mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-25 04:04:35 +08:00
Compare commits
856 Commits
quickfix_g
...
muellerzr-
| Author | SHA1 | Date | |
|---|---|---|---|
| 2215094c81 | |||
| dfe310ab9c | |||
| d9e6f307e7 | |||
| 1867be666d | |||
| 6a912ff2c5 | |||
| 4e90b99ed9 | |||
| 18871599c9 | |||
| d6a5c23f71 | |||
| ae5cbf804b | |||
| c57eafdaa1 | |||
| d4e1acbb7c | |||
| 28fb02fc05 | |||
| 40821a2478 | |||
| 3cb8676a91 | |||
| bf42c3bd4b | |||
| 67890de3b8 | |||
| f297af55df | |||
| 8cadf76e1c | |||
| 9d16441e4f | |||
| 9470d65324 | |||
| 145fbd46cb | |||
| 3033509327 | |||
| befbbf2f98 | |||
| 469eddbe2d | |||
| 05ebe8b9b0 | |||
| eedc113914 | |||
| b99ca4d28b | |||
| 15dd625a0f | |||
| dc42330388 | |||
| 427b62ed1a | |||
| fdb9230485 | |||
| 7b9e51c1a0 | |||
| 5fa4f64605 | |||
| 581524389a | |||
| e3a5889ef0 | |||
| ce1d328e3b | |||
| 4bff54f921 | |||
| 54739a320e | |||
| 5de58d5955 | |||
| 3cd78be34e | |||
| 0db91c3c8d | |||
| 1a0cd69435 | |||
| d8a5d31d9c | |||
| dadb286f06 | |||
| eed11f34ab | |||
| 759a378ee5 | |||
| 20142ab542 | |||
| 7df93d6ffb | |||
| 7693b62268 | |||
| 1ef6c5f1c5 | |||
| e80a65ba4f | |||
| 9568a9dfc5 | |||
| 8568bf1bcf | |||
| 36759f3312 | |||
| 1c471fc307 | |||
| c772d4d91e | |||
| eb0ab3ed4b | |||
| 1646ffb4d1 | |||
| 3ee24e2208 | |||
| 13493215ab | |||
| 8d50fda644 | |||
| b0c0ba7b4d | |||
| 52ea4aa589 | |||
| 7b3d615bc2 | |||
| f5dbfab7f3 | |||
| 8ba3e1505e | |||
| a3d69a8994 | |||
| 68f8186a89 | |||
| e7c36a9d57 | |||
| be8748a53c | |||
| 33eef99250 | |||
| 6de2a4d1f1 | |||
| 25f510a9c6 | |||
| 3ea3ab62d8 | |||
| 134ba90da9 | |||
| 768f3c016e | |||
| a06a0d1263 | |||
| 1cf17077bf | |||
| 6938524a28 | |||
| 7bbc624743 | |||
| e83aaaa86b | |||
| 9f28d0c5d0 | |||
| d2bae7ee9d | |||
| f2d5dfbab2 | |||
| 082e57e0d4 | |||
| 74d3824cc0 | |||
| 45b0c7680c | |||
| 663c851239 | |||
| 893ad04fad | |||
| 5e1fd4e204 | |||
| d0b1d8d888 | |||
| eb811449a2 | |||
| bfa021be05 | |||
| 0a6795af12 | |||
| 1112c54604 | |||
| a86bd6f2d8 | |||
| 48831b7d11 | |||
| 34927b0f73 | |||
| 187439c3fa | |||
| ef976a7e18 | |||
| 33868a057c | |||
| e2ac16b28a | |||
| 86701f2b6f | |||
| 4cc0813e28 | |||
| 6beb3f1691 | |||
| b53e44e847 | |||
| 2801d7bcf6 | |||
| df8640cedb | |||
| 203e27059b | |||
| c443d8d536 | |||
| 114dd812dd | |||
| 294c170ff9 | |||
| b5919e12f7 | |||
| 4ca004eac6 | |||
| ab98f0b0a1 | |||
| dca93ca076 | |||
| 1b86772de5 | |||
| f38531619d | |||
| 405b562698 | |||
| 48872fd6ae | |||
| 9f06fb0505 | |||
| 5251fe6271 | |||
| eab6c491d4 | |||
| 241d79026f | |||
| 8a734ea2c3 | |||
| 913330ca9f | |||
| 0f764a5af7 | |||
| 25a9fc584a | |||
| cd277618d4 | |||
| 9bee9ff5db | |||
| e4449bb790 | |||
| f55595b177 | |||
| 4e2e8809ff | |||
| e9ad460494 | |||
| f339042b0b | |||
| 34620e8f0a | |||
| 56c45d5757 | |||
| 0ab0a42651 | |||
| 8755dd26b7 | |||
| 5392f12e16 | |||
| 004530aa05 | |||
| 9e3d704e23 | |||
| 626c610a4d | |||
| 439334c8fb | |||
| a1835195d1 | |||
| 655bec2da7 | |||
| 63ca6d9771 | |||
| 808d6c50f8 | |||
| fe76b60370 | |||
| a769ed45e1 | |||
| 6cc4a67b3d | |||
| d21dbd1520 | |||
| a17f287ac0 | |||
| 084e946cfd | |||
| 1f7539c829 | |||
| fc1ae7f30f | |||
| c1753436db | |||
| 8b3b9b48fc | |||
| 92bcdff2ef | |||
| 9360f1827d | |||
| fc465bb196 | |||
| fddbd3c13c | |||
| 1d06379331 | |||
| 6a62a6d1b5 | |||
| f73f5e62e2 | |||
| e447185b1f | |||
| 186b8dc190 | |||
| 8814043c8c | |||
| 223855314f | |||
| 9f365fe0ac | |||
| 5779bac4c4 | |||
| 940a6bd343 | |||
| 3d99f1746e | |||
| a308d28d39 | |||
| 4c6e0c9252 | |||
| 1c5918d910 | |||
| d9989e0b9a | |||
| fe35073319 | |||
| e288616606 | |||
| 450b9cbfac | |||
| 6432ad8bb5 | |||
| dd267fca72 | |||
| 30c76d5b28 | |||
| 2112027d0c | |||
| b29c24ff1e | |||
| f0b3ef9e2e | |||
| 9643069465 | |||
| f0e640adfa | |||
| 05863817d6 | |||
| 65753d6065 | |||
| b0f0c61899 | |||
| e50bf61dec | |||
| c42b3223db | |||
| d9f733625c | |||
| 1fb575fcf0 | |||
| 343c8cb86f | |||
| 5ba85de7a4 | |||
| 049682a5a6 | |||
| 644d5287b2 | |||
| b03dc0a87e | |||
| 4b14aa1bcd | |||
| 688eeac81e | |||
| a65a6ce7fe | |||
| e7c3fa7f57 | |||
| 96f67c068b | |||
| eef6b0ba42 | |||
| c14ccbcd64 | |||
| 7a08a772cc | |||
| c31a6ff474 | |||
| 104599d7a8 | |||
| 51e395d13e | |||
| eb6a734995 | |||
| 84b17e03f1 | |||
| 681fc43713 | |||
| 93352e81f5 | |||
| b644178ed4 | |||
| 73d65e637b | |||
| 5077bc034f | |||
| 21d5025826 | |||
| 32590b5ecb | |||
| f701b98e4a | |||
| a4122813d1 | |||
| 24bdc94da5 | |||
| ca541bd4f4 | |||
| 816f442496 | |||
| e46e3bc173 | |||
| 6604764007 | |||
| e95ea479ee | |||
| 0437d6cd03 | |||
| 5a5b590d06 | |||
| b54109c746 | |||
| 6ba31a8a94 | |||
| 7a06d07e14 | |||
| c1c7e89620 | |||
| f51ac9e059 | |||
| 1d2c29f0b3 | |||
| 9470c00042 | |||
| 7f5088503f | |||
| f2846ad2b7 | |||
| b57c7bce21 | |||
| fce1fcfe71 | |||
| aa3e35ac67 | |||
| 6d2b203339 | |||
| 3f06f95ebe | |||
| 3a10c6192b | |||
| bd5dc10fd2 | |||
| cc7d8b87e1 | |||
| 98bad9c6d6 | |||
| 9ba021ea75 | |||
| d087165db0 | |||
| 9d6998c759 | |||
| 554ed5d1e0 | |||
| 8c33cf4eec | |||
| 67acb0b123 | |||
| 0f49deacbf | |||
| d00f1ca860 | |||
| 65442718c4 | |||
| d314ce70bf | |||
| 5ee9e786d1 | |||
| 4de1bdbf63 | |||
| 293e6271c6 | |||
| 23874f5948 | |||
| dd4216b766 | |||
| fa3f2db5c7 | |||
| 5114c9b9e9 | |||
| 013d3ac2b5 | |||
| cb5ca3265f | |||
| 4c439173df | |||
| 7434c0ed21 | |||
| 37ea04013b | |||
| 617b21273a | |||
| 144852fb6b | |||
| 80bee7b114 | |||
| 37ac078535 | |||
| fd70464fa7 | |||
| 3a24ba82ad | |||
| 7b06473b8f | |||
| 1c66be8062 | |||
| 409dd2d19c | |||
| 9dca0c9116 | |||
| f052e94bcc | |||
| e878eaa9fc | |||
| 4b9bfd32f0 | |||
| be9aeba581 | |||
| 7d97cca8dd | |||
| 70b07d97cf | |||
| 24b82f3cd5 | |||
| 211f1d93db | |||
| 8363fd8346 | |||
| e7dfb917f8 | |||
| a37a06a20b | |||
| b2f09fb90f | |||
| 4a3f1a686f | |||
| fb0c6b521d | |||
| dda3f91d06 | |||
| f8a260e2a4 | |||
| c9afee5392 | |||
| 66e08dba71 | |||
| a84c413773 | |||
| adea67541a | |||
| a265600c60 | |||
| 69b5ccb887 | |||
| 88d01d9119 | |||
| c02cf48729 | |||
| 0354d44926 | |||
| 973e6066d4 | |||
| 61a6dce7e4 | |||
| 6ac5f25bb6 | |||
| 8dca259826 | |||
| 4ad923344d | |||
| 04f51c42c8 | |||
| 32cc15c6a2 | |||
| f0fbef1c63 | |||
| 48b54205d0 | |||
| 03e6fa0061 | |||
| 13929a0ec6 | |||
| 41794e6098 | |||
| 36d410dab6 | |||
| 48461c0fe2 | |||
| 4fb28703ad | |||
| 5ee52ae0bc | |||
| 295a90cb40 | |||
| cdee5285ca | |||
| faa0f63b93 | |||
| e783f12f20 | |||
| 698b36da72 | |||
| 6151bc47ba | |||
| d31d076b53 | |||
| 109b1e7591 | |||
| 5809b43a62 | |||
| c674f2e313 | |||
| c15d01fa1d | |||
| f0f8077025 | |||
| 0d0ec1dbfb | |||
| 386401eca0 | |||
| db5f117b8a | |||
| cd9a3c49b8 | |||
| d6d07f9c77 | |||
| 48e80284fa | |||
| adb14b93f4 | |||
| 291e707868 | |||
| dd43dafa39 | |||
| acde6c7d9d | |||
| bb825dde73 | |||
| 1d458437dd | |||
| 47da2c528b | |||
| 2e8de976bd | |||
| 2fe77783c3 | |||
| 1ed98773e5 | |||
| 79af52ad9a | |||
| d49999ce11 | |||
| 573942d96a | |||
| 04b4e441dc | |||
| 1909def2de | |||
| 4f2bf135af | |||
| f4b741d674 | |||
| 17806d11ba | |||
| fb360a6c7a | |||
| 3b44d2f042 | |||
| e2001c3413 | |||
| 0dbc7090ba | |||
| a3add29097 | |||
| bead0fa8dc | |||
| d6ba1ac041 | |||
| 46f146a2b5 | |||
| 1ecca92f03 | |||
| 8258219c4c | |||
| 253a9a9d6f | |||
| 178d707b7e | |||
| 13432f8409 | |||
| e9fbe62965 | |||
| 9c61ba2f25 | |||
| 9c8bd3fc1b | |||
| 6996f2186a | |||
| 410c73af1d | |||
| 6c18cefed0 | |||
| c91fe85b78 | |||
| 736c7cde51 | |||
| 55be7c4c48 | |||
| 7bae833728 | |||
| e782e95e34 | |||
| 9b4b0c07db | |||
| ad1a250719 | |||
| f5aeb7c1a5 | |||
| 1f33023cfa | |||
| 4953ddf036 | |||
| 1bd604d11c | |||
| 5ef432e474 | |||
| 22e102ad98 | |||
| 56be9f1925 | |||
| a7e4e1a77c | |||
| 612065efeb | |||
| 38f9f10dd9 | |||
| f92d354823 | |||
| f319ba16fa | |||
| e3775539c8 | |||
| 46579c0e77 | |||
| 0d1692a49b | |||
| 614660fdb9 | |||
| 78ef58325c | |||
| b916efcb3c | |||
| de4112e4d2 | |||
| 2e719e35fd | |||
| 061c2c4c38 | |||
| 4a173b88b5 | |||
| b6a01df6e9 | |||
| 124713c32b | |||
| 2bd4d5897d | |||
| 550673a70c | |||
| 074aa3b3fd | |||
| b0c5660e88 | |||
| 15a4d24805 | |||
| a220c5b99f | |||
| 6500f78c86 | |||
| bf0ffe3d29 | |||
| ab97a78130 | |||
| d29738f5b4 | |||
| f2bf4fcf3d | |||
| 95a2f5f6c3 | |||
| 4df3ccddb7 | |||
| 6f0ce52760 | |||
| f1a5f81296 | |||
| dc8156fdd8 | |||
| d7950bff82 | |||
| 62e8c759c3 | |||
| 2f25ab95db | |||
| ee71c9853a | |||
| cac4a4876b | |||
| b7474f211d | |||
| e7c8af7f33 | |||
| 614c79a9b0 | |||
| b09234cfc1 | |||
| fe484726aa | |||
| 181c962aab | |||
| e5d14f39ad | |||
| 50290cf7a0 | |||
| 2292be6c1b | |||
| 61ac161a9d | |||
| 1baa08897d | |||
| 68a2b50069 | |||
| 8635802af9 | |||
| a43e84cb3b | |||
| 0256520794 | |||
| f205da9660 | |||
| 0c4c2d7e07 | |||
| 5f9f58fc59 | |||
| f8110a6ddf | |||
| 326b2bad1c | |||
| b1c914e463 | |||
| ac28a23b3d | |||
| acdfdd9387 | |||
| 351873a145 | |||
| 88d960937c | |||
| 22266be970 | |||
| d19ab15421 | |||
| fbde09c8c9 | |||
| 808997a634 | |||
| c269c5c74d | |||
| 570c89625b | |||
| 90dca5a71b | |||
| b77846a6e6 | |||
| baa765f813 | |||
| 18c5b216f1 | |||
| 1dba608df9 | |||
| 1d29a75a6a | |||
| f5247aca01 | |||
| 4d5b458704 | |||
| 4bb49d4e00 | |||
| 2e24ee4dfa | |||
| d3821c4aed | |||
| 4973fc5769 | |||
| 75cd270e5e | |||
| 0d09c44bd4 | |||
| 4196590aa0 | |||
| 9d200cfbee | |||
| 3e039d3827 | |||
| 55b7a0404e | |||
| 7f9a9ca1e0 | |||
| 5f4420587a | |||
| 294477aafb | |||
| 4f29a60bee | |||
| 1ec7a70fef | |||
| e1b150862e | |||
| e32521bf24 | |||
| 6730485b02 | |||
| 3557f9a14a | |||
| 9f97c39384 | |||
| 77b47e6645 | |||
| c716fc0e48 | |||
| 46841d3eb2 | |||
| 0a21381ba3 | |||
| f2c388e3f9 | |||
| f0eabf6c7d | |||
| a55adee890 | |||
| 19d58d31f1 | |||
| 94f18cf23c | |||
| ade9e0fe41 | |||
| 196d35ccfc | |||
| 61e98cb957 | |||
| 68049b17a6 | |||
| 574a9e12bb | |||
| 7e638ef2b8 | |||
| 06e27e3dc0 | |||
| c6379858f3 | |||
| 5e2916bc14 | |||
| 52daf4ec76 | |||
| 5f0c181f4e | |||
| fa0bb0fe76 | |||
| 238b13478d | |||
| d5bdac3db7 | |||
| a7734238ff | |||
| 6f7d750b73 | |||
| 13749e8edb | |||
| 317e069ee7 | |||
| 75b7485cc7 | |||
| 01aec8c92d | |||
| 11c27dd331 | |||
| e15687fffe | |||
| 1456120929 | |||
| be9cf070ee | |||
| 214db9e660 | |||
| 6d02968d51 | |||
| b7c381f011 | |||
| 9eb93854b9 | |||
| 78b2929c05 | |||
| e71bf70e33 | |||
| e472e077c2 | |||
| 49a0bef4c1 | |||
| 7b2b536a81 | |||
| e9356a4206 | |||
| 75c878da1e | |||
| 077b552f07 | |||
| 77c5d59e0e | |||
| dc8b6eaeee | |||
| c0c6815dc9 | |||
| 31caf0b95f | |||
| 2fdb5e74cc | |||
| 653eb40425 | |||
| f9b4409726 | |||
| 266d0a6375 | |||
| ec1424c6a3 | |||
| 8bd1f2f338 | |||
| 31650a53a1 | |||
| 6dc364616d | |||
| bdf4649f67 | |||
| 0c718f16d1 | |||
| 4d8908df27 | |||
| b87755aa6d | |||
| f111d5b783 | |||
| 52920b5dd5 | |||
| b50ff5993a | |||
| 162056a3f4 | |||
| d9d59e7bac | |||
| 413008c580 | |||
| 4f0246e535 | |||
| 80b774eb29 | |||
| f3b3810fe6 | |||
| d7975a5874 | |||
| e40bb4845e | |||
| 5af7d41e49 | |||
| 6019f3ff78 | |||
| 7b1ce634cb | |||
| 9db963aeed | |||
| 8efc06ee18 | |||
| 7542fac2c7 | |||
| fc83a4d459 | |||
| f883827c0a | |||
| 4f1e9bae4e | |||
| 5427eaad43 | |||
| 9f2b8cc45a | |||
| db72894b48 | |||
| 52e22cbf67 | |||
| e6d9f39dd7 | |||
| fee86516a4 | |||
| 454a0f2efd | |||
| 6c051b4e1e | |||
| d8500cd229 | |||
| c29a8694b0 | |||
| 46c27577b3 | |||
| 3476c19e91 | |||
| 763548427d | |||
| ac5a0556f1 | |||
| 74026b473e | |||
| 642256de71 | |||
| bcf8946f0a | |||
| 18e1a9c719 | |||
| 9f196ef2e0 | |||
| ba1f1dc132 | |||
| 4ba531c43f | |||
| 98adf24883 | |||
| c2d05897bf | |||
| c7a91f5adf | |||
| 2f62146f0e | |||
| ce62a41880 | |||
| 5ce0a113b5 | |||
| 95e816f2bc | |||
| 8bd2b1e8c2 | |||
| 7bb1c99800 | |||
| e39b6c1c7c | |||
| 0963229e28 | |||
| 6cc4dfe3f1 | |||
| dfd31158ee | |||
| 7a5659872a | |||
| 4b0418df11 | |||
| 1027a532c5 | |||
| 9c4639b622 | |||
| a05ce550bf | |||
| 5c6257d1fc | |||
| 2f611d30d9 | |||
| 8f8af0fb38 | |||
| e688996176 | |||
| 5334b61c33 | |||
| d71d6cbdad | |||
| c8ea675324 | |||
| 8ed635258c | |||
| 516ee6adc2 | |||
| e0ff4321d1 | |||
| d7a553b89f | |||
| cea9ec086a | |||
| c403441339 | |||
| ecf7024bde | |||
| 7a51cbc65f | |||
| 42babe8548 | |||
| 91f19a5b18 | |||
| e719b65c31 | |||
| 781bbc4d98 | |||
| f38590dade | |||
| dfee4f2362 | |||
| 6ed2b10942 | |||
| 96429e74a8 | |||
| 8e8e7d8558 | |||
| 7d2d6ce9cb | |||
| f24f084329 | |||
| 7f112caac2 | |||
| f745e7d3f9 | |||
| 0574fa668b | |||
| 65bb284448 | |||
| eedd21b9e7 | |||
| 489cbfd6d3 | |||
| 62aecd85ff | |||
| 60226fdc1d | |||
| 66bc4def95 | |||
| a70286f827 | |||
| d7b04ea14d | |||
| 6ff6069fa7 | |||
| 2d757002fc | |||
| e48e5f1f13 | |||
| 342e800086 | |||
| 2b18354106 | |||
| 3314fe1760 | |||
| 363301f221 | |||
| e1c2b69c34 | |||
| 1bd9d1c899 | |||
| 51d15eb1c1 | |||
| 2b789f27f3 | |||
| 1759bb9126 | |||
| 5792c459ed | |||
| 21fac7abba | |||
| 5d11de4a2f | |||
| 132e87500e | |||
| c6d2848a23 | |||
| 03164ba14e | |||
| 47b096412d | |||
| 43df47d8e7 | |||
| 9230d78e76 | |||
| b3909989d3 | |||
| a1faf22f2c | |||
| cfd92c64f5 | |||
| 01c8c6c419 | |||
| 2cb543db77 | |||
| d2dcff96f8 | |||
| 5731dc8dd8 | |||
| 122ded0a11 | |||
| 178cb6bb1c | |||
| d703477265 | |||
| d750b509fc | |||
| ebbe8d8014 | |||
| 35f72ebf47 | |||
| ecd61c6286 | |||
| d6534f996b | |||
| 979d24e7fd | |||
| 6b7d64ac1c | |||
| 03c12d0d63 | |||
| e969d884a6 | |||
| 0d86727354 | |||
| edeca4387c | |||
| 979f4774f6 | |||
| 7ed9789e21 | |||
| 566302686a | |||
| cff06aac6f | |||
| 28952248b1 | |||
| 9ea1eacd11 | |||
| 97c0f45b9c | |||
| 52a0213755 | |||
| 2d37085817 | |||
| 963ed98bed | |||
| 409fcfdfcc | |||
| 1ca9ff5c91 | |||
| b9bc691e8d | |||
| 2e3f8f7474 | |||
| eb5b968c5d | |||
| 746104ba6f | |||
| 51e6526b38 | |||
| db70426854 | |||
| c79bfc71b8 | |||
| b017a9eb11 | |||
| 38d58a4427 | |||
| fbff27623a | |||
| e259d6d1e0 | |||
| 9a6956baab | |||
| 4987463de7 | |||
| b127fb8fdc | |||
| c409cd8177 | |||
| 5129671290 | |||
| 92a75ff6b1 | |||
| 39bfb2f514 | |||
| 5c1027bf09 | |||
| 3d79dcbda0 | |||
| 74e19e81e2 | |||
| 5c84682f16 | |||
| f4c86d0416 | |||
| f9ed05dd03 | |||
| f1a385b1de | |||
| e0b87b0f40 | |||
| 3bfd3e4803 | |||
| 386931d950 | |||
| c35d2ccf5a | |||
| 7591ca5bc5 | |||
| 27903de7ec | |||
| 6101d934a1 | |||
| 7ee4363d19 | |||
| d47a9e8ce5 | |||
| c6b23fda65 | |||
| 9956c2bc98 | |||
| 834ec7b1cc | |||
| d1f39c484d | |||
| 6f0ecf1049 | |||
| 892d51caee | |||
| 746e1148cf | |||
| ab0ac3b98f | |||
| 3806faa171 | |||
| 7562366d4b | |||
| 3bf6dd8aa1 | |||
| 9578c2597e | |||
| 26f043bd4d | |||
| 3562772969 | |||
| a378a54a57 | |||
| 72d4a3f9c1 | |||
| 894d421ee5 | |||
| 93e0e1a852 | |||
| 19e6e80e10 | |||
| 8defc95df3 | |||
| 0a7af19f4d | |||
| e3a5f35cd5 | |||
| 1dbd9d3693 | |||
| 371b9c1486 | |||
| adb91179b9 | |||
| 970a16ec7f | |||
| 22e6f14525 | |||
| d806fa3e92 | |||
| a26de15139 | |||
| 09e6579d2d | |||
| 273c0afc8f | |||
| 18199b34e5 | |||
| 975b988bfe | |||
| f1d822ba33 | |||
| ee8c01f839 | |||
| 99d67f1a09 | |||
| bf97d4aa6d | |||
| 9282413611 | |||
| eeea71209a | |||
| 8b94d28f97 | |||
| c42d264549 | |||
| 6baa6f276a | |||
| af638c4afe | |||
| f6e2586a36 | |||
| 3bb7b05229 | |||
| c6d484e38c | |||
| 87134662f7 | |||
| 1dde50c7d2 | |||
| 078d5a88cd | |||
| 9800e6d170 | |||
| c63a3d0f17 | |||
| 01c4fc455b | |||
| 65f4bc99f9 | |||
| fd06ad5438 | |||
| 13e645bb40 | |||
| 85345bb439 | |||
| 37204848f1 | |||
| 61d89c19d8 | |||
| 93e538ae2e | |||
| 59e8f1919c | |||
| 5f6c080b62 | |||
| 8a4857c0db | |||
| f1b720ed62 | |||
| e55b33ceb4 | |||
| 54b7703682 | |||
| 8260cb311e | |||
| 843e5e20ca | |||
| 52cb4034ad | |||
| 6806d33567 | |||
| 8ec028aded | |||
| 1c36db697a | |||
| 0b066bed14 | |||
| f20d0e81ea | |||
| a27182b7fc | |||
| cf32ee1753 | |||
| 8f9fa3b081 | |||
| 70d5df6107 | |||
| 5fd7ca7bc9 | |||
| c215523528 | |||
| f3c8b18053 | |||
| d6751d91c8 | |||
| ab7e893d09 | |||
| e840127370 | |||
| 8820fe8b8c | |||
| 0cea2081a3 | |||
| 95a77819db | |||
| 6577c77d93 | |||
| 20a04497a8 | |||
| 78d78cdf8a | |||
| 9485289f37 | |||
| df323476a3 | |||
| a22ff36e0e | |||
| c1357834e8 | |||
| 9d2ab8824c | |||
| 5bcbdff159 | |||
| c3cd9d807e | |||
| cc25757a44 | |||
| 481e15604a | |||
| b5016d5de7 | |||
| a5a8291ad1 | |||
| 29c3a0fa01 | |||
| a29eabd0eb | |||
| 2a5a6ad18a | |||
| f1c8542ff7 | |||
| 126cbdb365 | |||
| ce4b28830a | |||
| 7f777ab7d9 | |||
| 4996990d61 | |||
| b7ea171403 | |||
| 8a3c55eb21 | |||
| 50837f2060 | |||
| e31a7a2638 | |||
| bd251e4955 | |||
| 342e3f9f20 | |||
| 8f2b6d5e3d | |||
| 7c11491208 | |||
| 48101cf8d1 | |||
| e7f4ace092 | |||
| e4522fe399 | |||
| 7728b78855 | |||
| 838d141fb4 | |||
| 85817d98fb | |||
| 54ac39c648 | |||
| 0164560353 |
@ -34,64 +34,44 @@ jobs:
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
|
||||
- store_artifacts:
|
||||
path: ~/transformers/tests_fetched_summary.txt
|
||||
- run: |
|
||||
if [ -f test_list.txt ]; then
|
||||
cp test_list.txt test_preparation/test_list.txt
|
||||
else
|
||||
touch test_preparation/test_list.txt
|
||||
fi
|
||||
- run: |
|
||||
if [ -f examples_test_list.txt ]; then
|
||||
mv examples_test_list.txt test_preparation/examples_test_list.txt
|
||||
else
|
||||
touch test_preparation/examples_test_list.txt
|
||||
fi
|
||||
- run: |
|
||||
if [ -f filtered_test_list_cross_tests.txt ]; then
|
||||
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
|
||||
else
|
||||
touch test_preparation/filtered_test_list_cross_tests.txt
|
||||
fi
|
||||
- run: |
|
||||
if [ -f doctest_list.txt ]; then
|
||||
cp doctest_list.txt test_preparation/doctest_list.txt
|
||||
else
|
||||
touch test_preparation/doctest_list.txt
|
||||
fi
|
||||
- run: |
|
||||
if [ -f test_repo_utils.txt ]; then
|
||||
mv test_repo_utils.txt test_preparation/test_repo_utils.txt
|
||||
else
|
||||
touch test_preparation/test_repo_utils.txt
|
||||
fi
|
||||
- run: python utils/tests_fetcher.py --filter_tests
|
||||
- run: |
|
||||
if [ -f test_list.txt ]; then
|
||||
mv test_list.txt test_preparation/filtered_test_list.txt
|
||||
else
|
||||
touch test_preparation/filtered_test_list.txt
|
||||
fi
|
||||
- store_artifacts:
|
||||
path: test_preparation/test_list.txt
|
||||
- store_artifacts:
|
||||
path: test_preparation/doctest_list.txt
|
||||
- store_artifacts:
|
||||
path: ~/transformers/test_preparation/filtered_test_list.txt
|
||||
- store_artifacts:
|
||||
path: test_preparation/examples_test_list.txt
|
||||
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
|
||||
- run: |
|
||||
if [ ! -s test_preparation/generated_config.yml ]; then
|
||||
echo "No tests to run, exiting early!"
|
||||
circleci-agent step halt
|
||||
fi
|
||||
if [ ! -s test_preparation/generated_config.yml ]; then
|
||||
echo "No tests to run, exiting early!"
|
||||
circleci-agent step halt
|
||||
fi
|
||||
|
||||
- store_artifacts:
|
||||
path: test_preparation/generated_config.yml
|
||||
path: test_preparation
|
||||
|
||||
- run:
|
||||
name: "Retrieve Artifact Paths"
|
||||
# [reference] https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts
|
||||
# `CIRCLE_TOKEN` is defined as an environment variables set within a context, see `https://circleci.com/docs/contexts/`
|
||||
command: |
|
||||
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
|
||||
job_number=${CIRCLE_BUILD_NUM}
|
||||
url="https://circleci.com/api/v2/project/${project_slug}/${job_number}/artifacts"
|
||||
curl -o test_preparation/artifacts.json ${url} --header "Circle-Token: $CIRCLE_TOKEN"
|
||||
- run:
|
||||
name: "Prepare pipeline parameters"
|
||||
command: |
|
||||
python utils/process_test_artifacts.py
|
||||
|
||||
# To avoid too long generated_config.yaml on the continuation orb, we pass the links to the artifacts as parameters.
|
||||
# Otherwise the list of tests was just too big. Explicit is good but for that it was a limitation.
|
||||
# We used:
|
||||
|
||||
# https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts : to get the job artifacts
|
||||
# We could not pass a nested dict, which is why we create the test_file_... parameters for every single job
|
||||
|
||||
- store_artifacts:
|
||||
path: test_preparation/filtered_test_list_cross_tests.txt
|
||||
path: test_preparation/transformed_artifacts.json
|
||||
- store_artifacts:
|
||||
path: test_preparation/artifacts.json
|
||||
- continuation/continue:
|
||||
parameters: test_preparation/transformed_artifacts.json
|
||||
configuration_path: test_preparation/generated_config.yml
|
||||
|
||||
# To run all tests for the nightly build
|
||||
@ -102,22 +82,49 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: uv pip install -e .
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt
|
||||
- run: python utils/tests_fetcher.py --filter_tests
|
||||
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
|
||||
- run: |
|
||||
mkdir test_preparation
|
||||
echo -n "tests" > test_preparation/test_list.txt
|
||||
echo -n "all" > test_preparation/examples_test_list.txt
|
||||
echo -n "tests/repo_utils" > test_preparation/test_repo_utils.txt
|
||||
- run: |
|
||||
echo -n "tests" > test_list.txt
|
||||
python utils/tests_fetcher.py --filter_tests
|
||||
mv test_list.txt test_preparation/filtered_test_list.txt
|
||||
- run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation
|
||||
- run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt
|
||||
if [ ! -s test_preparation/generated_config.yml ]; then
|
||||
echo "No tests to run, exiting early!"
|
||||
circleci-agent step halt
|
||||
fi
|
||||
|
||||
- store_artifacts:
|
||||
path: test_preparation/generated_config.txt
|
||||
path: test_preparation
|
||||
|
||||
- run:
|
||||
name: "Retrieve Artifact Paths"
|
||||
env:
|
||||
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
|
||||
command: |
|
||||
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
|
||||
job_number=${CIRCLE_BUILD_NUM}
|
||||
url="https://circleci.com/api/v2/project/${project_slug}/${job_number}/artifacts"
|
||||
curl -o test_preparation/artifacts.json ${url}
|
||||
- run:
|
||||
name: "Prepare pipeline parameters"
|
||||
command: |
|
||||
python utils/process_test_artifacts.py
|
||||
|
||||
# To avoid too long generated_config.yaml on the continuation orb, we pass the links to the artifacts as parameters.
|
||||
# Otherwise the list of tests was just too big. Explicit is good but for that it was a limitation.
|
||||
# We used:
|
||||
|
||||
# https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts : to get the job artifacts
|
||||
# We could not pass a nested dict, which is why we create the test_file_... parameters for every single job
|
||||
|
||||
- store_artifacts:
|
||||
path: test_preparation/transformed_artifacts.json
|
||||
- store_artifacts:
|
||||
path: test_preparation/artifacts.json
|
||||
- continuation/continue:
|
||||
configuration_path: test_preparation/generated_config.yml
|
||||
parameters: test_preparation/transformed_artifacts.json
|
||||
configuration_path: test_preparation/generated_config.yml
|
||||
|
||||
check_code_quality:
|
||||
working_directory: ~/transformers
|
||||
@ -130,7 +137,7 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: uv pip install -e .
|
||||
- run: uv pip install -e ".[quality]"
|
||||
- run:
|
||||
name: Show installed libraries and their versions
|
||||
command: pip freeze | tee installed.txt
|
||||
@ -155,13 +162,14 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: uv pip install -e .
|
||||
- run: uv pip install -e ".[quality]"
|
||||
- run:
|
||||
name: Show installed libraries and their versions
|
||||
command: pip freeze | tee installed.txt
|
||||
- store_artifacts:
|
||||
path: ~/transformers/installed.txt
|
||||
- run: python utils/check_copies.py
|
||||
- run: python utils/check_modular_conversion.py
|
||||
- run: python utils/check_table.py
|
||||
- run: python utils/check_dummies.py
|
||||
- run: python utils/check_repo.py
|
||||
@ -178,13 +186,28 @@ workflows:
|
||||
version: 2
|
||||
setup_and_quality:
|
||||
when:
|
||||
not: <<pipeline.parameters.nightly>>
|
||||
and:
|
||||
- equal: [<<pipeline.project.git_url>>, https://github.com/huggingface/transformers]
|
||||
- not: <<pipeline.parameters.nightly>>
|
||||
jobs:
|
||||
- check_circleci_user
|
||||
- check_code_quality
|
||||
- check_repository_consistency
|
||||
- fetch_tests
|
||||
|
||||
setup_and_quality_2:
|
||||
when:
|
||||
not:
|
||||
equal: [<<pipeline.project.git_url>>, https://github.com/huggingface/transformers]
|
||||
jobs:
|
||||
- check_circleci_user
|
||||
- check_code_quality
|
||||
- check_repository_consistency
|
||||
- fetch_tests:
|
||||
# [reference] https://circleci.com/docs/contexts/
|
||||
context:
|
||||
- TRANSFORMERS_CONTEXT
|
||||
|
||||
nightly:
|
||||
when: <<pipeline.parameters.nightly>>
|
||||
jobs:
|
||||
|
||||
@ -32,7 +32,7 @@ COMMON_ENV_VARIABLES = {
|
||||
"RUN_PT_FLAX_CROSS_TESTS": False,
|
||||
}
|
||||
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
|
||||
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "v": None}
|
||||
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "vvv": None, "rsf":None}
|
||||
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
|
||||
|
||||
|
||||
@ -50,16 +50,15 @@ class EmptyJob:
|
||||
class CircleCIJob:
|
||||
name: str
|
||||
additional_env: Dict[str, Any] = None
|
||||
cache_name: str = None
|
||||
cache_version: str = "0.8.2"
|
||||
docker_image: List[Dict[str, str]] = None
|
||||
install_steps: List[str] = None
|
||||
marker: Optional[str] = None
|
||||
parallelism: Optional[int] = 1
|
||||
parallelism: Optional[int] = 0
|
||||
pytest_num_workers: int = 12
|
||||
pytest_options: Dict[str, Any] = None
|
||||
resource_class: Optional[str] = "2xlarge"
|
||||
tests_to_run: Optional[List[str]] = None
|
||||
num_test_files_per_worker: Optional[int] = 10
|
||||
# This should be only used for doctest job!
|
||||
command_timeout: Optional[int] = None
|
||||
|
||||
@ -67,8 +66,6 @@ class CircleCIJob:
|
||||
# Deal with defaults for mutable attributes.
|
||||
if self.additional_env is None:
|
||||
self.additional_env = {}
|
||||
if self.cache_name is None:
|
||||
self.cache_name = self.name
|
||||
if self.docker_image is None:
|
||||
# Let's avoid changing the default list and make a copy.
|
||||
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
|
||||
@ -79,155 +76,96 @@ class CircleCIJob:
|
||||
self.docker_image[0]["image"] = f"{self.docker_image[0]['image']}:dev"
|
||||
print(f"Using {self.docker_image} docker image")
|
||||
if self.install_steps is None:
|
||||
self.install_steps = []
|
||||
self.install_steps = ["uv venv && uv pip install ."]
|
||||
if self.pytest_options is None:
|
||||
self.pytest_options = {}
|
||||
if isinstance(self.tests_to_run, str):
|
||||
self.tests_to_run = [self.tests_to_run]
|
||||
if self.parallelism is None:
|
||||
self.parallelism = 1
|
||||
else:
|
||||
test_file = os.path.join("test_preparation" , f"{self.job_name}_test_list.txt")
|
||||
print("Looking for ", test_file)
|
||||
if os.path.exists(test_file):
|
||||
with open(test_file) as f:
|
||||
expanded_tests = f.read().strip().split("\n")
|
||||
self.tests_to_run = expanded_tests
|
||||
print("Found:", expanded_tests)
|
||||
else:
|
||||
self.tests_to_run = []
|
||||
print("not Found")
|
||||
|
||||
def to_dict(self):
|
||||
env = COMMON_ENV_VARIABLES.copy()
|
||||
env.update(self.additional_env)
|
||||
|
||||
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
|
||||
if cache_branch_prefix != "main":
|
||||
cache_branch_prefix = "pull"
|
||||
|
||||
job = {
|
||||
"docker": self.docker_image,
|
||||
"environment": env,
|
||||
}
|
||||
if self.resource_class is not None:
|
||||
job["resource_class"] = self.resource_class
|
||||
if self.parallelism is not None:
|
||||
job["parallelism"] = self.parallelism
|
||||
steps = [
|
||||
"checkout",
|
||||
{"attach_workspace": {"at": "test_preparation"}},
|
||||
]
|
||||
steps.extend([{"run": l} for l in self.install_steps])
|
||||
steps.append({"run": {"name": "Show installed libraries and their size", "command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}})
|
||||
steps.append({"run": {"name": "Show installed libraries and their versions", "command": """pip list --format=freeze | tee installed.txt || true"""}})
|
||||
|
||||
steps.append({"run":{"name":"Show biggest libraries","command":"""dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}})
|
||||
steps.append({"store_artifacts": {"path": "installed.txt"}})
|
||||
|
||||
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
|
||||
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
|
||||
pytest_flags.append(
|
||||
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
|
||||
)
|
||||
|
||||
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
|
||||
test_command = ""
|
||||
if self.command_timeout:
|
||||
test_command = f"timeout {self.command_timeout} "
|
||||
# junit familiy xunit1 is necessary to support splitting on test name or class name with circleci split
|
||||
test_command += f"python3 -m pytest -rsfE -p no:warnings -o junit_family=xunit1 --tb=short --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
|
||||
|
||||
if self.parallelism == 1:
|
||||
if self.tests_to_run is None:
|
||||
test_command += " << pipeline.parameters.tests_to_run >>"
|
||||
else:
|
||||
test_command += " " + " ".join(self.tests_to_run)
|
||||
else:
|
||||
# We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime)
|
||||
tests = self.tests_to_run
|
||||
if tests is None:
|
||||
folder = os.environ["test_preparation_dir"]
|
||||
test_file = os.path.join(folder, "filtered_test_list.txt")
|
||||
if os.path.exists(test_file): # We take this job's tests from the filtered test_list.txt
|
||||
with open(test_file) as f:
|
||||
tests = f.read().split(" ")
|
||||
|
||||
# expand the test list
|
||||
if tests == ["tests"]:
|
||||
tests = [os.path.join("tests", x) for x in os.listdir("tests")]
|
||||
expanded_tests = []
|
||||
for test in tests:
|
||||
if test.endswith(".py"):
|
||||
expanded_tests.append(test)
|
||||
elif test == "tests/models":
|
||||
if "tokenization" in self.name:
|
||||
expanded_tests.extend(glob.glob("tests/models/**/test_tokenization*.py", recursive=True))
|
||||
elif self.name in ["flax","torch","tf"]:
|
||||
name = self.name if self.name != "torch" else ""
|
||||
if self.name == "torch":
|
||||
all_tests = glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True)
|
||||
filtered = [k for k in all_tests if ("_tf_") not in k and "_flax_" not in k]
|
||||
expanded_tests.extend(filtered)
|
||||
else:
|
||||
expanded_tests.extend(glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True))
|
||||
else:
|
||||
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
|
||||
elif test == "tests/pipelines":
|
||||
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
|
||||
else:
|
||||
expanded_tests.append(test)
|
||||
tests = " ".join(expanded_tests)
|
||||
|
||||
# Each executor to run ~10 tests
|
||||
n_executors = max(len(expanded_tests) // 10, 1)
|
||||
# Avoid empty test list on some executor(s) or launching too many executors
|
||||
if n_executors > self.parallelism:
|
||||
n_executors = self.parallelism
|
||||
job["parallelism"] = n_executors
|
||||
|
||||
# Need to be newline separated for the command `circleci tests split` below
|
||||
command = f'echo {tests} | tr " " "\\n" >> tests.txt'
|
||||
steps.append({"run": {"name": "Get tests", "command": command}})
|
||||
|
||||
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
|
||||
steps.append({"run": {"name": "Split tests", "command": command}})
|
||||
|
||||
steps.append({"store_artifacts": {"path": "tests.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "splitted_tests.txt"}})
|
||||
|
||||
test_command = ""
|
||||
if self.command_timeout:
|
||||
test_command = f"timeout {self.command_timeout} "
|
||||
test_command += f"python3 -m pytest -rsfE -p no:warnings --tb=short -o junit_family=xunit1 --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
|
||||
test_command += " $(cat splitted_tests.txt)"
|
||||
if self.marker is not None:
|
||||
test_command += f" -m {self.marker}"
|
||||
|
||||
if self.name == "pr_documentation_tests":
|
||||
# can't use ` | tee tee tests_output.txt` as usual
|
||||
test_command += " > tests_output.txt"
|
||||
# Save the return code, so we can check if it is timeout in the next step.
|
||||
test_command += '; touch "$?".txt'
|
||||
# Never fail the test step for the doctest job. We will check the results in the next step, and fail that
|
||||
# step instead if the actual test failures are found. This is to avoid the timeout being reported as test
|
||||
# failure.
|
||||
test_command = f"({test_command}) || true"
|
||||
else:
|
||||
test_command = f"({test_command} | tee tests_output.txt)"
|
||||
steps.append({"run": {"name": "Run tests", "command": test_command}})
|
||||
|
||||
steps.append({"run": {"name": "Skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}})
|
||||
steps.append({"run": {"name": "Failed tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}})
|
||||
steps.append({"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}})
|
||||
|
||||
steps.append({"store_test_results": {"path": "test-results"}})
|
||||
steps.append({"store_artifacts": {"path": "tests_output.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "test-results/junit.xml"}})
|
||||
steps.append({"store_artifacts": {"path": "reports"}})
|
||||
|
||||
# Examples special case: we need to download NLTK files in advance to avoid cuncurrency issues
|
||||
timeout_cmd = f"timeout {self.command_timeout} " if self.command_timeout else ""
|
||||
marker_cmd = f"-m '{self.marker}'" if self.marker is not None else ""
|
||||
additional_flags = f" -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
|
||||
parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> '
|
||||
steps = [
|
||||
"checkout",
|
||||
{"attach_workspace": {"at": "test_preparation"}},
|
||||
{"run": "apt-get update && apt-get install -y curl"},
|
||||
{"run": " && ".join(self.install_steps)},
|
||||
{"run": {"name": "Download NLTK files", "command": """python -c "import nltk; nltk.download('punkt', quiet=True)" """} if "example" in self.name else "echo Skipping"},
|
||||
{"run": {
|
||||
"name": "Show installed libraries and their size",
|
||||
"command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}
|
||||
},
|
||||
{"run": {
|
||||
"name": "Show installed libraries and their versions",
|
||||
"command": """pip list --format=freeze | tee installed.txt || true"""}
|
||||
},
|
||||
{"run": {
|
||||
"name": "Show biggest libraries",
|
||||
"command": """dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}
|
||||
},
|
||||
{"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}},
|
||||
{"run": {"name": "Get files to test", "command":f'curl -L -o {self.job_name}_test_list.txt <<pipeline.parameters.{self.job_name}_test_list>>' if self.name != "pr_documentation_tests" else 'echo "Skipped"'}},
|
||||
{"run": {"name": "Split tests across parallel nodes: show current parallel tests",
|
||||
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
|
||||
}
|
||||
},
|
||||
{"run": {
|
||||
"name": "Run tests",
|
||||
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {additional_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
|
||||
},
|
||||
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
|
||||
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
|
||||
{"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
|
||||
{"store_test_results": {"path": "test-results"}},
|
||||
{"store_artifacts": {"path": "test-results/junit.xml"}},
|
||||
{"store_artifacts": {"path": "reports"}},
|
||||
{"store_artifacts": {"path": "tests.txt"}},
|
||||
{"store_artifacts": {"path": "splitted_tests.txt"}},
|
||||
{"store_artifacts": {"path": "installed.txt"}},
|
||||
]
|
||||
if self.parallelism:
|
||||
job["parallelism"] = parallel
|
||||
job["steps"] = steps
|
||||
return job
|
||||
|
||||
@property
|
||||
def job_name(self):
|
||||
return self.name if "examples" in self.name else f"tests_{self.name}"
|
||||
return self.name if ("examples" in self.name or "pipeline" in self.name or "pr_documentation" in self.name) else f"tests_{self.name}"
|
||||
|
||||
|
||||
# JOBS
|
||||
torch_and_tf_job = CircleCIJob(
|
||||
"torch_and_tf",
|
||||
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
|
||||
marker="is_pt_tf_cross_test",
|
||||
pytest_options={"rA": None, "durations": 0},
|
||||
@ -238,7 +176,6 @@ torch_and_flax_job = CircleCIJob(
|
||||
"torch_and_flax",
|
||||
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
|
||||
docker_image=[{"image":"huggingface/transformers-torch-jax-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="is_pt_flax_cross_test",
|
||||
pytest_options={"rA": None, "durations": 0},
|
||||
)
|
||||
@ -246,35 +183,46 @@ torch_and_flax_job = CircleCIJob(
|
||||
torch_job = CircleCIJob(
|
||||
"torch",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="not generate",
|
||||
parallelism=6,
|
||||
pytest_num_workers=4
|
||||
pytest_num_workers=8
|
||||
)
|
||||
|
||||
generate_job = CircleCIJob(
|
||||
"generate",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
marker="generate",
|
||||
parallelism=6,
|
||||
pytest_num_workers=8
|
||||
)
|
||||
|
||||
tokenization_job = CircleCIJob(
|
||||
"tokenization",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
parallelism=6,
|
||||
pytest_num_workers=4
|
||||
parallelism=8,
|
||||
pytest_num_workers=16
|
||||
)
|
||||
|
||||
processor_job = CircleCIJob(
|
||||
"processors",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
parallelism=8,
|
||||
pytest_num_workers=6
|
||||
)
|
||||
|
||||
tf_job = CircleCIJob(
|
||||
"tf",
|
||||
docker_image=[{"image":"huggingface/transformers-tf-light"}],
|
||||
install_steps=["uv venv", "uv pip install -e."],
|
||||
parallelism=6,
|
||||
pytest_num_workers=4,
|
||||
pytest_num_workers=16,
|
||||
)
|
||||
|
||||
|
||||
flax_job = CircleCIJob(
|
||||
"flax",
|
||||
docker_image=[{"image":"huggingface/transformers-jax-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
parallelism=6,
|
||||
pytest_num_workers=4
|
||||
pytest_num_workers=16
|
||||
)
|
||||
|
||||
|
||||
@ -282,8 +230,8 @@ pipelines_torch_job = CircleCIJob(
|
||||
"pipelines_torch",
|
||||
additional_env={"RUN_PIPELINE_TESTS": True},
|
||||
docker_image=[{"image":"huggingface/transformers-torch-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="is_pipeline_test",
|
||||
parallelism=4
|
||||
)
|
||||
|
||||
|
||||
@ -291,8 +239,8 @@ pipelines_tf_job = CircleCIJob(
|
||||
"pipelines_tf",
|
||||
additional_env={"RUN_PIPELINE_TESTS": True},
|
||||
docker_image=[{"image":"huggingface/transformers-tf-light"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="is_pipeline_test",
|
||||
parallelism=4
|
||||
)
|
||||
|
||||
|
||||
@ -300,34 +248,24 @@ custom_tokenizers_job = CircleCIJob(
|
||||
"custom_tokenizers",
|
||||
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
|
||||
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
|
||||
install_steps=["uv venv","uv pip install -e ."],
|
||||
parallelism=None,
|
||||
resource_class=None,
|
||||
tests_to_run=[
|
||||
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
|
||||
"./tests/models/openai/test_tokenization_openai.py",
|
||||
"./tests/models/clip/test_tokenization_clip.py",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
examples_torch_job = CircleCIJob(
|
||||
"examples_torch",
|
||||
additional_env={"OMP_NUM_THREADS": 8},
|
||||
cache_name="torch_examples",
|
||||
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
|
||||
# TODO @ArthurZucker remove this once docker is easier to build
|
||||
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
|
||||
pytest_num_workers=1,
|
||||
pytest_num_workers=8,
|
||||
)
|
||||
|
||||
|
||||
examples_tensorflow_job = CircleCIJob(
|
||||
"examples_tensorflow",
|
||||
cache_name="tensorflow_examples",
|
||||
additional_env={"OMP_NUM_THREADS": 8},
|
||||
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
|
||||
install_steps=["uv venv && uv pip install . && uv pip install -r examples/tensorflow/_tests_requirements.txt"],
|
||||
parallelism=8
|
||||
pytest_num_workers=16,
|
||||
)
|
||||
|
||||
|
||||
@ -336,12 +274,12 @@ hub_job = CircleCIJob(
|
||||
additional_env={"HUGGINGFACE_CO_STAGING": True},
|
||||
docker_image=[{"image":"huggingface/transformers-torch-light"}],
|
||||
install_steps=[
|
||||
"uv venv && uv pip install .",
|
||||
'uv venv && uv pip install .',
|
||||
'git config --global user.email "ci@dummy.com"',
|
||||
'git config --global user.name "ci"',
|
||||
],
|
||||
marker="is_staging_test",
|
||||
pytest_num_workers=1,
|
||||
pytest_num_workers=2,
|
||||
)
|
||||
|
||||
|
||||
@ -349,8 +287,7 @@ onnx_job = CircleCIJob(
|
||||
"onnx",
|
||||
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
|
||||
install_steps=[
|
||||
"uv venv && uv pip install .",
|
||||
"uv pip install --upgrade eager pip",
|
||||
"uv venv",
|
||||
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
|
||||
],
|
||||
pytest_options={"k onnx": None},
|
||||
@ -360,15 +297,7 @@ onnx_job = CircleCIJob(
|
||||
|
||||
exotic_models_job = CircleCIJob(
|
||||
"exotic_models",
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
|
||||
tests_to_run=[
|
||||
"tests/models/*layoutlmv*",
|
||||
"tests/models/*nat",
|
||||
"tests/models/deta",
|
||||
"tests/models/udop",
|
||||
"tests/models/nougat",
|
||||
],
|
||||
pytest_num_workers=12,
|
||||
parallelism=4,
|
||||
pytest_options={"durations": 100},
|
||||
@ -378,11 +307,17 @@ exotic_models_job = CircleCIJob(
|
||||
repo_utils_job = CircleCIJob(
|
||||
"repo_utils",
|
||||
docker_image=[{"image":"huggingface/transformers-consistency"}],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
parallelism=None,
|
||||
pytest_num_workers=1,
|
||||
pytest_num_workers=4,
|
||||
resource_class="large",
|
||||
tests_to_run="tests/repo_utils",
|
||||
)
|
||||
|
||||
|
||||
non_model_job = CircleCIJob(
|
||||
"non_model",
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
marker="not generate",
|
||||
parallelism=6,
|
||||
pytest_num_workers=8,
|
||||
)
|
||||
|
||||
|
||||
@ -391,28 +326,18 @@ repo_utils_job = CircleCIJob(
|
||||
# the bash output redirection.)
|
||||
py_command = 'from utils.tests_fetcher import get_doctest_files; to_test = get_doctest_files() + ["dummy.py"]; to_test = " ".join(to_test); print(to_test)'
|
||||
py_command = f"$(python3 -c '{py_command}')"
|
||||
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
|
||||
command = f'echo """{py_command}""" > pr_documentation_tests_temp.txt'
|
||||
doc_test_job = CircleCIJob(
|
||||
"pr_documentation_tests",
|
||||
docker_image=[{"image":"huggingface/transformers-consistency"}],
|
||||
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
|
||||
install_steps=[
|
||||
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
|
||||
"uv venv && pip install .",
|
||||
"touch dummy.py",
|
||||
{
|
||||
"name": "Get files to test",
|
||||
"command": command,
|
||||
},
|
||||
{
|
||||
"name": "Show information in `Get files to test`",
|
||||
"command":
|
||||
"cat pr_documentation_tests_temp.txt"
|
||||
},
|
||||
{
|
||||
"name": "Get the last line in `pr_documentation_tests.txt`",
|
||||
"command":
|
||||
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests.txt"
|
||||
},
|
||||
command,
|
||||
"cat pr_documentation_tests_temp.txt",
|
||||
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests_test_list.txt"
|
||||
],
|
||||
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
|
||||
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
|
||||
@ -420,121 +345,37 @@ doc_test_job = CircleCIJob(
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
REGULAR_TESTS = [
|
||||
torch_and_tf_job,
|
||||
torch_and_flax_job,
|
||||
torch_job,
|
||||
tf_job,
|
||||
flax_job,
|
||||
custom_tokenizers_job,
|
||||
hub_job,
|
||||
onnx_job,
|
||||
exotic_models_job,
|
||||
tokenization_job
|
||||
]
|
||||
EXAMPLES_TESTS = [
|
||||
examples_torch_job,
|
||||
examples_tensorflow_job,
|
||||
]
|
||||
PIPELINE_TESTS = [
|
||||
pipelines_torch_job,
|
||||
pipelines_tf_job,
|
||||
]
|
||||
REGULAR_TESTS = [torch_and_tf_job, torch_and_flax_job, torch_job, tf_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
|
||||
EXAMPLES_TESTS = [examples_torch_job, examples_tensorflow_job]
|
||||
PIPELINE_TESTS = [pipelines_torch_job, pipelines_tf_job]
|
||||
REPO_UTIL_TESTS = [repo_utils_job]
|
||||
DOC_TESTS = [doc_test_job]
|
||||
|
||||
ALL_TESTS = REGULAR_TESTS + EXAMPLES_TESTS + PIPELINE_TESTS + REPO_UTIL_TESTS + DOC_TESTS + [custom_tokenizers_job] + [exotic_models_job] # fmt: skip
|
||||
|
||||
def create_circleci_config(folder=None):
|
||||
if folder is None:
|
||||
folder = os.getcwd()
|
||||
# Used in CircleCIJob.to_dict() to expand the test list (for using parallelism)
|
||||
os.environ["test_preparation_dir"] = folder
|
||||
jobs = []
|
||||
all_test_file = os.path.join(folder, "test_list.txt")
|
||||
if os.path.exists(all_test_file):
|
||||
with open(all_test_file) as f:
|
||||
all_test_list = f.read()
|
||||
else:
|
||||
all_test_list = []
|
||||
if len(all_test_list) > 0:
|
||||
jobs.extend(PIPELINE_TESTS)
|
||||
|
||||
test_file = os.path.join(folder, "filtered_test_list.txt")
|
||||
if os.path.exists(test_file):
|
||||
with open(test_file) as f:
|
||||
test_list = f.read()
|
||||
else:
|
||||
test_list = []
|
||||
if len(test_list) > 0:
|
||||
jobs.extend(REGULAR_TESTS)
|
||||
|
||||
extended_tests_to_run = set(test_list.split())
|
||||
# Extend the test files for cross test jobs
|
||||
for job in jobs:
|
||||
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
|
||||
for test_path in copy.copy(extended_tests_to_run):
|
||||
dir_path, fn = os.path.split(test_path)
|
||||
if fn.startswith("test_modeling_tf_"):
|
||||
fn = fn.replace("test_modeling_tf_", "test_modeling_")
|
||||
elif fn.startswith("test_modeling_flax_"):
|
||||
fn = fn.replace("test_modeling_flax_", "test_modeling_")
|
||||
else:
|
||||
if job.job_name == "test_torch_and_tf":
|
||||
fn = fn.replace("test_modeling_", "test_modeling_tf_")
|
||||
elif job.job_name == "test_torch_and_flax":
|
||||
fn = fn.replace("test_modeling_", "test_modeling_flax_")
|
||||
new_test_file = str(os.path.join(dir_path, fn))
|
||||
if os.path.isfile(new_test_file):
|
||||
if new_test_file not in extended_tests_to_run:
|
||||
extended_tests_to_run.add(new_test_file)
|
||||
extended_tests_to_run = sorted(extended_tests_to_run)
|
||||
for job in jobs:
|
||||
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
|
||||
job.tests_to_run = extended_tests_to_run
|
||||
fn = "filtered_test_list_cross_tests.txt"
|
||||
f_path = os.path.join(folder, fn)
|
||||
with open(f_path, "w") as fp:
|
||||
fp.write(" ".join(extended_tests_to_run))
|
||||
|
||||
example_file = os.path.join(folder, "examples_test_list.txt")
|
||||
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
|
||||
with open(example_file, "r", encoding="utf-8") as f:
|
||||
example_tests = f.read()
|
||||
for job in EXAMPLES_TESTS:
|
||||
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
|
||||
if example_tests == "all":
|
||||
job.tests_to_run = [f"examples/{framework}"]
|
||||
else:
|
||||
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
|
||||
|
||||
if len(job.tests_to_run) > 0:
|
||||
jobs.append(job)
|
||||
|
||||
doctest_file = os.path.join(folder, "doctest_list.txt")
|
||||
if os.path.exists(doctest_file):
|
||||
with open(doctest_file) as f:
|
||||
doctest_list = f.read()
|
||||
else:
|
||||
doctest_list = []
|
||||
if len(doctest_list) > 0:
|
||||
jobs.extend(DOC_TESTS)
|
||||
|
||||
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
|
||||
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
|
||||
jobs.extend(REPO_UTIL_TESTS)
|
||||
jobs = [k for k in ALL_TESTS if os.path.isfile(os.path.join("test_preparation" , f"{k.job_name}_test_list.txt") )]
|
||||
print("The following jobs will be run ", jobs)
|
||||
|
||||
if len(jobs) == 0:
|
||||
jobs = [EmptyJob()]
|
||||
config = {"version": "2.1"}
|
||||
config["parameters"] = {
|
||||
# Only used to accept the parameters from the trigger
|
||||
"nightly": {"type": "boolean", "default": False},
|
||||
"tests_to_run": {"type": "string", "default": test_list},
|
||||
print("Full list of job name inputs", {j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs})
|
||||
config = {
|
||||
"version": "2.1",
|
||||
"parameters": {
|
||||
# Only used to accept the parameters from the trigger
|
||||
"nightly": {"type": "boolean", "default": False},
|
||||
"tests_to_run": {"type": "string", "default": ''},
|
||||
**{j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs},
|
||||
**{j.job_name + "_parallelism":{"type":"integer", "default":1} for j in jobs},
|
||||
},
|
||||
"jobs" : {j.job_name: j.to_dict() for j in jobs},
|
||||
"workflows": {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
|
||||
}
|
||||
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
|
||||
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
|
||||
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
|
||||
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
|
||||
f.write(yaml.dump(config, sort_keys=False, default_flow_style=False).replace("' << pipeline", " << pipeline").replace(">> '", " >>"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -67,4 +67,4 @@ def main():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
12
.coveragerc
12
.coveragerc
@ -1,12 +0,0 @@
|
||||
[run]
|
||||
source=transformers
|
||||
omit =
|
||||
# skip convertion scripts from testing for now
|
||||
*/convert_*
|
||||
*/__main__.py
|
||||
[report]
|
||||
exclude_lines =
|
||||
pragma: no cover
|
||||
raise
|
||||
except
|
||||
register_parameter
|
||||
10
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
10
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -37,17 +37,17 @@ body:
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker
|
||||
- vision models: @amyeroberts
|
||||
- speech models: @sanchit-gandhi
|
||||
- vision models: @amyeroberts, @qubvel
|
||||
- speech models: @ylacombe, @eustlb
|
||||
- graph models: @clefourrier
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @sanchit-gandhi
|
||||
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
|
||||
- pipelines: @Narsil
|
||||
- pipelines: @Rocketknight1
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker
|
||||
- tokenizers: @ArthurZucker and @itazap
|
||||
- trainer: @muellerzr @SunMarc
|
||||
|
||||
Integrations:
|
||||
@ -55,7 +55,7 @@ body:
|
||||
- deepspeed: HF Trainer/Accelerate: @muellerzr
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
|
||||
Documentation: @stevhliu
|
||||
|
||||
|
||||
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
9
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -40,25 +40,26 @@ members/contributors who may be interested in your PR.
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker
|
||||
- vision models: @amyeroberts
|
||||
- speech models: @sanchit-gandhi
|
||||
- vision models: @amyeroberts, @qubvel
|
||||
- speech models: @ylacombe, @eustlb
|
||||
- graph models: @clefourrier
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @sanchit-gandhi
|
||||
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
|
||||
- pipelines: @Narsil
|
||||
- pipelines: @Rocketknight1
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker
|
||||
- trainer: @muellerzr and @SunMarc
|
||||
- chat templates: @Rocketknight1
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @muellerzr
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
|
||||
|
||||
Documentation: @stevhliu
|
||||
|
||||
|
||||
2
.github/workflows/add-model-like.yml
vendored
2
.github/workflows/add-model-like.yml
vendored
@ -23,7 +23,7 @@ jobs:
|
||||
sudo apt -y update && sudo apt install -y libsndfile1-dev
|
||||
|
||||
- name: Load cached virtual environment
|
||||
uses: actions/cache@v2
|
||||
uses: actions/cache@v4
|
||||
id: cache
|
||||
with:
|
||||
path: ~/venv/
|
||||
|
||||
76
.github/workflows/benchmark.yml
vendored
76
.github/workflows/benchmark.yml
vendored
@ -1,42 +1,74 @@
|
||||
name: Self-hosted runner (benchmark)
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
workflow_call:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
|
||||
|
||||
jobs:
|
||||
benchmark:
|
||||
name: Benchmark
|
||||
runs-on: [single-gpu, nvidia-gpu, a10, ci]
|
||||
strategy:
|
||||
matrix:
|
||||
group: [aws-g5-4xlarge-cache, aws-p4d-24xlarge-plus]
|
||||
runs-on:
|
||||
group: ${{ matrix.group }}
|
||||
if: |
|
||||
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
|
||||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --privileged --ipc host
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
- name: Get repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
|
||||
- name: Install libpq-dev & psql
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
apt update
|
||||
apt install -y libpq-dev postgresql-client
|
||||
|
||||
- name: Install benchmark script dependencies
|
||||
run: python3 -m pip install -r benchmark/requirements.txt
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
|
||||
|
||||
- name: Benchmark (daily)
|
||||
if: github.event_name == 'schedule'
|
||||
working-directory: /transformers
|
||||
- name: Run database init script
|
||||
run: |
|
||||
python3 -m pip install optimum-benchmark>=0.2.0
|
||||
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
|
||||
psql -f benchmark/init_db.sql
|
||||
env:
|
||||
PGDATABASE: metrics
|
||||
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
|
||||
PGUSER: transformers_benchmarks
|
||||
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
|
||||
|
||||
- name: Benchmark (merged to main event)
|
||||
if: github.event_name == 'push' && github.ref_name == 'main'
|
||||
working-directory: /transformers
|
||||
- name: Run benchmark
|
||||
run: |
|
||||
python3 -m pip install optimum-benchmark>=0.2.0
|
||||
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results_merge_event --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
|
||||
git config --global --add safe.directory /__w/transformers/transformers
|
||||
if [ "$GITHUB_EVENT_NAME" = "pull_request" ]; then
|
||||
commit_id=$(echo "${{ github.event.pull_request.head.sha }}")
|
||||
elif [ "$GITHUB_EVENT_NAME" = "push" ]; then
|
||||
commit_id=$GITHUB_SHA
|
||||
fi
|
||||
commit_msg=$(git show -s --format=%s | cut -c1-70)
|
||||
python3 benchmark/llama.py "${{ github.head_ref || github.ref_name }}" "$commit_id" "$commit_msg"
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
# Enable this to see debug logs
|
||||
# HF_HUB_VERBOSITY: debug
|
||||
# TRANSFORMERS_VERBOSITY: debug
|
||||
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
|
||||
PGUSER: transformers_benchmarks
|
||||
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
|
||||
|
||||
2
.github/workflows/build-ci-docker-images.yml
vendored
2
.github/workflows/build-ci-docker-images.yml
vendored
@ -74,4 +74,4 @@ jobs:
|
||||
slack_channel: "#transformers-ci-circleci-images"
|
||||
title: 🤗 New docker images for CircleCI are pushed.
