mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-22 10:19:00 +08:00
Compare commits
1 Commits
reference_
...
fix-audio-
Author | SHA1 | Date | |
---|---|---|---|
6c9f50deec |
@ -303,7 +303,7 @@ non_model_job = CircleCIJob(
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
# networkx==3.3 (after #36957) cause some issues
|
||||
# TODO: remove this once it works directly
|
||||
install_steps=["uv venv && uv pip install .[serving]"],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="not generate",
|
||||
parallelism=6,
|
||||
)
|
||||
|
4
.github/workflows/build_documentation.yml
vendored
4
.github/workflows/build_documentation.yml
vendored
@ -18,10 +18,6 @@ jobs:
|
||||
notebook_folder: transformers_doc
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
# Temporary pin to work around datasets exception in the docbuilder.Remove after docker images and main have
|
||||
# the right dependencies (which **should** be the case by 2025-07-20). See
|
||||
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
|
||||
pre_command: uv pip install datasets>=2.15.0
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
4
.github/workflows/build_pr_documentation.yml
vendored
4
.github/workflows/build_pr_documentation.yml
vendored
@ -15,7 +15,3 @@ jobs:
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: transformers
|
||||
languages: en
|
||||
# Temporary pin to work around datasets exception in the docbuilder. Remove after docker images and main have
|
||||
# the right dependencies (which **should** be the case by 2025-07-20). See
|
||||
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
|
||||
pre_command: uv pip install datasets>=2.15.0
|
||||
|
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -167,6 +167,3 @@ tags
|
||||
|
||||
# ruff
|
||||
.ruff_cache
|
||||
|
||||
# modular conversion
|
||||
*.modular_backup
|
||||
|
@ -28,7 +28,6 @@ from transformers.testing_utils import HfDoctestModule, HfDocTestParser
|
||||
|
||||
NOT_DEVICE_TESTS = {
|
||||
"test_tokenization",
|
||||
"test_tokenization_mistral_common",
|
||||
"test_processor",
|
||||
"test_processing",
|
||||
"test_beam_constraints",
|
||||
|
@ -30,8 +30,6 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] &&
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U timm
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG TORCH_VISION='0.22.0'
|
||||
ARG TORCH_AUDIO='2.7.0'
|
||||
ARG TORCH_VISION='0.21.0'
|
||||
ARG TORCH_AUDIO='2.6.0'
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \
|
||||
|
@ -72,6 +72,8 @@
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -103,10 +105,6 @@
|
||||
title: Agents
|
||||
- local: tools
|
||||
title: Tools
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: transformers_as_backend
|
||||
title: Inference server backends
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -443,10 +441,6 @@
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/ernie
|
||||
title: ERNIE
|
||||
- local: model_doc/ernie4_5
|
||||
title: Ernie4_5
|
||||
- local: model_doc/ernie4_5_moe
|
||||
title: Ernie4_5_MoE
|
||||
- local: model_doc/ernie_m
|
||||
title: ErnieM
|
||||
- local: model_doc/esm
|
||||
@ -481,8 +475,6 @@
|
||||
title: GLM
|
||||
- local: model_doc/glm4
|
||||
title: glm4
|
||||
- local: model_doc/glm4_moe
|
||||
title: glm4_moe
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
@ -525,8 +517,6 @@
|
||||
title: Jukebox
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/lfm2
|
||||
title: LFM2
|
||||
- local: model_doc/llama
|
||||
title: LLaMA
|
||||
- local: model_doc/llama2
|
||||
@ -571,8 +561,6 @@
|
||||
title: MobileBERT
|
||||
- local: model_doc/modernbert
|
||||
title: ModernBert
|
||||
- local: model_doc/modernbert-decoder
|
||||
title: ModernBERTDecoder
|
||||
- local: model_doc/mpnet
|
||||
title: MPNet
|
||||
- local: model_doc/mpt
|
||||
@ -721,8 +709,6 @@
|
||||
title: D-FINE
|
||||
- local: model_doc/dab-detr
|
||||
title: DAB-DETR
|
||||
- local: model_doc/deepseek_v2
|
||||
title: DeepSeek-V2
|
||||
- local: model_doc/deformable_detr
|
||||
title: Deformable DETR
|
||||
- local: model_doc/deit
|
||||
@ -749,8 +735,6 @@
|
||||
title: DPT
|
||||
- local: model_doc/efficientformer
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientloftr
|
||||
title: EfficientLoFTR
|
||||
- local: model_doc/efficientnet
|
||||
title: EfficientNet
|
||||
- local: model_doc/eomt
|
||||
@ -1051,8 +1035,6 @@
|
||||
title: PaliGemma
|
||||
- local: model_doc/perceiver
|
||||
title: Perceiver
|
||||
- local: model_doc/perception_lm
|
||||
title: PerceptionLM
|
||||
- local: model_doc/phi4_multimodal
|
||||
title: Phi4 Multimodal
|
||||
- local: model_doc/pix2struct
|
||||
@ -1105,8 +1087,6 @@
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/voxtral
|
||||
title: Voxtral
|
||||
- local: model_doc/xclip
|
||||
title: X-CLIP
|
||||
title: Multimodal models
|
||||
|
@ -60,11 +60,11 @@ You will see it prints "I just entered the attention computation" as many times
|
||||
|
||||
## Dynamically switching attention function
|
||||
|
||||
You could dynamically change the model's attention function as well:
|
||||
You could dynamically change the model's attention function as well, by overriding the `config._attn_implementation` field:
|
||||
|
||||
```python
|
||||
# Back to use original sdpa implementation
|
||||
model.set_attn_implementation("sdpa")
|
||||
model.config._attn_implementation = "sdpa"
|
||||
|
||||
model(torch.ones(1, 5, dtype=int))
|
||||
```
|
||||
@ -72,34 +72,6 @@ model(torch.ones(1, 5, dtype=int))
|
||||
and it will stop printing the statements, as it now uses the `sdpa` attention.
|
||||
This allows to quickly change an attention function, without needing to reload the model!
|
||||
|
||||
## Different attention per backbone in multimodal models
|
||||
|
||||
For multimodal models different attention functions may work better for each backbone module. For example, some vision backbones perform better in fp32, but are incompatible with FlashAttention. To continue using FlashAttention while keeping the vision encoder in fp32, create a dict and map each config to an attention implementation as shown below.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForImageTextToText
|
||||
|
||||
model_id = "facebook/chameleon-7b"
|
||||
|
||||
attention_implementation_per_backbone = {"vision_config": "sdpa", "text_config": "flash_attention_2"}
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation=attention_implementation_per_backbone)
|
||||
|
||||
# NOTE: keys in the attention implementation have to be the same as the sub-config names
|
||||
for key in attention_implementation_per_backbone:
|
||||
assert key in model.config.sub_configs, f"Invalid key in `attention_implementation`"
|
||||
|
||||
# You can omit certain backbones - the default attention function (SDPA) will be used
|
||||
# This is equivalent to the previous example
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2"})
|
||||
|
||||
|
||||
# Set the same attention implementation for all backbones with single string, same as in non-multimodal models
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager")
|
||||
|
||||
# Alternatively use a dict with an empty key for global configuration
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"": "eager"})
|
||||
```
|
||||
|
||||
## What about new args needed in my custom attention function?
|
||||
|
||||
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
|
||||
|
@ -64,9 +64,9 @@ Arguments can also be passed directly to `@auto_docstring` for more control. Use
|
||||
It builds upon the standard Transformer architecture with unique modifications.""",
|
||||
custom_args="""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
)
|
||||
class MySpecialModel(PreTrainedModel):
|
||||
@ -85,40 +85,13 @@ class MySpecialModel(PreTrainedModel):
|
||||
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
|
||||
r"""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
# ...
|
||||
```
|
||||
|
||||
You should also use the `@auto_docstring` decorator for classes that inherit from [`~utils.ModelOutput`].
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Custom model outputs with additional fields.
|
||||
"""
|
||||
)
|
||||
class MyModelOutput(ImageClassifierOutput):
|
||||
r"""
|
||||
loss (`torch.FloatTensor`, *optional*):
|
||||
The loss of the model.
|
||||
custom_field (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
||||
A custom output field specific to this model.
|
||||
"""
|
||||
|
||||
# Standard fields like hidden_states, logits, attentions etc. can be automatically documented if the description is the same as the standard arguments.
|
||||
# However, given that the loss docstring is often different per model, you should document it in the docstring above.
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
# Custom fields need to be documented in the docstring above
|
||||
custom_field: Optional[torch.FloatTensor] = None
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="functions">
|
||||
|
||||
@ -198,7 +171,7 @@ class MyModel(PreTrainedModel):
|
||||
|
||||
There are some rules for documenting different types of arguments and they're listed below.
|
||||
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `auto_docstring.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `auto_docstring.py`.
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `args_doc.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `args_doc.py`.
|
||||
|
||||
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
|
||||
|
||||
@ -272,7 +245,7 @@ When working with modular files (`modular_model.py`), follow the guidelines belo
|
||||
The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
|
||||
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `auto_docstring.py` file.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `args_doc.py` file.
|
||||
3. Adding argument descriptions in one of two ways as shown below.
|
||||
|
||||
| method | description | usage |
|
||||
@ -280,7 +253,7 @@ The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
|
||||
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
|
||||
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `auto_docstring.py`.
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `args_doc.py`.
|
||||
|
||||
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.
|
||||
|
||||
|
@ -82,18 +82,24 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
|
||||
|
||||
## Cache storage implementation
|
||||
|
||||
Caches are structured as a list of layers, where each layer contains a key and value cache. The key and value caches are tensors with the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
|
||||
|
||||
Layers can be of different types (e.g. `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), which mostly changes how sequence length is handled and how the cache is updated.
|
||||
|
||||
The simplest is a `DynamicLayer` that grows as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token:
|
||||
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- `key_cache`: A list of tensors, one for each layer.
|
||||
- `value_cache`: A list of tensors, one for each layer.
|
||||
|
||||
When new tokens are processed:
|
||||
|
||||
1. For each layer, the new key and value states are concatenated with the existing cache.
|
||||
```py
|
||||
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
|
||||
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
|
||||
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
||||
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
||||
```
|
||||
|
||||
Other layer types like `StaticLayer` and `SlidingWindowLayer` have a fixed sequence length that is set when the cache is created. This makes them compatible with `torch.compile`. In the case of `SlidingWindowLayer`, existing tokens are shifted out of the cache when a new token is added.
|
||||
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
|
||||
|
||||
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
|
||||
|
||||
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
|
||||
|
||||
@ -128,34 +134,6 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Cache position
|
||||
|
||||
The cache position tracks where to insert new tokens in the attention cache. It represents the *absolute* position of each token in the context, independent of padding or batch structure. Suppose you already cached `N` tokens and are now processing `K` new tokens. The cache position for the new tokens will range from `N` to `N + K - 1`. In other words, you're processing tokens at positions - `[N, N + 1, N + 2, ..., N + K - 1]`.
|
||||
|
||||
Cache position is used internally for two purposes:
|
||||
|
||||
1. Selecting new tokens to process in the input sequence and ensuring only tokens that haven’t been cached yet are passed to the model's `forward`.
|
||||
2. Storing key/value pairs at the correct positions in the cache. This is especially important for fixed-size caches, like [`StaticCache`], that pre-allocates a specific cache length.
|
||||
|
||||
The generation loop usually takes care of the cache position, but if you're writing a custom generation method, it is important that cache positions are accurate since they are used to write and read key/value states into fixed slots.
|
||||
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
messages = [{"role": "user", "content": "You are a helpful assistant."}]
|
||||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
@ -165,7 +143,7 @@ The legacy format is essentially the same data structure but organized different
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, we recommend to convert to [`DynamicCache`] with [`~DynamicCache.from_legacy_cache`]. Note that legacy cache format is deprecated and not used anymore in `Transformers`. You can convert back to tuple format with [`DynamicCache.to_legacy_cache`] functions, which is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -181,4 +159,4 @@ generation_outputs = model.generate(**inputs, return_dict_in_generate=True, retu
|
||||
|
||||
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
|
||||
legacy_format_cache = cache.to_legacy_cache()
|
||||
```
|
||||
```
|
@ -356,93 +356,66 @@ A [`Constraint`] can be used to force the generation to include specific tokens
|
||||
|
||||
## Caches
|
||||
|
||||
[[autodoc]] CacheLayerMixin
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] DynamicLayer
|
||||
- update
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] StaticLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] SlidingWindowLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] CacheProcessor
|
||||
- pre_update
|
||||
- post_update
|
||||
|
||||
[[autodoc]] OffloadedCacheProcessor
|
||||
- pre_update
|
||||
|
||||
[[autodoc]] QuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] Cache
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
- update
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
- validate
|
||||
|
||||
[[autodoc]] DynamicCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reorder_cache
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
|
||||
[[autodoc]] QuantizedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
|
||||
[[autodoc]] QuantoQuantizedCache
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] HQQQuantizedCache
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] OffloadedCache
|
||||
- update
|
||||
- prefetch_layer
|
||||
- evict_previous_layer
|
||||
|
||||
[[autodoc]] StaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] OffloadedStaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] HybridCache
|
||||
|
||||
[[autodoc]] HybridChunkedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] SlidingWindowCache
|
||||
- update
|
||||
- reset
|
||||
|
||||
[[autodoc]] EncoderDecoderCache
|
||||
- get_seq_length
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] MambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
|
||||
|
||||
## Watermark Utils
|
||||
|
||||
[[autodoc]] WatermarkingConfig
|
||||
|
@ -247,114 +247,3 @@ first and last layer will be shown. This is useful when some layers (typically c
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
||||
## Analyzer of skipped tests
|
||||
|
||||
### Scan skipped tests - for model adders and maintainers
|
||||
|
||||
This small util is a power user tool intended for model adders and maintainers. It lists all test methods
|
||||
existing in `test_modeling_common.py`, inherited by all model tester classes, and scans the repository to measure
|
||||
how many tests are being skipped and for which models.
|
||||
|
||||
### Rationale
|
||||
|
||||
When porting models to transformers, tests fail as they should, and sometimes `test_modeling_common` feels irreconcilable with the peculiarities of our brand new model. But how can we be sure we're not breaking everything by adding a seemingly innocent skip?
|
||||
|
||||
This utility:
|
||||
- scans all test_modeling_common methods
|
||||
- looks for times where a method is skipped
|
||||
- returns a summary json you can load as a DataFrame/inspect
|
||||
|
||||
**For instance test_inputs_embeds is skipped in a whooping 39% proportion at the time of writing this util.**
|
||||
|
||||

|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
You can run the skipped test analyzer in two ways:
|
||||
|
||||
#### Full scan (default)
|
||||
|
||||
From the root of `transformers` repo, scans all common test methods and outputs the results to a JSON file (default: `all_tests_scan_result.json`).
|
||||
|
||||
```bash
|
||||
python utils/scan_skipped_tests.py --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--output_dir` (optional): Directory where the JSON results will be saved. Defaults to the current directory.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```
|
||||
🔬 Parsing 331 model test files once each...
|
||||
📝 Aggregating 224 tests...
|
||||
(224/224) test_update_candidate_strategy_with_matches_1es_3d_is_nonecodet_schedule_fa_kwargs
|
||||
✅ Scan complete.
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/all_tests_scan_result.json
|
||||
|
||||
```
|
||||
|
||||
And it will generate `all_tests_scan_result.json` file that you can inspect. The JSON is indexed by method name, and each entry follows this schema, indicating the origin as well (from `common`or `GenerationMixin`.)
|
||||
|
||||
```json
|
||||
{
|
||||
"<method_name>": {
|
||||
"origin": "<test suite>"
|
||||
"models_ran": ["<model_name>", ...],
|
||||
"models_skipped": ["<model_name>", ...],
|
||||
"skipped_proportion": <float>,
|
||||
"reasons_skipped": ["<model_name>: <reason>",
|
||||
...
|
||||
]
|
||||
},
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
Which you can visualise as above with e.g. `pandas`
|
||||
|
||||
```python
|
||||
df = pd.read_json('all_tests_scan_result.json').T
|
||||
df.sort_values(by=['skipped_proportion'], ascending=False)
|
||||
|
||||
```
|
||||
|
||||
### Scan a single test method
|
||||
|
||||
You can focus on a specific test method using `--test_method_name`:
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).
|
||||
- `--output_dir` (optional): Directory where the JSON result will be saved.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds
|
||||
|
||||
🔬 Parsing 331 model test files once each...
|
||||
|
||||
== test_inputs_embeds ==
|
||||
|
||||
Ran : 199/323
|
||||
Skipped : 124/323 (38.4%)
|
||||
- aimv2: Aimv2 does not use inputs_embeds
|
||||
- align: Inputs_embeds is tested in individual model tests
|
||||
- altclip: Inputs_embeds is tested in individual model tests
|
||||
- audio_spectrogram_transformer: AST does not use inputs_embeds
|
||||
- beit: BEiT does not use inputs_embeds
|
||||
- bit: Bit does not use inputs_embeds
|
||||
- blip: Blip does not use inputs_embeds
|
||||
- blip_2: Inputs_embeds is tested in individual model tests
|
||||
- bridgetower:
|
||||
- canine: CANINE does not have a get_input_embeddings() method.
|
||||
- ...
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/scan_test_inputs_embeds.json
|
||||
|
||||
```
|
@ -134,7 +134,7 @@ The [`QuantizedCache`] reduces memory requirements by quantizing the KV values t
|
||||
> [!WARNING]
|
||||
> Quantizing the cache can harm latency if the context length is short and there is enough GPU memory available for generation without enabling cache quantization. Try to find a balance between memory efficiency and latency.
|
||||
|
||||
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and the quantization backend, as well as any additional quantization related parameters should also be passed either as a dict. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
|
||||
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and indicate the quantization backend in [`QuantizedCacheConfig`]. Any additional quantization related parameters should also be passed either as a dict or an instance of [`QuantizedCacheConfig`]. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
|
||||
|
||||
<hfoptions id="quantized-cache">
|
||||
<hfoption id="HQQQuantizedCache">
|
||||
@ -143,7 +143,7 @@ For [`HQQQuantizedCache`], we recommend setting the `axis-key` and `axis-value`
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache, QuantizedCacheConfig
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
@ -161,7 +161,7 @@ For [`QuantoQuantizedCache`], we recommend setting the `axis-key` and `axis-valu
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache, QuantizedCacheConfig
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
@ -275,6 +275,7 @@ from transformers.cache_utils import (
|
||||
StaticCache,
|
||||
SlidingWindowCache,
|
||||
QuantoQuantizedCache,
|
||||
QuantizedCacheConfig,
|
||||
)
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
|
@ -341,7 +341,7 @@ A known issue with transformer models is that the self-attention mechanism grows
|
||||
|
||||
FlashAttention and [FlashAttention-2](./perf_infer_gpu_one#flashattention-2) break up the attention computation into smaller chunks and reduces the number of intermediate read/write operations to the GPU memory to speed up inference. FlashAttention-2 improves on the original FlashAttention algorithm by also parallelizing over sequence length dimension and better partitioning work on the hardware to reduce synchronization and communication overhead.
|
||||
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or set with `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface) after the model is loaded.
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
@ -353,14 +353,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
)
|
||||
|
||||
# Change the model's attention dynamically after loading
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-2b",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
model.set_attention_implementation("flash_attention_2")
|
||||
```
|
||||
|
||||
### PyTorch scaled dot product attention
|
||||
@ -368,7 +360,7 @@ model.set_attention_implementation("flash_attention_2")
|
||||
Scaled dot product attention (SDPA) is automatically enabled in PyTorch 2.0 and it supports FlashAttention, xFormers, and PyTorch's C++ implementation. SDPA chooses the most performant attention algorithm if you're using a CUDA backend. For other backends, SDPA defaults to the PyTorch C++ implementation.
|
||||
|
||||
> [!TIP]
|
||||
> SDPA automatically supports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
> SDPA automaticallysupports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
|
||||
Use the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to explicitly enable or disable any of the four attention algorithms. For example, use `SDPBackend.FLASH_ATTENTION` to enable FlashAttention.
|
||||
|
||||
|
@ -258,10 +258,6 @@ The following auto classes are available for the following computer vision tasks
|
||||
|
||||
[[autodoc]] AutoModelForKeypointDetection
|
||||
|
||||
### AutoModelForKeypointMatching
|
||||
|
||||
[[autodoc]] AutoModelForKeypointMatching
|
||||
|
||||
### AutoModelForMaskedImageModeling
|
||||
|
||||
[[autodoc]] AutoModelForMaskedImageModeling
|
||||
|
@ -14,105 +14,49 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# CamemBERT
|
||||
|
||||
[CamemBERT](https://huggingface.co/papers/1911.03894) is a language model based on [RoBERTa](./roberta), but trained specifically on French text from the OSCAR dataset, making it more effective for French language tasks.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
What sets CamemBERT apart is that it learned from a huge, high quality collection of French data, as opposed to mixing lots of languages. This helps it really understand French better than many multilingual models.
|
||||
## Overview
|
||||
|
||||
Common applications of CamemBERT include masked language modeling (Fill-mask prediction), text classification (sentiment analysis), token classification (entity recognition) and sentence pair classification (entailment tasks).
|
||||
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by
|
||||
[Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la
|
||||
Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model
|
||||
trained on 138GB of French text.
|
||||
|
||||
You can find all the original CamemBERT checkpoints under the [ALMAnaCH](https://huggingface.co/almanach/models?search=camembert) organization.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by the [ALMAnaCH (Inria)](https://huggingface.co/almanach) team.
|
||||
>
|
||||
> Click on the CamemBERT models in the right sidebar for more examples of how to apply CamemBERT to different NLP tasks.
|
||||
*Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available
|
||||
models have either been trained on English data or on the concatenation of data in multiple languages. This makes
|
||||
practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French,
|
||||
we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the
|
||||
performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging,
|
||||
dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art
|
||||
for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and
|
||||
downstream applications for French NLP.*
|
||||
|
||||
The examples below demonstrate how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/).
|
||||
|
||||
<hfoptions id="usage">
|
||||
<Tip>
|
||||
|
||||
<hfoption id="Pipeline">
|
||||
This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well
|
||||
as the information relative to the inputs and outputs.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
</Tip>
|
||||
|
||||
pipeline = pipeline("fill-mask", model="camembert-base", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Le camembert est un délicieux fromage <mask>.")
|
||||
```
|
||||
</hfoption>
|
||||
## Resources
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
|
||||
model = AutoModelForMaskedLM.from_pretrained("camembert-base", torch_dtype="auto", device_map="auto", attn_implementation="sdpa")
|
||||
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Le camembert est un délicieux fromage <mask>." | transformers run --task fill-mask --model camembert-base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Quantization reduces the memory burden of large models by representing weights in lower precision. Refer to the [Quantization](../quantization/overview) overview for available options.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) quantization to quantize the weights to 8-bits.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForMaskedLM, BitsAndBytesConfig
|
||||
import torch
|
||||
|
||||
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"almanach/camembert-large",
|
||||
quantization_config=quant_config,
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-large")
|
||||
|
||||
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## CamembertConfig
|
||||
|
||||
@ -193,4 +137,5 @@ print(f"The predicted token is: {predicted_token}")
|
||||
[[autodoc]] TFCamembertForQuestionAnswering
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
</frameworkcontent>
|
||||
|
||||
|
@ -1,49 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# DeepSeek-V2
|
||||
|
||||
## Overview
|
||||
|
||||
The DeepSeek-V2 model was proposed in [DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model](https://arxiv.org/abs/2405.04434) by DeepSeek-AI Team.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
|
||||
|
||||
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
|
||||
The original code can be found [here](https://huggingface.co/deepseek-ai/DeepSeek-V2).
|
||||
|
||||
### Usage tips
|
||||
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
|
||||
|
||||
## DeepseekV2Config
|
||||
|
||||
[[autodoc]] DeepseekV2Config
|
||||
|
||||
## DeepseekV2Model
|
||||
|
||||
[[autodoc]] DeepseekV2Model
|
||||
- forward
|
||||
|
||||
## DeepseekV2ForCausalLM
|
||||
|
||||
[[autodoc]] DeepseekV2ForCausalLM
|
||||
- forward
|
||||
|
||||
## DeepseekV2ForSequenceClassification
|
||||
|
||||
[[autodoc]] DeepseekV2ForSequenceClassification
|
||||
- forward
|
@ -1,114 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the MIT License; you may not use this file except in compliance with
|
||||
the License.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
|
||||
-->
|
||||
|
||||
# EfficientLoFTR
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The EfficientLoFTR model was proposed in [Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed](https://arxiv.org/abs/2403.04765) by Yifan Wang, Xingyi He, Sida Peng, Dongli Tan and Xiaowei Zhou.
|
||||
|
||||
This model consists of matching two images together by finding pixel correspondences. It can be used to estimate the pose between them.
|
||||
This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present a novel method for efficiently producing semidense matches across images. Previous detector-free matcher
|
||||
LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios but suffers
|
||||
from low efficiency. We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
|
||||
One key observation is that performing the transformer over the entire feature map is redundant due to shared local
|
||||
information, therefore we propose an aggregated attention mechanism with adaptive token selection for efficiency.
|
||||
Furthermore, we find spatial variance exists in LoFTR’s fine correlation module, which is adverse to matching accuracy.
|
||||
A novel two-stage correlation layer is proposed to achieve accurate subpixel correspondences for accuracy improvement.
|
||||
Our efficiency optimized model is ∼ 2.5× faster than LoFTR which can even surpass state-of-the-art efficient sparse
|
||||
matching pipeline SuperPoint + LightGlue. Moreover, extensive experiments show that our method can achieve higher
|
||||
accuracy compared with competitive semi-dense matchers, with considerable efficiency benefits. This opens up exciting
|
||||
prospects for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
|
||||
Project page: [https://zju3dv.github.io/efficientloftr/](https://zju3dv.github.io/efficientloftr/).*
|
||||
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model.
|
||||
```python
|
||||
import torch
|
||||
|
||||
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
|
||||
from transformers.image_utils import load_image
|
||||
|
||||
|
||||
image1 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg")
|
||||
image2 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg")
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("stevenbucaille/efficientloftr")
|
||||
model = AutoModelForKeypointMatching.from_pretrained("stevenbucaille/efficientloftr")
|
||||
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
```
|
||||
|
||||
You can use the `post_process_keypoint_matching` method from the `ImageProcessor` to get the keypoints and matches in a more readable format:
|
||||
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
```
|
||||
|
||||
From the post processed outputs, you can visualize the matches between the two images using the following code:
|
||||
```python
|
||||
images_with_matching = processor.visualize_keypoint_matching(images, outputs)
|
||||
```
|
||||
|
||||

|
||||
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
|
||||
|
||||
## EfficientLoFTRConfig
|
||||
|
||||
[[autodoc]] EfficientLoFTRConfig
|
||||
|
||||
## EfficientLoFTRImageProcessor
|
||||
|
||||
[[autodoc]] EfficientLoFTRImageProcessor
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## EfficientLoFTRModel
|
||||
|
||||
[[autodoc]] EfficientLoFTRModel
|
||||
|
||||
- forward
|
||||
|
||||
## EfficientLoFTRForKeypointMatching
|
||||
|
||||
[[autodoc]] EfficientLoFTRForKeypointMatching
|
||||
|
||||
- forward
|
@ -14,88 +14,115 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Encoder Decoder Models
|
||||
|
||||
[`EncoderDecoderModel`](https://huggingface.co/papers/1706.03762) initializes a sequence-to-sequence model with any pretrained autoencoder and pretrained autoregressive model. It is effective for sequence generation tasks as demonstrated in [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) which uses [`BertModel`] as the encoder and decoder.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [thomwolf](https://huggingface.co/thomwolf) and the TensorFlow/Flax version by [ydshieh](https://huggingface.co/ydshieh).
|
||||
>
|
||||
> Click on the Encoder Decoder models in the right sidebar for more examples of how to apply Encoder Decoder to different language tasks.
|
||||
## Overview
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any
|
||||
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks
|
||||
was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by
|
||||
Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
|
||||
After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like
|
||||
any other models (see the examples for more information).
|
||||
|
||||
An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder
|
||||
and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) by Yang Liu and Mirella Lapata.
|
||||
|
||||
## Randomly initializing `EncoderDecoderModel` from model configurations.
|
||||
|
||||
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder.
