeline
A pipeline in 🤗 Transformers is an abstraction referring to a series of steps that are executed in a specific order to preprocess and transform data and return a prediction from a model. Some example stages found in a pipeline might be data preprocessing, feature extraction, and normalization.
For more details, see [Pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial).
### pixel values
A tensor of the numerical representations of an image that is passed to a model. The pixel values have a shape of [`batch_size`, `num_channels`, `height`, `width`], and are generated from an image processor.
### pooling
An operation that reduces a matrix into a smaller matrix, either by taking the maximum or average of the pooled dimension(s). Pooling layers are commonly found between convolutional layers to downsample the feature representation.
### position IDs
Contrary to RNNs that have the position of each token embedded within them, transformers are unaware of the position of
each token. Therefore, the position IDs (`position_ids`) are used by the model to identify each token's position in the
list of tokens.
They are an optional parameter. If no `position_ids` are passed to the model, the IDs are automatically created as
absolute positional embeddings.
Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use
other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings.
### preprocessing
The task of preparing raw data into a format that can be easily consumed by machine learning models. For example, text is typically preprocessed by tokenization. To gain a better idea of what preprocessing looks like for other input types, check out the [Preprocess](https://huggingface.co/docs/transformers/preprocessing) tutorial.
### pretrained model
A model that has been pretrained on some data (for instance all of Wikipedia). Pretraining methods involve a
self-supervised objective, which can be reading the text and trying to predict the next word (see [causal language
modeling](#causal-language-modeling)) or masking some words and trying to predict them (see [masked language
modeling](#masked-language-modeling-mlm)).
Speech and vision models have their own pretraining objectives. For example, Wav2Vec2 is a speech model pretrained on a contrastive task which requires the model to identify the "true" speech representation from a set of "false" speech representations. On the other hand, BEiT is a vision model pretrained on a masked image modeling task which masks some of the image patches and requires the model to predict the masked patches (similar to the masked language modeling objective).
## R
### recurrent neural network (RNN)
A type of model that uses a loop over a layer to process texts.
### representation learning
A subfield of machine learning which focuses on learning meaningful representations of raw data. Some examples of representation learning techniques include word embeddings, autoencoders, and Generative Adversarial Networks (GANs).
## S
### sampling rate
A measurement in hertz of the number of samples (the audio signal) taken per second. The sampling rate is a result of discretizing a continuous signal such as speech.
### self-attention
Each element of the input finds out which other elements of the input they should attend to.
### self-supervised learning
A category of machine learning techniques in which a model creates its own learning objective from unlabeled data. It differs from [unsupervised learning](#unsupervised-learning) and [supervised learning](#supervised-learning) in that the learning process is supervised, but not explicitly from the user.
One example of self-supervised learning is [masked language modeling](#masked-language-modeling-mlm), where a model is passed sentences with a proportion of its tokens removed and learns to predict the missing tokens.
### semi-supervised learning
A broad category of machine learning training techniques that leverages a small amount of labeled data with a larger quantity of unlabeled data to improve the accuracy of a model, unlike [supervised learning](#supervised-learning) and [unsupervised learning](#unsupervised-learning).
An example of a semi-supervised learning approach is "self-training", in which a model is trained on labeled data, and then used to make predictions on the unlabeled data. The portion of the unlabeled data that the model predicts with the most confidence gets added to the labeled dataset and used to retrain the model.
### sequence-to-sequence (seq2seq)
Models that generate a new sequence from an input, like translation models, or summarization models (such as
[Bart](model_doc/bart) or [T5](model_doc/t5)).
### stride
In [convolution](#convolution) or [pooling](#pooling), the stride refers to the distance the kernel is moved over a matrix. A stride of 1 means the kernel is moved one pixel over at a time, and a stride of 2 means the kernel is moved two pixels over at a time.
### supervised learning
A form of model training that directly uses labeled data to correct and instruct model performance. Data is fed into the model being trained, and its predictions are compared to the known labels. The model updates its weights based on how incorrect its predictions were, and the process is repeated to optimize model performance.
## T
### token
A part of a sentence, usually a word, but can also be a subword (non-common words are often split in subwords) or a
punctuation symbol.
### token Type IDs
Some models' purpose is to do classification on pairs of sentences or question answering.