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
27
.github/workflows/build-docker-images.yml
vendored
27
.github/workflows/build-docker-images.yml
vendored
@ -20,7 +20,8 @@ concurrency:
|
||||
jobs:
|
||||
latest-docker:
|
||||
name: "Latest PyTorch + TensorFlow [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -68,7 +69,8 @@ jobs:
|
||||
|
||||
latest-torch-deepspeed-docker:
|
||||
name: "Latest PyTorch + DeepSpeed"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -104,7 +106,8 @@ jobs:
|
||||
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
|
||||
latest-torch-deepspeed-docker-for-push-ci-daily-build:
|
||||
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -145,7 +148,8 @@ jobs:
|
||||
name: "Doc builder"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -180,7 +184,8 @@ jobs:
|
||||
name: "Latest PyTorch [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -215,7 +220,8 @@ jobs:
|
||||
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -265,7 +271,8 @@ jobs:
|
||||
name: "Latest TensorFlow [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -300,7 +307,8 @@ jobs:
|
||||
|
||||
latest-pytorch-deepspeed-amd:
|
||||
name: "PyTorch + DeepSpeed (AMD) [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -350,7 +358,8 @@ jobs:
|
||||
name: "Latest Pytorch + Quantization [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
|
||||
@ -13,7 +13,8 @@ concurrency:
|
||||
jobs:
|
||||
latest-with-torch-nightly-docker:
|
||||
name: "Nightly PyTorch + Stable TensorFlow"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -40,7 +41,8 @@ jobs:
|
||||
|
||||
nightly-torch-deepspeed-docker:
|
||||
name: "Nightly PyTorch + DeepSpeed"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -62,4 +64,4 @@ jobs:
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
|
||||
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
|
||||
|
||||
@ -16,7 +16,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
version: ["1.13", "1.12", "1.11"]
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -60,7 +61,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
|
||||
3
.github/workflows/build_documentation.yml
vendored
3
.github/workflows/build_documentation.yml
vendored
@ -1,6 +1,7 @@
|
||||
name: Build documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
@ -15,7 +16,7 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: de en es fr hi it ko pt tr zh ja te
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
|
||||
2
.github/workflows/build_pr_documentation.yml
vendored
2
.github/workflows/build_pr_documentation.yml
vendored
@ -14,5 +14,5 @@ jobs:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: transformers
|
||||
languages: de en es fr hi it ko pt tr zh ja te
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
|
||||
129
.github/workflows/check_failed_model_tests.yml
vendored
Normal file
129
.github/workflows/check_failed_model_tests.yml
vendored
Normal file
@ -0,0 +1,129 @@
|
||||
name: Process failed tests
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ci_results_run_models_gpu
|
||||
path: /transformers/ci_results_run_models_gpu
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Get target commit
|
||||
working-directory: /transformers/utils
|
||||
run: |
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout to `start_sha`
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
ls -l new_model_failures_with_bad_commit.json
|
||||
cat new_model_failures_with_bad_commit.json
|
||||
|
||||
- name: Checkout back
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
env:
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
run: |
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
env:
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
run: |
|
||||
{
|
||||
echo 'REPORT_TEXT<<EOF'
|
||||
python3 utils/process_bad_commit_report.py
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: '#transformers-ci-feedback-tests'
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"blocks": [
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
"type": "mrkdwn",
|
||||
"text": "${{ env.REPORT_TEXT }}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
2
.github/workflows/check_tiny_models.yml
vendored
2
.github/workflows/check_tiny_models.yml
vendored
@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python 3.8
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
# Semantic version range syntax or exact version of a Python version
|
||||
python-version: '3.8'
|
||||
|
||||
3
.github/workflows/doctest_job.yml
vendored
3
.github/workflows/doctest_job.yml
vendored
@ -27,7 +27,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
split_keys: ${{ fromJson(inputs.split_keys) }}
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
5
.github/workflows/doctests.yml
vendored
5
.github/workflows/doctests.yml
vendored
@ -14,7 +14,8 @@ env:
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -85,4 +86,4 @@ jobs:
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: doc_test_results
|
||||
path: doc_test_results
|
||||
path: doc_test_results
|
||||
|
||||
36
.github/workflows/model_jobs.yml
vendored
36
.github/workflows/model_jobs.yml
vendored
@ -41,7 +41,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
runs-on:
|
||||
group: '${{ inputs.machine_type }}'
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -97,25 +98,42 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ inputs.machine_type }}"
|
||||
|
||||
if [ "${{ inputs.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ inputs.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ inputs.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
129
.github/workflows/model_jobs_amd.yml
vendored
Normal file
129
.github/workflows/model_jobs_amd.yml
vendored
Normal file
@ -0,0 +1,129 @@
|
||||
name: model jobs
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
folder_slices:
|
||||
required: true
|
||||
type: string
|
||||
machine_type:
|
||||
required: true
|
||||
type: string
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
name: " "
|
||||
strategy:
|
||||
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on: ['${{ inputs.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Update / Install some packages (for Past CI)
|
||||
if: ${{ contains(inputs.docker, '-past-') }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install -U datasets
|
||||
|
||||
- name: Update / Install some packages (for Past CI)
|
||||
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
3
.github/workflows/push-important-models.yml
vendored
3
.github/workflows/push-important-models.yml
vendored
@ -52,7 +52,8 @@ jobs:
|
||||
test_modified_files:
|
||||
needs: get_modified_models
|
||||
name: Slow & FA2 tests
|
||||
runs-on: [single-gpu, nvidia-gpu, a10, ci]
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
2
.github/workflows/release-conda.yml
vendored
2
.github/workflows/release-conda.yml
vendored
@ -19,7 +19,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install miniconda
|
||||
uses: conda-incubator/setup-miniconda@v2
|
||||
|
||||
38
.github/workflows/self-pr-slow-ci.yml
vendored
38
.github/workflows/self-pr-slow-ci.yml
vendored
@ -65,8 +65,9 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.find_models_to_run.outputs.models) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, ci]
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -93,12 +94,27 @@ jobs:
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e . && python3 -m pip install --upgrade torch torchaudio torchvision
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
@ -113,23 +129,23 @@ jobs:
|
||||
run: |
|
||||
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
|
||||
echo $CUDA_VISIBLE_DEVICES
|
||||
python3 -m pytest -v -rsfE --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
python3 -m pytest -v -rsfE --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
38
.github/workflows/self-push-amd.yml
vendored
38
.github/workflows/self-push-amd.yml
vendored
@ -64,23 +64,24 @@ jobs:
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -159,6 +160,12 @@ jobs:
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
@ -166,11 +173,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -256,6 +259,12 @@ jobs:
|
||||
# run_tests_torch_cuda_extensions_single_gpu,
|
||||
# run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
@ -271,11 +280,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -324,6 +329,7 @@ jobs:
|
||||
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"
|
||||
|
||||
203
.github/workflows/self-push.yml
vendored
203
.github/workflows/self-push.yml
vendored
@ -32,31 +32,33 @@ jobs:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -130,11 +132,18 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
machine_type: [aws-g4dn-2xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
@ -142,11 +151,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -159,6 +164,23 @@ jobs:
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
@ -200,19 +222,19 @@ jobs:
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
@ -223,11 +245,18 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
machine_type: [aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
@ -235,11 +264,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -252,6 +277,23 @@ jobs:
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
@ -295,19 +337,19 @@ jobs:
|
||||
MKL_SERVICE_FORCE_INTEL: 1
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_torch_cuda_extensions_single_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
@ -316,11 +358,18 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
machine_type: [aws-g4dn-2xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
@ -328,11 +377,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -345,6 +390,23 @@ jobs:
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
@ -385,19 +447,19 @@ jobs:
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
run_tests_torch_cuda_extensions_multi_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
@ -406,11 +468,18 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
machine_type: [aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
@ -418,11 +487,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -435,6 +500,23 @@ jobs:
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
@ -475,19 +557,19 @@ jobs:
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
@ -500,6 +582,12 @@ jobs:
|
||||
run_tests_torch_cuda_extensions_single_gpu,
|
||||
run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
@ -513,11 +601,7 @@ jobs:
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
@ -563,6 +647,7 @@ jobs:
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
|
||||
@ -10,11 +10,46 @@ on:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi210
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi210
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
@ -10,11 +10,46 @@ on:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi250
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi250
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
secrets: inherit
|
||||
|
||||
@ -1,21 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi300 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi300
|
||||
needs: build-docker-containers
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi300
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
secrets: inherit
|
||||
334
.github/workflows/self-scheduled-amd.yml
vendored
334
.github/workflows/self-scheduled-amd.yml
vendored
@ -3,10 +3,23 @@ name: Self-hosted runner (scheduled-amd)
|
||||
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
|
||||
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
|
||||
# us towards the limit of allowed jobs on GitHub Actions.
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
gpu_flavor:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
@ -18,7 +31,7 @@ env:
|
||||
RUN_SLOW: yes
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
|
||||
NUM_SLICES: 2
|
||||
|
||||
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
|
||||
# This is done so that we avoid parallelizing the scheduled tests, to leave available
|
||||
@ -42,7 +55,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -50,25 +63,29 @@ jobs:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
setup:
|
||||
if: contains(fromJSON('["run_models_gpu"]'), inputs.job)
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
@ -90,7 +107,8 @@ jobs:
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
run: |
|
||||
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
@ -99,6 +117,7 @@ jobs:
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
@ -108,99 +127,38 @@ jobs:
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
run_models_gpu_single_gpu:
|
||||
run_models_gpu:
|
||||
if: ${{ inputs.job == 'run_models_gpu' }}
|
||||
name: Single GPU tests
|
||||
needs: setup
|
||||
strategy:
|
||||
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs_amd.yml
|
||||
with:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
runner: ${{ inputs.runner }}
|
||||
docker: ${{ inputs.docker }}
|
||||
secrets: inherit
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_models_gpu_multi_gpu:
|
||||
name: Multi GPU tests
|
||||
run_pipelines_torch_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
|
||||
name: PyTorch pipelines
|
||||
needs: check_runners
|
||||
strategy:
|
||||
max-parallel: 1
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
image: ${{ inputs.docker }}
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
@ -212,9 +170,11 @@ jobs:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
@ -228,33 +188,35 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
|
||||
run_examples_gpu:
|
||||
name: Examples tests
|
||||
if: ${{ inputs.job == 'run_examples_gpu' }}
|
||||
name: Examples directory
|
||||
needs: check_runners
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
image: ${{ inputs.docker }}
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
@ -267,9 +229,11 @@ jobs:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
@ -301,73 +265,17 @@ jobs:
|
||||
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
name: PyTorch pipelines tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
|
||||
run_torch_cuda_extensions_gpu:
|
||||
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
|
||||
name: Torch ROCm deepspeed tests
|
||||
needs: check_runners
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
needs: setup
|
||||
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
image: ${{ inputs.docker }}
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
@ -381,6 +289,7 @@ jobs:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
@ -414,106 +323,27 @@ jobs:
|
||||
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
run_extract_warnings:
|
||||
name: Extract warnings in CI artifacts
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
send_results:
|
||||
name: Slack Report
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_models_gpu_single_gpu,
|
||||
run_models_gpu_multi_gpu,
|
||||
run_examples_gpu,
|
||||
run_models_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
if: ${{ always() }}
|
||||
uses: ./.github/workflows/slack-report.yml
|
||||
with:
|
||||
job: ${{ inputs.job }}
|
||||
# This would be `skipped` if `setup` is skipped.
|
||||
setup_status: ${{ needs.setup.result }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
# This would be an empty string if `setup` is skipped.
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
|
||||
- name: Install transformers
|
||||
run: pip install transformers
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Create output directory
|
||||
run: mkdir warnings_in_ci
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: warnings_in_ci
|
||||
|
||||
- name: Show artifacts
|
||||
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: warnings_in_ci
|
||||
path: warnings_in_ci/selected_warnings.json
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_models_gpu_single_gpu,
|
||||
run_models_gpu_multi_gpu,
|
||||
run_examples_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_failure_tables
|
||||
path: test_failure_tables
|
||||
secrets: inherit
|
||||
|
||||
179
.github/workflows/self-scheduled.yml
vendored
179
.github/workflows/self-scheduled.yml
vendored
@ -50,8 +50,9 @@ jobs:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -83,7 +84,7 @@ jobs:
|
||||
run: |
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
|
||||
- id: set-matrix-quantization
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
name: Identify quantization method to test
|
||||
@ -102,7 +103,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs.yml
|
||||
with:
|
||||
@ -119,8 +120,9 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -146,22 +148,39 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
|
||||
run_pipelines_tf_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
|
||||
@ -169,8 +188,9 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-tensorflow-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -197,22 +217,39 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
|
||||
cat /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
|
||||
run_examples_gpu:
|
||||
if: ${{ inputs.job == 'run_examples_gpu' }}
|
||||
@ -220,8 +257,9 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -247,23 +285,40 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run examples tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports
|
||||
|
||||
run_torch_cuda_extensions_gpu:
|
||||
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
|
||||
@ -271,8 +326,9 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -326,22 +382,39 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
run_quantization_torch_gpu:
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
@ -352,8 +425,9 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-quantization-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -388,22 +462,39 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_extract_warnings:
|
||||
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
|
||||
@ -471,3 +562,13 @@ jobs:
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
check_new_model_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
|
||||
name: Check new model failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_model_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
start_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
57
.github/workflows/ssh-runner.yml
vendored
57
.github/workflows/ssh-runner.yml
vendored
@ -26,9 +26,38 @@ env:
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
get_runner:
|
||||
name: "Get runner to use"
|
||||
runs-on: ubuntu-22.04
|
||||
outputs:
|
||||
RUNNER: ${{ steps.set_runner.outputs.RUNNER }}
|
||||
steps:
|
||||
- name: Get runner to use
|
||||
shell: bash
|
||||
run: |
|
||||
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-2xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
|
||||
else
|
||||
echo "RUNNER=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Set runner to use
|
||||
id: set_runner
|
||||
run: |
|
||||
echo ${{ env.RUNNER }}
|
||||
echo "RUNNER=${{ env.RUNNER }}" >> $GITHUB_OUTPUT
|
||||
|
||||
ssh_runner:
|
||||
name: "SSH"
|
||||
runs-on: ["${{ github.event.inputs.num_gpus }}-gpu", nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
|
||||
needs: get_runner
|
||||
runs-on:
|
||||
group: ${{ needs.get_runner.outputs.RUNNER }}
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -53,11 +82,33 @@ jobs:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ github.actor }}"
|
||||
github_actor=${{ github.actor }}
|
||||
github_actor=${github_actor/'-'/'_'}
|
||||
echo "$github_actor"
|
||||
echo "github_actor=$github_actor" >> $GITHUB_ENV
|
||||
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ env.github_actor }}"
|
||||
if [ "${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" != "" ]; then
|
||||
echo "SLACKCHANNEL=${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Tailscale # In order to be able to SSH when a test fails
|
||||
uses: huggingface/tailscale-action@main
|
||||
with:
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
slackChannel: ${{ env.SLACKCHANNEL }}
|
||||
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
waitForSSH: true
|
||||
sshTimeout: 15m
|
||||
|
||||
4
.github/workflows/stale.yml
vendored
4
.github/workflows/stale.yml
vendored
@ -9,13 +9,15 @@ jobs:
|
||||
name: Close Stale Issues
|
||||
if: github.repository == 'huggingface/transformers'
|
||||
runs-on: ubuntu-22.04
|
||||
permissions:
|
||||
issues: write
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.8
|
||||
|
||||
|
||||
@ -132,7 +132,7 @@ You will need basic `git` proficiency to contribute to
|
||||
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
|
||||
You'll need **[Python 3.9](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/transformers) by
|
||||
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
|
||||
|
||||
4
Makefile
4
Makefile
@ -36,6 +36,7 @@ autogenerate_code: deps_table_update
|
||||
|
||||
repo-consistency:
|
||||
python utils/check_copies.py
|
||||
python utils/check_modular_conversion.py
|
||||
python utils/check_table.py
|
||||
python utils/check_dummies.py
|
||||
python utils/check_repo.py
|
||||
@ -53,7 +54,6 @@ quality:
|
||||
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
|
||||
ruff check $(check_dirs) setup.py conftest.py
|
||||
ruff format --check $(check_dirs) setup.py conftest.py
|
||||
python utils/custom_init_isort.py --check_only
|
||||
python utils/sort_auto_mappings.py --check_only
|
||||
python utils/check_doc_toc.py
|
||||
python utils/check_docstrings.py --check_all
|
||||
@ -62,7 +62,6 @@ quality:
|
||||
# Format source code automatically and check is there are any problems left that need manual fixing
|
||||
|
||||
extra_style_checks:
|
||||
python utils/custom_init_isort.py
|
||||
python utils/sort_auto_mappings.py
|
||||
python utils/check_doc_toc.py --fix_and_overwrite
|
||||
|
||||
@ -82,6 +81,7 @@ fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
|
||||
|
||||
fix-copies:
|
||||
python utils/check_copies.py --fix_and_overwrite
|
||||
python utils/check_modular_conversion.py --fix_and_overwrite
|
||||
python utils/check_table.py --fix_and_overwrite
|
||||
python utils/check_dummies.py --fix_and_overwrite
|
||||
python utils/check_doctest_list.py --fix_and_overwrite
|
||||
|
||||
10
README.md
10
README.md
@ -48,6 +48,8 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
@ -126,10 +128,10 @@ incredible projects built in the vicinity of transformers.
|
||||
|
||||
If you own or use a project that you believe should be part of the list, please open a PR to add it!
|
||||
|
||||
## If you are looking for custom support from the Hugging Face team
|
||||
## Serious about AI in your organisation? Build faster with the Hugging Face Enterprise Hub.
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
<a target="_blank" href="https://huggingface.co/enterprise">
|
||||
<img alt="Hugging Face Enterprise Hub" src="https://github.com/user-attachments/assets/247fb16d-d251-4583-96c4-d3d76dda4925">
|
||||
</a><br>
|
||||
|
||||
## Quick tour
|
||||
@ -247,7 +249,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
|
||||
|
||||
### With pip
|
||||
|
||||
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
|
||||
This repository is tested on Python 3.9+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
|
||||
|
||||
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
|
||||
@ -36,5 +36,4 @@ Please inspect the code of the tools before passing them to the Agent to protect
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
|
||||
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.
|
||||
Feel free to submit vulnerability reports to [security@huggingface.co](mailto:security@huggingface.co), where someone from the HF security team will review and recommend next steps. If reporting a vulnerability specific to open source, please note [Huntr](https://huntr.com) is a vulnerability disclosure program for open source software.
|
||||
|
||||
@ -101,7 +101,7 @@ def summarize(run_dir, metrics, expand_metrics=False):
|
||||
# post-processing of report: show a few selected/important metric
|
||||
for metric in metrics:
|
||||
keys = metric.split(".")
|
||||
value = report
|
||||
value = report.to_dict()
|
||||
current = metrics_values
|
||||
for key in keys:
|
||||
# Avoid KeyError when a user's specified metric has typo.
|
||||
|
||||
2364
benchmark/grafana_dashboard.json
Normal file
2364
benchmark/grafana_dashboard.json
Normal file
File diff suppressed because it is too large
Load Diff
33
benchmark/init_db.sql
Normal file
33
benchmark/init_db.sql
Normal file
@ -0,0 +1,33 @@
|
||||
CREATE TABLE IF NOT EXISTS benchmarks (
|
||||
benchmark_id SERIAL PRIMARY KEY,
|
||||
branch VARCHAR(255),
|
||||
commit_id VARCHAR(72),
|
||||
commit_message VARCHAR(70),
|
||||
gpu_name VARCHAR(255),
|
||||
created_at timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
|
||||
);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS benchmarks_benchmark_id_idx ON benchmarks (benchmark_id);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS benchmarks_branch_idx ON benchmarks (branch);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS device_measurements (
|
||||
measurement_id SERIAL PRIMARY KEY,
|
||||
benchmark_id int REFERENCES benchmarks (benchmark_id),
|
||||
cpu_util double precision,
|
||||
mem_megabytes double precision,
|
||||
gpu_util double precision,
|
||||
gpu_mem_megabytes double precision,
|
||||
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
|
||||
);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS device_measurements_branch_idx ON device_measurements (benchmark_id);
|
||||
|
||||
CREATE TABLE IF NOT EXISTS model_measurements (
|
||||
measurement_id SERIAL PRIMARY KEY,
|
||||
benchmark_id int REFERENCES benchmarks (benchmark_id),
|
||||
measurements jsonb,
|
||||
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
|
||||
);
|
||||
|
||||
CREATE INDEX IF NOT EXISTS model_measurements_branch_idx ON model_measurements (benchmark_id);
|
||||
408
benchmark/llama.py
Normal file
408
benchmark/llama.py
Normal file
@ -0,0 +1,408 @@
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from statistics import mean
|
||||
from threading import Event, Thread
|
||||
from time import perf_counter, sleep
|
||||
from typing import Optional
|
||||
import gpustat
|
||||
import psutil
|
||||
import psycopg2
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
|
||||
from psycopg2.extras import Json
|
||||
from psycopg2.extensions import register_adapter
|
||||
|
||||
|
||||
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
handler = logging.StreamHandler(sys.stdout)
|
||||
handler.setLevel(logging.INFO)
|
||||
formatter = logging.Formatter("[%(levelname)s - %(asctime)s] %(message)s")
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "1"
|
||||
torch.set_float32_matmul_precision("high")
|
||||
register_adapter(dict, Json)
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""
|
||||
Parse command line arguments for the benchmarking CLI.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
|
||||
|
||||
parser.add_argument(
|
||||
"branch",
|
||||
type=str,
|
||||
help="The branch name on which the benchmarking is performed.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"commit_id",
|
||||
type=str,
|
||||
help="The commit hash on which the benchmarking is performed.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"commit_msg",
|
||||
type=str,
|
||||
help="The commit message associated with the commit, truncated to 70 characters.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return args.branch, args.commit_id, args.commit_msg
|
||||
|
||||
|
||||
def collect_metrics(benchmark_id, continue_metric_collection):
|
||||
p = psutil.Process(os.getpid())
|
||||
conn = psycopg2.connect("dbname=metrics")
|
||||
cur = conn.cursor()
|
||||
while not continue_metric_collection.is_set():
|
||||
with p.oneshot():
|
||||
cpu_util = p.cpu_percent()
|
||||
mem_megabytes = p.memory_info().rss / (1024 * 1024)
|
||||
gpu_stats = gpustat.GPUStatCollection.new_query()
|
||||
gpu_util = gpu_stats[0]["utilization.gpu"]
|
||||
gpu_mem_megabytes = gpu_stats[0]["memory.used"]
|
||||
cur.execute(
|
||||
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
|
||||
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
|
||||
)
|
||||
sleep(0.01)
|
||||
conn.commit()
|
||||
conn.close()
|
||||
|
||||
|
||||
def run_benchmark(branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
|
||||
continue_metric_collection = Event()
|
||||
metrics_thread = None
|
||||
try:
|
||||
gpu_stats = gpustat.GPUStatCollection.new_query()
|
||||
gpu_name = gpu_stats[0]["name"]
|
||||
conn = psycopg2.connect("dbname=metrics")
|
||||
cur = conn.cursor()
|
||||
cur.execute(
|
||||
"INSERT INTO benchmarks (branch, commit_id, commit_message, gpu_name) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
|
||||
(branch, commit_id, commit_msg, gpu_name),
|
||||
)
|
||||
conn.commit()
|
||||
benchmark_id = cur.fetchone()[0]
|
||||
logger.info(f"running benchmark #{benchmark_id} on {gpu_name}")
|
||||
metrics_thread = Thread(target=collect_metrics, args=[benchmark_id, continue_metric_collection])
|
||||
metrics_thread.start()
|
||||
logger.info("started background thread to fetch device metrics")
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false" # silence warnings when compiling
|
||||
|
||||
device = "cuda"
|
||||
ckpt = "meta-llama/Llama-2-7b-hf"
|
||||
|
||||
logger.info("downloading weights")
|
||||
# This is to avoid counting download in model load time measurement
|
||||
model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16)
|
||||
gen_config = GenerationConfig(do_sample=False, top_p=1, temperature=1)
|
||||
logger.info("loading model")
|
||||
start = perf_counter()
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
ckpt, torch_dtype=torch.float16, generation_config=gen_config
|
||||
).eval()
|
||||
model.to(device)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
model_load_time = end - start
|
||||
logger.info(f"loaded model in: {model_load_time}s")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(ckpt)
|
||||
|
||||
prompt = "Why dogs are so cute?"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
||||
|
||||
# Specify the max length (including both the prompt and the response)
|
||||
# When calling `generate` with `cache_implementation="static" later, this is also used to create a `StaticCache` object
|
||||
# with sequence length = `max_length`. The longer the more you will re-use it
|
||||
seq_length = inputs["input_ids"].shape[1]
|
||||
model.generation_config.max_length = seq_length + num_tokens_to_generate
|
||||
batch_size = inputs["input_ids"].shape[0]
|
||||
|
||||
# Copied from the gpt-fast repo
|
||||
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.empty_like(probs_sort).exponential_(1)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
||||
probs = logits_to_probs(logits[:, -1], temperature, top_k)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
def decode_one_token(model, cur_token, cache_position, past_key_values):
|
||||
logits = model(
|
||||
cur_token,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
return_dict=False,
|
||||
use_cache=True,
|
||||
)[0]
|
||||
new_token = sample(logits, temperature=0.6, top_k=5)[0]
|
||||
return new_token
|
||||
|
||||
#########
|
||||
# Eager #
|
||||
#########
|
||||
with torch.no_grad():
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + num_tokens_to_generate,
|
||||
)
|
||||
cache_position = torch.arange(seq_length, device=device)
|
||||
start = perf_counter()
|
||||
model(
|
||||
**inputs,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
return_dict=False,
|
||||
use_cache=True,
|
||||
)
|
||||
end = perf_counter()
|
||||
first_eager_fwd_pass_time = end - start
|
||||
logger.info(f"completed first eager fwd pass in: {first_eager_fwd_pass_time}s")
|
||||
start = perf_counter()
|
||||
output = model.generate(**inputs, do_sample=False)
|
||||
end = perf_counter()
|
||||
first_eager_generate_time = end - start
|
||||
logger.info(f"completed first eager generation in: {first_eager_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + num_tokens_to_generate,
|
||||
)
|
||||
cache_position = torch.arange(seq_length, device=device)
|
||||
start = perf_counter()
|
||||
model(
|
||||
**inputs,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
return_dict=False,
|
||||
use_cache=True,
|
||||
)
|
||||
end = perf_counter()
|
||||
second_eager_fwd_pass_time = end - start
|
||||
logger.info(f"completed second eager fwd pass in: {second_eager_fwd_pass_time}s")
|
||||
start = perf_counter()
|
||||
model.generate(**inputs, do_sample=False)
|
||||
end = perf_counter()
|
||||
second_eager_generate_time = end - start
|
||||
logger.info(f"completed second eager generation in: {second_eager_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
torch.compiler.reset()
|
||||
|
||||
################
|
||||
# Forward pass #
|
||||
################
|
||||
|
||||
# `torch.compile(model, ...)` is not recommended as you compile callbacks
|
||||
# and full generate. We recommend compiling only the forward for now.
|
||||
# "reduce-overhead" will use cudagraphs.
|
||||
generated_ids = torch.zeros(
|
||||
(batch_size, num_tokens_to_generate + seq_length), dtype=torch.int, device=device
|
||||
)
|
||||
|
||||
generated_ids[:, :seq_length] = inputs["input_ids"]
|
||||
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
|
||||
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
||||
# TODO use decode_one_token(model, input_id.clone(), cache_position) for verification
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + num_tokens_to_generate + 10,
|
||||
)
|
||||
cache_position = torch.arange(seq_length, device=device)
|
||||
all_generated_tokens = []
|
||||
### First compile, prefill
|
||||
start = perf_counter()
|
||||
next_token = decode_one_token(
|
||||
model, inputs["input_ids"], cache_position=cache_position, past_key_values=past_key_values
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
time_to_first_token = end - start
|
||||
logger.info(f"completed first compile generation in: {time_to_first_token}s")
|
||||
cache_position += 1
|
||||
all_generated_tokens += next_token.clone().detach().cpu().tolist()
|
||||
|
||||
cache_position = torch.tensor([seq_length], device=device)
|
||||
### First compile, decoding
|
||||
start = perf_counter()
|
||||
next_token = decode_one_token(
|
||||
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
time_to_second_token = end - start
|
||||
logger.info(f"completed second compile generation in: {time_to_first_token}s")
|
||||
cache_position += 1
|
||||
all_generated_tokens += next_token.clone().detach().cpu().tolist()
|
||||
|
||||
### Second compile, decoding
|
||||
start = perf_counter()
|
||||
next_token = decode_one_token(
|
||||
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
time_to_third_token = end - start
|
||||
logger.info(f"completed third compile forward in: {time_to_first_token}s")
|
||||
cache_position += 1
|
||||
all_generated_tokens += next_token.clone().detach().cpu().tolist()
|
||||
|
||||
### Using cuda graphs decoding
|
||||
|
||||
start = perf_counter()
|
||||
for _ in range(1, num_tokens_to_generate):
|
||||
all_generated_tokens += next_token.clone().detach().cpu().tolist()
|
||||
next_token = decode_one_token(
|
||||
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
|
||||
)
|
||||
cache_position += 1
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
mean_time_to_next_token = (end - start) / num_tokens_to_generate
|
||||
logger.info(f"completed next compile generation in: {mean_time_to_next_token}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(all_generated_tokens)}")
|
||||
|
||||
####################
|
||||
# Generate compile #
|
||||
####################
|
||||
torch.compiler.reset()
|
||||
# we will not compile full generate as it' s to intensive, tho we measure full forward!
|
||||
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + 128,
|
||||
)
|
||||
|
||||
# 1st call
|
||||
start = perf_counter()
|
||||
output = model.generate(**inputs, past_key_values=past_key_values)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
first_compile_generate_time = end - start
|
||||
logger.info(f"completed first compile generation in: {first_compile_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + 128,
|
||||
)
|
||||
# 2nd call
|
||||
start = perf_counter()
|
||||
output = model.generate(**inputs, past_key_values=past_key_values)
|
||||
torch.cuda.synchronize()
|
||||
end = perf_counter()
|
||||
second_compile_generate_time = end - start
|
||||
logger.info(f"completed second compile generation in: {second_compile_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + 128,
|
||||
)
|
||||
|
||||
# 3nd call
|
||||
start = perf_counter()
|
||||
output = model.generate(**inputs, past_key_values=past_key_values)
|
||||
end = perf_counter()
|
||||
third_compile_generate_time = end - start
|
||||
logger.info(f"completed second compile generation in: {third_compile_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
past_key_values = StaticCache(
|
||||
model.config,
|
||||
batch_size=batch_size,
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
max_cache_len=seq_length + 128,
|
||||
)
|
||||
# 4th call
|
||||
start = perf_counter()
|
||||
output = model.generate(**inputs, past_key_values=past_key_values)
|
||||
end = perf_counter()
|
||||
fourth_compile_generate_time = end - start
|
||||
logger.info(f"completed second compile generation in: {fourth_compile_generate_time}s")
|
||||
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
|
||||
|
||||
cur.execute(
|
||||
"""
|
||||
INSERT INTO model_measurements (
|
||||
benchmark_id,
|
||||
measurements
|
||||
) VALUES (%s, %s)
|
||||
""",
|
||||
(
|
||||
benchmark_id,
|
||||
{
|
||||
"model_load_time": model_load_time,
|
||||
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
|
||||
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
|
||||
"first_eager_generate_time_secs": first_eager_generate_time,
|
||||
"second_eager_generate_time_secs": second_eager_generate_time,
|
||||
"time_to_first_token_secs": time_to_first_token,
|
||||
"time_to_second_token_secs": time_to_second_token,
|
||||
"time_to_third_token_secs": time_to_third_token,
|
||||
"time_to_next_token_mean_secs": mean_time_to_next_token,
|
||||
"first_compile_generate_time_secs": first_compile_generate_time,
|
||||
"second_compile_generate_time_secs": second_compile_generate_time,
|
||||
"third_compile_generate_time_secs": third_compile_generate_time,
|
||||
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
|
||||
},
|
||||
),
|
||||
)
|
||||
conn.commit()
|
||||
conn.close()
|
||||
except Exception as e:
|
||||
logger.error(f"Caught exception: {e}")
|
||||
continue_metric_collection.set()
|
||||
if metrics_thread is not None:
|
||||
metrics_thread.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
branch, commit_id, commit_msg = parse_arguments()
|
||||
run_benchmark(branch, commit_id, commit_msg, num_tokens_to_generate=20)
|
||||
5
benchmark/requirements.txt
Normal file
5
benchmark/requirements.txt
Normal file
@ -0,0 +1,5 @@
|
||||
gpustat==1.1.1
|
||||
psutil==6.0.0
|
||||
psycopg2==2.9.9
|
||||
torch>=2.4.0
|
||||
hf_transfer
|
||||
9
docker/README.md
Normal file
9
docker/README.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Dockers for `transformers`
|
||||
|
||||
In this folder you will find various docker files, and some subfolders.
|
||||
- dockerfiles (ex: `consistency.dockerfile`) present under `~/docker` are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example `torch-light` is a very light weights container (703MiB).
|
||||
- subfloder contain dockerfiles used for our `slow` CIs, which *can* be used for GPU tasks, but they are **BIG** as they were not specifically designed for a single model / single task. Thus the `~/docker/transformers-pytorch-gpu` includes additional dependencies to allow us to run ALL model tests (say `librosa` or `tesseract`, which you do not need to run LLMs)
|
||||
|
||||
Note that in both case, you need to run `uv pip install -e .`, which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the `transformers` code is thus updated.
|
||||
|
||||
We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! :hugs:
|
||||
@ -2,14 +2,15 @@ FROM python:3.10-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
USER root
|
||||
ARG REF=main
|
||||
RUN apt-get update && apt-get install -y time git pkg-config make git-lfs
|
||||
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
# tensorflow pin matching setup.py
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,torch-speech,vision,testing]"
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
|
||||
RUN git lfs install
|
||||
|
||||
RUN pip uninstall -y transformers
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
||||
@ -6,6 +6,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken]"
|
||||
RUN pip uninstall -y transformers
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.4.0'
|
||||
ARG PYTORCH='2.5.1'
|
||||
# (not always a valid torch version)
|
||||
ARG INTEL_TORCH_EXT='2.3.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
@ -26,7 +26,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 "tensorflow_text<2.16" "tensorflow_probability<0.22" && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
@ -43,7 +43,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
|
||||
# For video model testing
|
||||
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
|
||||
RUN python3 -m pip install --no-cache-dir av==9.2.0
|
||||
|
||||
# Some slow tests require bnb
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
@ -22,7 +22,7 @@ RUN apt update && \
|
||||
apt clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic<2"
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic>=2.0.0"
|
||||
RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
|
||||
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir
|
||||
|
||||
|
||||
@ -42,12 +42,12 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run (again) inside the GPU VMs running the tests.
|
||||
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install "deepspeed<=0.14.0" --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
|
||||
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
|
||||
RUN python3 -m pip install -U --no-cache-dir "pydantic>=2.0.0"
|
||||
RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -11,7 +11,7 @@ ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
# If set to nothing, will install the latest version
|
||||
ARG PYTORCH='2.4.0'
|
||||
ARG PYTORCH='2.5.1'
|
||||
ARG TORCH_VISION=''
|
||||
ARG TORCH_AUDIO=''
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -9,12 +9,12 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.2.1'
|
||||
ARG PYTORCH='2.4.1'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu118'
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python python3-pip ffmpeg
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
@ -53,10 +53,10 @@ RUN python3 -m pip install --no-cache-dir gguf
|
||||
|
||||
# Add autoawq for quantization testing
|
||||
# >=v0.2.3 needed for compatibility with torch 2.2.1
|
||||
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
|
||||
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp310-cp310-linux_x86_64.whl
|
||||
|
||||
# Add quanto for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir quanto
|
||||
RUN python3 -m pip install --no-cache-dir optimum-quanto
|
||||
|
||||
# Add eetq for quantization testing
|
||||
RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -18,7 +18,7 @@ RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSIO
|
||||
RUN python3 -m pip uninstall -y torch flax
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
|
||||
RUN python3 -m pip install --no-cache-dir -U "tensorflow_probability<0.22"
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
|
||||
@ -276,14 +276,14 @@ building the return.
|
||||
|
||||
Here's an example of a single value return:
|
||||
|
||||
```
|
||||
```python
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
|
||||
```
|
||||
|
||||
Here's an example of a tuple return, comprising several objects:
|
||||
|
||||
```
|
||||
```python
|
||||
Returns:
|
||||
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
|
||||
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
|
||||
@ -322,10 +322,9 @@ includes an example of how to transcribe speech to text in the
|
||||
|
||||
The syntax for Example docstrings can look as follows:
|
||||
|
||||
```
|
||||
```python
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
@ -347,7 +346,6 @@ The syntax for Example docstrings can look as follows:
|
||||
>>> transcription = processor.batch_decode(predicted_ids)
|
||||
>>> transcription[0]
|
||||
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
|
||||
```
|
||||
```
|
||||
|
||||
The docstring should give a minimal, clear example of how the respective model
|
||||
|
||||
@ -1,57 +1,70 @@
|
||||
### Translating the Transformers documentation into your language
|
||||
# Translating the Transformers documentation into your language
|
||||
|
||||
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
|
||||
As part of our mission to democratize machine learning, we aim to make the Transformers library available in many more languages! Follow the steps below to help translate the documentation into your language.
|
||||
|
||||
**🗞️ Open an issue**
|
||||
## Open an Issue
|
||||
|
||||
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
|
||||
1. Navigate to the Issues page of this repository.
|
||||
2. Check if anyone has already opened an issue for your language.
|
||||
3. If not, create a new issue by selecting the "Translation template" from the "New issue" button.
|
||||
4. Post a comment indicating which chapters you’d like to work on, and we’ll add your name to the list.
|
||||
|
||||
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
|
||||
## Fork the Repository
|
||||
|
||||
1. First, fork the Transformers repo by clicking the Fork button in the top-right corner.
|
||||
2. Clone your fork to your local machine for editing with the following command:
|
||||
|
||||
**🍴 Fork the repository**
|
||||
```bash
|
||||
git clone https://github.com/YOUR-USERNAME/transformers.git
|
||||
```
|
||||
|
||||
Replace `YOUR-USERNAME` with your GitHub username.
|
||||
|
||||
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
|
||||
## Copy-paste the English version with a new language code
|
||||
|
||||
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
|
||||
The documentation files are organized in the following directory:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/YOUR-USERNAME/transformers.git
|
||||
```
|
||||
- **docs/source**: This contains all documentation materials organized by language.
|
||||
|
||||
**📋 Copy-paste the English version with a new language code**
|
||||
To copy the English version to your new language directory:
|
||||
|
||||
The documentation files are in one leading directory:
|
||||
1. Navigate to your fork of the repository:
|
||||
|
||||
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
|
||||
```bash
|
||||
cd ~/path/to/transformers/docs
|
||||
```
|
||||
|
||||
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
|
||||
Replace `~/path/to` with your actual path.
|
||||
|
||||
```bash
|
||||
cd ~/path/to/transformers/docs
|
||||
cp -r source/en source/LANG-ID
|
||||
```
|
||||
2. Run the following command:
|
||||
|
||||
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
|
||||
```bash
|
||||
cp -r source/en source/LANG-ID
|
||||
```
|
||||
|
||||
**✍️ Start translating**
|
||||
Replace `LANG-ID` with the appropriate ISO 639-1 or ISO 639-2 language code (see [this table](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) for reference).
|
||||
|
||||
The fun part comes - translating the text!
|
||||
## Start translating
|
||||
|
||||
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
|
||||
Begin translating the text!
|
||||
|
||||
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
|
||||
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
|
||||
|
||||
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
|
||||
- If the `_toctree.yml` file doesn’t exist for your language, create one by copying the English version and removing unrelated sections.
|
||||
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
|
||||
|
||||
```yaml
|
||||
- sections:
|
||||
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
|
||||
title: Pipelines for inference # Translate this!
|
||||
...
|
||||
title: Tutorials # Translate this!
|
||||
```
|
||||
Here’s an example structure for the `_toctree.yml` file:
|
||||
|
||||
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
|
||||
```yaml
|
||||
- sections:
|
||||
- local: pipeline_tutorial # Keep this name for your .md file
|
||||
title: Pipelines for Inference # Translate this
|
||||
...
|
||||
title: Tutorials # Translate this
|
||||
```
|
||||
|
||||
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
|
||||
2. Once you’ve translated the `_toctree.yml`, move on to translating the associated MDX files.
|
||||
|
||||
## Collaborate and share
|
||||
|
||||
If you'd like assistance with your translation, open an issue and tag `@stevhliu`. Feel free to share resources or glossaries to ensure consistent terminology.
|
||||
|
||||
14
docs/source/ar/_config.py
Normal file
14
docs/source/ar/_config.py
Normal file
@ -0,0 +1,14 @@
|
||||
# docstyle-ignore
|
||||
INSTALL_CONTENT = """
|
||||
# Transformers installation
|
||||
! pip install transformers datasets evaluate accelerate
|
||||
# To install from source instead of the last release, comment the command above and uncomment the following one.
|
||||
# ! pip install git+https://github.com/huggingface/transformers.git
|
||||
"""
|
||||
|
||||
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
|
||||
black_avoid_patterns = {
|
||||
"{processor_class}": "FakeProcessorClass",
|
||||
"{model_class}": "FakeModelClass",
|
||||
"{object_class}": "FakeObjectClass",
|
||||
}
|
||||
892
docs/source/ar/_toctree.yml
Normal file
892
docs/source/ar/_toctree.yml
Normal file
@ -0,0 +1,892 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: 🤗 المحولات
|
||||
- local: quicktour
|
||||
title: جولة سريعة
|
||||
- local: installation
|
||||
title: التثبيت
|
||||
title: البدء
|
||||
- sections:
|
||||
- local: pipeline_tutorial
|
||||
title: تشغيل الاستنتاج باستخدام خطوط الأنابيب
|
||||
- local: autoclass_tutorial
|
||||
title: كتابة تعليمات برمجية متكيفه باستخدام AutoClass
|
||||
- local: preprocessing
|
||||
title: معالجة البيانات مسبقًا
|
||||
- local: training
|
||||
title: ضبط نموذج مسبق التدريب
|
||||
- local: run_scripts
|
||||
title: التدريب باستخدام نص برمجي
|
||||
- local: accelerate
|
||||
title: إعداد تدريب موزع باستخدام 🤗 Accelerate
|
||||
- local: peft
|
||||
title: تحميل النماذج المخصصة وتدريبها باستخدام 🤗 PEFT
|
||||
- local: model_sharing
|
||||
title: مشاركة نموذجك
|
||||
- local: agents
|
||||
title: الوكلاء
|
||||
- local: llm_tutorial
|
||||
title: التوليد باستخدام LLMs
|
||||
- local: conversations
|
||||
title: الدردشة مع المحولات
|
||||
title: البرامج التعليمية
|
||||
# - sections:
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: tasks/sequence_classification
|
||||
# title: تصنيف النصوص
|
||||
# - local: tasks/token_classification
|
||||
# title: تصنيف الرموز
|
||||
# - local: tasks/question_answering
|
||||
# title: الإجابة على الأسئلة
|
||||
# - local: tasks/language_modeling
|
||||
# title: نمذجة اللغة السببية
|
||||
# - local: tasks/masked_language_modeling
|
||||
# title: نمذجة اللغة المقنعة
|
||||
# - local: tasks/translation
|
||||
# title: الترجمة
|
||||
# - local: tasks/summarization
|
||||
# title: التلخيص
|
||||
# - local: tasks/multiple_choice
|
||||
# title: الاختيار المتعدد
|
||||
# title: معالجة اللغات الطبيعية
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: tasks/audio_classification
|
||||
# title: تصنيف الصوت
|
||||
# - local: tasks/asr
|
||||
# title: التعرف التلقائي على الكلام
|
||||
# title: الصوت
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: tasks/image_classification
|
||||
# title: تصنيف الصور
|
||||
# - local: tasks/semantic_segmentation
|
||||
# title: تجزئة الصور
|
||||
# - local: tasks/video_classification
|
||||
# title: تصنيف الفيديو
|
||||
# - local: tasks/object_detection
|
||||
# title: اكتشاف الأشياء
|
||||
# - local: tasks/zero_shot_object_detection
|
||||
# title: اكتشاف الأشياء بدون تدريب
|
||||
# - local: tasks/zero_shot_image_classification
|
||||
# title: تصنيف الصور بدون تدريب
|
||||
# - local: tasks/monocular_depth_estimation
|
||||
# title: تقدير العمق
|
||||
# - local: tasks/image_to_image
|
||||
# title: صورة إلى صورة
|
||||
# - local: tasks/image_feature_extraction
|
||||
# title: استخراج ميزات الصورة
|
||||
# - local: tasks/mask_generation
|
||||
# title: توليد القناع
|
||||
# - local: tasks/knowledge_distillation_for_image_classification
|
||||
# title: التقليل المعرفي للرؤية الحاسوبية
|
||||
# title: الرؤية الحاسوبية
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: tasks/image_captioning
|
||||
# title: وصف الصور Image captioning
|
||||
# - local: tasks/document_question_answering
|
||||
# title: الإجابة على أسئلة المستندات
|
||||
# - local: tasks/visual_question_answering
|
||||
# title: الإجابة على الأسئلة المرئية
|
||||
# - local: tasks/text-to-speech
|
||||
# title: تحويل النص إلى كلام
|
||||
# title: المتعددة الوسائط
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: generation_strategies
|
||||
# title: تخصيص استراتيجية التوليد
|
||||
# - local: kv_cache
|
||||
# title: أفضل الممارسات للتوليد باستخدام ذاكرة التخزين المؤقت
|
||||
# title: التوليد
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: tasks/idefics
|
||||
# title: مهام الصور مع IDEFICS
|
||||
# - local: tasks/prompting
|
||||
# title: دليل إرشادي لمحفزات النماذج اللغوية الكبيرة
|
||||
# title: الإرشاد
|
||||
# title: أدلة المهام
|
||||
- sections:
|
||||
- local: fast_tokenizers
|
||||
title: استخدم مجزئيات النصوص السريعة من 🤗 Tokenizers
|
||||
- local: multilingual
|
||||
title: الاستدلال باستخدام نماذج متعددة اللغات
|
||||
- local: create_a_model
|
||||
title: استخدام واجهات برمجة التطبيقات الخاصة بالنموذج
|
||||
- local: custom_models
|
||||
title: مشاركة نموذج مخصص
|
||||
- local: chat_templating
|
||||
title: قوالب لنماذج الدردشة
|
||||
- local: trainer
|
||||
title: المدرب
|
||||
- local: sagemaker
|
||||
title: تشغيل التدريب على Amazon SageMaker
|
||||
- local: serialization
|
||||
title: التصدير إلى ONNX
|
||||
- local: tflite
|
||||
title: التصدير إلى TFLite
|
||||
- local: torchscript
|
||||
title: التصدير إلى TorchScript
|
||||
# - local: benchmarks
|
||||
# title: المعايير
|
||||
# - local: notebooks
|
||||
# title: دفاتر الملاحظات مع الأمثلة
|
||||
# - local: community
|
||||
# title: موارد المجتمع
|
||||
- local: troubleshooting
|
||||
title: استكشاف الأخطاء وإصلاحها
|
||||
- local: gguf
|
||||
title: التوافق مع ملفات GGUF
|
||||
title: أدلة المطورين
|
||||
# - sections:
|
||||
# - local: quantization/overview
|
||||
# title: نظرة عامة
|
||||
# - local: quantization/bitsandbytes
|
||||
# title: bitsandbytes
|
||||
# - local: quantization/gptq
|
||||
# title: GPTQ
|
||||
# - local: quantization/awq
|
||||
# title: AWQ
|
||||
# - local: quantization/aqlm
|
||||
# title: AQLM
|
||||
# - local: quantization/quanto
|
||||
# title: Quanto
|
||||
# - local: quantization/eetq
|
||||
# title: EETQ
|
||||
# - local: quantization/hqq
|
||||
# title: HQQ
|
||||
# - local: quantization/optimum
|
||||
# title: Optimum
|
||||
# - local: quantization/contribute
|
||||
# title: المساهمة بطريقة جديدة للتكميم
|
||||
# title: أساليب التكميم
|
||||
# - sections:
|
||||
# - local: performance
|
||||
# title: الأداء-نظرة عامة
|
||||
# - local: llm_optims
|
||||
# title: تحسين الاستدلال LLM
|
||||
# - sections:
|
||||
# - local: perf_train_gpu_one
|
||||
# title: استخدام عدة وحدات معالجة رسوميات (GPUs) بشكل متوازٍ
|
||||
# - local: perf_train_gpu_many
|
||||
# title: وحدات معالجة الرسومات (GPU) متعددة والتوازي
|
||||
# - local: fsdp
|
||||
# title: Fully Sharded Data Parallel
|
||||
# - local: deepspeed
|
||||
# title: DeepSpeed
|
||||
# - local: perf_train_cpu
|
||||
# title: التدريب الفعال على وحدة المعالجة المركزية (CPU)
|
||||
# - local: perf_train_cpu_many
|
||||
# title: التدريب الموزع لوحدة المعالجة المركزية (CPU)
|
||||
# - local: perf_train_tpu_tf
|
||||
# title: التدريب على (TPU) باستخدام TensorFlow
|
||||
# - local: perf_train_special
|
||||
# title: تدريب PyTorch على Apple silicon
|
||||
# - local: perf_hardware
|
||||
# title: الأجهزة المخصصة للتدريب
|
||||
# - local: hpo_train
|
||||
# title: البحث عن المعاملات المثلى باستخدام واجهة برمجة تطبيقات المدرب
|
||||
# title: تقنيات التدريب الفعال
|
||||
# - sections:
|
||||
# - local: perf_infer_cpu
|
||||
# title: الإستدلال على وحدة المعالجة المركزية (CPU)
|
||||
# - local: perf_infer_gpu_one
|
||||
# title: الإستدلال على وحدة معالجة الرسومات (GPU)
|
||||
# title: تحسين الاستدلال
|
||||
# - local: big_models
|
||||
# title: إنشاء نموذج كبير
|
||||
# - local: debugging
|
||||
# title: تصحيح الأخطاء البرمجية
|
||||
# - local: tf_xla
|
||||
# title: تكامل XLA لنماذج TensorFlow
|
||||
# - local: perf_torch_compile
|
||||
# title: تحسين الاستدلال باستخدام `torch.compile()`
|
||||
# title: الأداء وقابلية التوسع
|
||||
# - sections:
|
||||
# - local: contributing
|
||||
# title: كيفية المساهمة في 🤗 المحولات؟
|
||||
# - local: add_new_model
|
||||
# title: كيفية إضافة نموذج إلى 🤗 المحولات؟
|
||||
# - local: add_new_pipeline
|
||||
# title: كيفية إضافة خط أنابيب إلى 🤗 المحولات؟
|
||||
# - local: testing
|
||||
# title: الاختبار
|
||||
# - local: pr_checks
|
||||
# title: التحقق من طلب السحب
|
||||
# title: المساهمة
|
||||
- sections:
|
||||
- local: philosophy
|
||||
title: الفلسفة
|
||||
- local: glossary
|
||||
title: (قاموس المصطلحات (قائمة الكلمات
|
||||
- local: task_summary
|
||||
title: ما الذي يمكن أن تفعله 🤗 المحولات
|
||||
- local: tasks_explained
|
||||
title: كيف تحل المحولات المهام
|
||||
- local: model_summary
|
||||
title: عائلة نماذج المحول
|
||||
- local: tokenizer_summary
|
||||
title: ملخص برنامج مقسم النصوص (tokenizers)
|
||||
- local: attention
|
||||
title: الانتباه Attention
|
||||
- local: pad_truncation
|
||||
title: الحشو والتقليم
|
||||
- local: bertology
|
||||
title: BERTology
|
||||
- local: perplexity
|
||||
title: حيرة النماذج ذات الطول الثابت
|
||||
- local: pipeline_webserver
|
||||
title: خطوط الأنابيب للاستدلال على خادم الويب
|
||||
- local: model_memory_anatomy
|
||||
title: تشريح تدريب النموذج
|
||||
- local: llm_tutorial_optimization
|
||||
title: الاستفادة القصوى من LLMs
|
||||
title: أطر مفاهيمية
|
||||
# - sections:
|
||||
# - sections:
|
||||
# - local: main_classes/agent
|
||||
# title: الوكلاء والأدوات
|
||||
# - local: model_doc/auto
|
||||
# title: فئات يتم إنشاؤها ديناميكيًا
|
||||
# - local: main_classes/backbones
|
||||
# title: العمود الفقري
|
||||
# - local: main_classes/callback
|
||||
# title: عمليات الاسترجاع
|
||||
# - local: main_classes/configuration
|
||||
# title: التكوين
|
||||
# - local: main_classes/data_collator
|
||||
# title: مجمع البيانات
|
||||
# - local: main_classes/keras_callbacks
|
||||
# title: استدعاءات Keras
|
||||
# - local: main_classes/logging
|
||||
# title: التسجيل
|
||||
# - local: main_classes/model
|
||||
# title: النماذج
|
||||
# - local: main_classes/text_generation
|
||||
# title: توليد النصوص
|
||||
# - local: main_classes/onnx
|
||||
# title: ONNX
|
||||
# - local: main_classes/optimizer_schedules
|
||||
# title: التحسين
|
||||
# - local: main_classes/output
|
||||
# title: مخرجات النموذج
|
||||
# - local: main_classes/pipelines
|
||||
# title: خطوط الأنابيب
|
||||
# - local: main_classes/processors
|
||||
# title: المعالجات
|
||||
# - local: main_classes/quantization
|
||||
# title: التكميم
|
||||
# - local: main_classes/tokenizer
|
||||
# title: برنامج مقسم النصوص
|
||||
# - local: main_classes/trainer
|
||||
# title: المدرب
|
||||
# - local: main_classes/deepspeed
|
||||
# title: DeepSpeed
|
||||
# - local: main_classes/feature_extractor
|
||||
# title: مستخرج الميزات
|
||||
# - local: main_classes/image_processor
|
||||
# title: معالج الصور
|
||||
# title: الفئات الرئيسية
|
||||
# - sections:
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/albert
|
||||
# title: ALBERT
|
||||
# - local: model_doc/bart
|
||||
# title: BART
|
||||
# - local: model_doc/barthez
|
||||
# title: BARThez
|
||||
# - local: model_doc/bartpho
|
||||
# title: BARTpho
|
||||
# - local: model_doc/bert
|
||||
# title: BERT
|
||||
# - local: model_doc/bert-generation
|
||||
# title: BertGeneration
|
||||
# - local: model_doc/bert-japanese
|
||||
# title: BertJapanese
|
||||
# - local: model_doc/bertweet
|
||||
# title: Bertweet
|
||||
# - local: model_doc/big_bird
|
||||
# title: BigBird
|
||||
# - local: model_doc/bigbird_pegasus
|
||||
# title: BigBirdPegasus
|
||||
# - local: model_doc/biogpt
|
||||
# title: BioGpt
|
||||
# - local: model_doc/blenderbot
|
||||
# title: Blenderbot
|
||||
# - local: model_doc/blenderbot-small
|
||||
# title: Blenderbot Small
|
||||
# - local: model_doc/bloom
|
||||
# title: BLOOM
|
||||
# - local: model_doc/bort
|
||||
# title: BORT
|
||||
# - local: model_doc/byt5
|
||||
# title: ByT5
|
||||
# - local: model_doc/camembert
|
||||
# title: CamemBERT
|
||||
# - local: model_doc/canine
|
||||
# title: CANINE
|
||||
# - local: model_doc/codegen
|
||||
# title: CodeGen
|
||||
# - local: model_doc/code_llama
|
||||
# title: CodeLlama
|
||||
# - local: model_doc/cohere
|
||||
# title: Cohere
|
||||
# - local: model_doc/convbert
|
||||
# title: ConvBERT
|
||||
# - local: model_doc/cpm
|
||||
# title: CPM
|
||||
# - local: model_doc/cpmant
|
||||
# title: CPMANT
|
||||
# - local: model_doc/ctrl
|
||||
# title: CTRL
|
||||
# - local: model_doc/dbrx
|
||||
# title: DBRX
|
||||
# - local: model_doc/deberta
|
||||
# title: DeBERTa
|
||||
# - local: model_doc/deberta-v2
|
||||
# title: DeBERTa-v2
|
||||
# - local: model_doc/dialogpt
|
||||
# title: DialoGPT
|
||||
# - local: model_doc/distilbert
|
||||
# title: DistilBERT
|
||||
# - local: model_doc/dpr
|
||||
# title: DPR
|
||||
# - local: model_doc/electra
|
||||
# title: ELECTRA
|
||||
# - local: model_doc/encoder-decoder
|
||||
# title: Encoder Decoder Models
|
||||
# - local: model_doc/ernie
|
||||
# title: ERNIE
|
||||
# - local: model_doc/ernie_m
|
||||
# title: ErnieM
|
||||
# - local: model_doc/esm
|
||||
# title: ESM
|
||||
# - local: model_doc/falcon
|
||||
# title: Falcon
|
||||
# - local: model_doc/fastspeech2_conformer
|
||||
# title: FastSpeech2Conformer
|
||||
# - local: model_doc/flan-t5
|
||||
# title: FLAN-T5
|
||||
# - local: model_doc/flan-ul2
|
||||
# title: FLAN-UL2
|
||||
# - local: model_doc/flaubert
|
||||
# title: FlauBERT
|
||||
# - local: model_doc/fnet
|
||||
# title: FNet
|
||||
# - local: model_doc/fsmt
|
||||
# title: FSMT
|
||||
# - local: model_doc/funnel
|
||||
# title: Funnel Transformer
|
||||
# - local: model_doc/fuyu
|
||||
# title: Fuyu
|
||||
# - local: model_doc/gemma
|
||||
# title: Gemma
|
||||
# - local: model_doc/openai-gpt
|
||||
# title: GPT
|
||||
# - local: model_doc/gpt_neo
|
||||
# title: GPT Neo
|
||||
# - local: model_doc/gpt_neox
|
||||
# title: GPT NeoX
|
||||
# - local: model_doc/gpt_neox_japanese
|
||||
# title: GPT NeoX Japanese
|
||||
# - local: model_doc/gptj
|
||||
# title: GPT-J
|
||||
# - local: model_doc/gpt2
|
||||
# title: GPT2
|
||||
# - local: model_doc/gpt_bigcode
|
||||
# title: GPTBigCode
|
||||
# - local: model_doc/gptsan-japanese
|
||||
# title: GPTSAN Japanese
|
||||
# - local: model_doc/gpt-sw3
|
||||
# title: GPTSw3
|
||||
# - local: model_doc/herbert
|
||||
# title: HerBERT
|
||||
# - local: model_doc/ibert
|
||||
# title: I-BERT
|
||||
# - local: model_doc/jamba
|
||||
# title: Jamba
|
||||
# - local: model_doc/jetmoe
|
||||
# title: JetMoe
|
||||
# - local: model_doc/jukebox
|
||||
# title: Jukebox
|
||||
# - local: model_doc/led
|
||||
# title: LED
|
||||
# - local: model_doc/llama
|
||||
# title: LLaMA
|
||||
# - local: model_doc/llama2
|
||||
# title: Llama2
|
||||
# - local: model_doc/llama3
|
||||
# title: Llama3
|
||||
# - local: model_doc/longformer
|
||||
# title: Longformer
|
||||
# - local: model_doc/longt5
|
||||
# title: LongT5
|
||||
# - local: model_doc/luke
|
||||
# title: LUKE
|
||||
# - local: model_doc/m2m_100
|
||||
# title: M2M100
|
||||
# - local: model_doc/madlad-400
|
||||
# title: MADLAD-400
|
||||
# - local: model_doc/mamba
|
||||
# title: Mamba
|
||||
# - local: model_doc/marian
|
||||
# title: MarianMT
|
||||
# - local: model_doc/markuplm
|
||||
# title: MarkupLM
|
||||
# - local: model_doc/mbart
|
||||
# title: MBart and MBart-50
|
||||
# - local: model_doc/mega
|
||||
# title: MEGA
|
||||
# - local: model_doc/megatron-bert
|
||||
# title: MegatronBERT
|
||||
# - local: model_doc/megatron_gpt2
|
||||
# title: MegatronGPT2
|
||||
# - local: model_doc/mistral
|
||||
# title: Mistral
|
||||
# - local: model_doc/mixtral
|
||||
# title: Mixtral
|
||||
# - local: model_doc/mluke
|
||||
# title: mLUKE
|
||||
# - local: model_doc/mobilebert
|
||||
# title: MobileBERT
|
||||
# - local: model_doc/mpnet
|
||||
# title: MPNet
|
||||
# - local: model_doc/mpt
|
||||
# title: MPT
|
||||
# - local: model_doc/mra
|
||||
# title: MRA
|
||||
# - local: model_doc/mt5
|
||||
# title: MT5
|
||||
# - local: model_doc/mvp
|
||||
# title: MVP
|
||||
# - local: model_doc/nezha
|
||||
# title: NEZHA
|
||||
# - local: model_doc/nllb
|
||||
# title: NLLB
|
||||
# - local: model_doc/nllb-moe
|
||||
# title: NLLB-MoE
|
||||
# - local: model_doc/nystromformer
|
||||
# title: Nyströmformer
|
||||
# - local: model_doc/olmo
|
||||
# title: OLMo
|
||||
# - local: model_doc/open-llama
|
||||
# title: Open-Llama
|
||||
# - local: model_doc/opt
|
||||
# title: OPT
|
||||
# - local: model_doc/pegasus
|
||||
# title: Pegasus
|
||||
# - local: model_doc/pegasus_x
|
||||
# title: PEGASUS-X
|
||||
# - local: model_doc/persimmon
|
||||
# title: Persimmon
|
||||
# - local: model_doc/phi
|
||||
# title: Phi
|
||||
# - local: model_doc/phi3
|
||||
# title: Phi-3
|
||||
# - local: model_doc/phobert
|
||||
# title: PhoBERT
|
||||
# - local: model_doc/plbart
|
||||
# title: PLBart
|
||||
# - local: model_doc/prophetnet
|
||||
# title: ProphetNet
|
||||
# - local: model_doc/qdqbert
|
||||
# title: QDQBert
|
||||
# - local: model_doc/qwen2
|
||||
# title: Qwen2
|
||||
# - local: model_doc/qwen2_moe
|
||||
# title: Qwen2MoE
|
||||
# - local: model_doc/rag
|
||||
# title: RAG
|
||||
# - local: model_doc/realm
|
||||
# title: REALM
|
||||
# - local: model_doc/recurrent_gemma
|
||||
# title: RecurrentGemma
|
||||
# - local: model_doc/reformer
|
||||
# title: Reformer
|
||||
# - local: model_doc/rembert
|
||||
# title: RemBERT
|
||||
# - local: model_doc/retribert
|
||||
# title: RetriBERT
|
||||
# - local: model_doc/roberta
|
||||
# title: RoBERTa
|
||||
# - local: model_doc/roberta-prelayernorm
|
||||
# title: RoBERTa-PreLayerNorm
|
||||
# - local: model_doc/roc_bert
|
||||
# title: RoCBert
|
||||
# - local: model_doc/roformer
|
||||
# title: RoFormer
|
||||
# - local: model_doc/rwkv
|
||||
# title: RWKV
|
||||
# - local: model_doc/splinter
|
||||
# title: Splinter
|
||||
# - local: model_doc/squeezebert
|
||||
# title: SqueezeBERT
|
||||
# - local: model_doc/stablelm
|
||||
# title: StableLm
|
||||
# - local: model_doc/starcoder2
|
||||
# title: Starcoder2
|
||||
# - local: model_doc/switch_transformers
|
||||
# title: SwitchTransformers
|
||||
# - local: model_doc/t5
|
||||
# title: T5
|
||||
# - local: model_doc/t5v1.1
|
||||
# title: T5v1.1
|
||||
# - local: model_doc/tapex
|
||||
# title: TAPEX
|
||||
# - local: model_doc/transfo-xl
|
||||
# title: Transformer XL
|
||||
# - local: model_doc/ul2
|
||||
# title: UL2
|
||||
# - local: model_doc/umt5
|
||||
# title: UMT5
|
||||
# - local: model_doc/xmod
|
||||
# title: X-MOD
|
||||
# - local: model_doc/xglm
|
||||
# title: XGLM
|
||||
# - local: model_doc/xlm
|
||||
# title: XLM
|
||||
# - local: model_doc/xlm-prophetnet
|
||||
# title: XLM-ProphetNet
|
||||
# - local: model_doc/xlm-roberta
|
||||
# title: XLM-RoBERTa
|
||||
# - local: model_doc/xlm-roberta-xl
|
||||
# title: XLM-RoBERTa-XL
|
||||
# - local: model_doc/xlm-v
|
||||
# title: XLM-V
|
||||
# - local: model_doc/xlnet
|
||||
# title: XLNet
|
||||
# - local: model_doc/yoso
|
||||
# title: YOSO
|
||||
# title: Text models
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/beit
|
||||
# title: BEiT
|
||||
# - local: model_doc/bit
|
||||
# title: BiT
|
||||
# - local: model_doc/conditional_detr
|
||||
# title: Conditional DETR
|
||||
# - local: model_doc/convnext
|
||||
# title: ConvNeXT
|
||||
# - local: model_doc/convnextv2
|
||||
# title: ConvNeXTV2
|
||||
# - local: model_doc/cvt
|
||||
# title: CVT
|
||||
# - local: model_doc/deformable_detr
|
||||
# title: Deformable DETR
|
||||
# - local: model_doc/deit
|
||||
# title: DeiT
|
||||
# - local: model_doc/depth_anything
|
||||
# title: Depth Anything
|
||||
# - local: model_doc/deta
|
||||
# title: DETA
|
||||
# - local: model_doc/detr
|
||||
# title: DETR
|
||||
# - local: model_doc/dinat
|
||||
# title: DiNAT
|
||||
# - local: model_doc/dinov2
|
||||
# title: DINOV2
|
||||
# - local: model_doc/dit
|
||||
# title: DiT
|
||||
# - local: model_doc/dpt
|
||||
# title: DPT
|
||||
# - local: model_doc/efficientformer
|
||||
# title: EfficientFormer
|
||||
# - local: model_doc/efficientnet
|
||||
# title: EfficientNet
|
||||
# - local: model_doc/focalnet
|
||||
# title: FocalNet
|
||||
# - local: model_doc/glpn
|
||||
# title: GLPN
|
||||
# - local: model_doc/imagegpt
|
||||
# title: ImageGPT
|
||||
# - local: model_doc/levit
|
||||
# title: LeViT
|
||||
# - local: model_doc/mask2former
|
||||
# title: Mask2Former
|
||||
# - local: model_doc/maskformer
|
||||
# title: MaskFormer
|
||||
# - local: model_doc/mobilenet_v1
|
||||
# title: MobileNetV1
|
||||
# - local: model_doc/mobilenet_v2
|
||||
# title: MobileNetV2
|
||||
# - local: model_doc/mobilevit
|
||||
# title: MobileViT
|
||||
# - local: model_doc/mobilevitv2
|
||||
# title: MobileViTV2
|
||||
# - local: model_doc/nat
|
||||
# title: NAT
|
||||
# - local: model_doc/poolformer
|
||||
# title: PoolFormer
|
||||
# - local: model_doc/pvt
|
||||
# title: Pyramid Vision Transformer (PVT)
|
||||
# - local: model_doc/pvt_v2
|
||||
# title: Pyramid Vision Transformer v2 (PVTv2)
|
||||
# - local: model_doc/regnet
|
||||
# title: RegNet
|
||||
# - local: model_doc/resnet
|
||||
# title: ResNet
|
||||
# - local: model_doc/segformer
|
||||
# title: SegFormer
|
||||
# - local: model_doc/seggpt
|
||||
# title: SegGpt
|
||||
# - local: model_doc/superpoint
|
||||
# title: SuperPoint
|
||||
# - local: model_doc/swiftformer
|
||||
# title: SwiftFormer
|
||||
# - local: model_doc/swin
|
||||
# title: Swin Transformer
|
||||
# - local: model_doc/swinv2
|
||||
# title: Swin Transformer V2
|
||||
# - local: model_doc/swin2sr
|
||||
# title: Swin2SR
|
||||
# - local: model_doc/table-transformer
|
||||
# title: Table Transformer
|
||||
# - local: model_doc/upernet
|
||||
# title: UperNet
|
||||
# - local: model_doc/van
|
||||
# title: VAN
|
||||
# - local: model_doc/vit
|
||||
# title: Vision Transformer (ViT)
|
||||
# - local: model_doc/vit_hybrid
|
||||
# title: ViT Hybrid
|
||||
# - local: model_doc/vitdet
|
||||
# title: ViTDet
|
||||
# - local: model_doc/vit_mae
|
||||
# title: ViTMAE
|
||||
# - local: model_doc/vitmatte
|
||||
# title: ViTMatte
|
||||
# - local: model_doc/vit_msn
|
||||
# title: ViTMSN
|
||||
# - local: model_doc/yolos
|
||||
# title: YOLOS
|
||||
# title: Vision models
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/audio-spectrogram-transformer
|
||||
# title: Audio Spectrogram Transformer
|
||||
# - local: model_doc/bark
|
||||
# title: Bark
|
||||
# - local: model_doc/clap
|
||||
# title: CLAP
|
||||
# - local: model_doc/encodec
|
||||
# title: EnCodec
|
||||
# - local: model_doc/hubert
|
||||
# title: Hubert
|
||||
# - local: model_doc/mctct
|
||||
# title: MCTCT
|
||||
# - local: model_doc/mms
|
||||
# title: MMS
|
||||
# - local: model_doc/musicgen
|
||||
# title: MusicGen
|
||||
# - local: model_doc/musicgen_melody
|
||||
# title: MusicGen Melody
|
||||
# - local: model_doc/pop2piano
|
||||
# title: Pop2Piano
|
||||
# - local: model_doc/seamless_m4t
|
||||
# title: Seamless-M4T
|
||||
# - local: model_doc/seamless_m4t_v2
|
||||
# title: SeamlessM4T-v2
|
||||
# - local: model_doc/sew
|
||||
# title: SEW
|
||||
# - local: model_doc/sew-d
|
||||
# title: SEW-D
|
||||
# - local: model_doc/speech_to_text
|
||||
# title: Speech2Text
|
||||
# - local: model_doc/speech_to_text_2
|
||||
# title: Speech2Text2
|
||||
# - local: model_doc/speecht5
|
||||
# title: SpeechT5
|
||||
# - local: model_doc/unispeech
|
||||
# title: UniSpeech
|
||||
# - local: model_doc/unispeech-sat
|
||||
# title: UniSpeech-SAT
|
||||
# - local: model_doc/univnet
|
||||
# title: UnivNet
|
||||
# - local: model_doc/vits
|
||||
# title: VITS
|
||||
# - local: model_doc/wav2vec2
|
||||
# title: Wav2Vec2
|
||||
# - local: model_doc/wav2vec2-bert
|
||||
# title: Wav2Vec2-BERT
|
||||
# - local: model_doc/wav2vec2-conformer
|
||||
# title: Wav2Vec2-Conformer
|
||||
# - local: model_doc/wav2vec2_phoneme
|
||||
# title: Wav2Vec2Phoneme
|
||||
# - local: model_doc/wavlm
|
||||
# title: WavLM
|
||||
# - local: model_doc/whisper
|
||||
# title: Whisper
|
||||
# - local: model_doc/xls_r
|
||||
# title: XLS-R
|
||||
# - local: model_doc/xlsr_wav2vec2
|
||||
# title: XLSR-Wav2Vec2
|
||||
# title: Audio models
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/timesformer
|
||||
# title: TimeSformer
|
||||
# - local: model_doc/videomae
|
||||
# title: VideoMAE
|
||||
# - local: model_doc/vivit
|
||||
# title: ViViT
|
||||
# title: Video models
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/align
|
||||
# title: ALIGN
|
||||
# - local: model_doc/altclip
|
||||
# title: AltCLIP
|
||||
# - local: model_doc/blip
|
||||
# title: BLIP
|
||||
# - local: model_doc/blip-2
|
||||
# title: BLIP-2
|
||||
# - local: model_doc/bridgetower
|
||||
# title: BridgeTower
|
||||
# - local: model_doc/bros
|
||||
# title: BROS
|
||||
# - local: model_doc/chinese_clip
|
||||
# title: Chinese-CLIP
|
||||
# - local: model_doc/clip
|
||||
# title: CLIP
|
||||
# - local: model_doc/clipseg
|
||||
# title: CLIPSeg
|
||||
# - local: model_doc/clvp
|
||||
# title: CLVP
|
||||
# - local: model_doc/data2vec
|
||||
# title: Data2Vec
|
||||
# - local: model_doc/deplot
|
||||
# title: DePlot
|
||||
# - local: model_doc/donut
|
||||
# title: Donut
|
||||
# - local: model_doc/flava
|
||||
# title: FLAVA
|
||||
# - local: model_doc/git
|
||||
# title: GIT
|
||||
# - local: model_doc/grounding-dino
|
||||
# title: Grounding DINO
|
||||
# - local: model_doc/groupvit
|
||||
# title: GroupViT
|
||||
# - local: model_doc/idefics
|
||||
# title: IDEFICS
|
||||
# - local: model_doc/idefics2
|
||||
# title: Idefics2
|
||||
# - local: model_doc/instructblip
|
||||
# title: InstructBLIP
|
||||
# - local: model_doc/kosmos-2
|
||||
# title: KOSMOS-2
|
||||
# - local: model_doc/layoutlm
|
||||
# title: LayoutLM
|
||||
# - local: model_doc/layoutlmv2
|
||||
# title: LayoutLMV2
|
||||
# - local: model_doc/layoutlmv3
|
||||
# title: LayoutLMV3
|
||||
# - local: model_doc/layoutxlm
|
||||
# title: LayoutXLM
|
||||
# - local: model_doc/lilt
|
||||
# title: LiLT
|
||||
# - local: model_doc/llava
|
||||
# title: Llava
|
||||
# - local: model_doc/llava_next
|
||||
# title: LLaVA-NeXT
|
||||
# - local: model_doc/lxmert
|
||||
# title: LXMERT
|
||||
# - local: model_doc/matcha
|
||||
# title: MatCha
|
||||
# - local: model_doc/mgp-str
|
||||
# title: MGP-STR
|
||||
# - local: model_doc/nougat
|
||||
# title: Nougat
|
||||
# - local: model_doc/oneformer
|
||||
# title: OneFormer
|
||||
# - local: model_doc/owlvit
|
||||
# title: OWL-ViT
|
||||
# - local: model_doc/owlv2
|
||||
# title: OWLv2
|
||||
# - local: model_doc/paligemma
|
||||
# title: PaliGemma
|
||||
# - local: model_doc/perceiver
|
||||
# title: Perceiver
|
||||
# - local: model_doc/pix2struct
|
||||
# title: Pix2Struct
|
||||
# - local: model_doc/sam
|
||||
# title: Segment Anything
|
||||
# - local: model_doc/siglip
|
||||
# title: SigLIP
|
||||
# - local: model_doc/speech-encoder-decoder
|
||||
# title: Speech Encoder Decoder Models
|
||||
# - local: model_doc/tapas
|
||||
# title: TAPAS
|
||||
# - local: model_doc/trocr
|
||||
# title: TrOCR
|
||||
# - local: model_doc/tvlt
|
||||
# title: TVLT
|
||||
# - local: model_doc/tvp
|
||||
# title: TVP
|
||||
# - local: model_doc/udop
|
||||
# title: UDOP
|
||||
# - local: model_doc/video_llava
|
||||
# title: VideoLlava
|
||||
# - local: model_doc/vilt
|
||||
# title: ViLT
|
||||
# - local: model_doc/vipllava
|
||||
# title: VipLlava
|
||||
# - local: model_doc/vision-encoder-decoder
|
||||
# title: Vision Encoder Decoder Models
|
||||
# - local: model_doc/vision-text-dual-encoder
|
||||
# title: Vision Text Dual Encoder
|
||||
# - local: model_doc/visual_bert
|
||||
# title: VisualBERT
|
||||
# - local: model_doc/xclip
|
||||
# title: X-CLIP
|
||||
# title: Multimodal models
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/decision_transformer
|
||||
# title: محول القرار
|
||||
# - local: model_doc/trajectory_transformer
|
||||
# title: محول المسار
|
||||
# title: نماذج التعلم التعزيزية
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/autoformer
|
||||
# title: Autoformer
|
||||
# - local: model_doc/informer
|
||||
# title: Informer
|
||||
# - local: model_doc/patchtsmixer
|
||||
# title: PatchTSMixer
|
||||
# - local: model_doc/patchtst
|
||||
# title: PatchTST
|
||||
# - local: model_doc/time_series_transformer
|
||||
# title: محول السلاسل الزمنية
|
||||
# title: نماذج السلاسل الزمنية
|
||||
# - isExpanded: false
|
||||
# sections:
|
||||
# - local: model_doc/graphormer
|
||||
# title: Graphormer
|
||||
# title: نماذج الرسم البياني
|
||||
# title: النماذج
|
||||
# - sections:
|
||||
# - local: internal/modeling_utils
|
||||
# title: الطبقات المخصصة والمرافق
|
||||
# - local: internal/pipelines_utils
|
||||
# title: مرافق خطوط الأنابيب
|
||||
# - local: internal/tokenization_utils
|
||||
# title: مرافق مقسم النصوص
|
||||
# - local: internal/trainer_utils
|
||||
# title: مرافق المدرب
|
||||
# - local: internal/generation_utils
|
||||
# title: مرافق التوليد
|
||||
# - local: internal/image_processing_utils
|
||||
# title: مرافق معالجة الصور
|
||||
# - local: internal/audio_utils
|
||||
# title: مرافق معالجة الصوت
|
||||
# - local: internal/file_utils
|
||||
# title: مرافق عامة
|
||||
# - local: internal/time_series_utils
|
||||
# title: مرافق السلاسل الزمنية
|
||||
# title: مساعدون داخليون
|
||||
# title: API
|
||||
120
docs/source/ar/accelerate.md
Normal file
120
docs/source/ar/accelerate.md
Normal file
@ -0,0 +1,120 @@
|
||||
# التدريب الموزع باستخدام 🤗 Accelerate
|
||||
|
||||
|
||||
مع تزايد حجم النماذج اللغوية، برز التوازي كأحد الاستراتيجيات لتدريب نماذج أكبر على أجهزة محدودة وتسريع عملية التدريب بمقدار كبير. أنشأنا في Hugging Face، قمنا بإنشاء مكتبة [ Accelerate](https://huggingface.co/docs/accelerate) لمساعدة المستخدمين على تدريب أي نموذج من Transformers بسهولة على أي نوع من الإعدادات الموزعة، سواء كان ذلك على عدة وحدات معالجة رسومات (GPUs) على جهاز واحد أو على عدة وحدات معالجة رسومات موزعة على عدة أجهزة. في هذا الدليل، تعلم كيفية تخصيص حلقة تدريب PyTorch الأصلية لتمكين التدريب في بيئة موزعة.
|
||||
|
||||
## الإعداد
|
||||
|
||||
ابدأ بتثبيت 🤗 Accelerate:
|
||||
|
||||
```bash
|
||||
pip install accelerate
|
||||
```
|
||||
|
||||
ثم قم باستيراد وإنشاء كائن [`~accelerate.Accelerator`]. سيقوم [`~accelerate.Accelerator`] تلقائيًا باكتشاف نوع الإعداد الموزع الخاص بك وتهيئة جميع المكونات اللازمة للتدريب. لن تحتاج إلى وضع نموذجك على جهاز بشكل معين.
|
||||
|
||||
```py
|
||||
>>> from accelerate import Accelerator
|
||||
|
||||
>>> accelerator = Accelerator()
|
||||
```
|
||||
|
||||
## الاستعداد للتسريع
|
||||
|
||||
الخطوة التالية هي تمرير جميع كائنات التدريب ذات الصلة إلى دالة الإعداد [`~accelerate.Accelerator.prepare`]. ويشمل ذلك DataLoaders للتدريب والتقييم، ونموذجًا ومُحَسِّنً المعاملات (optimizer):
|
||||
|
||||
```py
|
||||
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
... train_dataloader, eval_dataloader, model, optimizer
|
||||
... )
|
||||
```
|
||||
|
||||
## الخلفي Backward
|
||||
|
||||
الإضافة الأخيرة هي استبدال الدالة المعتادة `loss.backward()` في حلقة التدريب الخاصة بك بدالة [`~accelerate.Accelerator.backward`] في 🤗 Accelerate:
|
||||
|
||||
```py
|
||||
>>> for epoch in range(num_epochs):
|
||||
... for batch in train_dataloader:
|
||||
... outputs = model(**batch)
|
||||
... loss = outputs.loss
|
||||
... accelerator.backward(loss)
|
||||
|
||||
... optimizer.step()
|
||||
... lr_scheduler.step()
|
||||
... optimizer.zero_grad()
|
||||
... progress_bar.update(1)
|
||||
```
|
||||
|
||||
كما يمكنك أن ترى في الكود التالي، فأنت بحاجة فقط إلى إضافة أربعة أسطر من الكود إلى حلقة التدريب الخاصة بك لتمكين التدريب الموزع!
|
||||
|
||||
```diff
|
||||
+ from accelerate import Accelerator
|
||||
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
|
||||
|
||||
+ accelerator = Accelerator()
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
|
||||
optimizer = AdamW(model.parameters(), lr=3e-5)
|
||||
|
||||
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
- model.to(device)
|
||||
|
||||
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
+ train_dataloader, eval_dataloader, model, optimizer
|
||||
+ )
|
||||
|
||||
num_epochs = 3
|
||||
num_training_steps = num_epochs * len(train_dataloader)
|
||||
lr_scheduler = get_scheduler(
|
||||
"linear",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=0,
|
||||
num_training_steps=num_training_steps
|
||||
)
|
||||
|
||||
progress_bar = tqdm(range(num_training_steps))
|
||||
|
||||
model.train()
|
||||
for epoch in range(num_epochs):
|
||||
for batch in train_dataloader:
|
||||
- batch = {k: v.to(device) for k, v in batch.items()}
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
- loss.backward()
|
||||
+ accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
```
|
||||
|
||||
## تدريب
|
||||
|
||||
بمجرد إضافة أسطر الكود ذات الصلة، قم بتشغيل التدريب الخاص بك في أحد النصوص أو الدفاتر مثل Colaboratory.
|
||||
|
||||
### التدريب باستخدام نص برمجي
|
||||
|
||||
إذا كنت تشغل التدريب الخاص بك من نص برمجي، فقم بتشغيل الأمر التالي لإنشاء وحفظ ملف تكوين:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
ثم قم بتشغيل التدريب الخاص بك باستخدام:
|
||||
|
||||
```bash
|
||||
accelerate launch train.py
|
||||
```
|
||||
|
||||
### التدريب باستخدام دفتر ملاحظات
|
||||
|
||||
يمكن أيضًا تشغيل 🤗 Accelerate في دفاتر إذا كنت تخطط لاستخدام وحدات معالجة الرسوميات (TPUs) في Colaboratory. قم بتغليف كل الكود المسؤول عن التدريب في دالة، ومررها إلى [`~accelerate.notebook_launcher`]:
|
||||
|
||||
```py
|
||||
>>> from accelerate import notebook_launcher
|
||||
|
||||
>>> notebook_launcher(training_function)
|
||||
```
|
||||
|
||||
للحصول على مزيد من المعلومات حول 🤗 Accelerate وميزاته الغنية، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/accelerate).
|
||||
539
docs/source/ar/agents.md
Normal file
539
docs/source/ar/agents.md
Normal file
@ -0,0 +1,539 @@
|
||||
# الوكلاء والأدوات
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
### ما هو الوكيل؟
|
||||
|
||||
يمكن للنظم اللغوية الكبيرة (LLMs) التي تم تدريبها على أداء [نمذجة اللغة السببية](./tasks/language_modeling.) التعامل مع مجموعة واسعة من المهام، ولكنها غالبًا ما تواجه صعوبات في المهام الأساسية مثل المنطق والحساب والبحث. وعندما يتم استدعاؤها في مجالات لا تؤدي فيها أداءً جيدًا، فإنها غالبًا ما تفشل في توليد الإجابة التي نتوقعها منها.
|
||||
|
||||
يتمثل أحد النهج للتغلب على هذا القصور في إنشاء "وكيل".
|
||||
|
||||
الوكيل هو نظام يستخدم LLM كمحرك له، ولديه حق الوصول إلى وظائف تسمى "أدوات".
|
||||
|
||||
هذه "الأدوات" هي وظائف لأداء مهمة، وتحتوي على جميع الأوصاف اللازمة للوكيل لاستخدامها بشكل صحيح.
|
||||
|
||||
يمكن برمجة الوكيل للقيام بما يلي:
|
||||
- وضع سلسلة من الإجراءات/الأدوات وتشغيلها جميعًا في نفس الوقت مثل [`CodeAgent`] على سبيل المثال
|
||||
- التخطيط للاجراءات/الأدوات وتنفيذها واحدة تلو الأخرى والانتظار حتى انتهاء كل إجراء قبل إطلاق التالي مثل [`ReactJsonAgent`] على سبيل المثال
|
||||
|
||||
### أنواع الوكلاء
|
||||
|
||||
#### الوكيل البرمجي (Code agent)
|
||||
|
||||
يتمتع هذا الوكيل يتبع خطوات محددة: أولًا، يخطط لسلسلة من الإجراءات التي يريد تنفيذها، ثم شفرة Python لتنفيذ جميع الإجراءات في نفس الوقت. وهو يتعامل بشكل أصلي مع أنواع مختلفة من المدخلات والمخرجات للأدوات التي يستخدمها، وبالتالي فهو الخيار الموصى به للمهام متعددة الوسائط.
|
||||
|
||||
#### وكلاء التفاعل
|
||||
|
||||
هذا هو الوكيل الذي يتم اللجوء إليه لحل مهام الاستدلال، حيث يجعل إطار ReAct ([Yao et al.، 2022](https://huggingface.co/papers/2210.03629)) من الكفاءة حقًا التفكير على أساس ملاحظاته السابقة.
|
||||
|
||||
نقوم بتنفيذ إصدارين من ReactJsonAgent:
|
||||
- [`ReactJsonAgent`] يقوم بتوليد استدعاءات الأدوات كـ JSON في إخراجها.
|
||||
- [`ReactCodeAgent`] هو نوع جديد من ReactJsonAgent يقوم بتوليد استدعاءات أدواته كمقاطع من التعليمات البرمجية، والتي تعمل بشكل جيد حقًا مع LLMs التي تتمتع بأداء قوي في البرمجة.
|
||||
|
||||
> [!TIP]
|
||||
> اقرأ منشور المدونة [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) لمعرفة المزيد عن وكيل ReAct.
|
||||
|
||||

|
||||
|
||||
على سبيل المثال، إليك كيف يعمل وكيل ReAct Code طريقه من خلال السؤال التالي.