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
||||
|
||||
summarizer = pipeline(
|
||||
"summarization",
|
||||
model="patrickvonplaten/bert2bert-cnn_dailymail-fp16",
|
||||
device=0
|
||||
)
|
||||
>>> config_encoder = BertConfig()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
|
||||
print(summarizer(text))
|
||||
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = EncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
|
||||
|
||||
[`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
|
||||
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
|
||||
Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
|
||||
To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> from transformers import EncoderDecoderModel, BertTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
|
||||
model = AutoModelForCausalLM.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16", torch_dtype=torch.bfloat16, device_map="auto",attn_implementation="sdpa")
|
||||
|
||||
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
|
||||
|
||||
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device)
|
||||
|
||||
summary = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True)
|
||||
print(tokenizer.decode(summary[0], skip_special_tokens=True))
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
## Loading an existing `EncoderDecoderModel` checkpoint and perform inference.
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen." | transformers-cli run --task summarization --model "patrickvonplaten/bert2bert-cnn_dailymail-fp16" --device 0
|
||||
```
|
||||
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- [`EncoderDecoderModel`] can be initialized using any pretrained encoder and decoder. But depending on the decoder architecture, the cross-attention layers may be randomly initialized.
|
||||
|
||||
These models require downstream fine-tuning, as discussed in this [blog post](https://huggingface.co/blog/warm-starting-encoder-decoder). Use [`~EncoderDecoderModel.from_encoder_decoder_pretrained`] to combine encoder and decoder checkpoints.
|
||||
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
|
||||
|
||||
```python
|
||||
from transformers import EncoderDecoderModel, BertTokenizer
|
||||
>>> from transformers import AutoTokenizer, EncoderDecoderModel
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"google-bert/bert-base-uncased",
|
||||
"google-bert/bert-base-uncased"
|
||||
)
|
||||
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
|
||||
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
|
||||
>>> # let's perform inference on a long piece of text
|
||||
>>> ARTICLE_TO_SUMMARIZE = (
|
||||
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
||||
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
||||
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
||||
... )
|
||||
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
|
||||
|
||||
>>> # autoregressively generate summary (uses greedy decoding by default)
|
||||
>>> generated_ids = model.generate(input_ids)
|
||||
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
>>> print(generated_text)
|
||||
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
|
||||
```
|
||||
|
||||
- Encoder Decoder models can be fine-tuned like BART, T5 or any other encoder-decoder model. Only 2 inputs are required to compute a loss, `input_ids` and `labels`. Refer to this [notebook](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for a more detailed training example.
|
||||
## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`.
|
||||
|
||||
[`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a
|
||||
pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch
|
||||
checkpoints for a particular encoder-decoder model, a workaround is:
|
||||
|
||||
```python
|
||||
>>> # a workaround to load from pytorch checkpoint
|
||||
>>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel
|
||||
|
||||
>>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
|
||||
|
||||
>>> _model.encoder.save_pretrained("./encoder")
|
||||
>>> _model.decoder.save_pretrained("./decoder")
|
||||
|
||||
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
|
||||
... )
|
||||
>>> # This is only for copying some specific attributes of this particular model.
|
||||
>>> model.config = _model.config
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model.
|
||||
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the
|
||||
`input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded
|
||||
target sequence).
|
||||
|
||||
```python
|
||||
>>> from transformers import BertTokenizer, EncoderDecoderModel
|
||||
@ -120,42 +147,11 @@ model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
>>> loss = model(input_ids=input_ids, labels=labels).loss
|
||||
```
|
||||
|
||||
- [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config as shown below.
|
||||
Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training.
|
||||
|
||||
```python
|
||||
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
||||
This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions
|
||||
were contributed by [ydshieh](https://github.com/ydshieh).
|
||||
|
||||
>>> config_encoder = BertConfig()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = EncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
- The Encoder Decoder Model can also be used for translation as shown below.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, EncoderDecoderModel
|
||||
|
||||
# Load a pre-trained translation model
|
||||
model_name = "google/bert2bert_L-24_wmt_en_de"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, pad_token="<pad>", eos_token="</s>", bos_token="<s>")
|
||||
model = EncoderDecoderModel.from_pretrained(model_name)
|
||||
|
||||
# Input sentence to translate
|
||||
input_text = "Plants create energy through a process known as"
|
||||
|
||||
# Encode the input text
|
||||
inputs = tokenizer(input_text, return_tensors="pt", add_special_tokens=False).input_ids
|
||||
|
||||
# Generate the translated output
|
||||
outputs = model.generate(inputs)[0]
|
||||
|
||||
# Decode the output tokens to get the translated sentence
|
||||
translated_text = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
print("Translated text:", translated_text)
|
||||
```
|
||||
|
||||
## EncoderDecoderConfig
|
||||
|
||||
|
@ -1,99 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5 MoE](./ernie4_5_moe.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5Config
|
||||
|
||||
[[autodoc]] Ernie4_5Config
|
||||
|
||||
## Ernie4_5Model
|
||||
|
||||
[[autodoc]] Ernie4_5Model
|
||||
- forward
|
||||
|
||||
## Ernie4_5ForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5ForCausalLM
|
||||
- forward
|
@ -1,183 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5 MoE
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 MoE model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
|
||||
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
|
||||
experts.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Distributed Generation with Tensor Parallelism
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
tp_plan="auto",
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Quantization with Bitsandbytes
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5_MoEConfig
|
||||
|
||||
[[autodoc]] Ernie4_5_MoEConfig
|
||||
|
||||
## Ernie4_5_MoEModel
|
||||
|
||||
[[autodoc]] Ernie4_5_MoEModel
|
||||
- forward
|
||||
|
||||
## Ernie4_5_MoEForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5_MoEForCausalLM
|
||||
- forward
|
||||
- generate
|
@ -110,13 +110,6 @@ outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## FalconMambaCache
|
||||
|
||||
[[autodoc]] FalconMambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
## FalconMambaConfig
|
||||
|
||||
[[autodoc]] FalconMambaConfig
|
||||
|
@ -267,8 +267,3 @@ visualizer("<img>What is shown in this image?")
|
||||
|
||||
[[autodoc]] Gemma3ForConditionalGeneration
|
||||
- forward
|
||||
|
||||
## Gemma3ForSequenceClassification
|
||||
|
||||
[[autodoc]] Gemma3ForSequenceClassification
|
||||
- forward
|
||||
|
@ -1,35 +0,0 @@
|
||||
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Glm4Moe
|
||||
|
||||
## Overview
|
||||
|
||||
This will update After model release.
|
||||
|
||||
## Glm4MoeConfig
|
||||
|
||||
[[autodoc]] Glm4MoeConfig
|
||||
|
||||
## Glm4MoeModel
|
||||
|
||||
[[autodoc]] Glm4MoeModel
|
||||
- forward
|
||||
|
||||
## Glm4MoeForCausalLM
|
||||
|
||||
[[autodoc]] Glm4MoeForCausalLM
|
||||
- forward
|
@ -57,7 +57,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
|
||||
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
||||
|
||||
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
|
||||
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
@ -1,4 +1,4 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
@ -14,107 +14,53 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# I-JEPA
|
||||
|
||||
[I-JEPA](https://huggingface.co/papers/2301.08243) is a self-supervised learning method that learns semantic image representations by predicting parts of an image from other parts of the image. It compares the abstract representations of the image (rather than pixel level comparisons), which avoids the typical pitfalls of data augmentation bias and pixel-level details that don't capture semantic meaning.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find the original I-JEPA checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=ijepa) organization.
|
||||
> [!TIP]
|
||||
> This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
## Overview
|
||||
|
||||
The I-JEPA model was proposed in [Image-based Joint-Embedding Predictive Architecture](https://huggingface.co/papers/2301.08243) by Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas.
|
||||
I-JEPA is a self-supervised learning method that predicts the representations of one part of an image based on other parts of the same image. This approach focuses on learning semantic features without relying on pre-defined invariances from hand-crafted data transformations, which can bias specific tasks, or on filling in pixel-level details, which often leads to less meaningful representations.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image- based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample tar- get blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transform- ers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
|
||||
|
||||
> Click on the I-JEPA models in the right sidebar for more examples of how to apply I-JEPA to different image representation and classification tasks.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
The example below demonstrates how to extract image features with [`Pipeline`] or the [`AutoModel`] class.
|
||||
<small> I-JEPA architecture. Taken from the <a href="https://huggingface.co/papers/2301.08243">original paper.</a> </small>
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
The original code can be found [here](https://github.com/facebookresearch/ijepa).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
feature_extractor = pipeline(
|
||||
task="image-feature-extraction",
|
||||
model="facebook/ijepa_vith14_1k",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
features = feature_extractor("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", return_tensors=True)
|
||||
## How to use
|
||||
|
||||
print(f"Feature shape: {features.shape}")
|
||||
Here is how to use this model for image feature extraction:
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
```python
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.nn.functional import cosine_similarity
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vith14_1k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vith14_1k", torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
return outputs.last_hidden_state.mean(dim=1)
|
||||
|
||||
|
||||
embed_1 = infer(image_1)
|
||||
embed_2 = infer(image_2)
|
||||
|
||||
similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModel, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vitg16_22k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vitg16_22k", quantization_config=quantization_config, torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
model_id = "facebook/ijepa_vith14_1k"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModel.from_pretrained(model_id)
|
||||
|
||||
@torch.no_grad()
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
@ -128,6 +74,15 @@ similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with I-JEPA.
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
|
||||
- [`IJepaForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
|
||||
## IJepaConfig
|
||||
|
||||
[[autodoc]] IJepaConfig
|
||||
@ -140,5 +95,4 @@ print(similarity)
|
||||
## IJepaForImageClassification
|
||||
|
||||
[[autodoc]] IJepaForImageClassification
|
||||
- forward
|
||||
|
||||
- forward
|
@ -1,84 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
# LFM2
|
||||
|
||||
## Overview
|
||||
|
||||
[LFM2](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models) represents a new generation of Liquid Foundation Models developed by [Liquid AI](https://liquid.ai/), specifically designed for edge AI and on-device deployment.
|
||||
|
||||
The models are available in three sizes (350M, 700M, and 1.2B parameters) and are engineered to run efficiently on CPU, GPU, and NPU hardware, making them particularly well-suited for applications requiring low latency, offline operation, and privacy.
|
||||
|
||||
## Architecture
|
||||
|
||||
The architecture consists of 16 blocks total: 10 double-gated short-range convolution blocks and 6 blocks of grouped query attention. This design stems from the concept of dynamical systems, where linear operations are modulated by input-dependent gates, allowing for "liquid" dynamics that can adapt in real-time. The short convolutions are particularly optimized for embedded SoC CPUs, making them ideal for devices that require fast, local inference without relying on cloud connectivity.
|
||||
|
||||
The key architectural innovation of LFM2 lies in its systematic approach to balancing quality, latency, and memory efficiency through our STAR neural architecture search engine. Using STAR, Liquid AI optimized the models for real-world performance on embedded hardware, measuring actual peak memory usage and inference speed on Qualcomm Snapdragon processors. This results in models that achieve 2x faster decode and prefill performance compared to similar-sized models, while maintaining superior benchmark performance across knowledge, mathematics, instruction following, and multilingual tasks.
|
||||
|
||||
## Example
|
||||
|
||||
The following example shows how to generate an answer using the `AutoModelForCausalLM` class.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# Load model and tokenizer
|
||||
model_id = "LiquidAI/LFM2-1.2B"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
device_map="auto",
|
||||
torch_dtype="bfloat16",
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
# Generate answer
|
||||
prompt = "What is C. elegans?"
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": prompt}],
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
tokenize=True,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
min_p=0.15,
|
||||
repetition_penalty=1.05,
|
||||
max_new_tokens=512,
|
||||
)
|
||||
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=False))
|
||||
```
|
||||
|
||||
## Lfm2Config
|
||||
|
||||
[[autodoc]] Lfm2Config
|
||||
|
||||
## Lfm2Model
|
||||
|
||||
[[autodoc]] Lfm2Model
|
||||
- forward
|
||||
|
||||
## Lfm2ForCausalLM
|
||||
|
||||
[[autodoc]] Lfm2ForCausalLM
|
||||
- forward
|
@ -10,31 +10,37 @@ specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
-->
|
||||
|
||||
# LightGlue
|
||||
|
||||
[LightGlue](https://arxiv.org/abs/2306.13643) is a deep neural network that learns to match local features across images. It revisits multiple design decisions of SuperGlue and derives simple but effective improvements. Cumulatively, these improvements make LightGlue more efficient - in terms of both memory and computation, more accurate, and much easier to train. Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching two sets of local features extracted from two images, with the goal of being faster than SuperGlue. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them.
|
||||
## Overview
|
||||
|
||||
You can find all the original LightGlue checkpoints under the [ETH-CVG](https://huggingface.co/ETH-CVG) organization.
|
||||
The LightGlue model was proposed in [LightGlue: Local Feature Matching at Light Speed](https://arxiv.org/abs/2306.13643)
|
||||
by Philipp Lindenberger, Paul-Edouard Sarlin and Marc Pollefeys.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the LightGlue models in the right sidebar for more examples of how to apply LightGlue to different computer vision tasks.
|
||||
Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching
|
||||
two sets of local features extracted from two images, its goal is to be faster than SuperGlue. Paired with the
|
||||
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
|
||||
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
*We introduce LightGlue, a deep neural network that learns to match local features across images. We revisit multiple
|
||||
design decisions of SuperGlue, the state of the art in sparse matching, and derive simple but effective improvements.
|
||||
Cumulatively, they make LightGlue more efficient - in terms of both memory and computation, more accurate, and much
|
||||
easier to train. One key property is that LightGlue is adaptive to the difficulty of the problem: the inference is much
|
||||
faster on image pairs that are intuitively easy to match, for example because of a larger visual overlap or limited
|
||||
appearance change. This opens up exciting prospects for deploying deep matchers in latency-sensitive applications like
|
||||
3D reconstruction. The code and trained models are publicly available at this [https URL](https://github.com/cvg/LightGlue)*
|
||||
|
||||
```py
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
|
||||
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
|
||||
matching scores.
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
@ -53,70 +59,31 @@ model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints and matches
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
You can use the `post_process_keypoint_matching` method from the `LightGlueImageProcessor` to get the keypoints and matches in a readable format:
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
```
|
||||
|
||||
## Notes
|
||||
You can visualize the matches between the images by providing the original images as well as the outputs to this method:
|
||||
```python
|
||||
processor.plot_keypoint_matching(images, outputs)
|
||||
```
|
||||
|
||||
- LightGlue is adaptive to the task difficulty. Inference is much faster on image pairs that are intuitively easy to match, for example, because of a larger visual overlap or limited appearance change.
|
||||

|
||||
|
||||
```py
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
|
||||
# LightGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
matches = outputs.matches # Matching indices
|
||||
matching_scores = outputs.matching_scores # Confidence scores
|
||||
```
|
||||
|
||||
- The model outputs matching indices, keypoints, and confidence scores for each match, similar to SuperGlue but with improved efficiency.
|
||||
- For better visualization and analysis, use the [`LightGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
|
||||
|
||||
```py
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- Visualize the matches between the images using the built-in plotting functionality.
|
||||
|
||||
```py
|
||||
# Easy visualization using the built-in plotting method
|
||||
processor.plot_keypoint_matching(images, processed_outputs)
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/duPp09ty8NRZlMZS18ccP.png">
|
||||
</div>
|
||||
|
||||
## Resources
|
||||
|
||||
- Refer to the [original LightGlue repository](https://github.com/cvg/LightGlue) for more examples and implementation details.
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/cvg/LightGlue).
|
||||
|
||||
## LightGlueConfig
|
||||
|
||||
@ -130,13 +97,8 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
- post_process_keypoint_matching
|
||||
- plot_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## LightGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] LightGlueForKeypointMatching
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
@ -14,178 +14,287 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# LLaVA-NeXT
|
||||
|
||||
[LLaVA‑NeXT](https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/) improves on [Llava](./llava) by increasing the input image resolution by 4x more pixels and supporting 3 aspect ratios (up to 672x672, 336x1344, 1344x336) to better grasp visual details. It is also trained on an improved visual instruction tuning dataset covering more scenarios and applications to improve OCR and common sense reasoning.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original LLaVA‑NeXT checkpoints under the [LLaVA-NeXT](https://huggingface.co/collections/llava-hf/llava-next-65f75c4afac77fd37dbbe6cf) collection.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
>
|
||||
> Click on the LLaVA‑NeXT models in the right sidebar for more examples of how to apply Llava-NeXT to different multimodal tasks.
|
||||
The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa](llava) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
The introduction from the blog is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
*In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications.
|
||||
|
||||
<hfoption id="Pipeline">
|
||||
Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
|
||||
|
||||
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
|
||||
|
||||
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
|
||||
Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
|
||||
Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning.
|
||||
Efficient deployment and inference with SGLang.
|
||||
Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_overview.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the <a href="https://huggingface.co/papers/2310.03744">original paper.</a> </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> LLaVA models after release v4.46 will raise warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you.
|
||||
Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many `<image>` placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings.
|
||||
The attributes can be obtained from model config, as `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`. The `num_additional_image_tokens` should be `1` if the vision backbone adds a CLS token or `0` if nothing extra is added to the vision patches.
|
||||
|
||||
|
||||
### Formatting Prompts with Chat Templates
|
||||
|
||||
Each **checkpoint** is trained with a specific prompt format, depending on the underlying large language model backbone. To ensure correct formatting, use the processor’s `apply_chat_template` method.
|
||||
|
||||
**Important:**
|
||||
- You must construct a conversation history — passing a plain string won't work.
|
||||
- Each message should be a dictionary with `"role"` and `"content"` keys.
|
||||
- The `"content"` should be a list of dictionaries for different modalities like `"text"` and `"image"`.
|
||||
|
||||
|
||||
Here’s an example of how to structure your input. We will use [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and a conversation history of text and image.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from transformers import LlavaNextProcessor
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="llava-hf/llava-v1.6-mistral-7b-hf",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
pipeline(text=messages, max_new_tokens=20, return_full_text=False)
|
||||
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What’s shown in this image?"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
|
||||
},
|
||||
{
|
||||
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Describe the image in more details."},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
||||
|
||||
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
|
||||
print(text_prompt)
|
||||
>>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]"
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor, LlavaNextForConditionalGeneration
|
||||
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
||||
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
|
||||
output = model.generate(**inputs, max_new_tokens=100)
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
- If you want to construct a chat prompt yourself, below is a list of possible formats
|
||||
.
|
||||
[llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format:
|
||||
```bash
|
||||
"[INST] <image>\nWhat is shown in this image? [/INST]"
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageTextToText, AutoProcessor, BitsAndBytesConfig
|
||||
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quant_config, device_map="auto")
|
||||
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What does this chart show?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
||||
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.inference_mode():
|
||||
output = model.generate(**inputs, max_new_tokens=100)
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
[llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format:
|
||||
```bash
|
||||
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
|
||||
```
|
||||
|
||||
|
||||
## Notes
|
||||
|
||||
* Different checkpoints (Mistral, Vicuna, etc.) require a specific prompt format depending on the underlying LLM. Always use [`~ProcessorMixin.apply_chat_template`] to ensure correct formatting. Refer to the [Templates](../chat_templating) guide for more details.
|
||||
|
||||
* Set `padding_side="left"` during batched generation for more accurate results.
|
||||
|
||||
```py
|
||||
processor.tokenizer.padding_side = "left"
|
||||
[llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format:
|
||||
```bash
|
||||
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
|
||||
```
|
||||
|
||||
* LLaVA-NeXT uses different numbers of patches for images and pads the inputs inside the modeling code except when padding is done during processing. The default setting is *left-padding* if the model is in `eval()` mode, otherwise it is *right-padding*.
|
||||
[llama3-llava-next-8b-hf](https://huggingface.co/llava-hf/llava-next-8b-hf) requires the following format:
|
||||
|
||||
* LLaVA models after v4.46 raises warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}`, and `processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add these attributes to the processor if you own the model checkpoint or open a PR if it isn't.
|
||||
```bash
|
||||
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
```
|
||||
|
||||
Adding these attributes means LLaVA will try to infer the number of image tokens required per image and expand the text with the same number of `<image>` token placeholders. There are usually ~500 tokens per image, so make sure the text is not truncated because it will cause a failure when merging the embeddings. The attributes can be found in `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`.
|
||||
[llava-next-72b-hf](https://huggingface.co/llava-hf/llava-next-72b-hf) and [llava-next-110b-hf](https://huggingface.co/llava-hf/llava-next-110b-hf) require the following format:
|
||||
|
||||
The `num_additional_image_tokens` should be `1` if the vision backbone adds a `CLS` token or `0` if nothing extra is added.
|
||||
```bash
|
||||
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
|
||||
```
|
||||
|
||||
* The example below demonstrates inference with multiple input images.
|
||||
🚀 **Bonus:** If you're using `transformers>=4.49.0`, you can also get a vectorized output from `apply_chat_template`. See the **Usage Examples** below for more details on how to use it.
|
||||
|
||||
|
||||
|
||||
## Usage example
|
||||
|
||||
### Single image inference
|
||||
|
||||
Here's how to load the model and perform inference in half-precision (`torch.float16`):
|
||||
|
||||
```python
|
||||
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests, torch
|
||||
import requests
|
||||
|
||||
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
model = LlavaNextForConditionalGeneration.from_pretrained(
|
||||
"llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
|
||||
# Load multiple images
|
||||
url1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
|
||||
url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_comparison.png"
|
||||
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16)
|
||||
model.to("cuda:0")
|
||||
|
||||
image1 = Image.open(requests.get(url1, stream=True).raw)
|
||||
image2 = Image.open(requests.get(url2, stream=True).raw)
|
||||
# prepare image and text prompt, using the appropriate prompt template
|
||||
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
conversation = [
|
||||
{"role": "user", "content": [{"type": "image"}, {"type": "image"}, {"type": "text", "text": "Compare these two images and describe the differences."}]}
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
||||
inputs = processor([image1, image2], prompt, return_tensors="pt").to("cuda")
|
||||
inputs = processor(image, prompt, return_tensors="pt").to("cuda:0")
|
||||
|
||||
# autoregressively complete prompt
|
||||
output = model.generate(**inputs, max_new_tokens=100)
|
||||
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
### Multi image inference
|
||||
|
||||
LLaVa-Next can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
import torch
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
|
||||
# Load the model in half-precision
|
||||
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
||||
|
||||
# Get three different images
|
||||
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
||||
image_stop = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image_cats = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
||||
image_snowman = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
|
||||
conversation_1 = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{"type": "text", "text": "There is a red stop sign in the image."},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What about this image? How many cats do you see?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
conversation_2 = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
|
||||
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
|
||||
prompts = [prompt_1, prompt_2]
|
||||
|
||||
# We can simply feed images in the order they have to be used in the text prompt
|
||||
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
|
||||
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device)
|
||||
|
||||
# Generate
|
||||
generate_ids = model.generate(**inputs, max_new_tokens=30)
|
||||
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
||||
```
|
||||
|
||||
## Model optimization
|
||||
|
||||
### Quantization using Bitsandbytes
|
||||
|
||||
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes`, and to have access to a GPU/accelerator that is supported by the library.
|
||||
|
||||
<Tip>
|
||||
|
||||
bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit [this link](https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend).
|
||||
|
||||
We value your feedback to help identify bugs before the full release! Check out [these docs](https://huggingface.co/docs/bitsandbytes/main/en/non_cuda_backends) for more details and feedback links.
|
||||
|
||||
</Tip>
|
||||
|
||||
Simply change the snippet above with:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForImageTextToText, BitsAndBytesConfig
|
||||
|
||||
# specify how to quantize the model
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
)
|
||||
|
||||
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
|
||||
```
|
||||
|
||||
### Use Flash-Attention 2 to further speed-up generation
|
||||
|
||||
First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForImageTextToText
|
||||
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_id,
|
||||
torch_dtype=torch.float16,
|
||||
use_flash_attention_2=True
|
||||
).to(0)
|
||||
```
|
||||
|
||||
## LlavaNextConfig
|
||||
|
||||
|
@ -28,7 +28,6 @@ You can find all the original Mamba checkpoints under the [State Space Models](h
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [Molbap](https://huggingface.co/Molbap) and [AntonV](https://huggingface.co/AntonV).
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
@ -116,13 +115,6 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## MambaCache
|
||||
|
||||
[[autodoc]] MambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
## MambaConfig
|
||||
|
||||
[[autodoc]] MambaConfig
|
||||
|
@ -26,7 +26,6 @@ rendered properly in your Markdown viewer.
|
||||
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
@ -14,139 +14,160 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# MarianMT
|
||||
|
||||
|
||||
|
||||
[MarianMT](https://huggingface.co/papers/1804.00344) is a machine translation model trained with the Marian framework which is written in pure C++. The framework includes its own custom auto-differentiation engine and efficient meta-algorithms to train encoder-decoder models like BART.
|
||||
|
||||
All MarianMT models are transformer encoder-decoders with 6 layers in each component, use static sinusoidal positional embeddings, don't have a layernorm embedding, and the model starts generating with the prefix `pad_token_id` instead of `<s/>`.
|
||||
|
||||
|
||||
|
||||
You can find all the original MarianMT checkpoints under the [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP/models?search=opus-mt) organization.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
|
||||
>
|
||||
> Click on the MarianMT models in the right sidebar for more examples of how to apply MarianMT to translation tasks.
|
||||
|
||||
|
||||
The example below demonstrates how to translate text using [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Hello, how are you?")
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, attn_implementation="sdpa", device_map="auto")
|
||||
|
||||
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||||
|
||||
```python
|
||||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||||
|
||||
visualizer = AttentionMaskVisualizer("Helsinki-NLP/opus-mt-en-de")
|
||||
visualizer("Hello, how are you?")
|
||||
```
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/marianmt-attn-mask.png"/>
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Notes
|
||||
## Overview
|
||||
|
||||
- MarianMT models are ~298MB on disk and there are more than 1000 models. Check this [list](https://huggingface.co/Helsinki-NLP) for supported language pairs. The language codes may be inconsistent. Two digit codes can be found [here](https://developers.google.com/admin-sdk/directory/v1/languages) while three digit codes may require further searching.
|
||||
- Models that require BPE preprocessing are not supported.
|
||||
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`. Language codes formatted like `es_AR` usually refer to the `code_{region}`. For example, `es_AR` refers to Spanish from Argentina.
|
||||
- If a model can output multiple languages, prepend the desired output language to `src_txt` as shown below. New multilingual models from the [Tatoeba-Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge) require 3 character language codes.
|
||||
A framework for translation models, using the same models as BART. Translations should be similar, but not identical to output in the test set linked to in each model card.
|
||||
This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
|
||||
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
- Each model is about 298 MB on disk, there are more than 1,000 models.
|
||||
- The list of supported language pairs can be found [here](https://huggingface.co/Helsinki-NLP).
|
||||
- Models were originally trained by [Jörg Tiedemann](https://researchportal.helsinki.fi/en/persons/j%C3%B6rg-tiedemann) using the [Marian](https://marian-nmt.github.io/) C++ library, which supports fast training and translation.
|
||||
- All models are transformer encoder-decoders with 6 layers in each component. Each model's performance is documented
|
||||
in a model card.
|
||||
- The 80 opus models that require BPE preprocessing are not supported.
|
||||
- The modeling code is the same as [`BartForConditionalGeneration`] with a few minor modifications:
|
||||
|
||||
- static (sinusoid) positional embeddings (`MarianConfig.static_position_embeddings=True`)
|
||||
- no layernorm_embedding (`MarianConfig.normalize_embedding=False`)
|
||||
- the model starts generating with `pad_token_id` (which has 0 as a token_embedding) as the prefix (Bart uses
|
||||
`<s/>`),
|
||||
- Code to bulk convert models can be found in `convert_marian_to_pytorch.py`.
|
||||
|
||||
|
||||
## Naming
|
||||
|
||||
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`
|
||||
- The language codes used to name models are inconsistent. Two digit codes can usually be found [here](https://developers.google.com/admin-sdk/directory/v1/languages), three digit codes require googling "language
|
||||
code {code}".
|
||||
- Codes formatted like `es_AR` are usually `code_{region}`. That one is Spanish from Argentina.
|
||||
- The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second
|
||||
group use a combination of ISO-639-5 codes and ISO-639-2 codes.
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
- Since Marian models are smaller than many other translation models available in the library, they can be useful for
|
||||
fine-tuning experiments and integration tests.
|
||||
- [Fine-tune on GPU](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/train_distil_marian_enro.sh)
|
||||
|
||||
## Multilingual Models
|
||||
|
||||
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`:
|
||||
- If a model can output multiple languages, and you should specify a language code by prepending the desired output
|
||||
language to the `src_text`.
|
||||
- You can see a models's supported language codes in its model card, under target constituents, like in [opus-mt-en-roa](https://huggingface.co/Helsinki-NLP/opus-mt-en-roa).
|
||||
- Note that if a model is only multilingual on the source side, like `Helsinki-NLP/opus-mt-roa-en`, no language
|
||||
codes are required.
|
||||
|
||||
New multi-lingual models from the [Tatoeba-Challenge repo](https://github.com/Helsinki-NLP/Tatoeba-Challenge)
|
||||
require 3 character language codes:
|
||||
|
||||
```python
|
||||
>>> from transformers import MarianMTModel, MarianTokenizer
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer
|
||||
>>> src_text = [
|
||||
... ">>fra<< this is a sentence in english that we want to translate to french",
|
||||
... ">>por<< This should go to portuguese",
|
||||
... ">>esp<< And this to Spanish",
|
||||
... ]
|
||||
|
||||
# Model trained on multiple source languages → multiple target languages
|
||||
# Example: multilingual to Arabic (arb)
|
||||
model_name = "Helsinki-NLP/opus-mt-mul-mul" # Tatoeba Challenge model
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
|
||||
# Prepend the desired output language code (3-letter ISO 639-3)
|
||||
src_texts = ["arb>> Hello, how are you today?"]
|
||||
|
||||
# Tokenize and translate
|
||||
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
|
||||
translated = model.generate(**inputs)
|
||||
|
||||
# Decode and print result
|
||||
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
||||
print(translated_texts[0])
|
||||
>>> model_name = "Helsinki-NLP/opus-mt-en-roa"
|
||||
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
>>> print(tokenizer.supported_language_codes)
|
||||
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
|
||||
|
||||
>>> model = MarianMTModel.from_pretrained(model_name)
|
||||
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
||||
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
'Isto deve ir para o português.',
|
||||
'Y esto al español']
|
||||
```
|
||||
|
||||
- Older multilingual models use 2 character language codes.
|
||||
|
||||
Here is the code to see all available pretrained models on the hub:
|
||||
|
||||
```python
|
||||
from huggingface_hub import list_models
|
||||
|
||||
from transformers import MarianMTModel, MarianTokenizer
|
||||
|
||||
# Example: older multilingual model (like en → many)
|
||||
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" # English → French, Spanish, Italian, etc.