<Youtube id="0u3ioSwev3s"/>
These require two different sequences to be joined in a single "input_ids" entry, which usually is performed with the
help of special tokens, such as the classifier (`[CLS]`) and separator (`[SEP]`) tokens. For example, the BERT model
builds its two sequence input as such:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
We can use our tokenizer to automatically generate such a sentence by passing the two sequences to `tokenizer` as two
arguments (and not a list, like before) like this:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a, sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
which will return:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP]
```
This is enough for some models to understand where one sequence ends and where another begins. However, other models,
such as BERT, also deploy token type IDs (also called segment IDs). They are represented as a binary mask identifying
the two types of sequence in the model.
The tokenizer returns this mask as the "token_type_ids" entry:
```python
>>> encoded_dict["token_type_ids"]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
The first sequence, the "context" used for the question, has all its tokens represented by a `0`, whereas the second
sequence, corresponding to the "question", has all its tokens represented by a `1`.
Some models, like [`XLNetModel`] use an additional token represented by a `2`.
### transfer learning
A technique that involves taking a pretrained model and adapting it to a dataset specific to your task. Instead of training a model from scratch, you can leverage knowledge obtained from an existing model as a starting point. This speeds up the learning process and reduces the amount of training data needed.
### transformer
Self-attention based deep learning model architecture.
## U
### unsupervised learning
A form of model training in which data provided to the model is not labeled. Unsupervised learning techniques leverage statistical information of the data distribution to find patterns useful for the task at hand.

View File

@ -1,300 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Glossary
## General terms
- autoencoding models: see MLM
- autoregressive models: see CLM
- CLM: causal language modeling, a pretraining task where the model reads the texts in order and has to predict the
next word. It's usually done by reading the whole sentence but using a mask inside the model to hide the future
tokens at a certain timestep.
- deep learning: machine learning algorithms which uses neural networks with several layers.
- MLM: masked language modeling, a pretraining task where the model sees a corrupted version of the texts, usually done
by masking some tokens randomly, and has to predict the original text.
- multimodal: a task that combines texts with another kind of inputs (for instance images).
- NLG: natural language generation, all tasks related to generating text (for instance talk with transformers,
translation).
- NLP: natural language processing, a generic way to say "deal with texts".
- NLU: natural language understanding, all tasks related to understanding what is in a text (for instance classifying
the whole text, individual words).
- pretrained model: a model that has been pretrained on some data (for instance all of Wikipedia). Pretraining methods
involve a self-supervised objective, which can be reading the text and trying to predict the next word (see CLM) or
masking some words and trying to predict them (see MLM).
- RNN: recurrent neural network, a type of model that uses a loop over a layer to process texts.
- self-attention: each element of the input finds out which other elements of the input they should attend to.
- seq2seq or sequence-to-sequence: models that generate a new sequence from an input, like translation models, or
summarization models (such as [Bart](model_doc/bart) or [T5](model_doc/t5)).
- token: a part of a sentence, usually a word, but can also be a subword (non-common words are often split in subwords)
or a punctuation symbol.
- transformer: self-attention based deep learning model architecture.
## Model inputs
Every model is different yet bears similarities with the others. Therefore most models use the same inputs, which are
detailed here alongside usage examples.
<a id='input-ids'></a>
### Input IDs
The input ids are often the only required parameters to be passed to the model as input. *They are token indices,
numerical representations of tokens building the sequences that will be used as input by the model*.
<Youtube id="VFp38yj8h3A"/>
Each tokenizer works differently but the underlying mechanism remains the same. Here's an example using the BERT
tokenizer, which is a [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) tokenizer:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
The tokenizer takes care of splitting the sequence into tokens available in the tokenizer vocabulary.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
The tokens are either words or subwords. Here for instance, "VRAM" wasn't in the model vocabulary, so it's been split
in "V", "RA" and "M". To indicate those tokens are not separate words but parts of the same word, a double-hash prefix
is added for "RA" and "M":
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
These tokens can then be converted into IDs which are understandable by the model. This can be done by directly feeding
the sentence to the tokenizer, which leverages the Rust implementation of [🤗 Tokenizers](https://github.com/huggingface/tokenizers) for peak performance.