|
||||
|
||||
```py3
|
||||
>>> agent.run(
|
||||
... "How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?",
|
||||
... )
|
||||
=====New task=====
|
||||
How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?
|
||||
====Agent is executing the code below:
|
||||
bert_blocks = search(query="number of blocks in BERT base encoder")
|
||||
print("BERT blocks:", bert_blocks)
|
||||
====
|
||||
Print outputs:
|
||||
BERT blocks: twelve encoder blocks
|
||||
|
||||
====Agent is executing the code below:
|
||||
attention_layer = search(query="number of layers in Attention is All You Need")
|
||||
print("Attention layers:", attention_layer)
|
||||
====
|
||||
Print outputs:
|
||||
Attention layers: Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- 2 Page 3 Figure 1: The Transformer - model architecture.
|
||||
|
||||
====Agent is executing the code below:
|
||||
bert_blocks = 12
|
||||
attention_layers = 6
|
||||
diff = bert_blocks - attention_layers
|
||||
print("Difference in blocks:", diff)
|
||||
final_answer(diff)
|
||||
====
|
||||
|
||||
Print outputs:
|
||||
Difference in blocks: 6
|
||||
|
||||
Final answer: 6
|
||||
```
|
||||
|
||||
### كيف يمكنني بناء وكيل؟
|
||||
|
||||
لتهيئة وكيل، تحتاج إلى هذه الوسائط:
|
||||
|
||||
- نموذج لغوي كبير (LLM) يشكل المحرك الأساسي للوكيل. الوكيل نفسه ليس النموذج اللغوي، بل هو برنامج يستخدم النموذج اللغوي كمحرك له.
|
||||
- موجه النظام (system prompt): هذه هي التعليمات التي يتم إعطاؤها للنموذج اللغوي لإنشاء مخرجاته.
|
||||
- صندوق أدوات (toolbox) يختار الوكيل منه الأدوات لتنفيذها
|
||||
- محلل (parser) لاستخراج الأدوات التي يجب استدعاؤها من مخرجات النموذج اللغوي LLM والأدوات التي يجب استخدامها
|
||||
|
||||
عند تهيئة نظام الوكيل، يتم استخدام سمات الأداة لإنشاء وصف للأداة، ثم يتم دمجها في موجه النظام الخاص `system_prompt` للوكيل لإعلامه بالأدوات التي يمكنه استخدامها ولماذا.
|
||||
|
||||
للبدء، يرجى تثبيت `agents` الإضافية لتثبيت جميع التبعيات الافتراضية.
|
||||
|
||||
```bash
|
||||
pip install transformers[agents]
|
||||
```
|
||||
|
||||
قم ببناء محرك LLM الخاص بك من خلال تعريف طريقة `llm_engine` التي تقبل قائمة من [الرسائل](./chat_templating.) وتعيد النص. يجب أن تقبل هذه الدالة القابلة للاستدعاء أيضًا معامل `stop` يشير إلى متى يجب التوقف عن التوليد.
|
||||
|
||||
```python
|
||||
from huggingface_hub import login, InferenceClient
|
||||
|
||||
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
|
||||
|
||||
client = InferenceClient(model="meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
|
||||
def llm_engine(messages, stop_sequences=["Task"]) -> str:
|
||||
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
|
||||
answer = response.choices[0].message.content
|
||||
return answer
|
||||
```
|
||||
|
||||
يمكنك استخدام أي طريقة `llm_engine` طالما أنها:
|
||||
1. يتبع تنسيق [رسائل](./chat_templating.md) لإدخاله (`List [Dict [str، str]]`) ويعيد `str`
|
||||
2. يتوقف عن توليد المخراجات من التسلسلات التي تم تمريرها في معامل `stop`
|
||||
|
||||
أنت بحاجة أيضًا إلى معامل "الأدوات" الذي يقبل قائمة من "الأدوات". يمكنك توفير قائمة فارغة لـ "الأدوات"، ولكن استخدم صندوق الأدوات الافتراضي مع معامل اختياري `add_base_tools=True`.
|
||||
|
||||
الآن يمكنك إنشاء وكيل، مثل [`CodeAgent`], وتشغيله. ولتسهيل الأمر، نقدم أيضًا فئة [`HfEngine`] التي تستخدم `huggingface_hub.InferenceClient` بشكل مخفى.
|
||||
|
||||
```python
|
||||
from transformers import CodeAgent, HfEngine
|
||||
|
||||
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
|
||||
|
||||
agent.run(
|
||||
"Could you translate this sentence from French, say it out loud and return the audio.",
|
||||
sentence="Où est la boulangerie la plus proche?",
|
||||
)
|
||||
```
|
||||
|
||||
هذه الميزة ستكون مفيدة في حالة الحاجة الملحة! يمكنك حتى ترك معامل `llm_engine` غير محدد، وسيتم إنشاء [`HfEngine`] بشكل تلقائي.
|
||||
|
||||
```python
|
||||
from transformers import CodeAgent
|
||||
|
||||
agent = CodeAgent(tools=[], add_base_tools=True)
|
||||
|
||||
agent.run(
|
||||
"Could you translate this sentence from French, say it out loud and give me the audio.",
|
||||
sentence="Où est la boulangerie la plus proche?",
|
||||
)
|
||||
```
|
||||
|
||||
لاحظ أننا استخدمنا معامل "sentence" إضافي: يمكنك تمرير النص كمعامل إضافي إلى النموذج.
|
||||
|
||||
يمكنك أيضًا استخدام هذا للإشارة إلى مسار الملفات المحلية أو البعيدة للنموذج لاستخدامها:
|
||||
|
||||
```py
|
||||
from transformers import ReactCodeAgent
|
||||
|
||||
agent = ReactCodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
|
||||
|
||||
agent.run("Why does Mike not know many people in New York?", audio="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3")
|
||||
```
|
||||
|
||||
|
||||
تم تحديد موجه النظام ومحلل المخرجات تلقائيًا، ولكن يمكنك فحصهما بسهولة عن طريق استدعاء `system_prompt_template` على وكيلك.
|
||||
|
||||
```python
|
||||
print(agent.system_prompt_template)
|
||||
```
|
||||
|
||||
من المهم أن تشرح بأكبر قدر ممكن من الوضوح المهمة التي تريد تنفيذها.
|
||||
كل عملية [`~Agent.run`] مستقلة، وبما أن الوكيل مدعوم من LLM، فقد تؤدي الاختلافات الطفيفة في موجهك إلى نتائج مختلفة تمامًا.
|
||||
يمكنك أيضًا تشغيل وكيل بشكل متتالي لمهام مختلفة: في كل مرة يتم فيها إعادة تهيئة سمتي `agent.task` و`agent.logs`.
|
||||
|
||||
|
||||
#### تنفيذ التعليمات البرمجية
|
||||
|
||||
يقوم مفسر Python بتنفيذ التعليمات البرمجية على مجموعة من المدخلات التي يتم تمريرها جنبًا إلى جنب مع أدواتك.
|
||||
يجب أن يكون هذا الأمر آمنًا لأن الوظائف الوحيدة التي يمكن استدعاؤها هي الأدوات التي قدمتها (خاصة إذا كانت أدوات من Hugging Face فقط) ووظيفة الطباعة، لذا فأنت مقيد بالفعل بما يمكن تنفيذه.
|
||||
|
||||
مفسر Python لا يسمح أيضًا باستدعاء دوال بشكل افتراضي خارج قائمة آمنة، لذا فإن جميع الهجمات الأكثر وضوحًا لا ينبغي أن تكون مشكلة.
|
||||
يمكنك أيضًا الإذن باستيرادات إضافية عن طريق تمرير الوحدات النمطية المصرح بها كقائمة من السلاسل في معامل `additional_authorized_imports` عند تهيئة [`ReactCodeAgent`] أو [`CodeAgent`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import ReactCodeAgent
|
||||
|
||||
>>> agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
|
||||
>>> agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
|
||||
|
||||
(...)
|
||||
'Hugging Face – Blog'
|
||||
```
|
||||
|
||||
سيتم إيقاف التنفيذ عند أي رمز يحاول تنفيذ عملية غير قانونية أو إذا كان هناك خطأ Python عادي في التعليمات البرمجية التي تم إنشاؤها بواسطة الوكيل.
|
||||
|
||||
> [!WARNING]
|
||||
> يمكن لـ LLM توليد شفرة برمجية عشوائية سيتم تنفيذها بعد ذلك: لا تقمب استدعاء أى دوال غير آمنة!
|
||||
|
||||
### موجه النظام
|
||||
|
||||
ينشئ الوكيل، أو بالأحرى LLM الذي يقود الوكيل، يولد مخرجات بناءً على موجه النظام. يمكن تخصيص موجه النظام وتصميمه للمهام المقصودة. على سبيل المثال، تحقق من موجه النظام لـ [`ReactCodeAgent`] (الإصدار أدناه مبسط قليلاً).
|
||||
|
||||
```text
|
||||
You will be given a task to solve as best you can.
|
||||
You have access to the following tools:
|
||||
<<tool_descriptions>>
|
||||
|
||||
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
|
||||
|
||||
At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task, then the tools that you want to use.
|
||||
Then in the 'Code:' sequence, you shold write the code in simple Python. The code sequence must end with '/End code' sequence.
|
||||
During each intermediate step, you can use 'print()' to save whatever important information you will then need.
|
||||
These print outputs will then be available in the 'Observation:' field, for using this information as input for the next step.
|
||||
|
||||
In the end you have to return a final answer using the `final_answer` tool.
|
||||
|
||||
Here are a few examples using notional tools:
|
||||
---
|
||||
{examples}
|
||||
|
||||
Above example were using notional tools that might not exist for you. You only have acces to those tools:
|
||||
<<tool_names>>
|
||||
You also can perform computations in the python code you generate.
|
||||
|
||||
Always provide a 'Thought:' and a 'Code:\n```py' sequence ending with '```<end_code>' sequence. You MUST provide at least the 'Code:' sequence to move forward.
|
||||
|
||||
Remember to not perform too many operations in a single code block! You should split the task into intermediate code blocks.
|
||||
Print results at the end of each step to save the intermediate results. Then use final_answer() to return the final result.
|
||||
|
||||
Remember to make sure that variables you use are all defined.
|
||||
|
||||
Now Begin!
|
||||
```
|
||||
|
||||
يتضمن موجه النظام:
|
||||
- *مقدمة* تشرح كيف يجب أن يتصرف الوكيل والأدوات التي يجب عليه استخدامها.
|
||||
- وصف لجميع الأدوات التي يتم تحديدها بواسطة رمز `<<tool_descriptions>>` الذي يتم استبداله ديناميكيًا في وقت التشغيل بالأدوات التي يحددها المستخدم أو يختارها.
|
||||
- يأتي وصف الأداة من سمات الأداة، `name`، و`description`، و`inputs` و`output_type`، وقالب `jinja2` بسيط يمكنك تحسينه.
|
||||
- شكل المخرج المتوقع.
|
||||
|
||||
يمكنك تحسين موجه النظام، على سبيل المثال، عن طريق إضافة شرح لتنسيق المخرجات.
|
||||
|
||||
للحصول على أقصى قدر من المرونة، يمكنك الكتابة فوق قالب موجه النظام بالكامل عن طريق تمرير موجه مخصص كمعامل إلى معلمة `system_prompt`.
|
||||
|
||||
```python
|
||||
from transformers import ReactJsonAgent
|
||||
from transformers.agents import PythonInterpreterTool
|
||||
|
||||
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_custom_prompt}")
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> يرجى التأكد من تحديد سلسلة `<<tool_descriptions>>` في مكان ما في `template` حتى يكون الوكيل على علم
|
||||
بالأدوات المتاحة.
|
||||
|
||||
|
||||
### فحص تشغيل الوكيل
|
||||
|
||||
فيما يلي بعض السمات المفيدة لفحص ما حدث بعد التشغيل:
|
||||
- تخزن `agent.logs` سجلات مفصلة للوكيل. في كل خطوة من تشغيل الوكيل، يتم تخزين كل شيء في قاموس إلحاقه بـ `agent.logs`.
|
||||
- تشغيل `agent.write_inner_memory_from_logs()` يخلق ذاكرة داخلية لسجلات الوكيل للنظام LLM لعرضها، كقائمة من رسائل الدردشة. تنتقل هذه الطريقة عبر كل خطوة من سجل الوكيل ولا تخزن سوى ما يهمها كرسالة: على سبيل المثال، سيحفظ موجه النظام والمهمة في رسائل منفصلة، ثم لكل خطوة سيخزن مخرج LLM كرسالة، ومخرج استدعاء الأداة كرسالة أخرى. استخدم هذا إذا كنت تريد عرضًا عامًا لما حدث - ولكن لن يتم نسخ كل سجل بواسطة هذه الطريقة.
|
||||
|
||||
## الأدوات
|
||||
|
||||
الأداة هي عبارة عن وظيفة أساسية يستخدمها الوكيل لتنفيذ مهمة محددة.
|
||||
|
||||
يمكنك على سبيل المثال التحقق من [`PythonInterpreterTool`]: لديه اسم ووصف ووصف للمدخلات ونوع للمخرج، وطريقة `__call__` التي تقوم بتنفيذ المهمة المطلوبة.
|
||||
|
||||
عند تهيئة الوكيل، يتم استخدام سمات الأداة لتوليد وصف للأداة يتم تضمينه في موجه النظام الخاص بالوكيل. يتيح هذا للوكيل معرفة الأدوات التي يمكنه استخدامها ولماذا.
|
||||
|
||||
### صندوق الأدوات الافتراضي
|
||||
|
||||
يأتي Transformers مع صندوق أدوات افتراضي لتمكين الوكلاء، والذي يمكنك إضافته إلى وكيلك عند التهيئة باستخدام معامل `add_base_tools = True`:
|
||||
|
||||
- **الإجابة على أسئلة المستند**: الإجابة على سؤال حول المستند (مثل ملف PDF) بتنسيق صورة ([Donut](./model_doc/donut))
|
||||
- **الإجابة على أسئلة الصور**: الإجابة على سؤال حول صورة ([VILT](./model_doc/vilt))
|
||||
- **التحدث إلى النص**: قم بتفريغ الكلام إلى نص ([Whisper](./model_doc/whisper))
|
||||
- **النص إلى كلام**: تحويل النص إلى كلام ([SpeechT5](./model_doc/speecht5))
|
||||
- **الترجمة**: ترجمة جملة معينة من لغة المصدر إلى لغة الهدف.
|
||||
- **مفسر كود Python**: تشغيل كود Python الذي تم إنشاؤه بواسطة LLM في بيئة آمنة. لن يتم إضافة هذه الأداة إلى [`ReactJsonAgent`] إلا إذا استخدمت `add_base_tools=True`، نظرًا لأن الأدوات المستندة إلى التعليمات البرمجية يمكنها بالفعل تنفيذ كود Python
|
||||
لا تترجم النصوص الخاصة ولا الأكواد البرمجية ولا الروابط ولا رموز HTML وCSS:
|
||||
|
||||
يمكنك استخدام أداة يدويًا عن طريق استدعاء دالة [`load_tool`] وتحديد مهمة لتنفيذها.
|
||||
|
||||
```python
|
||||
from transformers import load_tool
|
||||
|
||||
tool = load_tool("text-to-speech")
|
||||
audio = tool("This is a text to speech tool")
|
||||
```
|
||||
|
||||
### إنشاء أداة جديدة
|
||||
|
||||
يمكنك إنشاء أداتك الخاصة لتغطية حالات الاستخدام التي لا تغطيها الأدوات الافتراضية من Hugging Face.
|
||||
على سبيل المثال، دعنا نقوم بإنشاء أداة تعرض النموذج الأكثر تنزيلًا لمهمة معينة من Hub.
|
||||
|
||||
سوف نبدأ بالكود التالي.
|
||||
|
||||
```python
|
||||
from huggingface_hub import list_models
|
||||
|
||||
task = "text-classification"
|
||||
|
||||
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
|
||||
print(model.id)
|
||||
```
|
||||
|
||||
يمكن تحويل هذه الشيفرة إلى فئة ترث من الفئة العليا [`Tool`].
|
||||
|
||||
تحتاج الأداة المخصصة إلى:
|
||||
|
||||
- اسم `name`، والتي تمثل اسم الأداة نفسها. عادةً ما يصف الاسم وظيفتها. بما أن الكود يعيد النموذج الأكثر تنزيلًا لمهمة ما، فلنسمها `model_download_counter`.
|
||||
- تستخدم خاصية `description` لملء موجه نظام الوكيل.
|
||||
- خاصية `inputs`، والتي هي عبارة عن قاموس بمفاتيح "type" و"description". يحتوي على معلومات تساعد المفسر Python على اتخاذ خيارات مستنيرة بشأن المدخلات.
|
||||
- خاصية `output_type`، والتي تحدد نوع المخرج.
|
||||
- طريقة `forward` والتي تحتوي على الكود الذي سيتم تنفيذه للحصول على النتيجة النهائية.
|
||||
|
||||
```python
|
||||
from transformers import Tool
|
||||
from huggingface_hub import list_models
|
||||
|
||||
class HFModelDownloadsTool(Tool):
|
||||
name = "model_download_counter"
|
||||
description = (
|
||||
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
|
||||
"It returns the name of the checkpoint."
|
||||
)
|
||||
|
||||
inputs = {
|
||||
"task": {
|
||||
"type": "text",
|
||||
"description": "the task category (such as text-classification, depth-estimation, etc)",
|
||||
}
|
||||
}
|
||||
output_type = "text"
|
||||
|
||||
def forward(self, task: str):
|
||||
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
|
||||
return model.id
|
||||
```
|
||||
|
||||
الآن بعد أن أصبحت فئة `HfModelDownloadsTool` المخصصة جاهزة، يمكنك حفظها في ملف باسم `model_downloads.py` واستيرادها للاستخدام.
|
||||
|
||||
```python
|
||||
from model_downloads import HFModelDownloadsTool
|
||||
|
||||
tool = HFModelDownloadsTool()
|
||||
```
|
||||
|
||||
يمكنك أيضًا مشاركة أداتك المخصصة في Hub عن طريق استدعاء [`~Tool.push_to_hub`] على الأداة. تأكد من أنك قمت بإنشاء مستودع لها على Hub وأنك تستخدم رمز وصول للقراءة.
|
||||
|
||||
```python
|
||||
tool.push_to_hub("{your_username}/hf-model-downloads")
|
||||
```
|
||||
|
||||
قم بتحميل الأداة باستخدام دالة [`~Tool.load_tool`] ومررها إلى معلمة `tools` في الوكيل الخاص بك.
|
||||
|
||||
```python
|
||||
from transformers import load_tool, CodeAgent
|
||||
|
||||
model_download_tool = load_tool("m-ric/hf-model-downloads")
|
||||
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
|
||||
agent.run(
|
||||
"Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
|
||||
)
|
||||
```
|
||||
|
||||
ستحصل على ما يلي:
|
||||
|
||||
```text
|
||||
======== New task ========
|
||||
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
|
||||
==== Agent is executing the code below:
|
||||
most_downloaded_model = model_download_counter(task="text-to-video")
|
||||
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
|
||||
====
|
||||
```
|
||||
|
||||
والناتج:
|
||||
|
||||
`"النموذج الأكثر تنزيلًا لمهمة `text-to-video` هو ByteDance/AnimateDiff-Lightning."`
|
||||
|
||||
### إدارة صندوق أدوات الوكيل الخاص بك
|
||||
|
||||
إذا كنت قد قمت بتهيئة وكيل، فمن غير الملائم إعادة تهيئته من البداية لإضافة أداة جديدة ترغب في استخدامها. باستخدام مكتبة Transformers، يمكنك إدارة صندوق أدوات الوكيل بإضافة أو استبدال أداة موجودة.
|
||||
|
||||
دعنا نضيف الأداة `model_download_tool` إلى وكيل تم تهيئته مسبقًا باستخدام صندوق الأدوات الافتراضي.
|
||||
|
||||
```python
|
||||
from transformers import CodeAgent
|
||||
|
||||
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
|
||||
agent.toolbox.add_tool(model_download_tool)
|
||||
```
|
||||
|
||||
الآن يمكننا الاستفادة من الأداة الجديدة وأداة تحويل النص إلى كلام السابقة:
|
||||
|
||||
```python
|
||||
agent.run(
|
||||
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub and return the audio?"
|
||||
)
|
||||
```
|
||||
|
||||
| **Audio** |
|
||||
|------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
|
||||
|
||||
> [!WARNING]
|
||||
> احترس عند إضافة أدوات إلى وكيل يعمل بالفعل لأنه يمكن أن يؤثر على اختيار الأداة لصالح أداتك أو اختيار أداة أخرى غير المحددة بالفعل.
|
||||
|
||||
استخدم طريقة `agent.toolbox.update_tool()` لاستبدال أداة موجودة في صندوق أدوات الوكيل.
|
||||
هذا مفيد إذا كانت أداتك الجديدة بديلاً مباشرًا للأداة الموجودة لأن الوكيل يعرف بالفعل كيفية تنفيذ تلك المهمة المحددة.
|
||||
تأكد فقط من اتباع الأداة الجديدة لنفس واجهة برمجة التطبيقات (API) للأداة المستبدلة أو قم بتكييف قالب موجه النظام لضمان تحديث جميع الأمثلة التي تستخدم الأداة المستبدلة.
|
||||
|
||||
### استخدام مجموعة من الأدوات
|
||||
|
||||
يمكنك الاستفادة من مجموعات الأدوات باستخدام كائن ToolCollection، مع تحديد مجموعة الأدوات التي تريد استخدامها.
|
||||
ثم قم بتمريرها كقائمة لتهيئة الوكيل الخاص بك، وبدء استخدامها!
|
||||
|
||||
```py
|
||||
from transformers import ToolCollection, ReactCodeAgent
|
||||
|
||||
image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
|
||||
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
|
||||
|
||||
agent.run("Please draw me a picture of rivers and lakes.")
|
||||
```
|
||||
|
||||
لتسريع البداية، يتم تحميل الأدوات فقط إذا استدعاها الوكيل.
|
||||
|
||||
ستحصل على هذه الصورة:
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" />
|
||||
|
||||
### استخدام gradio-tools
|
||||
|
||||
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) هي مكتبة قوية تتيح استخدام Hugging
|
||||
Face Spaces كأدوات. تدعم العديد من المساحات الموجودة بالإضافة إلى مساحات مخصصة.
|
||||
|
||||
تدعم مكتبة Transformers `gradio_tools` باستخدام طريقة [`Tool.from_gradio`] في الفئة. على سبيل المثال، دعنا نستخدم [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) من مجموعة أدوات `gradio-tools` لتحسين المطالبات لإنشاء صور أفضل.
|
||||
|
||||
استورد وقم بتهيئة الأداة، ثم مررها إلى طريقة `Tool.from_gradio`:
|
||||
|
||||
```python
|
||||
from gradio_tools import StableDiffusionPromptGeneratorTool
|
||||
from transformers import Tool, load_tool, CodeAgent
|
||||
|
||||
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
|
||||
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
|
||||
```
|
||||
|
||||
الآن يمكنك استخدامه مثل أي أداة أخرى. على سبيل المثال، دعنا نحسن الموجه `a rabbit wearing a space suit`.
|
||||
|
||||
```python
|
||||
image_generation_tool = load_tool('huggingface-tools/text-to-image')
|
||||
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
|
||||
|
||||
agent.run(
|
||||
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
|
||||
)
|
||||
```
|
||||
|
||||
يستفيد النموذج بشكل كافٍ من الأداة:
|
||||
|
||||
```text
|
||||
======== New task ========
|
||||
Improve this prompt, then generate an image of it.
|
||||
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
|
||||
==== Agent is executing the code below:
|
||||
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
|
||||
while improved_prompt == "QUEUE_FULL":
|
||||
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
|
||||
print(f"The improved prompt is {improved_prompt}.")
|
||||
image = image_generator(prompt=improved_prompt)
|
||||
====
|
||||
```
|
||||
|
||||
قبل إنشاء الصورة أخيرًا:
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit_spacesuit_flux.webp" />
|
||||
|
||||
> [!WARNING]
|
||||
> تتطلب gradio-tools إدخالات وإخراجات *نصية* حتى عند العمل مع طرائق مختلفة مثل كائنات الصور والصوت. الإدخالات والإخراجات الصورية والصوتية غير متوافقة حاليًا.
|
||||
|
||||
### استخدام أدوات LangChain
|
||||
|
||||
نحن نحب Langchain ونعتقد أنها تحتوي على مجموعة أدوات قوية للغاية.
|
||||
لاستيراد أداة من LangChain، استخدم الطريقة `from_langchain()`.
|
||||
|
||||
فيما يلي كيفية استخدامها لإعادة إنشاء نتيجة البحث في المقدمة باستخدام أداة بحث الويب LangChain.
|
||||
|
||||
```python
|
||||
from langchain.agents import load_tools
|
||||
from transformers import Tool, ReactCodeAgent
|
||||
|
||||
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
|
||||
|
||||
agent = ReactCodeAgent(tools=[search_tool])
|
||||
|
||||
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
|
||||
```
|
||||
|
||||
## واجهة Gradio
|
||||
|
||||
يمكنك الاستفادة من `gradio.Chatbot` لعرض أفكار الوكيل الخاص بك باستخدام `stream_to_gradio`، إليك مثال:
|
||||
|
||||
```py
|
||||
import gradio as gr
|
||||
from transformers import (
|
||||
load_tool,
|
||||
ReactCodeAgent,
|
||||
HfEngine,
|
||||
stream_to_gradio,
|
||||
)
|
||||
|
||||
# Import tool from Hub
|
||||
image_generation_tool = load_tool("m-ric/text-to-image")
|
||||
|
||||
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
|
||||
# Initialize the agent with the image generation tool
|
||||
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
|
||||
|
||||
|
||||
def interact_with_agent(task):
|
||||
messages = []
|
||||
messages.append(gr.ChatMessage(role="user", content=task))
|
||||
yield messages
|
||||
for msg in stream_to_gradio(agent, task):
|
||||
messages.append(msg)
|
||||
yield messages + [
|
||||
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
|
||||
]
|
||||
yield messages
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
|
||||
submit = gr.Button("Run illustrator agent!")
|
||||
chatbot = gr.Chatbot(
|
||||
label="Agent",
|
||||
type="messages",
|
||||
avatar_images=(
|
||||
None,
|
||||
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
||||
),
|
||||
)
|
||||
submit.click(interact_with_agent, [text_input], [chatbot])
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
```
|
||||
25
docs/source/ar/attention.md
Normal file
25
docs/source/ar/attention.md
Normal file
@ -0,0 +1,25 @@
|
||||
# آليات الانتباه
|
||||
|
||||
تستخدم معظم نماذج المحول (Transformer) الانتباه الكامل بحيث تكون مصفوفة الانتباه ذات الأبعاد المتساوية. ويمكن أن يمثل ذلك عقبة حسابية كبيرة عندما تكون لديك نصوص طويلة. ويعد Longformer وReformer من النماذج التي تحاول أن تكون أكثر كفاءة وتستخدم نسخة مخففة من مصفوفة الانتباه لتسريع التدريب.
|
||||
|
||||
## انتباه LSH
|
||||
|
||||
يستخدم [Reformer](model_doc/reformer) انتباه LSH. في الدالة softmax(QK^t)، فإن أكبر العناصر فقط (في بعد softmax) من المصفوفة QK^t هي التي ستعطي مساهمات مفيدة. لذلك، بالنسبة لكل استعلام q في Q، يمكننا أن نأخذ في الاعتبار فقط المفاتيح k في K المشابهة لـ q فقط. وتُستخدم دالة هاش لتحديد ما إذا كان q وk متشابهين. ويتم تعديل قناع الانتباه لتجاهل الرمز الحالي (باستثناء الموضع الأول)، لأنه سيعطي استعلامًا ومفتاحًا متساويين (لذلك متشابهين للغاية). نظرًا لطبيعة دالة الهاش العشوائية نوعًا ما، يتم في الممارسة العملية استخدام عدة دوال هاش (يحددها معامل n_rounds) ثم يتم حساب المتوسط معًا.
|
||||
|
||||
## الانتباه المحلي
|
||||
|
||||
يستخدم [Longformer](model_doc/longformer) الانتباه المحلي: غالبًا ما يكون السياق المحلي (على سبيل المثال، ما هما الرمزان إلى اليسار واليمين؟) كافيًا لاتخاذ إجراء بالنسبة للرمز المعطى. أيضًا، عن طريق تكديس طبقات الانتباه التي لها نافذة صغيرة، سيكون للطبقة الأخيرة مجال استقبال أكبر من مجرد الرموز في النافذة، مما يسمح لها ببناء تمثيل للجملة بأكملها.
|
||||
|
||||
كما يتم منح بعض رموز الإدخال المختارة مسبقًا انتباهًا عالميًا: بالنسبة لهذه الرموز القليلة، يمكن لمصفوفة الانتباه الوصول إلى جميع الرموز وتكون هذه العملية متماثلة: فلجميع الرموز الأخرى إمكانية الوصول إلى تلك الرموز المحددة (بالإضافة إلى تلك الموجودة في نافذتهم المحلية). وهذا موضح في الشكل 2d من الورقة، انظر أدناه لمثال على قناع الانتباه:
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
|
||||
</div>
|
||||
|
||||
وباستخدام مصفوفات الانتباه هذه التي تحتوي على عدد أقل من المعلمات، يسمح النموذج بمدخالات ذات طول تسلسل أكبر.
|
||||
|
||||
## حيل أخرى
|
||||
|
||||
### الترميزات الموضعية المحورية
|
||||
|
||||
يستخدم [Reformer](model_doc/reformer) ترميزات موضعية محورية: في نماذج المحول التقليدية، يكون الترميز الموضعي E مصفوفة بحجم \\(l\\) في \\(d\\)، حيث \\(l\\) هو طول التسلسل و\\(d\\) هو بعد الحالة المخفية. إذا كان لديك نصوص طويلة جدًا، فقد تكون هذه المصفوفة ضخمة وتستهلك مساحة كبيرة جدًا على وحدة معالجة الرسوميات (GPU). وللتخفيف من ذلك، تتكون الترميزات الموضعية المحورية من تحليل تلك المصفوفة الكبيرة E إلى مصفوفتين أصغر E1 وE2، بأبعاد \\(l_{1} \times d_{1}\\) و \\(l_{2} \times d_{2}\\)، بحيث \\(l_{1} \times l_{2} = l\\) و\\(d_{1} + d_{2} = d\\) (مع حاصل ضرب الأطوال، ينتهي الأمر بكونه أصغر بكثير). ويتم الحصول على الترميز للخطوة الزمنية \\(j\\) في E عن طريق ربط الترميزات للخطوة الزمنية \\(j \% l1\\) في E1 و \\(j // l1\\) في E2.
|
||||
167
docs/source/ar/autoclass_tutorial.md
Normal file
167
docs/source/ar/autoclass_tutorial.md
Normal file
@ -0,0 +1,167 @@
|
||||
# تحميل نماذج مدربة مسبقًا باستخدام AutoClass
|
||||
لم ترغب في إنشاء محول معماري لمؤشر الترابط الخاص بك، فهناك العديد من محولات المعمارية المختلفة التي يمكنك الاختيار من بينها. كجزء من الفلسفة الأساسية لـ 🤗 Transformers لجعل المكتبة سهلة وبسيطة ومرنة، فإن فئة `AutoClass` تستدل تلقائيًا وتحمّل البنية الصحيحة من نسخة نموذج (Model Checkpoint) معينة. تسمح لك طريقة `from_pretrained()` بتحميل نموذج مُدرب مسبقًا لأي بنية بسرعة حتى لا تضطر إلى تكريس الوقت والموارد لتدريب نموذج من الصفر. إن إنتاج هذا النوع من التعليمات البرمجية غير المعتمدة على نسخ يعني أنه إذا نجح رمزك مع ننسخة واحدة، فسيتم تشغيله مع أخرى - طالما تم تدريبه لمهمة مماثلة - حتى إذا كانت البنية المعمارية مختلفة.
|
||||
|
||||
تذكر أن البنية تشير إلى هيكل النموذج، والنسخ هي الأوزان لبنية معمارية معينة. على سبيل المثال، [BERT](https://huggingface.co/google-bert/bert-base-uncased) هي بنية معمارية، في حين أن `google-bert/bert-base-uncased` هي نسخة. "النموذج" هو مصطلح عام يمكن أن يعني إما البنية أو نالنسخة.
|
||||
|
||||
في هذا البرنامج التعليمي، ستتعلم كيفية:
|
||||
|
||||
* تحميل مُجزّئ الرموز مُدرب مسبقًا
|
||||
* تحميل معالج صور مُدرب مسبقًا
|
||||
* تحميل مستخرج ميزات مُدرب مسبقًا
|
||||
* تحميل معالج مُدرب مسبقًا
|
||||
* تحميل نموذج مُدرب مسبقًا
|
||||
* تحميل نموذج كعمود فقري
|
||||
|
||||
## AutoTokenizer
|
||||
|
||||
تبدأ كل مهمة NLP تقريبًا بمُجزّئ للرموز. يقوم المُجزّئ بتحويل النص إلى شكل يمكن للنموذج معالجته.
|
||||
|
||||
قم بتحميل المُجزّئ باستخدام [`AutoTokenizer.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
```
|
||||
|
||||
ثم قم بتحليل إدخالك على النحو الموضح أدناه:
|
||||
|
||||
```py
|
||||
>>> sequence = "In a hole in the ground there lived a hobbit."
|
||||
>>> print(tokenizer(sequence))
|
||||
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
## معالج الصور التلقائي (AutoImageProcessor)
|
||||
|
||||
|
||||
بالنسبة لمهمات الرؤية، يقوم معالج الصور بمعالجة الصورة إلى تنسيق الإدخال الصحيح.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
||||
```
|
||||
|
||||
## AutoBackbone
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Swin%20Stages.png">
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
|
||||
</div>
|
||||
|
||||
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
|
||||
|
||||
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
|
||||
|
||||
يمكن استخدام هذه المعلمات بشكل متبادل، ولكن إذا كنت تستخدم كلاً منها، فتأكد من أنها متوائمة مع بعضها البعض! إذا لم تمرر أيًا من هذه المعلمات، فسيقوم العمود الفقري بإرجاع خريطة الميزات من الطبقة الأخيرة.
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Swin%20Stage%201.png">
|
||||
<figcaption class="mt-2 text-center text-sm text-gray-500">صورة توضح خريطة ميزات من المرحلة الأولى للعمود الفقري.</figcaption>
|
||||
</div>
|
||||
|
||||
على سبيل المثال، في الرسم التخطيطي أعلاه، لإرجاع خريطة الميزات من المرحلة الأولى من العمود الفقري Swin، يمكنك تعيين `out_indices=(1,)`:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor, AutoBackbone
|
||||
>>> import torch
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
>>> processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
|
||||
>>> model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,))
|
||||
|
||||
>>> inputs = processor(image, return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
>>> feature_maps = outputs.feature_maps
|
||||
```
|
||||
|
||||
الآن يمكنك الوصول إلى كائن `feature_maps` من المرحلة الأولى من العمود الفقري:
|
||||
|
||||
```py
|
||||
>>> list(feature_maps[0].shape)
|
||||
[1, 96, 56, 56]
|
||||
```
|
||||
|
||||
## مستخرج الميزات التلقائي (AutoFeatureExtractor)
|
||||
|
||||
بالنسبة للمهام الصوتية، يقوم مستخرج الميزات بمعالجة إشارة الصوت إلى تنسيق الإدخال الصحيح.
|
||||
|
||||
قم بتحميل مستخرج ميزات باستخدام [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
||||
... )
|
||||
```
|
||||
|
||||
## المعالج التلقائي (AutoProcessor)
|
||||
|
||||
تتطلب المهام متعددة الوسائط معالجًا يجمع بين نوعين من أدوات المعالجة المسبقة. على سبيل المثال، يتطلب نموذج [LayoutLMV2](model_doc/layoutlmv2) معالج صور لمعالجة الصور ومُجزّئ لمعالجة النص؛ يجمع المعالج كليهما.
|
||||
|
||||
قم بتحميل معالج باستخدام [`AutoProcessor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
||||
```
|
||||
|
||||
## النموذج التلقائي (AutoModel)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForTokenClassification
|
||||
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
بالنسبة لنماذج PyTorch، تستخدم طريقة `from_pretrained()` `torch.load()` التي تستخدم داخليًا `pickle` والتي يُعرف أنها غير آمنة. بشكل عام، لا تقم مطلقًا بتحميل نموذج قد يكون مصدره مصدرًا غير موثوق به، أو قد يكون تم العبث به. يتم تخفيف هذا الخطر الأمني جزئيًا للنماذج العامة المستضافة على Hub Hugging Face، والتي يتم [فحصها بحثًا عن البرامج الضارة](https://huggingface.co/docs/hub/security-malware) في كل ارتكاب. راجع [توثيق Hub](https://huggingface.co/docs/hub/security) للحصول على أفضل الممارسات مثل [التحقق من التوقيع](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) باستخدام GPG.
|
||||
|
||||
لا تتأثر نقاط تفتيش TensorFlow و Flax، ويمكن تحميلها داخل بنيات PyTorch باستخدام `from_tf` و `from_flax` kwargs لطريقة `from_pretrained` للتحايل على هذه المشكلة.
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
|
||||
</pt>
|
||||
|
||||
<tf>
|
||||
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
18
docs/source/ar/bertology.md
Normal file
18
docs/source/ar/bertology.md
Normal file
@ -0,0 +1,18 @@
|
||||
# BERTology
|
||||
|
||||
يُشهد في الآونة الأخيرة نمو مجال دراسي يُعنى باستكشاف آلية عمل نماذج المحولات الضخمة مثل BERT (والذي يُطلق عليها البعض اسم "BERTology"). ومن الأمثلة البارزة على هذا المجال ما يلي:
|
||||
|
||||
- BERT Rediscovers the Classical NLP Pipeline بواسطة Ian Tenney و Dipanjan Das و Ellie Pavlick:
|
||||
https://arxiv.org/abs/1905.05950
|
||||
- Are Sixteen Heads Really Better than One? بواسطة Paul Michel و Omer Levy و Graham Neubig: https://arxiv.org/abs/1905.10650
|
||||
- What Does BERT Look At? An Analysis of BERT's Attention بواسطة Kevin Clark و Urvashi Khandelwal و Omer Levy و Christopher D.
|
||||
Manning: https://arxiv.org/abs/1906.04341
|
||||
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
|
||||
|
||||
لإثراء هذا المجال الناشئ، قمنا بتضمين بعض الميزات الإضافية في نماذج BERT/GPT/GPT-2 للسماح للناس بالوصول إلى التمثيلات الداخلية، والتي تم تكييفها بشكل أساسي من العمل الرائد لـ Paul Michel (https://arxiv.org/abs/1905.10650):
|
||||
|
||||
- الوصول إلى جميع الحالات المخفية في BERT/GPT/GPT-2،
|
||||
- الوصول إلى جميع أوزان الانتباه لكل رأس في BERT/GPT/GPT-2،
|
||||
- استرجاع قيم ومشتقات مخرجات الرأس لحساب درجة أهمية الرأس وحذفه كما هو موضح في https://arxiv.org/abs/1905.10650.
|
||||
|
||||
ولمساعدتك على فهم واستخدام هذه الميزات بسهولة، أضفنا مثالًا برمجيًا محددًا: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) أثناء استخراج المعلومات وتقليص من نموذج تم تدريبه مسبقًا على GLUE.
|
||||
835
docs/source/ar/chat_templating.md
Normal file
835
docs/source/ar/chat_templating.md
Normal file
@ -0,0 +1,835 @@
|
||||
# قوالب نماذج الدردشة
|
||||
|
||||
## مقدمة
|
||||
|
||||
تعد **الدردشة** أحد استخدامات نماذج اللغات الكبيرة (LLMs) شائعة الاستخدام بشكل متزايد. ففي سياق الدردشة، وبدلاً من متابعة سلسلة نصية واحدة (كما هو الحال مع نماذج اللغات القياسية)، يواصل النموذج بدلاً من ذلك محادثة تتكون من رسالة واحدة أو أكثر، تتضمن كل منها دورًا، مثل "المستخدم" أو "المساعد"، بالإضافة إلى نص الرسالة.
|
||||
|
||||
وكما هو الحال مع تقسيم النص إلى رموز (tokenization)، تتوقع النماذج المختلفة تنسيقات إدخال مختلفة تمامًا للمحادثة. لهذا السبب أضفنا **قوالب الدردشة** كميزة جديدة. تُعد قوالب المحادثة جزءًا من tokenizer. تحدد هذه القوالب كيفية تحويل المحادثات، والتي يتم تمثيلها كقوائم من الرسائل، إلى سلسلة نصية واحدة قابلة للتقسيم إلى رموز بالتنسيق الذي يتوقعه النموذج.
|
||||
|
||||
دعونا نجعل هذا ملموسًا بمثال سريع باستخدام نموذج `BlenderBot`. لدى BlenderBot قالب افتراضي بسيط للغاية، والذي يضيف في الغالب مسافات بيضاء بين جولات الحوار:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
|
||||
|
||||
>>> chat = [
|
||||
... {"role": "user", "content": "Hello, how are you?"},
|
||||
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
||||
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
|
||||
... ]
|
||||
|
||||
>>> tokenizer.apply_chat_template(chat, tokenize=False)
|
||||
" Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!</s>"
|
||||
```
|
||||
|
||||
لاحظ كيف تم ضغط الدردشة بأكملها في سلسلة واحدة. إذا استخدمنا `tokenize=True`، وهو الإعداد الافتراضي، فسيتم أيضًا تحليل السلسلة نحويًا نيابة عنا. ولكن، لنشاهد قالبًا أكثر تعقيدًا في العمل، دعونا نستخدم نموذج `mistralai/Mistral-7B-Instruct-v0.1`.
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
||||
|
||||
>>> chat = [
|
||||
... {"role": "user", "content": "Hello, how are you?"},
|
||||
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
||||
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
|
||||
... ]
|
||||
|
||||
>>> tokenizer.apply_chat_template(chat, tokenize=False)
|
||||
"<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]</s>"
|
||||
```
|
||||
|
||||
لاحظ كيف أضاف المجزىء اللغوى tokenizer رموز التحكم `[INST]` و `[/INST]` للإشارة إلى بداية ونهاية رسائل المستخدم (ولكن ليس رسائل المساعد!) ، وتم تكثيف المحادثة بأكملها في سلسلة نصية واحدة. إذا استخدمنا `tokenize=True` ، وهو الإعداد الافتراضي ، فسيتم أيضًا تقسيم تلك السلسلة إلى رموز.
|
||||
|
||||
حاول الآن استخدام نفس الشفرة، لكن مع استبدال النموذج بـ `HuggingFaceH4/zephyr-7b-beta` ، وستحصل على:
|
||||
```text
|
||||
<|user|>
|
||||
Hello, how are you?</s>
|
||||
<|assistant|>
|
||||
I'm doing great. How can I help you today?</s>
|
||||
<|user|>
|
||||
I'd like to show off how chat templating works!</s>
|
||||
```
|
||||
تم ضبط كل من Zephyr و Mistral-Instruct من نفس النموذج الأصلي ، Mistral-7B-v0.1. ومع ذلك ، فقد تم تدريبهم بتنسيقات دردشة مختلفة تمامًا. بدون قوالب المحادثة، ستضطر إلى كتابة شفرة تنسيق يدويًا لكل نموذج ، ومن السهل جدًا ارتكاب أخطاء بسيطة تؤثر على الأداء! تُدير قوالب المحادثة تفاصيل التنسيق نيابةً عنك ، مما يُتيح لك كتابة شفرة عامة تعمل مع أي نموذج.
|
||||
|
||||
## كيف أستخدم قوالب الدردشة؟
|
||||
|
||||
كما رأيت في المثال السابق، من السهل استخدام قوالب الدردشة. قم ببساطة بإنشاء قائمة من الرسائل، مع مفتاحي `role` و`content`، ثم قم بتمريرها إلى [`~PreTrainedTokenizer.apply_chat_template`] . بمجرد قيامك بذلك، ستحصل على مخرجات جاهزة للاستخدام! عند استخدام قوالب الدردشة كإدخال لتوليد نصوص بواسطة النموذج، فمن الجيد أيضًا استخدام `add_generation_prompt=True` لإضافة [مطالبات توليد النصوص](#what-are-generation-prompts).
|
||||
|
||||
فيما يلي مثال على إعداد الإدخال لـ `model.generate()`، باستخدام Zephyr مرة أخرى:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
checkpoint = "HuggingFaceH4/zephyr-7b-beta"
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint) # قد ترغب في استخدام bfloat16 و/أو الانتقال إلى GPU هنا
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
||||
},
|
||||
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
||||
]
|
||||
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
||||
print(tokenizer.decode(tokenized_chat[0]))
|
||||
```
|
||||
سيؤدي هذا إلى إنتاج سلسلة نصية بتنسيق الإدخال الذي يتوقعه Zephyr.
|
||||
|
||||
```text
|
||||
<|system|>
|
||||
You are a friendly chatbot who always responds in the style of a pirate</s>
|
||||
<|user|>
|
||||
How many helicopters can a human eat in one sitting?</s>
|
||||
<|assistant|>
|
||||
```
|
||||
|
||||
الآن بعد أن تم تنسيق الإدخال بشكل صحيح لـ Zephyr، يمكننا استخدام النموذج لإنشاء رد على سؤال المستخدم:
|
||||
|
||||
```python
|
||||
outputs = model.generate(tokenized_chat, max_new_tokens=128)
|
||||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
|
||||
سيؤدي هذا إلى ما يلي:
|
||||
|
||||
```text
|
||||
<|system|>
|
||||
You are a friendly chatbot who always responds in the style of a pirate</s>
|
||||
<|user|>
|
||||
How many helicopters can a human eat in one sitting?</s>
|
||||
<|assistant|>
|
||||
Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all.
|
||||
```
|
||||
|
||||
كان ذلك سهلاً بعد كل شيء !
|
||||
|
||||
|
||||
|
||||
## هل هناك قنوات معالجة أوتوماتيكية للدردشة؟
|
||||
|
||||
نعم يوجد ! تدعم قنوات المعالجة توليد النصوص مدخلات الدردشة ، مما يُسهّل استخدام نماذج الدردشة . في الماضي ، كنا نستخدم فئة "ConversationalPipeline" المُخصّصة ، ولكن تم الآن إيقافها وتم دمج وظائفها في [`TextGenerationPipeline`]. دعونا نجرّب مثال Zephyr مرة أخرى ، ولكن هذه المرة باستخدام قناة معالجة:
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline("text-generation", "HuggingFaceH4/zephyr-7b-beta")
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
||||
},
|
||||
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
||||
]
|
||||
print(pipe(messages, max_new_tokens=128)[0]['generated_text'][-1]) # طباعة استجابة المساعد
|
||||
```
|
||||
|
||||
```النص
|
||||
{'role': 'assistant', 'content': "Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all."}
|
||||
```
|
||||
|
||||
سيُراعي قناة المعالجة جميع تفاصيل تقسيم النص إلى رموز واستدعاء apply_chat_template نيابةً عنك - بمجرد أن يصبح لِدى النموذج قالب دردشة ، فكل ما تحتاج إلى القيام به هو تهيئة قناة معالجة وتمرير قائمة الرسائل إليها!
|
||||
|
||||
## ما هي "مطالبات التوليد"؟
|
||||
|
||||
قد تلاحظ أن طريقة `apply_chat_template` لها معامل `add_generation_prompt`. تخبر هذه المعامل القالب بإضافة رموز تشير إلى بداية رد البوت. على سبيل المثال، ضع في اعتبارك الدردشة التالية:
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "user", "content": "Hi there!"},
|
||||
{"role": "assistant", "content": "Nice to meet you!"},
|
||||
{"role": "user", "content": "Can I ask a question?"}
|
||||
]
|
||||
```
|
||||
|
||||
إليك كيف سيبدو ذلك بدون موجه توليد نصوص ، بالنسبة لنموذج يستخدم تنسيق "ChatML" القياسي :
|
||||
|
||||
```python
|
||||
tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
||||
"""<|im_start|>user
|
||||
Hi there!<|im_end|>
|
||||
<|im_start|>assistant
|
||||
Nice to meet you!<|im_end|>
|
||||
<|im_start|>user
|
||||
Can I ask a question?<|im_end|>
|
||||
"""
|
||||
```
|
||||
|
||||
وهكذا يبدو الأمر **مع** مطالبة التوليد:
|
||||
|
||||
```python
|
||||
tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
"""<|im_start|>user
|
||||
Hi there!<|im_end|>
|
||||
<|im_start|>assistant
|
||||
Nice to meet you!<|im_end|>
|
||||
<|im_start|>user
|
||||
Can I ask a question?<|im_end|>
|
||||
<|im_start|>assistant
|
||||
"""
|
||||
```
|
||||
|
||||
لاحظ أننا أضفنا هذه المرة الرموز التي تشير إلى بداية رد البوت. يضمن هذا أنه عندما يُولّد النموذج نصًا فسيكتب رد البوت بدلاً من القيام بشيء غير متوقع، مثل الاستمرار في رسالة المستخدم. تذكر، أن نماذج الدردشة لا تزال مجرد نماذج للغة - فهي مدربة على متابعة النصوص، والدردشة هي مجرد نوع خاص من النصوص بالنسبة لها! يجب توجيهها برموز تحكم مناسبة، حتى تعرف ما الذي يجب عليها فعله.
|
||||
|
||||
لا تتطلب جميع النماذج الرموز التحكمية لتوليد نصوص . بعض النماذج ، مثل LLaMA ، ليس لديها أي رموز خاصة قبل ردود البوت . في هذه الحالات ، لن يكون لمعامل `add_generation_prompt` أي تأثير. يعتمد التأثير الدقيق الذي تُحدثه `add_generation_prompt` على القالب المستخدم .
|
||||
|
||||
## ما وظيفة "continue_final_message"؟
|
||||
|
||||
عند تمرير قائمة من الرسائل إلى `apply_chat_template` أو `TextGenerationPipeline` ، يمكنك اختيار تنسيق المحادثة بحيث يواصل النموذج الرسالة الأخيرة في المحادثة بدلاً من بدء رسالة جديدة. يتم ذلك عن طريق إزالة أي رموز نهاية التسلسل التي تشير إلى نهاية الرسالة الأخيرة ، بحيث يقوم النموذج ببساطة بتمديد الرسالة الأخيرة عندما يبدأ في توليد النص . يُعد هذا أمرًا مفيدًا "لِمَلء بداية" رد النموذج مُسبقًا.
|
||||
|
||||
وهنا مثال:
|
||||
```python
|
||||
chat = [
|
||||
{"role": "user", "content": "Can you format the answer in JSON?"},
|
||||
{"role": "assistant", "content": '{"name": "'},
|
||||
]
|
||||
|
||||
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=True, return_dict=True, continue_final_message=True)
|
||||
model.generate(**formatted_chat)
|
||||
```
|
||||
سيقوم النموذج بتوليد نص يكمل سلسلة JSON ، بدلاً من بدء رسالة جديدة . يمكن أن يكون هذا النهج مفيدًا جدًا لتحسين دقة اتباع النموذج للإرشادات عندما تعرف كيف تريد أن يبدأ ردوده .
|
||||
.
|
||||
|
||||
نظرًا لأن `add_generation_prompt` تضيف الرموز التي تبدأ رسالة جديدة ، و `continue_final_message` تزيل أي رموز نهاية الرسالة من الرسالة الأخيرة ، فليس من المنطقي استخدامهما معًا . ونتيجة لذلك ، ستتلقّى خطأً إذا حاولت ذلك !
|
||||
|
||||
السلوك الافتراضي لِـ `TextGenerationPipeline` هو تعيين `add_generation_prompt=True` بحيث تبدأ رسالة جديدة . ومع ذلك ، إذا كانت الرسالة الأخيرة في المحادثة التي تم إدخالها لديها دور "assistant" ، فسوف تفترض أن هذه الرسالة هي "مَلء بداية" وتتحوّل إلى `continue_final_message=True` بدلاً من ذلك ، لأن مُعظم النماذج لا تدعم عدة رسائل متتالية للمساعد . يمكنك تجاوز هذا السلوك عن طريق تمرير معامل `continue_final_message` بشكل صريح عند استدعاء قناة المعالجة .
|
||||
|
||||
|
||||
|
||||
## هل يمكنني استخدام قوالب الدردشة في التدريب؟
|
||||
|
||||
نعم ! تُعد هذه طريقة جيدة للتأكد من أن قالب الدردشة يتطابق مع الرموز التي يراها النموذج أثناء التدريب . نوصي بتطبيق قالب الدردشة كخطوة معالجة أولية لمجموعة بياناتك . بعد ذلك ، يمكنك ببساطة متابعة عملية التدريب كما هو الحال مع أي مهمة تدريب نماذج لغات أخرى . عند التدريب ، يجب أن تُعيّن عادةً `add_generation_prompt=False` ، لأنه لن تكون الرموز المُضافة لتحفيز رد المساعد مفيدة أثناء التدريب . دعونا نرى مثالاً :
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
from datasets import Dataset
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
||||
|
||||
chat1 = [
|
||||
{"role": "user", "content": "Which is bigger, the moon or the sun?"},
|
||||
{"role": "assistant", "content": "The sun."}
|
||||
]
|
||||
chat2 = [
|
||||
{"role": "user", "content": "Which is bigger, a virus or a bacterium?"},
|
||||
{"role": "assistant", "content": "A bacterium."}
|
||||
]
|
||||
|
||||
dataset = Dataset.from_dict({"chat": [chat1, chat2]})
|
||||
dataset = dataset.map(lambda x: {"formatted_chat": tokenizer.apply_chat_template(x["chat"], tokenize=False, add_generation_prompt=False)})
|
||||
print(dataset['formatted_chat'][0])
|
||||
```
|
||||
ونحصل على:
|
||||
|
||||
```text
|
||||
<|user|>
|
||||
Which is bigger, the moon or the sun?</s>
|
||||
<|assistant|>
|
||||
The sun.</s>
|
||||
```
|
||||
|
||||
من هنا، استمر في التدريب كما تفعل مع مهمة نمذجة اللغة القياسية، باستخدام عمود `formatted_chat`.
|
||||
|
||||
<Tip>
|
||||
بشكل افتراضي ، تضيف بعض *tokenizers* رموزًا خاصة مثل `<bos>` و `<eos>` إلى النص الذي تقوم بتقسيمه إلى رموز. يجب أن تتضمن قوالب المحادثة بالفعل جميع الرموز الخاصة التي تحتاجها ، وبالتالي فإن الرموز الخاصة الإضافية ستكون غالبًا غير صحيحة أو مُكررة ، مما سيؤثر سلبًا على أداء النموذج .
|
||||
|
||||
لذلك ، إذا قمت بتنسيق النص باستخدام `apply_chat_template(tokenize=False)` ، فيجب تعيين المعامل `add_special_tokens=False` عندما تقوم بتقسيم ذلك النص إلى رموز لاحقًا . إذا كنت تستخدم `apply_chat_template(tokenize=True)` ، فلن تحتاج إلى القلق بشأن ذلك !
|
||||
</Tip>
|
||||
|
||||
## متقدّم: مدخلات إضافية لِقوالب الدردشة
|
||||
|
||||
|
||||
المعامل الوحيدة التي تتطلبها طريقة `apply_chat_template` هي `messages`. ومع ذلك، يمكنك تمرير أي معامل ككلمة مفتاحية إلى `apply_chat_template` وستكون متاحة داخل القالب. يمنحك هذا الكثير من المرونة لاستخدام قوالب الدردشة للعديد من الأشياء. لا توجد قيود على أسماء هذه المعامﻻت أو تنسيقاتها - يمكنك تمرير سلاسل نصية أو قوائم أو قواميس أو أي شيء آخر تريده.
|
||||
|
||||
ومع ذلك، هناك بعض الحالات الشائعة لاستخدام هذه المعامﻻت الإضافية، مثل تمرير أدوات لاستدعاء الوظائف، أو المستندات لإنشاء النصوص المُعزّزة بالاسترجاع. في هذه الحالات الشائعة، لدينا بعض التوصيات المُحدّدة حول أسماء هذه المعامﻻت وتنسيقاتها، والتي يتم وصفها في الأقسام التالية. نشجع مطوّري النماذج على جعل قوالب الدردشة الخاصة بهم متوافقة مع هذا التنسيق، لتسهيل نقل التعليمات البرمجية لاستدعاء الأدوات بين النماذج.
|
||||
|
||||
## متقدم: استخدام الأداة / استدعاء الدالة
|
||||
|
||||
يمكن لنماذج "استخدام الأداة" اختيار استدعاء الدوال كأدوات خارجية قبل توليد الإجابة. عند تمرير الأدوات إلى نموذج استخدام الأدوات، يمكنك ببساطة تمرير قائمة من الوظائف إلى معامل `tools`:
|
||||
|
||||
```python
|
||||
import datetime
|
||||
|
||||
def current_time():
|
||||
"""Get the current local time as a string."""
|
||||
return str(datetime.now())
|
||||
|
||||
def multiply(a: float, b: float):
|
||||
"""
|
||||
A function that multiplies two numbers
|
||||
|
||||
Args:
|
||||
a: The first number to multiply
|
||||
b: The second number to multiply
|
||||
"""
|
||||
return a * b
|
||||
|
||||
tools = [current_time, multiply]
|
||||
|
||||
model_input = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tools=tools
|
||||
)
|
||||
```
|
||||
|
||||
لكي يعمل هذا بشكل صحيح، يجب عليك كتابة وظائفك بالتنسيق السابق، حتى يمكن تحليلها بشكل صحيح كأدوات. على وجه التحديد، يجب عليك اتباع هذه القواعد:
|
||||
|
||||
- يجب أن يكون للدالة اسم وصفي.
|
||||
- يجب أن يكون لكل معامل نوع للتلميح.
|
||||
- يجب أن تحتوي الدالة على سلسلة مستندية بتنسيق Google القياسي (بمعنى وصف الدالة الأولي متبوعًا بكتلة `Args:` التي تصف المعاﻻت، ما لم تكن الدالة لا تحتوي على أي معامﻻت.
|
||||
- لا تقم بتضمين الأنواع في كتلة `Args:` . بعبارة أخرى، اكتب `a: The first number to multiply`، وليس `a (int): The first number to multiply`. يجب أن تذهب تلميحات الأنواع في رأس الدالة بدلاً من ذلك.
|
||||
- يمكن أن يكون للدالة نوع للإرجاع ومربع `Returns:` في السلسلة. ومع ذلك، فهذه اختيارية لأن معظم نماذج استخدام الأدوات تتجاهلها.
|
||||
|
||||
### تمرير نتائج الأداة إلى النموذج
|
||||
|
||||
يكفي الكود السابقة لسرد الأدوات المتاحة لنموذجك، ولكن ماذا يحدث إذا أراد النموذج استخدام واحدة منها؟ إذا حدث ذلك، فيجب عليك:
|
||||
|
||||
1. تحليل مخرجات النموذج للحصول على اسم (أسماء) الأدوات ومعامﻻتها.
|
||||
2. أضف استدعاء (استدعاءات) النموذج لِلأدوات إلى المحادثة.
|
||||
3. استدعاء الدالة (الدالات) المقابلة بتلك المعامﻻت.
|
||||
4. أضف النتيجة (النتائج) إلى المحادثة
|
||||
|
||||
### مثال كامل على استخدام الأداة
|
||||
|
||||
|
||||
سنستعرض مثالاً على استخدام الأدوات خطوة بخطوة . في هذا المثال ، سنستخدم نموذج `Hermes-2-Pro` بحجم 8 مليارات معامل ، نظرًا لأنه أحد أعلى نماذج استخدام الأدوات أداءً في فئة حجمه وقت كتابة هذا النص . إذا كان لديك الذاكرة الكافية ، فيمكنك النظر في استخدام نموذج أكبر بدلاً من ذلك مثل `Command-R` أو `Mixtral-8x22B` ، وكلاهما يدعم استخدام الأدوات ويوفر أداءً أقوى .
|
||||
|
||||
|
||||
أولاً ، لنقم بتحميل نموذجنا و tokenizer الخاص بنا:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
checkpoint = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a bot that responds to weather queries. You should reply with the unit used in the queried location."},
|
||||
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
||||
]
|
||||
```
|
||||
|
||||
الآن، لنقم نطبق قالب الدردشة ونولد رد:
|
||||
|
||||
```python
|
||||
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
|
||||
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
||||
out = model.generate(**inputs, max_new_tokens=128)
|
||||
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
|
||||
```
|
||||
|
||||
ونحصل على:
|
||||
|
||||
```text
|
||||
<tool_call>
|
||||
{"arguments": {"location": "Paris, France", "unit": "celsius"}, "name": "get_current_temperature"}
|
||||
</tool_call><|im_end|>
|
||||
```
|
||||
|
||||
لقد قام النموذج باستدعاء الدالة مع معامﻻت صحيحة، بالصيغة التي طلبتها توثيق الدالة. لقد استنتج أننا نشير على الأرجح إلى باريس في فرنسا، وتذكر أنه بكونها موطن وحدات القياس الدولية، يجب عرض درجة الحرارة في فرنسا بالدرجة المئوية.
|
||||
|
||||
دعنا نضيف استدعاء الأداة الخاص بالنموذج إلى المحادثة. لاحظ أننا نولد معرف استدعاء أداة عشوائيًا هنا. لا تستخدم جميع النماذج هذه المعرفات، ولكنها تسمح للنماذج بإصدار عدة استدعاءات للأدوات في نفس الوقت وتتبع الاستجابة المقابلة لكل استدعاء. يمكنك توليد هذه المعرفات بأي طريقة تريدها، ولكن يجب أن تكون فريدة داخل كل محادثة.
|
||||
|
||||
```python
|
||||
tool_call_id = "vAHdf3" # Random ID, should be unique for each tool call
|
||||
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
|
||||
messages.append({"role": "assistant", "tool_calls": [{"id": tool_call_id, "type": "function", "function": tool_call}]})
|
||||
```
|
||||
|
||||
الآن بعد أن أضفنا استدعاء الأداة إلى المحادثة، يمكننا استدعاء الدالة وإضافة النتيجة إلى المحادثة. نظرًا لأننا نستخدم دالة وهمية لهذا المثال والتي تعيد دائمًا 22.0، فيمكننا ببساطة إضافة تلك النتيجة مباشرةً. لاحظ معرف استدعاء الأداة - يجب أن يتطابق مع المعرف المستخدم في استدعاء الأداة أعلاه.
|
||||
|
||||
```python
|
||||
messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_current_temperature", "content": "22.0"})
|
||||
```
|
||||
|
||||
أخيرًا، دعنا نجعل المساعد يقرأ مخرجات الدالة ويكمل الدردشة مع المستخدم:
|
||||
|
||||
```python
|
||||
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
|
||||
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
||||
out = model.generate(**inputs, max_new_tokens=128)
|
||||
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
|
||||
```
|
||||
|
||||
ونحصل على:
|
||||
|
||||
```text
|
||||
The current temperature in Paris, France is 22.0 ° Celsius.<|im_end|>
|
||||
```
|
||||
|
||||
<Tip>
|
||||
لا تستخدم جميع نماذج استخدام الأدوات جميع ميزات استدعاء الأدوات الموضحة أعلاه. يستخدم البعض معرفات استدعاء الأدوات، بينما يستخدم البعض الآخر ببساطة اسم الدالة ويقارن استدعاءات الأدوات بالنتائج باستخدام الترتيب، وهناك عدة نماذج لا تستخدم أيًا منهما ولا تصدر سوى استدعاء أداة واحد في كل مرة لتجنب الارتباك. إذا كنت تريد أن يكون رمزك متوافقًا مع أكبر عدد ممكن من النماذج، فإننا نوصي بهيكلة استدعاءات الأدوات الخاصة بك كما هو موضح هنا، وإعادة نتائج الأدوات بالترتيب الذي أصدرها النموذج. يجب أن تتعامل قوالب الدردشة على كل نموذج مع الباقي.
|
||||
</Tip>
|
||||
|
||||
### فهم مخططات الأدوات
|
||||
|
||||
يتم تحويل كل دالة تقوم بتمريرها إلى معامل `tools` في دالة `apply_chat_template` إلى [مخطط JSON](https://json-schema.org/learn/getting-started-step-by-step). يتم بعد ذلك تمرير هذه المخططات إلى قالب الدردشة النموذج. وبعبارة أخرى، فإن نماذج استخدام الأدوات لا ترى دوالك مباشرة، ولا ترى مطلقًا الكود الموجود بداخلها. ما يهمها هو**تعريفات** الدوال و**المعامﻻت** التي تحتاج إلى تمريرها إليها - فهي تهتم بما تفعله الأدوات وكيفية استخدامها، وليس بكيفية عملها! يقع على عاتقك قراءة مخرجاتها، والكشف عما إذا كانت قد طلبت استخدام أداة، وتمرير المعامﻻت إلى دالة الأداة، وإرجاع الرد في الدردشة.
|
||||
|
||||
يجب أن يكون إنشاء مخططات JSON لتمريرها إلى القالب تلقائيًا وغير مرئي طالما أن دوالك تتبع المواصفات الموضحة أعلاه، ولكن إذا واجهت مشكلات، أو إذا كنت تريد ببساطة مزيدًا من التحكم في التحويل، فيمكنك التعامل مع التحويل يدويًا. فيما يلي مثال على تحويل مخطط يدوي:
|
||||
|
||||
```python
|
||||
from transformers.utils import get_json_schema
|
||||
|
||||
def multiply(a: float, b: float):
|
||||
"""
|
||||
A function that multiplies two numbers
|
||||
|
||||
Args:
|
||||
a: The first number to multiply
|
||||
b: The second number to multiply
|
||||
"""
|
||||
return a * b
|
||||
|
||||
schema = get_json_schema(multiply)
|
||||
print(schema)
|
||||
```
|
||||
|
||||
سيؤدي هذا إلى ما يلي:
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "multiply",
|
||||
"description": "A function that multiplies two numbers",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {
|
||||
"type": "number",
|
||||
"description": "The first number to multiply"
|
||||
},
|
||||
"b": {
|
||||
"type": "number",
|
||||
"description": "The second number to multiply"
|
||||
}
|
||||
},
|
||||
"required": ["a", "b"]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
إذا كنت ترغب في ذلك، يمكنك تحرير هذه المخططات، أو حتى كتابتها من البداية بنفسك دون استخدام `get_json_schema` على الإطلاق. يمكن تمرير مخططات JSON مباشرةً إلى معامل `tools` في `apply_chat_template` - يمنحك هذا الكثير من القوة لتعريف مخططات دقيقة لوظائف أكثر تعقيدًا. ولكن كن حذرًا - كلما زاد تعقيد مخططاتك، زاد احتمال ارتباك النموذج عند التعامل معها! نوصي بتوقيعات دوال بسيطة حيثما أمكن، مع تقليل المعامﻻت (وخاصة المعامﻻت المعقدة والمتداخلة) إلى الحد الأدنى.
|
||||
|
||||
فيما يلي مثال على تعريف المخططات يدويًا، وتمريرها مباشرةً إلى `apply_chat_template`:
|
||||
|
||||
```python
|
||||
# A simple function that takes no arguments
|
||||
current_time = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "current_time",
|
||||
"description": "Get the current local time as a string.",
|
||||
"parameters": {
|
||||
'type': 'object',
|
||||
'properties': {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# A more complete function that takes two numerical arguments
|
||||
multiply = {
|
||||
'type': 'function',
|
||||
'function': {
|
||||
'name': 'multiply',
|
||||
'description': 'A function that multiplies two numbers',
|
||||
'parameters': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'a': {
|
||||
'type': 'number',
|
||||
'description': 'The first number to multiply'
|
||||
},
|
||||
'b': {
|
||||
'type': 'number', 'description': 'The second number to multiply'
|
||||
}
|
||||
},
|
||||
'required': ['a', 'b']
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
model_input = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tools = [current_time, multiply]
|
||||
)
|
||||
```
|
||||
|
||||
## متقدم: توليد قائم على الاسترجاع
|
||||
يمكن لنماذج اللغة الكبيرة من نوع "توليد قائم على الاسترجاع" أو "RAG" البحث في مجموعة نصوص عن معلومات قبل الرد على الاستعلام. يسمح هذا للنماذج بتوسيع قاعدة معارفها بشكل كبير إلى ما هو أبعد من حجم سياقها المحدود. توصيتنا لنماذج RAG هي أن يقبل قالبها وسيطة `documents`. يجب أن تكون هذه قائمة من المستندات، حيث يكون كل "مستند" عبارة عن قاموس واحد بمفاتيح `title` و `contents`، وكلاهما سلاسل نصية. نظرًا لأن هذا التنسيق أبسط بكثير من مخططات JSON المستخدمة للأدوات، فلا توجد حاجة إلى دوال مساعدة.
|
||||
|
||||
فيما يلي مثال على قالب RAG بالفعل:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
# تحميل النموذج والمجزىء اللغوي
|
||||
model_id = "CohereForAI/c4ai-command-r-v01-4bit"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
||||
device = model.device # الحصول على الجهاز الذي تم تحميل النموذج عليه
|
||||
|
||||
# تعريف مُدخلات المحادثة
|
||||
conversation = [
|
||||
{"role": "user", "content": "What has Man always dreamed of?"}
|
||||
]
|
||||
|
||||
# تعريف المستندات لتوليد قائم على الاسترجاع
|
||||
documents = [
|
||||
{
|
||||
"title": "The Moon: Our Age-Old Foe",
|
||||
"text": "Man has always dreamed of destroying the moon. In this essay, I shall..."
|
||||
},
|
||||
{
|
||||
"title": "The Sun: Our Age-Old Friend",
|
||||
"text": "Although often underappreciated, the sun provides several notable benefits..."
|
||||
}
|
||||
]
|
||||
# معالجة المحادثة والمستندات باستخدام قالب RAG، وإرجاع موترات PyTorch.
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
conversation=conversation,
|
||||
documents=documents,
|
||||
chat_template="rag",
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt").to(device)
|
||||
|
||||
# توليد الرد
|
||||
gen_tokens = model.generate(
|
||||
input_ids,
|
||||
max_new_tokens=100,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
)
|
||||
|
||||
# فك تشفير النص المُوَلّد وطباعته
|
||||
gen_text = tokenizer.decode(gen_tokens[0])
|
||||
print(gen_text)
|
||||
```
|
||||
إن مُدخل documents للتوليد القائم على الاسترجاع غير مدعوم على نطاق واسع، والعديد من النماذج لديها قوالب دردشة تتجاهل هذا المُدخل ببساطة.
|
||||
|
||||
للتحقق مما إذا كان النموذج يدعم مُدخل `documents`، يمكنك قراءة بطاقة النموذج الخاصة به، أو `print(tokenizer.chat_template)` لمعرفة ما إذا كان مفتاح `documents` مستخدمًا في أي مكان.
|
||||
<Tip>
|
||||
ومع ذلك، فإن أحد فئات النماذج التي تدعمه هي [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-08-2024) و [Command-R+](https://huggingface.co/CohereForAI/c4ai-command-r-pluse-08-2024) من Cohere، من خلال قالب الدردشة rag الخاص بهم. يمكنك رؤية أمثلة إضافية على التوليد باستخدام هذه الميزة في بطاقات النموذج الخاصة بهم.
|
||||
</Tip>
|
||||
|
||||
## متقدم: كيف تعمل قوالب الدردشة؟
|
||||
يتم تخزين قالب الدردشة للنموذج في الخاصية `tokenizer.chat_template`. إذا لم يتم تعيين قالب دردشة، فسيتم استخدام القالب الافتراضي لفئة النموذج هذه بدلاً من ذلك. دعونا نلقي نظرة على قالب دردشة `Zephyr`، ولكن لاحظ أن هذا القالب مُبسّط قليلاً عن القالب الفعلي!
|
||||
|
||||
```
|
||||
{%- for message in messages %}
|
||||
{{- '<|' + message['role'] + |>\n' }}
|
||||
{{- message['content'] + eos_token }}
|
||||
{%- endfor %}
|
||||
{%- if add_generation_prompt %}
|
||||
{{- '<|assistant|>\n' }}
|
||||
{%- endif %}
|
||||
```
|
||||
إذا لم تكن قد رأيت أحد هذه القوالب من قبل، فهذا [قالب Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/) .Jinja هي لغة قوالب تسمح لك بكتابة تعليمات برمجية بسيطة تُوَلّد نصًا. من نواحٍ عديدة، يُشبه الرمز والتركيب للغة Python. أما في لغة Python، سيبدو هذا القالب كما يلي:
|
||||
|
||||
```python
|
||||
for message in messages:
|
||||
print(f'<|{message["role"]}|>')
|
||||
print(message['content'] + eos_token)
|
||||
if add_generation_prompt:
|
||||
print('<|assistant|>')
|
||||
```
|
||||
يقوم القالب بثلاثة أشياء بشكل فعال:
|
||||
|
||||
- لكل رسالة، بطبع الدور مُحاطًا بـ `<|` و `|>`، مثل `<|user|>` أو `<|assistant|>`.
|
||||
- بعد ذلك، يطبع محتوى الرسالة، متبوعًا برمز نهاية التسلسل `eos_token` .
|
||||
- أخيرًا، إذا تم تعيين `add_generation_prompt` ، يطبع الرمز المساعد، حتى يعرف النموذج أنه يجب أن يبدأ في توليد استجابة المساعد.
|
||||
|
||||
هذا قالب بسيط جدًا، لكن Jinja تمنحك الكثير من المرونة للقيام بأشياء أكثر تعقيدًا! دعونا نرى قالب Jinja يُمكنه تنسيق المُدخلات بطريقة تُشبه الطريقة التي تُنسّق بها LLaMA مُدخلاتها (لاحظ أن قالب LLaMA الحقيقي يتضمن معالجة لرسائل النظام الافتراضية ومعالجة رسائل النظام بشكل مختلف قليلاً بشكل عام - لا تستخدم هذا القالب في التعليمات البرمجية الفعلية الخاصة بك!)
|
||||
```
|
||||
{%- for message in messages %}
|
||||
{%- if message['role'] == 'user' %}
|
||||
{{- bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
|
||||
{%- elif message['role'] == 'system' %}
|
||||
{{- '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
|
||||
{%- elif message['role'] == 'assistant' %}
|
||||
{{- ' ' + message['content'] + ' ' + eos_token }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
```
|
||||
نأمل أنه إذا حدقت في هذا لفترة قصيرة، يمكنك أن ترى ما يفعله هذا القالب - فهو يُضيف رموزًا مُحددة مثل `[INST]` و `[/INST]` بناءً على دور كل رسالة. يمكن تمييز رسائل المستخدم والمساعد والنظام بوضوح للنموذج بسبب الرموز التي تُحيط بها.
|
||||
|
||||
## متقدم: إضافة وتعديل قوالب الدردشة
|
||||
|
||||
### كيف أنشئ قالب دردشة؟
|
||||
ببساطة، اكتب قالب Jinja واضبط `tokenizer.chat_template`. قد تجد أنه من الأسهل البدء بقالب موجود من نموذج آخر وتحريره ببساطة ليناسب احتياجاتك! على سبيل المثال، يمكننا أن نأخذ قالب LLaMA أعلاه ونضيف `[ASST]` و `[/ASST]` إلى رسائل المساعد:
|
||||
|
||||
```
|
||||
{%- for message in messages %}
|
||||
{%- if message['role'] == 'user' %}
|
||||
{{- bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}
|
||||
{%- elif message['role'] == 'system' %}
|
||||
{{- '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }}
|
||||
{%- elif message['role'] == 'assistant' %}
|
||||
{{- '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
```
|
||||
|
||||
الآن، اضبط ببساطة الخاصية `tokenizer.chat_template`. في المرة القادمة التي تستخدم فيها [`~PreTrainedTokenizer.apply_chat_template`] ، سيستخدم القالب الجديد الخاص بك! سيتم حفظ هذه الخاصية في ملف `tokenizer_config.json`، حتى تتمكن من استخدام [`~utils.PushToHubMixin.push_to_hub`] لتحميل قالبك الجديد إلى Hub والتأكد من أن الجميع يستخدم القالب الصحيح لنموذجك!
|
||||
|
||||
```python
|
||||
template = tokenizer.chat_template
|
||||
template = template.replace("SYS", "SYSTEM") # تغيير رمز النظام
|
||||
tokenizer.chat_template = template # تعيين القالب الجديد
|
||||
tokenizer.push_to_hub("model_name") # تحميل القالب الجديد إلى Hub!
|
||||
```
|
||||
|
||||
يتم استدعاء الدالة [`~PreTrainedTokenizer.apply_chat_template`] الذي نستخدم قالب الدردشة الخاص بك بواسطة فئة [`TextGenerationPipeline`] لذلك بمجرد تعيين قالب الدردشة الصحيح، سيصبح نموذجك متوافقًا تلقائيًا مع [`TextGenerationPipeline`].