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
model = MarianMTModel.from_pretrained(model_name)
|
||||
|
||||
# Prepend the 2-letter ISO 639-1 target language code (older format)
|
||||
src_texts = [">>fr<< Hello, how are you today?"]
|
||||
|
||||
# Tokenize and translate
|
||||
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
|
||||
translated = model.generate(**inputs)
|
||||
|
||||
# Decode and print result
|
||||
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
||||
print(translated_texts[0])
|
||||
|
||||
model_list = list_models()
|
||||
org = "Helsinki-NLP"
|
||||
model_ids = [x.id for x in model_list if x.id.startswith(org)]
|
||||
suffix = [x.split("/")[1] for x in model_ids]
|
||||
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
|
||||
```
|
||||
|
||||
## Old Style Multi-Lingual Models
|
||||
|
||||
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language
|
||||
group:
|
||||
|
||||
```python no-style
|
||||
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
|
||||
'Helsinki-NLP/opus-mt-ROMANCE-en',
|
||||
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
|
||||
'Helsinki-NLP/opus-mt-de-ZH',
|
||||
'Helsinki-NLP/opus-mt-en-CELTIC',
|
||||
'Helsinki-NLP/opus-mt-en-ROMANCE',
|
||||
'Helsinki-NLP/opus-mt-es-NORWAY',
|
||||
'Helsinki-NLP/opus-mt-fi-NORWAY',
|
||||
'Helsinki-NLP/opus-mt-fi-ZH',
|
||||
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
|
||||
'Helsinki-NLP/opus-mt-sv-NORWAY',
|
||||
'Helsinki-NLP/opus-mt-sv-ZH']
|
||||
GROUP_MEMBERS = {
|
||||
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
|
||||
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
|
||||
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
|
||||
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
|
||||
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
|
||||
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
|
||||
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
|
||||
}
|
||||
```
|
||||
|
||||
Example of translating english to many romance languages, using old-style 2 character language codes
|
||||
|
||||
|
||||
```python
|
||||
>>> from transformers import MarianMTModel, MarianTokenizer
|
||||
|
||||
>>> src_text = [
|
||||
... ">>fr<< this is a sentence in english that we want to translate to french",
|
||||
... ">>pt<< This should go to portuguese",
|
||||
... ">>es<< And this to Spanish",
|
||||
... ]
|
||||
|
||||
>>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
|
||||
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
|
||||
>>> model = MarianMTModel.from_pretrained(model_name)
|
||||
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
||||
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
'Isto deve ir para o português.',
|
||||
'Y esto al español']
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
||||
## MarianConfig
|
||||
|
||||
[[autodoc]] MarianConfig
|
||||
|
@ -139,10 +139,6 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
|
||||
|
||||
[[autodoc]] MistralConfig
|
||||
|
||||
## MistralCommonTokenizer
|
||||
|
||||
[[autodoc]] MistralCommonTokenizer
|
||||
|
||||
## MistralModel
|
||||
|
||||
[[autodoc]] MistralModel
|
||||
|
@ -227,10 +227,6 @@ This example also how to use `BitsAndBytes` to load the model in 4bit quantizati
|
||||
|
||||
[[autodoc]] Mistral3Config
|
||||
|
||||
## MistralCommonTokenizer
|
||||
|
||||
[[autodoc]] MistralCommonTokenizer
|
||||
|
||||
## Mistral3Model
|
||||
|
||||
[[autodoc]] Mistral3Model
|
||||
|
@ -197,10 +197,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
|
||||
[[autodoc]] MixtralConfig
|
||||
|
||||
## MistralCommonTokenizer
|
||||
|
||||
[[autodoc]] MistralCommonTokenizer
|
||||
|
||||
## MixtralModel
|
||||
|
||||
[[autodoc]] MixtralModel
|
||||
|
@ -1,188 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ModernBERT Decoder
|
||||
|
||||
ModernBERT Decoder has the same architecture as [ModernBERT](https://huggingface.co/papers/2412.13663) but it is trained from scratch with a causal language modeling objective from the [Ettin paper](https://huggingface.co/papers/2507.11412). This allows for using the same architecture to compare encoders and decoders. This model is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.
|
||||
|
||||
ModernBERT Decoder uses sliding window attention and rotary positional embeddings for efficiency and to handle longer sequences.
|
||||
|
||||
You can find all the original ModernBERT Decoder checkpoints under the [jhu-clsp](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb) collection.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [orionw](https://huggingface.co/orionweller).
|
||||
>
|
||||
> Click on the ModernBERT Decoder models in the right sidebar for more examples of how to apply ModernBERT Decoder to different text generation tasks.
|
||||
|
||||
The example below demonstrates how to use ModernBERT Decoder for text generation with [`Pipeline`], [`AutoModel`] (with and without quantization), and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
generator = pipeline(
|
||||
task="text-generation",
|
||||
model="jhu-clsp/ettin-decoder-17m",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
generator("The future of artificial intelligence is", max_length=50, num_return_sequences=1)
|
||||
|
||||
# For sequence classification
|
||||
classifier = pipeline(
|
||||
task="text-classification",
|
||||
model="jhu-clsp/ettin-decoder-17m",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
classifier("This movie is really great!")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-17m")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-17m",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
prompt = "The future of artificial intelligence is"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=50,
|
||||
num_return_sequences=1,
|
||||
temperature=0.7,
|
||||
do_sample=True,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
print(f"Generated text: {generated_text}")
|
||||
|
||||
# For sequence classification
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
||||
classifier_model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-17m",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
num_labels=2
|
||||
)
|
||||
|
||||
text = "This movie is really great!"
|
||||
inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = classifier_model(**inputs)
|
||||
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
||||
predicted_class = torch.argmax(predictions, dim=-1)
|
||||
|
||||
print(f"Predicted class: {predicted_class.item()}")
|
||||
print(f"Prediction probabilities: {predictions}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel (w/quantization)">
|
||||
|
||||
```
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_8bit=True,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-1b")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-1b",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
prompt = "The future of artificial intelligence is"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=50,
|
||||
num_return_sequences=1,
|
||||
temperature=0.7,
|
||||
do_sample=True,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
print(f"Generated text: {generated_text}")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo "The future of artificial intelligence is" | transformers run --task text-generation --model jhu-clsp/ettin-decoder-17m --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
## ModernBertDecoderConfig
|
||||
|
||||
[[autodoc]] ModernBertDecoderConfig
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## ModernBertDecoderModel
|
||||
|
||||
[[autodoc]] ModernBertDecoderModel
|
||||
- forward
|
||||
|
||||
## ModernBertDecoderForCausalLM
|
||||
|
||||
[[autodoc]] ModernBertDecoderForCausalLM
|
||||
- forward
|
||||
|
||||
## ModernBertDecoderForSequenceClassification
|
||||
|
||||
[[autodoc]] ModernBertDecoderForSequenceClassification
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
@ -14,89 +14,27 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
# OLMoE
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# OLMoE
|
||||
## Overview
|
||||
|
||||
[OLMoE](https://huggingface.co/papers/2409.02060) is a sparse Mixture-of-Experts (MoE) language model with 7B parameters but only 1B parameters are used per input token. It has similar inference costs as dense models but trains ~3x faster. OLMoE uses fine-grained routing with 64 small experts in each layer and uses a dropless token-based routing algorithm.
|
||||
The OLMoE model was proposed in [OLMoE: Open Mixture-of-Experts Language Models](https://huggingface.co/papers/2409.02060) by Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, Hannaneh Hajishirzi.
|
||||
|
||||
You can find all the original OLMoE checkpoints under the [OLMoE](https://huggingface.co/collections/allenai/olmoe-november-2024-66cf678c047657a30c8cd3da) collection.
|
||||
OLMoE is a series of **O**pen **L**anguage **Mo**dels using sparse **M**ixture-**o**f-**E**xperts designed to enable the science of language models. We release all code, checkpoints, logs, and details involved in training these models.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
|
||||
>
|
||||
> Click on the OLMoE models in the right sidebar for more examples of how to apply OLMoE to different language tasks.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
*We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.*
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
|
||||
The original code can be found [here](https://github.com/allenai/OLMoE).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="allenai/OLMoE-1B-7B-0125",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
|
||||
result = pipe("Dionysus is the god of")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto").to(device)
|
||||
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
||||
|
||||
inputs = tokenizer("Bitcoin is", return_tensors="pt")
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
output = model.generate(**inputs, max_length=64)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## Quantization
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto", quantization_config=quantization_config).to(device)
|
||||
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
||||
|
||||
inputs = tokenizer("Bitcoin is", return_tensors="pt")
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
output = model.generate(**inputs, max_length=64)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## OlmoeConfig
|
||||
|
||||
|
@ -1,68 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# PerceptionLM
|
||||
|
||||
## Overview
|
||||
|
||||
The PerceptionLM model was proposed in [PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding](https://ai.meta.com/research/publications/perceptionlm-open-access-data-and-models-for-detailed-visual-understanding/) by Jang Hyun Cho et al. It's a fully open, reproducible model for transparent research in image and video understanding. PLM consists of
|
||||
a vision encoder with a small scale (<8B parameters) LLM decoder.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Vision-language models are integral to computer vision research, yet many high-performing models
|
||||
remain closed-source, obscuring their data, design and training recipe. The research community
|
||||
has responded by using distillation from black-box models to label training data, achieving strong
|
||||
benchmark results, at the cost of measurable scientific progress. However, without knowing the details
|
||||
of the teacher model and its data sources, scientific progress remains difficult to measure. In this
|
||||
paper, we study building a Perception Language Model (PLM) in a fully open and reproducible
|
||||
framework for transparent research in image and video understanding. We analyze standard training
|
||||
pipelines without distillation from proprietary models and explore large-scale synthetic data to identify
|
||||
critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M
|
||||
human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded
|
||||
video captions. Additionally, we introduce PLM–VideoBench, a suite for evaluating challenging video
|
||||
understanding tasks focusing on the ability to reason about “what”, “where”, “when”, and “how” of a
|
||||
video. We make our work fully reproducible by providing data, training recipes, code & models.*
|
||||
|
||||
|
||||
This model was contributed by [shumingh](https://huggingface.co/shumingh).
|
||||
The original code can be found [here](https://github.com/facebookresearch/perception_models).
|
||||
|
||||
|
||||
## PerceptionLMConfig
|
||||
|
||||
[[autodoc]] PerceptionLMConfig
|
||||
|
||||
## PerceptionLMProcessor
|
||||
|
||||
[[autodoc]] PerceptionLMProcessor
|
||||
|
||||
## PerceptionLMImageProcessorFast
|
||||
|
||||
[[autodoc]] PerceptionLMImageProcessorFast
|
||||
|
||||
## PerceptionLMVideoProcessor
|
||||
|
||||
[[autodoc]] PerceptionLMVideoProcessor
|
||||
|
||||
## PerceptionLMModel
|
||||
|
||||
[[autodoc]] PerceptionLMModel
|
||||
|
||||
## PerceptionLMForConditionalGeneration
|
||||
|
||||
[[autodoc]] PerceptionLMForConditionalGeneration
|
||||
- forward
|
@ -9,53 +9,44 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-EE4C2C?logo=pytorch&logoColor=white&style=flat">
|
||||
</div>
|
||||
</div>
|
||||
# Phi4 Multimodal
|
||||
|
||||
## Phi4 Multimodal
|
||||
## Overview
|
||||
|
||||
[Phi4 Multimodal](https://huggingface.co/papers/2503.01743) is a multimodal model capable of text, image, and speech and audio inputs or any combination of these. It features a mixture of LoRA adapters for handling different inputs, and each input is routed to the appropriate encoder.
|
||||
Phi4 Multimodal is a lightweight open multimodal foundation model that leverages the language, vision, and speech research and datasets used for Phi-3.5 and 4.0 models. The model processes text, image, and audio inputs, generating text outputs, and comes with 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning, direct preference optimization and RLHF (Reinforcement Learning from Human Feedback) to support precise instruction adherence and safety measures. The languages that each modal supports are the following:
|
||||
|
||||
You can find all the original Phi4 Multimodal checkpoints under the [Phi4](https://huggingface.co/collections/microsoft/phi-4-677e9380e514feb5577a40e4) collection.
|
||||
- Text: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian
|
||||
- Vision: English
|
||||
- Audio: English, Chinese, German, French, Italian, Japanese, Spanish, Portuguese
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez).
|
||||
>
|
||||
> Click on the Phi-4 Multimodal in the right sidebar for more examples of how to apply Phi-4 Multimodal to different tasks.
|
||||
This model was contributed by [Cyril Vallez](https://huggingface.co/cyrilvallez). The most recent code can be
|
||||
found [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/phi4_multimodal/modeling_phi4_multimodal.py).
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
## Usage tips
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
generator = pipeline("text-generation", model="microsoft/Phi-4-multimodal-instruct", torch_dtype="auto", device=0)
|
||||
`Phi4-multimodal-instruct` can be found on the [Huggingface Hub](https://huggingface.co/microsoft/Phi-4-multimodal-instruct)
|
||||
|
||||
prompt = "Explain the concept of multimodal AI in simple terms."
|
||||
|
||||
result = generator(prompt, max_length=50)
|
||||
print(result[0]['generated_text'])
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
In the following, we demonstrate how to use it for inference depending on the input modalities (text, image, audio).
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
||||
|
||||
|
||||
# Define model path
|
||||
model_path = "microsoft/Phi-4-multimodal-instruct"
|
||||
device = "cuda:0"
|
||||
|
||||
# Load model and processor
|
||||
processor = AutoProcessor.from_pretrained(model_path)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
|
||||
|
||||
# Optional: load the adapters (note that without them, the base model will very likely not work well)
|
||||
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
|
||||
model.load_adapter(model_path, adapter_name="vision", device_map=device, adapter_kwargs={"subfolder": 'vision-lora'})
|
||||
|
||||
# Part : Image Processing
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
@ -66,7 +57,7 @@ messages = [
|
||||
},
|
||||
]
|
||||
|
||||
model.set_adapter("vision")
|
||||
model.set_adapter("vision") # if loaded, activate the vision adapter
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
@ -75,6 +66,7 @@ inputs = processor.apply_chat_template(
|
||||
return_tensors="pt",
|
||||
).to(device)
|
||||
|
||||
# Generate response
|
||||
generate_ids = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=1000,
|
||||
@ -85,27 +77,10 @@ response = processor.batch_decode(
|
||||
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)[0]
|
||||
print(f'>>> Response\n{response}')
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
The example below demonstrates inference with an audio and text input.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
||||
|
||||
model_path = "microsoft/Phi-4-multimodal-instruct"
|
||||
device = "cuda:0"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_path)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
|
||||
|
||||
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
|
||||
model.set_adapter("speech")
|
||||
# Part 2: Audio Processing
|
||||
model.set_adapter("speech") # if loaded, activate the speech adapter
|
||||
audio_url = "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac"
|
||||
messages = [
|
||||
{
|
||||
@ -135,7 +110,6 @@ response = processor.batch_decode(
|
||||
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)[0]
|
||||
print(f'>>> Response\n{response}')
|
||||
|
||||
```
|
||||
|
||||
## Phi4MultimodalFeatureExtractor
|
||||
|
@ -86,10 +86,6 @@ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up
|
||||
|
||||
[[autodoc]] PixtralVisionConfig
|
||||
|
||||
## MistralCommonTokenizer
|
||||
|
||||
[[autodoc]] MistralCommonTokenizer
|
||||
|
||||
## PixtralVisionModel
|
||||
|
||||
[[autodoc]] PixtralVisionModel
|
||||
|
@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
SAM (Segment Anything Model) was proposed in [Segment Anything](https://huggingface.co/papers/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
|
||||
|
||||
The model can be used to predict segmentation masks of any object of interest given an input image.
|
||||
The model can be used to predict segmentation masks of any object of interest given an input image.
|
||||
|
||||

|
||||
|
||||
@ -37,9 +37,9 @@ Tips:
|
||||
|
||||
- The model predicts binary masks that states the presence or not of the object of interest given an image.
|
||||
- The model predicts much better results if input 2D points and/or input bounding boxes are provided
|
||||
- You can prompt multiple points for the same image, and predict a single mask.
|
||||
- You can prompt multiple points for the same image, and predict a single mask.
|
||||
- Fine-tuning the model is not supported yet
|
||||
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
|
||||
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
|
||||
|
||||
|
||||
This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
@ -149,11 +149,6 @@ alt="drawing" width="900"/>
|
||||
[[autodoc]] SamImageProcessor
|
||||
|
||||
|
||||
## SamImageProcessorFast
|
||||
|
||||
[[autodoc]] SamImageProcessorFast
|
||||
|
||||
|
||||
## SamVisionModel
|
||||
|
||||
[[autodoc]] SamVisionModel
|
||||
|
@ -10,31 +10,40 @@ specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
-->
|
||||
|
||||
# SuperGlue
|
||||
|
||||
[SuperGlue](https://huggingface.co/papers/1911.11763) is a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs are predicted by a graph neural network. SuperGlue introduces a flexible context aggregation mechanism based on attention, enabling it to reason about the underlying 3D scene and feature assignments jointly. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original SuperGlue checkpoints under the [Magic Leap Community](https://huggingface.co/magic-leap-community) organization.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the SuperGlue models in the right sidebar for more examples of how to apply SuperGlue to different computer vision tasks.
|
||||
The SuperGlue model was proposed in [SuperGlue: Learning Feature Matching with Graph Neural Networks](https://huggingface.co/papers/1911.11763) by Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||
|
||||
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
|
||||
This model consists of matching two sets of interest points detected in an image. Paired with the
|
||||
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
|
||||
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
```py
|
||||
*This paper introduces SuperGlue, a neural network that matches two sets of local features by jointly finding correspondences
|
||||
and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs
|
||||
are predicted by a graph neural network. We introduce a flexible context aggregation mechanism based on attention, enabling
|
||||
SuperGlue to reason about the underlying 3D scene and feature assignments jointly. Compared to traditional, hand-designed heuristics,
|
||||
our technique learns priors over geometric transformations and regularities of the 3D world through end-to-end training from image
|
||||
pairs. SuperGlue outperforms other learned approaches and achieves state-of-the-art results on the task of pose estimation in
|
||||
challenging real-world indoor and outdoor environments. The proposed method performs matching in real-time on a modern GPU and
|
||||
can be readily integrated into modern SfM or SLAM systems. The code and trained weights are publicly available at this [URL](https://github.com/magicleap/SuperGluePretrainedNetwork).*
|
||||
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
|
||||
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
|
||||
matching scores.
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
@ -43,7 +52,7 @@ import requests
|
||||
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
|
||||
image1 = Image.open(requests.get(url_image1, stream=True).raw)
|
||||
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
|
||||
image2 = Image.open(requests.get(url_image2, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_image2, stream=True).raw)
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
@ -53,97 +62,67 @@ model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints and matches
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
You can use the `post_process_keypoint_matching` method from the `SuperGlueImageProcessor` to get the keypoints and matches in a more readable format:
|
||||
|
||||
## Notes
|
||||
|
||||
- SuperGlue performs feature matching between two images simultaneously, requiring pairs of images as input.
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
|
||||
# SuperGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
matches = outputs.matches # Matching indices
|
||||
matching_scores = outputs.matching_scores # Confidence scores
|
||||
```
|
||||
|
||||
- The model outputs matching indices, keypoints, and confidence scores for each match.
|
||||
- For better visualization and analysis, use the [`SuperGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
|
||||
|
||||
```py
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- The example below demonstrates how to visualize matches between two images.
|
||||
|
||||
```py
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# Create side by side image
|
||||
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
|
||||
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
|
||||
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
|
||||
plt.imshow(merged_image)
|
||||
plt.axis("off")
|
||||
|
||||
# Retrieve the keypoints and matches
|
||||
output = processed_outputs[0]
|
||||
keypoints0 = output["keypoints0"]
|
||||
keypoints1 = output["keypoints1"]
|
||||
matching_scores = output["matching_scores"]
|
||||
|
||||
# Plot the matches
|
||||
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
|
||||
plt.plot(
|
||||
[keypoint0[0], keypoint1[0] + image1.width],
|
||||
[keypoint0[1], keypoint1[1]],
|
||||
color=plt.get_cmap("RdYlGn")(matching_score.item()),
|
||||
alpha=0.9,
|
||||
linewidth=0.5,
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
|
||||
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
|
||||
|
||||
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
|
||||
```
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/01ZYaLB1NL5XdA8u7yCo4.png">
|
||||
</div>
|
||||
From the outputs, you can visualize the matches between the two images using the following code:
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
## Resources
|
||||
# Create side by side image
|
||||
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
|
||||
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
|
||||
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
|
||||
plt.imshow(merged_image)
|
||||
plt.axis("off")
|
||||
|
||||
- Refer to the [original SuperGlue repository](https://github.com/magicleap/SuperGluePretrainedNetwork) for more examples and implementation details.
|
||||
# Retrieve the keypoints and matches
|
||||
output = outputs[0]
|
||||
keypoints0 = output["keypoints0"]
|
||||
keypoints1 = output["keypoints1"]
|
||||
matching_scores = output["matching_scores"]
|
||||
keypoints0_x, keypoints0_y = keypoints0[:, 0].numpy(), keypoints0[:, 1].numpy()
|
||||
keypoints1_x, keypoints1_y = keypoints1[:, 0].numpy(), keypoints1[:, 1].numpy()
|
||||
|
||||
# Plot the matches
|
||||
for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip(
|
||||
keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, matching_scores
|
||||
):
|
||||
plt.plot(
|
||||
[keypoint0_x, keypoint1_x + image1.width],
|
||||
[keypoint0_y, keypoint1_y],
|
||||
color=plt.get_cmap("RdYlGn")(matching_score.item()),
|
||||
alpha=0.9,
|
||||
linewidth=0.5,
|
||||
)
|
||||
plt.scatter(keypoint0_x, keypoint0_y, c="black", s=2)
|
||||
plt.scatter(keypoint1_x + image1.width, keypoint1_y, c="black", s=2)
|
||||
|
||||
# Save the plot
|
||||
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
```
|
||||
|
||||

|
||||
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/magicleap/SuperGluePretrainedNetwork).
|
||||
|
||||
## SuperGlueConfig
|
||||
|
||||
@ -154,15 +133,10 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
[[autodoc]] SuperGlueImageProcessor
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## SuperGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] SuperGlueForKeypointMatching
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
- post_process_keypoint_matching
|
@ -14,90 +14,35 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
# SwitchTransformers
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Switch Transformers
|
||||
## Overview
|
||||
|
||||
[Switch Transformers](https://huggingface.co/papers/2101.03961) is a sparse T5 model where the MLP layer is replaced by a Mixture-of-Experts (MoE). A routing mechanism associates each token with an expert and each expert is a dense MLP. Sparsity enables better scaling and the routing mechanism allows the model to select relevant weights on the fly which increases model capacity.
|
||||
The SwitchTransformers model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://huggingface.co/papers/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
|
||||
|
||||
You can find all the original Switch Transformers checkpoints under the [Switch Transformer](https://huggingface.co/collections/google/switch-transformers-release-6548c35c6507968374b56d1f) collection.
|
||||
The Switch Transformer model uses a sparse T5 encoder-decoder architecture, where the MLP are replaced by a Mixture of Experts (MoE). A routing mechanism (top 1 in this case) associates each token to one of the expert, where each expert is a dense MLP. While switch transformers have a lot more weights than their equivalent dense models, the sparsity allows better scaling and better finetuning performance at scale.
|
||||
During a forward pass, only a fraction of the weights are used. The routing mechanism allows the model to select relevant weights on the fly which increases the model capacity without increasing the number of operations.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
>
|
||||
> Click on the Switch Transformers models in the right sidebar for more examples of how to apply Switch Transformers to different natural language tasks.
|
||||
*In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model.*
|
||||
|
||||
The example below demonstrates how to predict the masked token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ).
|
||||
The original code can be found [here](https://github.com/google/flaxformer/tree/main/flaxformer/architectures/moe).
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
## Usage tips
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
- SwitchTransformers uses the [`T5Tokenizer`], which can be loaded directly from each model's repository.
|
||||
- The released weights are pretrained on English [Masked Language Modeling](https://moon-ci-docs.huggingface.co/docs/transformers/pr_19323/en/glossary#general-terms) task, and should be finetuned.
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text2text-generation",
|
||||
model="google/switch-base-8",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
print(pipeline("The capital of France is <extra_id_0>."))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", torch_dtype=torch.float16)
|
||||
|
||||
input_text = "The capital of France is <extra_id_0>."
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
|
||||
|
||||
outputs = model.generate(input_ids)
|
||||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "The capital of France is <extra_id_0>." | transformers run --task text2text-generation --model google/switch-base-8 --device 0
|
||||
# [{'generated_text': 'Paris.'}]
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes/) to only quantize the weights to 8-bits.
|
||||
|
||||
```py
|
||||
# pip install bitsandbytes
|
||||
import torch
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", quantization_config=quantization_config)
|
||||
|
||||
input_text = "The capital of France is <extra_id_0>."
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
|
||||
|
||||
outputs = model.generate(input_ids)
|
||||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
## Resources
|
||||
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
|
||||
## SwitchTransformersConfig
|
||||
|
||||
|
@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# T5Gemma
|
||||
|
||||
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large language models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
|
||||
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large langauge models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
|
||||
|
||||
T5Gemma has two groups of model sizes: 1) [Gemma 2](https://ai.google.dev/gemma/docs/core/model_card_2) sizes (2B-2B, 9B-2B, and 9B-9B), which are based on the offical Gemma 2 models (2B and 9B); and 2) [T5](https://arxiv.org/abs/1910.10683) sizes (Small, Base, Large, and XL), where are pretrained under the Gemma 2 framework following T5 configuration. In addition, we also provide a model at ML size (medium large, ~2B in total), which is in-between T5 Large and T5 XL.
|
||||
|
||||
|
@ -37,7 +37,6 @@ The original code can be found [here](https://github.com/google-research/timesfm
|
||||
To use the model:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import TimesFmModelForPrediction
|
||||
|
||||
|
@ -1,300 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Voxtral
|
||||
|
||||
Voxtral is an upgrade of [Ministral 3B and Mistral Small 3B](https://mistral.ai/news/ministraux), extending its language capabilities with audio input support. It is designed to handle tasks such as speech transcription, translation, and audio understanding.
|
||||
|
||||
You can read more in Mistral's [realease blog post](https://mistral.ai/news/voxtral).
|
||||
|
||||
The model is available in two checkpoints:
|
||||
- 3B: [mistralai/Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507)
|
||||
- 24B: [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507)
|
||||
|
||||
## Key Features
|
||||
|
||||
Voxtral builds on Ministral-3B by adding audio processing capabilities:
|
||||
|
||||
- **Transcription mode**: Includes a dedicated mode for speech transcription. By default, Voxtral detects the spoken language and transcribes it accordingly.
|
||||
- **Long-form context**: With a 32k token context window, Voxtral can process up to 30 minutes of audio for transcription or 40 minutes for broader audio understanding.
|
||||
- **Integrated Q&A and summarization**: Supports querying audio directly and producing structured summaries without relying on separate ASR and language models.
|
||||
- **Multilingual support**: Automatically detects language and performs well across several widely spoken languages, including English, Spanish, French, Portuguese, Hindi, German, Dutch, and Italian.
|
||||
- **Function calling via voice**: Can trigger functions or workflows directly from spoken input based on detected user intent.
|
||||
- **Text capabilities**: Maintains the strong text processing performance of its Ministral-3B foundation.
|
||||
|
||||
## Usage
|
||||
|
||||
Let's first load the model!
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
```
|
||||
|
||||
### Audio Instruct Mode
|
||||
|
||||
The model supports audio-text instructions, including multi-turn and multi-audio interactions, all processed in batches.
|
||||
|
||||
➡️ audio + text instruction
|
||||
```python
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"url": "https://huggingface.co/datasets/eustlb/audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
{"type": "text", "text": "What can you tell me about this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ multi-audio + text instruction
|
||||
```python
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ multi-turn:
|
||||
```python
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
||||
},
|
||||
{"type": "text", "text": "Describe briefly what you can hear."},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
{"type": "text", "text": "Ok, now compare this new audio with the previous one."},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ text only:
|
||||
```python
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What if a cyber brain could possibly generate its own ghost, and create a soul all by itself?",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ audio only:
|
||||
```python
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ batched inference!
|
||||
```python
|
||||
conversations = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Who's speaking in the speach and what city's weather is being discussed?",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What can you tell me about this audio?"},
|
||||
],
|
||||
}
|
||||
],
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversations)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated responses:")
|
||||
print("=" * 80)
|
||||
for decoded_output in decoded_outputs:
|
||||
print(decoded_output)
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
### Transcription Mode
|
||||
|
||||
Use the model to transcribe audio (supports English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)!
|
||||
|
||||
```python
|
||||
inputs = processor.apply_transcrition_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3")
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated responses:")
|
||||
print("=" * 80)
|
||||
for decoded_output in decoded_outputs:
|
||||
print(decoded_output)
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
|
||||
|
||||
## VoxtralConfig
|
||||
|
||||
[[autodoc]] VoxtralConfig
|
||||
|
||||
## VoxtralEncoderConfig
|
||||
|
||||
[[autodoc]] VoxtralEncoderConfig
|
||||
|
||||
## VoxtralProcessor
|
||||
|
||||
[[autodoc]] VoxtralProcessor
|
||||
|
||||
## VoxtralEncoder
|
||||
|
||||
[[autodoc]] VoxtralEncoder
|
||||
- forward
|
||||
|
||||
## VoxtralForConditionalGeneration
|
||||
|
||||
[[autodoc]] VoxtralForConditionalGeneration
|
||||
- forward
|
@ -164,7 +164,7 @@ args = TrainingArguments(
|
||||
output_dir="./test-schedulefree",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
+ optim="schedule_free_radamw",
|
||||
+ optim="schedule_free_radamw,
|
||||
+ lr_scheduler_type="constant",
|
||||
gradient_checkpointing=True,
|
||||
logging_strategy="steps",
|
||||
@ -174,29 +174,3 @@ args = TrainingArguments(
|
||||
run_name="sfo",
|
||||
)
|
||||
```
|
||||
|
||||
## StableAdamW
|
||||
|
||||
```bash
|
||||
pip install torch-optimi
|
||||
```
|
||||
|
||||
[StableAdamW](https://arxiv.org/pdf/2304.13013) is a hybrid between AdamW and AdaFactor. It ports AdaFactor's update clipping into AdamW, which removes the need for gradient clipping. Otherwise, it behaves as a drop-in replacement for AdamW.
|
||||
|
||||
> [!TIP]
|
||||
> If training on large batch sizes or still observing training loss spikes, consider reducing beta_2 between [0.95, 0.99].
|
||||
|
||||
```diff
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-stable-adamw",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
+ optim="stable_adamw",
|
||||
gradient_checkpointing=True,
|
||||
logging_strategy="steps",
|
||||
logging_steps=1,
|
||||
learning_rate=2e-6,
|
||||
save_strategy="no",
|
||||
run_name="stable-adamw",
|
||||
)
|
||||
```
|
@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Build your own machine
|
||||
|
||||
One of the most important considerations when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
|
||||
One of the most important consideration when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
|
||||
|
||||
This guide provides some practical tips for setting up a GPU for deep learning. For a more detailed discussion and comparison of GPUs, take a look at the [Which GPU(s) to Get for Deep Learning](https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/) blog post.
|
||||
|
||||
@ -25,11 +25,11 @@ High-end consumer GPUs may have two or three PCIe 8-pin power sockets, and you s
|
||||
|
||||
Each PCIe 8-pin power cable should be connected to a 12V rail on the power supply unit (PSU) and can deliver up to 150W. Other GPUs may use a PCIe 12-pin connector which can deliver up to 500-600W. Lower-end GPUs may only use a PCIe 6-pin connector which supplies up to 75W.
|
||||
|
||||
It is important that the PSU maintains stable voltage; otherwise, it may fail to supply the GPU with enough power during peak usage.
|
||||
It is important the PSU has stable voltage otherwise it may not be able to supply the GPU with enough power to function properly during peak usage.
|
||||
|
||||
## Cooling
|
||||
|
||||
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158–167°F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194°F, the GPU may begin to throttle performance.
|
||||
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158 - 167F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194F, the GPU may begin to throttle performance.
|
||||
|
||||
## Multi-GPU connectivity
|
||||
|
||||
|
@ -177,16 +177,10 @@ There are three supported implementations available.
|
||||
|
||||
SDPA is used by default for PyTorch v2.1.1. and greater when an implementation is available. You could explicitly enable SDPA by setting `attn_implementation="sdpa"` in [`~PreTrainedModel.from_pretrained`] though. Certain attention parameters, such as `head_mask` and `output_attentions=True`, are unsupported and returns a warning that Transformers will fall back to the (slower) eager implementation.
|
||||
|
||||
Refer to the [AttentionInterface](./attention_interface) guide to learn how to change the attention implementation after loading a model.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto", attn_implementation="sdpa")
|
||||
|
||||
# Change the model's attention dynamically after loading it
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto")
|
||||
model.set_attention_implementation("sdpa")
|
||||
```
|
||||
|
||||
SDPA selects the most performant implementation available, but you can also explicitly select an implementation with [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager. The example below shows how to enable the FlashAttention2 implementation with `enable_flash=True`.
|
||||
@ -240,7 +234,7 @@ FlashAttention2 support is currently limited to Instinct MI210, Instinct MI250 a
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or by setting `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface). FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
|
||||
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`]. FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
@ -16,22 +16,62 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Serving
|
||||
|
||||
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
|
||||
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users.
|
||||
|
||||
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
|
||||
You can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
|
||||
|
||||
## TGI
|
||||
|
||||
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
|
||||
|
||||
Serve a Transformers implementation the same way you'd serve a TGI model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
|
||||
```
|
||||
|
||||
Add `--trust-remote_code` to the command to serve a custom Transformers model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
|
||||
```
|
||||
|
||||
## vLLM
|
||||
|
||||
[vLLM](https://docs.vllm.ai/en/latest/index.html) can also serve a Transformers implementation of a model if it isn't [natively implemented](https://docs.vllm.ai/en/latest/models/supported_models.html#list-of-text-only-language-models) in vLLM.
|
||||
|
||||
Many features like quantization, LoRA adapters, and distributed inference and serving are supported for the Transformers implementation.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Transformers fallback](https://docs.vllm.ai/en/latest/models/supported_models.html#transformers-fallback) section for more details.
|
||||
|
||||
By default, vLLM serves the native implementation and if it doesn't exist, it falls back on the Transformers implementation. But you can also set `--model-impl transformers` to explicitly use the Transformers model implementation.
|
||||
|
||||
```shell
|
||||
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
|
||||
--task generate \
|
||||
--model-impl transformers
|
||||
```
|
||||
|
||||
Add the `trust-remote-code` parameter to enable loading a remote code model.
|
||||
|
||||
```shell
|
||||
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
|
||||
--task generate \
|
||||
--model-impl transformers \
|
||||
--trust-remote-code
|
||||
```
|
||||
|
||||
## Serve CLI
|
||||
|
||||
> [!WARNING]
|
||||
> This section is experimental and subject to change in future versions
|
||||
|
||||
You can serve models of diverse modalities supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers compatibility with the OpenAI SDK, which is the _de facto_ standard for LLM conversations and other related tasks. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
|
||||
|
||||
The server supports the following REST APIs:
|
||||
- `/v1/chat/completions`
|
||||
- `/v1/responses`
|
||||
- `/v1/audio/transcriptions`
|
||||
- `/v1/models`
|
||||
<!-- TODO: LLMs -> models, after we add audio/image input/output support -->
|
||||
You can serve LLMs supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers a chat Completions API compatible with the OpenAI SDK, which is the _de facto_ standard for LLM conversations. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
|
||||
|
||||
To launch a server, simply use the `transformers serve` CLI command:
|
||||
|
||||
@ -69,7 +109,7 @@ The server is also an MCP client, so it can interact with MCP tools in agentic u
|
||||
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
|
||||
|
||||
|
||||
### Usage example 1: chat with local requests (feat. Jan)
|
||||
### Usage example 1: apps with local requests (feat. Jan)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
|
||||
|
||||
@ -99,17 +139,17 @@ ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_s
|
||||
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
|
||||
|
||||
|
||||
### Usage example 2: chat with external requests (feat. Cursor)
|
||||
### Usage example 2: apps with external requests (feat. Cursor)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
|
||||
|
||||
To launch a server with CORS enabled, run
|
||||
To launch our server with CORS enabled, run
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
We'll also need to expose our server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
|
||||
```shell
|
||||
ngrok http [port]
|
||||
@ -121,7 +161,7 @@ where `port` is the port used by `transformers serve` (`8000` by default). On th
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
|
||||
We're now ready to set things up on the app side! In Cursor, while we can't set a new provider, we can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set our `transformers serve` endpoint, follow this order:
|
||||
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
|
||||
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
|
||||
3. Add some random text to OpenAI API Key. This field won't be used, but it can’t be empty;
|
||||
@ -185,26 +225,3 @@ Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/
|
||||
|
||||
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
|
||||
```
|
||||
|
||||
### Usage example 4: speech to text transcription (feat. Open WebUI)
|
||||
|
||||
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
|
||||
|
||||
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
|
||||
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
|
||||
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
|
||||
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
|
||||
|
||||
If you've done everything correctly, the audio tab should look like this
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.
|
||||
|
@ -187,13 +187,13 @@ from torch import nn
|
||||
from transformers import Trainer
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
|
||||
def compute_losss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
|
||||
labels = inputs.pop("labels")
|
||||
# forward pass
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.get("logits")
|
||||
# compute custom loss for 3 labels with different weights
|
||||
reduction = "sum" if num_items_in_batch is not None else "mean"
|
||||
reduction = "mean" if num_items_in_batch is not None else "sum"
|
||||
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device, reduction=reduction))
|
||||
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
|
||||
if num_items_in_batch is not None:
|
||||
|
@ -1,254 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Inference server backends
|
||||
|
||||
Transformers' models are compatible with different inference servers like vLLM and SGLang. Instead of implementing a model for each inference server, you only need one model, which can be plugged into any inference server. It simplifies maintenance and makes it easy for users to use different inference servers for different use cases.
|
||||
|
||||
With Transformers as a backend, you can also serve any model - including custom and Hub-hosted models - without waiting for native support.
|
||||
|
||||
This guide shows how to use Transformers' models as a backend to some popular inference servers and how to build a model that supports all inference servers.
|
||||
|
||||
## vLLM
|
||||
|
||||
[vLLM](https://github.com/vllm-project/vllm) is a high-performance inference engine optimized for serving LLMs at scale. It supports many Transformers' models, including all decoder-only LLMs and several vision-language models (VLMs). VLMs currently support image inputs only, with video support planned.
|
||||
|
||||
vLLM automatically selects the best backend, and if a model isn’t natively supported, it falls back to the Transformers model. To explicitly use a Transformers' model, set `model_impl="transformers"`.