```python
>>> inputs = tokenizer(sequence)
```
The tokenizer returns a dictionary with all the arguments necessary for its corresponding model to work properly. The
token indices are under the key "input_ids":
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
```
Note that the tokenizer automatically adds "special tokens" (if the associated model relies on them) which are special
IDs the model sometimes uses.
If we decode the previous sequence of ids,
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
we will see
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
because this is the way a [`BertModel`] is going to expect its inputs.
<a id='attention-mask'></a>
### Attention mask
The attention mask is an optional argument used when batching sequences together.
<Youtube id="M6adb1j2jPI"/>
This argument indicates to the model which tokens should be attended to, and which should not.
For example, consider these two sequences:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
The encoded versions have different lengths:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
Therefore, we can't put them together in the same tensor as-is. The first sequence needs to be padded up to the length
of the second one, or the second one needs to be truncated down to the length of the first one.
In the first case, the list of IDs will be extended by the padding indices. We can pass a list to the tokenizer and ask
it to pad like this:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
We can see that 0s have been added on the right of the first sentence to make it the same length as the second one:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
This can then be converted into a tensor in PyTorch or TensorFlow. The attention mask is a binary tensor indicating the
position of the padded indices so that the model does not attend to them. For the [`BertTokenizer`],
`1` indicates a value that should be attended to, while `0` indicates a padded value. This attention mask is
in the dictionary returned by the tokenizer under the key "attention_mask":
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
<a id='token-type-ids'></a>
### Token Type IDs
Some models' purpose is to do classification on pairs of sentences or question answering.
<Youtube id="0u3ioSwev3s"/>
These require two different sequences to be joined in a single "input_ids" entry, which usually is performed with the
help of special tokens, such as the classifier (`[CLS]`) and separator (`[SEP]`) tokens. For example, the BERT
model builds its two sequence input as such:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
We can use our tokenizer to automatically generate such a sentence by passing the two sequences to `tokenizer` as two
arguments (and not a list, like before) like this:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a, sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
which will return:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP]
```
This is enough for some models to understand where one sequence ends and where another begins. However, other models,
such as BERT, also deploy token type IDs (also called segment IDs). They are represented as a binary mask identifying
the two types of sequence in the model.
The tokenizer returns this mask as the "token_type_ids" entry:
```python
>>> encoded_dict["token_type_ids"]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
The first sequence, the "context" used for the question, has all its tokens represented by a `0`, whereas the
second sequence, corresponding to the "question", has all its tokens represented by a `1`.
Some models, like [`XLNetModel`] use an additional token represented by a `2`.
<a id='position-ids'></a>
### Position IDs
Contrary to RNNs that have the position of each token embedded within them, transformers are unaware of the position of
each token. Therefore, the position IDs (`position_ids`) are used by the model to identify each token's position in
the list of tokens.
They are an optional parameter. If no `position_ids` are passed to the model, the IDs are automatically created as
absolute positional embeddings.
Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use
other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings.
<a id='labels'></a>
### Labels
The labels are an optional argument which can be passed in order for the model to compute the loss itself. These labels
should be the expected prediction of the model: it will use the standard loss in order to compute the loss between its
predictions and the expected value (the label).
These labels are different according to the model head, for example:
- For sequence classification models (e.g., [`BertForSequenceClassification`]), the model expects a
tensor of dimension `(batch_size)` with each value of the batch corresponding to the expected label of the
entire sequence.
- For token classification models (e.g., [`BertForTokenClassification`]), the model expects a tensor
of dimension `(batch_size, seq_length)` with each value corresponding to the expected label of each individual
token.
- For masked language modeling (e.g., [`BertForMaskedLM`]), the model expects a tensor of dimension
`(batch_size, seq_length)` with each value corresponding to the expected label of each individual token: the
labels being the token ID for the masked token, and values to be ignored for the rest (usually -100).
- For sequence to sequence tasks,(e.g., [`BartForConditionalGeneration`],
[`MBartForConditionalGeneration`]), the model expects a tensor of dimension `(batch_size, tgt_seq_length)` with each value corresponding to the target sequences associated with each input sequence. During
training, both *BART* and *T5* will make the appropriate *decoder_input_ids* and decoder attention masks internally.