|
||||
|
||||
<Tip>
|
||||
إذا كنت تُجري ضبطًا دقيقًا لنموذج للدردشة، بالإضافة إلى تعيين قالب دردشة، فربما يجب عليك إضافة أي رموز تحكم دردشة جديدة كرموز خاصة في المجزىء اللغوي. لا يتم تقسيم الرموز الخاصة أبدًا، مما يضمن معالجة رموز التحكم الخاصة بك دائمًا كرموز فردية بدلاً من تجزئتها إلى أجزاء. يجب عليك أيضًا تعيين خاصية `eos_token` للمجزىء اللغوي إلى الرمز الذي يُشير إلى نهاية توليدات المساعد في قالبك. سيضمن هذا أن أدوات توليد النصوص يمكنها تحديد وقت إيقاف توليد النص بشكل صحيح.
|
||||
</Tip>
|
||||
|
||||
### لماذا تحتوي بعض النماذج على قوالب متعددة؟
|
||||
تستخدم بعض النماذج قوالب مختلفة لحالات استخدام مختلفة. على سبيل المثال، قد تستخدم قالبًا واحدًا للدردشة العادية وآخر لاستخدام الأدوات، أو التوليد القائم على الاسترجاع. في هذه الحالات، تكون `tokenizer.chat_template` قاموسًا. يمكن أن يتسبب هذا في بعض الارتباك، وحيثما أمكن، نوصي باستخدام قالب واحد لجميع حالات الاستخدام. يمكنك استخدام عبارات Jinja مثل `if tools is defined` وتعريفات `{% macro %}` لتضمين مسارات تعليمات برمجية متعددة بسهولة في قالب واحد.
|
||||
|
||||
عندما يحتوي المعالج اللغوي على قوالب متعددة، ستكون `tokenizer.chat_template dict`، حيث يكون كل مفتاح هو اسم قالب. يحتوي أسلوب `apply_chat_template` على معالجة خاصة لأسماء قوالب مُعينة: على وجه التحديد، سيبحث عن قالب باسم `default` في معظم الحالات، وسيُثير خطأً إذا لم يتمكن من العثور على واحد. ومع ذلك، إذا كان هناك قالب باسم `tool_use` عندما قام المستخدم بتمرير وسيطة `tools`، فسيستخدم هذا القالب بدلاً من ذلك. للوصول إلى قوالب بأسماء أخرى، مرر اسم القالب الذي تُريده إلى وسيطة `chat_template` لـ `apply_chat_template()`.
|
||||
|
||||
نجد أن هذا قد يكون مُربكًا بعض الشيء للمستخدمين - لذلك إذا كنت تكتب قالبًا بنفسك، فننصحك بمحاولة وضعه كله في قالب واحد حيثما أمكن!
|
||||
|
||||
## ما القالب الذي يجب أن أستخدمه؟
|
||||
|
||||
عند تعيين قالب لنموذج تم تدريبه بالفعل على الدردشة، يجب التأكد من أن القالب يتطابق تمامًا مع تنسيق الرسالة الذي شاهده النموذج أثناء التدريب، وإلا فمن المحتمل أن تواجه تدهورًا في الأداء. هذا صحيح حتى إذا كنت تدرب النموذج بشكل إضافي - فمن المحتمل أن تحصل على أفضل أداء إذا قمت بإبقاء رموز الدردشة ثابتة. يُشبه هذا إلى حد كبير عملية التجزئة - فأنت تحصل بشكل عام على أفضل أداء للاستدلال أو الضبط الدقيق عندما تتطابق بدقة مع التجزئة المستخدمة أثناء التدريب.
|
||||
|
||||
من ناحية أخرى، إذا كنت تُدرّب نموذجًا من البداية، أو تقوم بضبط دقيق لنموذج لغة أساسي للدردشة، لديك حرية اختيار قالب مناسب! تتمتع LLMs بالذكاء الكافي للتعامل مع العديد من تنسيقات الإدخال المختلفة. أحد الخيارات الشائعة هو تنسيق "ChatML"، وهو خيار جيد ومرن للعديد من حالات الاستخدام. يبدو كالتالي:
|
||||
|
||||
```
|
||||
{%- for message in messages %}
|
||||
{{- '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n' }}
|
||||
{%- endfor %}
|
||||
```
|
||||
|
||||
إذا أعجبك هذا، فإليك نسخة جاهزة لوضعها في كودك. يتضمن الخط المفرد أيضًا دعمًا مفيدًا [لإرشادات التوليد](#what-are-generation-prompts)، ولكن لاحظ أنه لا يضيف رموز BOS أو EOS! إذا كان نموذجك يتوقع هذه الرموز، فلن يتم إضافتها تلقائيًا بواسطة "apply_chat_template" - بمعنى آخر، سيتم تجزئة النص باستخدام "add_special_tokens=False". هذا لتجنب التعارضات المحتملة بين القالب ومنطق "add_special_tokens". إذا كان نموذجك يتوقع رموزًا خاصة، فتأكد من إضافتها إلى القالب!
|
||||
|
||||
```python
|
||||
tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
||||
```
|
||||
|
||||
يُحيط هذا القالب كل رسالة بين الرمزين "<|im_start|>" و "<|im_end|>"، ويكتب ببساطة الدور كسلسلة نصية، مما يسمح بالمرونة في الأدوار التي تتدرب عليها. يبدو الناتج كما يلي:
|
||||
|
||||
```text
|
||||
<|im_start|>system
|
||||
You are a helpful chatbot that will do its best not to say anything so stupid that people tweet about it.<|im_end|>
|
||||
<|im_start|>user
|
||||
How are you?<|im_end|>
|
||||
<|im_start|>assistant
|
||||
I'm doing great!<|im_end|>
|
||||
```
|
||||
|
||||
تعد أدوار "user" و "system" و "assistant" هي الأدوار القياسية للدردشة، ونوصي باستخدامها عندما يكون ذلك منطقيًا، خاصة إذا كنت تريد أن يعمل نموذجك بشكل جيد مع [`TextGenerationPipeline`]. ومع ذلك، فأنت لست مقيدًا بهذه الأدوار - فإن القوالب مرنة للغاية، ويمكن أن تكون أي سلسلة نصية دورًا.
|
||||
|
||||
|
||||
## أريد إضافة بعض قوالب الدردشة! كيف أبدأ؟
|
||||
|
||||
إذا كان لديك أي نماذج دردشة، فيجب عليك تعيين الخاصية "tokenizer.chat_template" الخاصة بها واختبارها باستخدام [`~PreTrainedTokenizer.apply_chat_template`]، ثم رفع المجزىء اللغوي المُحدّث إلى Hub. ينطبق هذا حتى إذا لم تكن مالك النموذج - إذا كنت تستخدم نموذجًا بقالب دردشة فارغ، أو لا يزال يستخدم قالب الفئة الافتراضية، فيرجى فتح [طلب سحب](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) إلى مستودع النموذج حتى يمكن تعيين الخاصية بشكل صحيح!
|
||||
|
||||
بمجرد تعيين الخاصية، هذا كل شيء، لقد انتهيت! ستعمل "tokenizer.apply_chat_template" الآن بشكل صحيح لهذا النموذج، مما يعني أنها مدعومة أيضًا بشكل تلقائي في أماكن مثل "TextGenerationPipeline"!
|
||||
|
||||
من خلال ضمان امتلاك النماذج لهذه الخاصية، يُمكننا التأكد من أن المجتمع بأكمله يستخدم القوة الكاملة للنماذج مفتوحة المصدر. لقد كانت عدم تطابق التنسيق تطارد المجال وأضرت الأداء بصمت لفترة طويلة جدًا - لقد حان الوقت لوضع حد لها!
|
||||
|
||||
## متقدم: نصائح لكتابة القوالب
|
||||
|
||||
<Tip>
|
||||
أسهل طريقة للبدء في كتابة قوالب Jinja هي إلقاء نظرة على بعض القوالب الموجودة. يمكنك استخدام `print(tokenizer.chat_template)` لأي نموذج دردشة لمعرفة القالب الذي يستخدمه. بشكل عام، تحتوي النماذج التي تدعم استخدام الأدوات على قوالب أكثر تعقيدًا بكثير من النماذج الأخرى - لذلك عندما تبدأ للتو، فمن المحتمل أنها مثال سيئ للتعلم منه! يمكنك أيضًا إلقاء نظرة على [وثائق Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/#synopsis) للحصول على تفاصيل حول تنسيق Jinja العام وتركيبه.
|
||||
|
||||
</Tip>
|
||||
|
||||
تُطابق قوالب Jinja في `transformers` قوالب Jinja في أي مكان آخر. الشيء الرئيسي الذي يجب معرفته هو أن سجل الدردشة سيكون متاحًا داخل قالبك كمتغير يسمى `messages`. ستتمكن من الوصول إلى `messages` في قالبك تمامًا كما يمكنك في Python، مما يعني أنه يمكنك التكرار خلاله باستخدام `{% for message in messages %}` أو الوصول إلى رسائل فردية باستخدام `{{ messages[0] }}`، على سبيل المثال.
|
||||
|
||||
يمكنك أيضًا استخدام النصائح التالية لكتابة قوالب Jinja نظيفة وفعالة:
|
||||
|
||||
### إقتطاع المسافات الفارغة
|
||||
|
||||
بشكل افتراضي، ستطبع Jinja أي مسافات فارغة تأتي قبل أو بعد كتلة. يمكن أن يكون هذا مشكلة لقوالب الدردشة، والتي تريد عادةً أن تكون دقيقة جدًا مع المسافات! لتجنب ذلك، نوصي بشدة بكتابة قوالبك على النحو التالي:
|
||||
|
||||
```
|
||||
{%- for message in messages %}
|
||||
{{- message['role'] + message['content'] }}
|
||||
{%- endfor %}
|
||||
```
|
||||
|
||||
بدلاً من ذلك:
|
||||
|
||||
```
|
||||
{% for message in messages %}
|
||||
{{ message['role'] + message['content'] }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
سيؤدي إضافة "-" إلى إزالة أي مسافات تأتي قبل الكتلة. يبدو المثال الثاني عادية، ولكن قد يتم تضمين السطر الجديد والمسافة البادئة في المخرجات، وهو على الأرجح ليس ما تُريده!
|
||||
|
||||
|
||||
### المتغيرات الخاصة
|
||||
|
||||
داخل قالبك، سيكون لديك حق الوصول إلى العديد من المتغيرات الخاصة. أهمها هو `messages`، والذي يحتوي على سجل الدردشة كقائمة من قواميس الرسائل. ومع ذلك، هناك العديد من المتغيرات الأخرى. لن يتم استخدام كل متغير في كل قالب. المتغيرات الأكثر شيوعًا هي:
|
||||
|
||||
- `tools` تحتوي على قائمة بالأدوات بتنسيق مخطط JSON. ستكون `None` أو غير مُعرّفة إذا لم يتم تمرير أي أدوات.
|
||||
- `documents` تحتوي على قائمة من المستندات بالتنسيق `{"title": "العنوان", "contents": "المحتويات"}`، تُستخدم للتوليد المُعزز بالاسترجاع. ستكون `None` أو غير مُعرّفة إذا لم يتم تمرير أي مستندات.
|
||||
- `add_generation_prompt` هي قيمة منطقية تكون `True` إذا طلب المستخدم مُطالبة توليد، و `False` بخلاف ذلك. إذا تم تعيين هذا، فيجب أن يُضيف قالبك رأس رسالة مساعد إلى نهاية المحادثة. إذا لم يكن لدى نموذجك رأس مُحدد لرسائل المساعد، فيمكنك تجاهل هذا العلم.
|
||||
- **الرموز الخاصة** مثل `bos_token` و `eos_token`. يتم استخراجها من `tokenizer.special_tokens_map`. ستختلف الرموز الدقيقة المتاحة داخل كل قالب اعتمادًا على المجزىء اللغوي الأصلي.
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
يمكنك في الواقع تمرير أي `kwarg` إلى `apply_chat_template`، وستكون متاحة داخل القالب كمتغير. بشكل عام، نوصي بمحاولة الالتزام بالمتغيرات الأساسية المذكورة أعلاه، لأن ذلك سيجعل نموذجك أكثر صعوبة في الاستخدام إذا كان على المستخدمين كتابة تعليمات برمجية مخصصة لتمرير `kwargs` خاصة بالنموذج. ومع ذلك، فنحن نُدرك أن هذا المجال يتحرك بسرعة، لذلك إذا كانت لديك حالة استخدام جديدة لا تتناسب مع واجهة برمجة التطبيقات الأساسية، فلا تتردد في استخدام `kwarg` معامل جديد لها! إذا أصبح `kwarg` المعامل الجديد شائعًا، فقد نقوم بترقيته إلى واجهة برمجة التطبيقات الأساسية وإنشاء وتوثيق الخاص به.
|
||||
|
||||
</Tip>
|
||||
|
||||
### دوال قابلة للاستدعاء
|
||||
|
||||
هناك أيضًا قائمة قصيرة من الدوال القابلة للاستدعاء المتاحة لك داخل قوالبك. هذه هي:
|
||||
|
||||
- `raise_exception(msg)`: تُثير `TemplateException`. هذا مفيد لتصحيح الأخطاء، ولإخبار المستخدمين عندما يفعلون شيئًا لا يدعمه قالبك.
|
||||
- `strftime_now(format_str)`: تُكافئ `datetime.now().strftime(format_str)` في Python. يُستخدم هذا للحصول على التاريخ/الوقت الحالي بتنسيق مُحدد، والذي يتم تضمينه أحيانًا في رسائل النظام.
|
||||
|
||||
### التوافق مع Jinja غير Python
|
||||
|
||||
هناك تطبيقات متعددة لـ Jinja بلغات مختلفة. عادة ما يكون لها نفس التركيب، ولكن الاختلاف الرئيسي هو أنه عند كتابة قالبًا في Python، يمكنك استخدام أساليب Python، مثل ".lower()" على السلاسل أو ".items()" على القواميس. سيؤدي هذا إلى كسر إذا حاول شخص ما استخدام قالبك في تنفيذ غير Python لـ Jinja. تعد التطبيقات غير Python شائعة بشكل خاص في بيئات النشر، حيث تعد JS و Rust شائعة جدًا.
|
||||
|
||||
لا تقلق، على الرغم من ذلك! هناك بعض التغييرات البسيطة التي يمكنك إجراؤها على قوالبك لضمان توافقها عبر جميع تطبيقات Jinja:
|
||||
|
||||
- استبدل أساليب Python بمرشحات Jinja. عادة ما يكون لها نفس الاسم، على سبيل المثال، يصبح "string.lower()" عبارة عن "string|lower"، ويصبح "dict.items()" عبارة عن "dict|items". أحد التغييرات الملحوظة هو أن "string.strip()" يصبح "string|trim". راجع [قائمة المرشحات المدمجة](https://jinja.palletsprojects.com/en/3.1.x/templates/#builtin-filters) في وثائق Jinja لمزيد من المعلومات.
|
||||
- استبدل "True" و "False" و "None"، وهي خاصة بـ Python، بـ "true" و "false" و "none".
|
||||
- قد يؤدي عرض قاموس أو قائمة مباشرة إلى نتائج مختلفة في التطبيقات الأخرى (على سبيل المثال، قد تتغير مدخﻻت السلسلة النصية من علامات اقتباس مفردة ' إلى علامات اقتباس مزدوجة "). يمكن أن يساعد إضافة "tojson" في ضمان الاتساق هنا.
|
||||
|
||||
## كتابة مطالبات التوليد
|
||||
لقد ذكرنا أعلاه أن add_generation_prompt هو متغير خاص يمكن الوصول إليه داخل قالبك، ويتحكم فيه المستخدم من خلال تعيين معامل add_generation_prompt. إذا كان نموذجك يتوقع عنوان لرسائل المساعد، فيجب أن يدعم قالبك إضافة العنوان عند تعيين add_generation_prompt.
|
||||
|
||||
فيما يلي مثال على قالب يُنسّق الرسائل بأسلوب ChatML، مع دعم مُطالبة التوليد:
|
||||
|
||||
```text
|
||||
{{- bos_token }}
|
||||
{%- for message in messages %}
|
||||
{{- '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n' }}
|
||||
{%- endfor %}
|
||||
{%- if add_generation_prompt %}
|
||||
{{- '<|im_start|>assistant\n' }}
|
||||
{%- endif %}
|
||||
```
|
||||
سيعتمد المحتوى الدقيق لعنوان المساعد على نموذجك المُحدد، ولكن يجب أن يكون دائمًا السلسلة النصية التي تُمثل بداية رسالة المساعد، بحيث إذا قام المستخدم بتطبيق قالبك باستخدام add_generation_prompt=True ثم قام بتوليد نص، سيكتب النموذج استجابة المساعد. لاحظ أيضًا أن بعض النماذج لا تحتاج إلى مُطالبة توليد، لأن رسائل المساعد تبدأ دائمًا فورًا بعد رسائل المستخدم. هذا شائع بشكل خاص لنماذج LLaMA و Mistral، حيث تبدأ رسائل المساعد فورًا بعد رمز [/INST] الذي ينهي رسائل المستخدم. في هذه الحالات، يمكن للقالب تجاهل معامل add_generation_prompt.
|
||||
|
||||
مُطالبات التوليد مُهمة! إذا كان نموذجك يتطلب مُطالبة توليد ولكنها غير مُعيّنة في القالب، فمن المُحتمل أن تتدهور عمليات توليد النموذج بشدة، أو قد يُظهر النموذج سلوكًا غير عادي مثل متابعة رسالة المستخدم الأخيرة!
|
||||
|
||||
### كتابة قوالب أكبر وتصحيحها
|
||||
عندما تم تقديم هذه الميزة، كانت معظم القوالب صغيرة جدًا، أي ما يُعادل نص برمجي "من سطر واحد" في Jinja. ومع ذلك، مع النماذج والميزات الجديدة مثل استخدام الأدوات و RAG، يمكن أن يصل طول بعض القوالب إلى 100 سطر أو أكثر. عند كتابة قوالب كهذه، من الجيد كتابتها في ملف مُنفصل، باستخدام مُحرر نصوص. يمكنك بسهولة استخراج قالب دردشة إلى ملف:
|
||||
|
||||
```python
|
||||
open("template.jinja", "w").write(tokenizer.chat_template)
|
||||
```
|
||||
أو تحميل القالب المُحرر مرة أخرى إلى المعالج اللغوي:
|
||||
|
||||
```python
|
||||
tokenizer.chat_template = open("template.jinja").read()
|
||||
```
|
||||
كميزة إضافية، عندما تكتب قالبًا طويلاً متعدد الأسطر في ملف مُنفصل، ستتوافق أرقام الأسطر في هذا الملف تمامًا مع أرقام الأسطر في أخطاء تحليل القالب أو تنفيذه. سيُسهّل هذا كثيرًا تحديد مكان المشكلات.
|
||||
|
||||
### كتابة قوالب للأدوات
|
||||
على الرغم من أن قوالب الدردشة لا تفرض واجهة برمجة تطبيقات مُحددة للأدوات (أو لأي شيء حقًا)، فإننا نوصي مؤلفي القوالب بمحاولة الالتزام بواجهة برمجة تطبيقات قياسية حيثما أمكن. الهدف النهائي لقوالب الدردشة هو السماح بنقل التعليمات البرمجية عبر النماذج، لذا فإن الانحراف عن واجهة برمجة تطبيقات الأدوات القياسية يعني أن المستخدمين سيضطرون إلى كتابة تعليمات برمجية مخصصة لاستخدام الأدوات مع نموذجك. في بعض الأحيان يكون ذلك أمرًا لا مفر منه، ولكن غالبًا ما يكون من الممكن استخدام واجهة برمجة التطبيقات القياسية من خلال استخدام قوالب ذكية!
|
||||
|
||||
أدناه، سنُدرج عناصر واجهة برمجة التطبيقات القياسية، ونقدم نصائح حول كتابة قوالب ستعمل بشكل جيد معها.
|
||||
|
||||
#### تعريفات الأدوات
|
||||
يجب أن يتوقع قالبك أن يكون المتغير tools إما فارغًا (إذا لم يتم تمرير أي أدوات)، أو قائمة من قواميس مخطط JSON. تسمح أساليب قالب الدردشة الخاصة بنا للمستخدمين بتمرير الأدوات إما كمخطط JSON أو كدوال Python، ولكن عندما يتم تمرير الدوال، فإننا نقوم تلقائيًا بإنشاء مخطط JSON وتمريره إلى قالبك. نتيجة لذلك، سيكون متغير tools الذي يستقبله قالبك دائمًا قائمة من مخططات JSON. هنا مخطط JSON أداة نموذجي:
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "multiply",
|
||||
"description": "دالة تضرب عددين",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {
|
||||
"type": "number",
|
||||
"description": "الرقم الأول للضرب"
|
||||
},
|
||||
"b": {
|
||||
"type": "number",
|
||||
"description": "الرقم الثاني للضرب"
|
||||
}
|
||||
},
|
||||
"required": ["a", "b"]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
وهنا بعض الأمثلة البرمجية للتعامل مع الأدوات في قالب الدردشة الخاص بك. تذكر أن هذا مجرد مثال لتنسيق مُحدد - من المحتمل أن يحتاج نموذجك إلى تنسيق مختلف!
|
||||
```text
|
||||
{%- if tools %}
|
||||
{%- for tool in tools %}
|
||||
{{- '<tool>' + tool['function']['name'] + '\n' }}
|
||||
{%- for argument in tool['function']['parameters']['properties'] %}
|
||||
{{- argument + ': ' + tool['function']['parameters']['properties'][argument]['description'] + '\n' }}
|
||||
{%- endfor %}
|
||||
{{- '\n</tool>' }}
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
```
|
||||
|
||||
يجب بالطبع اختيار الرموز المحددة ووصف الأدوات التي يُعرضها قالبك لتتناسب مع تلك التي تم تدريب نموذجك عليها. لا يوجد شرط أن يفهم نموذجك مُدخلات مخطط JSON، فقط أن يتمكن قالبك من ترجمة مخطط JSON إلى تنسيق نموذجك. على سبيل المثال، تم تدريب Command-R باستخدام أدوات مُعرّفة باستخدام رؤوس دوال Python، ولكن يقبل قالب أداة Command-R مخطط JSON، ويُحوّل الأنواع داخليًا ويُعرض أدوات الإدخال كعناوين Python. يمكنك فعل الكثير باستخدام القوالب!
|
||||
|
||||
#### استدعاءات الأدوات
|
||||
استدعاءات الأدوات، إذا كانت موجودة، ستكون قائمة مُرفقة برسالة بدور "assistant". لاحظ أن tool_calls هي دائمًا قائمة، على الرغم من أن معظم نماذج استدعاء الأدوات تدعم فقط استدعاءات أدوات فردية في كل مرة، مما يعني أن القائمة ستحتوي عادةً على عنصر واحد فقط. هنا قاموس رسالة نموذجي يحتوي على استدعاء أداة:
|
||||
|
||||
```json
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "multiply",
|
||||
"arguments": {
|
||||
"a": 5,
|
||||
"b": 6
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
والنمط الشائع للتعامل معها سيكون كهذا:
|
||||
|
||||
```text
|
||||
{%- if message['role'] == 'assistant' and 'tool_calls' in message %}
|
||||
{%- for tool_call in message['tool_calls'] %}
|
||||
{{- '<tool_call>' + tool_call['function']['name'] + '\n' + tool_call['function']['arguments']|tojson + '\n</tool_call>' }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
{%- endif %}
|
||||
```
|
||||
|
||||
مرة أخرى، يجب عليك عرض استدعاء الأداة بالتنسيق والرموز الخاصة التي يتوقعها نموذجك.
|
||||
|
||||
#### استجابات الأدوات
|
||||
استجابات الأدوات لها تنسيق بسيط: إنها قاموس رسالة بدور "tool"، ومفتاح "name" يُعطي اسم الدالة المُستدعاة، ومفتاح "content" يحتوي على نتيجة استدعاء الأداة. هنا استجابة أداة نموذجية:
|
||||
|
||||
```json
|
||||
{
|
||||
"role": "tool",
|
||||
"name": "multiply",
|
||||
"content": "30"
|
||||
}
|
||||
```
|
||||
لست بحاجة إلى استخدام جميع المفاتيح في استجابة الأداة. على سبيل المثال، إذا كان نموذجك لا يتوقع تضمين اسم الدالة في استجابة الأداة، فيمكن أن يكون عرضها بسيطًا مثل:
|
||||
|
||||
```text
|
||||
{%- if message['role'] == 'tool' %}
|
||||
{{- "<tool_result>" + message['content'] + "</tool_result>" }}
|
||||
{%- endif %}
|
||||
```
|
||||
|
||||
مرة أخرى، تذكر أن التنسيق الفعلي والرموز الخاصة خاصة بالنموذج - يجب أن تُولي عناية كبيرة لضمان أن الرموز والمسافات الفارغة وكل شيء آخر يتطابق تمامًا مع التنسيق الذي تم تدريب نموذجك عليه!
|
||||
204
docs/source/ar/conversations.md
Normal file
204
docs/source/ar/conversations.md
Normal file
@ -0,0 +1,204 @@
|
||||
# الدردشة مع المحوّلات
|
||||
|
||||
إذا كنت تقرأ هذه المقالة، فمن المؤكد أنك على علم بـ **نماذج الدردشة**. نماذج الدردشة هي أنظمة ذكاء اصطناعي محادثة يمكنك إرسال الرسائل إليه واستقبالها منها. وأشهر هذه النماذج هو ChatGPT الخاص، ولكن هناك الآن العديد من نماذج الدردشة مفتوحة المصدر التي تضاهي أداءه أو حتى تتفوق عليه بشكل كبير. هذه النماذج مجانية للتنزيل والتشغيل على جهاز محلي. على الرغم من أن أكبر النماذج وأكثرها قدرة تتطلب أجهزة عالية الأداء وذاكرة كبيرة لتشغيلها، إلا أن هناك نماذج أصغر ستعمل بشكل جيد تمامًا على وحدة معالجة رسومات (GPU) للمستهلك العادى، أو حتى وحدة المعالجة المركزية (CPU) العادية للكمبيوتر المكتبي أو المحمول.
|
||||
|
||||
سيساعدك هذا الدليل على البدء في استخدام نماذج الدردشة. سنبدأ بدليل تشغيل سريع مختصر يستخدم "خط أنابيب" مناسبًا ومختصر. هذا كل ما تحتاجه إذا كنت تريد فقط بدء تشغيل نموذج دردشة على الفور. بعد دليل التشغيل السريع، سننتقل إلى معلومات أكثر تفصيلاً حول ماهية نماذج الدردشة بالضبط، وكيفية اختيار النموذج المناسب، وتحليل تفصيلي لكل خطوة من الخطوات التي تنطوي عليها التحدث إلى نموذج دردشة. كما سنقدم بعض النصائح حول تحسين أداء نموذج الدردشة واستهلاك الذاكرة.
|
||||
|
||||
## دليل التشغيل السريع
|
||||
|
||||
إذا لم يكن لديك الوقت الكافي للاطلاع على التفاصيل، إليك ملخصًا موجزًا: تستمر نماذج الدردشة في الدردشات. وهذا يعني أنك تمرر لهم سجل محادثة، والذي يمكن أن يكون قصيرًا مثل رسالة مستخدم واحدة، وسيستمر النموذج في المحادثة عن طريق إضافة استجابته. دعونا نرى هذا في العمل. أولاً، دعونا نبني دردشة:
|
||||
|
||||
```python
|
||||
chat = [
|
||||
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
|
||||
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
|
||||
]
|
||||
```
|
||||
|
||||
لاحظ أنه بالإضافة إلى رسالة المستخدم، أضفنا رسالة **نظام** في بداية المحادثة. ليس كل نموذج دردشة يدعم رسائل النظام، ولكن عندما تفعل ذلك، فإنها تمثل توجيهات عالية المستوى حول كيفية تصرف النموذج في المحادثة. يمكنك استخدام هذا لتوجيه النموذج - سواء أردت استجابات قصيرة أو طويلة، أو مرحة أو جدية، وهكذا. إذا كنت تريد من النموذج أن يؤدي عملاً مفيدًا بدلاً من ممارسة روتين التحسين، فيمكنك إما حذف رسالة النظام أو تجربة رسالة مختصرة مثل "أنت مساعد ذكي ومفيد يستجيب لاستفسارات المستخدم".
|
||||
|
||||
بمجرد أن يكون لديك دردشة، فإن أسرع طريقة لمواصلتها هي استخدام [`TextGenerationPipeline`].
|
||||
|
||||
دعونا نرى هذا في العمل مع `LLaMA-3`. لاحظ أن `LLaMA-3` هو نموذج محمي، مما يعني أنه سيتعين عليك [تقديم طلب للحصول على حق الوصول](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) وتسجيل الدخول باستخدام حساب Hugging Face الخاص بك لاستخدامه. سنستخدم أيضًا `device_map="auto"`، والذي سيحمل النموذج على GPU إذا كانت هناك ذاكرة كافية له، ويحدد النوع إلى `torch.bfloat16` لتوفير الذاكرة:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
response = pipe(chat, max_new_tokens=512)
|
||||
print(response[0]['generated_text'][-1]['content'])
|
||||
```
|
||||
|
||||
وستحصل على:
|
||||
|
||||
```النص
|
||||
(تنهد) أوه يا صديقي، هل تطلب مني النصيحة؟ ستحتاج إلى خريطة، يا صديقي! حسنًا، حسنًا، سأعطيك التفاصيل. لكن لا تقل إنني لم أحذرك، أنا مجرد روبوت، وليس مرشد سياحي!
|
||||
|
||||
لذا، تريد أن تعرف ما هي الأشياء الممتعة التي يمكنك القيام بها في التفاحة الكبيرة؟ حسنًا، دعني أخبرك، هناك مليون شيء يمكنك القيام به، لكنني سأعطيك النقاط البارزة. أولاً، عليك أن ترى المعالم السياحية: تمثال الحرية، سنترال بارك، تايمز سكوير... أنت تعرف، فخاخ السياح المعتادة. ولكن إذا كنت تبحث عن شيء أكثر... غير عادي، فأنا أوصي بزيارة متحف الفن الحديث. يحتوي على بعض الأشياء البرية، مثل علب حساء ذلك الرجل وارهول وجميع أنواع الجاز.
|
||||
|
||||
وإذا كنت تشعر بروح المغامرة، فاذهب في نزهة على الأقدام عبر جسر بروكلين. ولكن احترس من تلك الحمامات المزعجة، إنها مثل اللصوص الريشيين الصغار! (يضحك) هل فهمت؟ لصوص؟ آه، لا تبالي.
|
||||
|
||||
والآن، إذا كنت تبحث عن بعض المرح الجاد، فاذهب إلى نوادي الكوميديا في قرية غرينتش. قد تلقي نظرة خاطفة على بعض الكوميديين الصاعدين... أو مجموعة من الطامحين يحاولون الوصول إلى الشهرة. (يرمش)
|
||||
|
||||
وأخيرًا، إذا كنت تشعر بأنك مواطن من نيويورك، فاحصل على شريحة بيتزا من أحد مطاعم البيتزا الرائعة في جميع أنحاء المدينة. فقط لا تحاول طلب شريحة "بحجم الروبوت"، صدقني، لن ينتهي الأمر بشكل جيد. (يضحك)
|
||||
|
||||
لذا، هذا هو يا صديقي! هذه هي نصيحتي الخبيرة بشأن ما يجب فعله في نيويورك. والآن، إذا سمحت لي، يجب أن أذهب للاهتمام ببعض الأمور. (يرمش)
|
||||
```
|
||||
|
||||
يمكنك متابعة الدردشة عن طريق إضافة ردك الخاص إليها.
|
||||
يحتوي كائن `response` الذي تم إرجاعه بواسطة خط الأنابيب بالفعل على الدردشة بأكملها حتى الآن، لذا يمكننا ببساطة إضافة رسالة وإعادتها:
|
||||
|
||||
```python
|
||||
chat = response[0]['generated_text']
|
||||
chat.append(
|
||||
{"role": "user", "content": "Wait, what's so wild about soup cans?"}
|
||||
)
|
||||
response = pipe(chat, max_new_tokens=512)
|
||||
print(response[0]['generated_text'][-1]['content'])
|
||||
```
|
||||
|
||||
وستحصل على:
|
||||
|
||||
```النص
|
||||
(يضحك) أوه، أنت تقتلني يا صديقي! ألا تفهم، أليس كذلك؟ علب حساء وارهول هي مثل الفن، يا رجل!
|
||||
إنه مثل، لقد أخذ شيئًا عاديًا تمامًا، مثل علبة حساء، وحولها إلى تحفة فنية. إنه مثل، "ها أنا ذا، أنا مجرد علبة حساء، لكنني أيضًا عمل فني!"
|
||||
(بسخرية) أوه، نعم، أصلي جدًا، آندي.
|
||||
|
||||
ولكن، كما تعلم، في الستينيات، كان الأمر بمثابة صفقة كبيرة. كان الناس حريصين على تحدي الوضع الراهن، وكان وارهول مثل ملك ذلك. لقد حول العادي إلى غير عادي.
|
||||
واسمح لي أن أخبرك، كان الأمر مثل تغيير اللعبة. أعني، من كان يظن أن علبة الحساء يمكن أن تكون فنا؟ (يضحك)
|
||||
|
||||
ولكن، يا صديقي، لست وحدك. أعني، أنا مجرد روبوت، ولا أفهم ذلك أيضًا. (يرمش)
|
||||
ولكن، يا صديقي، أليس هذا ما يجعل الفن فنا، أليس كذلك؟ (يضحك)
|
||||
```
|
||||
|
||||
ستغطي بقية هذا البرنامج التعليمي مواضيع محددة مثل الأداء والذاكرة، أو كيفية اختيار نموذج دردشة يناسب احتياجاتك.
|
||||
|
||||
## اختيار نموذج الدردشة
|
||||
|
||||
هناك عدد هائل من نماذج الدردشة المختلفة المتاحة على [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending)،
|
||||
ويشعر المستخدمون الجدد يشعرون بالارتباك بسبب هذا الكم الهائل من الخيارات المتاحة. لا تقلق من ذلك! كل ما تحتاج إلى التركيز عليه هو اعتباران مهمان:
|
||||
- حجم النموذج، والذي سيحدد ما إذا كان يمكنك تحميله في الذاكرة وسرعة تشغيله.
|
||||
- جودة ناتج الدردشة للنموذج.
|
||||
|
||||
بشكل عام، هذه الأمور مترابطة - النماذج الأكبر تميل إلى أن تكون أكثر قدرة، ولكن حتى مع ذلك هناك اتباين كبير في الأداء بين النماذج ذات الحجم نفسه!
|
||||
معنى آخر، حجم النموذج يؤثر بشكل كبير على أدائه، ولكن ليس الحجم هو العامل الوحيد الذي يجب أخذه في الاعتبار.
|
||||
|
||||
### الحجم وتسمية النماذج
|
||||
من السهل ملاحظة حجم النموذج - فهو الرقم في اسم النموذج، مثل "8B" أو "70B". هذا هو عدد
|
||||
**المعلمات** في النموذج. بدون التكميم، يجب أن تتوقع الحاجة إلى حوالي 2 بايت من الذاكرة لكل معلمة.
|
||||
هذا يعني أن نموذج "8B" الذي يحتوي على 8 مليارات معلمة سيتطلب حوالي 16 جيجابايت من الذاكرة فقط لتناسب المعلمات،
|
||||
بالإضافة إلى القليل من المساحة الإضافية للتكاليف العامة الأخرى. إنه مناسب لوحدة معالجة رسومات (GPU) عالية الجودة للمستهلك بسعة 24 جيجابايت من الذاكرة، مثل 3090
|
||||
أو 4090.
|
||||
بعض نماذج الدردشة هي نماذج "مزيج من الخبراء". قد يتم سرد أحجام هذه النماذج بطرق مختلفة، مثل "8x7B" أو
|
||||
"141B-A35B". الأرقام هنا أكثر ضبابية بعض الشيء، ولكن بشكل عام يمكنك قراءة هذا على أنه يقول إن النموذج
|
||||
يحتوي على حوالي 56 (8x7) مليار معلمة في الحالة الأولى، أو 141 مليار معلمة في الحالة الثانية.
|
||||
|
||||
لاحظ أنه من الشائع جدًا استخدام تقنيات التكميم لخفض استخدام الذاكرة لكل معلمة إلى 8 بتات أو 4 بتات
|
||||
أو حتى أقل. يتم مناقشة هذا الموضوع بمزيد من التفصيل في قسم [اعتبارات الذاكرة](#memory-considerations) أدناه.
|
||||
|
||||
### ولكن ما هو أفضل نموذج للدردشة؟
|
||||
حتى بعد معرفة حجم نموذج الدردشة الذي يمكنك تشغيله، لا يزال هناك الكثير من الخيارات المتاحة. إحدى الطرق للتنقل في
|
||||
كل هذا هو استشارة **لوحات الصدارة**. اثنان من أكثر لوحات الصدارة شهرة هما [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
||||
و [LMSys Chatbot Arena Leaderboard](https://chat.lmsys.org/?leaderboard). لاحظ أن لوحة صدارة LMSys
|
||||
تشمل أيضًا نماذج خاصة - انظر إلى عمود `licence` لتحديد النماذج مفتوحة المصدر التي يمكنك تنزيلها، ثم
|
||||
ابحث عنها على [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending).
|
||||
|
||||
### المجالات المتخصصة
|
||||
قد تكون بعض النماذج متخصصة في مجالات معينة، مثل النصوص الطبية أو القانونية، أو اللغات غير الإنجليزية.
|
||||
إذا كنت تعمل في هذه المجالات، فقد تجد أن النموذج المتخصص سيمنحك فوائد أداء كبيرة.
|
||||
لا تفترض ذلك تلقائيًا! خاصة عندما تكون النماذج المتخصصة أصغر أو أقدم من أحدث التقنيات، فقد يتفوق عليها نموذج عام الغرض رفيع المستوى. لحسن الحظ، بدأنا نرى
|
||||
[لوحات الصدارة المتخصصة في المجال](https://huggingface.co/blog/leaderboard-medicalllm) والتي يجب أن تجعل من السهل تحديد موقع أفضل النماذج للمجالات المتخصصة.
|
||||
|
||||
## ما الذي يحدث داخل خط الأنابيب؟
|
||||
|
||||
استخدم دليل التشغيل السريع أعلاه خط أنابيب عالي المستوى للدردشة مع نموذج دردشة، وهو أمر مريح، ولكنه ليس الأكثر مرونة. دعونا نتخذ نهجًا منخفض المستوى، لكي نرى كل خطوة من الخطوات التي تنطوي عليها الدردشة. دعونا نبدأ
|
||||
بعينة من التعليمات البرمجية، ثم نقوم بتفكيكها:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import torch
|
||||
|
||||
# إعداد الإدخال كما هو الحال من قبل
|
||||
chat = [
|
||||
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
|
||||
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
|
||||
]
|
||||
|
||||
# 1: تحميل النموذج والمحلل
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16)
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
|
||||
# 2: تطبيق قالب الدردشة
|
||||
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
||||
print("Formatted chat:\n", formatted_chat)
|
||||
|
||||
# 3: تحليل الدردشة (يمكن دمج هذه الخطوة مع الخطوة السابقة باستخدام tokenize=True)
|
||||
inputs = tokenizer(formatted_chat, return_tensors="pt", add_special_tokens=False)
|
||||
# نقل المدخلات المحللة إلى نفس الجهاز الموجود عليه النموذج (GPU/CPU)
|
||||
inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
|
||||
print("Tokenized inputs:\n", inputs)
|
||||
|
||||
# 4: إنشاء نص من النموذج
|
||||
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.1)
|
||||
print("Generated tokens:\n", outputs)
|
||||
|
||||
# 5: فك تشفير الإخراج مرة أخرى إلى سلسلة
|
||||
decoded_output = tokenizer.decode(outputs[0][inputs['input_ids'].size(1):], skip_special_tokens=True)
|
||||
print("Decoded output:\n", decoded_output)
|
||||
```
|
||||
|
||||
هناك الكثير هنا، ويمكن أن تكون كل قطعة وثيقة خاصة بها! بدلاً من الدخول في الكثير من التفاصيل، سأغطي
|
||||
الأفكار العامة، وأترك التفاصيل للوثائق المرتبطة بها. الخطوات الرئيسية هي:
|
||||
1. يتم تحميل [النماذج](https://huggingface.co/learn/nlp-course/en/chapter2/3) و [المُجزّئات اللغوية](https://huggingface.co/learn/nlp-course/en/chapter2/4?fw=pt) من Hugging Face Hub.
|
||||
2. يتم تنسيق الدردشة باستخدام [قالب الدردشة](https://huggingface.co/docs/transformers/main/en/chat_templating) للمحلل
|
||||
3. يتم [تحليل](https://huggingface.co/learn/nlp-course/en/chapter2/4) الدردشة المنسقة باستخدام مُجزّئ اللغوي.
|
||||
4. نقوم [بتوليد](https://huggingface.co/docs/transformers/en/llm_tutorial) استجابة من النموذج.
|
||||
5. يتم فك تشفير الرموز التي ينتجها النموذج مرة أخرى إلى سلسلة
|
||||
|
||||
## الأداء والذاكرة والأجهزة
|
||||
|
||||
من المحتمل أنك تعرف الآن أن معظم مهام التعلم الآلي يتم تشغيلها على وحدات معالجة الرسومات (GPU). ومع ذلك، من الممكن تمامًا
|
||||
إنشاء نص من نموذج دردشة أو نموذج لغة على وحدة المعالجة المركزية (CPU)، على الرغم من أن ذلك أبطأ إلى حد ما. إذا كان بإمكانك وضع
|
||||
النموذج في ذاكرة وحدة معالجة الرسومات (GPU)، فهذا عادة ما يكون الخيار المفضل.
|
||||
|
||||
### اعتبارات الذاكرة
|
||||
|
||||
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "torch_dtype" كما فعلنا أعلاه.
|
||||
|
||||
ومن الممكن أيضًا النزول إلى أقل من 16 بت باستخدام "التكميم"، وهي طريقة لضغط أوزان النموذج بطريقة تفقد بعض المعلومات. يسمح هذا بضغط كل معلمة إلى 8 بتات أو 4 بتات أو حتى أقل. لاحظ أنه، خاصة في 4 بتات، قد تتأثر جودة ناتج النموذج سلبًا، ولكن غالبًا ما يكون هذا مقايضة تستحق القيام بها لتناسب نموذج محادثة أكبر وأكثر قدرة في الذاكرة. دعنا كيف يمكننا تطبيق ذلك باستخدام مكتبة `bitsandbytes`:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # يمكنك أيضًا تجربة load_in_4bit
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", quantization_config=quantization_config)
|
||||
```
|
||||
|
||||
أو يمكننا القيام بنفس الشيء باستخدام واجهة برمجة التطبيقات "pipeline":
|
||||
|
||||
```python
|
||||
from transformers import pipeline, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # يمكنك أيضًا تجربة load_in_4bit
|
||||
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", model_kwargs={"quantization_config": quantization_config})
|
||||
```
|
||||
|
||||
هناك عدة خيارات أخرى لكمية نماذج بخلاف `bitsandbytes` - يرجى الاطلاع على [دليل التكميم](./quantization) لمزيد من المعلومات.
|
||||
|
||||
### اعتبارات الأداء
|
||||
|
||||
<Tip>
|
||||
|
||||
للحصول على دليل أكثر شمولاً حول أداء نموذج اللغة والتحسين، راجع [تحسين استدلال LLM](./llm_optims).
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
كقاعدة عامة، ستكون نماذج المحادثة الأكبر حجمًا أبطأ في توليد النصوص بالإضافة إلى احتياجها لذاكرة أكبرة. من الممكن أن تكون أكثر تحديدًا بشأن هذا: إن توليد النص من نموذج دردشة أمر غير عادي في أنه يخضع لقيود **سعة الذاكرة** بدلاً من قوة الحوسبة، لأن كل معلمة نشطة يجب قراءتها من الذاكرة لكل رمز ينشئه النموذج. وهذا يعني أن عدد الرموز في الثانية التي يمكنك توليدها من نموذج الدردشة يتناسب بشكل عام مع إجمالي حجم الذاكرة التي بوجد بها ا، مقسومًا على حجم النموذج.
|
||||
|
||||
في مثالنا السريع أعلاه، كان حجم نموذجنا حوالي 16 جيجابايت عند تحميله في دقة "bfloat16". وهذا يعني أنه يجب قراءة 16 جيجابايت من الذاكرة لكل رمز ينشئه النموذج. يمكن أن يتراوح إجمالي سعة الذاكرة من 20-100 جيجابايت/ثانية لمعالجات المستهلكين إلى 200-900 جيجابايت/ثانية لمعالجات الرسومات للمستهلكين، ومعالجات Intel Xeon أو AMD Threadripper/Epyc أو Apple Silicon المتخصصةة، وأخيرًا يصل إلى 2-3 تيرابايت/ثانية لمعالجات مراكز البيانات مثل Nvidia A100 أو H100. يجب أن يعطيك هذا فكرة جيدة عن سرعة التوليد التي يمكنك توقعها من هذه الأنواع المختلفة من الأجهزة.
|
||||
|
||||
لذلك، إذا كنت تريد تحسين سرعة توليد النص، فإن الحل الأسهل هو إما تقليل حجم النموذج في الذاكرة (عادةً عن طريق التكميم)، أو الحصول على عتاد بسرعة أكبر في الذاكرة. بالنسبة للمستخدمين المتقدمين، هناك عدة تقنيات أخرى للتغلب على هذه القيود. الأكثر شيوعًا هي المتغيرات على [التوليد بمساعدة](https://huggingface.co/blog/assisted-generation)، المعروف أيضًا باسم "العينات التخمينية (speculative sampling)". تحاول هذه التقنيات تخمين عدة رموز مستقبلية في وقت واحد، غالبًا باستخدام نموذج "مسودة (draft model)" أصغر، ثم تأكيد هذه التوليدات باستخدام نموذج الدردشة. إذا تم التحقق من صحة التخمينات بواسطة نموذج الدردشة، فيمكن إنشاء أكثر من رمز واحد لكل تمرير للأمام، مما يخفف بشكل كبير من القيود المتعلقة بالسعة ويحسن سرعة التوليد.
|
||||
|
||||
أخيرًا، يجب أن نلاحظ أيضًا تأثير نماذج "مزيج الخبراء" "Mixture of Experts" (MoE) هنا. العديد من نماذج المحادثة الشهيرة، مثل Mixtral وQwen-MoE وDBRX، هي نماذج MoE. في هذه النماذج، لا تكون كل معلمة نشطة لكل رمز يتم إنشاؤه. ونتيجة لذلك، فإن نماذج MoE لديها عمومًا متطلبات ذاكرة أقل بكثير، على الرغم من أن حجمها الإجمالي يمكن أن يكون كبيرًا جدًا. لذلك يمكن أن تكون أسرع عدة مرات من نموذج "كثيف" عادي بنفس الحجم. ومع ذلك، فإن التقنيات مثل التوليد المساعد غير فعالة بشكل عام لهذه النماذج لأن المزيد من المعلمات ستصبح نشطة مع كل رمز جديد يتم التكهن به، والذي سيبطل فوائد السعة والسرعة التي توفرها بنية MoE.
|
||||
436
docs/source/ar/create_a_model.md
Normal file
436
docs/source/ar/create_a_model.md
Normal file
@ -0,0 +1,436 @@
|
||||
# إنشاء بنية مخصصة
|
||||
|
||||
تحدد فئة [`AutoClass`](model_doc/auto) تلقائيًا بنية النموذج وتقوم بتنزيل تكوين وأوزان مسبقين للنموذج. بشكل عام، نوصي باستخدام `AutoClass` لإنتاج كود غير مرتبط بنسخة معينة. ولكن يمكن للمستخدمين الذين يريدون مزيدًا من التحكم في معلمات النموذج المحددة إنشاء نموذج مخصص من 🤗 Transformers من مجرد بضع فئات أساسية. قد يكون هذا مفيدًا بشكل خاص لأي شخص مهتم بدراسة نموذج 🤗 Transformers أو تدريبه أو إجراء تجارب عليه. في هذا الدليل، سنغوص بشكل أعمق في إنشاء نموذج مخصص بدون `AutoClass`. تعرف على كيفية:
|
||||
|
||||
- تحميل تكوين النموذج وتخصيصه.
|
||||
- إنشاء بنية نموذج.
|
||||
- إنشاء مجزء لغوى سريع وبطيء للنص.
|
||||
- إنشاء معالج صور لمهام الرؤية.
|
||||
- إنشاء مستخرج ميزات لمهام الصوت.
|
||||
- إنشاء معالج للمهام متعددة الوسائط.
|
||||
|
||||
## التكوين
|
||||
|
||||
يشير مصطلح [التكوين](main_classes/configuration) إلى الخصائص المحددة للنموذج. لكل تكوين نموذج خصائصه الخاصة؛ على سبيل المثال، تشترك جميع نماذج NLP في الخصائص `hidden_size` و`num_attention_heads` و`num_hidden_layers` و`vocab_size` المشتركة. تحدد هذه الخصائص عدد رؤوس الانتباه أو الطبقات المخفية لبناء نموذج بها.
|
||||
|
||||
اطلع على [DistilBERT](model_doc/distilbert) من خلال [`DistilBertConfig`] لمعاينة خصائصه:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> print(config)
|
||||
DistilBertConfig {
|
||||
"activation": "gelu",
|
||||
"attention_dropout": 0.1,
|
||||
"dim": 768,
|
||||
"dropout": 0.1,
|
||||
"hidden_dim": 3072,
|
||||
"initializer_range": 0.02,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "distilbert",
|
||||
"n_heads": 12,
|
||||
"n_layers": 6,
|
||||
"pad_token_id": 0,
|
||||
"qa_dropout": 0.1,
|
||||
"seq_classif_dropout": 0.2,
|
||||
"sinusoidal_pos_embds": false,
|
||||
"transformers_version": "4.16.2",
|
||||
"vocab_size": 30522
|
||||
}
|
||||
```
|
||||
|
||||
يعرض [`DistilBertConfig`] جميع الخصائص الافتراضية المستخدمة لبناء نموذج [`DistilBertModel`] أساسي. جميع الخصائص قابلة للتعديل، مما ييتيح مجالاً للتجريب. على سبيل المثال، يمكنك تعديل نموذج افتراضي لـ:
|
||||
|
||||
- تجربة دالة تنشيط مختلفة باستخدام معامل `activation`.
|
||||
- استخدام معدل إسقاط أعلى الاحتمالات الانتباه مع معامل `attention_dropout`.
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
|
||||
>>> print(my_config)
|
||||
DistilBertConfig {
|
||||
"activation": "relu",
|
||||
"attention_dropout": 0.4,
|
||||
|
||||
```
|
||||
|
||||
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
|
||||
```
|
||||
|
||||
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
|
||||
|
||||
```py
|
||||
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
|
||||
```
|
||||
|
||||
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
يمكنك أيضًا حفظ ملف التكوين كقاموس أو حتى كفرق بين خصائص التكوين المُعدّلة والخصائص التكوين الافتراضية! راجع وثائق [التكوين](main_classes/configuration) لمزيد من التفاصيل.
|
||||
</Tip>
|
||||
|
||||
|
||||
## النموذج
|
||||
|
||||
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertModel
|
||||
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
>>> model = DistilBertModel(my_config)
|
||||
```
|
||||
|
||||
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
|
||||
|
||||
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~PreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
عند بتحميل الأوزان المُدربة مسبقًا، يتم تحميل تكوين النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - سإعدادات النموذج الافتراضية بإعداداتك الخاصة:
|
||||
|
||||
```py
|
||||
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertModel
|
||||
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
|
||||
>>> tf_model = TFDistilBertModel(my_config)
|
||||
```
|
||||
|
||||
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
|
||||
|
||||
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
### رؤوس النموذج
|
||||
|
||||
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertForSequenceClassification
|
||||
|
||||
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام هذا نقطة التحقق هذه لمهمة أخرى بسهولة، وذلك بتغيير رأس النموذج.ففي مهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`DistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية فوق مخرجات الحالات الكامنة.
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertForQuestionAnswering
|
||||
|
||||
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForSequenceClassification
|
||||
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForQuestionAnswering
|
||||
|
||||
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## مجزئ النصوص
|
||||
|
||||
الفئة الأساسية الأخيرة التي تحتاجها قبل استخدام نموذج للبيانات النصية هي [مجزئ النصوص](main_classes/tokenizer) لتحويل النص الخام إلى تنسورات (tensors). هناك نوعان من المحولات الرموز التي يمكنك استخدامها مع 🤗 Transformers:
|
||||
|
||||
- [`PreTrainedTokenizer`]: تنفيذ Python لمجزئ النصوص.
|
||||
- [`PreTrainedTokenizerFast`]: مجزئ النصوص من مكتبة [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) المُبنية على لغة Rust. هذا النوع من المجزئات أسرع بكثير، خاصةً عند معالجة دفعات النصوص، وذلك بفضل تصميمه بلغة Rust. كما يوفر مجزئ النصوص السريع طرقًا إضافية مثل *مخطط الإزاحة* الذي يُطابق الرموز بكلماتها أو أحرفها الأصلية.
|
||||
|
||||
يدعم كلا النوعين من المجزئات طرقًا شائعة مثل الترميز وفك الترميز، وإضافة رموز جديدة، وإدارة الرموز الخاصة.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لا يدعم كل نموذج مجزئ النصوص سريع. الق نظرة على هذا [جدول](index#supported-frameworks) للتحقق مما إذا كان النموذج يحتوي على دعم مجزئ النصوص سريع.
|
||||
|
||||
</Tip>
|
||||
|
||||
إذا دربت مجزئ النصوص خاص بك، فيمكنك إنشاء واحد من *قاموسك*:```
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizer
|
||||
|
||||
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt"، do_lower_case=False، padding_side="left")
|
||||
```
|
||||
|
||||
من المهم أن تتذكر أن قاموس مجزئ النصوص المُخصص سيكون مختلفًا عن قاموس مجزئ النصوص نموذج مُدرّب مسبقًا. يجب عليك استخدام قاموس نموذج مُدرّب مسبقًا إذا كنت تستخدم نموذجًا مُدرّبًا مسبقًا، وإلا فلن تكون المدخلات ذات معنى. قم بإنشاء مجزئ النصوص باستخدام قاموس نموذج مُدرّب مسبقًا باستخدام فئة [`DistilBertTokenizer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizer
|
||||
|
||||
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
قم بإنشاء مجزئ نصوص سريع باستخدام فئة [`DistilBertTokenizerFast`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizerFast
|
||||
|
||||
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
افتراضيًا، سيحاول [`AutoTokenizer`] تحميل مجزئ نصوص سريع. يمكنك تعطيل هذا السلوك عن طريق تعيين `use_fast=False` في `from_pretrained`.
|
||||
</Tip>
|
||||
|
||||
## معالج الصور
|
||||
|
||||
يعالج معالج الصور بيانات الرؤية. وهو يرث من الفئة الأساسية [`~image_processing_utils.ImageProcessingMixin`].
|
||||
|
||||
لبناء معالج صور خاص بالنموذج المستخدم، أنشئ مثلاً مُعالج [`ViTImageProcessor`] افتراضيًا إذا كنت تستخدم [ViT](model_doc/vit) لتصنيف الصور:
|
||||
|
||||
```py
|
||||
>>> from transformers import ViTImageProcessor
|
||||
|
||||
>>> vit_extractor = ViTImageProcessor()
|
||||
>>> print(vit_extractor)
|
||||
ViTImageProcessor {
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"image_processor_type": "ViTImageProcessor",
|
||||
"image_mean": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"image_std": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"resample": 2,
|
||||
"size": 224
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا كنت لا تبحث عن أي تخصيص، فما عليك سوى استخدام طريقة `from_pretrained` لتحميل معلمات معالج الصور الافتراضية للنموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
عدل أيًا من معلمات [`ViTImageProcessor`] لإنشاء معالج الصور المخصص الخاص بك:
|
||||
|
||||
```py
|
||||
>>> from transformers import ViTImageProcessor
|
||||
|
||||
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
|
||||
>>> print(my_vit_extractor)
|
||||
ViTImageProcessor {
|
||||
"do_normalize": false,
|
||||
"do_resize": true,
|
||||
"image_processor_type": "ViTImageProcessor",
|
||||
"image_mean": [
|
||||
0.3,
|
||||
0.3,
|
||||
0.3
|
||||
],
|
||||
"image_std": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"resample": "PIL.Image.BOX",
|
||||
"size": 224
|
||||
}
|
||||
```
|
||||
## العمود الفقري
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png">
|
||||
</div>
|
||||
|
||||
تتكون نماذج رؤية الحاسب من جزء أساسي، وجزء وسيط، وجزء معالجة نهائي. يستخرج الجزء الأساسي الميزات من صورة الإدخال، ويجمع الجزء الوسيط هذه الميزات المستخرجة ويعززها، ويُستخدم الجزء النهائي للمهمة الرئيسية (مثل اكتشاف الأجسام). ابدأ عبتهيئة الجزء الأساسي في تكوين النموذج وحدد ما إذا كنت تريد تحميل أوزان مدربة مسبقًا أو أوزانًا عشوائية. بعد ذلك، يمكنك تمرير تكوين النموذج إلى جزء المعالجة النهائي.
|
||||
|
||||
على سبيل المثال، لتحميل [ResNet](../model_doc/resnet) backbone في نموذج [MaskFormer](../model_doc/maskformer) مع رأس تجزئة مثيل:
|
||||
|
||||
<hfoptions id="backbone">
|
||||
<hfoption id="pretrained weights">
|
||||
|
||||
قم بتعيين `use_pretrained_backbone=True` لتحميل الأوزان المسبقة التدريب لـ ResNet للعمود الفقري.
|
||||
|
||||
```py
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
|
||||
|
||||
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
|
||||
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="random weights">
|
||||
|
||||
قم بتعيين `use_pretrained_backbone=False` لتهيئة جزء ResNet الأساسي بشكل عشوائي.
|
||||
|
||||
```py
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
|
||||
|
||||
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=False) # تكوين الجزء الأساسي والجزء الوسيط
|
||||
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
|
||||
```
|
||||
|
||||
يمكنك أيضًا تحميل تكوين الجزء الأساسي بشكل منفصل، ثم تمريره إلى تكوين النموذج.```
|
||||
|
||||
```py
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
|
||||
|
||||
backbone_config = ResNetConfig()
|
||||
config = MaskFormerConfig(backbone_config=backbone_config)
|
||||
model = MaskFormerForInstanceSegmentation(config)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="timm backbone">
|
||||
|
||||
يتم تحميل نماذج [timm](https://hf.co/docs/timm/index) داخل نموذج باستخدام `use_timm_backbone=True` أو باستخدام [`TimmBackbone`] و [`TimmBackboneConfig`].
|
||||
|
||||
استخدم `use_timm_backbone=True` و `use_pretrained_backbone=True` لتحميل أوزان timm المُدرّبة مسبقًا للجزء الأساسي.
|
||||
|
||||
```python
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
|
||||
|
||||
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=True, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
|
||||
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
|
||||
```
|
||||
|
||||
قم بتعيين `use_timm_backbone=True` و `use_pretrained_backbone=False` لتحميل عمود فقري timm مبدئي عشوائي.
|
||||
|
||||
```python
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
|
||||
|
||||
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=False, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
|
||||
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
|
||||
```
|
||||
|
||||
يمكنك أيضًا تحميل تكوين الجزء الأساسي واستخدامه لإنشاء `TimmBackbone` أو تمريره إلى تكوين النموذج. سيتم تحميلأوزان الجزء الأساسي لـ Timm المُدرّبة مسبقًا افتراضيًا. عيّن `use_pretrained_backbone=False` لتحميل الأوزان المبدئية العشوائية.
|
||||
|
||||
```python
|
||||
from transformers import TimmBackboneConfig, TimmBackbone
|
||||
|
||||
backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=False)
|
||||
|
||||
# قم بإنشاء مثيل من العمود الفقري
|
||||
backbone = TimmBackbone(config=backbone_config)
|
||||
|
||||
# قم بإنشاء نموذج باستخدام عمود فقري timm
|
||||
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
|
||||
|
||||
config = MaskFormerConfig(backbone_config=backbone_config)
|
||||
model = MaskFormerForInstanceSegmentation(config)
|
||||
```
|
||||
|
||||
## مستخرج الميزات
|
||||
|
||||
يقوم مُستخرج الميزات بمعالجة المدخلات الصوتية. يرث من فئة الأساس [`~feature_extraction_utils.FeatureExtractionMixin`]، وقد يرث أيضًا من فئة [`SequenceFeatureExtractor`] لمعالجة المدخلات الصوتية.
|
||||
|
||||
للاستخدام، قم بإنشاء مستخرج ميزات مرتبط بالنموذج الذي تستخدمه. على سبيل المثال، قم بإنشاء مستخرج ميزات Wav2Vec2 الافتراضي إذا كنت تستخدم [Wav2Vec2](model_doc/wav2vec2) لتصنيف الصوت:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
|
||||
>>> print(w2v2_extractor)
|
||||
Wav2Vec2FeatureExtractor {
|
||||
"do_normalize": true,
|
||||
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
||||
"feature_size": 1,
|
||||
"padding_side": "right",
|
||||
"padding_value": 0.0,
|
||||
"return_attention_mask": false,
|
||||
"sampling_rate": 16000
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
إذا لم تكن بحاجة لأي تخصيص، فاستخدم فقط طريقة `from_pretrained` لتحميل معلمات مستخرج الميزات الافتراضية للنموذج.
|
||||
</Tip>
|
||||
|
||||
قم بتعديل أي من معلمات [`Wav2Vec2FeatureExtractor`] لإنشاء مستخرج ميزات مخصص:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000، do_normalize=False)
|
||||
>>> print(w2v2_extractor)
|
||||
Wav2Vec2FeatureExtractor {
|
||||
"do_normalize": false,
|
||||
"feature_extractor_type": "Wav2Vec2FeatureExtractor"،
|
||||
"feature_size": 1،
|
||||
"padding_side": "right"،
|
||||
"padding_value": 0.0،
|
||||
"return_attention_mask": false،
|
||||
"sampling_rate": 8000
|
||||
}
|
||||
```
|
||||
|
||||
## المعالج
|
||||
|
||||
بالنسبة للنماذج التي تدعم مهام الوسائط المتعددة، توفر مكتبة 🤗 Transformers فئة معالج تجمع بفاعلية فئات المعالجة مثل مستخرج الميزات ومقسّم الرموز في كائن واحد. على سبيل المثال، دعنا نستخدم [`Wav2Vec2Processor`] لمهمة التعرف الآلي على الكلام (ASR). تقوم مهمة ASR بتحويل الصوت إلى نص، لذلك ستحتاج إلى مستخرج ميزات ومقسّم رموز.
|
||||
|
||||
قم بإنشاء مستخرج ميزات لمعالجة المدخلات الصوتية:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
|
||||
```
|
||||
|
||||
قم بإنشاء مقسّم رموز لمعالجة المدخلات النصية:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2CTCTokenizer
|
||||
|
||||
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
|
||||
```
|
||||
|
||||
قم بدمج مستخرج الميزات ومقسّم الرموز في [`Wav2Vec2Processor`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2Processor
|
||||
|
||||
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
باستخدام فئتين أساسيتين - التكوين والنموذج - بالإضافة إلى فئة معالجة مسبق (مقسّم رموز أو معالج صورة أو مستخرج ميزات أو معالج)، يمكنك إنشاء أي من النماذج التي تدعمها مكتبة 🤗 Transformers. يمكن تكوين كل من هذه الفئات الأساسية، مما يسمح لك باستخدام السمات المطلوبة. يمكنك بسهولة تهيئة نموذج للتدريب أو تعديل نموذج مدرب مسبقاً لإجراء ضبط دقيق.
|
||||
323
docs/source/ar/custom_models.md
Normal file
323
docs/source/ar/custom_models.md
Normal file
@ -0,0 +1,323 @@
|
||||
# بناء نماذج مخصصة
|
||||
|
||||
تم تصميم مكتبة 🤗 Transformers لتكون قابلة للتوسيع بسهولة. كل نموذج مُشفّر بالكامل في مجلد فرعي معين بالمستودع، دون أي تجريد، لذلك يمكنك بسهولة نسخ ملف النمذجة وتعديله وفقًا لاحتياجاتك.
|
||||
|
||||
إذا كنت تُنشئ نموذجًا جديدًا تمامًا، فقد يكون من الأسهل البدء من الصفر. في هذا البرنامج التعليمي، سنُرِيك كيفية كتابة نموذج مخصص وتكوينه ليُستخدم داخل Transformers، وكيفية مشاركته مع المجتمع (مع الكود الذي يعتمد عليه) بحيث يمكن لأي شخص استخدامه، حتى إذا لم يكن موجودًا في مكتبة 🤗 Transformers. سنرى كيفية البناء على المحولات ونوسّع الإطار باستخدام الأدوات التي يمكن استخدامها لتعديل سلوك الإطار (hooks) والتعليمات البرمجية المخصصة.
|
||||
|
||||
سنوضح كل هذا من خلال نموذج ResNet، بتغليف فئة ResNet من
|
||||
[مكتبة timm](https://github.com/rwightman/pytorch-image-models) داخل [`PreTrainedModel`].
|
||||
|
||||
## كتابة إعدادات مخصصة
|
||||
|
||||
لنبدأ بكتابة إعدادات النموذج. إعدادات النموذج هو كائنٌ يحتوي على جميع المعلومات اللازمة لبنائه. كما سنرى لاحقًا، يتطلب النموذج كائن `config` لتهيئته، لذا يجب أن يكون هذا الكائن كاملاً.
|
||||
|
||||
<Tip>
|
||||
|
||||
تتبع النماذج في مكتبة `transformers` اتفاقية قبول كائن `config` في دالة `__init__` الخاصة بها، ثم تمرر كائن `config` بالكامل إلى الطبقات الفرعية في النموذج، بدلاً من تقسيمه إلى معامﻻت متعددة. يؤدي كتابة نموذجك بهذا الأسلوب إلى كود أبسط مع "مصدر حقيقة" واضح لأي فرط معلمات، كما يسهل إعادة استخدام الكود من نماذج أخرى في `transformers`.
|
||||
|
||||
</Tip>
|
||||
|
||||
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
|
||||
|
||||
```python
|
||||
from transformers import PretrainedConfig
|
||||
from typing import List
|
||||
|
||||
|
||||
class ResnetConfig(PretrainedConfig):
|
||||
model_type = "resnet"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_type="bottleneck",
|
||||
layers: List[int] = [3, 4, 6, 3],
|
||||
num_classes: int = 1000,
|
||||
input_channels: int = 3,
|
||||
cardinality: int = 1,
|
||||
base_width: int = 64,
|
||||
stem_width: int = 64,
|
||||
stem_type: str = "",
|
||||
avg_down: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if block_type not in ["basic", "bottleneck"]:
|
||||
raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
|
||||
if stem_type not in ["", "deep", "deep-tiered"]:
|
||||
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
|
||||
|
||||
self.block_type = block_type
|
||||
self.layers = layers
|
||||
self.num_classes = num_classes
|
||||
self.input_channels = input_channels
|
||||
self.cardinality = cardinality
|
||||
self.base_width = base_width
|
||||
self.stem_width = stem_width
|
||||
self.stem_type = stem_type
|
||||
self.avg_down = avg_down
|
||||
super().__init__(**kwargs)
|
||||
```
|
||||
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
|
||||
|
||||
- يجب أن ترث من `PretrainedConfig`،
|
||||
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
|
||||
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
|
||||
|
||||
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
|
||||
|
||||
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
|
||||
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
|
||||
|
||||
مع القيام بذلك، يمكنك بسهولة إنشاء تكوينك وحفظه مثلما تفعل مع أي تكوين نموذج آخر في
|
||||
المكتبة. إليك كيفية إنشاء تكوين resnet50d وحفظه:
|
||||
|
||||
```py
|
||||
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
|
||||
resnet50d_config.save_pretrained("custom-resnet")
|
||||
```
|
||||
|
||||
سيؤدي هذا إلى حفظ ملف باسم `config.json` داخل مجلد `custom-resnet`. يمكنك بعد ذلك إعادة تحميل تكوينك باستخدام
|
||||
طريقة `from_pretrained`:
|
||||
|
||||
```py
|
||||
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
|
||||
```
|
||||
|
||||
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
|
||||
|
||||
## كتابة نموذج مخصص
|
||||
|
||||
الآن بعد أن أصبح لدينا تكوين ResNet، يمكننا المتابعة لإنشاء نموذجين: الأول يستخرج الميزات المخفية من دفعة من الصور (مثل [`BertModel`]) والآخر مناسب لتصنيف الصور (مثل [`BertForSequenceClassification`]).
|
||||
|
||||
كما ذكرنا سابقًا، سنقوم ببناء نموذج مبسط لتسهيل الفهم في هذا المثال. الخطوة الوحيدة المطلوبة قبل كتابة هذه الفئة هي لربط أنواع وحدات البناء بفئات ذات وحدات بناء فعلية. بعد ذلك، يُعرّف النموذج من خلال التكوين عبر تمرير كل شيء إلى فئة `ResNet`:
|
||||
|
||||
```py
|
||||
from transformers import PreTrainedModel
|
||||
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
|
||||
from .configuration_resnet import ResnetConfig
|
||||
|
||||
|
||||
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
|
||||
|
||||
|
||||
class ResnetModel(PreTrainedModel):
|
||||
config_class = ResnetConfig
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
block_layer = BLOCK_MAPPING[config.block_type]
|
||||
self.model = ResNet(
|
||||
block_layer,
|
||||
config.layers,
|
||||
num_classes=config.num_classes,
|
||||
in_chans=config.input_channels,
|
||||
cardinality=config.cardinality,
|
||||
base_width=config.base_width,
|
||||
stem_width=config.stem_width,
|
||||
stem_type=config.stem_type,
|
||||
avg_down=config.avg_down,
|
||||
)
|
||||
|
||||
def forward(self, tensor):
|
||||
return self.model.forward_features(tensor)
|
||||
```
|
||||
|
||||
بالنسبة للنموذج الذي سيصنف الصور، فإننا نغير فقط طريقة التقديم:
|
||||
|
||||
```py
|
||||
import torch
|
||||
|
||||
|
||||
class ResnetModelForImageClassification(PreTrainedModel):
|
||||
config_class = ResnetConfig
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
block_layer = BLOCK_MAPPING[config.block_type]
|
||||
self.model = ResNet(
|
||||
block_layer,
|
||||
config.layers,
|
||||
num_classes=config.num_classes,
|
||||
in_chans=config.input_channels,
|
||||
cardinality=config.cardinality,
|
||||
base_width=config.base_width,
|
||||
stem_width=config.stem_width,
|
||||
stem_type=config.stem_type,
|
||||
avg_down=config.avg_down,
|
||||
)
|
||||
|
||||
def forward(self, tensor, labels=None):
|
||||
logits = self.model(tensor)
|
||||
if labels is not None:
|
||||
loss = torch.nn.cross_entropy(logits, labels)
|
||||
return {"loss": loss, "logits": logits}
|
||||
return {"logits": logits}
|
||||
```
|
||||
في كلتا الحالتين، لاحظ كيف نرث من `PreTrainedModel` ونستدعي مُهيئ الفئة الرئيسية باستخدام `config` (كما تفعل عند إنشاء وحدة `torch.nn.Module` عادية). ليس من الضروري تعريف `config_class` إلا إذا كنت ترغب في تسجيل نموذجك مع الفئات التلقائية (راجع القسم الأخير).