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
|
||||
```
|
||||
Add `--model-impl transformers` to `vllm serve` to launch a server with a Transformers' model.
|
||||
|
||||
```bash
|
||||
vllm serve meta-llama/Llama-3.2-1B \
|
||||
--task generate \
|
||||
--model-impl transformers
|
||||
```
|
||||
|
||||
Refer to the [vLLM docs](https://docs.vllm.ai/en/latest/models/transformers_backend.html) for more usage examples and tips on using a Transformers as the backend.
|
||||
|
||||
|
||||
## SGLang
|
||||
|
||||
[SGLang](https://github.com/InternLM/sglang) is a high-performance, OpenAI-compatible server and runtime designed for chat-based LLMs. It offers fast inference, role-based conversation handling, and support for custom pipelines, making it great for building real-world LLM apps.
|
||||
|
||||
SGLang automatically falls back to the Transformers backend if a model isn’t natively supported. To explicitly use a Transformers' model, set `impl="transformers"`.
|
||||
|
||||
```python
|
||||
import sglang as sgl
|
||||
|
||||
llm = sgl.Engine("meta-llama/Llama-3.2-1B-Instruct", impl="transformers")
|
||||
print(llm.generate(["The capital of France is"], {"max_new_tokens": 20})[0])
|
||||
```
|
||||
|
||||
Add `impl transformers` to `sglang.launch_server` to launch a server with a Transformers' model.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
```bash
|
||||
python3 -m sglang.launch_server \
|
||||
--model-path kyutai/helium-1-preview-2b \
|
||||
--impl transformers \
|
||||
--host 0.0.0.0 \
|
||||
--port 30000
|
||||
```
|
||||
|
||||
Refer to the [SGLang docs](https://docs.sglang.ai/supported_models/transformers_fallback.html) for more usage examples and tips on using a Transformers as the backend.
|
||||
|
||||
## TGI
|
||||
|
||||
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
|
||||
|
||||
Serve a Transformers implementation the same way you'd serve a TGI model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
|
||||
```
|
||||
|
||||
Add `--trust-remote_code` to the command to serve a custom Transformers model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
|
||||
```
|
||||
|
||||
## Building a compatible model backend
|
||||
|
||||
To ensure a model is compatible as a backend to any inference server, make sure it is compatible with Transformers and supports the [AttentionInterface](./attention_interface) class.
|
||||
|
||||
1. A model must be Transformers-compatible following the model [contribution guidelines](./add_new_model) or the [custom model contribution guidelines](./custom_models). Make sure the model has a valid `config.json` in its directory and a valid `auto_map` field pointing to the model class in the config.
|
||||
|
||||
2. A model's attentions needs to be configurable with the [AttentionInterface](./attention_interface) to allow custom and optimized attention functions. This is important for enabling the performance features of the different inference servers.
|
||||
Use `ALL_ATTENTION_FUNCTIONS` when defining the attention layer and propagate `**kwargs**` from the base `MyModel` class to the attention layers. Set `_supports_attention_backend` to `True` in [`PreTrainedModel`]. Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>modeling_my_model.py</summary>
|
||||
|
||||
```python
|
||||
|
||||
from transformers import PreTrainedModel
|
||||
from torch import nn
|
||||
|
||||
class MyAttention(nn.Module):
|
||||
|
||||
def forward(self, hidden_states, **kwargs):
|
||||
...
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
**kwargs,
|
||||
)
|
||||
...
|
||||
|
||||
class MyModel(PreTrainedModel):
|
||||
_supports_attention_backend = True
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
3. This step is optional, but if you want to support tensor parallel and/or pipeline parallel features, add the following keys to the config.
|
||||
* `base_model_tp_plan` enables [tensor parallelism](./perf_infer_gpu_multi) by mapping fully qualified layer name patterns to tensor parallel styles. Only the `"colwise"` and `"rowwise"` partitioning strategies are currently supported.
|
||||
* `base_model_pp_plan` enables pipeline parallelism by mapping direct child layer names to tuples of lists of strings. The list in the first element of the tuple contains the names of the input arguments. The list in the last element of the tuple contains the names of the variables the layer outputs to in the modeling code.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>configuration_my_model.py</summary>
|
||||
|
||||
```python
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
class MyConfig(PretrainedConfig):
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.mlp.gate_proj": "colwise",
|
||||
"layers.*.mlp.up_proj": "colwise",
|
||||
"layers.*.mlp.down_proj": "rowwise",
|
||||
}
|
||||
base_model_pp_plan = {
|
||||
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||
"norm": (["hidden_states"], ["hidden_states"]),
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
### Multimodal models
|
||||
|
||||
For multimodal models, you need to include a few more changes on top of the general recommendations. These rules ensure that your model integrates properly with multimodal data.
|
||||
|
||||
1. A multimodal model requires a base `MyMultiModalModel` class to handle multimodal fusion without a language modeling head and a separate generative class that adds a head.
|
||||
|
||||
The base model needs to implement the `get_image_features()` method to accept image pixel values and return encoded outputs. These are later merged with the language embeddings and don't require any postprocessing. The shape of the returned features must match the number of input images. If a vision encoder returns variable-length outputs (patch-based), return a list of 2D tensors of size `(image_seq_len, image_dim)` for each image.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>modeling_my_multimodal_model.py</summary>
|
||||
|
||||
```python
|
||||
from transformers.generation import GenerationMixin
|
||||
|
||||
class MyMultimodalModel(MyMultimodalPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.language_model = AutoModel.from_config(config.text_config)
|
||||
self.vision_tower = AutoModel.from_config(config.vision_config)
|
||||
self.multimodal_projection = nn.Linear(vision_dim, text_dim)
|
||||
|
||||
def get_image_features(self, pixel_values):
|
||||
return self.vision_tower(pixel_values).last_hidden_states
|
||||
|
||||
def forward(self, input_ids, pixel_values, **kwargs):
|
||||
# process your inputs
|
||||
return MyModelOutputWithPast(
|
||||
last_hidden_state=last_hidden_state,
|
||||
image_hidden_states=image_features,
|
||||
[...]
|
||||
)
|
||||
|
||||
class MyMultimodalModelForConditionalGeneration(MyMultimodalPreTrainedModel, GenerationMixin):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = MyMultimodalModel(config)
|
||||
self.lm_head = nn.Linear(hidden_dim, vocab_size)
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
2. A multimodal model config must be nested with the following fields.
|
||||
* text_config: decoder language model config
|
||||
* vision_config: vision encoder config
|
||||
* image_token_id: ID of the image placeholder token used in the input to indicate image position
|
||||
|
||||
3. A multimodal model's processing class must have the `self.image_token` and `self.image_token_ids` attributes. These are placeholder tokens used to indicate image positions in the input. The placeholder token is the same token used in the input prompt and to mask scatter image features.
|
||||
|
||||
The processing class also needs ` self._get_num_multimodal_tokens` method to compute the number of placeholder tokens needed for multimodal inputs with given sizes and to return a [`MultiModalData`] object. The placeholder for row and column tokens don't count as image placeholders. Only the tokens that are actually replaced by image features are computed.
|
||||
|
||||
Finally, when `return_mm_token_type_ids=True`, the class has to return `mm_token_type_ids` to indicate whether each position is a text token (`0`) or image placeholder token (`1`). Each image's token type IDs must be contiguous with no breaks between consecutive ones.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>processing_my_multimodal_model.py</summary>
|
||||
|
||||
```python
|
||||
class MyMultimodalProcessor(ProcessorMixin):
|
||||
|
||||
def __call__(self, images=None, text=None, **kwargs):
|
||||
if return_mm_token_type_ids:
|
||||
mm_token_type_ids = np.zeros_like(input_ids)
|
||||
mm_token_type_ids[input_ids == self.image_token_id] = 1
|
||||
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
||||
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
||||
|
||||
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
||||
"""
|
||||
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
||||
Args:
|
||||
image_sizes (`list[list[int]]`, *optional*):
|
||||
The input sizes formatted as (height, width) per each image.
|
||||
Returns:
|
||||
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
||||
input modalities, along with other useful data.
|
||||
"""
|
||||
vision_data = {}
|
||||
if image_sizes is not None:
|
||||
num_image_tokens = [256] * len(image_sizes) # 256 placeholder tokens for each image always
|
||||
num_image_patches = [1] * len(image_sizes) # no patching, thus each image is processed as a single base image
|
||||
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
||||
return MultiModalData(**vision_data)
|
||||
```
|
||||
</details>
|
||||
|
||||
## Resources
|
||||
|
||||
* Read the [Transformers backend integration in vLLM](https://blog.vllm.ai/2025/04/11/transformers-backend.html) blog post for more details about the Transformers backend in vLLM.
|
||||
* Read the [Transformers backend integration in SGLang](https://huggingface.co/blog/transformers-backend-sglang) blog post for more details about the Transformers backend in SGLang.
|
@ -157,8 +157,6 @@
|
||||
title: (번역중) VPTQ
|
||||
- local: quantization/quanto
|
||||
title: Quanto
|
||||
- local: quantization/quark
|
||||
title: Quark
|
||||
- local: quantization/eetq
|
||||
title: EETQ
|
||||
- local: in_translation
|
||||
@ -202,8 +200,6 @@
|
||||
title: CPU로 추론하기
|
||||
- local: perf_infer_gpu_one
|
||||
title: 하나의 GPU를 활용한 추론
|
||||
- local: perf_infer_gpu_multi
|
||||
title: 다중 GPU를 활용한 추론
|
||||
title: 추론 최적화하기
|
||||
- local: big_models
|
||||
title: 대형 모델을 인스턴스화
|
||||
|
@ -345,6 +345,12 @@ generation_output[:2]
|
||||
[[autodoc]] Cache
|
||||
- update
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
- update
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
- validate
|
||||
|
||||
[[autodoc]] DynamicCache
|
||||
- update
|
||||
- get_seq_length
|
||||
|
@ -1,311 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 분산 추론[[distributed-inference]]
|
||||
|
||||
모델이 단일 GPU에 올라가지 않는 경우, [텐서 병렬 처리](./perf_train_gpu_many#tensor-parallelism)를 사용한 분산 추론이 도움이 될 수 있습니다. 텐서 병렬화는 모델을 여러 가속기(CUDA GPU, Intel XPU 등)에 분할하여 행렬 곱셈과 같은 계산을 병렬화합니다. 이를 통해 더 큰 모델을 메모리에 올릴 수 있으며, 각 가속기가 텐서의 일부를 처리하므로 추론 속도가 향상됩니다.
|
||||
|
||||
그러나 텐서 병렬화는 통신 오버헤드를 발생시키므로, 빠른 노드 내 통신을 활용할 수 있는 다중 가속기 환경에서 사용하는 것이 가장 효과적입니다. 다중 노드 학습 환경에서는 사용 사례에 따라 파이프라인 병렬화나 데이터 병렬화를 사용하는 것이 더 효율적일 수 있습니다.
|
||||
|
||||
> [!TIP]
|
||||
> 텐서 병렬화에 대해 더 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)의 텐서 병렬화 섹션을 참조하세요.
|
||||
|
||||
아래 목록에서 텐서 병렬 처리를 기본적으로 지원하는 모델을 확인할 수 있습니다. 새로운 모델에 대한 지원을 추가하려면 GitHub 이슈나 풀 리퀘스트를 열어주세요.
|
||||
|
||||
<details>
|
||||
<summary>지원되는 모델 보기</summary>
|
||||
|
||||
* [Cohere](./model_doc/cohere) 및 [Cohere 2](./model_doc/cohere2)
|
||||
* [Gemma](./model_doc/gemma) 및 [Gemma 2](./model_doc/gemma2)
|
||||
* [GLM](./model_doc/glm)
|
||||
* [Granite](./model_doc/granite)
|
||||
* [Llama](./model_doc/llama)
|
||||
* [Mistral](./model_doc/mistral)
|
||||
* [Mixtral](./model_doc/mixtral)
|
||||
* [OLMo](./model_doc/olmo) 및 [OLMo2](./model_doc/olmo2)
|
||||
* [Phi](./model_doc/phi) 및 [Phi-3](./model_doc/phi3)
|
||||
* [Qwen2](./model_doc/qwen2), [Qwen2Moe](./model_doc/qwen2_moe), 및 [Qwen2-VL](./model_doc/qwen2_5_vl)
|
||||
* [Starcoder2](./model_doc/starcoder2)
|
||||
|
||||
</details>
|
||||
|
||||
이 가이드는 Transformers에서 다양한 분할 전략을 사용하여 텐서 병렬화를 활성화하는 방법을 설명합니다.
|
||||
|
||||
## 모델 분할[[partitioning-a-model]]
|
||||
|
||||
Transformers는 `tp_plan`매개변수를 활용할 수 있는 모델에 대해 텐서 병렬 처리를 지원합니다. 모델 분할 방식은 두 가지가 있습니다.
|
||||
|
||||
- `auto` 텐서 병렬화 계획은 사전 정의된 구성을 기반으로 모델(위에 언급된 지원 모델)을 자동으로 분할합니다.
|
||||
- 사용자 지정 분할 계획을 직접 정의하여 [~PreTrainedModel.from_pretrained] 메소드의 `tp_plan` 매개변수로 전달할 수 있습니다.
|
||||
|
||||
<hfoptions id="sharding">
|
||||
<hfoption id="auto plan">
|
||||
|
||||
```py
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # 모든 가능한 전략을 시각화하기에 더 좋음
|
||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # 적은 수의 GPU에 더 좋음
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
|
||||
print(model._tp_plan)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
prompt = "Can I help"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
|
||||
# 분산 실행
|
||||
outputs = model(inputs)
|
||||
```
|
||||
|
||||
위의 추론 스크립트를 GPU당 4개 프로세스로 [torchrun](https://pytorch.org/docs/stable/elastic/run.html)에서 실행하세요.
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="manual plan">
|
||||
|
||||
각 레이어에 대한 텐서 병렬 계획을 `tp_plan`에 정의한 후 [`~PreTrainedModel.from_pretrained`]에 전달하세요. 아래 예시는 열 및 행 분할을 조합하여 사용합니다. 지원되는 다른 분할 전략은 [분할 전략](#partitioning-strategies) 섹션을 참고하세요.
|
||||
|
||||
> [!WARNING]
|
||||
> 사용자 지정 분할 계획을 수동으로 지정하려면 모델 아키텍처와 분할 전략이 함께 상호 작용하는 방식에 대한 충분한 이해가 필요합니다. 분할 전략을 잘못 설정하면 모델이 매우 느려지거나, 오류가 발생하거나, 부정확한 결과를 낼 수 있습니다. 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)을 참고하세요.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise",
|
||||
"model.layers.*.self_attn.k_proj": "colwise",
|
||||
"model.layers.*.self_attn.v_proj": "colwise",
|
||||
"model.layers.*.self_attn.o_proj": "rowwise",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## 분할 전략[[partitioning-strategies]]
|
||||
|
||||
모든 분할 전략은 문자열을 전략 구현에 매핑하는 [`ParallelInterface`] 클래스에서 정의됩니다. 모든 전략은 [`~PreTrainedModel.from_pretrained`]의 `tp_plan`을 통해 설정되므로 이 클래스와 직접 상호 작용할 필요는 없지만, 어떤 전략을 사용할 수 있는지 확인할 때 유용합니다.
|
||||
|
||||
```py
|
||||
class ParallelInterface(MutableMapping):
|
||||
"""
|
||||
허용된 어텐션 함수를 추적하는 딕셔너리 같은 객체입니다. `register()` 호출로 새로운 어텐션 함수를 쉽게 추가할 수 있습니다.
|
||||
모델이 기존 어텐션 함수(예: `sdpa`)를 로컬에서 덮어쓰려면 `modeling_<model>.py` 내부에서 이 클래스의 새 인스턴스를 선언하고
|
||||
해당 인스턴스에서 선언해야 합니다.
|
||||
"""
|
||||
_global_mapping = {
|
||||
"colwise": ColwiseParallel(),
|
||||
"rowwise": RowwiseParallel(),
|
||||
"colwise_rep": ColwiseParallel(output_layouts=Replicate()),
|
||||
"rowwise_rep": RowwiseParallel(input_layouts=Replicate()),
|
||||
"local_colwise": ColwiseParallel(use_dtensor=False),
|
||||
"local_rowwise": RowwiseParallel(use_dtensor=False),
|
||||
"local": IsolatedParallel(),
|
||||
"gather": GatherParallel(),
|
||||
"local_packed_rowwise": PackedRowwiseParallel(use_dtensor=False),
|
||||
"sequence_parallel": SequenceParallel(),
|
||||
"replicate": ReplicateParallel(),
|
||||
}
|
||||
```
|
||||
|
||||
각 전략에 대해 자세히 알아보려면 아래 표를 참고하세요.
|
||||
|
||||
| 전략 | 설명 |
|
||||
|---|---|
|
||||
| `ColwiseParallel` | 가중치와 편향의 열 방향 분할. |
|
||||
| `RowwiseParallel` | 가중치와 편향의 행 방향 분할. `nn.Embedding` 모듈 분할도 지원. |
|
||||
| `SequenceParallel` | `LayerNorm`과 `Dropout` 레이어를 지원하는 시퀀스 병렬 구현. [RMSNorm](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34)의 Python 구현도 지원. |
|
||||
| `PackedColwiseParallel` | 패킹된 가중치를 지원하는 `ColwiseParallel`의 변형(예: `up_proj`와 `gate_proj`를 함께 패킹). 자세한 내용은 [코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)를 참조하세요. |
|
||||
| `PackedRowwiseParallel` | 패킹된 가중치를 지원하는 `RowwiseParallel`의 변형([코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) 참조). |
|
||||
| `GatherParallel` | 기기 간 모듈의 출력을 수집. |
|
||||
| `IsolatedParallel` | Mixture-of-Experts(MoE) 레이어의 전문가에 사용되어 다른 기기로부터 모듈을 격리. |
|
||||
| `ReplicateParallel` | 부분적으로 분할된 모델로 인해 `torch.distributed` API가 중단되는 것을 방지하기 위해 모든 기기에 모듈을 복제. |
|
||||
|
||||
### 패킹된 전략[[packed-strategies]]
|
||||
|
||||
가중치 패킹은 여러 선형 레이어를 하나의 더 큰 레이어로 합치는 기법입니다. 패킹된 전략인 `PackedColwiseParallel`과 `PackedRowwiseParallel`은 패킹된 가중치를 분할하는 데 사용됩니다. 기본적인 `ColwiseParallel`이나 `RowwiseParallel`은 패킹된 가중치를 올바르게 분할하지 못합니다.
|
||||
|
||||
아래 예시는 `up_proj`와 `gate_proj`를 단일 `gate_up_proj` 모듈로 패킹하고 `gate_up_proj`를 분할하기 위해 `PackedRowwiseParallel` 전략이 필요합니다.
|
||||
|
||||
```python
|
||||
class Llama4TextExperts(nn.Module):
|
||||
...
|
||||
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
||||
```
|
||||
|
||||
배치 행렬 곱셈을 `forward` 패스에서 사용하여 `gate_up_proj` 모듈의 출력을 계산할 수 있습니다.
|
||||
|
||||
```python
|
||||
def forward(self, hidden_states):
|
||||
...
|
||||
gate_up = torch.bmm(hidden_states, self.gate_up_proj) # gate_up_proj 모듈의 출력 계산
|
||||
gate, up = gate_up.chunk(2, dim=-1) # 출력을 gate와 up으로 분할
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> `Packed*`를 사용해야 하는 이유에 대한 시각적 표현은 [이 주석](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)을 참고하세요.
|
||||
|
||||
### 로컬 전략[[local-strategies]]
|
||||
|
||||
로컬 전략(`local_colwise`, `local_rowwise`, `local_packed_rowwise`)은 [torch.chunk](https://docs.pytorch.org/docs/stable/generated/torch.chunk.html)와 같은 일부 연산에서 지원되지 않기 때문에 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)를 사용하지 않습니다. 대신 로컬 전략은 기본 [torch.Tensor](https://docs.pytorch.org/docs/stable/tensors.html)를 사용하고 일부 분산 로직을 수동으로 수행합니다.
|
||||
|
||||
<!--
|
||||
Readd this when I get the exact error message
|
||||
> [!TIP]
|
||||
> 사용자 정의 분할 전략을 사용하는데 `... is not supported` 오류로 작동하지 않는 경우, `local*` 전략을 사용해서 더 잘 작동하는지 시도해보세요.
|
||||
-->
|
||||
|
||||
## 사용자 정의 분할 전략[[custom-partitioning-strategies]]
|
||||
|
||||
사용자 정의 분할 전략은 [`TensorParallelLayer`](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py)를 상속하고 `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn`을 구현해야 합니다.
|
||||
|
||||
그런 다음 `tp_plan`에서 해당 전략을 지정했을 때 디스패칭 로직이 찾을 수 있도록 `ParallelInterface` 매핑에 등록해야 합니다.
|
||||
|
||||
아래 예시는 이 워크플로우로 `ColwiseParallel`을 구현하는 방법을 보여줍니다.
|
||||
|
||||
1. `TensorParallelLayer`를 상속합니다. `__init__` 메소드에서 입력 및 출력 텐서가 기기에 어떻게 배치되어야 하는지 설명하는 `input_layouts`과 `output_layouts`을 정의합니다. `desired_input_layouts` 속성은 입력이 기기에 어떻게 배치*되어야만* 하는지를 명시하는 데 사용됩니다.
|
||||
|
||||
```python
|
||||
class ColwiseParallel(TensorParallelLayer):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
input_layouts: Optional[Placement] = None, # 이전 레이어에서 오는 입력 레이아웃
|
||||
output_layouts: Optional[Placement] = None, # 달성하고자 하는 출력 레이아웃
|
||||
use_local_output: bool = True, # 로컬 출력 사용 여부
|
||||
use_dtensor=True, # DTensor 사용 여부
|
||||
):
|
||||
self.input_layouts = (input_layouts or Replicate(),) # 이전 레이어에서 오는 입력 분할
|
||||
self.output_layouts = (output_layouts or Shard(-1),) # 원하는 출력 분할
|
||||
self.desired_input_layouts = (Replicate(),) # 원하는 입력 분할, 입력은 GPU 간에 복제되어야 함
|
||||
self.use_local_output = use_local_output
|
||||
self.use_dtensor = use_dtensor
|
||||
```
|
||||
|
||||
2. `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn` 메서드를 구현합니다.
|
||||
|
||||
`partition_tensor` 메소드는 텐서를 분할하고 분할된 텐서로 `empty_param`을 채웁니다. 유틸리티 함수 `get_tensor_shard`를 사용하여 주어진 랭크에 대한 원본 매개변수의 올바른 분할을 얻고, 패킹된 가중치에 대해서는 `get_packed_weights`를 사용하세요.
|
||||
|
||||
```python
|
||||
def partition_tensor(
|
||||
self,
|
||||
param, # 매개변수의 전체 텐서
|
||||
empty_param, # 매개변수의 빈 텐서, 분할된 텐서로 채워짐
|
||||
param_type, # 매개변수 유형, `bias` 또는 `weight`
|
||||
param_casting_dtype, # 매개변수를 캐스팅할 유형
|
||||
to_contiguous, # 텐서를 연속적인 메모리 레이아웃으로 변환할지 여부
|
||||
rank, # 현재 기기의 랭크
|
||||
device_mesh, # 기기 메시
|
||||
) -> nn.Parameter: # 분할된 매개변수 반환
|
||||
...
|
||||
```
|
||||
|
||||
`_prepare_input_fn`과 `_prepare_output_fn` 메소드는 [사전 포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) 및 [포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) 훅에서 사용됩니다. `__init__`에서 지정된 대로 입력과 출력을 원하는 레이아웃으로 재분배합니다.
|
||||
|
||||
```python
|
||||
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
||||
...
|
||||
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
|
||||
...
|
||||
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
|
||||
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
|
||||
...
|
||||
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
|
||||
...
|
||||
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
|
||||
```
|
||||
|
||||
3. `tp_plan`과 함께 사용할 수 있도록 전략을 [`ParallelInterface`]에 등록합니다.
|
||||
|
||||
```python
|
||||
from transformers.integrations.tensor_parallel import ParallelInterface
|
||||
|
||||
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise_custom",
|
||||
...
|
||||
}
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
```
|
||||
|
||||
## 벤치마크[[benchmarks]]
|
||||
|
||||
텐서 병렬화는 특히 큰 배치 크기나 긴 시퀀스를 가진 입력에 대한 추론 속도를 크게 향상시킬 수 있습니다.
|
||||
|
||||
시퀀스 길이가 512인 [Llama](./model_doc/llama)에서 단일 포워드 패스에 대한 예상 속도 향상 수치는 아래 차트를 참조하세요.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
|
||||
</div>
|
||||
|
||||
## 설계 구현[[design-implementation]]
|
||||
|
||||
Transformers 텐서 병렬화 구현은 프레임워크에 구애받지 않지만, 구체적인 구현을 위해서는 [DeviceMesh](https://docs.pytorch.org/tutorials/recipes/distributed_device_mesh.html)와 [torch.distributed](https://docs.pytorch.org/tutorials/beginner/dist_overview.html)의 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)에 의존하여 간단하고 확장 가능한 인터페이스를 제공합니다.
|
||||
|
||||
### DeviceMesh[[devicemesh]]
|
||||
|
||||
`DeviceMesh`를 함께 통신하는 기기들의 다차원 그리드로 상상해보세요. 병렬 처리 전략마다 각기 다른 통신 패턴이 필요하므로, 여러 하위 메시를 가진 `DeviceMesh`를 만들 수 있습니다.
|
||||
|
||||
```python
|
||||
from torch.distributed.device_mesh import init_device_mesh
|
||||
|
||||
# 4개 GPU의 1D 메시 생성
|
||||
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
|
||||
```
|
||||
|
||||
`torch.distributed`에서 정의된 대부분의 병렬화 전략은 메시 자체나 하위 메시에 적용할 수 있으며, 자동으로 통신 패턴을 처리합니다.
|
||||
|
||||
### DTensor[[dtensor]]
|
||||
|
||||
`DTensor`(분산 텐서)는 일반적인 텐서 연산 위에 분산 로직을 처리하는 텐서 하위 클래스입니다. 텐서 병렬화의 대부분의 모델 가중치는 `DTensor` 형태로 저장됩니다.
|
||||
|
||||
DTensor의 가장 중요한 부분은 `placement` 속성입니다. 이는 PyTorch에게 텐서가 `DeviceMesh`의 기기에 어떻게 배치되는지 알려주기 때문입니다. `placement` 속성은 다음 값을 가질 수 있습니다.
|
||||
|
||||
- `Shard(dimension)` - `DTensor`가 구성된 `DeviceMesh`에서 주어진 차원에 걸쳐 어떻게 분할되는지 나타냅니다. 아래 예시는 열 방향 분할을 위해 다양한 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
|
||||
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # 첫 번째(열 방향) 차원에 걸쳐 분할
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # 유일한 차원에 걸쳐 분할
|
||||
```
|
||||
|
||||
이 예시는 행 방향 분할을 위해 여러 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
|
||||
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # 두 번째(행 방향) 차원에 걸쳐 분할
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
|
||||
```
|
||||
|
||||
- `Replicate()` - `DTensor`가 `DeviceMesh`에 걸쳐 복제됨을 나타냅니다. 각 기기에 텐서의 전체 사본만 생성합니다.