They usually do not need to be supplied. This does not apply to models leveraging the Encoder-Decoder framework. See
the documentation of each model for more information on each specific model's labels.
The base models (e.g., [`BertModel`]) do not accept labels, as these are the base transformer
models, simply outputting features.
<a id='decoder-input-ids'></a>
### Decoder input IDs
This input is specific to encoder-decoder models, and contains the input IDs that will be fed to the decoder. These
inputs should be used for sequence to sequence tasks, such as translation or summarization, and are usually built in a
way specific to each model.
Most encoder-decoder models (BART, T5) create their `decoder_input_ids` on their own from the `labels`. In
such models, passing the `labels` is the preferred way to handle training.
Please check each model's docs to see how they handle these input IDs for sequence to sequence training.
<a id='feed-forward-chunking'></a>
### Feed Forward Chunking
In each residual attention block in transformers the self-attention layer is usually followed by 2 feed forward layers.
The intermediate embedding size of the feed forward layers is often bigger than the hidden size of the model (e.g., for
`bert-base-uncased`).
For an input of size `[batch_size, sequence_length]`, the memory required to store the intermediate feed forward
embeddings `[batch_size, sequence_length, config.intermediate_size]` can account for a large fraction of the memory
use. The authors of [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) noticed that since the
computation is independent of the `sequence_length` dimension, it is mathematically equivalent to compute the output
embeddings of both feed forward layers `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n`
individually and concat them afterward to `[batch_size, sequence_length, config.hidden_size]` with `n = sequence_length`, which trades increased computation time against reduced memory use, but yields a mathematically
**equivalent** result.
For models employing the function [`apply_chunking_to_forward`], the `chunk_size` defines the
number of output embeddings that are computed in parallel and thus defines the trade-off between memory and time
complexity. If `chunk_size` is set to 0, no feed forward chunking is done.

124
docs/source/en/hpo_train.md Normal file
View File

@ -0,0 +1,124 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hyperparameter Search using Trainer API
🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example.
## Hyperparameter Search backend
[`Trainer`] supports four hyperparameter search backends currently:
[optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps).
you should install them before using them as the hyperparameter search backend
```bash
pip install optuna/sigopt/wandb/ray[tune]
```
## How to enable Hyperparameter search in example
Define the hyperparameter search space, different backends need different format.
For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following:
```py
>>> def sigopt_hp_space(trial):
... return [
... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
... {
... "categorical_values": ["16", "32", "64", "128"],
... "name": "per_device_train_batch_size",
... "type": "categorical",
... },
... ]
```
For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following:
```py
>>> def optuna_hp_space(trial):
... return {
... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
... }
```
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html), it's like following:
```py
>>> def ray_hp_space(trial):
... return {
... "learning_rate": tune.loguniform(1e-6, 1e-4),
... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
... }
```
For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following:
```py
>>> def wandb_hp_space(trial):
... return {
... "method": "random",
... "metric": {"name": "objective", "goal": "minimize"},
... "parameters": {
... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
... "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
... },
... }
```
Define a `model_init` function and pass it to the [`Trainer`], as an example:
```py
>>> def model_init(trial):
... return AutoModelForSequenceClassification.from_pretrained(
... model_args.model_name_or_path,
... from_tf=bool(".ckpt" in model_args.model_name_or_path),
... config=config,
... cache_dir=model_args.cache_dir,
... revision=model_args.model_revision,
... use_auth_token=True if model_args.use_auth_token else None,
... )
```
Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function:
```py
>>> trainer = Trainer(
... model=None,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... tokenizer=tokenizer,
... model_init=model_init,
... data_collator=data_collator,
... )
```
Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective.
You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value.
```py
>>> best_trial = trainer.hyperparameter_search(
... direction="maximize",
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
## Hyperparameter search For DDP finetune
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.

480
docs/source/en/index.md Normal file
View File

@ -0,0 +1,480 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## Contents
The documentation is organized into five sections:
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes all classes and functions:
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
- **MODELS** details the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** details utility classes and functions used internally.