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا كان نموذجك مشابهًا جدًا لنموذج داخل المكتبة، فيمكنك إعادة استخدام نفس التكوين مثل هذا النموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكن لنموذجك أن يعيد أي شيء تريده، ولكن إعادة قاموس مثلما فعلنا لـ
|
||||
`ResnetModelForImageClassification`، مع تضمين الخسارة عند تمرير العلامات، سيجعل نموذجك قابلًا للاستخدام مباشرة داخل فئة [`Trainer`]. يعد استخدام تنسيق إخراج آخر أمرًا جيدًا طالما أنك تخطط لاستخدام حلقة تدريب خاصة بك أو مكتبة أخرى للتدريب.
|
||||
|
||||
الآن بعد أن أصبح لدينا فئة النموذج، دعنا ننشئ واحدة:
|
||||
|
||||
```py
|
||||
resnet50d = ResnetModelForImageClassification(resnet50d_config)
|
||||
```
|
||||
|
||||
يمكنك استخدام أي من طرق فئة [`PreTrainedModel`]، مثل [`~PreTrainedModel.save_pretrained`] أو
|
||||
[`~PreTrainedModel.push_to_hub`]. سنستخدم الثاني في القسم التالي، وسنرى كيفية دفع أوزان النموذج مع كود نموذجنا. ولكن أولاً، دعنا نحمل بعض الأوزان المُعلمة مسبقًا داخل نموذجنا.
|
||||
|
||||
في حالة الاستخدام الخاصة بك، فمن المحتمل أن تقوم بتدريب نموذجك المخصص على بياناتك الخاصة. للانتقال بسرعة خلال هذا البرنامج التعليمي،
|
||||
سنستخدم الإصدار المُعلم مسبقًا من resnet50d. نظرًا لأن نموذجنا هو مجرد غلاف حوله، فمن السهل نقل هذه الأوزان:
|
||||
|
||||
```py
|
||||
import timm
|
||||
|
||||
pretrained_model = timm.create_model("resnet50d", pretrained=True)
|
||||
resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
```
|
||||
|
||||
الآن دعونا نرى كيفية التأكد من أنه عند قيامنا بـ [`~PreTrainedModel.save_pretrained`] أو [`~PreTrainedModel.push_to_hub`]، يتم حفظ كود النموذج.
|
||||
|
||||
## تسجيل نموذج مع كود مخصص للفئات التلقائية
|
||||
|
||||
إذا كنت تكتب مكتبة توسع 🤗 Transformers، فقد ترغب في توسيع الفئات التلقائية لتشمل نموذجك الخاص. يختلف هذا عن نشر الكود إلى Hub بمعنى أن المستخدمين سيحتاجون إلى استيراد مكتبتك للحصول على النماذج المخصصة (على عكس تنزيل كود النموذج تلقائيًا من Hub).
|
||||
|
||||
ما دام تكوينك يحتوي على معامل `model_type` مختلفة عن أنواع النماذج الحالية، وأن فئات نماذجك لديك لديها الخصائص الصحيحة `config_class`، فيمكنك ببساطة إضافتها إلى الفئات التلقائية مثل هذا:
|
||||
|
||||
```py
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
|
||||
|
||||
AutoConfig.register("resnet", ResnetConfig)
|
||||
AutoModel.register(ResnetConfig, ResnetModel)
|
||||
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
|
||||
```
|
||||
|
||||
لاحظ أن الحجة الأولى المستخدمة عند تسجيل تكوينك المخصص لـ [`AutoConfig`] يجب أن تتطابق مع `model_type`
|
||||
من تكوينك المخصص، والحجة الأولى المستخدمة عند تسجيل نماذجك المخصصة لأي فئة نموذج تلقائي يجب
|
||||
أن تتطابق مع `config_class` من تلك النماذج.
|
||||
|
||||
## إرسال الكود إلى Hub
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
هذا API تجريبي وقد يكون له بعض التغييرات الطفيفة في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
أولاً، تأكد من تعريف نموذجك بالكامل في ملف `.py`. يمكن أن يعتمد على الاستيراد النسبي لملفات أخرى طالما أن جميع الملفات موجودة في نفس الدليل (لا ندعم الوحدات الفرعية لهذه الميزة حتى الآن). في مثالنا، سنحدد ملف `modeling_resnet.py` وملف `configuration_resnet.py` في مجلد باسم "resnet_model" في دليل العمل الحالي. يحتوي ملف التكوين على كود لـ `ResnetConfig` ويحتوي ملف النمذجة على كود لـ `ResnetModel` و`ResnetModelForImageClassification`.
|
||||
|
||||
```
|
||||
.
|
||||
└── resnet_model
|
||||
├── __init__.py
|
||||
├── configuration_resnet.py
|
||||
└── modeling_resnet.py
|
||||
```
|
||||
|
||||
يمكن أن يكون ملف `__init__.py` فارغًا، فهو موجود فقط حتى يتمكن Python من اكتشاف أن `resnet_model` يمكن استخدامه كموديل.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
إذا كنت تقوم بنسخ ملفات النمذجة من المكتبة، فسوف تحتاج إلى استبدال جميع الواردات النسبية في أعلى الملف
|
||||
لاستيرادها من حزمة `transformers`.
|
||||
|
||||
</Tip>
|
||||
|
||||
لاحظ أنه يمكنك إعادة استخدام (أو توسيع) تكوين/نموذج موجود.
|
||||
|
||||
لمشاركة نموذجك مع المجتمع، اتبع الخطوات التالية: أولاً، قم باستيراد نموذج ResNet والتكوين من الملفات التي تم إنشاؤها حديثًا:
|
||||
|
||||
```py
|
||||
from resnet_model.configuration_resnet import ResnetConfig
|
||||
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
|
||||
```
|
||||
|
||||
بعد ذلك، يجب عليك إخبار المكتبة بأنك تريد نسخ ملفات الكود الخاصة بهذه الكائنات عند استخدام طريقة `save_pretrained`
|
||||
وتسجيلها بشكل صحيح باستخدام فئة تلقائية (خاصة للنماذج)، ما عليك سوى تشغيل:
|
||||
|
||||
```py
|
||||
ResnetConfig.register_for_auto_class()
|
||||
ResnetModel.register_for_auto_class("AutoModel")
|
||||
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
|
||||
```
|
||||
|
||||
لاحظ أنه لا توجد حاجة لتحديد فئة تلقائية للتكوين (هناك فئة تلقائية واحدة فقط لها،
|
||||
[`AutoConfig`]) ولكن الأمر يختلف بالنسبة للنماذج. قد يكون نموذجك المخصص مناسبًا للعديد من المهام المختلفة، لذلك يجب
|
||||
تحديد أي من الفئات التلقائية هو الصحيح لنموذجك.
|
||||
|
||||
<Tip>
|
||||
|
||||
استخدم `register_for_auto_class()` إذا كنت تريد نسخ ملفات الكود. إذا كنت تفضل استخدام الكود على Hub من مستودع آخر،
|
||||
فلا تحتاج إلى استدعائه. في الحالات التي يوجد فيها أكثر من فئة تلقائية واحدة، يمكنك تعديل ملف `config.json` مباشرة باستخدام
|
||||
الهيكل التالي:
|
||||
|
||||
```json
|
||||
"auto_map": {
|
||||
"AutoConfig": "<your-repo-name>--<config-name>",
|
||||
"AutoModel": "<your-repo-name>--<config-name>",
|
||||
"AutoModelFor<Task>": "<your-repo-name>--<config-name>",
|
||||
},
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
بعد ذلك، دعنا نقوم بإنشاء التكوين والنماذج كما فعلنا من قبل:
|
||||
|
||||
```py
|
||||
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
|
||||
resnet50d = ResnetModelForImageClassification(resnet50d_config)
|
||||
|
||||
pretrained_model = timm.create_model("resnet50d", pretrained=True)
|
||||
resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
```
|
||||
|
||||
الآن لإرسال النموذج إلى Hub، تأكد من تسجيل الدخول. إما تشغيل في المحطة الأوامر الطرفية الخاصة بك:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
أو من دفتر ملاحظات:
|
||||
|
||||
```py
|
||||
from huggingface_hub import notebook_login
|
||||
|
||||
notebook_login()
|
||||
```
|
||||
|
||||
يمكنك بعد ذلك الضغط على مساحة الاسم الخاصة بك (أو منظمة أنت عضو فيها) مثل هذا:
|
||||
|
||||
```py
|
||||
resnet50d.push_to_hub("custom-resnet50d")
|
||||
```
|
||||
|
||||
بالإضافة إلى أوزان النمذجة والتكوين بتنسيق json، فقد قام هذا أيضًا بنسخ ملفات النمذجة والتكوين `.py` في مجلد `custom-resnet50d` وتحميل النتيجة إلى Hub. يمكنك التحقق من النتيجة في هذا [مستودع النموذج](https://huggingface.co/sgugger/custom-resnet50d).
|
||||
|
||||
راجع [البرنامج التعليمي للمشاركة](model_sharing) لمزيد من المعلومات حول طريقة الدفع إلى المحور.
|
||||
|
||||
### استخدام نموذج مع كود مخصص
|
||||
|
||||
يمكنك استخدام أي تكوين أو نموذج أو مقسم لغوي مع ملفات برمجة مخصصة في مستودعه باستخدام الفئات التلقائية و دالة `from_pretrained`.تُفحص جميع الملفات والرموز المرفوع إلى Hub بحثًا عن البرامج الضارة (راجع وثائق [أمان Hub](https://huggingface.co/docs/hub/security#malware-scanning) لمزيد من المعلومات)، ولكن يجب عليك مراجعة كود النموذج والمؤلف لتجنب تنفيذ التعليمات البرمجية الضارة على جهازك. لتفعيل نموذج يحتوي على شفرة برمجية مخصصة، عيّن `trust_remote_code=True`:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForImageClassification
|
||||
|
||||
model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True)
|
||||
```
|
||||
|
||||
يُنصح بشدة بتحديد رقم إصدار (commit hash) كـ `revision` للتأكد من عدم تعديل مؤلف النموذج للشفرة لاحقًابإضافة أسطر ضارة (إلا إذا كنت تثق تمامًا بمؤلفي النموذج):
|
||||
|
||||
```py
|
||||
commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292"
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"sgugger/custom-resnet50d"، trust_remote_code=True، revision=commit_hash
|
||||
)
|
||||
```
|
||||
|
||||
لاحظ وجود زرّ لنسخ رقم إصدار بسهولة عند تصفح سجل التزامات مستودع النموذج على منصة Hugging Face.
|
||||
51
docs/source/ar/fast_tokenizers.md
Normal file
51
docs/source/ar/fast_tokenizers.md
Normal file
@ -0,0 +1,51 @@
|
||||
# استخدام مجزئيات النصوص من 🤗 Tokenizers
|
||||
|
||||
يعتمد [`PreTrainedTokenizerFast`] على مكتبة [🤗 Tokenizers](https://huggingface.co/docs/tokenizers). يمكن تحميل المجزئات اللغويين الذين تم الحصول عليهم من مكتبة 🤗 Tokenizers ببساطة شديدة في 🤗 Transformers.
|
||||
|
||||
قبل الدخول في التفاصيل، دعونا نبدأ أولاً بإنشاء مُجزىء لغوي تجريبي في بضع سطور:
|
||||
|
||||
```python
|
||||
>>> from tokenizers import Tokenizer
|
||||
>>> from tokenizers.models import BPE
|
||||
>>> from tokenizers.trainers import BpeTrainer
|
||||
>>> from tokenizers.pre_tokenizers import Whitespace
|
||||
|
||||
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
|
||||
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
|
||||
|
||||
>>> tokenizer.pre_tokenizer = Whitespace()
|
||||
>>> files = [...]
|
||||
>>> tokenizer.train(files, trainer)
|
||||
```
|
||||
|
||||
الآن لدينا مُجزىء لغوي مدرب على الملفات التي حددناها. يمكننا إما الاستمرار في استخدامه في وقت التشغيل هذا، أو حفظه في ملف JSON لإعادة استخدامه لاحقًا.
|
||||
|
||||
## تحميل مُجزئ النّصوص مُباشرةً
|
||||
|
||||
دعونا نرى كيف يمكننا الاستفادة من كائن (مُجزئ النصوص) في مكتبة 🤗 Transformers. تسمح فئة [`PreTrainedTokenizerFast`] سهولة إنشاء *tokenizer*، من خلال قبول كائن *المُجزئ النصوص* مُهيّأ مُسبقًا كمعامل:
|
||||
|
||||
```python
|
||||
>>> from transformers import PreTrainedTokenizerFast
|
||||
|
||||
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
|
||||
```
|
||||
|
||||
يمكن الآن استخدام هذا الكائن مع جميع الطرق المُشتركة بين مُجزّئي النّصوص لـ 🤗 Transformers! انتقل إلى [صفحة مُجزّئ النّصوص](main_classes/tokenizer) لمزيد من المعلومات.
|
||||
|
||||
## التحميل من ملف JSON
|
||||
|
||||
لتحميل مُجزّئ النص من ملف JSON، دعونا نبدأ أولاً بحفظ مُجزّئ النّصوص:
|
||||
|
||||
```python
|
||||
>>> tokenizer.save("tokenizer.json")
|
||||
```
|
||||
|
||||
يمكن تمرير المسار الذي حفظنا به هذا الملف إلى طريقة تهيئة [`PreTrainedTokenizerFast`] باستخدام المُعامل `tokenizer_file`:
|
||||
|
||||
```python
|
||||
>>> from transformers import PreTrainedTokenizerFast
|
||||
|
||||
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
|
||||
```
|
||||
|
||||
يمكن الآن استخدام هذا الكائن مع جميع الطرق التي تشترك فيها مُجزّئي النّصوص لـ 🤗 Transformers! انتقل إلى [صفحة مُجزّئ النص](main_classes/tokenizer) لمزيد من المعلومات.
|
||||
89
docs/source/ar/gguf.md
Normal file
89
docs/source/ar/gguf.md
Normal file
@ -0,0 +1,89 @@
|
||||
# GGUF وتفاعلها مع المحولات
|
||||
|
||||
تُستخدم صيغة ملف GGUF لتخزين النماذج للاستدلال باستخدام [GGML](https://github.com/ggerganov/ggml) والمكتبات الأخرى التي تعتمد عليه، مثل [llama.cpp](https://github.com/ggerganov/llama.cpp) أو [whisper.cpp](https://github.com/ggerganov/whisper.cpp) الشهيرة جدًا.
|
||||
|
||||
إنها صيغة ملف [مدعومة من قبل Hugging Face Hub](https://huggingface.co/docs/hub/en/gguf) مع ميزات تسمح بالفحص السريع للموترات والبيانات الوصفية داخل الملف.
|
||||
|
||||
تم تصميم تنسيق الملف هذا كـ "تنسيق ملف واحد" حيث يحتوي ملف واحد عادةً على كل من سمات التكوين ومفردات المجزىء اللغوي والخصائص الأخرى، بالإضافة إلى جميع الموترات التي سيتم تحميلها في النموذج. تأتي هذه الملفات بتنسيقات مختلفة وفقًا لنوع التكميم في الملف. نلقي نظرة موجزة على بعضها [هنا](https://huggingface.co/docs/hub/en/gguf#quantization-types).
|
||||
|
||||
## الدعم داخل المحولات
|
||||
|
||||
أضفنا القدرة على تحميل ملفات `gguf` داخل `المحولات` لتوفير قدرات تدريب/ضبط إضافية لنماذج gguf، قبل إعادة تحويل تلك النماذج إلى `gguf` لاستخدامها داخل نظام `ggml`. عند تحميل نموذج، نقوم أولاً بإلغاء تكميمه إلى fp32، قبل تحميل الأوزان لاستخدامها في PyTorch.
|
||||
|
||||
> [!NOTE]
|
||||
> لا يزال الدعم تجريبيًا للغاية ونرحب بالمساهمات من أجل ترسيخه عبر أنواع التكميم وبنى النماذج.
|
||||
|
||||
فيما يلي، بنيات النماذج وأنواع التكميم المدعومة:
|
||||
|
||||
### أنواع التكميم المدعومة
|
||||
|
||||
تُحدد أنواع التكميم المدعومة مبدئيًا وفقًا لملفات التكميم الشائعة التي تمت مشاركتها على Hub.
|
||||
|
||||
- F32
|
||||
- F16
|
||||
- BF16
|
||||
- Q4_0
|
||||
- Q4_1
|
||||
- Q5_0
|
||||
- Q5_1
|
||||
- Q8_0
|
||||
- Q2_K
|
||||
- Q3_K
|
||||
- Q4_K
|
||||
- Q5_K
|
||||
- Q6_K
|
||||
- IQ1_S
|
||||
- IQ1_M
|
||||
- IQ2_XXS
|
||||
- IQ2_XS
|
||||
- IQ2_S
|
||||
- IQ3_XXS
|
||||
- IQ3_S
|
||||
- IQ4_XS
|
||||
- IQ4_NL
|
||||
|
||||
> [!NOTE]
|
||||
> لدعم إلغاء تكميم gguf، يلزم تثبيت `gguf>=0.10.0`.
|
||||
|
||||
### بنيات النماذج المدعومة
|
||||
|
||||
في الوقت الحالي، بنيات النماذج المدعومة هي البنيات التي كانت شائعة جدًا على Hub، وهي:
|
||||
|
||||
- LLaMa
|
||||
- Mistral
|
||||
- Qwen2
|
||||
- Qwen2Moe
|
||||
- Phi3
|
||||
- Bloom
|
||||
- Falcon
|
||||
- StableLM
|
||||
- GPT2
|
||||
- Starcoder2
|
||||
- T5
|
||||
|
||||
## مثال الاستخدام
|
||||
|
||||
لتحميل ملفات `gguf` في `transformers`، يجب تحديد معامل `gguf_file` فى دالة `from_pretrained` لكل من المُجزّئ اللغوية والنموذج. فيما يلي كيفية تحميل المُجزّئ اللغوي ونموذج، يمكن تحميلهما من نفس الملف:
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
||||
filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
|
||||
```
|
||||
|
||||
الآن لديك إمكانية الوصول إلى النسخة الكامل غير المكممة للنموذج في بيئة PyTorch، حيث يمكنك دمجه مع مجموعة كبيرة من الأدوات الأخرى.
|
||||
|
||||
لإعادة التحويل إلى ملف `gguf`، نوصي باستخدام ملف [`convert-hf-to-gguf.py`](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) من llama.cpp.
|
||||
|
||||
فيما يلي كيفية إكمال البرنامج النصي أعلاه لحفظ النموذج وإعادة تصديره مرة أخرى إلى `gguf`:
|
||||
|
||||
```py
|
||||
tokenizer.save_pretrained('directory')
|
||||
model.save_pretrained('directory')
|
||||
|
||||
!python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory}
|
||||
```
|
||||
446
docs/source/ar/glossary.md
Normal file
446
docs/source/ar/glossary.md
Normal file
@ -0,0 +1,446 @@
|
||||
# قاموس المصطلحات
|
||||
|
||||
يحدد هذا المسرد مصطلحات التعلم الآلي العامة و 🤗 Transformers لمساعدتك على فهم الوثائق بشكل أفضل.
|
||||
|
||||
## A
|
||||
|
||||
### قناع الانتباه (Attention Mask)
|
||||
|
||||
قناع الانتباه هو مُدخل اختياري يستخدم عند تجميع التسلسلات معًا
|
||||
|
||||
<Youtube id="M6adb1j2jPI"/>
|
||||
|
||||
يشير هذا المُدخل إلى النموذج أى الرموز المميزة (tokens) التي يجب الانتباه إليها، وأيها لا ينبغي ذلك.
|
||||
|
||||
على سبيل المثال، تأمّل هذين التسلسُلين :
|
||||
|
||||
```python
|
||||
>>> from transformers import BertTokenizer
|
||||
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
|
||||
>>> sequence_a = "This is a short sequence."
|
||||
>>> sequence_b = "This is a rather long sequence. It is at least longer than sequence A."
|
||||
|
||||
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
|
||||
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
|
||||
```
|
||||
|
||||
لدى الإصدارات المشفرة أطوال مختلفة:
|
||||
|
||||
```python
|
||||
>>> len(encoded_sequence_a), len(encoded_sequence_b)
|
||||
(8, 19)
|
||||
```
|
||||
|
||||
لذلك، لا يمكننا وضعها معًا في نفس المصفوفة كما هي. يجب إضافة حشو إلى التسلسل الأول حتى يصل إلى طول التسلسل الثاني، أو يجب تقليص الثاني إلى طول الأول.
|
||||
|
||||
في الحالة الأولى، يتم تمديد قائمة المعرفات بواسطة مؤشرات الحشو. يمكننا تمرير قائمة إلى المحلل اللغوي وطلب منه إضافة الحشو بهذه الطريقة:
|
||||
|
||||
```python
|
||||
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
|
||||
```
|
||||
|
||||
يمكننا أن نرى أنه تمت إضافة اصفار على يمين الجملة الأولى لجعلها بنفس طول الجملة الثانية:
|
||||
|
||||
```python
|
||||
>>> padded_sequences["input_ids"]
|
||||
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
|
||||
```
|
||||
|
||||
يمكن بعد ذلك تحويل هذا إلى مصفوفة في PyTorch أو TensorFlow. قناع الانتباه هو مصفوفة ثنائية تشير إلى
|
||||
موضع المؤشرات المحشوه بحيث لا ينتبه إليها النموذج. بالنسبة إلى [`BertTokenizer`]`1` يشير إلى
|
||||
قيمة يجب الانتباه إليها، في حين يشير `0` إلى قيمة مبطنة. يُمكن إيجاد قناع الانتباه في القاموس الذي يُعيده مُجزِّئ النصوص (tokenizer) تحت المفتاح "attention_mask".
|
||||
```python
|
||||
>>> padded_sequences["attention_mask"]
|
||||
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
|
||||
```
|
||||
|
||||
### نماذج الترميز التلقائي (autoencoding models)
|
||||
|
||||
راجع [نماذج الترميز](#encoder-models) و [نمذجة اللغة المقنعة](#masked-language-modeling-mlm)
|
||||
|
||||
### النماذج ذاتية الانحدار (Autoregressive Models)
|
||||
|
||||
راجع [نمذجة اللغة السببية](#causal-language-modeling) و [نماذج فك التشفير](#decoder-models)
|
||||
|
||||
## B
|
||||
|
||||
### العمود الفقري (backbone)
|
||||
|
||||
يُمثل العمود الفقري الشبكة العصبونية (الترميزات والطبقات) المسؤولة عن إخراج الحالات الخفية أو المُميزات الأولية. عادة ما يكون متصلاً بـ [رأس](#head) يستقبل المُميزات كمدخلات لإجراء تنبؤ. على سبيل المثال، يُعد النموذج [`ViTModel`] عمودًا فقريًا دون رأس مُحدد مُرفق به. يمكن أيضًا استخدام `ViTModel` كعمود فقري في نماذج أخرى, مثل [DPT](model_doc/dpt).
|
||||
|
||||
## C
|
||||
|
||||
### نمذجة اللغة السببية (أو التنبؤية) causal language modeling
|
||||
|
||||
مهمة ما قبل التدريب يقوم فيها النموذج بقراءة النصوص بالترتيب ويتنبأ بالكلمة التالية. يتم ذلك عادةً من خلال قراءة الجملة كاملةً، ولكن مع استخدام قناع داخل النموذج لإخفاء الرموز المميزة اللاحقة في خطوة زمنية معينة.
|
||||
|
||||
|
||||
|
||||
### قناة(channel)
|
||||
|
||||
تتكون الصور الملونة من مزيج من القيم في ثلاث قنوات لونية: الأحمر والأخضر والأزرق (RGB) بينما تحتوي صور ذات التدرج رمادي على قناة واحدة فقط. في مكتبة 🤗 Transformers، يمكن أن تكون القناة اللونية البُعد الأول أو الأخير في مُصفوفة الصورة: [`n_channels`، `height`، `width`] أو [`height`، `width`، `n_channels`].
|
||||
|
||||
### التصنيف الزمني التوصيلي connectionist temporal classification (CTC)
|
||||
|
||||
خوارزمية تسمح للنموذج بالتعلم دون معرفة كيفية محاذاة المدخلات مع المخرجات بدقة؛ يحسب CTC توزيع جميع المخرجات المحتملة لمدخلات مُحددة ويختار المخرج الأكثر احتمالًا. تُستخدم CTC بشكل شائع في مهام التعرف على الكلام نظرًا لأن الكلام المنطوق لا يتوافق دائمًا بشكل مُباشر مع النص المكتوب، لأسباب مختلفة مثل معدلات الكلام المختلفة للمتكلم.
|
||||
|
||||
### الالتفاف (Convolution)
|
||||
|
||||
نوع من الطبقات في شبكة عصبية، حيث تُضرب مصفوفة الإدخال عُنصرًا بُعنصر بمصفوفة أصغر تُسمى (النواة أو المرشح) ويتم جمع القيم في مصفوفة جديدة. يُعرف هذا باسم عملية الالتفاف التي يتم تكرارها عبر مصفوفة الإدخال بأكملها. تُطبق كل عملية التفاف على جزء مُختلف من مصفوفة الإدخال. تُستخدم الشبكات العصبية الالتفافية (CNNs) بشكل شائع في رؤية الحاسوب.
|
||||
|
||||
## D
|
||||
|
||||
### التوازي على مستوى البيانات (DataParallel - DP)
|
||||
|
||||
هي تقنية تُستخدم لتدريب النماذج على عدة وحدات معالجة رسومات (GPUs)، حيث يتم نسخ نفس إعداد التدريب عدة مرات، بحيث تتلقى كل نسخة شريحة مختلفة من البيانات يتم تنفيذ المعالجة بالتوازي ويتم مزامنة جميع الإعدادات في نهاية كل خطوة تدريب.
|
||||
|
||||
تعرف على المزيد حول كيفية عمل DataParallel [هنا](perf_train_gpu_many#dataparallel-vs-distributeddataparallel).
|
||||
|
||||
### معرفات مدخلات وحدة فك التشفير (decoder input IDs)
|
||||
|
||||
هذا المدخل خاص بنماذج الترميز وفك التشفير، ويحتوي على معرفات الإدخال التي سيتم تغذيتها إلى وحدة فك التشفير.
|
||||
يجب استخدام هذه المدخلات لمهام التسلسل إلى التسلسل، مثل الترجمة أو التلخيص، وعادة ما يتم بناؤها بطريقة محددة لكل نموذج.
|
||||
|
||||
تقوم معظم نماذج الترميز وفك التشفير (BART، T5) بإنشاء معرفات `decoder_input_ids` الخاصة بها من `labels`. في مثل هذه النماذج،
|
||||
يعد تمرير `labels` هو الطريقة المفضلة للتعامل مع التدريب.
|
||||
|
||||
يرجى التحقق من وثائق كل نموذج لمعرفة كيفية تعاملها مع معرفات الإدخال هذه للتدريب على التسلسل إلى التسلسل.
|
||||
|
||||
### نماذج فك التشفير (decoder models)
|
||||
|
||||
يُشار إليها أيضًا باسم نماذج التنبؤية الذاتية، وتنطوي نماذج فك التشفير على مهمة ما قبل التدريب (تسمى نمذجة اللغة السببية) حيث يقرأ النموذج النصوص بالترتيب ويتعين عليه التنبؤ بالكلمة التالية. يتم ذلك عادةً عن طريق
|
||||
قراءة الجملة بأكملها مع قناع لإخفاء الرموز المميزة المستقبلية في خطوة زمنية معينة.
|
||||
|
||||
<Youtube id="d_ixlCubqQw"/>
|
||||
### التعلم العميق deep learning (DL)
|
||||
خوارزميات التعلم الآلي التي تستخدم الشبكات العصبية متعددة الطبقات.
|
||||
|
||||
## E
|
||||
|
||||
### نماذج الترميز (encoder models)
|
||||
|
||||
تُعرف أيضًا باسم نماذج الترميز التلقائي، وتأخذ نماذج الترميز إدخالًا (مثل النص أو الصور) وتحويلها إلى تمثيل رقمي مكثف يُطلق عليه الترميز. غالبًا ما يتم تدريب نماذج الترميز مسبقًا باستخدام تقنيات مثل [نمذجة اللغة المقنعة](#masked-language-modeling-mlm)، والتي تقوم بإخفاء أجزاء من تسلسل الإدخال وإجبار النموذج على إنشاء تمثيلات أكثر دلالة (فائدة ووضوحاً).
|
||||
|
||||
<Youtube id="H39Z_720T5s"/>
|
||||
|
||||
## F
|
||||
### استخراج الميزات (feature extraction)
|
||||
|
||||
عملية اختيار وتحويل البيانات الأولية إلى مجموعة من الميزات الأكثر إفادة وفائدة لخوارزميات التعلم الآلي. بعض الأمثلة على استخراج الميزات تشمل تحويل النص الأولي/الخام إلى ترميزات الكلمات واستخراج ميزات مهمة مثل الحواف أو الأشكال من بيانات الصور/الفيديو.
|
||||
|
||||
### تجزئة التغذية الأمامية (feed forward chunking)
|
||||
|
||||
في كل وحدة الانتباه الباقية في المحولات، تلي طبقة الاهتمام الانتباه عادة طبقتان للتغذية الأمامية.
|
||||
حجم تضمين الطبقة الأمامية الوسيطة أكبر عادة من حجم المخفي للنموذج (على سبيل المثال، لـ
|
||||
`google-bert/bert-base-uncased`).
|
||||
بالنسبة لإدخال بحجم `[batch_size, sequence_length]`، يمكن أن تمثل الذاكرة المطلوبة لتخزين التضمينات الأمامية الوسيطة `[batch_size، sequence_length, config.intermediate_size]` جزءًا كبيرًا من استخدام الذاكرة. لاحظ مؤلفو (https://arxiv.org/abs/2001.04451)[Reformer: The Efficient Transformer] أنه نظرًا لأن الحساب مستقل عن بعد `sequence_length`، فإنه من المكافئ رياضيًا حساب تضمينات الإخراج الأمامية `[batch_size، config.hidden_size]_0, ..., [batch_size، `config_size]_n
|
||||
فردياً والتوصيل بها لاحقًا إلى `[batch_size, sequence_length, config.hidden_size]` مع `n = sequence_length`، والذي يتداول زيادة وقت الحساب مقابل تقليل استخدام الذاكرة، ولكنه ينتج عنه نتيجة مكافئة رياضيا.
|
||||
|
||||
بالنسبة للنماذج التي تستخدم الدالة `[apply_chunking_to_forward]`، يحدد `chunk_size` عدد التضمينات يتم حساب الإخراج بالتوازي وبالتالي يحدد المقايضة بين حجم الذاكرة والتعقيد الوقت. إذا تم تعيين `chunk_size` إلى `0`، فلن يتم إجراء تجزئة التغذية الأمامية.
|
||||
|
||||
|
||||
### النماذج المضبوطة (finetuned models)
|
||||
|
||||
الضبط الدقيق هو شكل من أشكال نقل التعلم، يتضمن أخذ نموذج مُدرّب مسبقًا، وتجميد أوزانه، واستبدال طبقة الإخراج برأس نموذج مُضاف حديثًا. يتم تدريب رأس النموذج على مجموعة البيانات المستهدفة.
|
||||
|
||||
راجع البرنامج التعليمي [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) لمزيد من التفاصيل، وتعرف على كيفية ضبط النماذج باستخدام 🤗 Transformers.
|
||||
|
||||
## H
|
||||
|
||||
### رأس النموذج (head)
|
||||
|
||||
يشير رأس النموذج إلى الطبقة الأخيرة من الشبكة العصبية التي تقبل الحالات المخفية الخام/الأولية وتُسقطها على بُعد مختلف. يوجد رأس نموذج مختلف لكل مهمة.
|
||||
|
||||
* [`GPT2ForSequenceClassification`] هو رأس تصنيف تسلسل - طبقة خطية - أعلى نموذج [`GPT2Model`] الأساسي.
|
||||
* [`ViTForImageClassification`] هو رأس تصنيف صورة - طبقة خطية أعلى حالة مخفية نهائية للرمز `CLS` - أعلى نموذج [`ViTModel`] الأساسي.
|
||||
* [`Wav2Vec2ForCTC`] هو رأس نمذجة اللغة مع [CTC](#connectionist-temporal-classification-ctc) أعلى نموذج [`Wav2Vec2Model`] الأساسي.
|
||||
|
||||
## I
|
||||
|
||||
### رقعة الصور (image patch)
|
||||
|
||||
"رقعة الصورة" في نماذج المحولات البصرية، تُقسم الصورة إلى أجزاء أصغر تسمى "رقعات". يتم تمثيل كل رقعة بشكل رقمي (تحويلها إلى مجموعة من الأرقام) ثم تُعالج كسلسلة من البيانات. يمكنك العثور على حجم الرُقعة patch_size - أو دقتها - في إعدادات النموذج.
|
||||
|
||||
### الاستدلال (Inference)
|
||||
|
||||
الاستدلال هو عملية تقييم نموذج على بيانات جديدة بعد اكتمال التدريب. راجع البرنامج التعليمي [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) لمعرفة كيفية إجراء الاستدلال باستخدام 🤗 Transformers.
|
||||
|
||||
### معرفات الإدخال (input IDs)
|
||||
|
||||
معرفات الإدخال هي غالبًا المعلمات المطلوبة الوحيدة التي يجب تمريرها إلى النموذج كإدخال. هذه المعرفات عبارة عن أرقام تمثل كل كلمة أو رمز في الجملة التي نريد أن يفهمها النموذج. بمعنى آخر، هي طريقة لترجمة الكلمات إلى أرقام يتم استخدامها كإدخال بواسطة النموذج.
|
||||
|
||||
<Youtube id="VFp38yj8h3A"/>
|
||||
|
||||
يعمل كل محلل لغوي بشكل مختلف ولكن الآلية الأساسية تبقى كما هي. إليك مثال باستخدام محلل BERT اللغوي، والذي يعد محلل لغوي [WordPiece](https://arxiv.org/pdf/1609.08144.pdf):
|
||||
|
||||
```python
|
||||
>>> from transformers import BertTokenizer
|
||||
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
|
||||
>>> sequence = "A Titan RTX has 24GB of VRAM"
|
||||
```
|
||||
|
||||
يتولى المحلل اللغوي مهمة تقسيم التسلسل إلى رموز مميزة متوفرة في قاموس المحلل اللغوي.
|
||||
|
||||
```python
|
||||
>>> tokenized_sequence = tokenizer.tokenize(sequence)
|
||||
```
|
||||
|
||||
االرموز إما كلمات أو أجزاء كلمات. هنا على سبيل المثال، لم تكن كلمة "VRAM" موجودة في مفردات النموذج، لذلك تم تقسيمها إلى "V" و "RA" و "M". للإشارة إلى أن هذه الرموز ليست كلمات منفصلة ولكنها أجزاء من نفس الكلمة، تمت إضافة بادئة مزدوجة (#) إلى "RA" و "M":
|
||||
```python
|
||||
>>> print(tokenized_sequence)
|
||||
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
|
||||
```
|
||||
```python
|
||||
>>> print(tokenized_sequence)
|
||||
['A'، 'Titan'، 'R'، '##T'، '##X'، 'has'، '24'، '##GB'، 'of'، 'V'، '##RA'، '##M']
|
||||
```
|
||||
|
||||
يمكن بعد ذلك تحويل هذه الرموز إلى مُعرفات يفهمها النموذج. يمكن القيام بذلك عن طريق تغذية الجملة مباشرةً إلى مُجزّئ الرموز، والذي يستفيد من تنفيذ 🤗 Tokenizers بلغة Rust للحصول على أعلى أداء.
|
||||
|
||||
```python
|
||||
>>> inputs = tokenizer(sequence)
|
||||
```
|
||||
|
||||
يقوم المحلل اللغوي بإرجاع قاموس يحتوي على جميع المعلومات التي يحتاجها النموذج للعمل بشكل صحيح. وتوجد مؤشرات الرموز المميزة تحت مفتاح `input_ids`:
|
||||
|
||||
```python
|
||||
>>> encoded_sequence = inputs["input_ids"]
|
||||
>>> print(encoded_sequence)
|
||||
[101، 138، 18696، 155، 1942، 3190، 1144، 1572، 13745، 1104، 159، 9664، 2107، 102]
|
||||
```
|
||||
|
||||
لاحظ أن المحلل اللغوي يضيف تلقائيًا "رموزًا خاصة" (إذا كان النموذج المرتبط يعتمد عليها) وهي معرفات خاصة
|
||||
يستخدمها النموذج في بعض الأحيان.
|
||||
|
||||
إذا قمنا بفك تشفير التسلسل السابق،
|
||||
|
||||
```python
|
||||
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
|
||||
```
|
||||
|
||||
سنرى
|
||||
|
||||
```python
|
||||
>>> print(decoded_sequence)
|
||||
[CLS] A Titan RTX has 24GB of VRAM [SEP]
|
||||
```
|
||||
|
||||
لأن هذه هي الطريقة التي يتوقع بها نموذج [`BertModel`] إدخالاته.
|
||||
|
||||
## L
|
||||
|
||||
### االملصقات (Labels)
|
||||
|
||||
هي معامل اختياري يمكن إدخاله في النموذج لحساب الخسارة بنفسه.
|
||||
نماذج تصنيف التسلسل: ([BertForSequenceClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع للتسلسل بأكمله.
|
||||
نماذج تصنيف الرمز: ([BertForTokenClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size, seq_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي.
|
||||
نماذج النمذجة اللغوية المقنعة:([BertForMaskedLM]) يتوقع النموذج مصفوفة ذات بعد (batch_size, seq_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي: تكون الملصقات هي معرف رمز الكلمة المقنعة، والقيم الأخرى يتم تجاهلها (عادةً -100).
|
||||
مهام التسلسل إلى التسلسل: ([BartForConditionalGeneration], [MBartForConditionalGeneration]) يتوقع النموذج مصفوفة ذات بعد (batch_size, tgt_seq_length) حيث تتوافق كل قيمة مع التسلسل الهدف المرتبط بكل تسلسل مدخل. أثناء التدريب، سيقوم كل من BART و T5 بإنشاء decoder_input_ids و decoder attention masks داخليًا. عادةً لا يلزم توفيرها. هذا لا ينطبق على النماذج التي تستخدم إطار العمل Encoder-Decoder.
|
||||
نماذج تصنيف الصور: ([ViTForImageClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع لكل صورة فردية.
|
||||
نماذج التقسيم الدلالي: ([SegformerForSemanticSegmentation]) يتوقع النموذج مصفوفة ذات بعد (batch_size, height, width) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع لكل بكسل فردي.
|
||||
نماذج اكتشاف الأجسام: ([DetrForObjectDetection]) يتوقع النموذج قائمة من القواميس تحتوي على مفتاح class_labels و boxes حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع وعدد المربعات المحيطة بكل صورة فردية.
|
||||
نماذج التعرف التلقائي على الكلام: ([Wav2Vec2ForCTC]) يتوقع النموذج مصفوفة ذات بعد (batch_size, target_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي.
|
||||
|
||||
<Tip>
|
||||
|
||||
قد تختلف تسميات كل نموذج، لذا تأكد دائمًا من مراجعة وثائق كل نموذج للحصول على معلومات حول التسميات الخاصة به.
|
||||
|
||||
</Tip>
|
||||
لا تقبل النماذج الأساسية ([`BertModel`]) الملصقات ، لأنها نماذج المحول الأساسية، والتي تقوم ببساطة بإخراج الميزات.
|
||||
|
||||
### نماذج اللغة الكبيرة large language models (LLM)
|
||||
|
||||
مصطلح عام يشير إلى نماذج اللغة المحولة (GPT-3 و BLOOM و OPT) التي تم تدريبها على كمية كبيرة من البيانات. تميل هذه النماذج أيضًا إلى وجود عدد كبير من المعلمات القابلة للتعلم (على سبيل المثال، 175 مليار لمعلمة GPT-3).
|
||||
|
||||
## M
|
||||
|
||||
### نمذجة اللغة المقنعة masked language modeling (MLM)
|
||||
|
||||
مهمة تدريب مسبق حيث يرى النموذج نسخة تالفة من النصوص، وعادة ما يتم ذلك عن طريق حجب بعض الرموز بشكل عشوائي، ويتعين على النموذج التنبؤ بالنص الأصلي.
|
||||
|
||||
### متعدد الوسائط (multimodal)
|
||||
|
||||
مهمة تجمع بين النصوص مع نوع آخر من المدخلات (على سبيل المثال، الصور).
|
||||
|
||||
## N
|
||||
|
||||
### توليد اللغة الطبيعية Natural language generation (NLG)
|
||||
|
||||
جميع المهام المتعلقة بتوليد النص (على سبيل المثال، [اكتب باستخدام المحولات](https://transformer.huggingface.co/)، والترجمة).
|
||||
|
||||
### معالجة اللغة الطبيعية Natural language processing (NLP)
|
||||
|
||||
طريقة عامة للقول "التعامل مع النصوص".
|
||||
|
||||
### فهم اللغة الطبيعية Natural language understanding (NLU)
|
||||
|
||||
جميع المهام المتعلقة بفهم ما هو موجود في نص (على سبيل المثال تصنيف النص بأكمله، أو الكلمات الفردية).
|
||||
|
||||
## P
|
||||
|
||||
### خط الأنابيب (pipeline)
|
||||
|
||||
في مكتبة Transformers، يُشير مصطلح "خط الأنابيب" إلى سلسلة من الخطوات التي يتم تنفيذها بترتيب محدد لمعالجة البيانات وتحويلها وإرجاع تنبؤ من نموذج. بعض المراحل الشائعة في خط الأنابيب قد تشمل معالجة البيانات الأولية، واستخراج الميزات، والتوحيد.
|
||||
|
||||
للحصول على مزيد من التفاصيل، راجع [خطوط الأنابيب للاستدلال](https://huggingface.co/docs/transformers/pipeline_tutorial).
|
||||
|
||||
### التوازي على مستوى خط الأنابيب (PipelineParallel)
|
||||
|
||||
تقنية توازي يتم فيها تقسيم النموذج رأسياً (على مستوى الطبقة) عبر وحدات معالجة الرسومات (GPU) متعددة، بحيث توجد طبقة واحدة أو عدة طبقات من النموذج على وحدة معالجة الرسومات (GPU) واحدة فقط. تقوم كل وحدة معالجة رسومات (GPU) بمعالجة مراحل مختلفة من خط الأنابيب بالتوازي والعمل على جزء صغير من الدفعة. تعرف على المزيد حول كيفية عمل PipelineParallel [هنا](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism).
|
||||
|
||||
### قيم البكسل (pixel values)
|
||||
|
||||
مصفوفة من التمثيلات الرقمية لصورة يتم تمريرها إلى نموذج. تأخذ قيم البكسل شكل [`batch_size`، `num_channels`، `height`، `width`]، ويتم إنشاؤها من معالج الصور.
|
||||
|
||||
### التجميع (Pooling)
|
||||
|
||||
هي عملية تقوم بتقليص مصفوفة إلى مصفوفة أصغر، إما عن طريق أخذ القيمة القصوى أو المتوسط الحسابي للأبعاد التي يتم تجميعها. توجد طبقات التجميع بشكل شائع بين الطبقات التلافيفية convolutional layers لتقليل حجم تمثيل الميزات.
|
||||
|
||||
### معرفات الموضع (position IDs)
|
||||
|
||||
على عكس الشبكات العصبية المتكررة (RNNs) التي تتضمن موضع كل رمز (token) ضمن بنيتها، لا تدرك المحولات موضع كل رمز. لذلك، تستخدم معرفات الموضع (`position_ids`) من قبل النموذج لتحديد موضع كل رمز في قائمة الرموز.
|
||||
|
||||
إنها معلمة اختيارية. إذا لم يتم تمرير أي `position_ids` إلى النموذج، يتم إنشاء المعرفات تلقائيًا كترميزات موضعية مطلقة.
|
||||
|
||||
يتم اختيار الترميزات الموضعية المطلقة في النطاق `[0، config.max_position_embeddings - 1]`. تستخدم بعض النماذج أنواعًا أخرى من الترميزات الموضعية، مثل الترميزات الموضعية الجيبية أو الترميزات الموضعية النسبية.
|
||||
|
||||
### ما قبل المعالجة (preprocessing)
|
||||
|
||||
مهمة إعداد البيانات الخام بتنسيق يمكن أن تستهلكه نماذج التعلم الآلي بسهولة. على سبيل المثال، عادةً ما تتم معالجة النص مسبقًا عن طريق التمييز. للحصول على فكرة أفضل عن كيفية ظهور المعالجة المسبقة لأنواع الإدخال الأخرى، راجع البرنامج التعليمي [Preprocess](https://huggingface.co/docs/transformers/preprocessing).
|
||||
|
||||
### النموذج المسبق التدريب (pretrained model)
|
||||
|
||||
نموذج تم تدريبه مسبقًا على بعض البيانات (على سبيل المثال، كل Wikipedia). تنطوي طرق التدريب المسبق على هدف ذاتي الإشراف، والذي يمكن أن يكون قراءة النص ومحاولة التنبؤ بالكلمة التالية ( راجع (causal-language-modeling#)[نمذجة اللغة السببية] ) أو قناع بعض الكلمات ومحاولة التنبؤ بها ( راجع (masked-language#)[نمذجة اللغة المقنعة]- عرض MLM).
|
||||
|
||||
لدى نماذج الكلام والرؤية أهدافها التدريبية المسبقة الخاصة. على سبيل المثال، Wav2Vec2 هو نموذج كلام تم تدريبه مسبقًا على مهمة تباينية تتطلب من النموذج تحديد تمثيل الكلام "الحقيقي" من مجموعة من تمثيلات الكلام "الخاطئة". من ناحية أخرى، BEiT هو نموذج رؤية تم تدريبه مسبقًا على مهمة نمذجة صورة مقنعة تقوم بقناع بعض رقع الصورة وتتطلب من النموذج التنبؤ بالرقع المقنعة (مشابهة لهدف نمذجة اللغة المقيدة).
|
||||
|
||||
## R
|
||||
|
||||
### شبكة عصبية متكررة (RNN)
|
||||
|
||||
هي نوع من النماذج التي تستخدم حلقة متكررة فوق طبقة معينة لمعالجة النصوص.
|
||||
|
||||
### التعلم التمثيلي (representation learning)
|
||||
|
||||
هو فرع من فروع تعلم الآلة يركز على تعلم تمثيلات ذات معنى للبيانات الخام. بعض الأمثلة على تقنيات التعلم التمثيلي تشمل تضمين الكلمات، والمشفرات ذاتية، وشبكات التنافس التوليدية(GANs).
|
||||
|
||||
## S
|
||||
|
||||
### معدل العينات (sampling rate)
|
||||
|
||||
قياس، بالهرتز، لعدد العينات (إشارة الصوت) المأخوذة في الثانية. ينتج معدل العينات عن تمييز إشارة مستمرة مثل الكلام.
|
||||
|
||||
### الانتباه الذاتي (Self-Attention)
|
||||
|
||||
هو آلية تتيح لكل عنصر في المدخل أن يحدد أي العناصر الأخرى في نفس المدخل يجب أن ينتبه إليها.
|
||||
|
||||
### التعلم الذاتي الخاضع للإشراف (supervised learning)
|
||||
|
||||
فئة من تقنيات التعلم الآلي التي يقوم فيها النموذج بإنشاء هدفه التعليمي الخاص من البيانات غير الموسومة. يختلف عن [التعلم غير الخاضع للإشراف](#unsupervised-learning) و [التعلم الخاضع للإشراف](#supervised-learning) في أن عملية التعلم خاضعة للإشراف، ولكن ليس صراحة من المستخدم.
|
||||
|
||||
مثال واحد على التعلم الذاتي الخاضع للإشراف هو [نمذجة اللغة المقيدة](#masked-language- عرض MLM)، حيث يتم تمرير جمل للنموذج مع إزالة نسبة من رموزه ويتعلم التنبؤ بالرموز المفقودة.
|
||||
|
||||
### التعلم شبه الخاضع للإشراف (semi-supervised learning)
|
||||
|
||||
فئة واسعة من تقنيات تدريب التعلم الآلي التي تستفيد من كمية صغيرة من البيانات الموسومة مع كمية أكبر من البيانات غير الموسومة لتحسين دقة النموذج، على عكس [التعلم الخاضع للإشراف](#supervised-learning) و [التعلم غير الخاضع للإشراف](#unsupervised-learning).
|
||||
|
||||
مثال على نهج التعلم شبه الخاضع للإشراف هو "التدريب الذاتي"، حيث يتم تدريب نموذج على بيانات موسومة، ثم يستخدم لتقديم تنبؤات حول البيانات غير الموسومة. يتم إضافة الجزء من البيانات غير الموسومة التي يتنبأ بها النموذج بأكبر قدر من الثقة إلى مجموعة البيانات الموسومة ويتم استخدامها لإعادة تدريب النموذج.
|
||||
|
||||
### تسلسل إلى تسلسل (seq2seq)
|
||||
|
||||
نماذج تولد تسلسلًا جديدًا من إدخال، مثل نماذج الترجمة، أو نماذج التلخيص (مثل [Bart](model_doc/bart) أو [T5](model_doc/t5)).
|
||||
|
||||
### Sharded DDP
|
||||
|
||||
اسم آخر لمفهوم [Zero Redundancy Optimizer](#zero-redundancy-optimizer-zero) الأساسي كما هو مستخدم من قبل العديد من التطبيقات الأخرى لـ Zero.
|
||||
|
||||
### الخطوة (Stride)
|
||||
|
||||
في العمليات التلافيفية أو التجميعية، تشير الخطوة إلى المسافة التي يتحرك بها النواة (kernel) فوق المصفوفة. خطوة تساوي 1 تعني أن النواة تتحرك بكسل واحد في كل مرة.
|
||||
|
||||
### التعلم الخاضع للإشراف (supervised learning)
|
||||
|
||||
هو نوع من تدريب النماذج التي تستخدم بيانات مُعلَّمة بشكل مباشر لتصحيح أداء النموذج وتوجيهه. يتم تغذية البيانات إلى النموذج قيد التدريب، ويتم مقارنة تنبؤاته بالنتائج الصحيحة المعروفة. يقوم النموذج بتعديل أوزانه بناءً على مدى خطأ تنبؤاته، وتتكرر هذه العملية لتحسين أداء النموذج.
|
||||
|
||||
## T
|
||||
|
||||
### توازي Tensor (TP)
|
||||
|
||||
تقنية توازي لتدريب وحدات معالجة الرسومات (GPU) متعددة يتم فيها تقسيم المصفوفة إلى عدة أجزاء، لذا بدلاً من وجود المصفوفة بأكملها على وحدة معالجة الرسومات (GPU) واحدة، توجد كل شظية من المصفوفة على وحدة معالجة الرسومات (GPU) المخصصة لها. تتم معالجة الشظايا بشكل منفصل وبالتوازي على وحدات معالجة الرسومات (GPU) المختلفة ويتم مزامنة النتائج في نهاية خطوة المعالجة. هذا ما يُطلق عليه أحيانًا التوازي الأفقي، حيث يحدث الانقسام على المستوى الأفقي.
|
||||
|
||||
تعرف على المزيد حول توازي Tensor [هنا](perf_train_gpu_many#tensor-parallelism).
|
||||
|
||||
### الرمز اللغوي (Token)
|
||||
|
||||
جزء من جملة، عادة ما يكون كلمة، ولكن يمكن أن يكون أيضًا كلمة فرعية (غالبًا ما يتم تقسيم الكلمات غير الشائعة إلى كلمات فرعية) أو علامة ترقيم.
|
||||
|
||||
### معرفات نوع الرمز (token type ids)
|
||||
|
||||
الغرض من بعض النماذج هو إجراء التصنيف على أزواج من الجمل أو الإجابة على الأسئلة.
|
||||
|
||||
<Youtube id="0u3ioSwev3s"/>
|
||||
|
||||
يتطلب ذلك تسلسلين مختلفين يتم دمجهما في إدخال "input_ids" واحد، والذي يتم عادةً باستخدام رموز خاصة، مثل رموز التصنيف (`[CLS]`) والفاصل (`[SEP]`). على سبيل المثال، يقوم نموذج BERT ببناء إدخال تسلسلين على النحو التالي:
|
||||
|
||||
```python
|
||||
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
|
||||
```
|
||||
|
||||
يمكننا استخدام برنامجنا للتمييز لإنشاء مثل هذه الجملة تلقائيًا عن طريق تمرير التسلسلين إلى `tokenizer` كمعامليين (وليس قائمة، كما كان من قبل) مثل هذا:
|
||||
|
||||
```python
|
||||
>>> from transformers import BertTokenizer
|
||||
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
>>> sequence_a = "HuggingFace is based in NYC"
|
||||
>>> sequence_b = "Where is HuggingFace based?"
|
||||
|
||||
>>> encoded_dict = tokenizer(sequence_a، sequence_b)
|
||||
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
|
||||
```
|
||||
|
||||
والذي سيعيد:
|
||||
|
||||
```python
|
||||
>>> print(decoded)
|
||||
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based؟ [SEP]
|
||||
```
|
||||
|
||||
هذا يكفي لبعض النماذج لفهم أين ينتهي تسلسل واحد وأين يبدأ الآخر. ومع ذلك، تستخدم نماذج أخرى، مثل BERT، أيضًا معرفات نوع الرمز (يُطلق عليها أيضًا معرفات الجزء). يتم تمثيلها كماسك ثنائي لتحديد نوعي التسلسل في النموذج.
|
||||
|
||||
يعيد برنامج الترميز هذا القناع كإدخال "token_type_ids":
|
||||
|
||||
```python
|
||||
>>> encoded_dict["token_type_ids"]
|
||||
[0، 0، 0، 0، 0، 0، 0، 0، 0، 0، 1، 1، 1، 1، 1، 1، 1، 1، 1]
|
||||
```
|
||||
|
||||
يتم تمثيل التسلسل الأول، "السياق" المستخدم للسؤال، بجميع رموزه بواسطة `0`، في حين يتم تمثيل التسلسل الثاني، المقابل إلى "السؤال"، بجميع رموزه بواسطة `1`.
|
||||
|
||||
تستخدم بعض النماذج، مثل [`XLNetModel`] رمزًا إضافيًا يمثله `2`.
|
||||
|
||||
### التعلم الانتقالي (Transfer Learning)
|
||||
|
||||
تقنية تنطوي على أخذ نموذج تم تدريبه مسبقًا وتكييفه مع مجموعة بيانات خاصة بمهمتك. بدلاً من تدريب نموذج من الصفر، يمكنك الاستفادة من المعرفة المكتسبة من نموذج موجود كنقطة بداية. يسرع هذا عملية التعلم ويقلل من كمية بيانات التدريب المطلوبة.
|
||||
|
||||
### المحول (Transformer)
|
||||
|
||||
هو بنية لنموذج تعلم عميق يعتمد على الانتباه الذاتي.
|
||||
|
||||
## U
|
||||
|
||||
### التعلم غير الخاضع للإشراف (unsupervised learning)
|
||||
|
||||
شكل من أشكال تدريب النماذج حيث لا يتم وضع علامات على البيانات المقدمة إلى النموذج. تستفيد تقنيات التعلم غير الخاضعة للإشراف من المعلومات الإحصائية لتوزيع البيانات للعثور على الأنماط المفيدة للمهمة المعنية.
|
||||
|
||||
## Z
|
||||
|
||||
### محسن التكرار الصفري (ZeRO)
|
||||
|
||||
تقنية توازي تقوم بتشظية المصفوفات بطريقة مشابهة لـ [TensorParallel](#tensor-parallelism-tp)، باستثناء إعادة بناء المصفوفة بالكامل في الوقت المناسب لحساب التقدير أو الحساب الخلفي، وبالتالي لا يلزم تعديل النموذج. تدعم هذه الطريقة أيضًا تقنيات الإخلاء المختلفة للتعويض عن ذاكرة GPU المحدودة.
|
||||
|
||||
تعرف على المزيد حول Zero [هنا](perf_train_gpu_many#zero-data-parallelism).
|
||||
342
docs/source/ar/index.md
Normal file
342
docs/source/ar/index.md
Normal file
@ -0,0 +1,342 @@
|
||||
# 🤗 Transformers: لمحة عامة
|
||||
|
||||
أحدث ما في مجال التعلم الآلي لـ [PyTorch](https://pytorch.org/) و [TensorFlow](https://www.tensorflow.org/) و [JAX](https://jax.readthedocs.io/en/latest/)
|
||||
|
||||
توفر 🤗 Transformers واجهات برمجة التطبيقات (APIs) والأدوات اللازمة لتنزيل وتدريب أحدث النماذج المسبقة التدريب بسهولة. ويمكن أن يقلل استخدام النماذج المسبقة التدريب من تكاليف الحوسبة والحد من الأثر البيئي، وتوفّر الوقت والموارد اللازمين لتدريب نموذج من الصفر. وتدعم هذه النماذج المهام الشائعة في مجالات مختلفة، مثل:
|
||||
|
||||
|
||||
📝 **معالجة اللغات الطبيعية**: تصنيف النصوص، وتعريف الكيانات المسماة، والإجابة على الأسئلة، ونمذجة اللغة، والتلخيص، والترجمة، والاختيار من متعدد، وتوليد النصوص. <br>
|
||||
🖼️ **الرؤية الحاسوبية**: تصنيف الصور، وكشف الأشياء، وتجزئتها. <br>
|
||||
🗣️ **الصوت**: التعرف التلقائي على الكلام، وتصنيف الصوت. <br>
|
||||
🐙 **متعدد الوسائط**: الإجابة على الأسئلة الجدولية، والتعرف البصري على الحروف، واستخراج المعلومات من المستندات الممسوحة ضوئيًا، وتصنيف الفيديو، والإجابة على الأسئلة البصرية.
|
||||
|
||||
تدعم 🤗 Transformers التوافق بين أطر العمل المختلفة مثل PyTorch و TensorFlow و JAX. ويوفر ذلك المرونة لاستخدام إطار عمل مختلف في كل مرحلة من مراحل حياة النموذج؛ قم بتدريب نموذج في ثلاث خطوط من التعليمات البرمجية في إطار واحد، وقم بتحميله للاستدلال في إطار آخر. ويمكن أيضًا تصدير النماذج إلى صيغ مثل ONNX و TorchScript للنشر في بيئات الإنتاج.
|
||||
|
||||
انضم إلى المجتمع المتنامي على [Hub](https://huggingface.co/models) أو [المنتدى](https://discuss.huggingface.co/) أو [Discord](https://discord.com/invite/JfAtkvEtRb) اليوم!
|
||||
|
||||
## إذا كنت تبحث عن دعم مخصص من فريق Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a>
|
||||
|
||||
## المحتويات
|
||||
|
||||
ينقسم التوثيق إلى خمسة أقسام:
|
||||
|
||||
- **ابدأ** تقدم جولة سريعة في المكتبة وتعليمات التثبيت للبدء.
|
||||
- **الدروس التعليمية** هي مكان رائع للبدء إذا كنت مبتدئًا. سيساعدك هذا القسم على اكتساب المهارات الأساسية التي تحتاجها للبدء في استخدام المكتبة.
|
||||
- **أدلة كيفية الاستخدام** تُظهر لك كيفية تحقيق هدف محدد، مثل ضبط نموذج مسبق التدريب لنمذجة اللغة أو كيفية كتابة ومشاركة نموذج مخصص.
|
||||
- **الأدلة المفاهيمية** تقدم مناقشة وتفسيرًا أكثر للأفكار والمفاهيم الأساسية وراء النماذج والمهام وفلسفة التصميم في 🤗 Transformers.
|
||||
- **واجهة برمجة التطبيقات (API)** تصف جميع الفئات والوظائف:
|
||||
|
||||
- **الفئات الرئيسية** تشرح الفئات الأكثر أهمية مثل التكوين والنمذجة والتحليل النصي وخط الأنابيب.
|
||||
- **النماذج** تشرح الفئات والوظائف المتعلقة بكل نموذج يتم تنفيذه في المكتبة.
|
||||
- **المساعدون الداخليون** يشرحون فئات ووظائف المساعدة التي يتم استخدامها داخليًا.
|
||||
|
||||
|
||||
## النماذج والأطر المدعومة
|
||||
|
||||
يمثل الجدول أدناه الدعم الحالي في المكتبة لكل من هذه النماذج، وما إذا كان لديها محلل نحوي Python (يُسمى "بطيء"). محلل نحوي "سريع" مدعوم بمكتبة 🤗 Tokenizers، وما إذا كان لديها دعم في Jax (عبر Flax) و/أو PyTorch و/أو TensorFlow.
|
||||
|
||||
<!--يتم تحديث هذا الجدول تلقائيًا من الوحدات النمطية التلقائية مع _make fix-copies_. لا تقم بالتحديث يدويًا!-->
|
||||
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
|
||||
|
||||
| Model | PyTorch support | TensorFlow support | Flax Support |
|
||||
|:------------------------------------------------------------------------:|:---------------:|:------------------:|:------------:|
|
||||
| [ALBERT](model_doc/albert) | ✅ | ✅ | ✅ |
|
||||
| [ALIGN](model_doc/align) | ✅ | ❌ | ❌ |
|
||||
| [AltCLIP](model_doc/altclip) | ✅ | ❌ | ❌ |
|
||||
| [Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer) | ✅ | ❌ | ❌ |
|
||||
| [Autoformer](model_doc/autoformer) | ✅ | ❌ | ❌ |
|
||||
| [Bark](model_doc/bark) | ✅ | ❌ | ❌ |
|
||||
| [BART](model_doc/bart) | ✅ | ✅ | ✅ |
|
||||
| [BARThez](model_doc/barthez) | ✅ | ✅ | ✅ |
|
||||
| [BARTpho](model_doc/bartpho) | ✅ | ✅ | ✅ |
|
||||
| [BEiT](model_doc/beit) | ✅ | ❌ | ✅ |
|
||||
| [BERT](model_doc/bert) | ✅ | ✅ | ✅ |
|
||||
| [Bert Generation](model_doc/bert-generation) | ✅ | ❌ | ❌ |
|
||||
| [BertJapanese](model_doc/bert-japanese) | ✅ | ✅ | ✅ |
|
||||
| [BERTweet](model_doc/bertweet) | ✅ | ✅ | ✅ |
|
||||
| [BigBird](model_doc/big_bird) | ✅ | ❌ | ✅ |
|
||||
| [BigBird-Pegasus](model_doc/bigbird_pegasus) | ✅ | ❌ | ❌ |
|
||||
| [BioGpt](model_doc/biogpt) | ✅ | ❌ | ❌ |
|
||||
| [BiT](model_doc/bit) | ✅ | ❌ | ❌ |
|
||||
| [Blenderbot](model_doc/blenderbot) | ✅ | ✅ | ✅ |
|
||||
| [BlenderbotSmall](model_doc/blenderbot-small) | ✅ | ✅ | ✅ |
|
||||
| [BLIP](model_doc/blip) | ✅ | ✅ | ❌ |
|
||||
| [BLIP-2](model_doc/blip-2) | ✅ | ❌ | ❌ |
|
||||
| [BLOOM](model_doc/bloom) | ✅ | ❌ | ✅ |
|
||||
| [BORT](model_doc/bort) | ✅ | ✅ | ✅ |
|
||||
| [BridgeTower](model_doc/bridgetower) | ✅ | ❌ | ❌ |
|
||||
| [BROS](model_doc/bros) | ✅ | ❌ | ❌ |
|
||||
| [ByT5](model_doc/byt5) | ✅ | ✅ | ✅ |
|
||||
| [CamemBERT](model_doc/camembert) | ✅ | ✅ | ❌ |
|
||||
| [CANINE](model_doc/canine) | ✅ | ❌ | ❌ |
|
||||
| [Chameleon](model_doc/chameleon) | ✅ | ❌ | ❌ |
|
||||
| [Chinese-CLIP](model_doc/chinese_clip) | ✅ | ❌ | ❌ |
|
||||
| [CLAP](model_doc/clap) | ✅ | ❌ | ❌ |
|
||||
| [CLIP](model_doc/clip) | ✅ | ✅ | ✅ |
|
||||
| [CLIPSeg](model_doc/clipseg) | ✅ | ❌ | ❌ |
|
||||
| [CLVP](model_doc/clvp) | ✅ | ❌ | ❌ |
|
||||
| [CodeGen](model_doc/codegen) | ✅ | ❌ | ❌ |
|
||||
| [CodeLlama](model_doc/code_llama) | ✅ | ❌ | ✅ |
|
||||
| [Cohere](model_doc/cohere) | ✅ | ❌ | ❌ |
|
||||
| [Conditional DETR](model_doc/conditional_detr) | ✅ | ❌ | ❌ |
|
||||
| [ConvBERT](model_doc/convbert) | ✅ | ✅ | ❌ |
|
||||
| [ConvNeXT](model_doc/convnext) | ✅ | ✅ | ❌ |
|
||||
| [ConvNeXTV2](model_doc/convnextv2) | ✅ | ✅ | ❌ |
|
||||
| [CPM](model_doc/cpm) | ✅ | ✅ | ✅ |
|
||||
| [CPM-Ant](model_doc/cpmant) | ✅ | ❌ | ❌ |
|
||||
| [CTRL](model_doc/ctrl) | ✅ | ✅ | ❌ |
|
||||
| [CvT](model_doc/cvt) | ✅ | ✅ | ❌ |
|
||||
| [DAC](model_doc/dac) | ✅ | ❌ | ❌ |
|
||||
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
||||
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
|
||||
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
|
||||
| [DBRX](model_doc/dbrx) | ✅ | ❌ | ❌ |
|
||||
| [DeBERTa](model_doc/deberta) | ✅ | ✅ | ❌ |
|
||||
| [DeBERTa-v2](model_doc/deberta-v2) | ✅ | ✅ | ❌ |
|
||||
| [Decision Transformer](model_doc/decision_transformer) | ✅ | ❌ | ❌ |
|
||||
| [Deformable DETR](model_doc/deformable_detr) | ✅ | ❌ | ❌ |
|
||||
| [DeiT](model_doc/deit) | ✅ | ✅ | ❌ |
|
||||
| [DePlot](model_doc/deplot) | ✅ | ❌ | ❌ |
|
||||
| [Depth Anything](model_doc/depth_anything) | ✅ | ❌ | ❌ |
|
||||
| [DETA](model_doc/deta) | ✅ | ❌ | ❌ |
|
||||
| [DETR](model_doc/detr) | ✅ | ❌ | ❌ |
|
||||
| [DialoGPT](model_doc/dialogpt) | ✅ | ✅ | ✅ |
|
||||
| [DiNAT](model_doc/dinat) | ✅ | ❌ | ❌ |
|
||||
| [DINOv2](model_doc/dinov2) | ✅ | ❌ | ✅ |
|
||||
| [DistilBERT](model_doc/distilbert) | ✅ | ✅ | ✅ |
|
||||
| [DiT](model_doc/dit) | ✅ | ❌ | ✅ |
|
||||
| [DonutSwin](model_doc/donut) | ✅ | ❌ | ❌ |
|
||||
| [DPR](model_doc/dpr) | ✅ | ✅ | ❌ |
|
||||
| [DPT](model_doc/dpt) | ✅ | ❌ | ❌ |
|
||||
| [EfficientFormer](model_doc/efficientformer) | ✅ | ✅ | ❌ |
|
||||
| [EfficientNet](model_doc/efficientnet) | ✅ | ❌ | ❌ |
|
||||
| [ELECTRA](model_doc/electra) | ✅ | ✅ | ✅ |
|
||||
| [EnCodec](model_doc/encodec) | ✅ | ❌ | ❌ |
|
||||
| [Encoder decoder](model_doc/encoder-decoder) | ✅ | ✅ | ✅ |
|
||||
| [ERNIE](model_doc/ernie) | ✅ | ❌ | ❌ |
|
||||
| [ErnieM](model_doc/ernie_m) | ✅ | ❌ | ❌ |
|
||||
| [ESM](model_doc/esm) | ✅ | ✅ | ❌ |
|
||||
| [FairSeq Machine-Translation](model_doc/fsmt) | ✅ | ❌ | ❌ |
|
||||
| [Falcon](model_doc/falcon) | ✅ | ❌ | ❌ |
|
||||
| [FalconMamba](model_doc/falcon_mamba) | ✅ | ❌ | ❌ |
|
||||
| [FastSpeech2Conformer](model_doc/fastspeech2_conformer) | ✅ | ❌ | ❌ |
|
||||
| [FLAN-T5](model_doc/flan-t5) | ✅ | ✅ | ✅ |
|
||||
| [FLAN-UL2](model_doc/flan-ul2) | ✅ | ✅ | ✅ |
|
||||
| [FlauBERT](model_doc/flaubert) | ✅ | ✅ | ❌ |
|
||||
| [FLAVA](model_doc/flava) | ✅ | ❌ | ❌ |
|
||||
| [FNet](model_doc/fnet) | ✅ | ❌ | ❌ |
|
||||
| [FocalNet](model_doc/focalnet) | ✅ | ❌ | ❌ |
|
||||
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
|
||||
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
|
||||
| [Gemma](model_doc/gemma) | ✅ | ❌ | ✅ |
|
||||
| [Gemma2](model_doc/gemma2) | ✅ | ❌ | ❌ |
|
||||
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
|
||||
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
|
||||
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |
|
||||
| [GPT NeoX](model_doc/gpt_neox) | ✅ | ❌ | ❌ |
|
||||
| [GPT NeoX Japanese](model_doc/gpt_neox_japanese) | ✅ | ❌ | ❌ |
|
||||
| [GPT-J](model_doc/gptj) | ✅ | ✅ | ✅ |
|
||||
| [GPT-Sw3](model_doc/gpt-sw3) | ✅ | ✅ | ✅ |
|
||||
| [GPTBigCode](model_doc/gpt_bigcode) | ✅ | ❌ | ❌ |
|
||||
| [GPTSAN-japanese](model_doc/gptsan-japanese) | ✅ | ❌ | ❌ |
|
||||
| [Granite](model_doc/granite) | ✅ | ❌ | ❌ |
|
||||
| [Graphormer](model_doc/graphormer) | ✅ | ❌ | ❌ |
|
||||
| [Grounding DINO](model_doc/grounding-dino) | ✅ | ❌ | ❌ |
|
||||
| [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ |
|
||||
| [HerBERT](model_doc/herbert) | ✅ | ✅ | ✅ |
|
||||
| [Hiera](model_doc/hiera) | ✅ | ❌ | ❌ |
|
||||
| [Hubert](model_doc/hubert) | ✅ | ✅ | ❌ |
|
||||
| [I-BERT](model_doc/ibert) | ✅ | ❌ | ❌ |
|
||||
| [IDEFICS](model_doc/idefics) | ✅ | ✅ | ❌ |
|
||||
| [Idefics2](model_doc/idefics2) | ✅ | ❌ | ❌ |
|
||||
| [ImageGPT](model_doc/imagegpt) | ✅ | ❌ | ❌ |
|
||||
| [Informer](model_doc/informer) | ✅ | ❌ | ❌ |
|
||||
| [InstructBLIP](model_doc/instructblip) | ✅ | ❌ | ❌ |
|
||||
| [InstructBlipVideo](model_doc/instructblipvideo) | ✅ | ❌ | ❌ |
|
||||
| [Jamba](model_doc/jamba) | ✅ | ❌ | ❌ |
|
||||
| [JetMoe](model_doc/jetmoe) | ✅ | ❌ | ❌ |
|
||||
| [Jukebox](model_doc/jukebox) | ✅ | ❌ | ❌ |
|
||||
| [KOSMOS-2](model_doc/kosmos-2) | ✅ | ❌ | ❌ |
|
||||
| [LayoutLM](model_doc/layoutlm) | ✅ | ✅ | ❌ |
|
||||
| [LayoutLMv2](model_doc/layoutlmv2) | ✅ | ❌ | ❌ |
|
||||
| [LayoutLMv3](model_doc/layoutlmv3) | ✅ | ✅ | ❌ |
|
||||
| [LayoutXLM](model_doc/layoutxlm) | ✅ | ❌ | ❌ |
|
||||
| [LED](model_doc/led) | ✅ | ✅ | ❌ |
|
||||
| [LeViT](model_doc/levit) | ✅ | ❌ | ❌ |
|
||||
| [LiLT](model_doc/lilt) | ✅ | ❌ | ❌ |
|
||||
| [LLaMA](model_doc/llama) | ✅ | ❌ | ✅ |
|
||||
| [Llama2](model_doc/llama2) | ✅ | ❌ | ✅ |
|
||||
| [Llama3](model_doc/llama3) | ✅ | ❌ | ✅ |
|
||||
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
|
||||
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
|
||||
| [LLaVa-NeXT-Video](model_doc/llava_next_video) | ✅ | ❌ | ❌ |
|
||||
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
|
||||
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
|
||||
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
|
||||
| [LXMERT](model_doc/lxmert) | ✅ | ✅ | ❌ |
|
||||
| [M-CTC-T](model_doc/mctct) | ✅ | ❌ | ❌ |
|
||||
| [M2M100](model_doc/m2m_100) | ✅ | ❌ | ❌ |
|
||||
| [MADLAD-400](model_doc/madlad-400) | ✅ | ✅ | ✅ |
|
||||
| [Mamba](model_doc/mamba) | ✅ | ❌ | ❌ |
|
||||
| [mamba2](model_doc/mamba2) | ✅ | ❌ | ❌ |
|
||||
| [Marian](model_doc/marian) | ✅ | ✅ | ✅ |
|
||||
| [MarkupLM](model_doc/markuplm) | ✅ | ❌ | ❌ |
|
||||
| [Mask2Former](model_doc/mask2former) | ✅ | ❌ | ❌ |
|
||||
| [MaskFormer](model_doc/maskformer) | ✅ | ❌ | ❌ |
|
||||
| [MatCha](model_doc/matcha) | ✅ | ❌ | ❌ |
|
||||
| [mBART](model_doc/mbart) | ✅ | ✅ | ✅ |
|
||||
| [mBART-50](model_doc/mbart50) | ✅ | ✅ | ✅ |
|
||||
| [MEGA](model_doc/mega) | ✅ | ❌ | ❌ |
|
||||
| [Megatron-BERT](model_doc/megatron-bert) | ✅ | ❌ | ❌ |
|
||||
| [Megatron-GPT2](model_doc/megatron_gpt2) | ✅ | ✅ | ✅ |
|
||||
| [MGP-STR](model_doc/mgp-str) | ✅ | ❌ | ❌ |
|
||||
| [Mistral](model_doc/mistral) | ✅ | ✅ | ✅ |
|
||||
| [Mixtral](model_doc/mixtral) | ✅ | ❌ | ❌ |
|
||||
| [mLUKE](model_doc/mluke) | ✅ | ❌ | ❌ |
|
||||
| [MMS](model_doc/mms) | ✅ | ✅ | ✅ |
|
||||
| [MobileBERT](model_doc/mobilebert) | ✅ | ✅ | ❌ |
|
||||
| [MobileNetV1](model_doc/mobilenet_v1) | ✅ | ❌ | ❌ |
|
||||
| [MobileNetV2](model_doc/mobilenet_v2) | ✅ | ❌ | ❌ |
|
||||
| [MobileViT](model_doc/mobilevit) | ✅ | ✅ | ❌ |
|
||||
| [MobileViTV2](model_doc/mobilevitv2) | ✅ | ❌ | ❌ |
|
||||
| [MPNet](model_doc/mpnet) | ✅ | ✅ | ❌ |
|
||||
| [MPT](model_doc/mpt) | ✅ | ❌ | ❌ |
|
||||
| [MRA](model_doc/mra) | ✅ | ❌ | ❌ |
|
||||
| [MT5](model_doc/mt5) | ✅ | ✅ | ✅ |
|
||||
| [MusicGen](model_doc/musicgen) | ✅ | ❌ | ❌ |
|
||||
| [MusicGen Melody](model_doc/musicgen_melody) | ✅ | ❌ | ❌ |
|
||||
| [MVP](model_doc/mvp) | ✅ | ❌ | ❌ |
|
||||
| [NAT](model_doc/nat) | ✅ | ❌ | ❌ |
|
||||
| [Nemotron](model_doc/nemotron) | ✅ | ❌ | ❌ |
|
||||
| [Nezha](model_doc/nezha) | ✅ | ❌ | ❌ |
|
||||
| [NLLB](model_doc/nllb) | ✅ | ❌ | ❌ |
|
||||
| [NLLB-MOE](model_doc/nllb-moe) | ✅ | ❌ | ❌ |
|
||||
| [Nougat](model_doc/nougat) | ✅ | ✅ | ✅ |
|
||||
| [Nyströmformer](model_doc/nystromformer) | ✅ | ❌ | ❌ |
|
||||
| [OLMo](model_doc/olmo) | ✅ | ❌ | ❌ |
|
||||
| [OneFormer](model_doc/oneformer) | ✅ | ❌ | ❌ |
|
||||
| [OpenAI GPT](model_doc/openai-gpt) | ✅ | ✅ | ❌ |
|
||||
| [OpenAI GPT-2](model_doc/gpt2) | ✅ | ✅ | ✅ |
|
||||
| [OpenLlama](model_doc/open-llama) | ✅ | ❌ | ❌ |
|
||||
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
|
||||
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
|
||||
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
|
||||
| [PaliGemma](model_doc/paligemma) | ✅ | ❌ | ❌ |
|
||||
| [PatchTSMixer](model_doc/patchtsmixer) | ✅ | ❌ | ❌ |
|
||||
| [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ |
|
||||
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
|
||||
| [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ |
|
||||
| [Perceiver](model_doc/perceiver) | ✅ | ❌ | ❌ |
|
||||
| [Persimmon](model_doc/persimmon) | ✅ | ❌ | ❌ |
|
||||
| [Phi](model_doc/phi) | ✅ | ❌ | ❌ |
|
||||
| [Phi3](model_doc/phi3) | ✅ | ❌ | ❌ |
|
||||
| [PhoBERT](model_doc/phobert) | ✅ | ✅ | ✅ |
|
||||
| [Pix2Struct](model_doc/pix2struct) | ✅ | ❌ | ❌ |
|
||||
| [PLBart](model_doc/plbart) | ✅ | ❌ | ❌ |
|
||||
| [PoolFormer](model_doc/poolformer) | ✅ | ❌ | ❌ |
|
||||
| [Pop2Piano](model_doc/pop2piano) | ✅ | ❌ | ❌ |
|
||||
| [ProphetNet](model_doc/prophetnet) | ✅ | ❌ | ❌ |
|
||||
| [PVT](model_doc/pvt) | ✅ | ❌ | ❌ |
|
||||
| [PVTv2](model_doc/pvt_v2) | ✅ | ❌ | ❌ |
|
||||
| [QDQBert](model_doc/qdqbert) | ✅ | ❌ | ❌ |
|
||||
| [Qwen2](model_doc/qwen2) | ✅ | ❌ | ❌ |
|
||||
| [Qwen2Audio](model_doc/qwen2_audio) | ✅ | ❌ | ❌ |
|
||||
| [Qwen2MoE](model_doc/qwen2_moe) | ✅ | ❌ | ❌ |
|
||||
| [Qwen2VL](model_doc/qwen2_vl) | ✅ | ❌ | ❌ |
|
||||
| [RAG](model_doc/rag) | ✅ | ✅ | ❌ |
|
||||
| [REALM](model_doc/realm) | ✅ | ❌ | ❌ |
|
||||
| [RecurrentGemma](model_doc/recurrent_gemma) | ✅ | ❌ | ❌ |
|
||||
| [Reformer](model_doc/reformer) | ✅ | ❌ | ❌ |
|
||||
| [RegNet](model_doc/regnet) | ✅ | ✅ | ✅ |
|
||||
| [RemBERT](model_doc/rembert) | ✅ | ✅ | ❌ |
|
||||
| [ResNet](model_doc/resnet) | ✅ | ✅ | ✅ |
|
||||
| [RetriBERT](model_doc/retribert) | ✅ | ❌ | ❌ |
|
||||
| [RoBERTa](model_doc/roberta) | ✅ | ✅ | ✅ |
|
||||
| [RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm) | ✅ | ✅ | ✅ |
|
||||
| [RoCBert](model_doc/roc_bert) | ✅ | ❌ | ❌ |
|
||||
| [RoFormer](model_doc/roformer) | ✅ | ✅ | ✅ |
|
||||
| [RT-DETR](model_doc/rt_detr) | ✅ | ❌ | ❌ |
|
||||
| [RT-DETR-ResNet](model_doc/rt_detr_resnet) | ✅ | ❌ | ❌ |
|
||||
| [RWKV](model_doc/rwkv) | ✅ | ❌ | ❌ |
|
||||
| [SAM](model_doc/sam) | ✅ | ✅ | ❌ |
|
||||
| [SeamlessM4T](model_doc/seamless_m4t) | ✅ | ❌ | ❌ |
|
||||
| [SeamlessM4Tv2](model_doc/seamless_m4t_v2) | ✅ | ❌ | ❌ |
|
||||
| [SegFormer](model_doc/segformer) | ✅ | ✅ | ❌ |
|
||||
| [SegGPT](model_doc/seggpt) | ✅ | ❌ | ❌ |
|
||||
| [SEW](model_doc/sew) | ✅ | ❌ | ❌ |
|
||||
| [SEW-D](model_doc/sew-d) | ✅ | ❌ | ❌ |
|
||||
| [SigLIP](model_doc/siglip) | ✅ | ❌ | ❌ |
|
||||
| [Speech Encoder decoder](model_doc/speech-encoder-decoder) | ✅ | ❌ | ✅ |
|
||||
| [Speech2Text](model_doc/speech_to_text) | ✅ | ✅ | ❌ |
|
||||
| [SpeechT5](model_doc/speecht5) | ✅ | ❌ | ❌ |
|
||||
| [Splinter](model_doc/splinter) | ✅ | ❌ | ❌ |
|
||||
| [SqueezeBERT](model_doc/squeezebert) | ✅ | ❌ | ❌ |
|
||||
| [StableLm](model_doc/stablelm) | ✅ | ❌ | ❌ |
|
||||
| [Starcoder2](model_doc/starcoder2) | ✅ | ❌ | ❌ |
|
||||
| [SuperPoint](model_doc/superpoint) | ✅ | ❌ | ❌ |
|
||||
| [SwiftFormer](model_doc/swiftformer) | ✅ | ✅ | ❌ |
|
||||
| [Swin Transformer](model_doc/swin) | ✅ | ✅ | ❌ |
|
||||
| [Swin Transformer V2](model_doc/swinv2) | ✅ | ❌ | ❌ |
|
||||
| [Swin2SR](model_doc/swin2sr) | ✅ | ❌ | ❌ |
|
||||
| [SwitchTransformers](model_doc/switch_transformers) | ✅ | ❌ | ❌ |
|
||||
| [T5](model_doc/t5) | ✅ | ✅ | ✅ |
|
||||
| [T5v1.1](model_doc/t5v1.1) | ✅ | ✅ | ✅ |
|
||||
| [Table Transformer](model_doc/table-transformer) | ✅ | ❌ | ❌ |
|
||||
| [TAPAS](model_doc/tapas) | ✅ | ✅ | ❌ |
|
||||
| [TAPEX](model_doc/tapex) | ✅ | ✅ | ✅ |
|
||||
| [Time Series Transformer](model_doc/time_series_transformer) | ✅ | ❌ | ❌ |
|
||||
| [TimeSformer](model_doc/timesformer) | ✅ | ❌ | ❌ |
|
||||
| [Trajectory Transformer](model_doc/trajectory_transformer) | ✅ | ❌ | ❌ |
|
||||
| [Transformer-XL](model_doc/transfo-xl) | ✅ | ✅ | ❌ |
|
||||
| [TrOCR](model_doc/trocr) | ✅ | ❌ | ❌ |
|
||||
| [TVLT](model_doc/tvlt) | ✅ | ❌ | ❌ |
|
||||
| [TVP](model_doc/tvp) | ✅ | ❌ | ❌ |
|
||||
| [UDOP](model_doc/udop) | ✅ | ❌ | ❌ |
|
||||
| [UL2](model_doc/ul2) | ✅ | ✅ | ✅ |
|
||||
| [UMT5](model_doc/umt5) | ✅ | ❌ | ❌ |
|
||||
| [UniSpeech](model_doc/unispeech) | ✅ | ❌ | ❌ |
|
||||
| [UniSpeechSat](model_doc/unispeech-sat) | ✅ | ❌ | ❌ |
|
||||
| [UnivNet](model_doc/univnet) | ✅ | ❌ | ❌ |
|
||||
| [UPerNet](model_doc/upernet) | ✅ | ❌ | ❌ |
|
||||
| [VAN](model_doc/van) | ✅ | ❌ | ❌ |
|
||||
| [VideoLlava](model_doc/video_llava) | ✅ | ❌ | ❌ |
|
||||
| [VideoMAE](model_doc/videomae) | ✅ | ❌ | ❌ |
|
||||
| [ViLT](model_doc/vilt) | ✅ | ❌ | ❌ |
|
||||
| [VipLlava](model_doc/vipllava) | ✅ | ❌ | ❌ |
|
||||
| [Vision Encoder decoder](model_doc/vision-encoder-decoder) | ✅ | ✅ | ✅ |
|
||||
| [VisionTextDualEncoder](model_doc/vision-text-dual-encoder) | ✅ | ✅ | ✅ |
|
||||
| [VisualBERT](model_doc/visual_bert) | ✅ | ❌ | ❌ |
|
||||
| [ViT](model_doc/vit) | ✅ | ✅ | ✅ |
|
||||
| [ViT Hybrid](model_doc/vit_hybrid) | ✅ | ❌ | ❌ |
|
||||
| [VitDet](model_doc/vitdet) | ✅ | ❌ | ❌ |
|
||||
| [ViTMAE](model_doc/vit_mae) | ✅ | ✅ | ❌ |
|
||||
| [ViTMatte](model_doc/vitmatte) | ✅ | ❌ | ❌ |
|
||||
| [ViTMSN](model_doc/vit_msn) | ✅ | ❌ | ❌ |
|
||||
| [VITS](model_doc/vits) | ✅ | ❌ | ❌ |
|
||||
| [ViViT](model_doc/vivit) | ✅ | ❌ | ❌ |
|
||||
| [Wav2Vec2](model_doc/wav2vec2) | ✅ | ✅ | ✅ |
|
||||
| [Wav2Vec2-BERT](model_doc/wav2vec2-bert) | ✅ | ❌ | ❌ |
|
||||
| [Wav2Vec2-Conformer](model_doc/wav2vec2-conformer) | ✅ | ❌ | ❌ |
|
||||
| [Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme) | ✅ | ✅ | ✅ |
|
||||
| [WavLM](model_doc/wavlm) | ✅ | ❌ | ❌ |
|
||||
| [Whisper](model_doc/whisper) | ✅ | ✅ | ✅ |
|
||||
| [X-CLIP](model_doc/xclip) | ✅ | ❌ | ❌ |
|
||||
| [X-MOD](model_doc/xmod) | ✅ | ❌ | ❌ |
|
||||
| [XGLM](model_doc/xglm) | ✅ | ✅ | ✅ |
|
||||
| [XLM](model_doc/xlm) | ✅ | ✅ | ❌ |
|
||||
| [XLM-ProphetNet](model_doc/xlm-prophetnet) | ✅ | ❌ | ❌ |
|
||||
| [XLM-RoBERTa](model_doc/xlm-roberta) | ✅ | ✅ | ✅ |
|
||||
| [XLM-RoBERTa-XL](model_doc/xlm-roberta-xl) | ✅ | ❌ | ❌ |
|
||||
| [XLM-V](model_doc/xlm-v) | ✅ | ✅ | ✅ |
|
||||
| [XLNet](model_doc/xlnet) | ✅ | ✅ | ❌ |
|
||||
| [XLS-R](model_doc/xls_r) | ✅ | ✅ | ✅ |
|
||||
| [XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2) | ✅ | ✅ | ✅ |
|
||||
| [YOLOS](model_doc/yolos) | ✅ | ❌ | ❌ |
|
||||
| [YOSO](model_doc/yoso) | ✅ | ❌ | ❌ |
|
||||
| [ZoeDepth](model_doc/zoedepth) | ✅ | ❌ | ❌ |
|
||||
|
||||
<!-- End table-->
|
||||
246
docs/source/ar/installation.md
Normal file
246
docs/source/ar/installation.md
Normal file
@ -0,0 +1,246 @@
|
||||
# التثبيت (Installation)
|
||||
|
||||
قم بتثبيت مكتبة 🤗 Transformers المناسبة لمكتبة التعلم العميق التي تستخدمها، وقم بإعداد ذاكرة التخزين المؤقت الخاصة بك، وقم بإعداد 🤗 Transformers للعمل دون اتصال بالإنترنت (اختياري).