|
||||
|
||||
```py
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
|
||||
```
|
||||
|
||||
- `Partial()` - 텐서가 감소 연산을 기다리고 있는 상태임을 나타냅니다 (일반적으로 Transformers에서의 사용 사례와는 직접적인 관련이 적습니다).
|
@ -1,85 +0,0 @@
|
||||
<!--Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Quark[[quark]]
|
||||
|
||||
[Quark](https://quark.docs.amd.com/latest/)는 특정 데이터 타입, 알고리즘, 하드웨어에 구애받지 않도록 설계된 딥러닝 양자화 툴킷입니다. Quark에서는 다양한 전처리 전략, 알고리즘, 데이터 타입을 조합하여 사용할 수 있습니다.
|
||||
|
||||
🤗 Transformers를 통해 통합된 PyTorch 지원은 주로 AMD CPU 및 GPU를 대상으로 하며, 주로 평가 목적으로 사용됩니다. 예를 들어, [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)를 🤗 Transformers 백엔드와 함께 사용하여 Quark로 양자화된 다양한 모델을 원활하게 평가할 수 있습니다.
|
||||
|
||||
Quark에 관심이 있는 사용자는 [문서](https://quark.docs.amd.com/latest/)를 참고하여 모델 양자화를 시작하고 지원되는 오픈 소스 라이브러리에서 사용할 수 있습니다!
|
||||
|
||||
Quark는 자체 체크포인트/[설정 포맷](https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV-Quark-test/blob/main/config.json#L26)를 가지고 있지만, 다른 양자화/런타임 구현체 ([AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq), [네이티브 fp8](https://huggingface.co/docs/transformers/quantization/finegrained_fp8))와 호환되는 직렬화 레이아웃으로 모델을 생성하는 것도 지원합니다.
|
||||
|
||||
Transformer에서 Quark 양자화 모델을 로드하려면 먼저 라이브러리를 설치해야 합니다:
|
||||
|
||||
```bash
|
||||
pip install amd-quark
|
||||
```
|
||||
|
||||
## 지원 매트릭스[[Support matrix]]
|
||||
|
||||
Quark를 통해 양자화된 모델은 함께 조합할 수 있는 광범위한 기능을 지원합니다. 구성에 관계없이 모든 양자화된 모델은 `PretrainedModel.from_pretrained`를 통해 원활하게 다시 로드할 수 있습니다.
|
||||
|
||||
아래 표는 Quark에서 지원하는 몇 가지 기능을 보여줍니다:
|
||||
|
||||
| **기능** | **Quark에서 지원하는 항목** | |
|
||||
|---------------------------------|-----------------------------------------------------------------------------------------------------------|---|
|
||||
| 데이터 타입 | int8, int4, int2, bfloat16, float16, fp8_e5m2, fp8_e4m3, fp6_e3m2, fp6_e2m3, fp4, OCP MX, MX6, MX9, bfp16 | |
|
||||
| 양자화 전 모델 변환 | SmoothQuant, QuaRot, SpinQuant, AWQ | |
|
||||
| 양자화 알고리즘 | GPTQ | |
|
||||
| 지원 연산자 | ``nn.Linear``, ``nn.Conv2d``, ``nn.ConvTranspose2d``, ``nn.Embedding``, ``nn.EmbeddingBag`` | |
|
||||
| 세분성(Granularity) | per-tensor, per-channel, per-block, per-layer, per-layer type | |
|
||||
| KV 캐시 | fp8 | |
|
||||
| 활성화 캘리브레이션 | MinMax / Percentile / MSE | |
|
||||
| 양자화 전략 | weight-only, static, dynamic, with or without output quantization | |
|
||||
|
||||
## Hugging Face Hub의 모델[[Models on Hugging Face Hub]]
|
||||
|
||||
Quark 네이티브 직렬화를 사용하는 공개 모델은 https://huggingface.co/models?other=quark 에서 찾을 수 있습니다.
|
||||
|
||||
Quark는 [`quant_method="fp8"`을 이용하는 모델](https://huggingface.co/models?other=fp8)과 [`quant_method="awq"`을 사용하는 모델](https://huggingface.co/models?other=awq)도 지원하지만, Transformers는 이러한 모델을 [AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq)를 통해 불러오거나
|
||||
[🤗 Transformers의 네이티브 fp8 지원](https://huggingface.co/docs/transformers/quantization/finegrained_fp8)을 사용합니다.
|
||||
|
||||
## Transformers에서 Quark모델 사용하기[[Using Quark models in Transformers]]
|
||||
|
||||
다음은 Transformers에서 Quark 모델을 불러오는 방법의 예시입니다:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_id = "EmbeddedLLM/Llama-3.1-8B-Instruct-w_fp8_per_channel_sym"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
model = model.to("cuda")
|
||||
|
||||
print(model.model.layers[0].self_attn.q_proj)
|
||||
# QParamsLinear(
|
||||
# (weight_quantizer): ScaledRealQuantizer()
|
||||
# (input_quantizer): ScaledRealQuantizer()
|
||||
# (output_quantizer): ScaledRealQuantizer()
|
||||
# )
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
inp = tokenizer("Where is a good place to cycle around Tokyo?", return_tensors="pt")
|
||||
inp = inp.to("cuda")
|
||||
|
||||
res = model.generate(**inp, min_new_tokens=50, max_new_tokens=100)
|
||||
|
||||
print(tokenizer.batch_decode(res)[0])
|
||||
# <|begin_of_text|>Where is a good place to cycle around Tokyo? There are several places in Tokyo that are suitable for cycling, depending on your skill level and interests. Here are a few suggestions:
|
||||
# 1. Yoyogi Park: This park is a popular spot for cycling and has a wide, flat path that's perfect for beginners. You can also visit the Meiji Shrine, a famous Shinto shrine located in the park.
|
||||
# 2. Imperial Palace East Garden: This beautiful garden has a large, flat path that's perfect for cycling. You can also visit the
|
||||
```
|
@ -545,7 +545,7 @@ def main():
|
||||
|
||||
# region Tokenizer check: this script requires a fast tokenizer.
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
||||
raise TypeError(
|
||||
raise ValueError(
|
||||
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
|
||||
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
|
||||
" this requirement"
|
||||
|
@ -1,216 +0,0 @@
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
# This file was automatically generated from examples/modular-transformers/modular_duplicated_method.py.
|
||||
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
||||
# the file from the modular. If any change should be done, please apply the change to the
|
||||
# modular_duplicated_method.py file directly. One of our CI enforces this.
|
||||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...modeling_rope_utils import rope_config_validation
|
||||
|
||||
|
||||
class DuplicatedMethodConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`DuplicatedMethodModel`]. It is used to instantiate an DuplicatedMethod
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the DuplicatedMethod-7B.
|
||||
e.g. [meta-duplicated_method/DuplicatedMethod-2-7b-hf](https://huggingface.co/meta-duplicated_method/DuplicatedMethod-2-7b-hf)
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the DuplicatedMethod model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`DuplicatedMethodModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details, check out [this
|
||||
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. DuplicatedMethod 1 supports up to 2048 tokens,
|
||||
DuplicatedMethod 2 up to 4096, CodeLlama up to 16384.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
End of stream token id.
|
||||
pretraining_tp (`int`, *optional*, defaults to 1):
|
||||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||||
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
||||
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
||||
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
||||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
||||
accordingly.
|
||||
Expected contents:
|
||||
`rope_type` (`str`):
|
||||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
||||
'duplicated_method3'], with 'default' being the original RoPE implementation.
|
||||
`factor` (`float`, *optional*):
|
||||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
||||
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
||||
original maximum pre-trained length.
|
||||
`original_max_position_embeddings` (`int`, *optional*):
|
||||
Used with 'dynamic', 'longrope' and 'duplicated_method3'. The original max position embeddings used during
|
||||
pretraining.
|
||||
`attention_factor` (`float`, *optional*):
|
||||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
||||
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
||||
`factor` field to infer the suggested value.
|
||||
`beta_fast` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 32.
|
||||
`beta_slow` (`float`, *optional*):
|
||||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
||||
ramp function. If unspecified, it defaults to 1.
|
||||
`short_factor` (`list[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`long_factor` (`list[float]`, *optional*):
|
||||
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
||||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
||||
size divided by the number of attention heads divided by 2
|
||||
`low_freq_factor` (`float`, *optional*):
|
||||
Only used with 'duplicated_method3'. Scaling factor applied to low frequency components of the RoPE
|
||||
`high_freq_factor` (`float`, *optional*):
|
||||
Only used with 'duplicated_method3'. Scaling factor applied to high frequency components of the RoPE
|
||||
attention_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
mlp_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
||||
head_dim (`int`, *optional*):
|
||||
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
||||
|
||||
```python
|
||||
>>> from transformers import DuplicatedMethodModel, DuplicatedMethodConfig
|
||||
|
||||
>>> # Initializing a DuplicatedMethod duplicated_method-7b style configuration
|
||||
>>> configuration = DuplicatedMethodConfig()
|
||||
|
||||
>>> # Initializing a model from the duplicated_method-7b style configuration
|
||||
>>> model = DuplicatedMethodModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "duplicated_method"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
# Default tensor parallel plan for base model `DuplicatedMethodModel`
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.q_proj": "colwise",
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.mlp.gate_proj": "colwise",
|
||||
"layers.*.mlp.up_proj": "colwise",
|
||||
"layers.*.mlp.down_proj": "rowwise",
|
||||
}
|
||||
base_model_pp_plan = {
|
||||
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||
"norm": (["hidden_states"], ["hidden_states"]),
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
mlp_bias=False,
|
||||
head_dim=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.mlp_bias = mlp_bias
|
||||
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
||||
# Validate the correctness of rotary position embeddings parameters
|
||||
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
||||
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
||||
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
||||
rope_config_validation(self)
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return 45
|
||||
|
||||
@vocab_size.setter
|
||||
def vocab_size(self, value):
|
||||
self.vocab_size = value
|
@ -497,7 +497,7 @@ class Multimodal2VisionPreTrainedModel(PreTrainedModel):
|
||||
base_model_prefix = "multimodal2_vision"
|
||||
supports_gradient_checkpointing = True
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
|
@ -65,7 +65,7 @@ class MyNewModel2RotaryEmbedding(nn.Module):
|
||||
def __init__(self, config: MyNewModel2Config, device=None):
|
||||
super().__init__()
|
||||
# BC: "rope_type" was originally "type"
|
||||
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
||||
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
||||
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
||||
else:
|
||||
self.rope_type = "default"
|
||||
@ -289,7 +289,7 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["MyNewModel2DecoderLayer"]
|
||||
_skip_keys_device_placement = ["past_key_values"]
|
||||
_supports_flash_attn = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_sdpa = True
|
||||
_supports_flex_attn = True
|
||||
_supports_cache_class = True
|
||||
@ -333,6 +333,12 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@check_model_inputs
|
||||
@auto_docstring
|
||||
def forward(
|
||||
@ -427,6 +433,12 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
@can_return_tuple
|
||||
@auto_docstring
|
||||
def forward(
|
||||
|
@ -95,7 +95,7 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
|
||||
_supports_cache_class = True
|
||||
_supports_quantized_cache = True
|
||||
_supports_static_cache = True
|
||||
_supports_flash_attn = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_sdpa = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
@ -389,6 +389,12 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.set_input_embeddings(value)
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model.set_decoder(decoder)
|
||||
|
||||
|
@ -48,7 +48,7 @@ class SuperRotaryEmbedding(nn.Module):
|
||||
def __init__(self, config: SuperConfig, device=None):
|
||||
super().__init__()
|
||||
# BC: "rope_type" was originally "type"
|
||||
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
||||
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
||||
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
||||
else:
|
||||
self.rope_type = "default"
|
||||
@ -288,7 +288,7 @@ class SuperPreTrainedModel(PreTrainedModel):
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["SuperDecoderLayer"]
|
||||
_skip_keys_device_placement = ["past_key_values"]
|
||||
_supports_flash_attn = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_sdpa = True
|
||||
_supports_flex_attn = True
|
||||
_supports_cache_class = True
|
||||
@ -332,6 +332,12 @@ class SuperModel(SuperPreTrainedModel):
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@check_model_inputs
|
||||
@auto_docstring
|
||||
def forward(
|
||||
|
@ -1,11 +0,0 @@
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
|
||||
|
||||
class DuplicatedMethodConfig(LlamaConfig):
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return 45
|
||||
|
||||
@vocab_size.setter
|
||||
def vocab_size(self, value):
|
||||
self.vocab_size = value
|
@ -754,9 +754,9 @@ def get_parameters(model: nn.Module) -> Iterable[torch.Tensor]:
|
||||
Returns:
|
||||
Iterable[torch.Tensor]: An iterator over all parameters in the model
|
||||
"""
|
||||
for module in model._modules.values():
|
||||
for name, module in model._modules.items():
|
||||
# Look for parameters in module attributes
|
||||
for attr in module.__dict__.values():
|
||||
for attr_name, attr in module.__dict__.items():
|
||||
if isinstance(attr, torch.Tensor) and attr.requires_grad:
|
||||
yield attr
|
||||
# Recursively get parameters from submodules
|
||||
|
@ -65,7 +65,7 @@ examples/pytorch/token-classification/run_ner.py \
|
||||
|
||||
Most example scripts should have the first two command line arguments and some have the third one. You can quickly check if a given example supports any of these by passing a `-h` option, e.g.:
|
||||
```bash
|
||||
token-classification/run_ner.py -h
|
||||
examples/pytorch/token-classification/run_ner.py -h
|
||||
```
|
||||
|
||||
## Resuming training
|
||||
@ -110,7 +110,7 @@ classification MNLI task using the `run_glue` script, with 8 GPUs:
|
||||
|
||||
```bash
|
||||
torchrun \
|
||||
--nproc_per_node 8 text-classification/run_glue.py \
|
||||
--nproc_per_node 8 pytorch/text-classification/run_glue.py \
|
||||
--model_name_or_path google-bert/bert-large-uncased-whole-word-masking \
|
||||
--task_name mnli \
|
||||
--do_train \
|
||||
|
@ -84,7 +84,7 @@ loaded using the pre-trained weights.
|
||||
Finally, we can run the example script to train the model:
|
||||
|
||||
```bash
|
||||
python run_clip.py \
|
||||
python examples/pytorch/contrastive-image-text/run_clip.py \
|
||||
--output_dir ./clip-roberta-finetuned \
|
||||
--model_name_or_path ./clip-roberta \
|
||||
--data_dir $PWD/data \
|
||||
|
@ -31,7 +31,7 @@ from typing import Optional
|
||||
import datasets
|
||||
import evaluate
|
||||
import torch
|
||||
from datasets import IterableDataset, IterableDatasetDict, load_dataset
|
||||
from datasets import load_dataset
|
||||
|
||||
import transformers
|
||||
from transformers import (
|
||||
@ -225,45 +225,6 @@ class DataTrainingArguments:
|
||||
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
||||
|
||||
|
||||
def split_streaming_dataset(
|
||||
full_streaming_dataset,
|
||||
validation_percentage: int = 5,
|
||||
) -> IterableDatasetDict:
|
||||
"""
|
||||
Splits a streaming dataset into
|
||||
training and validation IterableDatasets, and supports methods like .map(), .filter(),
|
||||
.take() and properties like .features on the resulting streams.
|
||||
|
||||
Args:
|
||||
full_streaming_dataset (Dataset): The name of the dataset to load (e.g., "HuggingFaceFW/fineweb").
|
||||
validation_percentage (int): The proportion of the dataset to be used for validation split.
|
||||
|
||||
Returns:
|
||||
IterableDatasetDict: An IterableDatasetDict containing two IterableDataset objects: (train_stream, validation_stream).
|
||||
"""
|
||||
if not (0 < validation_percentage < 100):
|
||||
raise ValueError(
|
||||
f"validation_percentage must be between 0 and 100 (exclusive). Passed: {validation_percentage}"
|
||||
)
|
||||
|
||||
def split_generator(is_train: bool):
|
||||
for i, example in enumerate(full_streaming_dataset):
|
||||
if is_train:
|
||||
if i % 100 > validation_percentage:
|
||||
yield example
|
||||
else:
|
||||
if i % 100 < validation_percentage:
|
||||
yield example
|
||||
|
||||
features = full_streaming_dataset.features
|
||||
train_stream = IterableDataset.from_generator(split_generator, gen_kwargs={"is_train": True}, features=features)
|
||||
validation_stream = IterableDataset.from_generator(
|
||||
split_generator, gen_kwargs={"is_train": False}, features=features
|
||||
)
|
||||
|
||||
return IterableDatasetDict({"train": train_stream, "validation": validation_stream})
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
@ -344,36 +305,24 @@ def main():
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
if data_args.streaming:
|
||||
dataset_stream = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split="train",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
raw_datasets = split_streaming_dataset(dataset_stream, data_args.validation_split_percentage)
|
||||
else:
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
dataset_args = {}
|
||||
@ -398,34 +347,22 @@ def main():
|
||||
)
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
if "validation" not in raw_datasets.keys():
|
||||
if data_args.streaming:
|
||||
dataset_stream = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split="train",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets = split_streaming_dataset(dataset_stream, data_args.validation_split_percentage)
|
||||
else:
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.
|
||||
@ -604,22 +541,16 @@ def main():
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
train_dataset = lm_datasets["train"]
|
||||
if data_args.max_train_samples is not None:
|
||||
if data_args.streaming:
|
||||
train_dataset = train_dataset.take(data_args.max_train_samples)
|
||||
else:
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
|
||||
if training_args.do_eval:
|
||||
if "validation" not in tokenized_datasets:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
eval_dataset = lm_datasets["validation"]
|
||||
if data_args.max_eval_samples is not None:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.take(data_args.max_eval_samples)
|
||||
else:
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||
|
||||
def preprocess_logits_for_metrics(logits, labels):
|
||||
if isinstance(logits, tuple):
|
||||
@ -668,10 +599,7 @@ def main():
|
||||
max_train_samples = (
|
||||
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||
)
|
||||
if data_args.streaming:
|
||||
metrics["train_samples"] = max_train_samples
|
||||
else:
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
@ -684,11 +612,7 @@ def main():
|
||||
metrics = trainer.evaluate()
|
||||
|
||||
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||
if data_args.streaming:
|
||||
metrics["eval_samples"] = max_eval_samples
|
||||
else:
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
try:
|
||||
perplexity = math.exp(metrics["eval_loss"])
|
||||
except OverflowError:
|
||||
|
@ -21,7 +21,7 @@ limitations under the License.
|
||||
`run_swag` allows you to fine-tune any model from our [hub](https://huggingface.co/models) (as long as its architecture as a `ForMultipleChoice` version in the library) on the SWAG dataset or your own csv/jsonlines files as long as they are structured the same way. To make it works on another dataset, you will need to tweak the `preprocess_function` inside the script.
|
||||
|
||||
```bash
|
||||
python run_swag.py \
|
||||
python examples/pytorch/multiple-choice/run_swag.py \
|
||||
--model_name_or_path FacebookAI/roberta-base \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
|
@ -356,7 +356,7 @@ def main():
|
||||
|
||||
# Tokenizer check: this script requires a fast tokenizer.
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
||||
raise TypeError(
|
||||
raise ValueError(
|
||||
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
|
||||
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
|
||||
" this requirement"
|
||||
|
@ -324,12 +324,13 @@ def main():
|
||||
args.model_name_or_path, id2label=id2label, label2id=label2id, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
args.model_name_or_path, trust_remote_code=args.trust_remote_code, do_reduce_labels=args.do_reduce_labels
|
||||
args.model_name_or_path, trust_remote_code=args.trust_remote_code
|
||||
)
|
||||
model = AutoModelForSemanticSegmentation.from_pretrained(
|
||||
args.model_name_or_path,
|
||||
config=config,
|
||||
trust_remote_code=args.trust_remote_code,
|
||||
do_reduce_labels=args.do_reduce_labels,
|
||||
)
|
||||
|
||||
# Define transforms to be applied to each image and target.
|
||||
|
@ -40,7 +40,7 @@ and you also will find examples of these below.
|
||||
|
||||
Here is an example on a summarization task:
|
||||
```bash
|
||||
python run_summarization.py \
|
||||
python examples/pytorch/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
@ -64,7 +64,7 @@ And here is how you would use it on your own files, after adjusting the values f
|
||||
`--train_file`, `--validation_file`, `--text_column` and `--summary_column` to match your setup:
|
||||
|
||||
```bash
|
||||
python run_summarization.py \
|
||||
python examples/pytorch/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
|
@ -398,7 +398,7 @@ def main():
|
||||
|
||||
# Tokenizer check: this script requires a fast tokenizer.
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
||||
raise TypeError(
|
||||
raise ValueError(
|
||||
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
|
||||
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
|
||||
" this requirement"
|
||||
|
@ -42,7 +42,7 @@ and you also will find examples of these below.
|
||||
Here is an example of a translation fine-tuning with a MarianMT model:
|
||||
|
||||
```bash
|
||||
python run_translation.py \
|
||||
python examples/pytorch/translation/run_translation.py \
|
||||
--model_name_or_path Helsinki-NLP/opus-mt-en-ro \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
@ -62,7 +62,7 @@ MBart and some T5 models require special handling.
|
||||
T5 models `google-t5/t5-small`, `google-t5/t5-base`, `google-t5/t5-large`, `google-t5/t5-3b` and `google-t5/t5-11b` must use an additional argument: `--source_prefix "translate {source_lang} to {target_lang}"`. For example:
|
||||
|
||||
```bash
|
||||
python run_translation.py \
|
||||
python examples/pytorch/translation/run_translation.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
@ -85,7 +85,7 @@ For the aforementioned group of T5 models it's important to remember that if you
|
||||
MBart models require a different format for `--source_lang` and `--target_lang` values, e.g. instead of `en` it expects `en_XX`, for `ro` it expects `ro_RO`. The full MBart specification for language codes can be found [here](https://huggingface.co/facebook/mbart-large-cc25). For example:
|
||||
|
||||
```bash
|
||||
python run_translation.py \
|
||||
python examples/pytorch/translation/run_translation.py \
|
||||
--model_name_or_path facebook/mbart-large-en-ro \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
@ -104,7 +104,7 @@ And here is how you would use the translation finetuning on your own files, afte
|
||||
values for the arguments `--train_file`, `--validation_file` to match your setup:
|
||||
|
||||
```bash
|
||||
python run_translation.py \
|
||||
python examples/pytorch/translation/run_translation.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
@ -133,7 +133,7 @@ Here the languages are Romanian (`ro`) and English (`en`).
|
||||
If you want to use a pre-processed dataset that leads to high BLEU scores, but for the `en-de` language pair, you can use `--dataset_name stas/wmt14-en-de-pre-processed`, as following:
|
||||
|
||||
```bash
|
||||
python run_translation.py \
|
||||
python examples/pytorch/translation/run_translation.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
|
@ -377,7 +377,7 @@ def main():
|
||||
|
||||
# region Tokenizer check: this script requires a fast tokenizer.
|
||||
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
||||
raise TypeError(
|
||||
raise ValueError(
|
||||
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
|
||||
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
|
||||
" this requirement"
|
||||
|
@ -19,10 +19,10 @@ line-length = 119
|
||||
|
||||
[tool.ruff.lint]
|
||||
# Never enforce `E501` (line length violations).
|
||||
ignore = ["C901", "E501", "E741", "F402", "F823"]
|
||||
ignore = ["C901", "E501", "E741", "F402", "F823" ]
|
||||
# RUF013: Checks for the use of implicit Optional
|
||||
# in type annotations when the default parameter value is None.
|
||||
select = ["C", "E", "F", "I", "W", "RUF013", "UP006", "PERF102", "PLC1802", "PLC0208"]
|
||||
select = ["C", "E", "F", "I", "W", "RUF013", "UP006"]
|
||||
extend-safe-fixes = ["UP006"]
|
||||
|
||||
# Ignore import violations in all `__init__.py` files.
|
||||
|
11
setup.py
11
setup.py
@ -52,7 +52,7 @@ To create the package for pypi.