### Supported models
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MRA](model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[ViViT](model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Supported frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| ALIGN | ❌ | ❌ | ✅ | ❌ | ❌ |
| AltCLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Autoformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Bark | ❌ | ❌ | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| BioGpt | ✅ | ❌ | ✅ | ❌ | ❌ |
| BiT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLIP | ❌ | ❌ | ✅ | ✅ | ❌ |
| BLIP-2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| BridgeTower | ❌ | ❌ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| Chinese-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| CLAP | ❌ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLIPSeg | ❌ | ❌ | ✅ | ❌ | ❌ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| ConvNeXTV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ✅ | ❌ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
| DETA | ❌ | ❌ | ✅ | ❌ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DiNAT | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| EfficientFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| EfficientNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| EnCodec | ❌ | ❌ | ✅ | ❌ | ❌ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ErnieM | ✅ | ❌ | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| Falcon | ❌ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| FocalNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GIT | ❌ | ❌ | ✅ | ❌ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ | ✅ | ✅ |
| GPTBigCode | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
| Graphormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Informer | ❌ | ❌ | ✅ | ❌ | ❌ |
| InstructBLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| Jukebox | ✅ | ❌ | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LiLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LLaMA | ✅ | ✅ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Mask2Former | ❌ | ❌ | ✅ | ❌ | ❌ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| MEGA | ❌ | ❌ | ✅ | ❌ | ❌ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileNetV1 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileNetV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| MobileViTV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MRA | ❌ | ❌ | ✅ | ❌ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MusicGen | ❌ | ❌ | ✅ | ❌ | ❌ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| NAT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| NLLB-MOE | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OneFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OpenLlama | ❌ | ❌ | ✅ | ❌ | ❌ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| Pix2Struct | ❌ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ✅ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ✅ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ❌ | ❌ | ✅ | ✅ | ✅ |
| RoCBert | ✅ | ❌ | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| RWKV | ❌ | ❌ | ✅ | ❌ | ❌ |
| SAM | ❌ | ❌ | ✅ | ✅ | ❌ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| SwiftFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| Swin2SR | ❌ | ❌ | ✅ | ❌ | ❌ |
| SwitchTransformers | ❌ | ❌ | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| Table Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Time Series Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TimeSformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ | ❌ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| TVLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| UMT5 | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| UPerNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViT Hybrid | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| Whisper | ✅ | ✅ | ✅ | ✅ | ✅ |
| X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| X-MOD | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -12,6 +12,10 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation
@ -34,11 +38,16 @@ Start by creating a virtual environment in your project directory:
python -m venv .env
```
Activate the virtual environment:
Activate the virtual environment. On Linux and MacOs:
```bash
source .env/bin/activate
```
Activate Virtual environment on Windows
```bash
.env/Scripts/activate
```
Now you're ready to install 🤗 Transformers with the following command:
@ -49,19 +58,31 @@ pip install transformers
For CPU-support only, you can conveniently install 🤗 Transformers and a deep learning library in one line. For example, install 🤗 Transformers and PyTorch with:
```bash
pip install transformers[torch]
pip install 'transformers[torch]'
```
🤗 Transformers and TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
pip install 'transformers[tf-cpu]'
```
<Tip warning={true}>
M1 / ARM Users
You will need to install the following before installing TensorFLow 2.0
```
brew install cmake
brew install pkg-config
```
</Tip>
🤗 Transformers and Flax:
```bash
pip install transformers[flax]
pip install 'transformers[flax]'
```
Finally, check if 🤗 Transformers has been properly installed by running the following command. It will download a pretrained model:
@ -134,11 +155,11 @@ conda install -c huggingface transformers
## Cache setup
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/transformers/`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\transformers`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hub`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\hub`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
1. Shell environment variable (default): `TRANSFORMERS_CACHE`.
2. Shell environment variable: `HF_HOME` + `transformers/`.
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface/transformers`.
1. Shell environment variable (default): `HUGGINGFACE_HUB_CACHE` or `TRANSFORMERS_CACHE`.
2. Shell environment variable: `HF_HOME`.
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
@ -232,4 +253,4 @@ Once your file is downloaded and locally cached, specify it's local path to load
See the [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream) section for more details on downloading files stored on the Hub.
</Tip>
</Tip>

View File

@ -0,0 +1,39 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for `FeatureExtractors`
This page lists all the utility functions that can be used by the audio [`FeatureExtractor`] in order to compute special features from a raw audio using common algorithms such as *Short Time Fourier Transform* or *log mel spectrogram*.