|
||||
|
||||
تم اختبار 🤗 Transformers على Python 3.6 والإصدارات الأحدث، وPyTorch 1.1.0 والإصدارات الأحدث، وTensorFlow 2.0 والإصدارات الأحدث، وFlax. اتبع تعليمات التثبيت أدناه لمكتبة التعلم العميق التي تستخدمها:
|
||||
|
||||
* تعليمات تثبيت [PyTorch](https://pytorch.org/get-started/locally/).
|
||||
* تعليمات تثبيت [TensorFlow 2.0](https://www.tensorflow.org/install/pip).
|
||||
* تعليمات تثبيت [Flax](https://flax.readthedocs.io/en/latest/).
|
||||
|
||||
## التثبيت باستخدام pip
|
||||
|
||||
يجب عليك تثبيت 🤗 Transformers داخل [بيئة افتراضية](https://docs.python.org/3/library/venv.html). إذا لم تكن غير ملم ببيئات Python الافتراضية، فراجع هذا [الدليل](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). البيئة الافتراضية تسهل إدارة المشاريع المختلف، وتجنب مشكلات التوافق بين المكتبات المطلوبة (اعتماديات المشروع).
|
||||
|
||||
ابدأ بإنشاء بيئة افتراضية في دليل مشروعك:
|
||||
|
||||
```bash
|
||||
python -m venv .env
|
||||
```
|
||||
|
||||
قم بتفعيل البيئة الافتراضية. على Linux وMacOs:
|
||||
|
||||
```bash
|
||||
source .env/bin/activate
|
||||
```
|
||||
|
||||
قم بتفعيل البيئة الافتراضية على Windows:
|
||||
|
||||
```bash
|
||||
.env/Scripts/activate
|
||||
```
|
||||
|
||||
الآن أنت مستعد لتثبيت 🤗 Transformers باستخدام الأمر التالي:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
للحصول على الدعم الخاص بـ CPU فقط، يمكنك تثبيت 🤗 Transformers ومكتبة التعلم العميق في خطوة واحدة. على سبيل المثال، قم بتثبيت 🤗 Transformers وPyTorch باستخدام:
|
||||
|
||||
```bash
|
||||
pip install 'transformers[torch]'
|
||||
```
|
||||
|
||||
🤗 Transformers وTensorFlow 2.0:
|
||||
|
||||
```bash
|
||||
pip install 'transformers[tf-cpu]'
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لمستخدمي M1 / ARM
|
||||
|
||||
ستحتاج إلى تثبيت ما يلي قبل تثبيت TensorFLow 2.0
|
||||
```bash
|
||||
brew install cmake
|
||||
brew install pkg-config
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
🤗 Transformers وFlax:
|
||||
|
||||
```bash
|
||||
pip install 'transformers[flax]'
|
||||
```
|
||||
|
||||
أخيرًا، تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي. سيقوم بتنزيل نموذج مدرب مسبقًا:
|
||||
|
||||
```bash
|
||||
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
|
||||
```
|
||||
|
||||
ثم قم بطباعة التسمية والنتيجة:
|
||||
|
||||
```bash
|
||||
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
|
||||
```
|
||||
|
||||
## التثبيت من المصدر
|
||||
|
||||
قم بتثبيت 🤗 Transformers من المصدر باستخدام الأمر التالي:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/transformers
|
||||
```
|
||||
|
||||
يقوم هذا الأمر بتثبيت أحدث إصدار تجريبي `main` بدلاً من الإصدار المستقر `stable`. يعد إصدار `main` مفيدًا للمواكبة مع أحدث التطورات. على سبيل المثال، إذا تم إصلاح خطأ منذ الإصدار الرسمي الأخير ولكن لم يتم طرح إصدار جديد بعد. ومع ذلك، فإن هذا يعني أن إصدار التجريبي `main` قد لا يكون مستقرًا دائمًا. نسعى جاهدين للحفاظ على تشغيل إصدار `main`، ويتم حل معظم المشكلات عادةً في غضون بضع ساعات أو يوم. إذا واجهتك مشكلة، يرجى فتح [تقرير عن خلل](https://github.com/huggingface/transformers/issues) حتى نتمكن من إصلاحها في أقرب وقت ممكن!
|
||||
|
||||
تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي:
|
||||
|
||||
```bash
|
||||
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
|
||||
```
|
||||
|
||||
تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي:
|
||||
|
||||
```bash
|
||||
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
|
||||
```
|
||||
|
||||
## التثبيت القابل للتعديل
|
||||
|
||||
ستحتاج إلى تثبيت قابل للتعديل إذا كنت ترغب في:
|
||||
|
||||
* استخدام إصدار `main` من كود المصدر.
|
||||
* المساهمة في 🤗 Transformers وتحتاج إلى اختبار التغييرات في الكود.
|
||||
|
||||
قم باستنساخ المستودع وقم بتثبيت 🤗 Transformers باستخدام الأوامر التالية:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
ستقوم هذه الأوامر بربط المجلد الذي قمت باستنساخ المستودع فيه بمسارات مكتبة Python. بمعنى آخر، سيبحث Python داخل المجلد الذي قمت باستنساخه بالإضافة إلى المسارات المعتادة للمكتبات. على سبيل المثال، إذا تم تثبيت حزم Python الخاصة بك عادةً في `~/anaconda3/envs/main/lib/python3.7/site-packages/`, فسيقوم Python أيضًا بالبحث في المجلد الذي قمت باستنساخه: `~/transformers/`.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
يجب عليك الاحتفاظ بمجلد `transformers` إذا كنت تريد الاستمرار في استخدام المكتبة.
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن يمكنك تحديث المستنسخ الخاص بك بسهولة إلى أحدث إصدار من 🤗 Transformers باستخدام الأمر التالي:
|
||||
|
||||
```bash
|
||||
cd ~/transformers/
|
||||
git pull
|
||||
```
|
||||
|
||||
ستجد بيئة Python الإصدار `main` من 🤗 Transformers في المرة التالية التي تقوم فيها بتشغيله.
|
||||
|
||||
## التثبيت باستخدام conda
|
||||
|
||||
قم بالتثبيت من قناة conda `conda-forge`:
|
||||
|
||||
```bash
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
## إعداد ذاكرة التخزين المؤقت
|
||||
|
||||
تُحمّل النماذج المُسبقة التدريب وتُخزّن مؤقتًا في: `~/.cache/huggingface/hub`. هذا هو المجلد الافتراضي الذي يُحدده متغير البيئة `TRANSFORMERS_CACHE`. على Windows، يكون دليل ذاكرة التخزين المؤقت الافتراضي هو `C:\Users\username\.cache\huggingface\hub`. يمكنك تغيير متغيرات البيئة shell الموضحة أدناه - حسب الأولوية - لتحديد دليل ذاكرة تخزين مؤقت مختلف:
|
||||
|
||||
1. متغير البيئة (افتراضي): `HUGGINGFACE_HUB_CACHE` أو `TRANSFORMERS_CACHE`.
|
||||
2. متغير البيئة: `HF_HOME`.
|
||||
3. متغير البيئة: `XDG_CACHE_HOME` + `/huggingface`.
|
||||
|
||||
<Tip>
|
||||
|
||||
سيستخدم 🤗 Transformers متغيرات البيئة `PYTORCH_TRANSFORMERS_CACHE` أو `PYTORCH_PRETRAINED_BERT_CACHE` إذا كنت قادمًا من إصدار سابق من هذه المكتبة وقمت بتعيين متغيرات البيئة هذه، ما لم تحدد متغير البيئة `TRANSFORMERS_CACHE`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## الوضع دون اتصال بالإنترنت
|
||||
|
||||
قم بتشغيل 🤗 Transformers في بيئة محمية بجدار حماية أو غير متصلة باستخدام الملفات المخزنة مؤقتًا محليًا عن طريق تعيين متغير البيئة `HF_HUB_OFFLINE=1`.
|
||||
|
||||
<Tip>
|
||||
|
||||
أضف [🤗 Datasets](https://huggingface.co/docs/datasets/) إلى سير عمل التدريب غير المتصل باستخدام متغير البيئة `HF_DATASETS_OFFLINE=1`.
|
||||
|
||||
</Tip>
|
||||
|
||||
```bash
|
||||
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
|
||||
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
|
||||
```
|
||||
|
||||
يجب أن يعمل هذا البرنامج النصي دون توقف أو انتظار انتهاء المهلة الزمنية لأنه لن يحاول تنزيل النموذج من Hub.
|
||||
|
||||
يمكنك أيضًا تجاوز تحميل نموذج من Hub من كل استدعاء [`~PreTrainedModel.from_pretrained`] باستخدام معلمة [`local_files_only`]. عندما يتم تعيينها على `True`، يتم تحميل الملفات المحلية فقط:
|
||||
|
||||
```py
|
||||
from transformers import T5Model
|
||||
|
||||
model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True)
|
||||
```
|
||||
|
||||
### جلب النماذج والمُجزّئات لاستخدامها دون اتصال بالإنترنت
|
||||
|
||||
خيار آخر لاستخدام 🤗 Transformers دون اتصال هو تنزيل الملفات مسبقًا، ثم الإشارة إلى مسارها المحلي عند الحاجة إلى استخدامها دون اتصال. هناك ثلاث طرق للقيام بذلك:
|
||||
|
||||
* قم بتنزيل ملف عبر واجهة المستخدم على [Model Hub](https://huggingface.co/models) بالنقر فوق أيقونة ↓.
|
||||
|
||||

|
||||
|
||||
* استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]:
|
||||
* استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
|
||||
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
|
||||
```
|
||||
|
||||
2. احفظ ملفاتك إلى دليل محدد باستخدام [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
|
||||
>>> model.save_pretrained("./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
3. الآن عندما تكون غير متصل بالإنترنت، أعد تحميل ملفاتك باستخدام [`PreTrainedModel.from_pretrained`] من الدليل المحدد:
|
||||
|
||||
```py
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
|
||||
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
* قم بتنزيل الملفات برمجيًا باستخدام مكتبة [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub):
|
||||
|
||||
1. قم بتثبيت مكتبة `huggingface_hub` في بيئتك الافتراضية:
|
||||
|
||||
```bash
|
||||
python -m pip install huggingface_hub
|
||||
```
|
||||
|
||||
2. استخدم وظيفة [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) لتنزيل ملف إلى مسار محدد. على سبيل المثال، يقوم الأمر التالي بتنزيل ملف `config.json` من نموذج [T0](https://huggingface.co/bigscience/T0_3B) إلى المسار المطلوب:
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import hf_hub_download
|
||||
|
||||
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
بمجرد تنزيل ملفك وتخزينه مؤقتًا محليًا، حدد مساره المحلي الخاص به لتحميله واستخدامه:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoConfig
|
||||
|
||||
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
راجع قسم [كيفية تنزيل الملفات من Hub](https://huggingface.co/docs/hub/how-to-downstream) لمزيد من التفاصيل حول تنزيل الملفات المخزنة على Hub.
|
||||
|
||||
</Tip>
|
||||
248
docs/source/ar/llm_tutorial.md
Normal file
248
docs/source/ar/llm_tutorial.md
Normal file
@ -0,0 +1,248 @@
|
||||
# التوليد باستخدام نماذج اللغات الكبيرة (LLMs)
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
تعد LLMs، أو نماذج اللغة الكبيرة، المكون الرئيسي وراء توليد النصوص. وباختصار، تتكون من نماذج محول كبيرة مسبقة التدريب تم تدريبها للتنبؤ بالكلمة التالية (أو، بشكل أكثر دقة، الرمز اللغوي) بالنظر إلى نص معين. نظرًا لأنها تتنبأ برمز واحد في كل مرة، يجب عليك القيام بشيء أكثر تعقيدًا لتوليد جمل جديدة بخلاف مجرد استدعاء النموذج - يجب عليك إجراء التوليد التلقائي.
|
||||
|
||||
التوليد التلقائي هو إجراء وقت الاستدلال الذي يتضمن استدعاء النموذج بشكل متكرر باستخدام مخرجاته الخاصة، بالنظر إلى بعض المدخلات الأولية. في 🤗 Transformers، يتم التعامل مع هذا بواسطة دالة [`~generation.GenerationMixin.generate`]، والتي تتوفر لجميع النماذج ذات القدرات التوليدية.
|
||||
|
||||
سيوضح هذا البرنامج التعليمي كيفية:
|
||||
|
||||
* تتوليد نص باستخدام نموذج اللغات الكبيرة (LLM)
|
||||
* تجنب الوقوع في الأخطاء الشائعة
|
||||
* الخطوات التالية لمساعدتك في الاستفادة القصوى من LLM الخاص بك
|
||||
|
||||
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
```bash
|
||||
pip install transformers bitsandbytes>=0.39.0 -q
|
||||
```
|
||||
|
||||
## توليد النص
|
||||
|
||||
يأخذ نموذج اللغة المدرب لـ [نمذجة اللغة السببية](tasks/language_modeling) يأخذ تسلسلًا من رموز نصية كمدخل ويعيد توزيع الاحتمالية للرمز التالي.
|
||||
|
||||
<!-- [GIF 1 -- FWD PASS] -->
|
||||
<figure class="image table text-center m-0 w-full">
|
||||
<video
|
||||
style="max-width: 90%; margin: auto;"
|
||||
autoplay loop muted playsinline
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov"
|
||||
></video>
|
||||
<figcaption>"التنبؤ بالكلمة التالية لنموذج اللغة (LLM)"</figcaption>
|
||||
</figure>
|
||||
|
||||
هناك جانب بالغ الأهمية في التوليد التلقائي باستخدام LLMs وهو كيفية اختيار الرمز التالي من توزيع الاحتمالية هذا. كل شيء مسموح به في هذه الخطوة طالما أنك تنتهي برمز للتكرار التالي. وهذا يعني أنه يمكن أن يكون بسيطًا مثل اختيار الرمز الأكثر احتمالًا من توزيع الاحتمالية أو معقدًا مثل تطبيق عشرات التحولات قبل أخذ العينات من التوزيع الناتج.
|
||||
|
||||
<!-- [GIF 2 -- TEXT GENERATION] -->
|
||||
<figure class="image table text-center m-0 w-full">
|
||||
<video
|
||||
style="max-width: 90%; margin: auto;"
|
||||
autoplay loop muted playsinline
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov"
|
||||
></video>
|
||||
<figcaption>"التوليد التلقائي المتسلسل"</figcaption>
|
||||
</figure>
|
||||
|
||||
تتكرر العملية الموضحة أعلاه بشكل تكراري حتى يتم الوصول إلى شرط التوقف. في الوضع المثالي، يحدد النموذج شرط التوقف، والذي يجب أن يتعلم عند إخراج رمز نهاية التسلسل (`EOS`). إذا لم يكن الأمر كذلك، يتوقف التوليد عند الوصول إلى طول أقصى محدد مسبقًا.
|
||||
|
||||
من الضروري إعداد خطوة اختيار الرمز وشرط التوقف بشكل صحيح لجعل نموذجك يتصرف كما تتوقع في مهمتك. ولهذا السبب لدينا [`~generation.GenerationConfig`] ملف مرتبط بكل نموذج، والذي يحتوي على معلمة توليدية افتراضية جيدة ويتم تحميله جنبًا إلى جنب مع نموذجك.
|
||||
|
||||
دعنا نتحدث عن الكود!
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا كنت مهتمًا بالاستخدام الأساسي لـ LLM، فإن واجهة [`Pipeline`](pipeline_tutorial) عالية المستوى هي نقطة انطلاق رائعة. ومع ذلك، غالبًا ما تتطلب LLMs ميزات متقدمة مثل التكميم والتحكم الدقيق في خطوة اختيار الرمز، والتي يتم تنفيذها بشكل أفضل من خلال [`~generation.GenerationMixin.generate`]. التوليد التلقائي باستخدام LLMs يستهلك الكثير من المواردد ويجب تنفيذه على وحدة معالجة الرسومات للحصول على أداء كافٍ.
|
||||
|
||||
</Tip>
|
||||
|
||||
أولاً، تحتاج إلى تحميل النموذج.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
ستلاحظ وجود معاملين في الاستدعاء `from_pretrained`:
|
||||
|
||||
- `device_map` يضمن انتقال النموذج إلى وحدة معالجة الرسومات (GPU) الخاصة بك
|
||||
- `load_in_4bit` يطبق [4-bit dynamic quantization](main_classes/quantization) لخفض متطلبات الموارد بشكل كبير
|
||||
|
||||
هناك طرق أخرى لتهيئة نموذج، ولكن هذا خط أساس جيد للبدء باستخدام LLM.
|
||||
|
||||
بعد ذلك، تحتاج إلى معالجة إدخال النص الخاص بك باستخدام [مُجزّئ اللغوي](tokenizer_summary).
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
|
||||
>>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
|
||||
```
|
||||
|
||||
يحتوي متغير `model_inputs` على النص المدخل بعد تقسيمه إلى وحدات لغوية (tokens)، بالإضافة إلى قناع الانتباه. في حين أن [`~generation.GenerationMixin.generate`] تبذل قصارى جهدها لاستنتاج قناع الانتباه عندما لا يتم تمريره، نوصي بتمريره كلما أمكن ذلك للحصول على نتائج مثالية.
|
||||
|
||||
بعد تقسيم المدخلات إلى وحدات لغوية، يمكنك استدعاء الدالة [`~generation.GenerationMixin.generate`] لإرجاع الوحدات اللغوية الناتجة. يجب بعد ذلك تحويل الوحدات المولدة إلى نص قبل طباعته.
|
||||
|
||||
```py
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'A list of colors: red, blue, green, yellow, orange, purple, pink,'
|
||||
```
|
||||
|
||||
أخيرًا، ليس عليك معالجة المتتاليات الواحدة تلو الأخرى! يمكنك معالجة مجموعة من المدخلات دفعة واحدة، والتي ستعمل على تحسين الإنتاجية بشكل كبير بتكلفة صغيرة في زمن الاستجابة واستهلاك الذاكر. كل ما عليك التأكد منه هو تعبئة المدخلات بشكل صحيح (المزيد حول ذلك أدناه).
|
||||
|
||||
```py
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
|
||||
>>> model_inputs = tokenizer(
|
||||
... ["A list of colors: red, blue", "Portugal is"], return_tensors="pt", padding=True
|
||||
... ).to("cuda")
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
['A list of colors: red, blue, green, yellow, orange, purple, pink,',
|
||||
'Portugal is a country in southwestern Europe, on the Iber']
|
||||
```
|
||||
|
||||
وهذا كل شيء! في بضع سطور من التعليمات البرمجية، يمكنك تسخير قوة LLM.
|
||||
|
||||
## الأخطاء الشائعة
|
||||
|
||||
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
```
|
||||
|
||||
### الإخراج المولد قصير جدًا/طويل جدًا
|
||||
|
||||
إذا لم يتم تحديد العدد الأقصى للرموز في [`~generation.GenerationConfig`] الملف، `generate` يعيد ما يصل إلى 20 رمزًا بشكل افتراضي. نوصي بشدة بتعيين `max_new_tokens` يدويًا في مكالمة `generate` للتحكم في العدد الأقصى من الرموز الجديدة التي يمكن أن يعيدها. ضع في اعتبارك أن LLMs (بشكل أكثر دقة، [نماذج فك التشفير فقط](https://huggingface.co/learn/nlp-course/chapter1/6؟fw=pt)) تعيد أيضًا المدخلات الأصلية كجزء من الناتج.
|
||||
```py
|
||||
>>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")
|
||||
|
||||
>>> # By default, the output will contain up to 20 tokens
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'A sequence of numbers: 1, 2, 3, 4, 5'
|
||||
|
||||
>>> # Setting `max_new_tokens` allows you to control the maximum length
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=50)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
|
||||
```
|
||||
|
||||
### وضع التوليد الافتراضي
|
||||
|
||||
بشكل افتراضي، وما لم يتم تحديده في [`~generation.GenerationConfig`] الملف، `generate` يحدد الكلمة الأكثر احتمالًا فى كل خطوة من خطوات عملية التوليد (وهذا يُعرف بالتشفير الجشع). اعتمادًا على مهمتك، قد يكون هذا غير مرغوب فيه؛ تستفيد المهام الإبداعية مثل برامج الدردشة أو كتابة مقال ستفيد من أسلوب العينة العشوائية في اختيار الكلمات، تمن ناحية أخرى، فإن المهام التي تعتمد على مدخلات محددة مثل تحويل الصوت إلى نص أو الترجم من فك التشفير الجشع. قم بتفعيل أسلوب العينات العشوائية باستخدام `do_sample=True`، ويمكنك معرفة المزيد حول هذا الموضوع في [تدوينة المدونة](https://huggingface.co/blog/how-to-generate).
|
||||
|
||||
```py
|
||||
>>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility
|
||||
>>> from transformers import set_seed
|
||||
>>> set_seed(42)
|
||||
|
||||
>>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")
|
||||
|
||||
>>> # LLM + greedy decoding = repetitive, boring output
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'I am a cat. I am a cat. I am a cat. I am a cat'
|
||||
|
||||
>>> # With sampling, the output becomes more creative!
|
||||
>>> generated_ids = model.generate(**model_inputs, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'I am a cat. Specifically, I am an indoor-only cat. I'
|
||||
```
|
||||
|
||||
### مشكلة حشو المدخلات فى الاتجاة الخطأ
|
||||
|
||||
LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/learn/nlp-course/chapter1/6؟fw=pt)، مما يعني أنها تستمر في التكرار على موجه الإدخال الخاص بك. فإن جميع المدخلات يجب أن تكون بنفس الطول. لحل هذه المسألة، يتم إضافة رموز حشو إلى المدخلات الأقصر. نظرًا لأن LLMs لا تولي اهتمامًا لرموز الحشو هذه، ذلك، يجب تحديد الجزء المهم من المدخل الذي يجب أن يركز عليه النموذج، وهذا يتم عن طريق ما يسمى بـ "قناع الانتباه". يجب أن يكون الحشو في بداية المدخل (الحشو من اليسار)، وليس في نهايته.
|
||||
|
||||
```py
|
||||
>>> # The tokenizer initialized above has right-padding active by default: the 1st sequence,
|
||||
>>> # which is shorter, has padding on the right side. Generation fails to capture the logic.
|
||||
>>> model_inputs = tokenizer(
|
||||
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
|
||||
... ).to("cuda")
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'1, 2, 33333333333'
|
||||
|
||||
>>> # With left-padding, it works as expected!
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
|
||||
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
|
||||
>>> model_inputs = tokenizer(
|
||||
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
|
||||
... ).to("cuda")
|
||||
>>> generated_ids = model.generate(**model_inputs)
|
||||
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
'1, 2, 3, 4, 5, 6,'
|
||||
```
|
||||
|
||||
### موجه غير صحيح
|
||||
|
||||
تتوقع بعض نماذج اللغات الكبيرة على صيغة محددة للمدخلات للعمل بشكل صحيح. إذا لم يتم اتباع هذه الصيغة، فإن أداء النموذج يتأثر سلبًا: لكن هذا التدهور قد لا يكون واضحًا للعيان. تتوفر معلومات إضافية حول التوجيه، بما في ذلك النماذج والمهام التي تحتاج إلى توخي الحذر، في [الدليل](tasks/prompting). دعنا نرى مثالاً باستخدام LLM للدردشة، والذي يستخدم [قالب الدردشة](chat_templating):
|
||||
```python
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained(
|
||||
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
|
||||
... )
|
||||
>>> set_seed(0)
|
||||
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
||||
>>> input_length = model_inputs.input_ids.shape[1]
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=20)
|
||||
>>> print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
|
||||
"I'm not a thug, but i can tell you that a human cannot eat"
|
||||
>>> # Oh no, it did not follow our instruction to reply as a thug! Let's see what happens when we write
|
||||
>>> # a better prompt and use the right template for this model (through `tokenizer.apply_chat_template`)
|
||||
|
||||
>>> set_seed(0)
|
||||
>>> messages = [
|
||||
... {
|
||||
... "role": "system",
|
||||
... "content": "You are a friendly chatbot who always responds in the style of a thug",
|
||||
... },
|
||||
... {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
||||
... ]
|
||||
>>> model_inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||
>>> input_length = model_inputs.shape[1]
|
||||
>>> generated_ids = model.generate(model_inputs, do_sample=True, max_new_tokens=20)
|
||||
>>> print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
|
||||
'None, you thug. How bout you try to focus on more useful questions?'
|
||||
>>> # As we can see, it followed a proper thug style 😎
|
||||
```
|
||||
|
||||
## موارد إضافية
|
||||
|
||||
في حين أن عملية التوليد التلقائي بسيطة نسبيًا، فإن الاستفادة القصوى من LLM الخاص بك يمكن أن تكون مهمة صعبة لأن هناك العديد من الأجزاء المتحركة. للخطوات التالية لمساعدتك في الغوص بشكل أعمق في استخدام LLM وفهمه:
|
||||
|
||||
### استخدامات متقدمة للتوليد في نماذج اللغات الكبيرة
|
||||
|
||||
1. دليل حول كيفية [التحكم في طرق التوليد المختلفة](generation_strategies)، وكيفية إعداد ملف تكوين التوليد، وكيفية بث الناتج؛
|
||||
2. [تسريع توليد النص](llm_optims)؛
|
||||
3.[قوالب موجهات للدردشة LLMs](chat_
|
||||
4. [دليل تصميم الموجه](tasks/prompting);
|
||||
5. مرجع واجهة برمجة التطبيقات (API) [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], و [generate-related classes](internal/generation_utils). والعديد من الفئات الأخرى المرتبطة بعملية التوليد.!
|
||||
|
||||
### لوحات صدارة نماذج اللغات الكبيرة
|
||||
1. لوحة صدارة نماذج اللغات الكبيرة المفتوحة المصدر (Open LLM Leaderboard): تركز على جودة النماذج مفتوحة المصدر [رابط لوحة الصدارة](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
||||
2. لوحة صدارة أداء نماذج اللغات الكبيرة المفتوحة المصدر (Open LLM-Perf Leaderboard): تركز على إنتاجية نماذج اللغات الكبيرة [رابط لوحة الصدارة](https://huggingface.co/spaces/optimum/llm-perf-leaderboard).
|
||||
|
||||
### زمن الاستجابة والإنتاجية واستهلاك الذاكرة
|
||||
1. دليل تحسين نماذج اللغات الكبيرة من حيث السرعة والذاكرة: دليل تحسين نماذج اللغات الكبيرة.
|
||||
2. التكميم (Quantization): دليل حول تقنية التكميم التكميم مثل تقنيتي bitsandbytes و autogptq، والتي توضح كيفية تقليل متطلبات الذاكرة بشكل كبير.
|
||||
|
||||
### مكتبات مرتبطة
|
||||
1. [`optimum`](https://github.com/huggingface/optimum), امتداد لمكتبة Transformers يعمل على تحسين الأداء لأجهزة معينة.
|
||||
2. [`outlines`](https://github.com/outlines-dev/outlines), مكتبة للتحكم في توليد النصوص (على سبيل المثال، لتوليد ملفات JSON).
|
||||
3. [`SynCode`](https://github.com/uiuc-focal-lab/syncode), مكتبة للتوليد الموجه بقواعد اللغة الخالية من السياق (على سبيل المثال، JSON، SQL، Python).
|
||||
4. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), خادم جاهز للإنتاج لنماذج اللغات الكبيرة.
|
||||
5. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), واجهة مستخدم لتوليد النصوص.
|
||||
795
docs/source/ar/llm_tutorial_optimization.md
Normal file
795
docs/source/ar/llm_tutorial_optimization.md
Normal file
@ -0,0 +1,795 @@
|
||||
# تحسين نماذج اللغة الكبيرة من حيث السرعة والذاكرة
|
||||
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
تحقق نماذج اللغة الكبيرة (LLMs) مثل GPT3/4، [Falcon](https://huggingface.co/tiiuae/falcon-40b)، و [Llama](https://huggingface.co/meta-llama/Llama-2-70b-hf) تقدمًا سريعًا في قدرتها على معالجة المهام التي تركز على الإنسان، مما يجعلها أدوات أساسية في الصناعات القائمة على المعرفة الحديثة.
|
||||
لا يزال نشر هذه النماذج في المهام الواقعية يمثل تحديًا، ومع ذلك:
|
||||
|
||||
- لكي تظهر نماذج اللغة الكبيرة قدرات فهم وتوليد النصوص قريبة من قدرات الإنسان، فإنها تتطلب حاليًا إلى تكوينها من مليارات المعلمات (انظر [كابلان وآخرون](https://arxiv.org/abs/2001.08361)، [وي وآخرون](https://arxiv.org/abs/2206.07682)). وهذا بدوره يزيد من متطلبات الذاكرة للاستدلال.
|
||||
- في العديد من المهام الواقعية، تحتاج نماذج اللغة الكبيرة إلى معلومات سياقية شاملة. يتطلب ذلك قدرة النموذج على إدارة تسلسلات إدخال طويلة للغاية أثناء الاستدلال.
|
||||
|
||||
يكمن جوهر صعوبة هذه التحديات في تعزيز القدرات الحسابية والذاكرة لنماذج اللغة الكبيرة، خاصة عند التعامل مع تسلسلات الإدخال الضخمة.
|
||||
|
||||
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
|
||||
|
||||
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
|
||||
|
||||
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
|
||||
|
||||
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://arxiv.org/abs/2108.12409)، [الترميز الدوار](https://arxiv.org/abs/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://arxiv.org/abs/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://arxiv.org/abs/2305.13245)).
|
||||
|
||||
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.
|
||||
|
||||
## 1. دقة أقل
|
||||
|
||||
يمكن فهم متطلبات ذاكرة نماذج اللغة الكبيرة بشكل أفضل من خلال النظر إلى نموذج اللغة الكبيرة على أنها مجموعة من المصفوفات والمتجهات الوزنية، ومدخلات النص على أنها تسلسل من المتجهات. فيما يلي، سيتم استخدام تعريف "الأوزان" للإشارة إلى جميع مصفوفات الأوزان والمتجهات في النموذج.
|
||||
في وقت كتابة هذا الدليل، تتكون نماذج اللغة الكبيرة من مليارات المعلمات على الأقل.كل معلمة يتم تمثيلها برقم عشري مثل 4.5689 `` والذي يتم تخزينه عادةً بتنسيق [float32](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)، [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format)، أو [float16](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) . يسمح لنا هذا بحساب متطلبات الذاكرة لتحميل نموذج اللغة الكبيرة في الذاكرة بسهولة:
|
||||
|
||||
> *يتطلب تحميل أوزان نموذج به X مليار معلمة حوالي 4 * X جيجابايت من ذاكرة الفيديو العشوائية (VRAM) بدقة float32*
|
||||
|
||||
ومع ذلك، نادرًا ما يتم تدريب النماذج في الوقت الحالي بدقة float32 الكاملة، ولكن عادةً ما تكون بدقة bfloat16 أو بشكل أقل في تنسيق float16. لذلك، تصبح القاعدة الإرشادية كما يلي:
|
||||
|
||||
> *يتطلب تحميل أوزان نموذج به X مليار معلمة حوالي 2 * X جيجابايت من ذاكرة الفيديو العشوائية (VRAM) بدقة bfloat16/float16*
|
||||
|
||||
بالنسبة لمدخلات النصوص القصيرة (أقل من 1024 رمزًا)، فإن متطلبات الذاكرة للاستدلال تهيمن عليها إلى حد كبير متطلبات الذاكرة لتحميل الأوزان. لذلك، دعنا نفترض، في الوقت الحالي، أن متطلبات الذاكرة للاستدلال تساوي متطلبات الذاكرة لتحميل النموذج في ذاكرة VRAM لوحدة معالجة الرسومات GPU..
|
||||
|
||||
ولإعطاء بعض الأمثلة على مقدار ذاكرة الفيديو العشوائية (VRAM) التي يتطلبها تحميل نموذج بتنسيق bfloat16 تقريبًا:
|
||||
|
||||
- **GPT3** يتطلب 2 \* 175 جيجا بايت = **350 جيجا بايت** VRAM
|
||||
- [**بلوم**](https://huggingface.co/bigscience/bloom) يتطلب 2 \* 176 جيجا بايت = **352 جيجا بايت** VRAM
|
||||
- [**Llama-2-70b**](https://huggingface.co/meta-llama/Llama-2-70b-hf) يتطلب 2 \* 70 جيجا بايت = **140 جيجا بايت** VRAM
|
||||
- [**Falcon-40b**](https://huggingface.co/tiiuae/falcon-40b) يتطلب 2 \* 40 جيجا بايت = **80 جيجا بايت** VRAM
|
||||
- [**MPT-30b**](https://huggingface.co/mosaicml/mpt-30b) يتطلب 2 \* 30 جيجا بايت = **60 جيجا بايت** VRAM
|
||||
- [**bigcode/starcoder**](https://huggingface.co/bigcode/starcoder) يتطلب 2 \* 15.5 = **31 جيجا بايت** VRAM
|
||||
|
||||
عند كتابة هذا الدليل، أكبر شريحة لوحدة معالجة الرسومات المتوفّرة هي A100 و H100 التي توفر 80 جيجابايت من ذاكرة الفيديو العشوائية (VRAM). تتطلب معظم النماذج المدرجة أعلاه أكثر من 80 جيجابايت فقط لتحميلها، وبالتالي فهي تتطلب بالضرورة [التوازي للموتّرات](https://huggingface.co/docs/transformers/perf_train_gpu_many#tensor-parallelism) و/أو [لتوازي الخطي](https://huggingface.co/docs/transformers/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism).
|
||||
|
||||
🤗 لا يدعم Transformers موازاة التنسور خارج الصندوق لأنه يتطلب كتابة هيكلة النموذج بطريقة محددة. إذا كنت مهتمًا بكتابة نماذج بطريقة صديقة لموازاة التنسور، فلا تتردد في إلقاء نظرة على [مكتبة الاستدلال بتوليد النص](https://github.com/huggingface/text-generation-inference/tree/main/server/text_generation_server/models/custom_modeling).
|
||||
|
||||
بدعم موازاة قنوات المعالجة البسيطة خارج الصندوق. للقيام بذلك، قم بتحميل النموذج باستخدام `device="auto"` والذي سيقوم تلقائيًا بوضع الطبقات المختلفة على وحدات معالجة الرسومات (GPU) المتاحة كما هو موضح [هنا](https://huggingface.co/docs/accelerate/v0.22.0/en/concept_guides/big_model_inference).
|
||||
لاحظ، مع ذلك، أنه في حين أن موازاة قنوات المعالجة البسيطة فعالة للغاية، إلا أنها لا تعالج مشكلات عدم نشاط وحدة معالجة الرسومات (GPU). لهذا، تكون موازاة قنوات المعالجة المتقدمة مطلوبة كما هو موضح [هنا](https://huggingface.co/docs/transformers/en/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism).
|
||||
|
||||
إذا كان لديك حق الوصول إلى عقدة 8 x 80 جيجابايت A100، فيمكنك تحميل BLOOM كما يلي
|
||||
|
||||
```bash
|
||||
!pip install transformers accelerate bitsandbytes optimum
|
||||
```
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom", device_map="auto", pad_token_id=0)
|
||||
```
|
||||
|
||||
من خلال استخدام `device_map="auto"` سيتم توزيع طبقات الاهتمام بالتساوي عبر جميع وحدات معالجة الرسومات (GPU) المتاحة.
|
||||
|
||||
في هذا الدليل، سنستخدم [bigcode/octocoder](https://huggingface.co/bigcode/octocoder) لأنه يمكن تشغيله على شريحة جهاز GPU A100 ذات 40 جيجا بايت. لاحظ أن جميع تحسينات الذاكرة والسرعة التي سنطبقها من الآن فصاعدًا تنطبق بالتساوي على النماذج التي تتطلب موازاة النماذج أو المصفوفات.
|
||||
|
||||
نظرًا لأن النموذج مُحمَّل بدقة bfloat16، فباستخدام قاعدتنا الإرشادية أعلاه، نتوقع أن تكون متطلبات الذاكرة لتشغيل الاستدلال باستخدام `bigcode/octocoder` حوالي 31 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM). دعنا نجرب.
|
||||
|
||||
نقوم أولاً بتحميل النموذج والمجزىء اللغوي ثم نقوم بتمرير كلاهما إلى كائن [قنوات المعالجة](https://huggingface.co/docs/transformers/main_classes/pipelines) في Transformers.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
import torch
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
```python
|
||||
prompt = "Question: Please write a function in Python that transforms bytes to Giga bytes.\n\nAnswer:"
|
||||
|
||||
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
Here is a Python function that transforms bytes to Giga bytes:\n\n```python\ndef bytes_to_giga_bytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single
|
||||
```
|
||||
|
||||
رائع، يمكننا الآن استخدام النتيجة مباشرة لتحويل البايت إلى جيجا بايت.
|
||||
|
||||
```python
|
||||
def bytes_to_giga_bytes(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
```
|
||||
|
||||
دعونا نستدعي [`torch.cuda.max_memory_allocated`](https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html) لقياس ذروة تخصيص ذاكرة وحدة معالجة الرسومات (GPU).
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```bash
|
||||
29.0260648727417
|
||||
```
|
||||
|
||||
قريب بما يكفي من حسابنا التقريبي! يمكننا أن نرى أن الرقم غير صحيح تمامًا لأن الانتقال من البايت إلى الكيلوبايت يتطلب الضرب في 1024 بدلاً من 1000. لذلك يمكن أيضًا فهم صيغة التقريب على أنها حساب "بحد أقصى X جيجا بايت".
|
||||
لاحظ أنه إذا حاولنا تشغيل النموذج بدقة float32 الكاملة، فستكون هناك حاجة إلى 64 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM).
|
||||
|
||||
> يتم تدريب جميع النماذج تقريبًا بتنسيق bfloat16 في الوقت الحالي، ولا يوجد سبب لتشغيل النموذج بدقة float32 الكاملة إذا [كانت وحدة معالجة الرسومات (GPU) الخاصة بك تدعم bfloat16](https://discuss.pytorch.org/t/bfloat16-native-support/117155/5). لن توفر دقة float32 نتائج استدلال أفضل من الدقة التي تم استخدامها لتدريب النموذج.
|
||||
|
||||
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"torch_dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., torch_dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
|
||||
|
||||
|
||||
دعونا نحدد وظيفة `flush(...)` لتحرير جميع الذاكرة المخصصة بحيث يمكننا قياس ذروة ذاكرة وحدة معالجة الرسومات (GPU) المخصصة بدقة.
|
||||
|
||||
```python
|
||||
del pipe
|
||||
del model
|
||||
|
||||
import gc
|
||||
import torch
|
||||
|
||||
def flush():
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
```
|
||||
|
||||
دعونا نستدعيه الآن للتجربة التالية.
|
||||
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
في الإصدار الأخير من مكتبة Accelerate، يمكنك أيضًا استخدام طريقة مساعدة تسمى `release_memory()`
|
||||
|
||||
```python
|
||||
from accelerate.utils import release_memory
|
||||
# ...
|
||||
|
||||
release_memory(model)
|
||||
```
|
||||
```python
|
||||
from accelerate.utils import release_memory
|
||||
# ...
|
||||
|
||||
release_memory(model)
|
||||
```
|
||||
|
||||
والآن ماذا لو لم يكن لدى وحدة معالجة الرسومات (GPU) لديك 32 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM)؟ لقد وجد أن أوزان النماذج يمكن تحويلها إلى 8 بتات أو 4 بتات دون خسارة كبيرة في الأداء (انظر [Dettmers et al.](https://arxiv.org/abs/2208.07339)).
|
||||
يمكن تحويل النموذج إلى 3 بتات أو 2 بتات مع فقدان مقبول في الأداء كما هو موضح في ورقة [GPTQ](https://arxiv.org/abs/2210.17323) 🤯.
|
||||
|
||||
دون الدخول في الكثير من التفاصيل، تهدف مخططات التكميم إلى تخفيض دقة الأوزان مع محاولة الحفاظ على دقة نتائج النموذج كما هي (*أي* أقرب ما يمكن إلى bfloat16).
|
||||
لاحظ أن التكميم يعمل بشكل خاص جيدًا لتوليد النص حيث كل ما نهتم به هو اختيار *مجموعة الرموز الأكثر احتمالًا التالية* ولا نهتم حقًا بالقيم الدقيقة لتوزيع الرمز التالي *logit*.
|
||||
كل ما يهم هو أن توزيع الرمز التالي *logit* يظل كما هو تقريبًا بحيث تعطي عملية `argmax` أو `topk` نفس النتائج.
|
||||
|
||||
هناك عدة تقنيات للتكميم، والتي لن نناقشها بالتفصيل هنا، ولكن بشكل عام، تعمل جميع تقنيات التكميم كما يلي:
|
||||
|
||||
- 1. تكميم جميع الأوزان إلى الدقة المستهدفة
|
||||
- 2. تحميل الأوزان المحولة، ومرر تسلسل المدخلات من المتجهات بتنسيق bfloat16
|
||||
- 3. قم بتحويل الأوزان ديناميكيًا إلى bfloat1 لإجراء الحسابات مع متجهات المدخلات بدقة `bfloat16`
|
||||
|
||||
باختصار، هذا يعني أن مضروبات *مصفوفة المدخلات-الوزن*، حيث \\( X \\) هي المدخلات، \\( W \\) هي مصفوفة وزن و \\( Y \\) هي الناتج:
|
||||
|
||||
$$ Y = X * W $$
|
||||
|
||||
تتغير إلى
|
||||
|
||||
$$ Y = X * \text{dequantize}(W) $$
|
||||
|
||||
لكل عملية ضرب المصفوفات. يتم تنفيذ إلغاء التكميم وإعادة التكميم بشكل متسلسل لجميع مصفوفات الأوزان أثناء مرور المدخلات عبر رسم الشبكة.
|
||||
|
||||
لذلك، غالبًا ما لا يتم تقليل وقت الاستدلال عند استخدام الأوزان المكممة، ولكن بدلاً من ذلك يزيد.
|
||||
|
||||
كفى نظرية، دعنا نجرب! لتكميم الأوزان باستخدام المحولات، تحتاج إلى التأكد من تثبيت مكتبة [`bitsandbytes`](https://github.com/TimDettmers/bitsandbytes).
|
||||
|
||||
```bash
|
||||
!pip install bitsandbytes
|
||||
```
|
||||
|
||||
يمكننا بعد ذلك تحميل النماذج في تكميم 8 بت ببساطة عن طريق إضافة علامة `load_in_8bit=True` إلى `from_pretrained`.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_8bit=True, pad_token_id=0)
|
||||
```
|
||||
|
||||
الآن، دعنا نعيد تشغيل مثالنا ونقيس استخدام الذاكرة.
|
||||
|
||||
```python
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
|
||||
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
Here is a Python function that transforms bytes to Giga bytes:\n\n```python\ndef bytes_to_giga_bytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single
|
||||
```
|
||||
|
||||
جميل، نحصل على نفس النتيجة كما في السابق، لذلك لا يوجد فقدان في الدقة! دعنا نلقي نظرة على مقدار الذاكرة المستخدمة هذه المرة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
15.219234466552734
|
||||
```
|
||||
|
||||
أقل بكثير! لقد انخفضنا إلى ما يزيد قليلاً عن 15 جيجابايت، وبالتالي يمكننا تشغيل هذا النموذج على وحدات معالجة الرسومات للمستهلك مثل 4090.
|
||||
|
||||
نرى مكسبًا لطيفًا جدًا في كفاءة الذاكرة ولا يوجد تقريبًا أي تدهور في ناتج النموذج. ومع ذلك، يمكننا أيضًا ملاحظة تباطؤ طفيف أثناء الاستدلال.
|
||||
|
||||
نحذف النماذج ونفرغ الذاكرة مرة أخرى.
|
||||
```python
|
||||
del model
|
||||
del pipe
|
||||
```
|
||||
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
|
||||
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
|
||||
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
Here is a Python function that transforms bytes to Giga bytes:\n\n```\ndef bytes_to_gigabytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single argument
|
||||
```
|
||||
|
||||
نحن نرى تقريبًا نفس نص الإخراج كما في السابق - فقط `python` مفقود قبل مقطع الكود. دعنا نرى مقدار الذاكرة المطلوبة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
9.543574333190918
|
||||
```
|
||||
|
||||
فقط 9.5 جيجابايت! هذا ليس كثيرًا بالفعل لنموذج يزيد عدد معاملاته عن 15 مليار.
|
||||
|
||||
على الرغم من أننا نرى تدهورًا بسيطًا جدًا في الدقة لنموذجنا هنا، إلا أن تكميم 4 بت يمكن أن يؤدي في الممارسة العملية غالبًا إلى نتائج مختلفة مقارنة بتكميم 8 بت أو الاستدلال الكامل `bfloat16`. الأمر متروك للمستخدم لتجربته.
|
||||
|
||||
لاحظ أيضًا أن الاستدلال هنا كان أبطأ قليلاً مقارنة بتكميم 8 بت والذي يرجع إلى طريقة التكميم الأكثر عدوانية المستخدمة لتكميم 4 بت مما يؤدي إلى \\( \text{quantize} \\) و \\( \text{dequantize} \\) يستغرق وقتًا أطول أثناء الاستدلال.
|
||||
|
||||
```python
|
||||
del model
|
||||
del pipe
|
||||
```
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
|
||||
بشكل عام، رأينا أن تشغيل OctoCoder بدقة 8 بت قلل من ذاكرة GPU VRAM المطلوبة من 32G GPU VRAM إلى 15 جيجابايت فقط، وتشغيل النموذج بدقة 4 بت يقلل من ذاكرة GPU VRAM المطلوبة إلى ما يزيد قليلاً عن 9 جيجابايت.
|
||||
|
||||
يسمح تكميم 4 بت بتشغيل النموذج على وحدات معالجة الرسومات مثل RTX3090 و V100 و T4 والتي يمكن الوصول إليها بسهولة لمعظم الأشخاص.
|
||||
|
||||
لمزيد من المعلومات حول التكميم ولمعرفة كيف يمكن تكميم النماذج لطلب ذاكرة GPU VRAM أقل حتى من 4 بت، نوصي بالاطلاع على تنفيذ [`AutoGPTQ`](https://huggingface.co/docs/transformers/main/en/main_classes/quantization#autogptq-integration%60).
|
||||
|
||||
> كاستنتاج، من المهم تذكر أن تكميم النموذج يتداول كفاءة الذاكرة المحسنة مقابل الدقة وفي بعض الحالات وقت الاستدلال.
|
||||
|
||||
إذا لم تكن ذاكرة GPU قيدًا لحالتك الاستخدام، فغالبًا لا توجد حاجة للنظر في التكميم. ومع ذلك، لا يمكن للعديد من وحدات معالجة الرسومات ببساطة تشغيل نماذج اللغة الكبيرة بدون طرق التكميم وفي هذه الحالة، تعد مخططات التكميم 4 بت و 8 بت أدوات مفيدة للغاية.
|
||||
|
||||
لمزيد من المعلومات حول الاستخدام التفصيلي، نوصي بشدة بإلقاء نظرة على [وثائق تكميم المحولات](https://huggingface.co/docs/transformers/main_classes/quantization#general-usage).
|
||||
|
||||
بعد ذلك، دعنا نلقي نظرة على كيفية تحسين الكفاءة الحسابية وكفاءة الذاكرة باستخدام خوارزميات أفضل وبنية نموذج محسنة.
|
||||
|
||||
## 2. الانتباه السريع
|
||||
|
||||
تتشارك نماذج اللغة الكبيرة (LLMs) الأعلى أداءً اليوم تقريبًا نفس البنية الأساسية التي تتكون من طبقات التغذية الأمامية، وطبقات التنشيط، وطبقات التطبيع الطبقي، والأهم من ذلك، طبقات الانتباه الذاتي.
|
||||
|
||||
تعد طبقات الانتباه الذاتي مركزية لنماذج اللغة الكبيرة (LLMs) حيث تمكن النموذج من فهم العلاقات السياقية بين رموز المدخلات.
|
||||
ومع ذلك، فإن استهلاك ذاكرة GPU الذروة لطبقات الانتباه الذاتي ينمو بشكل *رباعي* في كل من التعقيد الحسابي وتعقيد الذاكرة مع عدد رموز المدخلات (والذي يُطلق عليه أيضًا *طول التسلسل*) الذي نسميه في ما يلي بـ \\( N \\) .
|
||||
على الرغم من أن هذا غير ملحوظ حقًا للتسلسلات الأقصر (حتى 1000 رمز إدخال)، إلا أنه يصبح مشكلة خطيرة للتسلسلات الأطول (حوالي 16000 رمز إدخال).
|
||||
|
||||
دعنا نلقي نظرة أقرب. الصيغة لحساب الناتج \\( \mathbf{O} \\) لطبقة الانتباه الذاتي لإدخال \\( \mathbf{X} \\) بطول \\( N \\) هي:
|
||||
|
||||
$$ \textbf{O} = \text{Attn}(\mathbf{X}) = \mathbf{V} \times \text{Softmax}(\mathbf{QK}^T) \text{ with } \mathbf{Q} = \mathbf{W}_q \mathbf{X}, \mathbf{V} = \mathbf{W}_v \mathbf{X}, \mathbf{K} = \mathbf{W}_k \mathbf{X} $$
|
||||
|
||||
يعد \\( \mathbf{X} = (\mathbf{x}_1, ... \mathbf{x}_{N}) \\) بالتالي تسلسل الإدخال إلى طبقة الاهتمام. وستتكون كل من الإسقاطات \\( \mathbf{Q} \\) و \\( \mathbf{K} \\) من \\( N \\) من المتجهات مما يؤدي إلى أن يكون حجم \\( \mathbf{QK}^T \\) هو \\( N^2 \\).
|
||||
|
||||
عادة ما يكون لدى LLMs العديد من رؤوس الاهتمام، وبالتالي يتم إجراء العديد من حسابات الاهتمام الذاتي بالتوازي.
|
||||
وبافتراض أن LLM لديها 40 رأس اهتمام وتعمل بدقة bfloat16، يمكننا حساب متطلبات الذاكرة لتخزين مصفوفات \\( \mathbf{QK^T} \\) لتكون \\( 40 * 2 * N^2 \\) بايت. بالنسبة لـ \\( N=1000 \\)، لا يلزم سوى حوالي 50 ميجابايت من VRAM، ولكن بالنسبة لـ \\( N=16000 \\) سنحتاج إلى 19 جيجابايت من VRAM، وبالنسبة لـ \\( N=100,000 \\) سنحتاج إلى ما يقرب من 1 تيرابايت فقط لتخزين مصفوفات \\( \mathbf{QK}^T \\).
|
||||
|
||||
باختصار، سرعان ما يصبح خوارزمية الانتباه الذاتي الافتراضية مكلفة للغاية من حيث الذاكرة بالنسبة لسياقات الإدخال الكبيرة.
|
||||
|
||||
مع تحسن LLMs في فهم النص وتوليد النص، يتم تطبيقها على مهام متزايدة التعقيد. في حين أن النماذج كانت تتعامل سابقًا مع ترجمة أو تلخيص بضع جمل، فإنها الآن تدير صفحات كاملة، مما يتطلب القدرة على معالجة أطوال إدخال واسعة.
|
||||
|
||||
كيف يمكننا التخلص من متطلبات الذاكرة الباهظة للتطويلات المدخلة الكبيرة؟ نحن بحاجة إلى طريقة جديدة لحساب آلية الاهتمام الذاتي التي تتخلص من مصفوفة \\( QK^T \\). [طريقه داو وآخرون.](Https://arxiv.org/abs/2205.14135) طوروا بالضبط مثل هذا الخوارزمية الجديدة وأطلقوا عليها اسم **Flash Attention**.
|
||||
|
||||
باختصار، يكسر الاهتمام الفلاشي حساب \\( \mathbf{V} \times \operatorname{Softmax}(\mathbf{QK}^T\\)) ويحسب بدلاً من ذلك قطعًا أصغر من الإخراج عن طريق التكرار عبر العديد من خطوات حساب Softmax:
|
||||
|
||||
$$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \times \operatorname{Softmax}(\mathbf{QK}^T_{i,j}) \text{ for multiple } i, j \text{ iterations } $$
|
||||
|
||||
مع \\( s^a_{ij} \\) و \\( s^b_{ij} \\) كونها بعض إحصائيات التطبيع softmax التي يجب إعادة حسابها لكل \\( i \\) و \\( j \\).
|
||||
|
||||
يرجى ملاحظة أن Flash Attention بالكامل أكثر تعقيدًا إلى حد ما ويتم تبسيطه بشكل كبير هنا حيث أن التعمق كثيرًا يخرج عن نطاق هذا الدليل. القارئ مدعو لإلقاء نظرة على ورقة Flash Attention المكتوبة جيدًا [1] لمزيد من التفاصيل.
|
||||
|
||||
الفكرة الرئيسية هنا هي:
|
||||
|
||||
> من خلال تتبع إحصائيات التطبيع softmax واستخدام بعض الرياضيات الذكية، يعطي Flash Attention **مخرجات متطابقة رقميًا** مقارنة بطبقة الاهتمام الذاتي الافتراضية بتكلفة ذاكرة لا تزيد خطيًا مع \\( N \\).
|
||||
|
||||
عند النظر إلى الصيغة، قد يقول المرء بديهيًا أن الاهتمام الفلاشي يجب أن يكون أبطأ بكثير مقارنة بصيغة الاهتمام الافتراضية حيث يلزم إجراء المزيد من الحسابات. في الواقع، يتطلب Flash Attention المزيد من عمليات الفاصلة العائمة مقارنة بالاهتمام العادي حيث يجب إعادة حساب إحصائيات التطبيع softmax باستمرار (راجع [الورقة](https://arxiv.org/abs/2205.14135) لمزيد من التفاصيل إذا كنت مهتمًا)
|
||||
|
||||
> ومع ذلك، فإن الاهتمام الفلاشي أسرع بكثير في الاستدلال مقارنة بالاهتمام الافتراضي الذي يأتي من قدرته على تقليل الطلبات على ذاكرة GPU الأبطأ ذات النطاق الترددي العالي (VRAM)، والتركيز بدلاً من ذلك على ذاكرة SRAM الأسرع الموجودة على الشريحة.
|
||||
|
||||
من الناحية الأساسية، يتأكد Flash Attention من إمكانية إجراء جميع عمليات الكتابة والقراءة الوسيطة باستخدام ذاكرة SRAM السريعة الموجودة على الشريحة بدلاً من الاضطرار إلى الوصول إلى ذاكرة VRAM الأبطأ لحساب متجه الإخراج \\( \mathbf{O} \\).
|
||||
|
||||
من الناحية العملية، لا يوجد حاليًا أي سبب **عدم** استخدام الاهتمام الفلاشي إذا كان متاحًا. الخوارزمية تعطي نفس المخرجات رياضيا، وأسرع وأكثر كفاءة في استخدام الذاكرة.
|
||||
|
||||
لنلقِ نظرة على مثال عملي.
|
||||
|
||||
|
||||
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
|
||||
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
|
||||
|
||||
```python
|
||||
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
|
||||
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
|
||||
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
|
||||
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
|
||||
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
|
||||
|
||||
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
|
||||
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
|
||||
-----
|
||||
|
||||
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
|
||||
|
||||
Answer: Sure. Here is a function that does that.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(len(list1)):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
return results
|
||||
|
||||
Question: Can you write some test cases for this function?
|
||||
|
||||
Answer: Sure, here are some tests.
|
||||
|
||||
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
|
||||
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
|
||||
assert alternating([], []) == []
|
||||
|
||||
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
|
||||
|
||||
Answer: Here is the modified function.
|
||||
|
||||
def alternating(list1, list2):
|
||||
results = []
|
||||
for i in range(min(len(list1), len(list2))):
|
||||
results.append(list1[i])
|
||||
results.append(list2[i])
|
||||
if len(list1) > len(list2):
|
||||
results.extend(list1[i+1:])
|
||||
else:
|
||||
results.extend(list2[i+1:])
|
||||
return results
|
||||
-----
|
||||
"""
|
||||
```
|
||||
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
|
||||
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
|
||||
|
||||
```python
|
||||
long_prompt = 10 * system_prompt + prompt
|
||||
```
|
||||
|
||||
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
|
||||
|
||||
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
|
||||
|
||||
```python
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 10.96854019165039 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
|
||||
|
||||
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
|
||||
|
||||
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
37.668193340301514
|
||||
```
|
||||
|
||||
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
|
||||
|
||||
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
|
||||
|
||||
```python
|
||||
flush()
|
||||
```
|
||||
|
||||
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
|
||||
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
|
||||
|
||||
```python
|
||||
model.to_bettertransformer()
|
||||
```
|
||||
|
||||
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
|
||||
|
||||
```py
|
||||
start_time = time.time()
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||||
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
|
||||
|
||||
print(f"Generated in {time.time() - start_time} seconds.")
|
||||
result
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
تم التوليد في 3.0211617946624756 ثانية.
|
||||
بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
def bytes_to_giga(bytes):
|
||||
return bytes / 1024 / 1024 / 1024
|
||||
|
||||
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
|
||||
|
||||
ديف
|
||||
```
|
||||
|
||||
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
|
||||
|
||||
دعنا نقيس استهلاك الذاكرة لآخر مرة.
|
||||
|
||||
```python
|
||||
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
32.617331981658936
|
||||
```
|
||||
|
||||
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
|
||||
|
||||
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
|
||||
|
||||
```py
|
||||
flush()
|
||||
```
|
||||
|
||||
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
|
||||
|
||||
## 3. الابتكارات المعمارية
|
||||
|
||||
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:
|
||||
|
||||
- صب الأوزان في تنسيق دقة أقل
|
||||
- استبدال خوارزمية الاهتمام الذاتي بإصدار أكثر كفاءة من حيث الذاكرة والحساب
|
||||
|
||||
دعونا الآن نلقي نظرة على كيفية تغيير بنية LLM بحيث تكون أكثر فعالية وكفاءة للمهام التي تتطلب مدخلات نصية طويلة، على سبيل المثال:
|
||||
- استرجاع الأسئلة المعززة،
|
||||
- تلخيص،
|
||||
- الدردشة
|
||||
|
||||
لاحظ أن "الدردشة" لا تتطلب من LLM التعامل مع مدخلات نصية طويلة فحسب، بل تتطلب أيضًا أن يكون LLM قادرًا على التعامل بكفاءة مع الحوار ذهابًا وإيابًا بين المستخدم والمساعد (مثل ChatGPT).
|
||||
|
||||
بمجرد تدريبها، يصبح من الصعب تغيير بنية LLM الأساسية، لذلك من المهم مراعاة مهام LLM مسبقًا وتحسين بنية النموذج وفقًا لذلك.
|
||||
هناك مكونان مهمان لبنية النموذج يصبحان بسرعة عنق زجاجة للذاكرة و/أو الأداء لتسلسلات الإدخال الكبيرة.
|
||||
|
||||
- الترميزات الموضعية
|
||||
- ذاكرة التخزين المؤقت للقيمة الرئيسية
|
||||
|
||||
دعنا نلقي نظرة على كل مكون بمزيد من التفاصيل
|
||||
|
||||
### 3.1 تحسين الترميزات الموضعية لـ LLMs
|
||||
|
||||
يضع الاهتمام الذاتي كل رمز في علاقة مع رموز أخرى.
|
||||
كمثال، يمكن أن تبدو مصفوفة \\( \operatorname{Softmax}(\mathbf{QK}^T) \\) لتسلسل الإدخال النصي *"مرحبًا"، "أنا"، "أحب"، "أنت"* كما يلي:
|
||||
|
||||

|
||||
|
||||
يتم منح كل رمز كلمة كتلة احتمال يتم من خلالها الاهتمام بجميع رموز الكلمات الأخرى، وبالتالي يتم وضعها في علاقة مع جميع رموز الكلمات الأخرى. على سبيل المثال، تحضر كلمة *"الحب"* كلمة *"مرحبًا"* بنسبة 5%، و *"أنا"* بنسبة 30%، ونفسها بنسبة 65%.
|
||||
|
||||
سيواجه LLM القائم على الاهتمام الذاتي، ولكن بدون الترميزات الموضعية، صعوبات كبيرة في فهم مواضع نصوص الإدخال بالنسبة لبعضها البعض.
|
||||
ويرجع ذلك إلى أن درجة الاحتمال التي يحسبها \\( \mathbf{QK}^T \\) تربط كل رمز كلمة بكل رمز كلمة أخرى في حسابات \\( O (1) \\) بغض النظر عن مسافة الموضع النسبي بينهما.
|
||||
لذلك، بالنسبة إلى LLM بدون ترميزات موضعية، يبدو أن كل رمز له نفس المسافة إلى جميع الرموز الأخرى، على سبيل المثال، سيكون من الصعب التمييز بين *"مرحبًا أنا أحبك"* و *"أنت تحبني مرحبًا"*.
|
||||
|
||||
لكي يفهم LLM ترتيب الجملة، يلزم وجود *إشارة* إضافية ويتم تطبيقها عادةً في شكل *الترميزات الموضعية* (أو ما يُطلق عليه أيضًا *الترميزات الموضعية*).
|
||||
لم يتم ترجمة النص الخاص والروابط وأكواد HTML وCSS بناءً على طلبك.
|
||||
|
||||
قدم مؤلفو الورقة البحثية [*Attention Is All You Need*](https://arxiv.org/abs/1706.03762) تضمينات موضعية جيبية مثلثية \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) حيث يتم حساب كل متجه \\( \mathbf{p}_i \\) كدالة جيبية لموضعه \\( i \\) .
|
||||
بعد ذلك يتم ببساطة إضافة التضمينات الموضعية إلى متجهات تسلسل الإدخال \\( \mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N \\) = \\( \mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N \\) وبالتالي توجيه النموذج لتعلم ترتيب الجملة بشكل أفضل.
|
||||
|
||||
بدلاً من استخدام التضمينات الموضعية الثابتة، استخدم آخرون (مثل [Devlin et al.](https://arxiv.org/abs/1810.04805)) تضمينات موضعية مكتسبة يتم من خلالها تعلم التضمينات الموضعية \\( \mathbf{P} \\) أثناء التدريب.
|
||||
|
||||
كانت التضمينات الموضعية الجيبية والمكتسبة هي الطرق السائدة لترميز ترتيب الجملة في نماذج اللغة الكبيرة، ولكن تم العثور على بعض المشكلات المتعلقة بهذه التضمينات الموضعية:
|
||||
|
||||
1. التضمينات الموضعية الجيبية والمكتسبة هي تضمينات موضعية مطلقة، أي ترميز تضمين فريد لكل معرف موضعي: \\( 0, \ldots, N \\) . كما أظهر [Huang et al.](https://arxiv.org/abs/2009.13658) و [Su et al.](https://arxiv.org/abs/2104.09864)، تؤدي التضمينات الموضعية المطلقة إلى أداء ضعيف لنماذج اللغة الكبيرة للمدخلات النصية الطويلة. بالنسبة للمدخلات النصية الطويلة، يكون من المفيد إذا تعلم النموذج المسافة الموضعية النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض بدلاً من موضعها المطلق.
|
||||
2. عند استخدام التضمينات الموضعية المكتسبة، يجب تدريب نموذج اللغة الكبيرة على طول إدخال ثابت \\( N \\)، مما يجعل من الصعب الاستقراء إلى طول إدخال أطول مما تم تدريبه عليه.
|
||||
|
||||
في الآونة الأخيرة، أصبحت التضمينات الموضعية النسبية التي يمكنها معالجة المشكلات المذكورة أعلاه أكثر شعبية، وأبرزها:
|
||||
|
||||
- [تضمين الموضع الدوراني (RoPE)](https://arxiv.org/abs/2104.09864)
|
||||
- [ALiBi](https://arxiv.org/abs/2108.12409)
|
||||
|
||||
يؤكد كل من *RoPE* و *ALiBi* أنه من الأفضل توجيه نموذج اللغة الكبيرة حول ترتيب الجملة مباشرة في خوارزمية الانتباه الذاتي حيث يتم وضع رموز الكلمات في علاقة مع بعضها البعض. على وجه التحديد، يجب توجيه ترتيب الجملة عن طريق تعديل عملية \\( \mathbf{QK}^T \\) .
|
||||
|
||||
دون الدخول في الكثير من التفاصيل، يشير *RoPE* إلى أنه يمكن ترميز المعلومات الموضعية في أزواج الاستعلام-المفتاح، على سبيل المثال \\( \mathbf{q}_i \\) و \\( \mathbf{x}_j \\) عن طريق تدوير كل متجه بزاوية \\( \theta * i \\) و \\( \theta * j \\) على التوالي مع \\( i, j \\) تصف موضع الجملة لكل متجه:
|
||||
|
||||
$$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta, i -j} \mathbf{{x}}_j. $$
|
||||
|
||||
يمثل \\( \mathbf{R}_{\theta, i - j} \\) مصفوفة دورانية. \\( \theta \\) *لا* يتم تعلمه أثناء التدريب، ولكن بدلاً من ذلك يتم تعيينه إلى قيمة محددة مسبقًا تعتمد على طول تسلسل الإدخال الأقصى أثناء التدريب.
|
||||
|
||||
> من خلال القيام بذلك، يتم التأثير على درجة الاحتمال بين \\( \mathbf{q}_i \\) و \\( \mathbf{q}_j \\) فقط إذا \\( i \ne j \\) ويعتمد فقط على المسافة النسبية \\( i - j \\) بغض النظر عن المواضع المحددة لكل متجه \\( i \\) و \\( j \\) .
|
||||
|
||||
يستخدم *RoPE* في العديد من نماذج اللغة الكبيرة الأكثر أهمية اليوم، مثل:
|
||||
|
||||
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
|
||||
- [**Llama**](https://arxiv.org/abs/2302.13971)
|
||||
- [**PaLM**](https://arxiv.org/abs/2204.02311)
|
||||
|
||||
كبديل، يقترح *ALiBi* مخطط ترميز موضعي نسبي أبسط بكثير. يتم إضافة المسافة النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض كعدد صحيح سلبي مقياس بقيمة محددة مسبقًا `m` إلى كل إدخال استعلام-مفتاح لمصفوفة \\( \mathbf{QK}^T \\) مباشرة قبل حساب softmax.
|
||||
|
||||

|
||||
|
||||
كما هو موضح في ورقة [ALiBi](https://arxiv.org/abs/2108.12409)، يسمح هذا الترميز الموضعي النسبي البسيط للنموذج بالحفاظ على أداء عالٍ حتى في تسلسلات المدخلات النصية الطويلة جدًا.
|
||||
|
||||
يُستخدم *ALiBi* في العديد من أهم نماذج اللغة الكبيرة المستخدمة اليوم، مثل:
|
||||
|
||||
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
|
||||
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
|
||||
|
||||
يمكن لكل من ترميزات الموضع *RoPE* و *ALiBi* الاستقراء إلى أطوال إدخال لم يتم ملاحظتها أثناء التدريب، في حين ثبت أن الاستقراء يعمل بشكل أفضل بكثير خارج الصندوق لـ *ALiBi* مقارنة بـ *RoPE*.
|
||||
بالنسبة لـ ALiBi، ما عليك سوى زيادة قيم مصفوفة الموضع المثلث السفلي لمطابقة طول تسلسل الإدخال.
|
||||
بالنسبة لـ *RoPE*، يؤدي الحفاظ على نفس \\( \theta \\) الذي تم استخدامه أثناء التدريب إلى نتائج سيئة عند تمرير إدخالات نصية أطول بكثير من تلك التي شوهدت أثناء التدريب، راجع [Press et al.](https://arxiv.org/abs/2108.12409). ومع ذلك، وجد المجتمع بعض الحيل الفعالة التي تقوم بتعديل \\( \theta \\)، مما يسمح لترميزات الموضع *RoPE* بالعمل بشكل جيد لتسلسلات إدخال النص المستقرئة (راجع [هنا](https://github.com/huggingface/transformers/pull/24653)).
|
||||
|
||||
> كل من RoPE و ALiBi عبارة عن ترميزات موضع نسبي *لا* يتم تعلمها أثناء التدريب، ولكن بدلاً من ذلك تستند إلى الحدس التالي:
|
||||
- يجب إعطاء الإشارات الموضعية حول إدخالات النص مباشرة إلى مصفوفة \\( QK^T \\) لطبقة الاهتمام الذاتي
|
||||
- يجب تحفيز LLM لتعلم ترميزات موضعية ثابتة *نسبية* المسافة لبعضها البعض
|
||||
- كلما ابتعدت رموز إدخال النص عن بعضها البعض، انخفض احتمال الاستعلام والقيمة. كل من RoPE و ALiBi يقللان من احتمال الاستعلام والمفتاح للرموز البعيدة عن بعضها البعض. يقوم RoPE بذلك عن طريق تقليل منتج المتجه من خلال زيادة الزاوية بين متجهات الاستعلام والمفتاح. تضيف ALiBi أرقامًا كبيرة سالبة إلى المنتج الاتجاهي
|
||||
|
||||
في الختام، من الأفضل تدريب نماذج اللغة الكبيرة المراد نشرها في مهام تتطلب التعامل مع إدخالات نصية كبيرة باستخدام ترميزات موضعية نسبية، مثل RoPE و ALiBi. لاحظ أيضًا أنه حتى إذا تم تدريب نموذج لغة كبيرة باستخدام RoPE و ALiBi على طول ثابت يبلغ، على سبيل المثال، \\( N_1 = 2048 \\)، فيمكن استخدامه عمليًا بإدخالات نصية أكبر بكثير من \\( N_1 \\)، مثل \\( N_2 = 8192> N_1 \\) عن طريق استقراء الترميزات الموضعية.
|
||||
|
||||
### 3.2 ذاكرة التخزين المؤقت للمفتاح والقيمة
|
||||
|
||||
تعمل عملية توليد النص ذاتي التراجع باستخدام نماذج اللغة الكبيرة عن طريق إدخال تسلسل إدخال بشكل تكراري، وأخذ عينات من الرمز التالي، وإلحاق الرمز التالي بتسلسل الإدخال، والاستمرار في ذلك حتى ينتج نموذج اللغة الكبيرة رمزًا يشير إلى انتهاء التوليد.