|
||||
twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/
|
||||
|
||||
Check that you can install it in a virtualenv by running:
|
||||
pip install -i https://test.pypi.org/simple/ transformers
|
||||
pip install -i https://testpypi.python.org/pypi transformers
|
||||
|
||||
Check you can run the following commands:
|
||||
python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))"
|
||||
@ -103,7 +103,7 @@ _deps = [
|
||||
"codecarbon>=2.8.1",
|
||||
"cookiecutter==1.7.3",
|
||||
"dataclasses",
|
||||
"datasets>=2.15.0", # We need either this pin or pyarrow<21.0.0
|
||||
"datasets!=2.5.0",
|
||||
"deepspeed>=0.9.3",
|
||||
"diffusers",
|
||||
"dill<0.3.5",
|
||||
@ -137,7 +137,6 @@ _deps = [
|
||||
"onnxconverter-common",
|
||||
"onnxruntime-tools>=1.4.2",
|
||||
"onnxruntime>=1.4.0",
|
||||
"openai",
|
||||
"opencv-python",
|
||||
"optimum-benchmark>=0.3.0",
|
||||
"optuna",
|
||||
@ -205,7 +204,6 @@ _deps = [
|
||||
"opentelemetry-api",
|
||||
"opentelemetry-exporter-otlp",
|
||||
"opentelemetry-sdk",
|
||||
"mistral-common[opencv]>=1.6.3",
|
||||
]
|
||||
|
||||
|
||||
@ -315,7 +313,7 @@ extras["hub-kernels"] = deps_list("kernels")
|
||||
|
||||
extras["integrations"] = extras["hub-kernels"] + extras["optuna"] + extras["ray"] + extras["sigopt"]
|
||||
|
||||
extras["serving"] = deps_list("openai", "pydantic", "uvicorn", "fastapi", "starlette") + extras["torch"]
|
||||
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette")
|
||||
extras["audio"] = deps_list(
|
||||
"librosa",
|
||||
"pyctcdecode",
|
||||
@ -336,7 +334,6 @@ extras["video"] = deps_list("av")
|
||||
extras["num2words"] = deps_list("num2words")
|
||||
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
|
||||
extras["tiktoken"] = deps_list("tiktoken", "blobfile")
|
||||
extras["mistral-common"] = deps_list("mistral-common[opencv]")
|
||||
extras["testing"] = (
|
||||
deps_list(
|
||||
"pytest",
|
||||
@ -366,7 +363,6 @@ extras["testing"] = (
|
||||
)
|
||||
+ extras["retrieval"]
|
||||
+ extras["modelcreation"]
|
||||
+ extras["mistral-common"]
|
||||
)
|
||||
|
||||
extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"]
|
||||
@ -388,7 +384,6 @@ extras["all"] = (
|
||||
+ extras["accelerate"]
|
||||
+ extras["video"]
|
||||
+ extras["num2words"]
|
||||
+ extras["mistral-common"]
|
||||
)
|
||||
|
||||
|
||||
|
@ -34,7 +34,6 @@ from .utils import (
|
||||
is_g2p_en_available,
|
||||
is_keras_nlp_available,
|
||||
is_librosa_available,
|
||||
is_mistral_common_available,
|
||||
is_pretty_midi_available,
|
||||
is_scipy_available,
|
||||
is_sentencepiece_available,
|
||||
@ -311,18 +310,6 @@ else:
|
||||
"convert_slow_tokenizer",
|
||||
]
|
||||
|
||||
try:
|
||||
if not (is_mistral_common_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils import dummy_mistral_common_objects
|
||||
|
||||
_import_structure["utils.dummy_mistral_common_objects"] = [
|
||||
name for name in dir(dummy_mistral_common_objects) if not name.startswith("_")
|
||||
]
|
||||
else:
|
||||
_import_structure["tokenization_mistral_common"] = ["MistralCommonTokenizer"]
|
||||
|
||||
# Vision-specific objects
|
||||
try:
|
||||
if not is_vision_available():
|
||||
@ -365,28 +352,16 @@ else:
|
||||
]
|
||||
_import_structure["activations"] = []
|
||||
_import_structure["cache_utils"] = [
|
||||
"CacheLayerMixin",
|
||||
"DynamicLayer",
|
||||
"StaticLayer",
|
||||
"SlidingWindowLayer",
|
||||
"ChunkedSlidingLayer",
|
||||
"CacheProcessor",
|
||||
"OffloadedCacheProcessor",
|
||||
"QuantizedCacheProcessor",
|
||||
"QuantoQuantizedCacheProcessor",
|
||||
"HQQQuantizedCacheProcessor",
|
||||
"Cache",
|
||||
"CacheConfig",
|
||||
"DynamicCache",
|
||||
"EncoderDecoderCache",
|
||||
"HQQQuantizedCache",
|
||||
"HQQQuantizedCacheProcessor",
|
||||
"HybridCache",
|
||||
"HybridChunkedCache",
|
||||
"MambaCache",
|
||||
"OffloadedCache",
|
||||
"OffloadedStaticCache",
|
||||
"QuantizedCache",
|
||||
"QuantoQuantizedCacheProcessor",
|
||||
"QuantizedCacheConfig",
|
||||
"QuantoQuantizedCache",
|
||||
"SinkCache",
|
||||
@ -577,28 +552,7 @@ else:
|
||||
# Direct imports for type-checking
|
||||
if TYPE_CHECKING:
|
||||
# All modeling imports
|
||||
from .cache_utils import (
|
||||
Cache,
|
||||
CacheConfig,
|
||||
DynamicCache,
|
||||
EncoderDecoderCache,
|
||||
HQQQuantizedCache,
|
||||
HybridCache,
|
||||
MambaCache,
|
||||
OffloadedCache,
|
||||
OffloadedStaticCache,
|
||||
QuantizedCache,
|
||||
QuantizedCacheConfig,
|
||||
QuantoQuantizedCache,
|
||||
SinkCache,
|
||||
SlidingWindowCache,
|
||||
StaticCache,
|
||||
)
|
||||
from .configuration_utils import PretrainedConfig
|
||||
from .convert_slow_tokenizer import (
|
||||
SLOW_TO_FAST_CONVERTERS,
|
||||
convert_slow_tokenizer,
|
||||
)
|
||||
|
||||
# Data
|
||||
from .data import (
|
||||
@ -635,17 +589,6 @@ if TYPE_CHECKING:
|
||||
DefaultDataCollator,
|
||||
default_data_collator,
|
||||
)
|
||||
from .data.datasets import (
|
||||
GlueDataset,
|
||||
GlueDataTrainingArguments,
|
||||
LineByLineTextDataset,
|
||||
LineByLineWithRefDataset,
|
||||
LineByLineWithSOPTextDataset,
|
||||
SquadDataset,
|
||||
SquadDataTrainingArguments,
|
||||
TextDataset,
|
||||
TextDatasetForNextSentencePrediction,
|
||||
)
|
||||
from .feature_extraction_sequence_utils import SequenceFeatureExtractor
|
||||
|
||||
# Feature Extractor
|
||||
@ -653,99 +596,14 @@ if TYPE_CHECKING:
|
||||
|
||||
# Generation
|
||||
from .generation import (
|
||||
AlternatingCodebooksLogitsProcessor,
|
||||
AsyncTextIteratorStreamer,
|
||||
BayesianDetectorConfig,
|
||||
BayesianDetectorModel,
|
||||
BeamScorer,
|
||||
BeamSearchScorer,
|
||||
ClassifierFreeGuidanceLogitsProcessor,
|
||||
CompileConfig,
|
||||
ConstrainedBeamSearchScorer,
|
||||
Constraint,
|
||||
ConstraintListState,
|
||||
DisjunctiveConstraint,
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
EosTokenCriteria,
|
||||
EpsilonLogitsWarper,
|
||||
EtaLogitsWarper,
|
||||
ExponentialDecayLengthPenalty,
|
||||
FlaxForcedBOSTokenLogitsProcessor,
|
||||
FlaxForcedEOSTokenLogitsProcessor,
|
||||
FlaxForceTokensLogitsProcessor,
|
||||
FlaxGenerationMixin,
|
||||
FlaxLogitsProcessor,
|
||||
FlaxLogitsProcessorList,
|
||||
FlaxLogitsWarper,
|
||||
FlaxMinLengthLogitsProcessor,
|
||||
FlaxSuppressTokensAtBeginLogitsProcessor,
|
||||
FlaxSuppressTokensLogitsProcessor,
|
||||
FlaxTemperatureLogitsWarper,
|
||||
FlaxTopKLogitsWarper,
|
||||
FlaxTopPLogitsWarper,
|
||||
FlaxWhisperTimeStampLogitsProcessor,
|
||||
ForcedBOSTokenLogitsProcessor,
|
||||
ForcedEOSTokenLogitsProcessor,
|
||||
GenerationConfig,
|
||||
GenerationMixin,
|
||||
HammingDiversityLogitsProcessor,
|
||||
InfNanRemoveLogitsProcessor,
|
||||
LogitNormalization,
|
||||
LogitsProcessor,
|
||||
LogitsProcessorList,
|
||||
MaxLengthCriteria,
|
||||
MaxTimeCriteria,
|
||||
MinLengthLogitsProcessor,
|
||||
MinNewTokensLengthLogitsProcessor,
|
||||
MinPLogitsWarper,
|
||||
NoBadWordsLogitsProcessor,
|
||||
NoRepeatNGramLogitsProcessor,
|
||||
PhrasalConstraint,
|
||||
PrefixConstrainedLogitsProcessor,
|
||||
RepetitionPenaltyLogitsProcessor,
|
||||
SequenceBiasLogitsProcessor,
|
||||
StoppingCriteria,
|
||||
StoppingCriteriaList,
|
||||
StopStringCriteria,
|
||||
SuppressTokensAtBeginLogitsProcessor,
|
||||
SuppressTokensLogitsProcessor,
|
||||
SynthIDTextWatermarkDetector,
|
||||
SynthIDTextWatermarkingConfig,
|
||||
SynthIDTextWatermarkLogitsProcessor,
|
||||
TemperatureLogitsWarper,
|
||||
TextIteratorStreamer,
|
||||
TextStreamer,
|
||||
TFForcedBOSTokenLogitsProcessor,
|
||||
TFForcedEOSTokenLogitsProcessor,
|
||||
TFForceTokensLogitsProcessor,
|
||||
TFGenerationMixin,
|
||||
TFLogitsProcessor,
|
||||
TFLogitsProcessorList,
|
||||
TFLogitsWarper,
|
||||
TFMinLengthLogitsProcessor,
|
||||
TFNoBadWordsLogitsProcessor,
|
||||
TFNoRepeatNGramLogitsProcessor,
|
||||
TFRepetitionPenaltyLogitsProcessor,
|
||||
TFSuppressTokensAtBeginLogitsProcessor,
|
||||
TFSuppressTokensLogitsProcessor,
|
||||
TFTemperatureLogitsWarper,
|
||||
TFTopKLogitsWarper,
|
||||
TFTopPLogitsWarper,
|
||||
TopKLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
TypicalLogitsWarper,
|
||||
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
||||
WatermarkDetector,
|
||||
WatermarkingConfig,
|
||||
WatermarkLogitsProcessor,
|
||||
WhisperTimeStampLogitsProcessor,
|
||||
)
|
||||
from .hf_argparser import HfArgumentParser
|
||||
from .image_processing_base import ImageProcessingMixin
|
||||
from .image_processing_utils import BaseImageProcessor
|
||||
from .image_processing_utils_fast import BaseImageProcessorFast
|
||||
from .image_utils import ImageFeatureExtractionMixin
|
||||
|
||||
# Integrations
|
||||
from .integrations import (
|
||||
@ -761,21 +619,9 @@ if TYPE_CHECKING:
|
||||
is_tensorboard_available,
|
||||
is_wandb_available,
|
||||
)
|
||||
from .integrations.executorch import (
|
||||
TorchExportableModuleWithStaticCache,
|
||||
convert_and_export_with_cache,
|
||||
)
|
||||
from .keras_callbacks import KerasMetricCallback, PushToHubCallback
|
||||
from .masking_utils import AttentionMaskInterface
|
||||
from .model_debugging_utils import (
|
||||
model_addition_debugger_context,
|
||||
)
|
||||
|
||||
# Model Cards
|
||||
from .modelcard import ModelCard
|
||||
from .modeling_flax_utils import FlaxPreTrainedModel
|
||||
from .modeling_layers import GradientCheckpointingLayer
|
||||
from .modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
|
||||
# TF 2.0 <=> PyTorch conversion utilities
|
||||
from .modeling_tf_pytorch_utils import (
|
||||
@ -787,37 +633,7 @@ if TYPE_CHECKING:
|
||||
load_tf2_model_in_pytorch_model,
|
||||
load_tf2_weights_in_pytorch_model,
|
||||
)
|
||||
from .modeling_tf_utils import (
|
||||
TFPreTrainedModel,
|
||||
TFSequenceSummary,
|
||||
TFSharedEmbeddings,
|
||||
shape_list,
|
||||
)
|
||||
from .modeling_utils import AttentionInterface, PreTrainedModel
|
||||
from .models import *
|
||||
from .models.timm_wrapper import TimmWrapperImageProcessor
|
||||
|
||||
# Optimization
|
||||
from .optimization import (
|
||||
Adafactor,
|
||||
get_constant_schedule,
|
||||
get_constant_schedule_with_warmup,
|
||||
get_cosine_schedule_with_warmup,
|
||||
get_cosine_with_hard_restarts_schedule_with_warmup,
|
||||
get_inverse_sqrt_schedule,
|
||||
get_linear_schedule_with_warmup,
|
||||
get_polynomial_decay_schedule_with_warmup,
|
||||
get_scheduler,
|
||||
get_wsd_schedule,
|
||||
)
|
||||
|
||||
# Optimization
|
||||
from .optimization_tf import (
|
||||
AdamWeightDecay,
|
||||
GradientAccumulator,
|
||||
WarmUp,
|
||||
create_optimizer,
|
||||
)
|
||||
|
||||
# Pipelines
|
||||
from .pipelines import (
|
||||
@ -859,7 +675,6 @@ if TYPE_CHECKING:
|
||||
pipeline,
|
||||
)
|
||||
from .processing_utils import ProcessorMixin
|
||||
from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer
|
||||
|
||||
# Tokenization
|
||||
from .tokenization_utils import PreTrainedTokenizer
|
||||
@ -871,10 +686,6 @@ if TYPE_CHECKING:
|
||||
SpecialTokensMixin,
|
||||
TokenSpan,
|
||||
)
|
||||
from .tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
|
||||
# Trainer
|
||||
from .trainer import Trainer
|
||||
|
||||
# Trainer
|
||||
from .trainer_callback import (
|
||||
@ -886,8 +697,6 @@ if TYPE_CHECKING:
|
||||
TrainerControl,
|
||||
TrainerState,
|
||||
)
|
||||
from .trainer_pt_utils import torch_distributed_zero_first
|
||||
from .trainer_seq2seq import Seq2SeqTrainer
|
||||
from .trainer_utils import (
|
||||
EvalPrediction,
|
||||
IntervalStrategy,
|
||||
@ -968,7 +777,242 @@ if TYPE_CHECKING:
|
||||
TorchAoConfig,
|
||||
VptqConfig,
|
||||
)
|
||||
from .video_processing_utils import BaseVideoProcessor
|
||||
|
||||
try:
|
||||
if not is_tokenizers_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_tokenizers_objects import *
|
||||
else:
|
||||
from .tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
|
||||
try:
|
||||
if not (is_sentencepiece_available() and is_tokenizers_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummies_sentencepiece_and_tokenizers_objects import *
|
||||
else:
|
||||
from .convert_slow_tokenizer import (
|
||||
SLOW_TO_FAST_CONVERTERS,
|
||||
convert_slow_tokenizer,
|
||||
)
|
||||
|
||||
try:
|
||||
if not is_vision_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_vision_objects import *
|
||||
else:
|
||||
from .image_processing_base import ImageProcessingMixin
|
||||
from .image_processing_utils import BaseImageProcessor
|
||||
from .image_utils import ImageFeatureExtractionMixin
|
||||
|
||||
try:
|
||||
if not is_torchvision_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_torchvision_objects import *
|
||||
else:
|
||||
from .image_processing_utils_fast import BaseImageProcessorFast
|
||||
from .video_processing_utils import BaseVideoProcessor
|
||||
|
||||
try:
|
||||
if not (is_torchvision_available() and is_timm_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_timm_and_torchvision_objects import *
|
||||
else:
|
||||
from .models.timm_wrapper import TimmWrapperImageProcessor
|
||||
|
||||
# Modeling
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_pt_objects import *
|
||||
else:
|
||||
# Debugging
|
||||
from .cache_utils import (
|
||||
Cache,
|
||||
CacheConfig,
|
||||
DynamicCache,
|
||||
EncoderDecoderCache,
|
||||
HQQQuantizedCache,
|
||||
HybridCache,
|
||||
MambaCache,
|
||||
OffloadedCache,
|
||||
OffloadedStaticCache,
|
||||
QuantizedCache,
|
||||
QuantizedCacheConfig,
|
||||
QuantoQuantizedCache,
|
||||
SinkCache,
|
||||
SlidingWindowCache,
|
||||
StaticCache,
|
||||
)
|
||||
from .data.datasets import (
|
||||
GlueDataset,
|
||||
GlueDataTrainingArguments,
|
||||
LineByLineTextDataset,
|
||||
LineByLineWithRefDataset,
|
||||
LineByLineWithSOPTextDataset,
|
||||
SquadDataset,
|
||||
SquadDataTrainingArguments,
|
||||
TextDataset,
|
||||
TextDatasetForNextSentencePrediction,
|
||||
)
|
||||
from .generation import (
|
||||
AlternatingCodebooksLogitsProcessor,
|
||||
BayesianDetectorConfig,
|
||||
BayesianDetectorModel,
|
||||
BeamScorer,
|
||||
BeamSearchScorer,
|
||||
ClassifierFreeGuidanceLogitsProcessor,
|
||||
ConstrainedBeamSearchScorer,
|
||||
Constraint,
|
||||
ConstraintListState,
|
||||
DisjunctiveConstraint,
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
EosTokenCriteria,
|
||||
EpsilonLogitsWarper,
|
||||
EtaLogitsWarper,
|
||||
ExponentialDecayLengthPenalty,
|
||||
ForcedBOSTokenLogitsProcessor,
|
||||
ForcedEOSTokenLogitsProcessor,
|
||||
GenerationMixin,
|
||||
HammingDiversityLogitsProcessor,
|
||||
InfNanRemoveLogitsProcessor,
|
||||
LogitNormalization,
|
||||
LogitsProcessor,
|
||||
LogitsProcessorList,
|
||||
MaxLengthCriteria,
|
||||
MaxTimeCriteria,
|
||||
MinLengthLogitsProcessor,
|
||||
MinNewTokensLengthLogitsProcessor,
|
||||
MinPLogitsWarper,
|
||||
NoBadWordsLogitsProcessor,
|
||||
NoRepeatNGramLogitsProcessor,
|
||||
PhrasalConstraint,
|
||||
PrefixConstrainedLogitsProcessor,
|
||||
RepetitionPenaltyLogitsProcessor,
|
||||
SequenceBiasLogitsProcessor,
|
||||
StoppingCriteria,
|
||||
StoppingCriteriaList,
|
||||
StopStringCriteria,
|
||||
SuppressTokensAtBeginLogitsProcessor,
|
||||
SuppressTokensLogitsProcessor,
|
||||
SynthIDTextWatermarkDetector,
|
||||
SynthIDTextWatermarkingConfig,
|
||||
SynthIDTextWatermarkLogitsProcessor,
|
||||
TemperatureLogitsWarper,
|
||||
TopKLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
TypicalLogitsWarper,
|
||||
UnbatchedClassifierFreeGuidanceLogitsProcessor,
|
||||
WatermarkDetector,
|
||||
WatermarkLogitsProcessor,
|
||||
WhisperTimeStampLogitsProcessor,
|
||||
)
|
||||
from .integrations.executorch import (
|
||||
TorchExportableModuleWithStaticCache,
|
||||
convert_and_export_with_cache,
|
||||
)
|
||||
from .masking_utils import AttentionMaskInterface
|
||||
from .model_debugging_utils import (
|
||||
model_addition_debugger_context,
|
||||
)
|
||||
from .modeling_layers import GradientCheckpointingLayer
|
||||
from .modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||||
from .modeling_utils import AttentionInterface, PreTrainedModel
|
||||
|
||||
# Optimization
|
||||
from .optimization import (
|
||||
Adafactor,
|
||||
get_constant_schedule,
|
||||
get_constant_schedule_with_warmup,
|
||||
get_cosine_schedule_with_warmup,
|
||||
get_cosine_with_hard_restarts_schedule_with_warmup,
|
||||
get_inverse_sqrt_schedule,
|
||||
get_linear_schedule_with_warmup,
|
||||
get_polynomial_decay_schedule_with_warmup,
|
||||
get_scheduler,
|
||||
get_wsd_schedule,
|
||||
)
|
||||
from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer
|
||||
|
||||
# Trainer
|
||||
from .trainer import Trainer
|
||||
from .trainer_pt_utils import torch_distributed_zero_first
|
||||
from .trainer_seq2seq import Seq2SeqTrainer
|
||||
|
||||
# TensorFlow
|
||||
try:
|
||||
if not is_tf_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
# Import the same objects as dummies to get them in the namespace.
|
||||
# They will raise an import error if the user tries to instantiate / use them.
|
||||
from .utils.dummy_tf_objects import *
|
||||
else:
|
||||
from .generation import (
|
||||
TFForcedBOSTokenLogitsProcessor,
|
||||
TFForcedEOSTokenLogitsProcessor,
|
||||
TFForceTokensLogitsProcessor,
|
||||
TFGenerationMixin,
|
||||
TFLogitsProcessor,
|
||||
TFLogitsProcessorList,
|
||||
TFLogitsWarper,
|
||||
TFMinLengthLogitsProcessor,
|
||||
TFNoBadWordsLogitsProcessor,
|
||||
TFNoRepeatNGramLogitsProcessor,
|
||||
TFRepetitionPenaltyLogitsProcessor,
|
||||
TFSuppressTokensAtBeginLogitsProcessor,
|
||||
TFSuppressTokensLogitsProcessor,
|
||||
TFTemperatureLogitsWarper,
|
||||
TFTopKLogitsWarper,
|
||||
TFTopPLogitsWarper,
|
||||
)
|
||||
from .keras_callbacks import KerasMetricCallback, PushToHubCallback
|
||||
from .modeling_tf_utils import (
|
||||
TFPreTrainedModel,
|
||||
TFSequenceSummary,
|
||||
TFSharedEmbeddings,
|
||||
shape_list,
|
||||
)
|
||||
|
||||
# Optimization
|
||||
from .optimization_tf import (
|
||||
AdamWeightDecay,
|
||||
GradientAccumulator,
|
||||
WarmUp,
|
||||
create_optimizer,
|
||||
)
|
||||
|
||||
try:
|
||||
if not is_flax_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
# Import the same objects as dummies to get them in the namespace.
|
||||
# They will raise an import error if the user tries to instantiate / use them.
|
||||
from .utils.dummy_flax_objects import *
|
||||
else:
|
||||
from .generation import (
|
||||
FlaxForcedBOSTokenLogitsProcessor,
|
||||
FlaxForcedEOSTokenLogitsProcessor,
|
||||
FlaxForceTokensLogitsProcessor,
|
||||
FlaxGenerationMixin,
|
||||
FlaxLogitsProcessor,
|
||||
FlaxLogitsProcessorList,
|
||||
FlaxLogitsWarper,
|
||||
FlaxMinLengthLogitsProcessor,
|
||||
FlaxSuppressTokensAtBeginLogitsProcessor,
|
||||
FlaxSuppressTokensLogitsProcessor,
|
||||
FlaxTemperatureLogitsWarper,
|
||||
FlaxTopKLogitsWarper,
|
||||
FlaxTopPLogitsWarper,
|
||||
FlaxWhisperTimeStampLogitsProcessor,
|
||||
)
|
||||
from .modeling_flax_utils import FlaxPreTrainedModel
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
@ -16,12 +16,10 @@ Audio processing functions to extract features from audio waveforms. This code i
|
||||
and remove unnecessary dependencies.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import warnings
|
||||
from io import BytesIO
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
@ -29,21 +27,14 @@ import requests
|
||||
from .utils import (
|
||||
is_librosa_available,
|
||||
is_numpy_array,
|
||||
is_soundfile_available,
|
||||
is_torch_tensor,
|
||||
requires_backends,
|
||||
)
|
||||
|
||||
|
||||
if is_soundfile_available():
|
||||
import soundfile as sf
|
||||
|
||||
if is_librosa_available():
|
||||
import librosa
|
||||
|
||||
# TODO: @eustlb, we actually don't need librosa but soxr is installed with librosa
|
||||
import soxr
|
||||
|
||||
|
||||
def load_audio(audio: Union[str, np.ndarray], sampling_rate=16000, timeout=None) -> np.ndarray:
|
||||
"""
|
||||
@ -78,85 +69,6 @@ def load_audio(audio: Union[str, np.ndarray], sampling_rate=16000, timeout=None)
|
||||
return audio
|
||||
|
||||
|
||||
def load_audio_as(
|
||||
audio: str,
|
||||
return_format: str,
|
||||
timeout: Optional[int] = None,
|
||||
force_mono: bool = False,
|
||||
sampling_rate: Optional[int] = None,
|
||||
) -> Union[str, dict[str, Any], io.BytesIO, None]:
|
||||
"""
|
||||
Load audio from either a local file path or URL and return in specified format.
|
||||
|
||||
Args:
|
||||
audio (`str`): Either a local file path or a URL to an audio file
|
||||
return_format (`str`): Format to return the audio in:
|
||||
- "base64": Base64 encoded string
|
||||
- "dict": Dictionary with data and format
|
||||
- "buffer": BytesIO object
|
||||
timeout (`int`, *optional*): Timeout for URL requests in seconds
|
||||
force_mono (`bool`): Whether to convert stereo audio to mono
|
||||
sampling_rate (`int`, *optional*): If provided, the audio will be resampled to the specified sampling rate.
|
||||
|
||||
Returns:
|
||||
`Union[str, Dict[str, Any], io.BytesIO, None]`:
|
||||
- `str`: Base64 encoded audio data (if return_format="base64")
|
||||
- `dict`: Dictionary with 'data' (base64 encoded audio data) and 'format' keys (if return_format="dict")
|
||||
- `io.BytesIO`: BytesIO object containing audio data (if return_format="buffer")
|
||||
"""
|
||||
# TODO: @eustlb, we actually don't need librosa but soxr is installed with librosa
|
||||
requires_backends(load_audio_as, ["librosa"])
|
||||
|
||||
if return_format not in ["base64", "dict", "buffer"]:
|
||||
raise ValueError(f"Invalid return_format: {return_format}. Must be 'base64', 'dict', or 'buffer'")
|
||||
|
||||
try:
|
||||
# Load audio bytes from URL or file
|
||||
audio_bytes = None
|
||||
if audio.startswith(("http://", "https://")):
|
||||
response = requests.get(audio, timeout=timeout)
|
||||
response.raise_for_status()
|
||||
audio_bytes = response.content
|
||||
elif os.path.isfile(audio):
|
||||
with open(audio, "rb") as audio_file:
|
||||
audio_bytes = audio_file.read()
|
||||
else:
|
||||
raise ValueError(f"File not found: {audio}")
|
||||
|
||||
# Process audio data
|
||||
with io.BytesIO(audio_bytes) as audio_file:
|
||||
with sf.SoundFile(audio_file) as f:
|
||||
audio_array = f.read(dtype="float32")
|
||||
original_sr = f.samplerate
|
||||
audio_format = f.format
|
||||
if sampling_rate is not None and sampling_rate != original_sr:
|
||||
# Resample audio to target sampling rate
|
||||
audio_array = soxr.resample(audio_array, original_sr, sampling_rate, quality="HQ")
|
||||
else:
|
||||
sampling_rate = original_sr
|
||||
|
||||
# Convert to mono if needed
|
||||
if force_mono and audio_array.ndim != 1:
|
||||
audio_array = audio_array.mean(axis=1)
|
||||
|
||||
buffer = io.BytesIO()
|
||||
sf.write(buffer, audio_array, sampling_rate, format=audio_format.upper())
|
||||
buffer.seek(0)
|
||||
|
||||
if return_format == "buffer":
|
||||
return buffer
|
||||
elif return_format == "base64":
|
||||
return base64.b64encode(buffer.read()).decode("utf-8")
|
||||
elif return_format == "dict":
|
||||
return {
|
||||
"data": base64.b64encode(buffer.read()).decode("utf-8"),
|
||||
"format": audio_format.lower(),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
raise ValueError(f"Error loading audio: {e}")
|
||||
|
||||
|
||||
AudioInput = Union[
|
||||
np.ndarray, "torch.Tensor", list[np.ndarray], tuple[np.ndarray], list["torch.Tensor"], tuple["torch.Tensor"] # noqa: F821
|
||||
]
|
||||
@ -1169,3 +1081,148 @@ def amplitude_to_db_batch(
|
||||
spectrogram = np.clip(spectrogram, a_min=max_values - db_range, a_max=None)
|
||||
|
||||
return spectrogram
|
||||
|
||||
|
||||
### deprecated functions below this line ###
|
||||
|
||||
|
||||
def get_mel_filter_banks(
|
||||
nb_frequency_bins: int,
|
||||
nb_mel_filters: int,
|
||||
frequency_min: float,
|
||||
frequency_max: float,
|
||||
sample_rate: int,
|
||||
norm: Optional[str] = None,
|
||||
mel_scale: str = "htk",
|
||||
) -> np.array:
|
||||
warnings.warn(
|
||||
"The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||||
FutureWarning,
|
||||
)
|
||||
return mel_filter_bank(
|
||||
num_frequency_bins=nb_frequency_bins,
|
||||
num_mel_filters=nb_mel_filters,
|
||||
min_frequency=frequency_min,
|
||||
max_frequency=frequency_max,
|
||||
sampling_rate=sample_rate,
|
||||
norm=norm,
|
||||
mel_scale=mel_scale,
|
||||
)
|
||||
|
||||
|
||||
def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
|
||||
"""
|
||||
In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
|
||||
segments called `frames`.
|
||||
|
||||
The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
|
||||
defines the step between the beginning of each new frame.
|
||||
|
||||
|
||||
Args:
|
||||
waveform (`np.array` of shape `(sample_length,)`):
|
||||
The raw waveform which will be split into smaller chunks.
|
||||
hop_length (`int`, *optional*, defaults to 160):
|
||||
Step between each window of the waveform.
|
||||
fft_window_size (`int`, *optional*, defaults to 400):
|
||||
Defines the size of the window.
|
||||
center (`bool`, defaults to `True`):
|
||||
Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
|
||||
waveform on the left and on the right.
|
||||
|
||||
Return:
|
||||
framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
|
||||
The framed waveforms that can be fed to `np.fft`.
|
||||
"""
|
||||
warnings.warn(
|
||||
"The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||||
FutureWarning,
|
||||
)
|
||||
frames = []
|
||||
for i in range(0, waveform.shape[0] + 1, hop_length):
|
||||
if center:
|
||||
half_window = (fft_window_size - 1) // 2 + 1
|
||||
start = i - half_window if i > half_window else 0
|
||||
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
|
||||
frame = waveform[start:end]
|
||||
if start == 0:
|
||||
padd_width = (-i + half_window, 0)
|
||||
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||||
|
||||
elif end == waveform.shape[0]:
|
||||
padd_width = (0, (i - waveform.shape[0] + half_window))
|
||||
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||||
|
||||
else:
|
||||
frame = waveform[i : i + fft_window_size]
|
||||
frame_width = frame.shape[0]
|
||||
if frame_width < waveform.shape[0]:
|
||||
frame = np.lib.pad(
|
||||
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
|
||||
)
|
||||
frames.append(frame)
|
||||
|
||||
frames = np.stack(frames, 0)
|
||||
return frames
|
||||
|
||||
|
||||
def stft(frames: np.array, windowing_function: np.array, fft_window_size: Optional[int] = None):
|
||||
"""
|
||||
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
|
||||
as `torch.stft`.
|
||||
|
||||
Args:
|
||||
frames (`np.array` of dimension `(num_frames, fft_window_size)`):
|
||||
A framed audio signal obtained using `audio_utils.fram_wav`.
|
||||
windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
|
||||
A array representing the function that will be used to reduces the amplitude of the discontinuities at the
|
||||
boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
|
||||
For more information on the discontinuities, called *Spectral leakage*, refer to [this
|
||||
tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
|
||||
fft_window_size (`int`, *optional*):
|
||||
Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
|
||||
spectrogram. 400 means that the fourier transform is computed on windows of 400 samples. The number of
|
||||
frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
|
||||
`(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionally.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers.audio_utils import stft, fram_wave
|
||||
>>> import numpy as np
|
||||
|
||||
>>> audio = np.random.rand(50)
|
||||
>>> fft_window_size = 10
|
||||
>>> hop_length = 2
|
||||
>>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
|
||||
>>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
|
||||
```
|
||||
|
||||
Returns:
|
||||
spectrogram (`np.ndarray`):
|
||||
A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
|
||||
"""
|
||||
warnings.warn(
|
||||
"The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||||
FutureWarning,
|
||||
)
|
||||
frame_size = frames.shape[1]
|
||||
|
||||
if fft_window_size is None:
|
||||
fft_window_size = frame_size
|
||||
|
||||
if fft_window_size < frame_size:
|
||||
raise ValueError("FFT size must greater or equal the frame size")
|
||||
# number of FFT bins to store
|
||||
nb_frequency_bins = (fft_window_size >> 1) + 1
|
||||
|
||||
spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
|
||||
fft_signal = np.zeros(fft_window_size)
|
||||
|
||||
for f, frame in enumerate(frames):
|
||||
if windowing_function is not None:
|
||||
np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
|
||||
else:
|
||||
fft_signal[:frame_size] = frame
|
||||
spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
|
||||
return spectrogram.T
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1079,10 +1079,10 @@ def add_model_to_auto_classes(
|
||||
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
||||
model_classes (`dict[str, list[str]]`): A dictionary framework to list of model classes implemented.
|
||||
"""
|
||||
for filename, patterns in AUTO_CLASSES_PATTERNS.items():
|
||||
for filename in AUTO_CLASSES_PATTERNS:
|
||||
# Extend patterns with all model classes if necessary
|
||||
new_patterns = []
|
||||
for pattern in patterns:
|
||||
for pattern in AUTO_CLASSES_PATTERNS[filename]:
|
||||
if re.search("any_([a-z]*)_class", pattern) is not None:
|
||||
framework = re.search("any_([a-z]*)_class", pattern).groups()[0]
|
||||
if framework in model_classes:
|
||||
|
@ -14,7 +14,6 @@
|
||||
|
||||
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
@ -452,13 +451,11 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
)
|
||||
return processed_generate_flags
|
||||
|
||||
def get_generation_parameterization(
|
||||
self, args: ChatArguments, model_generation_config: GenerationConfig
|
||||
) -> tuple[GenerationConfig, dict]:
|
||||
def get_generation_parameterization(self, args: ChatArguments) -> tuple[GenerationConfig, dict]:
|
||||
"""
|
||||
Returns a GenerationConfig object holding the generation parameters for the CLI command.
|
||||
"""
|
||||
# No generation config arg provided -> use model's default generation config, then apply CLI defaults
|
||||
# No generation config arg provided -> use base generation config, apply CLI defaults
|
||||
if args.generation_config is not None:
|
||||
if ".json" in args.generation_config: # is a local file
|
||||
dirname = os.path.dirname(args.generation_config)
|
||||
@ -470,8 +467,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
# !!!!!!!!!
|
||||
# This is a chat session, so we have a few non-standard defaults
|
||||
# !!!!!!!!!
|
||||
generation_config = copy.deepcopy(model_generation_config)
|
||||
generation_config.update(**{"do_sample": True, "max_new_tokens": 256})
|
||||
generation_config = GenerationConfig(do_sample=True, max_new_tokens=256)
|
||||
|
||||
# Finally: parse and apply `generate_flags`
|
||||
parsed_generate_flags = self.parse_generate_flags(args.generate_flags)
|
||||
@ -679,8 +675,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
else:
|
||||
user = args.user
|
||||
|
||||
model_generation_config = GenerationConfig.from_pretrained(args.model_name_or_path)
|
||||
generation_config, model_kwargs = self.get_generation_parameterization(args, model_generation_config)
|
||||
generation_config, model_kwargs = self.get_generation_parameterization(args)
|
||||
|
||||
interface = RichInterface(model_name=args.model_name_or_path, user_name=user)
|
||||
interface.clear()
|
||||
@ -720,7 +715,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
stream=True,
|
||||
extra_body={
|
||||
"request_id": request_id,
|
||||
"generation_config": generation_config.to_json_string(),
|
||||
"generation_config": {**generation_config.to_dict()},
|
||||
"model": model,
|
||||
},
|
||||
)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -323,8 +323,9 @@ class PretrainedConfig(PushToHubMixin):
|
||||
self._name_or_path = str(kwargs.pop("name_or_path", ""))
|
||||
self._commit_hash = kwargs.pop("_commit_hash", None)
|
||||
|
||||
# Attention implementation to use, if relevant (it sets it recursively on sub-configs)
|
||||
self._attn_implementation = kwargs.pop("attn_implementation", None)
|
||||
# Attention implementation to use, if relevant.
|
||||
self._attn_implementation_internal = kwargs.pop("attn_implementation", None)
|
||||
self._attn_implementation_autoset = False
|
||||
|
||||
# Drop the transformers version info
|
||||
self.transformers_version = kwargs.pop("transformers_version", None)
|
||||
@ -369,11 +370,8 @@ class PretrainedConfig(PushToHubMixin):
|
||||
return self._output_attentions
|
||||
|
||||
@output_attentions.setter
|
||||
def output_attentions(self, value: bool):
|
||||
# If we set `output_attentions` explictily before the attn implementation, dispatch eager
|
||||
if value and self._attn_implementation is None:
|
||||
self._attn_implementation = "eager"
|
||||
if value and self._attn_implementation != "eager":
|
||||
def output_attentions(self, value):
|
||||
if value is True and self._attn_implementation != "eager":
|
||||
raise ValueError(
|
||||
"The `output_attentions` attribute is not supported when using the `attn_implementation` set to "
|
||||
f"{self._attn_implementation}. Please set it to 'eager' instead."