Most of those are only useful if you are studying the code of the audio processors in the library.
## Audio Transformations
[[autodoc]] audio_utils.hertz_to_mel
[[autodoc]] audio_utils.mel_to_hertz
[[autodoc]] audio_utils.mel_filter_bank
[[autodoc]] audio_utils.optimal_fft_length
[[autodoc]] audio_utils.window_function
[[autodoc]] audio_utils.spectrogram
[[autodoc]] audio_utils.power_to_db
[[autodoc]] audio_utils.amplitude_to_db

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# General Utilities

View File

@ -8,25 +8,30 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Generation
This page lists all the utility functions used by [`~generation_utils.GenerationMixin.generate`],
[`~generation_utils.GenerationMixin.greedy_search`],
[`~generation_utils.GenerationMixin.sample`],
[`~generation_utils.GenerationMixin.beam_search`],
[`~generation_utils.GenerationMixin.beam_sample`],
[`~generation_utils.GenerationMixin.group_beam_search`], and
[`~generation_utils.GenerationMixin.constrained_beam_search`].
This page lists all the utility functions used by [`~generation.GenerationMixin.generate`],
[`~generation.GenerationMixin.greedy_search`],
[`~generation.GenerationMixin.contrastive_search`],
[`~generation.GenerationMixin.sample`],
[`~generation.GenerationMixin.beam_search`],
[`~generation.GenerationMixin.beam_sample`],
[`~generation.GenerationMixin.group_beam_search`], and
[`~generation.GenerationMixin.constrained_beam_search`].
Most of those are only useful if you are studying the code of the generate methods in the library.
## Generate Outputs
The output of [`~generation_utils.GenerationMixin.generate`] is an instance of a subclass of
The output of [`~generation.GenerationMixin.generate`] is an instance of a subclass of
[`~utils.ModelOutput`]. This output is a data structure containing all the information returned
by [`~generation_utils.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
by [`~generation.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
Here's an example:
@ -40,7 +45,7 @@ inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
```
The `generation_output` object is a [`~generation_utils.GreedySearchDecoderOnlyOutput`], as we can
The `generation_output` object is a [`~generation.GreedySearchDecoderOnlyOutput`], as we can
see in the documentation of that class below, it means it has the following attributes:
- `sequences`: the generated sequences of tokens
@ -72,31 +77,31 @@ We document here all output types.
### GreedySearchOutput
[[autodoc]] generation_utils.GreedySearchDecoderOnlyOutput
[[autodoc]] generation.GreedySearchDecoderOnlyOutput
[[autodoc]] generation_utils.GreedySearchEncoderDecoderOutput
[[autodoc]] generation.GreedySearchEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxGreedySearchOutput
[[autodoc]] generation.FlaxGreedySearchOutput
### SampleOutput
[[autodoc]] generation_utils.SampleDecoderOnlyOutput
[[autodoc]] generation.SampleDecoderOnlyOutput
[[autodoc]] generation_utils.SampleEncoderDecoderOutput
[[autodoc]] generation.SampleEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxSampleOutput
[[autodoc]] generation.FlaxSampleOutput
### BeamSearchOutput
[[autodoc]] generation_utils.BeamSearchDecoderOnlyOutput
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSearchEncoderDecoderOutput
[[autodoc]] generation.BeamSearchEncoderDecoderOutput
### BeamSampleOutput
[[autodoc]] generation_utils.BeamSampleDecoderOnlyOutput
[[autodoc]] generation.BeamSampleDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSampleEncoderDecoderOutput
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
## LogitsProcessor
@ -115,6 +120,9 @@ generation.
[[autodoc]] MinLengthLogitsProcessor
- __call__
[[autodoc]] MinNewTokensLengthLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
@ -133,6 +141,9 @@ generation.
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] SequenceBiasLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
@ -261,3 +272,9 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] top_k_top_p_filtering
[[autodoc]] tf_top_k_top_p_filtering
## Streamers
[[autodoc]] TextStreamer
[[autodoc]] TextIteratorStreamer

View File

@ -0,0 +1,48 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Image Processors
This page lists all the utility functions used by the image processors, mainly the functional
transformations used to process the images.
Most of those are only useful if you are studying the code of the image processors in the library.