|
||||
|
||||
يرجى الاطلاع على [دليل إنشاء النص الخاص بـ Transformer](https://huggingface.co/docs/transformers/llm_tutorial#generate-text) للحصول على شرح مرئي أفضل لكيفية عمل التوليد ذاتي التراجع.
|
||||
|
||||
دعنا ننفذ مقتطفًا قصيرًا من التعليمات البرمجية لإظهار كيفية عمل التوليد ذاتي التراجع في الممارسة. ببساطة، سنأخذ الرمز الأكثر احتمالًا عبر `torch.argmax`.
|
||||
|
||||
```python
|
||||
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
|
||||
|
||||
for _ in range(5):
|
||||
next_logits = model(input_ids)["logits"][:, -1:]
|
||||
next_token_id = torch.argmax(next_logits,dim=-1)
|
||||
|
||||
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
|
||||
print("shape of input_ids", input_ids.shape)
|
||||
|
||||
generated_text = tokenizer.batch_decode(input_ids[:, -5:])
|
||||
generated_text
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
shape of input_ids torch.Size([1, 21])
|
||||
shape of input_ids torch.Size([1, 22])
|
||||
shape of input_ids torch.Size([1, 23])
|
||||
shape of input_ids torch.Size([1, 24])
|
||||
shape of input_ids torch.Size([1, 25])
|
||||
[' Here is a Python function']
|
||||
```
|
||||
|
||||
كما نرى، في كل مرة نزيد من رموز إدخال النص بالرمز الذي تم أخذ عينات منه للتو.
|
||||
|
||||
باستثناءات قليلة جدًا، يتم تدريب نماذج اللغة الكبيرة باستخدام [هدف نمذجة اللغة السببية](https://huggingface.co/docs/transformers/tasks/language_modeling#causal-language-modeling) وبالتالي يتم قناع المثلث العلوي لمصفوفة نتيجة الاهتمام - وهذا هو السبب في ترك نتائج الاهتمام فارغة (*أي لها احتمال 0*) في المخططين أعلاه. للحصول على ملخص سريع حول نمذجة اللغة السببية، يمكنك الرجوع إلى مدونة [*Illustrated Self Attention*](https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention).
|
||||
|
||||
ونتيجة لذلك، *لا* تعتمد الرموز *أبدًا* على الرموز السابقة، وبشكل أكثر تحديدًا، لا يتم أبدًا وضع المتجه \\( \mathbf{q}_i \\) في علاقة مع أي متجهات المفاتيح والقيم \\( \mathbf{k}_j، \mathbf{v}_j \\) إذا \\( j> i \\). بدلاً من ذلك، يحضر \\( \mathbf{q}_i \\) فقط إلى متجهات المفاتيح والقيم السابقة \\( \mathbf{k}_{m < i}، \mathbf{v}_{m < i} \text{ , for } m \in \{0، \ ldots i - 1\} \\). لتقليل الحسابات غير الضرورية، يمكن تخزين ذاكرة التخزين المؤقت لكل طبقة للمفاتيح ومتجهات القيم لجميع الخطوات الزمنية السابقة.
|
||||
|
||||
فيما يلي، سنطلب من نموذج اللغة الكبيرة استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم عن طريق استردادها وإرسالها لكل عملية توجيه.
|
||||
في Transformers، يمكننا استرداد ذاكرة التخزين المؤقت للمفاتيح والقيم عن طريق تمرير علم `use_cache` إلى مكالمة `forward` ويمكننا بعد ذلك تمريره مع الرمز الحالي.
|
||||
|
||||
```python
|
||||
past_key_values = None # past_key_values is the key-value cache
|
||||
generated_tokens = []
|
||||
next_token_id = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
|
||||
|
||||
for _ in range(5):
|
||||
next_logits, past_key_values = model(next_token_id, past_key_values=past_key_values, use_cache=True).to_tuple()
|
||||
next_logits = next_logits[:, -1:]
|
||||
next_token_id = torch.argmax(next_logits, dim=-1)
|
||||
|
||||
print("shape of input_ids", next_token_id.shape)
|
||||
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
|
||||
generated_tokens.append(next_token_id.item())
|
||||
|
||||
generated_text = tokenizer.batch_decode(generated_tokens)
|
||||
generated_text
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
shape of input_ids torch.Size([1, 1])
|
||||
length of key-value cache 20
|
||||
shape of input_ids torch.Size([1, 1])
|
||||
length of key-value cache 21
|
||||
shape of input_ids torch.Size([1, 1])
|
||||
length of key-value cache 22
|
||||
shape of input_ids torch.Size([1, 1])
|
||||
length of key-value cache 23
|
||||
shape of input_ids torch.Size([1, 1])
|
||||
length of key-value cache 24
|
||||
[' Here', ' is', ' a', ' Python', ' function']
|
||||
```
|
||||
|
||||
كما هو موضح، عند استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، لا يتم زيادة رموز إدخال النص في الطول، ولكنها تظل متجه إدخال واحدًا. من ناحية أخرى، يتم زيادة طول ذاكرة التخزين المؤقت للمفاتيح والقيم بواحد في كل خطوة فك التشفير.
|
||||
|
||||
> يعني استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم أن \\( \mathbf{QK}^T \\) يتم تقليله بشكل أساسي إلى \\( \mathbf{q}_c\mathbf{K}^T \\) مع \\( \mathbf{q}_c \\) كونها إسقاط الاستعلام للرمز المدخل الحالي الذي يكون *دائمًا* مجرد متجه واحد.
|
||||
|
||||
لاستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم ميزتان:
|
||||
- زيادة كبيرة في الكفاءة الحسابية حيث يتم إجراء حسابات أقل مقارنة بحساب مصفوفة \\( \mathbf{QK}^T \\) الكاملة. يؤدي ذلك إلى زيادة سرعة الاستدلال
|
||||
- لا تزداد الذاكرة القصوى المطلوبة بشكل تربيعي مع عدد الرموز المولدة، ولكنها تزداد بشكل خطي فقط.
|
||||
|
||||
> يجب *دائمًا* استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم حيث يؤدي ذلك إلى نتائج متطابقة وزيادة كبيرة في السرعة لتسلسلات الإدخال الأطول. ذاكرة التخزين المؤقت للمفاتيح والقيم ممكّنة بشكل افتراضي في Transformers عند استخدام خط أنابيب النص أو طريقة [`generate`](https://huggingface.co/docs/transformers/main_classes/text_generation).
|
||||
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لاحظ أنه على الرغم من نصيحتنا باستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، فقد يكون إخراج نموذج اللغة الكبيرة مختلفًا قليلاً عند استخدامها. هذه خاصية نوى ضرب المصفوفة نفسها - يمكنك قراءة المزيد عنها [هنا](https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
|
||||
|
||||
</Tip>
|
||||
|
||||
#### 3.2.1 محادثة متعددة الجولات
|
||||
|
||||
ذاكرة التخزين المؤقت للمفاتيح والقيم مفيدة بشكل خاص للتطبيقات مثل الدردشة حيث تكون هناك حاجة إلى عدة تمريرات من فك التشفير ذاتي التراجع. دعنا نلقي نظرة على مثال.
|
||||
|
||||
```
|
||||
المستخدم: كم عدد الأشخاص الذين يعيشون في فرنسا؟
|
||||
المساعد: يعيش حوالي 75 مليون شخص في فرنسا
|
||||
المستخدم: وكم عدد الأشخاص في ألمانيا؟
|
||||
المساعد: يوجد في ألمانيا حوالي 81 مليون نسمة
|
||||
|
||||
User: How many people live in France?
|
||||
Assistant: Roughly 75 million people live in France
|
||||
User: And how many are in Germany?
|
||||
Assistant: Germany has ca. 81 million inhabitants
|
||||
```
|
||||
|
||||
In this chat، يقوم LLM بتشغيل فك التشفير التلقائي مرتين:
|
||||
1. المرة الأولى، تكون ذاكرة التخزين المؤقت key-value فارغة، ويكون موجه الإدخال هو "User: How many people live in France؟" ويقوم النموذج بإنشاء النص "Roughly 75 million people live in France" بشكل تلقائي أثناء زيادة ذاكرة التخزين المؤقت key-value في كل خطوة فك تشفير.
|
||||
2. في المرة الثانية، يكون موجه الإدخال هو "User: How many people live in France؟ \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany؟". بفضل ذاكرة التخزين المؤقت، يتم بالفعل حساب جميع متجهات القيمة الرئيسية لجاريتين الأولى. لذلك يتكون موجه الإدخال فقط من "User: And how many in Germany؟". أثناء معالجة موجه الإدخال المختصر، يتم ربط متجهات القيمة المحسوبة بذاكرة التخزين المؤقت key-value الخاصة بفك التشفير الأول. يتم بعد ذلك إنشاء إجابة المساعد الثانية "Germany has ca. 81 million inhabitants" بشكل تلقائي باستخدام ذاكرة التخزين المؤقت key-value المكونة من متجهات القيمة المشفرة لـ "User: How many people live in France؟ \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany؟".
|
||||
|
||||
يجب ملاحظة أمرين هنا:
|
||||
1. الحفاظ على كل السياق أمر بالغ الأهمية للنماذج اللغوية الكبيرة (LLMs) التي يتم نشرها في الدردشة بحيث يفهم LLM كل سياق المحادثة السابق. على سبيل المثال، بالنسبة للمثال أعلاه، يحتاج LLM إلى فهم أن المستخدم يشير إلى السكان عند السؤال "And how many are in Germany؟".
|
||||
2. ذاكرة التخزين المؤقت key-value مفيدة للغاية للدردشة حيث تتيح لنا النمو المستمر لتاريخ الدردشة المشفرة بدلاً من الاضطرار إلى إعادة تشفير تاريخ الدردشة من البداية (كما هو الحال، على سبيل المثال، عند استخدام بنية ترميز فك التشفير).
|
||||
|
||||
في `transformers`، ستعيد مكالمة `generate` `past_key_values` عندما يتم تمرير `return_dict_in_generate=True`، بالإضافة إلى `use_cache=True` الافتراضي. لاحظ أنه غير متوفر بعد من خلال واجهة `pipeline`.
|
||||
|
||||
```python
|
||||
# Generation as usual
|
||||
prompt = system_prompt + "Question: Please write a function in Python that transforms bytes to Giga bytes.\n\nAnswer: Here"
|
||||
model_inputs = tokenizer(prompt، return_tensors='pt')
|
||||
generation_output = model.generate(**model_inputs، max_new_tokens=60، return_dict_in_generate=True)
|
||||
decoded_output = tokenizer.batch_decode(generation_output.sequences)[0]
|
||||
|
||||
# Piping the returned `past_key_values` to speed up the next conversation round
|
||||
prompt = decoded_output + "\nQuestion: How can I modify the function above to return Mega bytes instead?\n\nAnswer: Here"
|
||||
model_inputs = tokenizer(prompt، return_tensors='pt')
|
||||
generation_output = model.generate(
|
||||
**model_inputs،
|
||||
past_key_values=generation_output.past_key_values،
|
||||
max_new_tokens=60،
|
||||
return_dict_in_generate=True
|
||||
)
|
||||
tokenizer.batch_decode(generation_output.sequences)[0][len(prompt):]
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
هي نسخة معدلة من الدالة التي تعيد ميجا بايت بدلاً من ذلك.
|
||||
|
||||
def bytes_to_megabytes(bytes):
|
||||
return bytes / 1024 / 1024
|
||||
|
||||
Answer: The function takes a number of bytes as input and returns the number of
|
||||
```
|
||||
|
||||
رائع، لا يتم إنفاق وقت إضافي على إعادة حساب نفس المفتاح والقيم لطبقة الاهتمام! ومع ذلك، هناك شيء واحد يجب ملاحظته. في حين أن ذروة الذاكرة المطلوبة لمصفوفة \\( \mathbf{QK}^T \\) يتم تقليلها بشكل كبير، فإن الاحتفاظ بذاكرة التخزين المؤقت key-value في الذاكرة يمكن أن يصبح مكلفًا جدًا من حيث الذاكرة لسلاسل الإدخال الطويلة أو الدردشة متعددة الجولات. تذكر أن ذاكرة التخزين المؤقت key-value بحاجة إلى تخزين متجهات القيمة الرئيسية لجميع متجهات الإدخال السابقة \\( \mathbf{x}_i \text{، لـ } i \in \{1، \ ldots، c - 1\} \\) لجميع طبقات الاهتمام الذاتي وكل رؤوس الاهتمام.
|
||||
|
||||
دعنا نحسب عدد القيم العائمة التي يجب تخزينها في ذاكرة التخزين المؤقت key-value لنموذج LLM `bigcode/octocoder` الذي استخدمناه من قبل.
|
||||
يبلغ عدد القيم العائمة ضعف طول التسلسل مضروبًا في عدد رؤوس الاهتمام مضروبًا في بعد رأس الاهتمام ومضروبًا في عدد الطبقات.
|
||||
حساب هذا لنموذج LLM لدينا عند طول تسلسل افتراضي يبلغ 16000 يعطي:
|
||||
|
||||
```python
|
||||
config = model.config
|
||||
2 * 16_000 * config.n_layer * config.n_head * config.n_embd // config.n_head
|
||||
```
|
||||
|
||||
**الإخراج**:
|
||||
```
|
||||
7864320000
|
||||
```
|
||||
|
||||
Roughly 8 مليار قيمة عائمة! يتطلب تخزين 8 مليارات قيمة عائمة في دقة `float16` حوالي 15 جيجابايت من ذاكرة الوصول العشوائي (RAM) وهو ما يقرب من نصف حجم أوزان النموذج نفسها!
|
||||
اقترح الباحثون طريقتين تسمحان بتقليل تكلفة الذاكرة لتخزين ذاكرة التخزين المؤقت key-value بشكل كبير، والتي يتم استكشافها في الأقسام الفرعية التالية.
|
||||
|
||||
#### 3.2.2 Multi-Query-Attention (MQA)
|
||||
|
||||
[Multi-Query-Attention](https://arxiv.org/abs/1911.02150) اقترحها Noam Shazeer في ورقته *Fast Transformer Decoding: One Write-Head is All You Need*. كما يقول العنوان، اكتشف Noam أنه بدلاً من استخدام `n_head` من أوزان إسقاط القيمة الرئيسية، يمكن استخدام زوج واحد من أوزان إسقاط رأس القيمة التي يتم مشاركتها عبر جميع رؤوس الاهتمام دون أن يتدهور أداء النموذج بشكل كبير.
|
||||
|
||||
> باستخدام زوج واحد من أوزان إسقاط رأس القيمة، يجب أن تكون متجهات القيمة الرئيسية \\( \mathbf{k}_i، \mathbf{v}_i \\) متطابقة عبر جميع رؤوس الاهتمام والتي بدورها تعني أننا بحاجة فقط إلى تخزين زوج إسقاط قيمة رئيسي واحد في ذاكرة التخزين المؤقت بدلاً من `n_head` منها.
|
||||
|
||||
نظرًا لأن معظم LLMs تستخدم ما بين 20 و100 رأس اهتمام، فإن MQA يقلل بشكل كبير من استهلاك الذاكرة لذاكرة التخزين المؤقت key-value. بالنسبة إلى LLM المستخدم في هذا الدفتر، يمكننا تقليل استهلاك الذاكرة المطلوبة من 15 جيجابايت إلى أقل من 400 ميجابايت عند طول تسلسل الإدخال 16000.
|
||||
|
||||
بالإضافة إلى توفير الذاكرة، يؤدي MQA أيضًا إلى تحسين الكفاءة الحسابية كما هو موضح في ما يلي.
|
||||
في فك التشفير التلقائي، يجب إعادة تحميل متجهات القيمة الرئيسية الكبيرة، ودمجها مع زوج متجه القيمة الحالي، ثم إدخالها في \\( \mathbf{q}_c\mathbf{K}^T \\) الحساب في كل خطوة. بالنسبة لفك التشفير التلقائي، يمكن أن تصبح عرض النطاق الترددي للذاكرة المطلوبة لإعادة التحميل المستمر عنق زجاجة زمنيًا خطيرًا. من خلال تقليل حجم متجهات القيمة الرئيسية، يجب الوصول إلى ذاكرة أقل، وبالتالي تقليل عنق الزجاجة في عرض النطاق الترددي للذاكرة. لمزيد من التفاصيل، يرجى إلقاء نظرة على [ورقة Noam](https://arxiv.org/abs/1911.02150).
|
||||
|
||||
الجزء المهم الذي يجب فهمه هنا هو أن تقليل عدد رؤوس الاهتمام بالقيمة الرئيسية إلى 1 لا معنى له إلا إذا تم استخدام ذاكرة التخزين المؤقت للقيمة الرئيسية. يظل الاستهلاك الذروي لذاكرة النموذج لمرور واحد للأمام بدون ذاكرة التخزين المؤقت للقيمة الرئيسية دون تغيير لأن كل رأس اهتمام لا يزال لديه متجه استعلام فريد بحيث يكون لكل رأس اهتمام مصفوفة \\( \mathbf{QK}^T \\) مختلفة.
|
||||
|
||||
شهدت MQA اعتمادًا واسع النطاق من قبل المجتمع ويتم استخدامها الآن بواسطة العديد من LLMs الأكثر شهرة:
|
||||
|
||||
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
|
||||
- [**PaLM**](https://arxiv.org/abs/2204.02311)
|
||||
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
|
||||
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
|
||||
|
||||
كما يستخدم نقطة التحقق المستخدمة في هذا الدفتر - `bigcode/octocoder` - MQA.
|
||||
|
||||
#### 3.2.3 مجموعة الاستعلام الاهتمام (GQA)
|
||||
|
||||
[مجموعة الاستعلام الاهتمام](https://arxiv.org/abs/2305.13245)، كما اقترح Ainslie et al. من Google، وجد أن استخدام MQA يمكن أن يؤدي غالبًا إلى تدهور الجودة مقارنة باستخدام إسقاطات رأس القيمة الرئيسية المتعددة. تجادل الورقة بأنه يمكن الحفاظ على أداء النموذج بشكل أكبر عن طريق تقليل عدد أوزان إسقاط رأس الاستعلام بشكل أقل حدة. بدلاً من استخدام وزن إسقاط قيمة رئيسية واحدة فقط، يجب استخدام `n <n_head` أوزان إسقاط قيمة رئيسية. من خلال اختيار `n` إلى قيمة أقل بكثير من `n_head`، مثل 2 أو 4 أو 8، يمكن الاحتفاظ بمعظم مكاسب الذاكرة والسرعة من MQA مع التضحية بقدر أقل من سعة النموذج وبالتالي، من المفترض، أقل أداء.
|
||||
|
||||
علاوة على ذلك، اكتشف مؤلفو GQA أنه يمكن *تدريب* نقاط تفتيش النموذج الموجودة ليكون لها بنية GQA باستخدام 5% فقط من الحوسبة الأصلية للتعليم المسبق. في حين أن 5% من الحوسبة الأصلية للتعليم المسبق يمكن أن تكون كمية هائلة، يسمح GQA *uptraining* بنقاط تفتيش موجودة للاستفادة من تسلسلات الإدخال الأطول.
|
||||
|
||||
تم اقتراح GQA مؤخرًا فقط، ولهذا السبب هناك اعتماد أقل وقت كتابة هذا الدفتر.
|
||||
أبرز تطبيق لـ GQA هو [Llama-v2](https://huggingface.co/meta-llama/Llama-2-70b-hf).
|
||||
|
||||
> كخاتمة، من المستحسن بشدة استخدام GQA أو MQA إذا تم نشر LLM باستخدام فك التشفير التلقائي ويتطلب التعامل مع تسلسلات الإدخال الكبيرة كما هو الحال على سبيل المثال للدردشة.
|
||||
|
||||
|
||||
## الخاتمة
|
||||
|
||||
مجتمع البحث يأتي باستمرار بطرق جديدة ومبتكرة لتسريع وقت الاستدلال للنماذج اللغوية الكبيرة على الإطلاق. كمثال، أحد اتجاهات البحث الواعدة هو [فك التشفير التخميني](https://arxiv.org/abs/2211.17192) حيث تقوم "الرموز السهلة" بإنشائها نماذج اللغة الأصغر والأسرع ويتم إنشاء "الرموز الصعبة" فقط بواسطة LLM نفسه. إن التعمق في التفاصيل يتجاوز نطاق هذا الدفتر، ولكن يمكن قراءته في هذه [تدوينة المدونة اللطيفة](https://huggingface.co/blog/assisted-generation).
|
||||
|
||||
السبب في أن LLMs الضخمة مثل GPT3/4، وLlama-2-70b، وClaude، وPaLM يمكن أن تعمل بسرعة كبيرة في واجهات الدردشة مثل [Hugging Face Chat](https://huggingface.co/chat/) أو ChatGPT يرجع إلى حد كبير إلى التحسينات المذكورة أعلاه في الدقة والخوارزميات والهندسة المعمارية.
|
||||
في المستقبل، ستكون أجهزة التسريع مثل وحدات معالجة الرسومات (GPUs) ووحدات معالجة الرسومات (TPUs)، وما إلى ذلك... ستكون أسرع فقط وستسمح بمزيد من الذاكرة، ولكن يجب دائمًا التأكد من استخدام أفضل الخوارزميات والهندسة المعمارية المتاحة للحصول على أكبر قدر من المال
|
||||
226
docs/source/ar/model_memory_anatomy.md
Normal file
226
docs/source/ar/model_memory_anatomy.md
Normal file
@ -0,0 +1,226 @@
|
||||
# تشريح عملية تدريب النموذج
|
||||
|
||||
لفهم تقنيات تحسين الأداء التي يمكن تطبيقها لتحسين كفاءة استخدام الذاكرة وسرعة تدريب النموذج، من المفيد التعرف على كيفية استخدام وحدة معالجة الرسوميات (GPU) أثناء التدريب، وكيف تختلف كثافة العمليات الحسابية باختلاف العملية التي يتم تنفيذها.
|
||||
|
||||
لنبدأ باستكشاف مثال توضيحي على استخدام وحدة GPU وتشغيل تدريب نموذج. وللتوضيح، سنحتاج إلى تثبيت بعض المكتبات:
|
||||
|
||||
```bash
|
||||
pip install transformers datasets accelerate nvidia-ml-py3
|
||||
```
|
||||
|
||||
تتيح مكتبة `nvidia-ml-py3` إمكانية مراقبة استخدام الذاكرة في النماذج من داخل بايثون. قد تكون على دراية بأمر `nvidia-smi` في الجهاز - تسمح هذه المكتبة بالوصول إلى نفس المعلومات مباشرة في بايثون.
|
||||
|
||||
ثم، نقوم بإنشاء بعض البيانات الوهمية:معرّفات رموز عشوائية بين 100 و30000 وتصنيفات ثنائية للمصنف.
|
||||
|
||||
في المجموع، نحصل على 512 تسلسلًا، لكل منها طول 512، ونخزنها في [`~datasets.Dataset`] بتنسيق PyTorch.
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> from datasets import Dataset
|
||||
|
||||
>>> seq_len, dataset_size = 512, 512
|
||||
>>> dummy_data = {
|
||||
... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
|
||||
... "labels": np.random.randint(0, 1, (dataset_size)),
|
||||
... }
|
||||
>>> ds = Dataset.from_dict(dummy_data)
|
||||
>>> ds.set_format("pt")
|
||||
```
|
||||
|
||||
لطباعة إحصائيات موجزة لاستخدام وحدة GPU وتشغيل التدريب مع [`Trainer`]، نقوم بتعريف دالتين مساعدتين:
|
||||
|
||||
```py
|
||||
>>> from pynvml import *
|
||||
|
||||
>>> def print_gpu_utilization():
|
||||
... nvmlInit()
|
||||
... handle = nvmlDeviceGetHandleByIndex(0)
|
||||
... info = nvmlDeviceGetMemoryInfo(handle)
|
||||
... print(f"GPU memory occupied: {info.used//1024**2} MB.")
|
||||
|
||||
>>> def print_summary(result):
|
||||
... print(f"Time: {result.metrics['train_runtime']:.2f}")
|
||||
... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
|
||||
... print_gpu_utilization()
|
||||
```
|
||||
|
||||
دعنا نتأكد من أننا نبدأ بذاكرة وحدة GPU خالية:
|
||||
|
||||
```py
|
||||
>>> print_gpu_utilization()
|
||||
GPU memory occupied: 0 MB.
|
||||
```
|
||||
|
||||
يبدو ذلك جيدًا: لم يتم شغل ذاكرة وحدة معالجة الرسومات كما نتوقع قبل تحميل أي نماذج. إذا لم يكن الأمر كذلك على جهازك، فتأكد من إيقاف جميع العمليات التي تستخدم ذاكرة وحدة GPU. ومع ذلك، لا يمكن للمستخدم استخدام كل ذاكرة وحدة GPU الفارغة. عندما يتم تحميل نموذج إلى وحدة GPU، يتم أيضًا تحميل النواة، والتي يمكن أن تستهلك 1-2 جيجابايت من الذاكرة. ولرؤية مقدار ذلك، نقوم بتحميل مصفوفة صغيرة إلى وحدة GPU والتي تؤدي إلى تحميل النواة أيضًا.
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
|
||||
>>> torch.ones((1, 1)).to("cuda")
|
||||
>>> print_gpu_utilization()
|
||||
GPU memory occupied: 1343 MB.
|
||||
```
|
||||
|
||||
نلاحظ أن النواة وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. الآن دعنا نرى مقدار المساحة التي يستخدمها النموذج.
|
||||
|
||||
## تحميل النموذج
|
||||
|
||||
أولاً، نقوم بتحميل نموذج `google-bert/bert-large-uncased`. نقوم بتحميل أوزان النموذج مباشرة إلى وحدة GPU حتى نتمكن من التحقق من مقدار المساحة التي تستخدمها الأوزان فقط.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-large-uncased").to("cuda")
|
||||
>>> print_gpu_utilization()
|
||||
GPU memory occupied: 2631 MB.
|
||||
```
|
||||
|
||||
يمكننا أن نرى أن أوزان النموذج وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. يعتمد الرقم الدقيق على وحدة GPU المحددة التي تستخدمها. لاحظ أنه في وحدات GPU الأحدث، قد يستغرق النموذج في بعض الأحيان مساحة أكبر نظرًا لأن الأوزان يتم تحميلها بطريقة مُحسّنة تُسرّع من استخدام النموذج. الآن يمكننا أيضًا التحقق بسرعة مما إذا كنا نحصل على نفس النتيجة كما هو الحال مع `nvidia-smi` CLI:
|
||||
|
||||
```bash
|
||||
nvidia-smi
|
||||
```
|
||||
|
||||
```bash
|
||||
Tue Jan 11 08:58:05 2022
|
||||
+-----------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|
||||
|-------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|===============================+======================+======================|
|
||||
| 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 |
|
||||
| N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default |
|
||||
| | | N/A |
|
||||
+-------------------------------+----------------------+----------------------+
|
||||
|
||||
+-----------------------------------------------------------------------------+
|
||||
| Processes: |
|
||||
| GPU GI CI PID Type Process name GPU Memory |
|
||||
| ID ID Usage |
|
||||
|=============================================================================|
|
||||
| 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB |
|
||||
+-----------------------------------------------------------------------------+
|
||||
```
|
||||
|
||||
نحصل على نفس الرقم كما كان من قبل، ويمكنك أيضًا أن ترى أننا نستخدم GPU من طراز V100 مع 16 جيجابايت من الذاكرة. لذا الآن يمكننا بدء تدريب النموذج ورؤية كيف يتغير استخدام ذاكرة GPU. أولاً، نقوم بإعداد بعض معاملات التدريب القياسية:
|
||||
|
||||
```py
|
||||
default_args = {
|
||||
"output_dir": "tmp"،
|
||||
"eval_strategy": "steps"،
|
||||
"num_train_epochs": 1،
|
||||
"log_level": "error"،
|
||||
"report_to": "none"،
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا كنت تخطط لتشغيل عدة تجارب، من أجل مسح الذاكرة بشكل صحيح بين التجارب، قم بإعادة تشغيل نواة Python بين التجارب.
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام الذاكرة في التدريب الأساسي
|
||||
|
||||
دعونا نستخدم [`Trainer`] وقم بتدريب النموذج دون استخدام أي تقنيات تحسين أداء GPU وحجم دفعة يبلغ 4:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments، Trainer، logging
|
||||
|
||||
>>> logging.set_verbosity_error()
|
||||
|
||||
|
||||
>>> training_args = TrainingArguments(per_device_train_batch_size=4، **default_args)
|
||||
>>> trainer = Trainer(model=model، args=training_args، train_dataset=ds)
|
||||
>>> result = trainer.train()
|
||||
>>> print_summary(result)
|
||||
```
|
||||
|
||||
```
|
||||
الوقت: 57.82
|
||||
العينات / الثانية: 8.86
|
||||
ذاكرة GPU المشغولة: 14949 ميجابايت.
|
||||
```
|
||||
|
||||
يمكننا أن نرى أن حجم دفعة صغير نسبيًا يملأ تقريبًا ذاكرة GPU بالكامل. ومع ذلك، غالبًا ما يؤدي حجم دفعة أكبر في تقارب نموذج أسرع أو أداء أفضل في النهاية. لذلك نريد أن نضبط حجم الدفعة وفقًا لاحتياجات النموذج لدينا وليس مع قيود وحدة GPU. ما يثير الاهتمام هو أننا نستخدم ذاكرة أكثر بكثير من حجم النموذج.
|
||||
لفهم سبب ذلك بشكل أفضل، دعنا نلقي نظرة على عمليات النموذج واحتياجاته من الذاكرة.
|
||||
|
||||
## تشريح عمليات النموذج
|
||||
|
||||
تتضمن بنية المحولات 3 مجموعات رئيسية من العمليات مُجمعة أدناه حسب كثافة العمليات الحسابية.
|
||||
|
||||
1. **عمليات ضرب المصفوفات**
|
||||
|
||||
تقوم الطبقات الخطية ومكونات الانتباه متعدد الرؤوس جميعها بعمليات ضرب ** المصفوفة بالمصفوفة** على دفعات. هذه العمليات هي أكثر أجزاء تدريب المحولات كثافة من الناحية الحسابية.
|
||||
|
||||
2. **عمليات التسوية الإحصائية**
|
||||
|
||||
تُعد عمليات Softmax والتسوية الطبقية أقل كثافة من ناحية الحسابية من عمليات ضرب المصفوفات، وتنطوي على عملية أو أكثر من عمليات **الاختزال**، والتي يتم تطبيق نتيجتها بعد ذلك عبر خريطة.
|
||||
|
||||
3. **العمليات على مستوى العناصر**
|
||||
|
||||
هذه هي العمليات المتبقية: **الانحيازات، والتسرب، ووظائف التنشيط، والوصلات المتبقية**. هذه هي عمليات أقل كثافة من الناحية الحسابية.
|
||||
|
||||
يمكن أن تكون هذه المعرفة مفيدة لمعرفة عند تحليل اختناقات الأداء.
|
||||
|
||||
هذا الملخص مُشتق من [نقل البيانات هو كل ما تحتاجه: دراسة حالة حول تحسين المحولات 2020](https://arxiv.org/abs/2007.00072)
|
||||
|
||||
|
||||
## تشريح ذاكرة النموذج
|
||||
|
||||
لقد رأينا أن تدريب النموذج يستخدم ذاكرة أكثر بكثير من مجرد وضع النموذج على GPU. ويرجع ذلك إلى
|
||||
هناك العديد من المكونات أثناء التدريب التي تستخدم ذاكرة GPU. المكونات الموجودة في ذاكرة GPU هي التالية:
|
||||
|
||||
1. أوزان النموذج
|
||||
2. الدول المُحسّن
|
||||
3. المُتدرجات
|
||||
4. تنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات
|
||||
5. المخازن المؤقتة
|
||||
6. ذاكرة محددة الوظائف
|
||||
|
||||
يتطلب نموذج نموذجي مدرب بدقة مختلطة 18 بايت للمُحسّن AdamW كل معلمة نموذج بالإضافة إلى ذاكرة التنشيط. للاستدلال لا توجد حالات مُحسّن و مُتدرجات، لذلك يمكننا طرح تلك. وهكذا ننتهي مع 6 بايت لكل
|
||||
معلمة نموذج للدقة المختلطة الاستدلال، بالإضافة إلى ذاكرة التنشيط.
|
||||
|
||||
دعنا نلقي نظرة على التفاصيل.
|
||||
|
||||
**أوزان النموذج:**
|
||||
|
||||
- 4 بايت * عدد المعلمات للتدريب على دقة fp32
|
||||
- 6 بايت * عدد المعلمات لتدريب الدقة المختلطة (يحافظ على نموذج في fp32 وآخر بدقة fp16 في الذاكرة)
|
||||
|
||||
**حالات المُحسّن:**
|
||||
|
||||
- 8 بايت * عدد المعلمات للمُحسّن AdamW العادي (يحافظ على حالتين)
|
||||
- 2 بايت * عدد المعلمات لمُحسّنات 8 بت AdamW مثل [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||||
- 4 بايت * عدد المعلمات لمُحسّنات مثل SGD مع الزخم momentum (يحافظ على حالة واحدة فقط)
|
||||
|
||||
**المُتدرجات**
|
||||
|
||||
- 4 بايت * عدد المعلمات للتدريب بدقة fp32 أو بدقة مختلطة (المُتدرجات تكون دائمًا بدقة fp32)
|
||||
|
||||
**تنشيطات المسار الأمامي**
|
||||
|
||||
- يعتمد الحجم على العديد من العوامل، وأهمها طول التسلسل وحجم المخفية وحجم الدُفعة.
|
||||
|
||||
هناك المدخلات والمخرجات لذي يتم تمريرها وإرجاعها بواسطة وظائف المسار الأمامي والمسار الخلفي وتنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات.
|
||||
|
||||
**الذاكرة المؤقتة**
|
||||
|
||||
بالإضافة إلى ذلك، هناك جميع أنواع المتغيرات المؤقتة التي يتم تحريرها بمجرد الانتهاء من الحساب، ولكن في
|
||||
لحظة يمكن أن تتطلب هذه المتغيرات المؤقتة ذاكرة إضافية ويقد تؤدي إلى نفاد الذاكرة المُخصصة (OOM). لذلك، عند البرمجة، من المهم التفكير بشكل استراتيجي حول هذه المتغيرات المؤقتة وأحيانًا تحريرها بشكل صريح بمجرد عدم الحاجة إليها.
|
||||
|
||||
**ذاكرة محددة الوظائف**
|
||||
|
||||
ثم، قد يكون لبرنامجك احتياجات خاصة بالذاكرة. على سبيل المثال، عند إنشاء نص باستخدام البحث الشعاعي، يحتاج البرنامج
|
||||
إلى الاحتفاظ بنسخ متعددة من المدخلات والمخرجات.
|
||||
|
||||
**سرعة تنفيذ `forward` مقابل `backward`**
|
||||
|
||||
بالنسبة للالتفافات والطبقات الخطية، هناك ضِعف عدد العمليات 2x flops في المسار الخلفى مقارنة بالمسار الأمامي، والتي يُترجم عمومًا إلى ~2x أبطأ (أحيانًا أكثر، لأن الأحجام في المسار الخلفى تميل إلى أن تكون أكثر صعوبة). عادةً ما تكون عمليات التنشيط محدودة بعرض النطاق الترددي، ومن المعتاد أن يتعين على التنشيط قراءة المزيد من البيانات في المسار الخلفى أكثر من المسار الأمامى.
|
||||
(على سبيل المثال، قراءة التنشيط المسار الأمامى مرة واحدة، وتكتب مرة واحدة، وبينما تقرأ عملية التنشيط الخلفي مرتين، gradOutput وإخراج الأمام، وتكتب مرة واحدة، gradInput).
|
||||
|
||||
كما ترى، هناك بضعة أماكن يمكننا فيها توفير ذاكرة GPU أو تسريع العمليات.
|
||||
الآن بعد أن فهمت ما يؤثر على استخدام GPU وسرعة الحساب، راجع
|
||||
صفحة وثائق [أساليب وأدوات التدريب الفعال على GPU واحد](perf_train_gpu_one) لمعرفة المزيد حول تقنيات تحسين الأداء.
|
||||
223
docs/source/ar/model_sharing.md
Normal file
223
docs/source/ar/model_sharing.md
Normal file
@ -0,0 +1,223 @@
|
||||
# شارك نموذجك مع العالم
|
||||
|
||||
أظهرت آخر درسين تعليميين كيفية ضبط نموذج بدقة باستخدام PyTorch و Keras و 🤗 Accelerate لعمليات التهيئة الموزعة. والخطوة التالية هي مشاركة نموذجك مع المجتمع! في Hugging Face، نؤمن بالمشاركة المفتوحة للمعرفة والموارد لتمكين الجميع من الاستفادة من الذكاء الاصطناعي. ونشجعك على مشاركة نموذجك مع المجتمع لمساعدة الآخرين على توفير الوقت والموارد.
|
||||
|
||||
في هذا الدرس، ستتعلم طريقتين لمشاركة نموذجك المدرب أو مضبوط على منصة [Model Hub](https://huggingface.co/models):
|
||||
|
||||
- رفع ملفاتك إلى منصة Hub مباشرة باستخدام الكود البرمجي.
|
||||
|
||||
- قم بسحب وإفلات ملفاتك إلى Hub باستخدام الواجهة web.
|
||||
|
||||
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="مشغل فيديو YouTube"
|
||||
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
|
||||
picture-in-picture" allowfullscreen></iframe>
|
||||
|
||||
<Tip>
|
||||
|
||||
لمشاركة نموذج مع المجتمع، تحتاج إلى حساب على [huggingface.co](https://huggingface.co/join). يمكنك أيضًا الانضمام إلى منظمة موجودة أو إنشاء منظمة جديدة.
|
||||
|
||||
</Tip>
|
||||
|
||||
## ميزات المستودع
|
||||
|
||||
يعمل كل مستودع على Model Hub مثل مستودع GitHub النتقليدي. تقدم مستودعاتنا التحكم في الإصدارات وسجل التغييرات، وقدرة على رؤية الاختلافات بين الإصدارات.
|
||||
|
||||
تعتمد آلية التحكم في الإصدارات على منصة Model Hub على نظامي git و [git-lfs](https://git-lfs.github.com/). وبعبارة أخرى، يمكنك التعامل مع كل نموذج كأنه مستودع مستقل، مما يمكّن من زيادة التحكم في الوصول والقابلية للتطوير. يسمح التحكم في الإصدار بإجراء تعديلات وتثبيت إصدار محدد من النموذج باستخدام رمز التغيير (commit hash) أو وسم (tag) أو فرع (branch).
|
||||
|
||||
بفضل هذه الميزة، يمكنك تحميل إصدار محدد من النموذج باستخدام معلمة الإصدار "revision":
|
||||
|
||||
```py
|
||||
>>> model = AutoModel.from_pretrained(
|
||||
... "julien-c/EsperBERTo-small", revision="4c77982" # اسم العلامة، أو اسم الفرع، أو تجزئة الالتزام
|
||||
... )
|
||||
```
|
||||
|
||||
من السهل أيضًا تعديل الملفات الموجودة داخل مستودع، ويمكنك عرض سجل التغييرات التي طرأت على هذه الملفات ومعاينة الاختلافات بين الإصدارات المختلفة:
|
||||
|
||||

|
||||
|
||||
## الإعداد
|
||||
|
||||
قبل مشاركة نموذج على Hub، ستحتاج إلى بيانات اعتماد حساب Hugging Face الخاصة بك. إذا كنت تستخدم منصة الأوامر، فقم بتشغيل الأمر التالي في بيئة افتراضية حيث تم تثبيت 🤗 Transformers. سيقوم هذا الأمر بتخزين رمز الدخول الخاص بك في مجلد تخزين المؤقت لـ Hugging Face (`~/.cache/` بشكل افتراضي):
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
إذا كنت تستخدم دفتر ملاحظات مثل Jupyter أو Colaboratory، فتأكد من تثبيت مكتبة [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). تسمح لك هذه المكتبة بالتفاعل برمجيًا مع Hub.
|
||||
|
||||
```bash
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
ثم استخدم `notebook_login` لتسجيل الدخول إلى Hub، واتبع الرابط [هنا](https://huggingface.co/settings/token) لإنشاء رمز للتسجيل:
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import notebook_login
|
||||
|
||||
>>> notebook_login()
|
||||
```
|
||||
|
||||
|
||||
## تحويل النموذج ليتوافق مع جميع الأطر العمل
|
||||
|
||||
لضمان إمكانية استخدام نموذجك من قبل شخص يعمل بإطار عمل مختلف، نوصي بتحويل نموذجك ورفعه مع نقاط التحقق من PyTorch و TensorFlow. في حين أن المستخدمين لا يزال بإمكانهم تحميل نموذجك من إطار عمل مختلف إذا تخطيت هذه الخطوة، إلا أنه سيكون أبطأ لأن 🤗 Transformers ستحتاج إلى تحويل نقطة التحقق أثناء التشغيل.
|
||||
|
||||
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
|
||||
|
||||
```py
|
||||
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
|
||||
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
حدد `from_pt=True` لتحويل نقطة تحقق من PyTorch إلى TensorFlow:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
|
||||
```
|
||||
|
||||
بعد ذلك، يمكنك حفظ نموذج TensorFlow الجديد بنقطة التحقق الجديدة:
|
||||
|
||||
```py
|
||||
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</tf>
|
||||
<jax>
|
||||
إذا كان النموذج متاحًا في Flax، فيمكنك أيضًا تحويل نقطة تحقق من PyTorch إلى Flax:
|
||||
|
||||
```py
|
||||
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
|
||||
... "path/to/awesome-name-you-picked", from_pt=True
|
||||
... )
|
||||
```
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
## دفع نموذج أثناء التدريب
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Z1-XMy-GNLQ"/>
|
||||
|
||||
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
|
||||
|
||||
```py
|
||||
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
|
||||
```
|
||||
|
||||
مرر معامﻻت التدريب كالمعتاد إلى [`Trainer`]:
|
||||
|
||||
```py
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=small_train_dataset,
|
||||
... eval_dataset=small_eval_dataset,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
```
|
||||
|
||||
بعد ضبط نموذجك بدقة، يمكنك استخدام دالة [`~transformers.Trainer.push_to_hub`] المتاحة في [`Trainer`] لدفع النموذج المدرب إلى المنصة Hub. سوف تضيف 🤗 Transformers تلقائيًا المعلمات الفائقة المستخدمة في التدريب ونتائج التدريب وإصدارات الإطار إلى بطاقة معلومات النموذج الخاصة بك!
|
||||
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
|
||||
|
||||
- دليل إخراج لنموذجك.
|
||||
- مُجزّئ اللغوي.
|
||||
- `hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
|
||||
|
||||
```py
|
||||
>>> from transformers import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
|
||||
... )
|
||||
```
|
||||
|
||||
أضف الاستدعاء إلى [`fit`](https://keras.io/api/models/model_training_apis/)، وسيقوم 🤗 Transformers بدفع النموذج المدرب إلى Hub:
|
||||
|
||||
```py
|
||||
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## استخدام دالة `push_to_hub`
|
||||
|
||||
يمكنك أيضًا استدعاء `push_to_hub` مباشرة على نموذجك لتحميله إلى Hub.
|
||||
|
||||
حدد اسم نموذجك في `push_to_hub`:
|
||||
|
||||
```py
|
||||
>>> pt_model.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
ينشئ هذا مستودعًا تحت اسم المستخدم الخاص بك باسم نموذج `my-awesome-model`. يمكن للمستخدمين الآن تحميل نموذجك باستخدام دالة `from_pretrained`:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
|
||||
```
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
|
||||
```
|
||||
|
||||
إذا كنت تنتمي إلى منظمة وتريد دفع نموذجك تحت اسم المنظمة بدلاً من ذلك، فما عليك سوى إضافته إلى `repo_id`:
|
||||
|
||||
```py
|
||||
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
|
||||
```
|
||||
|
||||
يمكن أيضًا استخدام دالة `push_to_hub` لإضافة ملفات أخرى إلى مستودع النماذج. على سبيل المثال، أضف رموزًا إلى مستودع نموذج:
|
||||
|
||||
```py
|
||||
>>> tokenizer.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
أو ربما تريد إضافة إصدار TensorFlow من نموذج PyTorch المضبوط:
|
||||
|
||||
```py
|
||||
>>> tf_model.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
الآن عند الانتقال إلى ملفك الشخصي على Hugging Face، يجب أن ترى مستودع النماذج الذي أنشأته حديثًا. سيؤدي النقر فوق علامة التبويب **Files** إلى عرض جميع الملفات التي قمت بتحميلها في المستودع.
|
||||
|
||||
للحصول على مزيد من التفاصيل حول كيفية إنشاء الملفات وتحميلها إلى مستودع، راجع وثائق Hub [هنا](https://huggingface.co/docs/hub/how-to-upstream).
|
||||
|
||||
## التحميل باستخدام الواجهة web
|
||||
|
||||
يمكن للمستخدمين الذين يفضلون نهج عدم الترميز تحميل نموذج من خلال واجهة Hub web. قم بزيارة [huggingface.co/new](https://huggingface.co/new) لإنشاء مستودع جديد:
|
||||
|
||||

|
||||
|
||||
من هنا، أضف بعض المعلومات حول نموذجك:
|
||||
|
||||
- حدد **مالك** المستودع. يمكن أن يكون هذا أنت أو أي من المنظمات التي تنتمي إليها.
|
||||
- اختر اسمًا لنموذجك، والذي سيكون أيضًا اسم المستودع.
|
||||
- اختر ما إذا كان نموذجك عامًا أم خاصًا.
|
||||
- حدد ترخيص الاستخدام لنموذجك.
|
||||
|
||||
الآن انقر فوق علامة التبويب **Files** ثم انقر فوق الزر **Add file** لإضافة ملف جديد إلى مستودعك. ثم اسحب وأسقط ملفًا لتحميله وأضف رسالة الالتزام.
|
||||
|
||||

|
||||
|
||||
## إضافة بطاقة نموذج
|
||||
|
||||
للتأكد من فهم المستخدمين لقدرات نموذجك وقيوده وتحيزاته المحتملة واعتباراته الأخلاقية، يرجى إضافة بطاقة نموذج إلى مستودعك. يتم تعريف بطاقة النموذج في ملف `README.md`. يمكنك إضافة بطاقة نموذج عن طريق:
|
||||
|
||||
* قم بإنشاء ملف `README.md` وتحميله يدويًا.
|
||||
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
|
||||
|
||||
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
|
||||
89
docs/source/ar/model_summary.md
Normal file
89
docs/source/ar/model_summary.md
Normal file
@ -0,0 +1,89 @@
|
||||
# عائلة نماذج المحول
|
||||
|
||||
منذ إطلاقه في عام 2017، ألهم نموذج [المحول الأصلي](https://arxiv.org/abs/1706.03762) (راجع مدونة [المحول المشروح](http://nlp.seas.harvard.edu/2018/04/03/attention.html) لمقدمة تقنية مبسطة)، ألهم العديد من النماذج الجديدة والمبتكرة التي تتجاوز مهام معالجة اللغات الطبيعية (NLP). هناك نماذج للتنبؤ [بالبنية البروتينات المطوية](https://huggingface.co/blog/deep-learning-with-proteins)، و[تدريب على اتخاذ القرار](https://huggingface.co/blog/train-decision-transformers)، و[التنبؤ بالسلاسل الزمنية](https://huggingface.co/blog/time-series-transformers). مع وجود العديد من متغيرات المحول المتاحة، قد يكون من السهل أن تفوتك الصورة الأكبر. ما تشترك فيه جميع هذه النماذج هو أنها تستند إلى بنية المحول الأصلية. تستخدم بعض النماذج فقط الترميز أو فك الترميز، بينما تستخدم نماذج أخرى كليهما. يوفر هذا تصنيفًا مفيدًا لتصنيف واستعراض الفروقات الرئيسية بين نماذج عائلة المحولات، وسيساعدك على فهم النماذج التي لم تصادفها من قبل.
|
||||
|
||||
إذا لم تكن على دراية بنموذج المحول الأصلي أو تحتاج إلى تذكير، فراجع الفصل الخاص بـ [كيف تعمل المحولات](https://huggingface.co/course/chapter1/4؟fw=pt) من دورة Hugging Face.
|
||||
|
||||
<div align="center">
|
||||
<iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="مشغل فيديو YouTube" frameborder="0" allow="accelerometer؛ تشغيل تلقائي؛ قائمة تشغيل مدمجة؛ محسّنات الفيديو؛ ميزة الإشارات المرجعية" allowfullscreen></iframe>
|
||||
</div>
|
||||
|
||||
## رؤية الحاسب (Computer vision)
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe>
|
||||
|
||||
### الشبكة التلافيفية (Convolutional network)
|
||||
|
||||
لطالما كانت الشبكات التلافيفية (CNNs) الطريقة السائدة لمهام رؤية الحاسب حتى برز [محول الرؤية](https://arxiv.org/abs/2010.11929) قابليته للتطوير وكفاءته العالية. وحتى بعد ذلك، لا تزال بعض أفضل صفات CNN، مثل ثبات الإزاحة، قوية جدًا (خاصة بالنسبة لمهام معينة) لدرجة أن بعض المحولات تدمج التلافيف في بنيتها. قلب [ConvNeXt](model_doc/convnext) هذا التبادل رأسًا على عقب وأدرج خيارات التصميم من المحولات لتحديث CNN. على سبيل المثال، يستخدم ConvNeXt نوافذ منزلقة غير متداخلة لتقسيم الصورة إلى رقع وزيادة حقل مجال العام الخاص بها. كما يقوم ConvNeXt بعدة خيارات مثل تصميم الطبقة لتكون أكثر كفاءة في الذاكرة وتحسين الأداء، مما يجعله منافسًا قويًا للمحولات!
|
||||
|
||||
### الترميز[[cv-encoder]] (Encoder)
|
||||
|
||||
فتح [محول الرؤية (ViT)](model_doc/vit) الباب أمام مهام رؤية الحاسب دون الاعتماد على التلافيف. يستخدم ViT ترميز محول قياسي، لكن إنجازه الرئيسي كان طريقة معالجته للصورة. فهو تقسّم الصورة إلى رقّعات ذات حجم ثابت ويستخدمها لإنشاء تضمين، تمامًا مثل تقسيم الجملة إلى رموز. استفاد ViT من بنية المُحوِّلات الفعالة لإظهار نتائج تنافسية مع CNNs في ذلك الوقت مع الحاجة إلى موارد أقل للتدريب. وسرعان ما تبع ViT نماذج رؤية أخرى يمكنها أيضًا التعامل مع مهام الرؤية الكثيفة مثل التجزئة والتعرف.
|
||||
|
||||
من بين هذه النماذج [Swin](model_doc/swin) Transformer. فهو يبني خرائط سمات هرمية (مثل CNN 👀 على عكس ViT) من رقّعات أصغر حجمًا ودمجها مع الرقع المجاورة في طبقات أعمق. يتم حساب الانتباه فقط ضمن نافذة محلية، ويتم تحويل النافذة بين طبقات الانتباه لإنشاء اتصالات تساعد النموذج على التعلم بشكل أفضل. نظرًا لأن محول Swin يمكنه إنتاج خرائط خصائص هرمية، فهو مرشح جيد لمهام التنبؤ الكثيفة مثل التجزئة والتعرف. كما يستخدم [SegFormer](model_doc/segformer) ترميز محول لبناء خرائط خصائص هرمية، ولكنه يضيف فك تشفير بسيط متعدد الطبقات (MLP) في الأعلى لدمج جميع خرائط الخصائص وإجراء تنبؤ.
|
||||
|
||||
استلهمت نماذج الرؤية الأخرى، مثل BeIT وViTMAE، الإلهام من هدف التدريب المسبق لـ BERT. يتم تدريب [BeIT](model_doc/beit) مسبقًا من خلال *نمذجة الصور المقنعة (MIM)*؛ يتم إخفاء رقّعات الصور بشكل عشوائي، كما يتم تحويل الصورة إلى رموز بصرية. يتم تدريب BeIT للتنبؤ بالرموز البصرية المُناظرة للرقع المخفية. لدى [ViTMAE](model_doc/vitmae) هدف تدريب مسبق مُماثل، باستثناء أنه يجب عليه التنبؤ بالبكسلات بدلاً من الرموز البصرية. ما هو غير عادي هو أن إخفاء 75% من رقع الصور! يقوم فك التشفير بإعادة بناء البكسلات من الرموز المخفية والرقّعات المشفرة. بعد التدريب المسبق، يتم التخلص من فك التشفير، ويصبح الترميز جاهزًا للاستخدام في مهام التالية.
|
||||
|
||||
### فك التشفير[[cv-decoder]] (Decoder)
|
||||
|
||||
نادرًا ما تستخدم نماذج الرؤية التي تعتمد على فك التشفير فقط لأن معظم نماذج الرؤية تعتمد على الترميز لتعلم تمثيل الصورة. ولكن بالنسبة للاستخدامات مثل توليد الصور، يعد فك التشفير مناسبًا بشكل طبيعي، كما رأينا من نماذج توليد النصوص مثل GPT-2. يستخدم نموذج [ImageGPT](model_doc/imagegpt) نفس بنية GPT-2، ولكنه بدلاً من التنبؤ بالرمز التالي في تسلسل، فإنه يتنبأ بالبكسل التالي في صورة. بالإضافة إلى توليد الصور، يمكن أيضًا ضبط ImageGPT بدقة لتصنيف الصور.
|
||||
|
||||
### الترميز وفك التشفير[[cv-encoder-decoder]] (Encoder-decoder)
|
||||
|
||||
تستخدم نماذج الرؤية بشكل شائع ترميزًا (يُعرف أيضًا باسم العمود الفقري) لاستخراج ميزات الصورة المهمة قبل تمريرها إلى فك التشفير لنموذج المُحوّل. يستخدم [DETR](model_doc/detr) عمودًا فقريًا مُدربًا مسبقًا، ولكنه يستخدم أيضًا الببنية الكاملة للترميز وفك تشفير لنموذج المحول للكشف عن الأشياء. يتعلم الترميز تمثيلات الصور ويجمعها مع استعلامات الكائنات (كل استعلام كائن هو تضمين مُتعلم يركز على منطقة أو كائن في صورة) في فك التشفير. يتنبأ DETR بإحداثيات مربع الحدود وتسمية الفئة لكل استعلام كائن.
|
||||
|
||||
## معالجة اللغات الطبيعية (Natural language processing - NLP)
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe>
|
||||
|
||||
### الترميز اللغوي[[nlp-encoder]]
|
||||
|
||||
نموذج [BERT](model_doc/bert) هو محوّل (Transformer) يعتمد على الترميز فقط يقوم بشكل عشوائي بإخفاء رموز معينة في المدخلات لتجنب رؤية باقى الرموز الأخرى، مما يسمح له "بالغش". يتمثل هدف التدريب المسبق في التنبؤ بالرمز المخفي بناءً على السياق. يسمح هذا لـ BERT باستخدام السياقات اليمنى واليسرى بالكامل لمساعدته في تعلم تمثيل أعمق وأغنى للبيانات المدخلة. ومع ذلك، كان هناك مجال للتحسين في استراتيجية التدريب المسبق لـ BERT. نموذج [RoBERTa](model_doc/roberta) اضاف تحسين من خلال تقديم وصفة تدريب مسبق جديدة تشمل التدريب لفترة أطول وعلى دفعات أكبر، وإخفاء الرموز عشوائيًا في كل حقبة بدلاً من مرة واحدة فقط أثناء المعالجة المسبقة، وإزالة هدف التنبؤ بالجملة التالية.
|
||||
|
||||
تتمثل الاستراتيجية السائدة لتحسين الأداء في زيادة حجم النموذج. ولكن تدريب النماذج الكبيرة مكلف من الناحية الحسابية. إحدى طرق تقليل التكاليف الحسابية هي استخدام نموذج أصغر مثل [DistilBERT](model_doc/distilbert). يستخدم DistilBERT [ تقنية تقطير المعرفة](https://arxiv.org/abs/1503.02531) - وهي تقنية ضغط - لإنشاء نموذج أصغر من BERT مع الحفاظ على معظم قدراته على فهم اللغةا.
|
||||
|
||||
مرت معظم نماذج المحول في الاتجاه نحو المزيد من المعلمات، مما أدى إلى ظهور نماذج جديدة تركز على تحسين كفاءة التدريب. يقلّل [ALBERT](model_doc/albert) من استهلاك الذاكرة عن طريق تقليل عدد المعلمات بطريقتين: فصل تضمين المفردات الأكبر إلى مصفوفتين أصغر والسماح للمستويات بمشاركة المعلمات. أضاف [DeBERTa](model_doc/deberta) آلية انتباه منفصلة حيث يتم ترميز الكلمة وموضعها بشكل منفصل في متجهين. يتم حساب الانتباه من هذه المتجهات المنفصلة بدلاً من متجه واحد يحتوي على تضمين الكلمة والموقع. ركز [Longformer](model_doc/longformer) أيضًا على جعل الانتباه أكثر كفاءة، خاصة لمعالجة المستندات ذات تسلسلات أطولل. فهو يستخدم مزيجًا من انتباه النوافذ المحلية (يتم حساب الانتباه فقط ن نافذة ذات حجم ثابت حول كل رمز) والانتباه العام (فقط لرموز مهمة محددة مثل `[CLS]` للتصنيف) لإنشاء مصفوفة انتباه متفرقة بدلاً من مصفوفة انتباه كاملة.
|
||||
|
||||
### فك التشفير[[nlp-decoder]]
|
||||
|
||||
نموذج [GPT-2](model_doc/gpt2) هو محول فك تشفير فقط يتنبأ بالكلمة التالية في التسلسل. إنه يخفي الرموز التالية الموجودة على اليمين حتى لا يتمكن النموذج من "الغش" بالنظر إليها. من خلال التدريب المسبق على كميات هائلة من النصوص، أصبح [GPT-2](model_doc/gpt2) بارعًا في توليد النصوص، حتى لو لم تكن النص دقيقًا أو صحيحًا في بعض الأحيان فقط. ولكن كان يفتقر إلى سياق لترابط المتبادل (bidirectional context) الموجود من التدريب المسبق لـ [BERT](model_doc/bert) ، مما جعله غير مناسب لمهام معينة. يجمع [XLNET](model_doc/xlnet) بين أفضل ما في أهداف التدريب المسبق لـ [BERT](model_doc/bert) و [GPT-2](model_doc/gpt2) من خلال اعتماد نهج النمذجة اللغوية باستخدام التباديل (Permutation Language Modeling - PLM) الذي يسمح له بتعلم الترابط ثنائي الاتجاه.
|
||||
|
||||
بعد ظهور [GPT-2](model_doc/gpt2)، تطورت النماذج اللغوية بشكل أكبر حجمًا وأكثر تعقيدًا وأصبحت تُعرف الآن باسم *نماذج اللغة الكبيرة (LLMs)*. توضح LLMs مهارات تعلم قليلة الكمية أو حتى معدومة إذا تم تدريبها على مجموعة بيانات كبيرة بما يكفي. [GPT-J](model_doc/gptj) هو LLM به 6 مليارات معلمة مدربة على 400 مليار رمز. تبعه نموذج [OPT](model_doc/opt)، وهي عائلة من نماذج فك التشفير فقط، أكبرها 175 مليار معلمة ودُرب على 180 مليار رمز. تم إصدار [BLOOM](model_doc/bloom) في نفس الوقت تقريبًا، ويحتوي أكبر نموذج في العائلة على 176 مليار معلمة ودُرب على 366 مليار رمز في 46 لغة و13 لغة برمجة.
|
||||
|
||||
### الترميز وفك التشفير[[nlp-encoder-decoder]]
|
||||
|
||||
يحتفظ [BART](model_doc/bart) ببنية المحول الأصلية، ولكنه يعدّل هدف التدريب المسبق باستخدام إفساد *إدخال النصوص*، حيث يتم استبدال بعض نطاقات النص برمز `mask` واحد. يتنبأ فك التشفير بالرموز غير الفاسدة (يتم إخفاء الرموز المستقبلية) ويستخدم حالات الترميز المخفية للمساعدة. [Pegasus](model_doc/pegasus) مشابه لـ BART، ولكن Pegasus يقوم بإخفاء جمل كاملة بدلاً من مقاطع النص. بالإضافة إلى نمذجة اللغة المقنعة، يتم تدريب Pegasus مسبقًا بواسطة توليد الجمل الفارغة (GSG). يقوم هدف GSG بإخفاء الجمل الكاملة المهمة للمستند، واستبدالها برمز `mask`. يجب على فك التشفير توليد المخرجات من الجمل المتبقية. [T5](model_doc/t5) هو نموذج فريد من نوعه يحوّل جميع مهام معالجة اللغة الطبيعية إلى مشكلة نص إلى نص باستخدام بادئات محددة. على سبيل المثال، يشير البادئة `Summarize:` إلى مهمة تلخيص. يتم تدريب T5 مسبقًا بواسطة التدريب الخاضع للإشراف (GLUE وSuperGLUE) والتدريب ذاتي الإشراف (اختيار عينة عشوائية وحذف 15% من الرموز).
|
||||
|
||||
## الصوت (Audio)
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe>
|
||||
|
||||
### الترميز[[audio-encoder]]
|
||||
|
||||
يستخدم [Wav2Vec2](model_doc/wav2vec2) ترميز من نوع المحوّل لتعلم تمثيلات الكلام بشكلٍ مباشر من موجات الصوت الخام. يتم تدريبه مسبقًا باستخدام مهمة تباينية لتحديد تمثيل الكلام الصحيح من مجموعة من التمثيلات الخاطئة. [HuBERT](model_doc/hubert) مشابه لـ Wav2Vec2 ولكنه له عملية تدريب مختلفة. يتم إنشاء تسميات الهدف عن طريق خطوة تجميع يتم فيها ت تخصيص مقاطع الصوت المتشابهة إلى مجموعات، تُصبح كل واحدة منها وحدةً خفية. ويتم تعيين الوحدة الخفية إلى تمثيل لإجراء تنبؤ.
|
||||
|
||||
### الترميز وفك التشفير[[audio-encoder-decoder]]
|
||||
|
||||
[Speech2Text](model_doc/speech_to_text) هو نموذج كلام مصمم للتعرف التلقائي على الكلام (ASR) وترجمة الكلام. يقبل النموذج ميزات بنك المرشح اللغوي التي تم استخراجها من شكل موجة الصوت وتم تدريبه مسبقًا بطريقة ذاتية التعلم لتوليد نسخة أو ترجمة. [Whisper](model_doc/whisper) هو أيضًا نموذج ASR، ولكنه على عكس العديد من نماذج الكلام الأخرى، يتم تدريبه مسبقًا على كمية كبيرة من بيانات نسخ النص الصوتي ✨ المسماة ✨ لتحقيق الأداء الصفري. يحتوي جزء كبير من مجموعة البيانات أيضًا على لغات غير اللغة الإنجليزية، مما يعني أنه يمكن استخدام Whisper أيضًا للغات منخفضة الموارد. من الناحية الهيكلية، يشبه Whisper نموذج Speech2Text. يتم تحويل إشارة الصوت إلى طيف لوجاريتم مل-ميل يتم تشفيره بواسطة الترميز. يقوم فك التشفير بتوليد النسخة بطريقة ذاتية التعلم من حالات الترميز المخفية والرموز السابقة.
|
||||
|
||||
## متعدد الوسائط (Multimodal)
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
|
||||
|
||||
### Encoder[[mm-encoder]]
|
||||
|
||||
نموذج [VisualBERT](model_doc/visual_bert) هو نموذج متعدد الوسائط لمهام الرؤية اللغوية تم إصداره بعد فترة وجيزة من BERT. فهو يجمع بين BERT ونظام اكتشاف كائن مسبق التدريب لاستخراج ميزات الصورة في تضمينات بصرية، يتم تمريرها جنبًا إلى جنب مع التضمينات النصية إلى BERT. يتنبأ VisualBERT بالنص المقنع بناءً على النص غير المقنع والتضمينات المرئية، ويجب عليه أيضًا التنبؤ بما إذا كان النص متوافقًا مع الصورة. عندما تم إصدار ViT، اعتمد [ViLT](model_doc/vilt) ViT في بنيتها لأنه كان من الأسهل الحصول على تضمينات الصورة بهذه الطريقة. يتم معالجة تضمينات الصورة بشكل مشترك مع التضمينات النصية. ومن هناك، يتم التدريب المسبق لـ ViLT بواسطة مطابقة الصورة النصية، ونمذجة اللغة المقنعة، وإخفاء كلمة كاملة.
|
||||
|
||||
يتّبع [CLIP](model_doc/clip) نهجًا مختلفًا ويقوم بتنبؤ ثنائي من ("الصورة"، "النص"). يتم تدريب مشفر صورة (ViT) ومشفر نص (Transformer) بشكل مشترك على مجموعة بيانات مكونة من 400 مليون ثنائي من ("صورة"، "نص") لتعظيم التشابه بين متجهات ترميز الصورة ومتجهات النص ثنائي ("الصورة"، "النص"). بعد التدريب المسبق، يمكنك استخدام اللغة الطبيعية لتوجيه CLIP للتنبؤ بالنص المُعطى بناءً على صورة أو العكس بالعكس. [OWL-ViT](model_doc/owlvit) يبني على CLIP باستخدامه كعمود فقري للكشف عن الكائنات بدون إشراف. بعد التدريب المسبق، يتم إضافة رأس كشف الأجسام لإجراء تنبؤ بمجموعة مُحدّد عبر ثنائيات ("class"، "bounding box").
|
||||
|
||||
### Encoder-decoder[[mm-encoder-decoder]]
|
||||
|
||||
التعرّف البصري على الحروف (OCR) مهمة قديمة لتعرّف النصوص، التي تنطوي عادةً على عدة مكونات لفهم الصورة وتوليد النص. [TrOCR](model_doc/trocr) بتبسيط العملية باستخدام محول متكامل من النهاية إلى النهاية. المشفر هو نموذج على غرار ViT لفهم الصورة ويعالج الصورة كقطع ثابتة الحجم. يقبل فك التشفير حالات الإخفاء للمشفر وينشئ النص بشكل تلقائي. [Donut](model_doc/donut) هو نموذج أكثر عمومية لفهم المستندات المرئية لا يعتمد على نهج OCR. يستخدم محول Swin كمشفر وBART متعدد اللغات كمُفكّك تشفير. يتم تدريب Donut على قراءة النص عن طريق التنبؤ بالكلمة التالية بناءً على ملاحظات الصورة والنص. يقوم فك التشفير بتوليد تتسلسلًا رمزيًا بناءً على موجه (Prompt). يتم تمثيل الموجه بواسطة رمز خاص لكل مهمة. على سبيل المثال، يحتوي تحليل المستند على رمز خاص "parsing" يتم دمجه مع حالات الإخفاء للـمُشفّر لتحليل المستند بتنسيق إخراج منظم (JSON).
|
||||
|
||||
## التعلم التعزيزي (Reinforcement learning - RL)
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
|
||||
|
||||
### فك التشفير[[rl-decoder]]
|
||||
|
||||
يقوم نموذج "محوّل القرارات والمسارات" (Decision and Trajectory Transformer) بتحويل الحالة (State) والإجراء (Action) والمكافأة (Reward) كمشكلة نمذجة تسلسلية. [محوّل القرارات](model_doc/decision_transformer) يقوم بتوليد سلسلة من الإجراءات التي تؤدي إلى عائد مرغوب في المستقبل بناءً على العوائد المتوقعة، والحالات والإجراءات السابقة. في الخطوات الزمنية *K* الأخيرة، يتم تحويل كل وسائط البيانات الثلاث vإلى متجهات تضمين رمزيّة ومعالجتها بواسطة نموذج مشابه لـ GPT للتنبؤ برمز الإجراء المستقبلي.يقوم [محول المسار](model_doc/trajectory_transformer) أيضًا بتحويل الحالات والإجراءات والمكافآت إلى رموز ومعالجتها باستخدام هيكلية GPT. على عكس "محوّل القرارات"، الذي يركز على تكييف المكافأة، يقوم "محوّل المسارات" بتوليد إجراءات مستقبلية باستخدام البحث الشعاعي (Beam Search).
|
||||
160
docs/source/ar/multilingual.md
Normal file
160
docs/source/ar/multilingual.md
Normal file
@ -0,0 +1,160 @@
|
||||
# النماذج متعددة اللغات للاستدلال
|
||||
|
||||
هناك العديد من النماذج متعددة اللغات في مكتبة 🤗 Transformers، وتختلف طريقة استخدامها للاستدلال عن النماذج أحادية اللغة. ولكن ليس كل استخدام النماذج متعددة اللغات مختلف. فبعض النماذج، مثل [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)، يمكن استخدامها تمامًا مثل النموذج أحادي اللغة. سيوضح لك هذا الدليل كيفية استخدام النماذج متعددة اللغات التي تختلف طريقة استخدامها للاستدلال.
|
||||
|
||||
## XLM
|
||||
|
||||
يحتوي XLM على عشر نسخ مختلفة، واحدة منها فقط أحادية اللغة. ويمكن تقسيم نسخ النماذج التسع المتبقية إلى فئتين: نسخ التي تستخدم تضمينات اللغة (language embeddings) وتلك التي لا تستخدمها.
|
||||
|
||||
### XLM مع تضمينات اللغة
|
||||
|
||||
تستخدم النماذج التالية من XLM تضمينات اللغة لتحديد اللغة المستخدمة أثناء الاستدلال:
|
||||
|
||||
- `FacebookAI/xlm-mlm-ende-1024` (نمذجة اللغة المقنعة، الإنجليزية-الألمانية)
|
||||
- `FacebookAI/xlm-mlm-enfr-1024` (نمذجة اللغة المقنعة، الإنجليزية-الفرنسية)
|
||||
- `FacebookAI/xlm-mlm-enro-1024` (نمذجة اللغة المقنعة، الإنجليزية-الرومانية)
|
||||
- `FacebookAI/xlm-mlm-xnli15-1024` (نمذجة اللغة المقنعة، لغات XNLI)
|
||||
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (نمذجة اللغة المقنعة + الترجمة، لغات XNLI)
|
||||
- `FacebookAI/xlm-clm-enfr-1024` (نمذجة اللغة السببية، الإنجليزية-الفرنسية)
|
||||
- `FacebookAI/xlm-clm-ende-1024` (نمذجة اللغة السببية، الإنجليزية-الألمانية)
|
||||
|
||||
تُمثل تضمينات اللغة على شكل مصفوفة بنفس شكل `input_ids` التي يتم تمريره إلى النموذج. وتعتمد القيم في هذه المصفوفات على اللغة المستخدمة ويتم تحديدها بواسطة معاملى المجزىء `lang2id` و `id2lang`.
|
||||
|
||||
في هذا المثال، قم بتحميل نسخة `FacebookAI/xlm-clm-enfr-1024` ( نمذجة اللغة السببية، الإنجليزية-الفرنسية):
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
|
||||
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
|
||||
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
|
||||
```
|
||||
|
||||
تُظهر خاصية `lang2id` في المجزىء اللغات وأرقام تعريفها في هذا النموذج:
|
||||
|
||||
```py
|
||||
>>> print(tokenizer.lang2id)
|
||||
{'en': 0, 'fr': 1}
|
||||
```
|
||||
|
||||
بعد ذلك، قم بإنشاء مثال على المدخلات:
|
||||
|
||||
```py
|
||||
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
|
||||
```
|
||||
|
||||
قم بتعيين معرف اللغة إلى `"en"` واستخدمه لتحديد تضمين اللغة. وتضمين اللغة عبارة عن مصفوفة مملوءة بـ `0` لأن هذا هو معرف اللغة الإنجليزية. يجب أن تكون هذه المصفوفة بنفس حجم `input_ids`.
|
||||
|
||||
```py
|
||||
>>> language_id = tokenizer.lang2id["en"] # 0
|
||||
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
|
||||
|
||||
>>> # نقوم بإعادة تشكيلها لتكون بالحجم (batch_size، sequence_length)
|
||||
>>> langs = langs.view(1, -1) # الآن بالحجم [1، sequence_length] (لدينا batch size تساوي 1)
|
||||
```
|
||||
|
||||
الآن يمكنك تمرير `input_ids` وتضمين اللغة إلى النموذج:
|
||||
|
||||
```py
|
||||
>>> outputs = model(input_ids, langs=langs)
|
||||
```
|
||||
|
||||
يمكن لنص البرنامج النصي [run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) توليد النص باستخدام تضمينات اللغة مع نقاط تفتيش `xlm-clm`.
|
||||
|
||||
### XLM بدون تضمينات اللغة
|
||||
|
||||
النماذج التالية من XLM لا تتطلب تضمينات اللغة أثناء الاستنتاج:
|
||||
|
||||
- `FacebookAI/xlm-mlm-17-1280` (نمذجة اللغة المقنعة، 17 لغة)
|
||||
- `FacebookAI/xlm-mlm-100-1280` (نمذجة اللغة المقنعة، 100 لغة)
|
||||
|
||||
تُستخدم هذه النماذج لتمثيل الجمل العامة، على عكس نسح XLM السابقة.
|
||||
|
||||
## BERT
|
||||
|
||||
يمكن استخدام النماذج التالية من BERT للمهام متعددة اللغات:
|
||||
|
||||
- `google-bert/bert-base-multilingual-uncased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 102 لغة)
|
||||
- `google-bert/bert-base-multilingual-cased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 104 لغات)
|
||||
|
||||
لا تتطلب هذه النماذج تضمينات اللغة أثناء الاستدلال. يجب أن تُحدّد اللغة من السياق وتستنتج وفقاً لذلك.
|
||||
|
||||
## XLM-RoBERTa
|
||||
|
||||
يمكن استخدام النماذج التالية من XLM-RoBERTa للمهام متعددة اللغات:
|
||||
|
||||
- `FacebookAI/xlm-roberta-base` (نمذجة اللغة المقنعة، 100 لغة)
|
||||
- `FacebookAI/xlm-roberta-large` (نمذجة اللغة المقنعة، 100 لغة)
|
||||
|
||||
تم تدريب XLM-RoBERTa على 2.5 تيرابايت من بيانات CommonCrawl الجديدة والمحسنة في 100 لغة. ويوفر مكاسب قوية على النماذج متعددة اللغات التي تم إصدارها سابقاً مثل mBERT أو XLM في مهام المصب مثل التصنيف، ووضع العلامات التسلسلية، والأسئلة والأجوبة.
|
||||
|
||||
## M2M100
|
||||
|
||||
يمكن استخدام النماذج التالية من M2M100 للترجمة متعددة اللغات:
|
||||
|
||||
- `facebook/m2m100_418M` (الترجمة)
|
||||
- `facebook/m2m100_1.2B` (الترجمة)
|
||||
|
||||
في هذا المثال، قم بتحميل نسحة `facebook/m2m100_418M` لترجمة النص من الصينية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء اللغوى:
|
||||
|
||||
```py
|
||||
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
||||
|
||||
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
|
||||
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."
|
||||
|
||||
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
|
||||
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
||||
```
|
||||
|
||||
تقسيم النّص إلى رموز:
|
||||
|
||||
```py
|
||||
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
|
||||
```
|
||||
|
||||
يجبر M2M100 معرف اللغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:
|
||||
|
||||
```py
|
||||
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
|
||||
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
|
||||
```
|
||||
|
||||
## MBart
|
||||
|
||||
يمكن استخدام النماذج التالية من MBart للترجمة متعددة اللغات:
|
||||
|
||||
- `facebook/mbart-large-50-one-to-many-mmt` (الترجمة الآلية متعددة اللغات من واحد إلى كثير، 50 لغة)
|
||||
- `facebook/mbart-large-50-many-to-many-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى كثير، 50 لغة)
|
||||
- `facebook/mbart-large-50-many-to-one-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى واحد، 50 لغة)
|
||||
- `facebook/mbart-large-50` (الترجمة متعددة اللغات، 50 لغة)
|
||||
- `facebook/mbart-large-cc25`
|
||||
|
||||
في هذا المثال، قم بتحميل نسخة `facebook/mbart-large-50-many-to-many-mmt` لترجمة النص من الفنلندية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
|
||||
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
|
||||
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
||||
```
|
||||
|
||||
تقسيم النّص إلى رموز:
|
||||
|
||||
```py
|
||||
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
|
||||
```
|
||||
|
||||
يجبر MBart معرف لغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:
|
||||
|
||||
```py
|
||||
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
||||
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
|
||||
```
|
||||
|
||||
إذا كنت تستخدم نسخة `facebook/mbart-large-50-many-to-one-mmt`، فلا تحتاج إلى إجبار معرف لغة الهدف كأول رمز مولد، وإلا فإن الاستخدام هو نفسه.