|
||||
@ -404,23 +402,19 @@ class PretrainedConfig(PushToHubMixin):
|
||||
|
||||
@property
|
||||
def _attn_implementation(self):
|
||||
return self._attn_implementation_internal
|
||||
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
|
||||
if hasattr(self, "_attn_implementation_internal"):
|
||||
if self._attn_implementation_internal is None:
|
||||
# `config.attn_implementation` should never be None, for backward compatibility.
|
||||
return "eager"
|
||||
else:
|
||||
return self._attn_implementation_internal
|
||||
else:
|
||||
return "eager"
|
||||
|
||||
@_attn_implementation.setter
|
||||
def _attn_implementation(self, value: Optional[Union[str, dict]]):
|
||||
"""We set it recursively on the sub-configs as well"""
|
||||
# Set if for current config
|
||||
attn_implementation = value if not isinstance(value, dict) else value.get("", self._attn_implementation)
|
||||
self._attn_implementation_internal = attn_implementation
|
||||
|
||||
# Set it recursively on the subconfigs
|
||||
for subconfig_key in self.sub_configs:
|
||||
subconfig = getattr(self, subconfig_key, None)
|
||||
if subconfig is not None:
|
||||
sub_implementation = (
|
||||
value if not isinstance(value, dict) else value.get(subconfig_key, subconfig._attn_implementation)
|
||||
)
|
||||
subconfig._attn_implementation = sub_implementation
|
||||
def _attn_implementation(self, value):
|
||||
self._attn_implementation_internal = value
|
||||
|
||||
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
||||
"""
|
||||
@ -613,7 +607,7 @@ class PretrainedConfig(PushToHubMixin):
|
||||
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||||
# sometimes the config has no `base_config_key` if the config is used in several composite models
|
||||
# e.g. LlamaConfig. In that case we try to see if there is match in `model_type` before raising a warning
|
||||
for v in config_dict.values():
|
||||
for k, v in config_dict.items():
|
||||
if isinstance(v, dict) and v.get("model_type") == cls.model_type:
|
||||
config_dict = v
|
||||
|
||||
@ -1059,6 +1053,8 @@ class PretrainedConfig(PushToHubMixin):
|
||||
del d["_commit_hash"]
|
||||
if "_attn_implementation_internal" in d:
|
||||
del d["_attn_implementation_internal"]
|
||||
if "_attn_implementation_autoset" in d:
|
||||
del d["_attn_implementation_autoset"]
|
||||
# Do not serialize `base_model_tp_plan` for now
|
||||
if "base_model_tp_plan" in d:
|
||||
del d["base_model_tp_plan"]
|
||||
|
@ -10,7 +10,7 @@ deps = {
|
||||
"codecarbon": "codecarbon>=2.8.1",
|
||||
"cookiecutter": "cookiecutter==1.7.3",
|
||||
"dataclasses": "dataclasses",
|
||||
"datasets": "datasets>=2.15.0",
|
||||
"datasets": "datasets!=2.5.0",
|
||||
"deepspeed": "deepspeed>=0.9.3",
|
||||
"diffusers": "diffusers",
|
||||
"dill": "dill<0.3.5",
|
||||
@ -43,7 +43,6 @@ deps = {
|
||||
"onnxconverter-common": "onnxconverter-common",
|
||||
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
|
||||
"onnxruntime": "onnxruntime>=1.4.0",
|
||||
"openai": "openai",
|
||||
"opencv-python": "opencv-python",
|
||||
"optimum-benchmark": "optimum-benchmark>=0.3.0",
|
||||
"optuna": "optuna",
|
||||
@ -107,5 +106,4 @@ deps = {
|
||||
"opentelemetry-api": "opentelemetry-api",
|
||||
"opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp",
|
||||
"opentelemetry-sdk": "opentelemetry-sdk",
|
||||
"mistral-common[opencv]": "mistral-common[opencv]>=1.6.3",
|
||||
}
|
||||
|
@ -28,6 +28,7 @@ from ..utils import is_sklearn_available
|
||||
if is_sklearn_available():
|
||||
from sklearn.metrics import roc_curve
|
||||
|
||||
from ..cache_utils import Cache
|
||||
from ..pytorch_utils import isin_mps_friendly
|
||||
from .logits_process import LogitsProcessorList, MinLengthLogitsProcessor, SuppressTokensLogitsProcessor
|
||||
|
||||
@ -294,7 +295,9 @@ class AssistedCandidateGenerator(CandidateGenerator):
|
||||
has_past_key_values = self.assistant_kwargs.get("past_key_values", None) is not None
|
||||
if has_past_key_values:
|
||||
new_cache_size = input_ids.shape[-1] - 1 - remove_from_pkv
|
||||
self.assistant_kwargs["past_key_values"].crop(new_cache_size - num_added_tokens)
|
||||
self.assistant_kwargs["past_key_values"] = _crop_past_key_values(
|
||||
self.assistant_model, self.assistant_kwargs["past_key_values"], new_cache_size - num_added_tokens
|
||||
)
|
||||
self.assistant_kwargs = _prepare_attention_mask(
|
||||
self.assistant_kwargs, input_ids.shape[-1], self.assistant_model.config.is_encoder_decoder
|
||||
)
|
||||
@ -1177,6 +1180,47 @@ class EarlyExitCandidateGenerator(AssistedCandidateGenerator):
|
||||
return candidate_ids, candidate_logits
|
||||
|
||||
|
||||
def _crop_past_key_values(model, past_key_values, max_length):
|
||||
"""Crops the past key values up to a certain maximum length."""
|
||||
new_past = []
|
||||
if isinstance(past_key_values, Cache):
|
||||
past_key_values.crop(max_length)
|
||||
elif model.config.is_encoder_decoder:
|
||||
for idx in range(len(past_key_values)):
|
||||
new_past.append(
|
||||
(
|
||||
past_key_values[idx][0][:, :, :max_length, :],
|
||||
past_key_values[idx][1][:, :, :max_length, :],
|
||||
past_key_values[idx][2],
|
||||
past_key_values[idx][3],
|
||||
)
|
||||
)
|
||||
past_key_values = tuple(new_past)
|
||||
# gptbigcode is special and stores kv in shape (batch_size, seq_len, dim), if it's a multi_query model
|
||||
elif "gptbigcode" in model.__class__.__name__.lower() or (
|
||||
model.config.architectures is not None and "gptbigcode" in model.config.architectures[0].lower()
|
||||
):
|
||||
if model.config.multi_query:
|
||||
for idx in range(len(past_key_values)):
|
||||
past_key_values[idx] = past_key_values[idx][:, :max_length, :]
|
||||
else:
|
||||
for idx in range(len(past_key_values)):
|
||||
past_key_values[idx] = past_key_values[idx][:, :, :max_length, :]
|
||||
elif past_key_values is not None:
|
||||
for idx in range(len(past_key_values)):
|
||||
if past_key_values[idx] != ([], []):
|
||||
new_past.append(
|
||||
(
|
||||
past_key_values[idx][0][:, :, :max_length, :],
|
||||
past_key_values[idx][1][:, :, :max_length, :],
|
||||
)
|
||||
)
|
||||
else:
|
||||
new_past.append((past_key_values[idx][0], past_key_values[idx][1]))
|
||||
past_key_values = tuple(new_past)
|
||||
return past_key_values
|
||||
|
||||
|
||||
def _prepare_attention_mask(model_kwargs: dict[str, Any], new_length: int, is_encoder_decoder: bool) -> dict[str, Any]:
|
||||
"""Expands or crops the model's mask for decoding purposes, to the defined length"""
|
||||
|
||||
|
@ -44,6 +44,7 @@ if TYPE_CHECKING:
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
METADATA_FIELDS = ("_from_model_config", "_commit_hash", "_original_object_hash", "transformers_version")
|
||||
CACHE_CONFIG_MAPPING = {}
|
||||
NEED_SETUP_CACHE_CLASSES_MAPPING = {}
|
||||
QUANT_BACKEND_CLASSES_MAPPING = {}
|
||||
ALL_CACHE_IMPLEMENTATIONS = []
|
||||
@ -53,14 +54,19 @@ if is_torch_available():
|
||||
HQQQuantizedCache,
|
||||
HybridCache,
|
||||
HybridChunkedCache,
|
||||
MambaCache,
|
||||
OffloadedHybridCache,
|
||||
OffloadedStaticCache,
|
||||
QuantizedCacheConfig,
|
||||
QuantoQuantizedCache,
|
||||
SlidingWindowCache,
|
||||
StaticCache,
|
||||
StaticCacheConfig,
|
||||
)
|
||||
from .logits_process import SynthIDTextWatermarkLogitsProcessor, WatermarkLogitsProcessor
|
||||
|
||||
CACHE_CONFIG_MAPPING["quantized"] = QuantizedCacheConfig
|
||||
CACHE_CONFIG_MAPPING["static"] = StaticCacheConfig
|
||||
NEED_SETUP_CACHE_CLASSES_MAPPING = {
|
||||
"static": StaticCache,
|
||||
"offloaded_static": OffloadedStaticCache,
|
||||
@ -69,9 +75,12 @@ if is_torch_available():
|
||||
"hybrid_chunked": HybridChunkedCache,
|
||||
"offloaded_hybrid": OffloadedHybridCache,
|
||||
"offloaded_hybrid_chunked": OffloadedHybridCache,
|
||||
"mamba": MambaCache,
|
||||
}
|
||||
QUANT_BACKEND_CLASSES_MAPPING = {"quanto": QuantoQuantizedCache, "HQQ": HQQQuantizedCache}
|
||||
ALL_CACHE_IMPLEMENTATIONS = list(NEED_SETUP_CACHE_CLASSES_MAPPING.keys()) + ["offloaded", "dynamic", "quantized"]
|
||||
ALL_CACHE_IMPLEMENTATIONS = (
|
||||
list(NEED_SETUP_CACHE_CLASSES_MAPPING.keys()) + list(CACHE_CONFIG_MAPPING.keys()) + ["offloaded", "dynamic"]
|
||||
)
|
||||
|
||||
|
||||
class GenerationMode(ExplicitEnum):
|
||||
@ -177,12 +186,15 @@ class GenerationConfig(PushToHubMixin):
|
||||
- `"offloaded_static"`: [`OffloadedStaticCache`]
|
||||
- `"sliding_window"`: [`SlidingWindowCache`]
|
||||
- `"hybrid"`: [`HybridCache`]
|
||||
- `"mamba"`: [`MambaCache`]
|
||||
- `"quantized"`: [`QuantizedCache`]
|
||||
|
||||
If none is specified, we will use the default cache for the model (which is often [`DynamicCache`]). See
|
||||
our [cache documentation](https://huggingface.co/docs/transformers/en/kv_cache) for further information.
|
||||
cache_config (`dict`, *optional*, default to `None`):
|
||||
Arguments used in the key-value cache class can be passed in `cache_config`.
|
||||
cache_config (`CacheConfig` or `dict`, *optional*, default to `None`):
|
||||
Arguments used in the key-value cache class can be passed in `cache_config`. Can be passed as a `Dict` and
|
||||
it will be converted to its respective `CacheConfig` internally.
|
||||
Otherwise can be passed as a `CacheConfig` class matching the indicated `cache_implementation`.
|
||||
return_legacy_cache (`bool`, *optional*, default to `True`):
|
||||
Whether to return the legacy or new format of the cache when `DynamicCache` is used by default.
|
||||
|
||||
@ -397,16 +409,10 @@ class GenerationConfig(PushToHubMixin):
|
||||
self.use_cache = kwargs.pop("use_cache", True)
|
||||
self.cache_implementation = kwargs.pop("cache_implementation", None)
|
||||
self.cache_config = kwargs.pop("cache_config", None)
|
||||
if self.cache_config is not None and not isinstance(self.cache_config, dict):
|
||||
warnings.warn(
|
||||
(
|
||||
"Passing a CacheConfig object is deprecated and will be removed in v4.55.0 in favor of a simpler dictionary."
|
||||
),
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
self.cache_config = self.cache_config.to_dict()
|
||||
|
||||
if self.cache_implementation is not None and self.cache_implementation in CACHE_CONFIG_MAPPING:
|
||||
cache_config_class = CACHE_CONFIG_MAPPING[self.cache_implementation]
|
||||
if isinstance(self.cache_config, dict):
|
||||
self.cache_config = cache_config_class.from_dict(self.cache_config)
|
||||
self.return_legacy_cache = kwargs.pop("return_legacy_cache", None)
|
||||
self.prefill_chunk_size = kwargs.pop("prefill_chunk_size", None)
|
||||
|
||||
@ -608,6 +614,17 @@ class GenerationConfig(PushToHubMixin):
|
||||
f"Invalid `cache_implementation` ({self.cache_implementation}). Choose one of: "
|
||||
f"{ALL_CACHE_IMPLEMENTATIONS}"
|
||||
)
|
||||
if self.cache_config is not None:
|
||||
cache_class = CACHE_CONFIG_MAPPING.get(self.cache_implementation)
|
||||
if cache_class is None:
|
||||
raise ValueError(
|
||||
"You provided a `cache_config` but the cache implementation you are using "
|
||||
f"({self.cache_implementation}) does not require any config. Make sure to use the "
|
||||
"correct cache implementation matching your cache config."
|
||||
)
|
||||
if not isinstance(self.cache_config, cache_class):
|
||||
self.cache_config = cache_class.from_dict(self.cache_config)
|
||||
self.cache_config.validate()
|
||||
# 1.3. Performance attributes
|
||||
if self.compile_config is not None and not isinstance(self.compile_config, CompileConfig):
|
||||
raise ValueError(
|
||||
|
@ -162,7 +162,6 @@ class PagedAttentionCache(Cache):
|
||||
dtype: torch.dtype = torch.float16,
|
||||
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
|
||||
initial_prompt_shapes: Optional[list[list[int]]] = None,
|
||||
tp_size: Optional[int] = None,
|
||||
) -> None:
|
||||
"""Initialize a paged attention cache for efficient memory usage.
|
||||
|
||||
@ -197,16 +196,7 @@ class PagedAttentionCache(Cache):
|
||||
|
||||
self.block_size = block_size
|
||||
self.num_blocks = num_blocks
|
||||
num_key_value_heads = self.num_key_value_heads
|
||||
if tp_size is not None and tp_size > 1:
|
||||
if num_key_value_heads % tp_size != 0:
|
||||
raise ValueError(
|
||||
f"Number of key value heads {num_key_value_heads} must be divisible by tensor parallel size {tp_size}."
|
||||
)
|
||||
# If the model is using tensor parallelism, we need to adjust the number of heads accordingly.
|
||||
num_key_value_heads //= tp_size
|
||||
|
||||
self.cache_shape = (num_key_value_heads, num_blocks, self.block_size, self.head_dim)
|
||||
self.cache_shape = (self.num_key_value_heads, num_blocks, self.block_size, self.head_dim)
|
||||
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
@ -650,7 +640,7 @@ def compute_optimal_blocks(
|
||||
memory_per_token = 2 * num_kv_heads * head_dim * dtype_size * num_hidden_layers # For K and V caches
|
||||
|
||||
# Estimate sequence length requirements
|
||||
tokens_to_generate = getattr(generation_config, "max_new_tokens") or 20
|
||||
tokens_to_generate = getattr(generation_config, "max_new_tokens", 20)
|
||||
|
||||
if median_prefill_length is None and inputs:
|
||||
non_empty_inputs = [len(seq) for seq in inputs if seq]
|
||||
@ -948,7 +938,7 @@ class ContinuousBatchProcessor:
|
||||
self.max_seqlen_k = max(self.max_seqlen_k, key_length)
|
||||
state.position_offset += query_length
|
||||
|
||||
logger.info(
|
||||
logger.warning(
|
||||
f"Scheduled: {len(self.requests_in_batch)}, Waiting: {len(self.scheduler.waiting_requests)}, Active: {len(self.scheduler.active_requests)}. cum Q: {cumulative_seqlens_q[-1]}. cum KV: {cumulative_seqlens_k[-1]}, free blocks: {self.cache.get_num_free_blocks()}"
|
||||
)
|
||||
self._build_tensors(
|
||||
@ -1119,8 +1109,7 @@ class ContinuousBatchingManager:
|
||||
self._request_lock = threading.Lock()
|
||||
self.model.generation_config.top_p = None
|
||||
self.do_sample = getattr(generation_config, "do_sample", True)
|
||||
generation_config = model.generation_config if generation_config is None else generation_config
|
||||
self.logit_processor = self.model._get_logits_processor(generation_config)
|
||||
self.logit_processor = self.model._get_logits_processor(self.model.generation_config)
|
||||
self.use_cuda_graph = getattr(generation_config, "use_cuda_graph", True)
|
||||
self.profile = getattr(generation_config, "profile", False)
|
||||
self.manual_eviction = manual_eviction
|
||||
@ -1292,7 +1281,6 @@ class ContinuousBatchingManager:
|
||||
self.generation_config,
|
||||
self.model.device,
|
||||
self.model.dtype,
|
||||
tp_size=getattr(self.model, "tp_size"),
|
||||
)
|
||||
|
||||
scheduler = None
|
||||
|
@ -17,7 +17,7 @@ from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from queue import Queue
|
||||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -146,14 +146,14 @@ class TextStreamer(BaseStreamer):
|
||||
# like the all of the other languages.
|
||||
if (
|
||||
(cp >= 0x4E00 and cp <= 0x9FFF)
|
||||
or (cp >= 0x3400 and cp <= 0x4DBF)
|
||||
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
||||
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
||||
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
||||
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
||||
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
||||
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
||||
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
||||
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
||||
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
||||
or (cp >= 0xF900 and cp <= 0xFAFF)
|
||||
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
||||
):
|
||||
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
||||
): #
|
||||
return True
|
||||
|
||||
return False
|
||||
@ -206,7 +206,7 @@ class TextIteratorStreamer(TextStreamer):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, tokenizer: AutoTokenizer, skip_prompt: bool = False, timeout: float | None = None, **decode_kwargs
|
||||
self, tokenizer: AutoTokenizer, skip_prompt: bool = False, timeout: Optional[float] = None, **decode_kwargs
|
||||
):
|
||||
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
||||
self.text_queue = Queue()
|
||||
@ -284,7 +284,7 @@ class AsyncTextIteratorStreamer(TextStreamer):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, tokenizer: AutoTokenizer, skip_prompt: bool = False, timeout: float | None = None, **decode_kwargs
|
||||
self, tokenizer: AutoTokenizer, skip_prompt: bool = False, timeout: Optional[float] = None, **decode_kwargs
|
||||
):
|
||||
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
||||
self.text_queue = asyncio.Queue()
|
||||
|
@ -35,6 +35,7 @@ from ..cache_utils import (
|
||||
HybridChunkedCache,
|
||||
OffloadedCache,
|
||||
OffloadedHybridCache,
|
||||
QuantizedCacheConfig,
|
||||
)
|
||||
from ..configuration_utils import PretrainedConfig
|
||||
from ..dynamic_module_utils import (
|
||||
@ -67,6 +68,7 @@ from .candidate_generator import (
|
||||
EarlyExitCandidateGenerator,
|
||||
PromptLookupCandidateGenerator,
|
||||
UniversalSpeculativeDecodingGenerator,
|
||||
_crop_past_key_values,
|
||||
_prepare_attention_mask,
|
||||
_prepare_token_type_ids,
|
||||
)
|
||||
@ -565,7 +567,15 @@ class GenerationMixin(ContinuousMixin):
|
||||
|
||||
# 1. Handle BC:
|
||||
model_inputs = {}
|
||||
model_inputs["cache_position"] = cache_position
|
||||
# - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
|
||||
if self._supports_cache_class:
|
||||
model_inputs["cache_position"] = cache_position
|
||||
# - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
|
||||
# function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
|
||||
# (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
|
||||
elif cache_position is None:
|
||||
past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
||||
|
||||
# 2. Generic cache-dependent input preparation
|
||||
if past_key_values is not None:
|
||||
@ -645,8 +655,8 @@ class GenerationMixin(ContinuousMixin):
|
||||
|
||||
# If it's not defined, it means the model uses the new general mask API
|
||||
if causal_mask_creation_function is None: # can't be found
|
||||
token_type_ids = model_inputs.get("token_type_ids", None)
|
||||
position_ids = model_inputs.get(position_ids_key, None)
|
||||
token_type_ids = getattr(model_input, "token_type_ids", None)
|
||||
position_ids = getattr(model_input, position_ids_key, None)
|
||||
# Some models may overwrite the general one
|
||||
causal_mask_creation_function = getattr(self, "create_masks_for_generate", create_masks_for_generate)
|
||||
attention_mask = causal_mask_creation_function(
|
||||
@ -676,24 +686,6 @@ class GenerationMixin(ContinuousMixin):
|
||||
if encoder_attention_mask is not None:
|
||||
model_inputs["attention_mask"] = encoder_attention_mask
|
||||
|
||||
if "flash" in self.config._attn_implementation and self._supports_attention_backend:
|
||||
tensor_kws = {"dtype": torch.int32, "device": self.device}
|
||||
pos = model_inputs["position_ids"][:, -1]
|
||||
|
||||
cu_seq_lens_k = torch.cat([torch.zeros(1, **tensor_kws), pos.cumsum(0).add(1)], 0)
|
||||
max_length_k = int(pos.max()) + 1
|
||||
|
||||
bs, seq_len = input_ids.size()
|
||||
q_len = torch.ones(bs, **tensor_kws) if seq_len == 1 else pos.to(torch.int32).add(1)
|
||||
cu_seq_lens_q = torch.cat([torch.zeros(1, **tensor_kws), q_len.cumsum(0)], 0)
|
||||
max_length_q = int(q_len.max())
|
||||
|
||||
model_inputs.update(
|
||||
cu_seq_lens_q=cu_seq_lens_q.to(self.device),
|
||||
cu_seq_lens_k=cu_seq_lens_k.to(self.device),
|
||||
max_length_q=max_length_q,
|
||||
max_length_k=max_length_k,
|
||||
)
|
||||
# 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
|
||||
for key, value in kwargs.items():
|
||||
if key not in model_inputs:
|
||||
@ -1022,6 +1014,12 @@ class GenerationMixin(ContinuousMixin):
|
||||
model_kwargs["cache_position"] = torch.cat((past_positions, new_positions))
|
||||
return model_kwargs
|
||||
|
||||
def _reorder_cache(self, past_key_values, beam_idx):
|
||||
raise NotImplementedError(
|
||||
f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
|
||||
f" enable beam search for {self.__class__}"
|
||||
)
|
||||
|
||||
def _get_candidate_generator(
|
||||
self,
|
||||
generation_config: GenerationConfig,
|
||||
@ -1556,11 +1554,18 @@ class GenerationMixin(ContinuousMixin):
|
||||
else:
|
||||
if tokenizer is None or assistant_tokenizer is None:
|
||||
raise ValueError(
|
||||
f"The main and assistant models have different tokenizers. Please provide `tokenizer` and `assistant_tokenizer` to `generate()` {doc_reference}."
|
||||
f"The main and assistant moedels have different tokenizers. Please provide `tokenizer` and `assistant_tokenizer` to `generate()` {doc_reference}."
|
||||
)
|
||||
|
||||
def _validate_model_kwargs(self, model_kwargs: dict[str, Any]):
|
||||
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
|
||||
# If a `Cache` instance is passed, checks whether the model is compatible with it
|
||||
if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
|
||||
raise ValueError(
|
||||
f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
|
||||
"check the model documentation for supported cache formats."
|
||||
)
|
||||
|
||||
# Excludes arguments that are handled before calling any model function
|
||||
if self.config.is_encoder_decoder:
|
||||
for key in ["decoder_input_ids"]:
|
||||
@ -1933,8 +1938,9 @@ class GenerationMixin(ContinuousMixin):
|
||||
or isinstance(
|
||||
cache_to_check, (HybridChunkedCache, OffloadedHybridCache)
|
||||
) # due to internal slicing, we always re-init
|
||||
or cache_to_check.max_cache_len < max_cache_len
|
||||
)
|
||||
if cache_implementation != "mamba":
|
||||
need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len
|
||||
|
||||
if requires_cross_attention_cache and hasattr(self, "_cache"):
|
||||
need_new_cache = (
|
||||
@ -1957,9 +1963,6 @@ class GenerationMixin(ContinuousMixin):
|
||||
"device": device,
|
||||
"layer_device_map": layer_device_map,
|
||||
}
|
||||
if cache_implementation in ["static", "hybrid", "offloaded_static"]:
|
||||
cache_kwargs.update({"tp_size": self.tp_size})
|
||||
|
||||
self._cache = cache_cls(**cache_kwargs)
|
||||
if requires_cross_attention_cache:
|
||||
encoder_kwargs = cache_kwargs.copy()
|
||||
@ -1969,23 +1972,20 @@ class GenerationMixin(ContinuousMixin):
|
||||
self._cache.reset()
|
||||
return self._cache
|
||||
|
||||
@classmethod
|
||||
def _supports_default_dynamic_cache(cls) -> bool:
|
||||
def _supports_default_dynamic_cache(self) -> bool:
|
||||
"""
|
||||
Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`.
|
||||
This adds exception for some models like `Mamba` models which use their own caches
|
||||
and do not need to initialize the Cache in advance in order to save memory (because no back and forth
|
||||
`to_legacy_cache` and `from_legacy_cache` will be performed for mamba-based models).
|
||||
This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which
|
||||
uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in
|
||||
order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed
|
||||
for `HybridMambaAttentionDynamicCache`).
|
||||
"""
|
||||
# NOTE: remove xlnet/reformer when the models are deprecated, non-standard model architecture/cache name
|
||||
return not cls._is_stateful and all(
|
||||
special_model_name not in cls.__name__.lower()
|
||||
for special_model_name in [
|
||||
"reformer",
|
||||
"minimax",
|
||||
"xlnet",
|
||||
"lfm2",
|
||||
]
|
||||
return (
|
||||
self._supports_cache_class
|
||||
and "jamba" not in self.__class__.__name__.lower()
|
||||
and "zamba" not in self.__class__.__name__.lower()
|
||||
and "bamba" not in self.__class__.__name__.lower()
|
||||
and "minimax" not in self.__class__.__name__.lower()
|
||||
)
|
||||
|
||||
def _prepare_cache_for_generation(
|
||||
@ -2032,7 +2032,7 @@ class GenerationMixin(ContinuousMixin):
|
||||
if generation_config.use_cache is False:
|
||||
return
|
||||
|
||||
# Quick escape route 3: model that only supports legacy caches or models that supply it in `prepare_inputs_for_generation` (mamba, zamba, ...)
|
||||
# Quick escape route 3: model that only supports legacy caches = nothing to prepare
|
||||
if not self._supports_default_dynamic_cache():
|
||||
if generation_config.cache_implementation is not None:
|
||||
warnings.warn(
|
||||
@ -2072,7 +2072,7 @@ class GenerationMixin(ContinuousMixin):
|
||||
model_kwargs=model_kwargs,
|
||||
)
|
||||
elif generation_config.cache_implementation == "quantized":
|
||||
if self.config.is_encoder_decoder or not self._supports_default_dynamic_cache():
|
||||
if not self._supports_quantized_cache:
|
||||
raise ValueError(
|
||||
"This model does not support the quantized cache. If you want your model to support quantized "
|
||||
"cache, please open an issue and tag @zucchini-nlp."
|
||||
@ -2081,22 +2081,22 @@ class GenerationMixin(ContinuousMixin):
|
||||
cache_config = (
|
||||
generation_config.cache_config
|
||||
if generation_config.cache_config is not None
|
||||
else {"backend": "quanto"}
|
||||
else QuantizedCacheConfig()
|
||||
)
|
||||
cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config["backend"]]
|
||||
cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend]
|
||||
|
||||
if cache_config["backend"] == "quanto" and not is_optimum_quanto_available():
|
||||
if cache_config.backend == "quanto" and not is_optimum_quanto_available():
|
||||
raise ImportError(
|
||||
"You need to install optimum-quanto in order to use KV cache quantization with optimum-quanto backend. "
|
||||
"Please install it via with `pip install optimum-quanto`"
|
||||
)
|
||||
elif cache_config["backend"] == "HQQ" and not is_hqq_available():
|
||||
elif cache_config.backend == "HQQ" and not is_hqq_available():
|
||||
raise ImportError(
|
||||
"You need to install `HQQ` in order to use KV cache quantization with HQQ backend. "
|
||||
"Please install it via with `pip install hqq`"
|
||||
)
|
||||
|
||||
model_kwargs[cache_name] = cache_class(**cache_config)
|
||||
model_kwargs[cache_name] = cache_class(cache_config)
|
||||
elif generation_config.cache_implementation == "offloaded":
|
||||
model_kwargs[cache_name] = OffloadedCache()
|
||||
elif generation_config.cache_implementation == "dynamic":
|
||||
@ -3704,6 +3704,33 @@ class GenerationMixin(ContinuousMixin):
|
||||
else:
|
||||
return input_ids
|
||||
|
||||
# Auxiliary functions for beam search
|
||||
def _temporary_reorder_cache(self, past_key_values, beam_idx):
|
||||
"""
|
||||
Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.
|
||||
|
||||
TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
|
||||
for this function, with `Cache.reorder_cache` being the sole remaining code path
|
||||
"""
|
||||
model_class = self.__class__.__name__.lower()
|
||||
# Exception 1: code path for models using the legacy cache format
|
||||
if isinstance(past_key_values, (tuple, list)):
|
||||
past_key_values = self._reorder_cache(past_key_values, beam_idx)
|
||||
# Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
|
||||
# cache format is standardized, to avoid adding complexity to the codebase.
|
||||
elif "gptbigcode" in model_class:
|
||||
if not isinstance(past_key_values, (DynamicCache, EncoderDecoderCache)):
|
||||
raise ValueError(
|
||||
f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
|
||||
"legacy tuple format or `DynamicCache`"
|
||||
)
|
||||
past_key_values = self._reorder_cache(past_key_values, beam_idx)
|
||||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||
# Standard code path: use the `Cache.reorder_cache`
|
||||
else:
|
||||
past_key_values.reorder_cache(beam_idx)
|
||||
return past_key_values
|
||||
|
||||
@staticmethod
|
||||
def _flatten_beam_dim(tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""[batch_size, num_beams, ...] -> [batch_size * num_beams, ...]"""