## Image Transformations
[[autodoc]] image_transforms.center_crop
[[autodoc]] image_transforms.center_to_corners_format
[[autodoc]] image_transforms.corners_to_center_format
[[autodoc]] image_transforms.id_to_rgb
[[autodoc]] image_transforms.normalize
[[autodoc]] image_transforms.pad
[[autodoc]] image_transforms.rgb_to_id
[[autodoc]] image_transforms.rescale
[[autodoc]] image_transforms.resize
[[autodoc]] image_transforms.to_pil_image
## ImageProcessingMixin
[[autodoc]] image_processing_utils.ImageProcessingMixin

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Layers and Utilities
@ -54,9 +58,6 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] modeling_tf_utils.TFConv1D
[[autodoc]] modeling_tf_utils.TFSharedEmbeddings
- call
[[autodoc]] modeling_tf_utils.TFSequenceSummary
## TensorFlow loss functions

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for pipelines

View File

@ -0,0 +1,29 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Time Series Utilities
This page lists all the utility functions and classes that can be used for Time Series based models.
Most of those are only useful if you are studying the code of the time series models or you wish to add to the collection of distributional output classes.
## Distributional Output
[[autodoc]] time_series_utils.NormalOutput
[[autodoc]] time_series_utils.StudentTOutput
[[autodoc]] time_series_utils.NegativeBinomialOutput

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Tokenizers

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Trainer

View File

@ -0,0 +1,105 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents & Tools
<Tip warning={true}>
Transformers Agent is an experimental API which is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page
contains the API docs for the underlying classes.
## Agents
We provide three types of agents: [`HfAgent`] uses inference endpoints for opensource models, [`LocalAgent`] uses a model of your choice locally and [`OpenAiAgent`] uses OpenAI closed models.
### HfAgent
[[autodoc]] HfAgent
### LocalAgent
[[autodoc]] LocalAgent
### OpenAiAgent
[[autodoc]] OpenAiAgent
### AzureOpenAiAgent
[[autodoc]] AzureOpenAiAgent
### Agent
[[autodoc]] Agent
- chat
- run
- prepare_for_new_chat
## Tools
### load_tool
[[autodoc]] load_tool
### Tool
[[autodoc]] Tool
### PipelineTool
[[autodoc]] PipelineTool
### RemoteTool
[[autodoc]] RemoteTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo
## Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to
correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes
around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
object should still behave as a `PIL.Image`.
These types have three specific purposes:
- Calling `to_raw` on the type should return the underlying object
- Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText`
but will be the path of the serialized version of the object in other instances
- Displaying it in an ipython kernel should display the object correctly
### AgentText
[[autodoc]] transformers.tools.agent_types.AgentText
### AgentImage
[[autodoc]] transformers.tools.agent_types.AgentImage
### AgentAudio
[[autodoc]] transformers.tools.agent_types.AgentAudio

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Callbacks
@ -32,10 +36,14 @@ By default a [`Trainer`] will use the following callbacks:
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed.
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
- [`~integrations.NeptuneCallback`] if [neptune](https://neptune.ai/) is installed.
- [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is
installed.
- [`~integrations.CodeCarbonCallback`] if [codecarbon](https://pypi.org/project/codecarbon/) is
installed.
- [`~integrations.ClearMLCallback`] if [clearml](https://github.com/allegroai/clearml) is installed.
- [`~integrations.DagsHubCallback`] if [dagshub](https://dagshub.com/) is installed.
- [`~integrations.FlyteCallback`] if [flyte](https://flyte.org/) is installed.
The main class that implements callbacks is [`TrainerCallback`]. It gets the
[`TrainingArguments`] used to instantiate the [`Trainer`], can access that
@ -70,6 +78,14 @@ Here is the list of the available [`TrainerCallback`] in the library:
[[autodoc]] integrations.CodeCarbonCallback
[[autodoc]] integrations.NeptuneCallback
[[autodoc]] integrations.ClearMLCallback
[[autodoc]] integrations.DagsHubCallback
[[autodoc]] integrations.FlyteCallback
## TrainerCallback
[[autodoc]] TrainerCallback

View File

@ -8,6 +8,10 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Configuration

Some files were not shown because too many files have changed in this diff Show More