|
||||
@ -4199,13 +4226,11 @@ class GenerationMixin(ContinuousMixin):
|
||||
# beam search as a whole (as opposed to individual beams, i.e. `stopping_criteria`)
|
||||
|
||||
# pluck the cache from the beam indices that will be used in the next iteration
|
||||
# NOTE: we need to check if `self._reorder_cache` exists for special models like RAG, RecurrentGemma etc.
|
||||
if model_kwargs.get("past_key_values", None) is not None:
|
||||
beam_idx = self._flatten_beam_dim(running_beam_indices[..., cur_len - decoder_prompt_len])
|
||||
if hasattr(self, "_reorder_cache"):
|
||||
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
|
||||
else:
|
||||
model_kwargs["past_key_values"].reorder_cache(beam_idx)
|
||||
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
|
||||
past_key_values=model_kwargs["past_key_values"],
|
||||
beam_idx=self._flatten_beam_dim(running_beam_indices[..., cur_len - decoder_prompt_len]),
|
||||
)
|
||||
|
||||
cur_len = cur_len + 1
|
||||
is_early_stop_heuristic_unsatisfied = self._check_early_stop_heuristic(
|
||||
@ -4508,14 +4533,10 @@ class GenerationMixin(ContinuousMixin):
|
||||
# (that way the memory peak does not include outputs.logits)
|
||||
del outputs
|
||||
|
||||
# NOTE: we need to check if `self._reorder_cache` exists for special models like RAG, RecurrentGemma etc.
|
||||
if model_kwargs.get("past_key_values", None) is not None:
|
||||
if hasattr(self, "_reorder_cache"):
|
||||
model_kwargs["past_key_values"] = self._reorder_cache(
|
||||
model_kwargs["past_key_values"], reordering_indices
|
||||
)
|
||||
else:
|
||||
model_kwargs["past_key_values"].reorder_cache(reordering_indices)
|
||||
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
|
||||
model_kwargs["past_key_values"], reordering_indices
|
||||
)
|
||||
|
||||
# increase cur_len
|
||||
cur_len = cur_len + 1
|
||||
@ -4749,12 +4770,10 @@ class GenerationMixin(ContinuousMixin):
|
||||
# (that way the memory peak does not include outputs.logits)
|
||||
del outputs
|
||||
|
||||
# NOTE: we need to check if `self._reorder_cache` exists for special models like RAG, RecurrentGemma etc.
|
||||
if model_kwargs.get("past_key_values", None) is not None:
|
||||
if hasattr(self, "_reorder_cache"):
|
||||
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
|
||||
else:
|
||||
model_kwargs["past_key_values"].reorder_cache(beam_idx)
|
||||
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
|
||||
model_kwargs["past_key_values"], beam_idx
|
||||
)
|
||||
|
||||
if return_dict_in_generate and output_scores:
|
||||
beam_indices = tuple(beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))
|
||||
@ -4979,7 +4998,8 @@ class GenerationMixin(ContinuousMixin):
|
||||
new_cur_len = input_ids.shape[1]
|
||||
|
||||
# 4.2. Discard past key values relative to unused assistant tokens
|
||||
outputs.past_key_values.crop(new_cur_len - 1)
|
||||
new_cache_size = new_cur_len - 1
|
||||
outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
|
||||
|
||||
# 5. Update the candidate generation strategy if needed
|
||||
candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)
|
||||
@ -5232,6 +5252,106 @@ def _ranking_fast(
|
||||
return selected_idx
|
||||
|
||||
|
||||
def _split(data, full_batch_size: int, split_size: int):
|
||||
"""
|
||||
Takes care of three cases:
|
||||
1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
|
||||
2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
|
||||
return a list of tuples
|
||||
3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
|
||||
return a list of tuples of tuples
|
||||
(see documentation of ModelOutput)
|
||||
"""
|
||||
if data is None:
|
||||
return [None] * (full_batch_size // split_size)
|
||||
if isinstance(data, torch.Tensor):
|
||||
return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
|
||||
# New cache format
|
||||
elif isinstance(data, DynamicCache) or (
|
||||
isinstance(data, EncoderDecoderCache) and isinstance(data.self_attention_cache, DynamicCache)
|
||||
):
|
||||
return data.batch_split(full_batch_size, split_size)
|
||||
elif isinstance(data, tuple):
|
||||
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
|
||||
if isinstance(data[0], tuple):
|
||||
return [
|
||||
tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
|
||||
for i in range(0, full_batch_size, split_size)
|
||||
]
|
||||
|
||||
else:
|
||||
return [
|
||||
tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
|
||||
for i in range(0, full_batch_size, split_size)
|
||||
]
|
||||
else:
|
||||
raise TypeError(f"Unexpected attribute type: {type(data)}")
|
||||
|
||||
|
||||
def _split_model_inputs(
|
||||
model_input: Union[ModelOutput, dict], split_size: int, full_batch_size: int, config: PretrainedConfig
|
||||
) -> list[Union[ModelOutput, dict]]:
|
||||
"""
|
||||
Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
|
||||
size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
|
||||
previous forward pass.
|
||||
"""
|
||||
# Edge case: if model_input is None, return a list of Nones
|
||||
# this happens with Whisper where encoder_outputs is None
|
||||
if model_input is None:
|
||||
return [model_input] * (full_batch_size // split_size)
|
||||
# Infer the class from the object
|
||||
model_output_cls = type(model_input)
|
||||
if (full_batch_size % split_size) != 0:
|
||||
raise ValueError("`full_batch_size` must be divisible by `split_size`")
|
||||
|
||||
if split_size > full_batch_size:
|
||||
raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")
|
||||
|
||||
# Helper function to split tensors or tuples of tensors
|
||||
|
||||
# Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
|
||||
keys = (
|
||||
model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
|
||||
)
|
||||
# We only keep keys that are in the model_input
|
||||
keys = [k for k in keys if k in model_input]
|
||||
# Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
|
||||
# ModelOutput object.
|
||||
# bool should not be split but replicated for each split
|
||||
bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
|
||||
keys_to_ignore = ["cache_position", "encoder_outputs", "logits_to_keep"]
|
||||
non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
|
||||
|
||||
# we split the tensors and tuples of tensors
|
||||
data_split_list = [
|
||||
{k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys}
|
||||
for i in range(full_batch_size // split_size)
|
||||
]
|
||||
# bool values are the same and replicated for each split
|
||||
bool_data = {k: model_input[k] for k in bool_keys}
|
||||
# encoder_outputs is a ModelOutput object and should be split by its own
|
||||
if "encoder_outputs" in model_input:
|
||||
encoder_outputs_split = _split_model_inputs(
|
||||
model_input["encoder_outputs"], split_size, full_batch_size, config.get_text_config()
|
||||
)
|
||||
data_split_list = [
|
||||
{**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
|
||||
]
|
||||
# logits_to_keep should be replicated for each split, similar to bool values
|
||||
if "logits_to_keep" in model_input:
|
||||
data_split_list = [
|
||||
{**data_split, "logits_to_keep": model_input["logits_to_keep"]} for data_split in data_split_list
|
||||
]
|
||||
|
||||
# Convert each dictionary in the list to an object of the inferred class
|
||||
split_model_inputs: list[Union[ModelOutput, dict]] = [
|
||||
model_output_cls(**data_split, **bool_data) for data_split in data_split_list
|
||||
]
|
||||
|
||||
return split_model_inputs
|
||||
|
||||
|
||||
def stack_model_outputs(model_outputs: list[ModelOutput], config: PretrainedConfig) -> ModelOutput:
|
||||
"""
|
||||
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
|
||||
@ -5256,6 +5376,11 @@ def stack_model_outputs(model_outputs: list[ModelOutput], config: PretrainedConf
|
||||
return None
|
||||
if isinstance(data[0], torch.Tensor):
|
||||
return torch.cat(data, dim=0)
|
||||
# New cache format
|
||||
elif isinstance(data[0], DynamicCache):
|
||||
return DynamicCache.from_batch_splits(data)
|
||||
elif isinstance(data[0], EncoderDecoderCache):
|
||||
return EncoderDecoderCache.from_batch_splits(data)
|
||||
elif isinstance(data[0], tuple):
|
||||
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
|
||||
if isinstance(data[0][0], tuple):
|
||||
|
@ -375,7 +375,7 @@ class BayesianDetectorModel(PreTrainedModel):
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
config: BayesianDetectorConfig
|
||||
config_class = BayesianDetectorConfig
|
||||
base_model_prefix = "model"
|
||||
|
||||
def __init__(self, config):
|
||||
|
@ -13,7 +13,6 @@
|
||||
# limitations under the License.
|
||||
|
||||
from collections.abc import Iterable
|
||||
from copy import deepcopy
|
||||
from functools import lru_cache, partial
|
||||
from typing import Any, Optional, TypedDict, Union
|
||||
|
||||
@ -230,7 +229,7 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
if kwarg is not None:
|
||||
setattr(self, key, kwarg)
|
||||
else:
|
||||
setattr(self, key, deepcopy(getattr(self, key, None)))
|
||||
setattr(self, key, getattr(self, key, None))
|
||||
|
||||
# get valid kwargs names
|
||||
self._valid_kwargs_names = list(self.valid_kwargs.__annotations__.keys())
|
||||
@ -453,7 +452,6 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
def _prepare_images_structure(
|
||||
self,
|
||||
images: ImageInput,
|
||||
expected_ndims: int = 3,
|
||||
) -> ImageInput:
|
||||
"""
|
||||
Prepare the images structure for processing.
|
||||
@ -465,7 +463,7 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
Returns:
|
||||
`ImageInput`: The images with a valid nesting.
|
||||
"""
|
||||
return make_flat_list_of_images(images, expected_ndims=expected_ndims)
|
||||
return make_flat_list_of_images(images)
|
||||
|
||||
def _process_image(
|
||||
self,
|
||||
@ -487,10 +485,6 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
# not using F.to_tensor as it doesn't handle (C, H, W) numpy arrays
|
||||
image = torch.from_numpy(image).contiguous()
|
||||
|
||||
# If the image is 2D, we need to unsqueeze it to add a channel dimension for processing
|
||||
if image.ndim == 2:
|
||||
image = image.unsqueeze(0)
|
||||
|
||||
# Infer the channel dimension format if not provided
|
||||
if input_data_format is None:
|
||||
input_data_format = infer_channel_dimension_format(image)
|
||||
@ -505,35 +499,32 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
|
||||
return image
|
||||
|
||||
def _prepare_image_like_inputs(
|
||||
def _prepare_input_images(
|
||||
self,
|
||||
images: ImageInput,
|
||||
do_convert_rgb: Optional[bool] = None,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
device: Optional["torch.device"] = None,
|
||||
expected_ndims: int = 3,
|
||||
) -> list["torch.Tensor"]:
|
||||
"""
|
||||
Prepare image-like inputs for processing.
|
||||
Prepare the input images for processing.
|
||||
|
||||
Args:
|
||||
images (`ImageInput`):
|
||||
The image-like inputs to process.
|
||||
The input images to process.
|
||||
do_convert_rgb (`bool`, *optional*):
|
||||
Whether to convert the images to RGB.
|
||||
input_data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The input data format of the images.
|
||||
device (`torch.device`, *optional*):
|
||||
The device to put the processed images on.
|
||||
expected_ndims (`int`, *optional*):
|
||||
The expected number of dimensions for the images. (can be 2 for segmentation maps etc.)
|
||||
|
||||
Returns:
|
||||
List[`torch.Tensor`]: The processed images.
|
||||
"""
|
||||
|
||||
# Get structured images (potentially nested)
|
||||
images = self._prepare_images_structure(images, expected_ndims=expected_ndims)
|
||||
images = self._prepare_images_structure(images)
|
||||
|
||||
process_image_partial = partial(
|
||||
self._process_image, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device
|
||||
@ -635,6 +626,10 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
do_convert_rgb = kwargs.pop("do_convert_rgb")
|
||||
input_data_format = kwargs.pop("input_data_format")
|
||||
device = kwargs.pop("device")
|
||||
# Prepare input images
|
||||
images = self._prepare_input_images(
|
||||
images=images, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device
|
||||
)
|
||||
|
||||
# Update kwargs that need further processing before being validated
|
||||
kwargs = self._further_process_kwargs(**kwargs)
|
||||
@ -656,28 +651,6 @@ class BaseImageProcessorFast(BaseImageProcessor):
|
||||
kwargs.pop("default_to_square")
|
||||
kwargs.pop("data_format")
|
||||
|
||||
return self._preprocess_image_like_inputs(
|
||||
images, *args, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device, **kwargs
|
||||
)
|
||||
|
||||
def _preprocess_image_like_inputs(
|
||||
self,
|
||||
images: ImageInput,
|
||||
*args,
|
||||
do_convert_rgb: bool,
|
||||
input_data_format: ChannelDimension,
|
||||
device: Optional[Union[str, "torch.device"]] = None,
|
||||
**kwargs: Unpack[DefaultFastImageProcessorKwargs],
|
||||
) -> BatchFeature:
|
||||
"""
|
||||
Preprocess image-like inputs.
|
||||
To be overriden by subclasses when image-like inputs other than images should be processed.
|
||||
It can be used for segmentation maps, depth maps, etc.
|
||||
"""
|
||||
# Prepare input images
|
||||
images = self._prepare_image_like_inputs(
|
||||
images=images, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device
|
||||
)
|
||||
return self._preprocess(images, *args, **kwargs)
|
||||
|
||||
def _preprocess(
|
||||
|
@ -416,7 +416,7 @@ def normalize(
|
||||
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
||||
"""
|
||||
if not isinstance(image, np.ndarray):
|
||||
raise TypeError("image must be a numpy array")
|
||||
raise ValueError("image must be a numpy array")
|
||||
|
||||
if input_data_format is None:
|
||||
input_data_format = infer_channel_dimension_format(image)
|
||||
|
@ -213,7 +213,6 @@ def make_list_of_images(images, expected_ndims: int = 3) -> list[ImageInput]:
|
||||
|
||||
def make_flat_list_of_images(
|
||||
images: Union[list[ImageInput], ImageInput],
|
||||
expected_ndims: int = 3,
|
||||
) -> ImageInput:
|
||||
"""
|
||||
Ensure that the output is a flat list of images. If the input is a single image, it is converted to a list of length 1.
|
||||
@ -221,8 +220,6 @@ def make_flat_list_of_images(
|
||||
Args:
|
||||
images (`Union[list[ImageInput], ImageInput]`):
|
||||
The input image.
|
||||
expected_ndims (`int`, *optional*, defaults to 3):
|
||||
The expected number of dimensions for a single input image.
|
||||
Returns:
|
||||
list: A list of images or a 4d array of images.
|
||||
"""
|
||||
@ -235,15 +232,15 @@ def make_flat_list_of_images(
|
||||
return [img for img_list in images for img in img_list]
|
||||
|
||||
if isinstance(images, (list, tuple)) and is_valid_list_of_images(images):
|
||||
if is_pil_image(images[0]) or images[0].ndim == expected_ndims:
|
||||
if is_pil_image(images[0]) or images[0].ndim == 3:
|
||||
return images
|
||||
if images[0].ndim == expected_ndims + 1:
|
||||
if images[0].ndim == 4:
|
||||
return [img for img_list in images for img in img_list]
|
||||
|
||||
if is_valid_image(images):
|
||||
if is_pil_image(images) or images.ndim == expected_ndims:
|
||||
if is_pil_image(images) or images.ndim == 3:
|
||||
return [images]
|
||||
if images.ndim == expected_ndims + 1:
|
||||
if images.ndim == 4:
|
||||
return list(images)
|
||||
|
||||
raise ValueError(f"Could not make a flat list of images from {images}")
|
||||
@ -251,15 +248,12 @@ def make_flat_list_of_images(
|
||||
|
||||
def make_nested_list_of_images(
|
||||
images: Union[list[ImageInput], ImageInput],
|
||||
expected_ndims: int = 3,
|
||||
) -> ImageInput:
|
||||
"""
|
||||
Ensure that the output is a nested list of images.
|
||||
Args:
|
||||
images (`Union[list[ImageInput], ImageInput]`):
|
||||
The input image.
|
||||
expected_ndims (`int`, *optional*, defaults to 3):
|
||||
The expected number of dimensions for a single input image.
|
||||
Returns:
|
||||
list: A list of list of images or a list of 4d array of images.
|
||||
"""
|
||||
@ -273,16 +267,16 @@ def make_nested_list_of_images(
|
||||
|
||||
# If it's a list of images, it's a single batch, so convert it to a list of lists
|
||||
if isinstance(images, (list, tuple)) and is_valid_list_of_images(images):
|
||||
if is_pil_image(images[0]) or images[0].ndim == expected_ndims:
|
||||
if is_pil_image(images[0]) or images[0].ndim == 3:
|
||||
return [images]
|
||||
if images[0].ndim == expected_ndims + 1:
|
||||
if images[0].ndim == 4:
|
||||
return [list(image) for image in images]
|
||||
|
||||
# If it's a single image, convert it to a list of lists
|
||||
if is_valid_image(images):
|
||||
if is_pil_image(images) or images.ndim == expected_ndims:
|
||||
if is_pil_image(images) or images.ndim == 3:
|
||||
return [[images]]
|
||||
if images.ndim == expected_ndims + 1:
|
||||
if images.ndim == 4:
|
||||
return [list(images)]
|
||||
|
||||
raise ValueError("Invalid input type. Must be a single image, a list of images, or a list of batches of images.")
|
||||
|
@ -15,7 +15,7 @@ from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from ..cache_utils import DynamicCache, EncoderDecoderCache, HybridCache, StaticCache
|
||||
from ..cache_utils import DynamicCache, HybridCache, StaticCache
|
||||
from ..generation.configuration_utils import GenerationConfig
|
||||
from ..masking_utils import (
|
||||
ALL_MASK_ATTENTION_FUNCTIONS,
|
||||
@ -107,23 +107,9 @@ class TorchExportableModuleForDecoderOnlyLM(torch.nn.Module):
|
||||
strict(`Optional[bool]`):
|
||||
Flag to instruct `torch.export` to use `torchdynamo`.
|
||||
"""
|
||||
if hasattr(self.model, "base_model_prefix"):
|
||||
base = getattr(self.model, self.model.base_model_prefix, self.model)
|
||||
model_device = base.device
|
||||
elif hasattr(self.model, "model"):
|
||||
model_device = self.model.model.device
|
||||
else:
|
||||
model_device = "cpu"
|
||||
logging.warning(
|
||||
"TorchExportableModuleForDecoderOnlyLM.export Can't infer device from the model. Set to CPU by default."
|
||||
)
|
||||
|
||||
example_input_ids = (
|
||||
input_ids if input_ids is not None else torch.tensor([[1]], dtype=torch.long, device=model_device)
|
||||
)
|
||||
example_cache_position = (
|
||||
cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long, device=model_device)
|
||||
)
|
||||
example_input_ids = input_ids if input_ids is not None else torch.tensor([[1]], dtype=torch.long)
|
||||
example_cache_position = cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long)
|
||||
|
||||
exported_program = torch.export.export(
|
||||
self.model,
|
||||
@ -290,14 +276,14 @@ class TorchExportableModuleWithStaticCache(torch.nn.Module):
|
||||
self.model = model
|
||||
self.static_cache = StaticCache(
|
||||
config=self.model.config,
|
||||
max_batch_size=self.model.generation_config.cache_config.get("batch_size"),
|
||||
max_cache_len=self.model.generation_config.cache_config.get("max_cache_len"),
|
||||
device=self.model.generation_config.cache_config.get("device"),
|
||||
max_batch_size=self.model.generation_config.cache_config.batch_size,
|
||||
max_cache_len=self.model.generation_config.cache_config.max_cache_len,
|
||||
device=self.model.generation_config.cache_config.device,
|
||||
dtype=self.model.dtype,
|
||||
)
|
||||
for i in range(len(self.static_cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.static_cache.layers[i].keys, persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.static_cache.layers[i].values, persistent=False)
|
||||
for i in range(len(self.static_cache.key_cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.static_cache.key_cache[i], persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.static_cache.value_cache[i], persistent=False)
|
||||
|
||||
def forward(self, input_ids: torch.Tensor, cache_position: torch.Tensor):
|
||||
"""
|
||||
@ -336,9 +322,7 @@ class TorchExportableModuleWithStaticCache(torch.nn.Module):
|
||||
|
||||
@staticmethod
|
||||
def generate(
|
||||
exported_program: torch.export.ExportedProgram,
|
||||
prompt_token_ids: torch.Tensor,
|
||||
max_new_tokens: int,
|
||||
exported_program: torch.export.ExportedProgram, prompt_token_ids: torch.Tensor, max_new_tokens: int
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Generate a sequence of tokens using an exported program.
|
||||
@ -357,7 +341,6 @@ class TorchExportableModuleWithStaticCache(torch.nn.Module):
|
||||
Returns:
|
||||
torch.Tensor: A tensor containing the generated sequence of token IDs, including the original prompt tokens.
|
||||
"""
|
||||
device = prompt_token_ids.device
|
||||
prompt_token_len = prompt_token_ids.shape[-1]
|
||||
max_generation_length = prompt_token_len + max_new_tokens
|
||||
for buffer_name, buffer in exported_program.named_buffers():
|
||||
@ -370,7 +353,7 @@ class TorchExportableModuleWithStaticCache(torch.nn.Module):
|
||||
for input_pos in range(min(max_generation_length, prompt_token_len)):
|
||||
result = exported_program.module().forward(
|
||||
input_ids=prompt_token_ids[:, input_pos : input_pos + 1],
|
||||
cache_position=torch.tensor([input_pos], dtype=torch.long, device=device),
|
||||
cache_position=torch.tensor([input_pos], dtype=torch.long),
|
||||
)
|
||||
response_tokens.append(prompt_token_ids[0][input_pos].item())
|
||||
|
||||
@ -379,13 +362,13 @@ class TorchExportableModuleWithStaticCache(torch.nn.Module):
|
||||
|
||||
while len(response_tokens) < max_generation_length:
|
||||
result = exported_program.module().forward(
|
||||
input_ids=torch.tensor([[current_token]], dtype=torch.long, device=device),
|
||||
cache_position=torch.tensor([len(response_tokens)], dtype=torch.long, device=device),
|
||||
input_ids=torch.tensor([[current_token]], dtype=torch.long),
|
||||
cache_position=torch.tensor([len(response_tokens)], dtype=torch.long),
|
||||
)
|
||||
current_token = torch.argmax(result[:, -1, :], dim=-1).item()
|
||||
response_tokens.append(current_token)
|
||||
|
||||
return torch.tensor([response_tokens], dtype=torch.long, device=device)
|
||||
return torch.tensor([response_tokens], dtype=torch.long)
|
||||
|
||||
|
||||
class TorchExportableModuleWithHybridCache(torch.nn.Module):
|
||||
@ -429,9 +412,9 @@ class TorchExportableModuleWithHybridCache(torch.nn.Module):
|
||||
)
|
||||
|
||||
# Register all key and value cache tensors as buffers
|
||||
for i in range(len(self.cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.cache.layers[i].keys, persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.cache.layers[i].values, persistent=False)
|
||||
for i in range(len(self.cache.key_cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.cache.key_cache[i], persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.cache.value_cache[i], persistent=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -501,14 +484,10 @@ def convert_and_export_with_cache(
|
||||
with torch.no_grad():
|
||||
# TODO: The default inputs only work for text models. We need to add support for vision/audio models.
|
||||
example_input_ids = (
|
||||
example_input_ids
|
||||
if example_input_ids is not None
|
||||
else torch.tensor([[1]], dtype=torch.long, device=model.device)
|
||||
example_input_ids if example_input_ids is not None else torch.tensor([[1]], dtype=torch.long)
|
||||
)
|
||||
example_cache_position = (
|
||||
example_cache_position
|
||||
if example_cache_position is not None
|
||||
else torch.tensor([0], dtype=torch.long, device=model.device)
|
||||
example_cache_position if example_cache_position is not None else torch.tensor([0], dtype=torch.long)
|
||||
)
|
||||
|
||||
if is_torch_greater_or_equal("2.6.0"):
|
||||
@ -569,7 +548,7 @@ class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module):
|
||||
self.lm_head = model.lm_head
|
||||
self.config = model.config
|
||||
|
||||
# Initialize static cache for decoder and DynamicCache for encoder
|
||||
# Initialize static cache
|
||||
self.static_cache = StaticCache(
|
||||
config=self.config,
|
||||
max_batch_size=batch_size,
|
||||
@ -577,19 +556,18 @@ class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module):
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
)
|
||||
self.cache = EncoderDecoderCache(self.static_cache, DynamicCache())
|
||||
|
||||
# Register cache buffers to make them exportable
|
||||
for i in range(len(self.static_cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.static_cache.layers[i].keys, persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.static_cache.layers[i].values, persistent=False)
|
||||
for i in range(len(self.static_cache.key_cache)):
|
||||
self.register_buffer(f"key_cache_{i}", self.static_cache.key_cache[i], persistent=False)
|
||||
self.register_buffer(f"value_cache_{i}", self.static_cache.value_cache[i], persistent=False)
|
||||
|
||||
def forward(self, decoder_input_ids, encoder_hidden_states, cache_position):
|
||||
# Get outputs from decoder
|
||||
outputs = self.decoder(
|
||||
input_ids=decoder_input_ids,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
past_key_values=self.cache,
|
||||
past_key_values=self.static_cache,
|
||||
use_cache=True,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
@ -623,7 +601,7 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
|
||||
self.exported_decoder = None
|
||||
|
||||
def _export_encoder(self, encoder_input_ids):
|
||||
wrapped_encoder = Seq2SeqLMEncoderExportableModule(self.encoder).to(self.full_model.device).eval()
|
||||
wrapped_encoder = Seq2SeqLMEncoderExportableModule(self.encoder).to("cpu").eval()
|
||||
|
||||
# Define dynamic sequence length for encoder
|
||||
seq_len_dim = torch.export.Dim("encoder_seq_length", max=self.max_hidden_seq_length)
|
||||
@ -666,27 +644,18 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
|
||||
return exported_decoder
|
||||
|
||||
def export(self, encoder_input_ids=None, decoder_input_ids=None, encoder_hidden_states=None, cache_position=None):
|
||||
device = self.full_model.device
|
||||
example_encoder_input_ids = (
|
||||
encoder_input_ids
|
||||
if encoder_input_ids is not None
|
||||
else torch.ones((1, 10), dtype=torch.long, device=device)
|
||||
encoder_input_ids if encoder_input_ids is not None else torch.ones((1, 10), dtype=torch.long)
|
||||
)
|
||||
example_decoder_input_ids = (
|
||||
decoder_input_ids
|
||||
if decoder_input_ids is not None
|
||||
else torch.tensor([[0]], dtype=torch.long, device=device)
|
||||
decoder_input_ids if decoder_input_ids is not None else torch.tensor([[0]], dtype=torch.long)
|
||||
) # Start token
|
||||
example_cache_position = (
|
||||
cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long, device=device)
|
||||
)
|
||||
example_cache_position = cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long)
|
||||
example_encoder_hidden_states = (
|
||||
encoder_hidden_states
|
||||
if encoder_hidden_states is not None
|
||||
else torch.zeros(
|
||||
(self.generation_config.cache_config.batch_size, 10, self.config.d_model),
|
||||
dtype=torch.float32,
|
||||
device=device,
|
||||
(self.generation_config.cache_config.batch_size, 10, self.config.d_model), dtype=torch.float32
|
||||
)
|
||||
)
|
||||
self.exported_encoder = self._export_encoder(example_encoder_input_ids)
|
||||
|
@ -38,6 +38,7 @@ def flash_attention_forward(
|
||||
"FlashAttention does not support inputs with dim=0.\n"
|
||||
"Please check your input shapes or use SDPA instead."
|
||||
)
|
||||
|
||||
# FA2 uses non-transposed inputs
|
||||
query = query.transpose(1, 2)
|
||||
key = key.transpose(1, 2)
|
||||
@ -75,7 +76,6 @@ def flash_attention_forward(
|
||||
use_top_left_mask=_use_top_left_mask,
|
||||
target_dtype=target_dtype,
|
||||
attn_implementation=module.config._attn_implementation,
|
||||
layer_idx=module.layer_idx if hasattr(module, "layer_idx") else None,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
@ -5,7 +5,7 @@ from ..utils import is_flash_attn_2_available
|
||||
|
||||
|
||||
if is_flash_attn_2_available():
|
||||
from flash_attn import flash_attn_varlen_func # noqa: F401
|
||||
from flash_attn import flash_attn_varlen_func
|
||||
|
||||
|
||||
def paged_attention_forward(
|
||||
@ -20,7 +20,6 @@ def paged_attention_forward(
|
||||
max_seqlen_q=None,
|
||||
max_seqlen_k=None,
|
||||
block_tables=None,
|
||||
implementation=None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
r"""Perform the forward pass of attention with paged key-value cache.
|
||||
@ -47,14 +46,12 @@ def paged_attention_forward(
|
||||
"""
|
||||
k, v = cache.update(k, v, module.layer_idx, cumulative_seqlens_k=cumulative_seqlens_k, **kwargs)
|
||||
|
||||
if implementation is not None:
|
||||
flash_attn_varlen_func = implementation.flash_attn_varlen_func
|
||||
attn_output = flash_attn_varlen_func(
|
||||
q.transpose(1, 2).squeeze(0).contiguous(),
|
||||
k.transpose(1, 2).squeeze(0).contiguous(),
|
||||
v.transpose(1, 2).squeeze(0).contiguous(),
|
||||
q.transpose(1, 2).squeeze(0),
|
||||
k.transpose(1, 2).squeeze(0),
|
||||
v.transpose(1, 2).squeeze(0),
|
||||
cumulative_seqlens_q.to(torch.int32),
|
||||
cumulative_seqlens_k.to(torch.int32).clone(),
|
||||
cumulative_seqlens_k.to(torch.int32),
|
||||
max_seqlen_q,
|
||||
max_seqlen_k,
|
||||
softmax_scale=module.scaling,
|
||||
|
@ -90,18 +90,6 @@ GGUF_CONFIG_MAPPING = {
|
||||
"expert_count": "num_experts",
|
||||
"expert_used_count": "num_experts_per_tok",
|
||||
},
|
||||
"qwen3": {
|
||||
"context_length": "max_position_embeddings",
|
||||
"block_count": "num_hidden_layers",
|
||||
"feed_forward_length": "intermediate_size",
|
||||
"embedding_length": "hidden_size",
|
||||
"rope.dimension_count": None,
|
||||
"rope.freq_base": "rope_theta",
|
||||
"attention.head_count": "num_attention_heads",
|
||||
"attention.head_count_kv": "num_key_value_heads",
|
||||
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
|
||||
"vocab_size": "vocab_size",
|
||||
},
|
||||
"falcon": {
|
||||
"context_length": "max_position_embeddings",
|
||||
"block_count": "num_hidden_layers",
|
||||
@ -688,7 +676,6 @@ GGUF_TO_FAST_CONVERTERS = {
|
||||
"llama": GGUFLlamaConverter,
|
||||
"qwen2": GGUFQwen2Converter,
|
||||
"qwen2_moe": GGUFQwen2Converter,
|
||||
"qwen3": GGUFQwen2Converter,
|
||||
"phi3": GGUFPhi3Converter,
|
||||
"bloom": GGUFGPTConverter,
|
||||
"falcon": GGUFGPTConverter,
|
||||
|
@ -23,7 +23,6 @@ import json
|
||||
import numbers
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
@ -768,7 +767,7 @@ class WandbLogModel(str, Enum):
|
||||
@classmethod
|
||||
def _missing_(cls, value: Any) -> "WandbLogModel":
|
||||
if not isinstance(value, str):
|
||||
raise TypeError(f"Expecting to have a string `WANDB_LOG_MODEL` setting, but got {type(value)}")
|
||||
raise ValueError(f"Expecting to have a string `WANDB_LOG_MODEL` setting, but got {type(value)}")
|
||||
if value.upper() in ENV_VARS_TRUE_VALUES:
|
||||
raise DeprecationWarning(
|
||||
f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in "
|
||||
@ -1346,13 +1345,10 @@ class MLflowCallback(TrainerCallback):
|
||||
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
|
||||
)
|
||||
|
||||
# sanitize metric names to replace unsupported characters like parentheses
|
||||
sanitized_metrics = {re.sub(r"[^0-9A-Za-z_\-\.\ :/]", "_", k): v for k, v in metrics.items()}
|
||||
|
||||
if self._async_log:
|
||||
self._ml_flow.log_metrics(metrics=sanitized_metrics, step=state.global_step, synchronous=False)
|
||||
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False)
|
||||
else:
|
||||
self._ml_flow.log_metrics(metrics=sanitized_metrics, step=state.global_step)
|
||||
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step)
|
||||
|
||||
def on_train_end(self, args, state, control, **kwargs):
|
||||
if self._initialized and state.is_world_process_zero:
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user