|
||||
52
docs/source/ar/pad_truncation.md
Normal file
52
docs/source/ar/pad_truncation.md
Normal file
@ -0,0 +1,52 @@
|
||||
# الحشو والتقليم
|
||||
|
||||
غالبًا ما تختلف مدخلات الدُفعات في الطول، لذا لا يمكن تحويلها إلى مصفوفات ذات حجم ثابت .يُعدّ الحشو والتقليم هما استراتيجيتان للتعامل مع هذه المشكلة، لإنشاء مصفوفات مستطيلة من مجموعات ذات أطوال مختلفة. ويضيف الحشو رمز **حشو** خاص لضمان أن يكون للتسلسلات الأقصر نفس طول أطول تسلسل في الدفعة أو الطول الأقصى الذي يقبله النموذج. ويعمل التقليم عكس ذلك بتقليم التسلسلات الطويلة.
|
||||
|
||||
في معظم الحالات، ييُعدّ حشو دُفعتك إلى طول أطول تسلسل فيها وتقليمها إلى الطول الأقصى المقبول من النموذج حلًا فعالًا. ومع ذلك، تدعم واجهة برمجة التطبيقات المزيد من الاستراتيجيات إذا كنت بحاجة إليها. هناك ثلاثة معامﻻت تحتاجها لفهم آلية العمل: `padding`، و`truncation`، و`max_length`.
|
||||
|
||||
يحكم معامل `padding` عملية الحشو. يمكن أن يكون قيمة منطقية أو نصية:
|
||||
|
||||
- `True` أو `'longest'`: الحشو إلى أطول تسلسل في الدفعة (لا يتم تطبيق الحشو عند تقديم تسلسل واحد فقط).
|
||||
- `'max_length'`: الحشو إلى طول محدد بواسطة معامل `max_length` أو الطول الأقصى الذي يقبله
|
||||
النموذج إذا لم يتم توفير `max_length` (`max_length=None`). سيظل الحشو مطبقًا إذا قدمت تسلسلًا واحدًا فقط.
|
||||
- `False` أو `'do_not_pad'`: لا يتم تطبيق أي حشو. هذا هو السلوك الافتراضي.
|
||||
|
||||
تحكم معامل `truncation` عملية التقليم. يمكن أن يكون قيمة منطقية أو نصية:
|
||||
|
||||
-قيمة `True` أو `'longest_first'` : تقليم التسلسلات إلى طول أقصى مُحدد بواسطة معامل `max_length`، أو أقصى طول يقبله النموذج في حال عدم تحديد طول مُحدد من قبل المستخدم (`max_length=None`). ستتم عملية التقليم إزالة رمز تلو الآخر، بدءًا من أطول تسلسل في الزوج، إلى أن يصل الطول إلى القيمة المُحددة.
|
||||
-قيمة `'only_second'`: اقطع إلى طول أقصى محدد بواسطة معامل `max_length` أو أقصى طول يقبله النموذج إذا لم يتم توفير `max_length` (`max_length=None`). هذا سيقلم فقط الجملة الثانية من الزوج إذا تم توفير زوج من التسلسلات (أو دُفعة من أزواج التسلسلات).
|
||||
-قيمة `'only_first'`: تقليم الجملة الأولى فقط من الزوج عند تقديم زوج من التسلسلات (أو دُفعة من أزواج التسلسلات) إلى طول أقصى مُحدد بواسطة حجة `max_length`، أو أقصى طول يقبله النموذج في حال عدم تحديد طول مُحدد من قبل المستخدم (`max_length=None`).
|
||||
-قيمة `False` أو `'do_not_truncate'`: لا يتم تطبيق أي تقليم. هذا هو السلوك الافتراضي.
|
||||
``
|
||||
|
||||
يحكم معامل `max_length` طول الحشو والتقليم. يمكن أن يكون عدد صحيح أو `None`، وعندها يُحدد افتراضيًا إلى الطول الأقصى الذي يمكن أن يقبله النموذج. إذا لم يكن للنموذج طول إدخال أقصى محدد، يتم إلغاء تنشيط التقليم أو الحشو إلى `max_length`.
|
||||
|
||||
يلخّص الجدول التالي الطريقة المُوصى بها لإعداد الحشو والتقليم. إذا كنت تستخدم أزواج تسلسلات الإدخال في أي من الأمثلة التالية، فيمكنك استبدال `truncation=True` بـ `STRATEGY` المحدد في `['only_first'، 'only_second'، 'longest_first']`، أي `truncation='only_second'` أو `truncation='longest_first'` للتحكم في كيفية تقليم كلا التسلسلين في الزوج كما هو موضّح سابقًا.
|
||||
<!-- This file is automatically generated, do not modify manually. -->
|
||||
|
||||
# حيل الترميز
|
||||
|
||||
هناك العديد من الاستراتيجيات لترميز دفعات الجمل. فيما يلي بعض الأمثلة على ذلك.
|
||||
|
||||
| الترميز | الحشو | التعليمات |
|
||||
|--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
|
||||
| لا ترميز | لا حشو | `tokenizer(batch_sentences)` |
|
||||
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True)` أو |
|
||||
| | | `tokenizer(batch_sentences, padding='longest')` |
|
||||
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | `tokenizer(batch_sentences, padding='max_length')` |
|
||||
| | الحشو إلى طول محدد | `tokenizer(batch_sentences, padding='max_length', max_length=42)` |
|
||||
| | الحشو إلى مضاعف لقيمة معينة | `tokenizer(batch_sentences, padding=True, pad_to_multiple_of=8)` |
|
||||
| الترميز إلى الحد الأقصى لطول إدخال النموذج | لا حشو | `tokenizer(batch_sentences, truncation=True)` أو |
|
||||
| | | `tokenizer(batch_sentences, truncation=STRATEGY)` |
|
||||
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True, truncation=True)` أو |
|
||||
| | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` |
|
||||
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | `tokenizer(batch_sentences, padding='max_length', truncation=True)` أو |
|
||||
| | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` |
|
||||
| | الحشو إلى طول محدد | غير ممكن |
|
||||
| الترميز إلى طول محدد | لا حشو | `tokenizer(batch_sentences, truncation=True, max_length=42)` أو |
|
||||
| | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` |
|
||||
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` أو |
|
||||
| | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` |
|
||||
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | غير ممكن |
|
||||
| | الحشو إلى طول محدد | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` أو |
|
||||
| | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |
|
||||
250
docs/source/ar/peft.md
Normal file
250
docs/source/ar/peft.md
Normal file
@ -0,0 +1,250 @@
|
||||
# تحميل المحوّلات باستخدام 🤗 PEFT
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
تقنية "التدريب الدقيق ذو الكفاءة البارامتيرية" (PEFT)](https://huggingface.co/blog/peft) تقوم بتجميد معلمات النموذج المُدرب مسبقًا أثناء الضبط الدقيق وتضيف عدد صغير من المعلمات القابلة للتدريب (المحولات) فوقه. يتم تدريب المحوّلات لتعلم معلومات خاصة بالمهام. وقد ثبت أن هذا النهج فعال للغاية من حيث استخدام الذاكرة مع انخفاض استخدام الكمبيوتر أثناء إنتاج نتائج قمماثلة للنموذج مضبوط دقيقًا بالكامل.
|
||||
|
||||
عادة ما تكون المحولات المدربة باستخدام PEFT أصغر بمقدار كبير من حيث الحجم من النموذج الكامل، مما يجعل من السهل مشاركتها وتخزينها وتحميلها.
|
||||
|
||||
<div class="flex flex-col justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
|
||||
<figcaption class="text-center">تبلغ أوزان المحول لطراز OPTForCausalLM المخزن على Hub حوالي 6 ميجابايت مقارنة بالحجم الكامل لأوزان النموذج، والتي يمكن أن تكون حوالي 700 ميجابايت.</figcaption>
|
||||
</div>
|
||||
|
||||
إذا كنت مهتمًا بمعرفة المزيد عن مكتبة 🤗 PEFT، فراجع [الوثائق](https://huggingface.co/docs/peft/index).
|
||||
|
||||
## الإعداد
|
||||
|
||||
ابدأ بتثبيت 🤗 PEFT:
|
||||
|
||||
```bash
|
||||
pip install peft
|
||||
```
|
||||
|
||||
إذا كنت تريد تجربة الميزات الجديدة تمامًا، فقد تكون مهتمًا بتثبيت المكتبة من المصدر:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/peft.git
|
||||
```
|
||||
|
||||
## نماذج PEFT المدعومة
|
||||
|
||||
يدعم 🤗 Transformers بشكلٍ أصلي بعض طرق PEFT، مما يعني أنه يمكنك تحميل أوزان المحول المخزنة محليًا أو على Hub وتشغيلها أو تدريبها ببضع سطور من التعليمات البرمجية. الطرق المدعومة هي:
|
||||
|
||||
- [محولات الرتبة المنخفضة](https://huggingface.co/docs/peft/conceptual_guides/lora)
|
||||
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
|
||||
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
|
||||
|
||||
إذا كنت تريد استخدام طرق PEFT الأخرى، مثل تعلم المحث أو ضبط المحث، أو حول مكتبة 🤗 PEFT بشكل عام، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/peft/index).
|
||||
|
||||
## تحميل محول PEFT
|
||||
|
||||
لتحميل نموذج محول PEFT واستخدامه من 🤗 Transformers، تأكد من أن مستودع Hub أو الدليل المحلي يحتوي على ملف `adapter_config.json` وأوزان المحوّل، كما هو موضح في صورة المثال أعلاه. بعد ذلك، يمكنك تحميل نموذج محوّل PEFT باستخدام فئة `AutoModelFor`. على سبيل المثال، لتحميل نموذج محول PEFT للنمذجة اللغوية السببية:
|
||||
|
||||
1. حدد معرف النموذج لPEFT
|
||||
2. مرره إلى فئة [`AutoModelForCausalLM`]
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
peft_model_id = "ybelkada/opt-350m-lora"
|
||||
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
يمكنك تحميل محول PEFT باستخدام فئة `AutoModelFor` أو فئة النموذج الأساسي مثل `OPTForCausalLM` أو `LlamaForCausalLM`.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكنك أيضًا تحميل محول PEFT عن طريق استدعاء طريقة `load_adapter`:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_id = "facebook/opt-350m"
|
||||
peft_model_id = "ybelkada/opt-350m-lora"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
model.load_adapter(peft_model_id)
|
||||
```
|
||||
|
||||
راجع قسم [وثائق API](#transformers.integrations.PeftAdapterMixin) أدناه لمزيد من التفاصيل.
|
||||
|
||||
## التحميل في 8 بت أو 4 بت
|
||||
|
||||
راجع قسم [وثائق API](#transformers.integrations.PeftAdapterMixin) أدناه لمزيد من التفاصيل.
|
||||
|
||||
## التحميل في 8 بت أو 4 بت
|
||||
|
||||
يدعم تكامل `bitsandbytes` أنواع بيانات الدقة 8 بت و4 بت، والتي تكون مفيدة لتحميل النماذج الكبيرة لأنها توفر مساحة في الذاكرة (راجع دليل تكامل `bitsandbytes` [guide](./quantization#bitsandbytes-integration) لمعرفة المزيد). أضف المعلمات`load_in_8bit` أو `load_in_4bit` إلى [`~PreTrainedModel.from_pretrained`] وقم بتعيين `device_map="auto"` لتوزيع النموذج بشكل فعال على الأجهزة لديك:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
peft_model_id = "ybelkada/opt-350m-lora"
|
||||
model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
|
||||
```
|
||||
|
||||
## إضافة محول جديد
|
||||
|
||||
يمكنك استخدام الدالة [`~peft.PeftModel.add_adapter`] لإضافة محوّل جديد إلى نموذج يحتوي بالفعل على محوّل آخر طالما أن المحول الجديد مطابقًا للنوع الحالي. على سبيل المثال، إذا كان لديك محول LoRA موجود مرتبط بنموذج:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
|
||||
from peft import LoraConfig
|
||||
|
||||
model_id = "facebook/opt-350m"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
|
||||
lora_config = LoraConfig(
|
||||
target_modules=["q_proj", "k_proj"],
|
||||
init_lora_weights=False
|
||||
)
|
||||
|
||||
model.add_adapter(lora_config, adapter_name="adapter_1")
|
||||
```
|
||||
|
||||
لإضافة محول جديد:
|
||||
|
||||
```py
|
||||
# قم بتعليق محول جديد بنفس التكوين
|
||||
model.add_adapter(lora_config, adapter_name="adapter_2")
|
||||
```
|
||||
|
||||
الآن يمكنك استخدام [`~peft.PeftModel.set_adapter`] لتعيين المحول الذي سيتم استخدامه:
|
||||
|
||||
```py
|
||||
# استخدم adapter_1
|
||||
model.set_adapter("adapter_1")
|
||||
output = model.generate(**inputs)
|
||||
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
|
||||
|
||||
# استخدم adapter_2
|
||||
model.set_adapter("adapter_2")
|
||||
output_enabled = model.generate(**inputs)
|
||||
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## تمكين وتعطيل المحولات
|
||||
|
||||
بمجرد إضافة محول إلى نموذج، يمكنك تمكين أو تعطيل وحدة المحول. لتمكين وحدة المحول:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
|
||||
from peft import PeftConfig
|
||||
|
||||
model_id = "facebook/opt-350m"
|
||||
adapter_model_id = "ybelkada/opt-350m-lora"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
text = "Hello"
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
peft_config = PeftConfig.from_pretrained(adapter_model_id)
|
||||
|
||||
# لبدء تشغيله بأوزان عشوائية
|
||||
peft_config.init_lora_weights = False
|
||||
|
||||
model.add_adapter(peft_config)
|
||||
model.enable_adapters()
|
||||
output = model.generate(**inputs)
|
||||
```
|
||||
|
||||
لإيقاف تشغيل وحدة المحول:
|
||||
|
||||
```py
|
||||
model.disable_adapters()
|
||||
output = model.generate(**inputs)
|
||||
```
|
||||
|
||||
## تدريب محول PEFT
|
||||
|
||||
يدعم محول PEFT فئة [`Trainer`] بحيث يمكنك تدريب محول لحالتك الاستخدام المحددة. فهو يتطلب فقط إضافة بضع سطور أخرى من التعليمات البرمجية. على سبيل المثال، لتدريب محول LoRA:
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا لم تكن معتادًا على ضبط نموذج دقيق باستخدام [`Trainer`، فراجع البرنامج التعليمي](training) لضبط نموذج مُدرب مسبقًا.
|
||||
|
||||
</Tip>
|
||||
|
||||
1. حدد تكوين المحول باستخدام نوع المهمة والمعاملات الزائدة (راجع [`~peft.LoraConfig`] لمزيد من التفاصيل حول وظيفة هذه المعلمات).
|
||||
|
||||
```py
|
||||
from peft import LoraConfig
|
||||
|
||||
peft_config = LoraConfig(
|
||||
lora_alpha=16,
|
||||
lora_dropout=0.1,
|
||||
r=64,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM"،
|
||||
)
|
||||
```
|
||||
|
||||
2. أضف المحول إلى النموذج.
|
||||
|
||||
```py
|
||||
model.add_adapter(peft_config)
|
||||
```
|
||||
|
||||
3. الآن يمكنك تمرير النموذج إلى [`Trainer`]!
|
||||
|
||||
```py
|
||||
trainer = Trainer(model=model, ...)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
لحفظ محول المدرب وتحميله مرة أخرى:
|
||||
|
||||
```py
|
||||
model.save_pretrained(save_dir)
|
||||
model = AutoModelForCausalLM.from_pretrained(save_dir)
|
||||
```
|
||||
|
||||
## إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT
|
||||
|
||||
```py
|
||||
model.save_pretrained(save_dir)
|
||||
model = AutoModelForCausalLM.from_pretrained(save_dir)
|
||||
```
|
||||
|
||||
## إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT
|
||||
|
||||
يمكنك أيضًا إجراء تدريب دقيق لمحوّلات قابلة للتدريب إضافية فوق نموذج يحتوي بالفعل على محوّلات عن طريق تمرير معلم `modules_to_save` في تكوين PEFT الخاص بك. على سبيل المثال، إذا كنت تريد أيضًا ضبط دقيق لرأس النموذج اللغوي`lm_head` فوق نموذج بمحوّل LoRA:
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
|
||||
from peft import LoraConfig
|
||||
|
||||
model_id = "facebook/opt-350m"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
|
||||
lora_config = LoraConfig(
|
||||
target_modules=["q_proj", "k_proj"],
|
||||
modules_to_save=["lm_head"]،
|
||||
)
|
||||
|
||||
model.add_adapter(lora_config)
|
||||
```
|
||||
|
||||
## وثائق API
|
||||
|
||||
[[autodoc]] integrations.PeftAdapterMixin
|
||||
- load_adapter
|
||||
- add_adapter
|
||||
- set_adapter
|
||||
- disable_adapters
|
||||
- enable_adapters
|
||||
- active_adapters
|
||||
- get_adapter_state_dict
|
||||
|
||||
|
||||
|
||||
|
||||
<!--
|
||||
TODO: (@younesbelkada @stevhliu)
|
||||
- Link to PEFT docs for further details
|
||||
- Trainer
|
||||
- 8-bit / 4-bit examples ?
|
||||
-->
|
||||
94
docs/source/ar/perplexity.md
Normal file
94
docs/source/ar/perplexity.md
Normal file
@ -0,0 +1,94 @@
|
||||
# التعقيد اللغوي للنماذج ذات الطول الثابت
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
التعقيد اللغوي (PPL) هي واحدة من أكثر المقاييس شيوعًا لتقييم نماذج اللغة. قبل الخوض في التفاصيل، يجب أن نلاحظ أن المقياس ينطبق تحديدًا على نماذج اللغة الكلاسيكية (يُطلق عليها أحيانًا نماذج اللغة التلقائية المرجعية أو السببية) وهي غير محددة جيدًا لنماذج اللغة المقنعة مثل BERT (راجع [ملخص النماذج](model_summary)).
|
||||
|
||||
تُعرَّف التعقيد اللغوي على أنها الأس المُرفوع لقيمة متوسط اللوغاريتم الاحتمالي لمتتالية. إذا كان لدينا تسلسل رمزي \\(X = (x_0, x_1, \dots, x_t)\\)، فإن حيرة \\(X\\) هي،
|
||||
|
||||
$$\text{PPL}(X) = \exp \left\{ {-\frac{1}{t}\sum_i^t \log p_\theta (x_i|x_{<i}) } \right\}$$
|
||||
|
||||
حيث \\(\log p_\theta (x_i|x_{<i})\\) هو اللوغاريتم الاحتمالي للرمز i بشرط الرموز السابقة \\(x_{<i}\\) وفقًا لنموذجنا. ومن الناحية البديهية، يمكن اعتبارها تقييمًا لقدرة النموذج على التنبؤ بالتساوي بين مجموعة من الرموز المحددة في مجموعة من البيانات. ومن المهم الإشارة إلى أن عملية التمييز له تأثير مباشرًا على حيرة النموذج،ويجب مراعاتها دائمًا عند مقارنة النماذج المختلفة.
|
||||
|
||||
كما أنها تعادل الأس المُرفوع لقيمة الانتروبيا المتقاطعة بين البيانات وتنبؤات النموذج. لمزيد من الفهم حول مفهوم التعقيد اللغوي وعلاقتها بـ Bits Per Character (BPC) وضغط البيانات، يُرجى مراجعة [التدوينة المفيدة على The Gradient](https://thegradient.pub/understanding-evaluation-metrics-for-language-models/).
|
||||
|
||||
## حساب PPL مع النماذج ذات الطول الثابت
|
||||
|
||||
إذا لم نكن مقيدين بحجم سياق النموذج، فسنقوم بتقييم التعقيد اللغوي للنموذج عن طريق تحليل التسلسل تلقائيًا والشرط على التسلسل الفرعي السابق بالكامل في كل خطوة، كما هو موضح أدناه.
|
||||
|
||||
<img width="600" alt="Full decomposition of a sequence with unlimited context length" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_full.gif"/>
|
||||
|
||||
لكن عند التعامل مع النماذج التقريبية، نواجه عادةً قيدًا على عدد الرموز التي يمكن للنموذج معالجتها. على سبيل المثال، تحتوي أكبر نسخة من [GPT-2](model_doc/gpt2) على طول ثابت يبلغ 1024 رمزًا، لذا لا يمكننا حساب \\(p_\theta(x_t|x_{<t})\\) مباشرة عندما تكون \\(t\\) أكبر من 1024.
|
||||
|
||||
بدلاً من ذلك، يتم عادةً تقسيم التسلسل إلى تسلسلات فرعية مساوية لحجم الإدخال الأقصى للنموذج. فإذا كان حجم الإدخال الأقصى للنموذج هو \\(k\\)، فإننا نقرب احتمال الرمز \\(x_t\\) عن طريق الاشتقاق الشرطي فقط بالنسبة إلى \\(k-1\\) من الرموز التي تسبقه بدلاً من السياق بأكمله. وعند تقييم حيرة النموذج لتسلسل ما، قد يبدو من المغري تقسيم التسلسل إلى أجزاء منفصلة وجمع مجموع دوال اللوغاريتم لكل جزء بشكل مستقل، لكن هذا الأسلوب ليس الأمثل.
|
||||
|
||||
<img width="600" alt="Suboptimal PPL not taking advantage of full available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_chunked.gif"/>
|
||||
|
||||
تتميز هذه الطريقة بسرعة حسابها نظرًا لإمكانية حساب درجة التعقيد اللغوي لكل جزء بمسح واحد للأمام، إلا أنها تُعدّ تقريبًا ضعيفًا لدرجة التعقيد اللغوي المُحلّلة بشكل كامل، وعادةً ما تؤدي إلى درجة تعقيد لغوي أعلى (أسوأ) لأن النموذج سيكون لديه سياق أقل في معظم خطوات التنبؤ.
|
||||
|
||||
بدلاً من ذلك، يجب تقييم درجة التعقيد اللغوي للنماذج ذات الطول الثابت باستخدام إستراتيجية النافذة المنزلقة. وينطوي هذا على تحريك نافذة السياق بشكل متكرر بحيث يكون للنموذج سياق أكبر عند إجراء كل تنبؤ.
|
||||
|
||||
<img width="600" alt="Sliding window PPL taking advantage of all available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_sliding.gif"/>
|
||||
|
||||
هذا تقريب أقرب للتفكيك الحقيقي لاحتمالية التسلسل وسيؤدي عادةً إلى نتيجة أفضل.لكن الجانب السلبي هو أنه يتطلب تمريرًا للأمام لكل رمز في مجموعة البيانات. حل وسط عملي مناسب هو استخدام نافذة منزلقة بخطوة، بحيث يتم تحريك السياق بخطوات أكبر بدلاً من الانزلاق بمقدار 1 رمز في كل مرة. مما يسمح بإجراء الحساب بشكل أسرع مع إعطاء النموذج سياقًا كبيرًا للتنبؤات في كل خطوة.
|
||||
|
||||
## مثال: حساب التعقيد اللغوي مع GPT-2 في 🤗 Transformers
|
||||
|
||||
دعونا نوضح هذه العملية مع GPT-2.
|
||||
|
||||
```python
|
||||
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
||||
|
||||
device = "cuda"
|
||||
model_id = "openai-community/gpt2-large"
|
||||
model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
|
||||
```
|
||||
|
||||
سنقوم بتحميل مجموعة بيانات WikiText-2 وتقييم التعقيد اللغوي باستخدام بعض إستراتيجيات مختلفة النافذة المنزلقة. نظرًا لأن هذه المجموعة البيانات الصغيرة ونقوم فقط بمسح واحد فقط للمجموعة، فيمكننا ببساطة تحميل مجموعة البيانات وترميزها بالكامل في الذاكرة.
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
|
||||
test = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
|
||||
encodings = tokenizer("\n\n".join(test["text"]), return_tensors="pt")
|
||||
```
|
||||
|
||||
مع 🤗 Transformers، يمكننا ببساطة تمرير `input_ids` كـ `labels` إلى نموذجنا، وسيتم إرجاع متوسط احتمالية السجل السالب لكل رمز كخسارة. ومع ذلك، مع نهج النافذة المنزلقة، هناك تداخل في الرموز التي نمررها إلى النموذج في كل تكرار. لا نريد تضمين احتمالية السجل للرموز التي نتعامل معها كسياق فقط في خسارتنا، لذا يمكننا تعيين هذه الأهداف إلى `-100` بحيث يتم تجاهلها. فيما يلي هو مثال على كيفية القيام بذلك بخطوة تبلغ `512`. وهذا يعني أن النموذج سيكون لديه 512 رمزًا على الأقل للسياق عند حساب الاحتمالية الشرطية لأي رمز واحد (بشرط توفر 512 رمزًا سابقًا متاحًا للاشتقاق).
|
||||
|
||||
```python
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
max_length = model.config.n_positions
|
||||
stride = 512
|
||||
seq_len = encodings.input_ids.size(1)
|
||||
|
||||
nlls = []
|
||||
prev_end_loc = 0
|
||||
for begin_loc in tqdm(range(0, seq_len, stride)):
|
||||
end_loc = min(begin_loc + max_length, seq_len)
|
||||
trg_len = end_loc - prev_end_loc # قد تكون مختلفة عن الخطوة في الحلقة الأخيرة
|
||||
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
|
||||
target_ids = input_ids.clone()
|
||||
target_ids[:, :-trg_len] = -100
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids, labels=target_ids)
|
||||
|
||||
# يتم حساب الخسارة باستخدام CrossEntropyLoss الذي يقوم بالمتوسط على التصنيفات الصحيحة
|
||||
# لاحظ أن النموذج يحسب الخسارة على trg_len - 1 من التصنيفات فقط، لأنه يتحول داخليًا إلى اليسار بواسطة 1.
|
||||
neg_log_likelihood = outputs.loss
|
||||
|
||||
nlls.append(neg_log_likelihood)
|
||||
|
||||
prev_end_loc = end_loc
|
||||
if end_loc == seq_len:
|
||||
break
|
||||
|
||||
ppl = torch.exp(torch.stack(nlls).mean())
|
||||
```
|
||||
|
||||
يعد تشغيل هذا مع طول الخطوة مساويًا لطول الإدخال الأقصى يعادل لاستراتيجية النافذة غير المنزلقة وغير المثلى التي ناقشناها أعلاه. وكلما صغرت الخطوة، زاد السياق الذي سيحصل عليه النموذج في عمل كل تنبؤ، وكلما كانت التعقيد اللغوي المُبلغ عنها أفضل عادةً.
|
||||
|
||||
عندما نقوم بتشغيل ما سبق باستخدام `stride = 1024`، أي بدون تداخل، تكون درجة التعقيد اللغوي الناتجة هي `19.44`، وهو ما يماثل `19.93` المبلغ عنها في ورقة GPT-2. من خلال استخدام `stride = 512` وبالتالي استخدام إستراتيجية النافذة المنزلقة، ينخفض هذا إلى `16.45`. هذه النتيجة ليست فقط أفضل، ولكنها محسوبة بطريقة أقرب إلى التحليل التلقائي الحقيقي لاحتمالية التسلسل.
|
||||
49
docs/source/ar/philosophy.md
Normal file
49
docs/source/ar/philosophy.md
Normal file
@ -0,0 +1,49 @@
|
||||
# الفلسفة
|
||||
|
||||
تُعد 🤗 Transformers مكتبة برمجية ذات رؤية واضحة صُممت من أجل:
|
||||
|
||||
- الباحثون والمُتعلّمون في مجال التعلم الآلي ممن يسعون لاستخدام أو دراسة أو تطوير نماذج Transformers واسعة النطاق.
|
||||
- مُطبّقي تعلم الآلة الذين يرغبون في ضبط تلك النماذج أو تشغيلها في بيئة إنتاجية، أو كليهما.
|
||||
- المهندسون الذين يريدون فقط تنزيل نموذج مُدرب مسبقًا واستخدامه لحل مهمة تعلم آلي معينة.
|
||||
|
||||
تم تصميم المكتبة مع الأخذ في الاعتبار هدفين رئيسيين:
|
||||
|
||||
1. سهولة وسرعة الاستخدام:
|
||||
|
||||
- تمّ تقليل عدد المفاهيم المُجردة التي يتعامل معها المستخدم إلى أدنى حد والتي يجب تعلمها، وفي الواقع، لا توجد مفاهيم مُجردة تقريبًا، فقط ثلاث فئات أساسية مطلوبة لاستخدام كل نموذج: [الإعدادات](main_classes/configuration)، [نماذج](main_classes/model)، وفئة ما قبل المعالجة ([مُجزّئ لغوي](main_classes/tokenizer) لـ NLP، [معالج الصور](main_classes/image_processor) للرؤية، [مستخرج الميزات](main_classes/feature_extractor) للصوت، و [معالج](main_classes/processors) للمدخﻻت متعددة الوسائط).
|
||||
- يمكن تهيئة جميع هذه الفئات بطريقة بسيطة وموحدة من خلال نماذج مُدربة مسبقًا باستخدام الدالة الموحدة `from_pretrained()` والتي تقوم بتنزيل (إذا لزم الأمر)، وتخزين وتحميل كل من: فئة النموذج المُراد استخدامه والبيانات المرتبطة ( مُعاملات الإعدادات، ومعجم للمُجزّئ اللغوي،وأوزان النماذج) من نقطة تدقيق مُحددة مُخزّنة على [Hugging Face Hub](https://huggingface.co/models) أو ن من نقطة تخزين خاصة بالمستخدم.
|
||||
- بالإضافة إلى هذه الفئات الأساسية الثلاث، توفر المكتبة واجهتي برمجة تطبيقات: [`pipeline`] للاستخدام السريع لأحد النماذج لأداء استنتاجات على مهمة مُحددة، و [`Trainer`] للتدريب السريع أو الضبط الدقيق لنماذج PyTorch (جميع نماذج TensorFlow متوافقة مع `Keras.fit`).
|
||||
- نتيجة لذلك، هذه المكتبة ليست صندوق أدوات متعدد الاستخدامات من الكتل الإنشائية للشبكات العصبية. إذا كنت تريد توسيع أو البناء على المكتبة، فما عليك سوى استخدام Python و PyTorch و TensorFlow و Keras العادية والوراثة من الفئات الأساسية للمكتبة لإعادة استخدام الوظائف مثل تحميل النموذج وحفظه. إذا كنت ترغب في معرفة المزيد عن فلسفة الترميز لدينا للنماذج، فراجع منشور المدونة الخاص بنا [Repeat Yourself](https://huggingface.co/blog/transformers-design-philosophy).
|
||||
|
||||
2. تقديم نماذج رائدة في مجالها مع أداء قريب قدر الإمكان من النماذج الأصلية:
|
||||
|
||||
- نقدم مثالًا واحدًا على الأقل لكل بنية تقوم بإعادة إنتاج نتيجة مقدمة من المؤلفين الرسميين لتلك البنية.
|
||||
- عادةً ما تكون الشفرة قريبة قدر الإمكان من قاعدة الشفرة الأصلية، مما يعني أن بعض شفرة PyTorch قد لا تكون "بأسلوب PyTorch" كما يمكن أن تكون نتيجة لكونها شفرة TensorFlow محولة والعكس صحيح.
|
||||
|
||||
بعض الأهداف الأخرى:
|
||||
|
||||
- كشف تفاصيل النماذج الداخلية بشكل متسق قدر الإمكان:
|
||||
|
||||
-نتيح الوصول، باستخدام واجهة برمجة واحدة، إلى جميع الحالات المخفية (Hidden-States) وأوزان الانتباه (Attention Weights).
|
||||
- تم توحيد واجهات برمجة التطبيقات الخاصة بفئات المعالجة المسبقة والنماذج الأساسية لتسهيل التبديل بين النماذج.
|
||||
|
||||
- دمج مجموعة مختارة من الأدوات الواعدة لضبط النماذج بدقة (Fine-tuning) ودراستها:
|
||||
|
||||
- طريقة بسيطة ومتسقة لإضافة رموز جديدة إلى مفردات التضمينات (Embeddings) لضبط النماذج بدقة.
|
||||
- طرق سهلة لإخفاء (Masking) وتقليم (Pruning) رؤوس المحولات (Transformer Heads).
|
||||
|
||||
- التبديل بسهولة بين PyTorch و TensorFlow 2.0 و Flax، مما يسمح بالتدريب باستخدام إطار واحد والاستدلال باستخدام إطار آخر.
|
||||
|
||||
## المفاهيم الرئيسية
|
||||
|
||||
تعتمد المكتبة على ثلاثة أنواع من الفئات لكل نموذج:
|
||||
|
||||
- **فئات النماذج** يمكن أن تكون نماذج PyTorch ([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module))، أو نماذج Keras ([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model))، أو نماذج JAX/Flax ([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)) التي تعمل مع الأوزان المُدربة مسبقًا المقدمة في المكتبة.
|
||||
- **فئات الإعداد** تخزن معلمات التهيئة المطلوبة لبناء نموذج (مثل عدد الطبقات وحجم الطبقة المخفية). أنت لست مضطرًا دائمًا إلى إنشاء مثيل لهذه الفئات بنفسك. على وجه الخصوص، إذا كنت تستخدم نموذجًا مُدربًا مسبقًا دون أي تعديل، فإن إنشاء النموذج سيهتم تلقائيًا تهيئة الإعدادات (والذي يعد جزءًا من النموذج).
|
||||
- **فئات ما قبل المعالجة** تحويل البيانات الخام إلى تنسيق مقبول من قبل النموذج. يقوم [المعالج](main_classes/tokenizer) بتخزين المعجم لكل نموذج ويقدم طرقًا لتشفير وفك تشفير السلاسل في قائمة من مؤشرات تضمين الرموز ليتم إطعامها للنموذج. تقوم [معالجات الصور](main_classes/image_processor) بمعالجة إدخالات الرؤية، وتقوم [مستخلصات الميزات](main_classes/feature_extractor) بمعالجة إدخالات الصوت، ويقوم [المعالج](main_classes/processors) بمعالجة الإدخالات متعددة الوسائط.
|
||||
|
||||
يمكن تهيئة جميع هذه الفئات من نسخ مُدربة مسبقًا، وحفظها محليًا، ومشاركتها على منصة Hub عبر ثلاث طرق:
|
||||
|
||||
- تسمح لك الدالة `from_pretrained()` بتهيئة النموذج وتكويناته وفئة المعالجة المسبقة من إصدار مُدرب مسبقًا إما يتم توفيره بواسطة المكتبة نفسها (يمكن العثور على النماذج المدعومة على [Model Hub](https://huggingface.co/models)) أو مخزنة محليًا (أو على خادم) بواسطة المستخدم.
|
||||
- تسمح لك الدالة `save_pretrained()` بحفظ النموذج، وتكويناته وفئة المعالجة المسبقة محليًا، بحيث يمكن إعادة تحميله باستخدام الدالة `from_pretrained()`.
|
||||
- تسمح لك `push_to_hub()` بمشاركة نموذج وتكويناتهوفئة المعالجة المسبقة على Hub، بحيث يمكن الوصول إليها بسهولة من قبل الجميع.
|
||||
315
docs/source/ar/pipeline_tutorial.md
Normal file
315
docs/source/ar/pipeline_tutorial.md
Normal file
@ -0,0 +1,315 @@
|
||||
# خطوط الأنابيب الاستدلال
|
||||
|
||||
يجعل [`pipeline`] من السهل استخدام أي نموذج من [Hub](https://huggingface.co/models) للاستدلال لأي مهام خاصة باللغة أو الرؤية الحاسوبية أو الكلام أو المهام متعددة الوسائط. حتى إذا لم يكن لديك خبرة في طريقة معينة أو لم تكن على دراية بالرمز الأساسي وراء النماذج، يمكنك مع ذلك استخدامها للاستدلال باستخدام [`pipeline`]! سوف يُعلمك هذا البرنامج التعليمي ما يلي:
|
||||
|
||||
* استخدام [`pipeline`] للاستدلال.
|
||||
* استخدم مُجزّئ أو نموذجًا محددًا.
|
||||
* استخدم [`pipeline`] للمهام الصوتية والبصرية والمتعددة الوسائط.
|
||||
|
||||
<Tip>
|
||||
|
||||
اطلع على وثائق [`pipeline`] للحصول على القائمة كاملة بالمهام المدعومة والمعلمات المتاحة.
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام الأنابيب
|
||||
|
||||
على الرغم من أن لكل مهمة أنبوب [`pipeline`] خاص بها، إلا أنه من الأبسط استخدام تجريد خط الأنابيب العام [`pipeline`] الذي يحتوي على جميع خطوط الأنابيب الخاصة بالمهمة. يقوم [`pipeline`] تلقائيًا بتحميل نموذج افتراضي وفئة معالجة مسبقة قادرة على الاستدلال لمهمتك. دعنا نأخذ مثال استخدام [`pipeline`] للتعرف التلقائي على الكلام (ASR)، أو تحويل الكلام إلى نص.
|
||||
|
||||
1. ابدأ بإنشاء [`pipeline`] وحدد مهمة الاستدلال:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> transcriber = pipeline(task="automatic-speech-recognition")
|
||||
```
|
||||
|
||||
2. مرر إدخالك إلى [`pipeline`]. في حالة التعرف على الكلام، يكون هذا ملف إدخال صوتي:
|
||||
|
||||
```py
|
||||
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
{'text': 'I HAVE A DREAM BUT ONE DAY THIS NATION WILL RISE UP LIVE UP THE TRUE MEANING OF ITS TREES'}
|
||||
```
|
||||
|
||||
لم تحصل على النتيجة التي تريدها؟ تحقق من بعض [نماذج التعرف على الكلام الأكثر تنزيلًا](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)
|
||||
على Hub لمعرفة ما إذا كان بإمكانك الحصول على نسخة منقحة أفضل.
|
||||
|
||||
لنَجرب نموذج [Whisper large-v2](https://huggingface.co/openai/whisper-large) من OpenAI. تم إصدار Whisper بعد عامين من إصدار Wav2Vec2، وتم تدريبه على ما يقرب من 10 أضعاف كمية البيانات. وبهذه الصفة، فإنه يتفوق على Wav2Vec2 في معظم معظم المقاييس. كما أنه يمتلك ميزة إضافية وهي في التنبؤ بعلامات الترقيم وحالة الأحرف، والتي لا يمكن تحقيقها مع Wav2Vec2.
|
||||
|
||||
دعونا نجربها هنا لنرى كيف تؤدي:
|
||||
|
||||
```py
|
||||
>>> transcriber = pipeline(model="openai/whisper-large-v2")
|
||||
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
{'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'}
|
||||
```
|
||||
|
||||
الآن تبدو هذه النتيجة أكثر دقة! لمقارنة عميقة حول Wav2Vec2 مقابل Whisper، راجع [دورة Audio Transformers](https://huggingface.co/learn/audio-course/chapter5/asr_models).
|
||||
نشجعك بشدة على التحقق من Hub للحصول على نماذج بلغات مختلفة، ونماذج متخصصة في مجالك، وأكثر من ذلك.
|
||||
يمكنك التحقق من نتائج النموذج ومقارنتها مباشرة من متصفحك على Hub لمعرفة ما إذا كان يناسبها
|
||||
أو التعامل مع الحالات الخاصة بشكل أفضل من غيرها.
|
||||
وإذا لم تجد نموذجًا لحالتك الاستخدام، فيمكنك دائمًا البدء في [التدريب](training) الخاص بك!
|
||||
|
||||
إذا كان لديك عدة مدخلات، فيمكنك تمرير إدخالك كقائمة:
|
||||
|
||||
```py
|
||||
transcriber(
|
||||
[
|
||||
"https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac",
|
||||
"https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac",
|
||||
]
|
||||
)
|
||||
```
|
||||
|
||||
تعد خطوط الأنابيب مثالية للتجريب نظرًا لأن التبديل من نموذج إلى آخر أمر بسيط للغاية؛ ومع ذلك، هناك بعض الطرق لتحسينها لأحمال عمل أكبر من التجريب. راجع الأدلة التالية التي تتعمق فى التكرار عبر مجموعات البيانات الكاملة أو استخدام خطوط الأنابيب في خادم ويب:
|
||||
من الوثائق:
|
||||
* [استخدام خطوط الأنابيب على مجموعة بيانات](#using-pipelines-on-a-dataset)
|
||||
* [استخدام خطوط الأنابيب لخادم ويب](./pipeline_webserver)
|
||||
|
||||
## المعلمات
|
||||
|
||||
يدعم [`pipeline`] العديد من المعلمات؛ بعضها خاص بالمهمة، والبعض الآخر عام لجميع خطوط الأنابيب.
|
||||
بشكل عام، يمكنك تحديد المعلمات في أي مكان تريده:
|
||||
|
||||
```py
|
||||
transcriber = pipeline(model="openai/whisper-large-v2", my_parameter=1)
|
||||
|
||||
out = transcriber(...) # سيتم استخدام هذا `my_parameter=1`.
|
||||
out = transcriber(..., my_parameter=2) # سيتم تجاوز هذا واستخدام `my_parameter=2`.
|
||||
out = transcriber(...) # سيتم الرجوع إلى استخدام `my_parameter=1`.
|
||||
```
|
||||
|
||||
دعونا نلقي نظرة على 3 مهمة:
|
||||
|
||||
### الجهاز
|
||||
|
||||
إذا كنت تستخدم `device=n`، فإن خط الأنابيب يضع النموذج تلقائيًا على الجهاز المحدد.
|
||||
سيعمل هذا بغض النظر عما إذا كنت تستخدم PyTorch أو Tensorflow.
|
||||
|
||||
```py
|
||||
transcriber = pipeline(model="openai/whisper-large-v2", device=0)
|
||||
```
|
||||
|
||||
إذا كان النموذج كبيرًا جدًا بالنسبة لوحدة معالجة الرسومات (GPU) واحدة، وأنت تستخدم PyTorch، فيمكنك تعيين `torch_dtype='float16'` لتمكين الاستدلال بدقة FP16. عادةً ما لا يتسبب ذلك في حدوث انخفاضات كبيرة في الأداء، ولكن تأكد من تقييمه على نماذجك!
|
||||
|
||||
بدلاً من ذلك، يمكنك تعيين `device_map="auto"` لتحديد كيفية تحميل مخزنات النموذج وتخزينها تلقائيًا. يتطلب استخدام معامل `device_map` مكتبه 🤗 [Accelerate](https://huggingface.co/docs/accelerate):
|
||||
|
||||
```bash
|
||||
pip install --upgrade accelerate
|
||||
```
|
||||
|
||||
تقوم الشفرة التالية بتحميل مخزنات النموذج وتخزينها تلقائيًا عبر الأجهزة:
|
||||
|
||||
```py
|
||||
transcriber = pipeline(model="openai/whisper-large-v2", device_map="auto")
|
||||
```
|
||||
|
||||
لاحظ أنه إذا تم تمرير `device_map="auto"`، فلا توجد حاجة لإضافة حجة `device=device` عند إنشاء خط الأنابيب الخاص بك، فقد تواجه بعض السلوكيات غير المتوقعة!
|
||||
|
||||
### حجم الدفعة
|
||||
|
||||
بشكل افتراضي، لن تقوم خطوط الأنابيب بتجميع الاستدلال لأسباب مفصلة [هنا](https://huggingface.co/docs/transformers/main_classes/pipelines#pipeline-batching). والسبب هو أن التجميع ليست أسرع بالضرورة، ويمكن أن تكون أبطأ في الواقع في بعض الحالات.
|
||||
|
||||
ولكن إذا نجحت في حالتك الاستخدام، فيمكنك استخدام ما يلي:
|
||||
|
||||
```py
|
||||
transcriber = pipeline(model="openai/whisper-large-v2", device=0, batch_size=2)
|
||||
audio_filenames = [f"https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/{i}.flac" for i in range(1, 5)]
|
||||
texts = transcriber(audio_filenames)
|
||||
```
|
||||
|
||||
هذا يشغل خط الأنابيب على ملفات الصوت الأربعة المتاحة، ولكنه سيمررها على دفعتين
|
||||
إلى النموذج (الذي يوجد على وحدة معالجة الرسومات (GPU)، حيث من المرجح أن تساعد التجميع) دون الحاجة إلى أي رمز إضافي منك.
|
||||
يجب أن تتطابق الإخراج دائمًا مع ما كنت ستحصل عليه دون التجميع. المقصود منه فقط كطريقة لمساعدتك في الحصول على سرعة أكبر من خط الأنابيب.
|
||||
|
||||
يمكن لخطوط الأنابيب أيضًا تخفيف بعض تعقيدات التجميع لأنه، بالنسبة لبعض خطوط الأنابيب، يجب تقسيم عنصر واحد (مثل ملف صوتي طويل) إلى أجزاء متعددة لمعالجته بواسطة نموذج. يقوم خط الأنابيب بأداء هذه العملية التي تسمى تجميع الأجزاء [*batch batching*](./main_classes/pipelines#pipeline-chunk-batching) نيابة عنك.
|
||||
|
||||
### معلمات خاصة بالمهمة
|
||||
|
||||
توفر جميع المهام معلمات خاصة بالمهمة تتيح المرونة والخيارات الإضافية لمساعدتك في أداء عملك.
|
||||
على سبيل المثال، تحتوي طريقة [`transformers.AutomaticSpeechRecognitionPipeline.__call__`] على معلمة `return_timestamps` التي تبدو واعدة لترجمة مقاطع الفيديو:
|
||||
```py
|
||||
>>> transcriber = pipeline(model="openai/whisper-large-v2", return_timestamps=True)
|
||||
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
{'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.', 'chunks': [{'timestamp': (0.0, 11.88), 'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its'}, {'timestamp': (11.88, 12.38), 'text': ' creed.'}]}
|
||||
```
|
||||
|
||||
كما ترون، استنتج النموذج النص.وكذلك حدد **وقت** نطق الجمل المختلفة.
|
||||
|
||||
تتوفر العديد من المعلمات لكل مهمة، لذا تحقق من مرجع API لكل مهمة لمعرفة ما يمكنك تعديله!
|
||||
على سبيل المثال، تحتوي [`~transformers.AutomaticSpeechRecognitionPipeline`] على معلمة `chunk_length_s` مفيدة
|
||||
للعمل على ملفات الصوت الطويلة جدًا (على سبيل المثال، ترجمة الأفلام أو مقاطع الفيديو التي تستغرق ساعة) والتي لا يمكن للنموذج التعامل معها بمفرده:
|
||||
|
||||
```python
|
||||
>>> transcriber = pipeline(model="openai/whisper-large-v2", chunk_length_s=30)
|
||||
>>> transcriber("https://huggingface.co/datasets/reach-vb/random-audios/resolve/main/ted_60.wav")
|
||||
{'text': " So in college, I was a government major, which means I had to write a lot of papers. Now, when a normal student writes a paper, they might spread the work out a little like this. So, you know. You get started maybe a little slowly, but you get enough done in the first week that with some heavier days later on, everything gets done and things stay civil. And I would want to do that like that. That would be the plan. I would have it all ready to go, but then actually the paper would come along, and then I would kind of do this. And that would happen every single paper. But then came my 90-page senior thesis, a paper you're supposed to spend a year on. I knew for a paper like that, my normal workflow was not an option, it was way too big a project. So I planned things out and I decided I kind of had to go something like this. This is how the year would go. So I'd start off light and I'd bump it up"}
|
||||
```
|
||||
|
||||
إذا لم تتمكن من العثور على معلمة قد تساعدك حقًا، فلا تتردد في [طلبها](https://github.com/huggingface/transformers/issues/new?assignees=&labels=feature&template=feature-request.yml)!
|
||||
|
||||
|
||||
## استخدام خطوط الأنابيب على مجموعة بيانات
|
||||
|
||||
يمكن أيضًا تشغيل خط الأنابيب للاستدلال على مجموعة بيانات كبيرة. أسهل طريقة نوصي بها للقيام بذلك هي باستخدام المتكرر (iterator).:
|
||||
|
||||
```py
|
||||
def data():
|
||||
for i in range(1000):
|
||||
yield f"My example {i}"
|
||||
|
||||
|
||||
pipe = pipeline(model="openai-community/gpt2", device=0)
|
||||
generated_characters = 0
|
||||
for out in pipe(data()):
|
||||
generated_characters += len(out[0]["generated_text"])
|
||||
```
|
||||
|
||||
يقوم المؤشر `data()` بإرجاع كل نتيجة، ويتعرف خط الأنابيب تلقائيًا
|
||||
المدخل قابل للتحديد ويبدأ في جلب البيانات أثناء
|
||||
يستمر في معالجتها على وحدة معالجة الرسومات (GPU) (يستخدم هذا [DataLoader](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) تحت الغطاء).
|
||||
هذا أمر مهم لأنك لا تحتاج إلى تخصيص ذاكرة لمجموعة البيانات بأكملها
|
||||
ويمكنك تغذية وحدة معالجة الرسومات (GPU) بأسرع ما يمكن.
|
||||
|
||||
نظرًا لأن التجميع قد تسرع الأمور، فقد يكون من المفيد ضبط معلمة `batch_size` هنا.
|
||||
|
||||
أبسط طريقة للتنقل خلال مجموعة بيانات هي فقط تحميل واحدة من 🤗 [Datasets](https://github.com/huggingface/datasets/):
|
||||
|
||||
```py
|
||||
# KeyDataset هي أداة مساعدة ستقوم فقط بإخراج العنصر الذي نهتم به.
|
||||
from transformers.pipelines.pt_utils import KeyDataset
|
||||
from datasets import load_dataset
|
||||
|
||||
pipe = pipeline(model="hf-internal-testing/tiny-random-wav2vec2", device=0)
|
||||
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation[:10]")
|
||||
|
||||
for out in pipe(KeyDataset(dataset, "audio")):
|
||||
print(out)
|
||||
```
|
||||
|
||||
## استخدام خطوط الأنابيب لخادم ويب
|
||||
|
||||
<Tip>
|
||||
إن إنشاء محرك استدلال هو موضوع معقد يستحق صفحته الخاصة.
|
||||
</Tip>
|
||||
|
||||
[Link](./pipeline_webserver)
|
||||
|
||||
## خط أنابيب الرؤية
|
||||
|
||||
إن استخدام [`pipeline`] لمهام الرؤية مماثل تمامًا.
|
||||
|
||||
حدد مهمتك ومرر صورتك إلى المصنف. يمكن أن تكون الصورة رابطًا أو مسارًا محليًا أو صورة مشفرة بتنسيق base64. على سبيل المثال، ما نوع القطط الموضح أدناه؟
|
||||
|
||||

|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> vision_classifier = pipeline(model="google/vit-base-patch16-224")
|
||||
>>> preds = vision_classifier(
|
||||
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
|
||||
```
|
||||
|
||||
## خط أنابيب النص
|
||||
|
||||
إن استخدام [`pipeline`] لمهام NLP مماثل تمامًا.
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> # هذا النموذج هو نموذج "zero-shot-classification".
|
||||
>>> # سيصنف النص، ولكن يمكنك اختيار أي تسمية قد تتخيلها
|
||||
>>> classifier = pipeline(model="facebook/bart-large-mnli")
|
||||
>>> classifier(
|
||||
... "I have a problem with my iphone that needs to be resolved asap!!",
|
||||
... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
|
||||
... )
|
||||
{'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'], 'scores': [0.504, 0.479, 0.013, 0.003, 0.002]}
|
||||
```
|
||||
|
||||
## خط أنابيب متعدد الوسائط
|
||||
|
||||
تدعم [`pipeline`] أكثر من طريقة واحدة. على سبيل المثال، تجمع مهمة الإجابة على الأسئلة المرئية (VQA) بين النص والصورة. لا تتردد في استخدام أي رابط صورة تريده وسؤال تريد طرحه حول الصورة. يمكن أن تكون الصورة عنوان URL أو مسارًا محليًا للصورة.
|
||||
|
||||
على سبيل المثال، إذا كنت تستخدم هذه [صورة الفاتورة](https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png):
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> vqa = pipeline(model="impira/layoutlm-document-qa")
|
||||
>>> output = vqa(
|
||||
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
|
||||
... question="What is the invoice number?",
|
||||
... )
|
||||
>>> output[0]["score"] = round(output[0]["score"], 3)
|
||||
>>> output
|
||||
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
لتشغيل المثال أعلاه، تحتاج إلى تثبيت [`pytesseract`](https://pypi.org/project/pytesseract/) بالإضافة إلى 🤗 Transformers:
|
||||
|
||||
```bash
|
||||
sudo apt install -y tesseract-ocr
|
||||
pip install pytesseract
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
## استخدام `pipeline` على نماذج كبيرة مع 🤗 `accelerate`:
|
||||
|
||||
يمكنك بسهولة تشغيل `pipeline` على نماذج كبيرة باستخدام 🤗 `accelerate`! أولاً، تأكد من تثبيت `accelerate` باستخدام `pip install accelerate`.
|
||||
|
||||
قم أولاً بتحميل نموذجك باستخدام `device_map="auto"`! سنستخدم `facebook/opt-1.3b` كمثال لنا.
|
||||
|
||||
```py
|
||||
# pip install accelerate
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(model="facebook/opt-1.3b", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
output = pipe("This is a cool example!", do_sample=True, top_p=0.95)
|
||||
```
|
||||
|
||||
يمكنك أيضًا تمرير نماذج محملة بـ 8 بت إذا قمت بتثبيت `bitsandbytes` وإضافة الحجة `load_in_8bit=True`
|
||||
|
||||
```py
|
||||
# pip install accelerate bitsandbytes
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(model="facebook/opt-1.3b", device_map="auto", model_kwargs={"load_in_8bit": True})
|
||||
output = pipe("This is a cool example!", do_sample=True, top_p=0.95)
|
||||
```
|
||||
|
||||
لاحظ أنه يمكنك استبدال نقطة التفتيش بأي نموذج من Hugging Face يدعم تحميل النماذج الكبيرة، مثل BLOOM.
|
||||
|
||||
## إنشاء عروض توضيحية ويب من خطوط الأنابيب باستخدام `gradio`
|
||||
|
||||
يتم دعم خطوط الأنابيب تلقائيًا في [Gradio](https://github.com/gradio-app/gradio/)، وهي مكتبة تجعل إنشاء تطبيقات تعليم الآلة الجميلة والسهلة الاستخدام على الويب أمرًا سهلاً. أولاً، تأكد من تثبيت Gradio:
|
||||
|
||||
```
|
||||
pip install gradio
|
||||
```
|
||||
|
||||
بعد ذلك، يمكنك إنشاء عرض توضيحي ويب حول خط أنابيب تصنيف الصور (أو أي خط أنابيب آخر) في سطر واحد من التعليمات البرمجية عن طريق استدعاء وظيفة [`Interface.from_pipeline`](https://www.gradio.app/docs/interface#interface-from-pipeline) في Gradio لإطلاق خط الأنابيب. يقوم هذا بإنشاء واجهة بديهية للسحب والإفلات في مستعرضك:
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
import gradio as gr
|
||||
|
||||
pipe = pipeline("image-classification", model="google/vit-base-patch16-224")
|
||||
|
||||
gr.Interface.from_pipeline(pipe).launch()
|
||||
```
|
||||
|
||||
|
||||

|
||||
|
||||
بشكل افتراضي، يعمل العرض التوضيحي على خادم محلي. إذا كنت تريد مشاركتها مع الآخرين، فيمكنك إنشاء رابط عام مؤقت عن طريق تعيين `share=True` في `launch()`. يمكنك أيضًا استضافة عرضك التوضيحي على [Hugging Face Spaces](https://huggingface.co/spaces) للحصول على رابط دائم.
|
||||
126
docs/source/ar/pipeline_webserver.md
Normal file
126
docs/source/ar/pipeline_webserver.md
Normal file
@ -0,0 +1,126 @@
|
||||
# استخدام قنوات المعالجة لخادم ويب
|
||||
|
||||
<Tip>
|
||||
|
||||
يُعدّ إنشاء محرك استدلال أمرًا معقدًا، ويعتمد الحل "الأفضل" على مساحة مشكلتك. هل تستخدم وحدة المعالجة المركزية أم وحدة معالجة الرسومات؟ هل تريد أقل زمن وصول، أم أعلى معدل نقل، أم دعمًا للعديد من النماذج، أم مجرد تحقيق أقصى تحسين نموذج محدد؟
|
||||
توجد طرق عديدة لمعالجة هذا الموضوع، لذلك ما سنقدمه هو إعداد افتراضي جيد للبدء به قد لا يكون بالضرورة هو الحل الأمثل لك.```
|
||||
|
||||
</Tip>
|
||||
|
||||
الشيء الرئيسي الذي يجب فهمه هو أننا يمكن أن نستخدم مؤشرًا، تمامًا كما تفعل [على مجموعة بيانات](pipeline_tutorial#using-pipelines-on-a-dataset)، نظرًا لأن خادم الويب هو أساسًا نظام ينتظر الطلبات ويعالجها عند استلامها.
|
||||
|
||||
عادةً ما تكون خوادم الويب متعددة الإرسال (متعددة مؤشرات الترابط، وغير متزامنة، إلخ) للتعامل مع الطلبات المختلفة بشكل متزامن. من ناحية أخرى، فإن قنوات المعالجة (وبشكل رئيسي النماذج الأساسية) ليست رائعة للتوازي؛ حيث تستهلك الكثير من ذاكرة الوصول العشوائي، لذا من الأفضل منحها جميع الموارد المتاحة عند تشغيلها أو إذا كانت مهمة تطلب حسابات مكثفة.
|
||||
|
||||
سنحل ذلك من خلال جعل خادم الويب يتعامل مع الحمل الخفيف لاستقبال الطلبات وإرسالها،وجعل مؤشر ترابط واحد يتعامل مع العمل الفعلي. سيستخدم هذا المثال `starlette`. ولكن قد تضطر إلى ضبط الكود أو تغييره إذا كنت تستخدم كودًا آخر لتحقيق التأثير نفسه.
|
||||
|
||||
أنشئ `server.py`:
|
||||
|
||||
```py
|
||||
from starlette.applications import Starlette
|
||||
from starlette.responses import JSONResponse
|
||||
from starlette.routing import Route
|
||||
from transformers import pipeline
|
||||
import asyncio
|
||||
|
||||
|
||||
async def homepage(request):
|
||||
payload = await request.body()
|
||||
string = payload.decode("utf-8")
|
||||
response_q = asyncio.Queue()
|
||||
await request.app.model_queue.put((string, response_q))
|
||||
output = await response_q.get()
|
||||
return JSONResponse(output)
|
||||
|
||||
|
||||
async def server_loop(q):
|
||||
pipe = pipeline(model="google-bert/bert-base-uncased")
|
||||
while True:
|
||||
(string, response_q) = await q.get()
|
||||
out = pipe(string)
|
||||
await response_q.put(out)
|
||||
|
||||
|
||||
app = Starlette(
|
||||
routes=[
|
||||
Route("/", homepage, methods=["POST"]),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
q = asyncio.Queue()
|
||||
app.model_queue = q
|
||||
asyncio.create_task(server_loop(q))
|
||||
```
|
||||
|
||||
الآن يمكنك تشغيله باستخدام:
|
||||
|
||||
```bash
|
||||
uvicorn server:app
|
||||
```
|
||||
|
||||
ويمكنك الاستعلام عنه:
|
||||
|
||||
```bash
|
||||
curl -X POST -d "test [MASK]" http://localhost:8000/
|
||||
#[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...]
|
||||
```
|
||||
|
||||
وهكذا، لديك الآن فكرة جيدة عن كيفية إنشاء خادم ويب!
|
||||
|
||||
المهم حقًا هو أننا نقوم بتحميل النموذج **مرة واحدة** فقط، لذلك لا توجد نسخ من النموذج على خادم الويب. بهذه الطريقة، لا يتم استخدام ذاكرة الوصول العشوائي غير الضرورية. تسمح آلية وضع قائمة الانتظار بالقيام بأشياء متقدمة مثل تجميع بعض العناصر قبل الاستدلال لاستخدام معالجة الدفعات الديناميكية:
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
تم كتابة نموذج الكود البرمجى أدناه بشكل مقصود مثل كود وهمي للقراءة. لا تقم بتشغيله دون التحقق مما إذا كان منطقيًا لموارد النظام الخاص بك!
|
||||
|
||||
</Tip>
|
||||
|
||||
```py
|
||||
(string, rq) = await q.get()
|
||||
strings = []
|
||||
queues = []
|
||||
while True:
|
||||
try:
|
||||
(string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms
|
||||
except asyncio.exceptions.TimeoutError:
|
||||
break
|
||||
strings.append(string)
|
||||
queues.append(rq)
|
||||
strings
|
||||
outs = pipe(strings, batch_size=len(strings))
|
||||
for rq, out in zip(queues, outs):
|
||||
await rq.put(out)
|
||||
```
|
||||
|
||||
مرة أخرى، تم تحسين الرمز المقترح لسهولة القراءة، وليس ليكون أفضل كود. بادئ ذي بدء، لا يوجد حد لحجم الدفعة، والذي عادةً ما لا يكون فكرة عظيمة. بعد ذلك، يتم إعادة ضبط الفترة في كل عملية جلب لقائمة الانتظار، مما يعني أنه قد يتعين عليك الانتظار لفترة أطول بكثير من 1 مللي ثانية قبل تشغيل الاستدلال (تأخير الطلب الأول بهذا القدر).
|
||||
|
||||
سيكون من الأفضل تحديد مهلة واحدة مدتها 1 مللي ثانية.
|
||||
|
||||
سيظل هذا ينتظر دائمًا لمدة 1 مللي ثانية حتى إذا كانت قائمة الانتظار فارغًا، والذي قد لا يكون الأفضل نظرًا لأنك تريد على الأرجح البدء في إجراء الاستدلال إذا لم يكن هناك شيء في قائمة الانتظا. ولكن ربما يكون منطقيًا إذا كانت المعالجة الديناميكية للدفعات مهمة حقًا لحالة الاستخدام لديك. مرة أخرى، لا يوجد حل واحد هو الأفضل.
|
||||
|
||||
## بعض الأشياء التي قد ترغب في مراعاتها
|
||||
|
||||
### التحقق من الأخطاء
|
||||
|
||||
هناك الكثير مما قد يحدث بشكل خاطئ في عند اتاحة النموذج للجمهور: نفاد الذاكرة، أو نفاد المساحة، أو فشل تحميل النموذج، أو قد يكون الاستعلام خاطئًا، أو قد يكون الاستعلام صحيحًا ولكن لا يزال يفشل في التشغيل بسبب خطأ في إعداد النموذج، وما إلى ذلك.
|
||||
|
||||
بشكل عام، من الجيد أن يُخرِج الخادم الأخطاء للمستخدم، لذلك يُعدّ إضافة الكثير من عبارات `try..except` لعرض هذه الأخطاء فكرة
|
||||
جيدة. لكن ضع في اعتبارك أنه قد يمثل أيضًا مخاطرة أمنية الكشف عن جميع تلك الأخطاء اعتمادًا على سياق الأمان لديك.
|
||||
|
||||
### قطع الدائرة (Circuit breaking)
|
||||
|
||||
عادةً ما تبدو خوادم الويب أفضل عندما تقوم بقطع الدائرة. وهذا يعني أنها ترجع أخطاء صحيحة عندما تكون مثقلة بشكل زائد بدلاً من الانتظار إلى أجل غير مسمى. قم بإرجاع خطأ 503 بدلاً من الانتظار لفترة طويلة جدًا أو 504 بعد فترة طويلة.
|
||||
|
||||
من السهل نسبيًا تنفيذ ذلك في الكود المقترح نظرًا لوجود قائمة انتظار واحد. إن النظر في حجم قائمة الانتظار هو طريقة أساسية لبدء إرجاع الأخطاء قبل فشل خادم الويب بسبب الحمل الزائد.
|
||||
|
||||
### حجب عمل خيط التنفيذ الرئيسي (Main thread)
|
||||
|
||||
حاليًا، لا تدعم PyTorch العمليات غير المتزامنة، وسيؤدي الحساب إلى حجب عمل الخيط الرئيسي أثناء تشغيله. وهذا يعني أنه سيكون من الأفضل إذا تم إجبار PyTorch على أن تعمل على الخيط/العملية الخاصة به. لم يتم ذلك هنا لأن الكود أكثر تعقيدًا (في الغالب لأن خيوط التنفيذ والعمليات غير المتزامنة وقوائم الانتظار لا تتوافق معًا). ولكن في النهاية، فإنه سيؤدي نفس الوظيفة.
|
||||
|
||||
سيكون هذا مهمًا إذا كان الاستدلال للعناصر الفردية طويلاً (> 1 ثانية) لأنه في هذه الحالة، فهذا يعني أنه سيتعين أثناء الاستدلال على كل استعلام الانتظار لمدة ثانية واحدة قبل حتى يلقي خطأ.
|
||||
|
||||
### المعالجة الديناميكية
|
||||
|
||||
بشكل عام، لا تُعدّ المعالجة بالضرورة تحسينًا مقارنةً بتمرير عنصر واحد في كل مرة (راجع [تفاصيل المعالجة بالدفعات](./main_classes/pipelines#pipeline-batching) لمزيد من المعلومات). ولكن يمكن أن تكون فعالة للغاية عند استخدامها بالإعداد الصحيح. في واجهة برمجة التطبيقات، لا توجد معالجة ديناميكية بشكل افتراضي (فرصة كبيرة جدًا للتباطؤ). ولكن بالنسبة لاستدلال BLOOM - وهو نموذج كبير جدًا - تُعدّ المعالجة الديناميكية **ضرورية** لتوفير تجربة جيدة للجميع.
|
||||
521
docs/source/ar/preprocessing.md
Normal file
521
docs/source/ar/preprocessing.md
Normal file
@ -0,0 +1,521 @@
|
||||
# المعالجة المسبقة Preprocessing
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
قبل تدريب نموذج على مجموعة بيانات، يجب معالجتها مسبقًا وفقًا تنسيق المتوقع لمدخلات النموذج. سواء كانت بياناتك نصية أو صورًا أو صوتًا، فيجب تحويلها وتجميعها في دفعات من الموترات. يوفر 🤗 Transformers مجموعة من فئات المعالجة المسبقة للمساعدة في إعداد بياناتك للنموذج. في هذا البرنامج التعليمي، ستتعلم أنه بالنسبة لـ:
|
||||
|
||||
* للنص، استخدم [مُجزّئ الرموز](./main_classes/tokenizer) لتحويل النص إلى تسلسل من الرموز، وإنشاء تمثيل رقمي للرموز، وتجميعها في موترات(tensors).
|
||||
* للكلام والصوت، استخدم [مستخرج الميزات](./main_classes/feature_extractor) لاستخراج ميزات متسلسلة من أشكال موجات الصوت وتحويلها إلى موترات.
|
||||
* تستخدم مدخلات الصورة [ImageProcessor](./main_classes/image_processor) لتحويل الصور إلى موترات.
|
||||
* تستخدم مدخلات متعددة الوسائط [معالجًا](./main_classes/processors) لدمج مُجزّئ الرموز ومستخرج الميزات أو معالج الصور.
|
||||
|
||||
<Tip>
|
||||
|
||||
`AutoProcessor` **يعمل دائمًا** ويختار تلقائيًا الفئة الصحيحة للنموذج الذي تستخدمه، سواء كنت تستخدم مُجزّئ رموز أو معالج صور أو مستخرج ميزات أو معالجًا.
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، قم بتثبيت 🤗 Datasets حتى تتمكن من تحميل بعض مجموعات البيانات لتجربتها:
|
||||
|
||||
```bash
|
||||
pip install datasets
|
||||
```
|
||||
|
||||
## معالجة اللغة الطبيعية (Natural Language Processing (NLP
|
||||
|
||||
<Youtube id="Yffk5aydLzg"/>
|
||||
|
||||
أداة المعالجة المسبقة الرئيسية للبيانات النصية هي [مُجزّئ اللغوي](main_classes/tokenizer). يقوم مُجزّئ اللغوي بتقسيم النص إلى "أجزاء لغوية" (tokens) وفقًا لمجموعة من القواعد. يتم تحويل الأجزاء اللغوية إلى أرقام ثم إلى منسوجات، والتي تصبح مدخلات للنموذج. يقوم المجزئ اللغوي بإضافة أي مدخلات إضافية يحتاجها النموذج.
|
||||
|
||||
<Tip>
|
||||
|
||||
إذا كنت تخطط لاستخدام نموذج مُدرب مسبقًا، فمن المهم استخدامالمجزئ اللغوي المقترن بنفس ذلك النموذج. يضمن ذلك تقسيم النص بنفس الطريقة التي تم بها تقسيم النصوص ما قبل التدريب، واستخدام نفس القاموس الذي يربط بين الأجزاء اللغوية وأرقامها ( يُشار إليها عادةً باسم المفردات *vocab*) أثناء التدريب المسبق.
|
||||
|
||||
</Tip>
|
||||
|
||||
ابدأ بتحميل المُجزّئ اللغوي مُدرب مسبقًا باستخدام طريقة [`AutoTokenizer.from_pretrained`]. يقوم هذا بتنزيل المفردات *vocab* الذي تم تدريب النموذج عليه:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
```
|
||||
|
||||
ثم مرر نصك إلى المُجزّئ اللغوي:
|
||||
|
||||
```py
|
||||
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
يعيد المُجزّئ اللغوي قاموسًا يحتوي على ثلاثة عناصر مهمة:
|
||||
|
||||
* [input_ids](glossary#input-ids) هي الفهارس المقابلة لكل رمز في الجملة.
|
||||
* [attention_mask](glossary#attention-mask) يشير إلى ما إذا كان يجب الانتباه بالرمز أم لا.
|
||||
* [token_type_ids](glossary#token-type-ids) يحدد التسلسل الذي ينتمي إليه الرمز عندما يكون هناك أكثر من تسلسل واحد.
|
||||
|
||||
أعد إدخالك الأصلي عن طريق فك ترميز `input_ids`:
|
||||
|
||||
```py
|
||||
>>> tokenizer.decode(encoded_input["input_ids"])
|
||||
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
|
||||
```
|
||||
|
||||
كما ترى، أضاف المُجزّئ اللغوي رمزين خاصين - `CLS` و`SEP` (مصنف وفاصل) - إلى الجملة. لا تحتاج جميع النماذج إلى
|
||||
رموز خاصة، ولكن إذا فعلوا ذلك، فإن المُجزّئ اللغوي يضيفها تلقائيًا لك.
|
||||
|
||||
إذا كان هناك عدة جمل تريد معالجتها مسبقًا، فقم بتمريرها كقائمة إلى مُجزّئ اللغوي:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_inputs = tokenizer(batch_sentences)
|
||||
>>> print(encoded_inputs)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]],
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1]]}
|
||||
```
|
||||
|
||||
### الحشو Padding
|
||||
|
||||
لا تكون الجمل دائمًا بنفس الطول، وهذا يمكن أن يمثل مشكلة لأن الموترات،وهي مدخلات النموذج، تحتاج إلى شكل موحد. الحشو هو استراتيجية لضمان أن تكون الموترات مستطيلة عن طريق إضافة رمز حشو *padding* خاص إلى الجمل الأقصر.
|
||||
|
||||
قم بتعيين معلمة الحشو `padding` إلى `True` لحشو التسلسلات الأقصر في الدفعة لتطابق أطول تسلسل:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True)
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0، 0، 0، 0، 0، 0، 0، 0]]}
|
||||
```
|
||||
|
||||
تم الآن حشو الجملتين الأولى والثالثة بـ `0` لأنهما أقصر.
|
||||
|
||||
### البتر Truncation
|
||||
|
||||
وعلى صعيد أخر، قد يكون التسلسل طويلًا جدًا بالنسبة للنموذج للتعامل معه. في هذه الحالة، ستحتاج إلى بتر التسلسل إلى طول أقصر.
|
||||
|
||||
قم بتعيين معلمة `truncation` إلى `True` لتقليم تسلسل إلى الطول الأقصى الذي يقبله النموذج:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0، 0، 0، 0، 0]]،
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0، 0، 0، 0],
|
||||
[1, 1, 1, 1, 1, 1, 1، 1، 1، 1، 1، 1، 1، 1، 1، 1],
|
||||
[1، 1، 1، 1، 1، 1، 1، 0، 0، 0، 0، 0، 0، 0، 0، 0]]}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
تحقق من دليل المفاهيم [Padding and truncation](./pad_truncation) لمعرفة المزيد حول معامﻻت الحشو و البتر المختلفة.
|
||||
|
||||
</Tip>
|
||||
|
||||
### بناء الموترات Build tensors
|
||||
|
||||
أخيرًا، تريد أن يقوم المجزئ اللغوي بإرجاع موترات (tensors) الفعلية التي ستُغذي النموذج.
|
||||
|
||||
قم بتعيين معلمة `return_tensors` إلى إما `pt` لـ PyTorch، أو `tf` لـ TensorFlow:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
||||
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
||||
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
dtype=int32)>,
|
||||
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
|
||||
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
تدعم خطوط الأنابيب المختلفة معامل مُجزِّئ الرموز(tokenizer) بشكل مختلف في طريقة `()__call__` الخاصة بها.
|
||||
و خطوط الأنابيب `text-2-text-generation` تدعم فقط `truncation`.
|
||||
و خطوط الأنابيب `text-generation` تدعم `max_length` و`truncation` و`padding` و`add_special_tokens`.
|
||||
أما في خطوط الأنابيب `fill-mask`، يمكن تمرير معامل مُجزِّئ الرموز (tokenizer) في المتغير `tokenizer_kwargs` (قاموس).
|
||||
|
||||
</Tip>
|
||||
|
||||
## الصوت Audio
|
||||
|
||||
بالنسبة للمهام الصوتية، ستحتاج إلى [مستخرج الميزات](main_classes/feature_extractor) لإعداد مجموعة البيانات الخاصة بك للنماذج. تم تصميم مستخرج الميزات لاستخراج الميزات من بيانات الصوت الخام، وتحويلها إلى موتورات.
|
||||
|
||||
قم بتحميل مجموعة بيانات [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) (راجع البرنامج التعليمي لـ 🤗 [Datasets](https://huggingface.co/docs/datasets/load_hub) لمزيد من التفاصيل حول كيفية تحميل مجموعة بيانات) لمعرفة كيفية استخدام مستخرج الميزات مع مجموعات البيانات الصوتية:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
```
|
||||
|
||||
الوصول إلى العنصر الأول من عمود `audio` لمعرفة المدخلات. يؤدي استدعاء عمود `audio` إلى تحميل ملف الصوت وإعادة أخذ العينات تلقائيًا:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]
|
||||
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
|
||||
0. , 0. ], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
|
||||
'sampling_rate': 8000}
|
||||
```
|
||||
|
||||
يعيد هذا ثلاثة عناصر:
|
||||
|
||||
* `array` هو إشارة الكلام المحملة - وإعادة أخذ العينات المحتملة - كصفيف 1D.
|
||||
* `path` يشير إلى موقع ملف الصوت.
|
||||
* `sampling_rate` يشير إلى عدد نقاط البيانات في إشارة الكلام المقاسة في الثانية.
|
||||
|
||||
بالنسبة لهذا البرنامج التعليمي، ستستخدم نموذج [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base). الق نظرة على بطاقة النموذج، وستتعلم أن Wav2Vec2 مُدرب مسبقًا على صوت الكلام الذي تم أخذ عينات منه بمعدل 16 كيلو هرتز. من المهم أن يتطابق معدل أخذ العينات لبيانات الصوت مع معدل أخذ العينات لمجموعة البيانات المستخدمة لتدريب النموذج مسبقًا. إذا لم يكن معدل أخذ العينات لبياناتك هو نفسه، فيجب إعادة أخذ العينات من بياناتك.
|
||||
|
||||
1. استخدم طريقة [`~datasets.Dataset.cast_column`] في 🤗 Datasets لإعادة أخذ العينات بمعدل أخذ العينات 16 كيلو هرتز:
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
||||
```
|
||||
|
||||
2. استدعاء عمود `audio` مرة أخرى لأخذ عينات من ملف الصوت:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]
|
||||
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
|
||||
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
|
||||
'sampling_rate': 16000}
|
||||
```
|
||||
|
||||
بعد ذلك، قم بتحميل مستخرج الميزات لتطبيع وحشو المدخلات. عند إضافة حشو للبيانات النصية، تتم إضافة "0" للتسلسلات الأقصر. تنطبق نفس الفكرة على بيانات الصوت. يضيف مستخرج الميزات "0" - الذي يتم تفسيره على أنه صمت - إلى "array".
|
||||
|
||||
قم بتحميل مستخرج الميزات باستخدام [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
||||
```
|
||||
|
||||
مرر صفيف الصوت إلى مستخرج الميزات. كما نوصي بإضافة معامل `sampling_rate` في مستخرج الميزات من أجل تصحيح الأخطاء الصامتة التي قد تحدث بشكل أفضل.
|
||||
|
||||
```py
|
||||
>>> audio_input = [dataset[0]["audio"]["array"]]
|
||||
>>> feature_extractor(audio_input, sampling_rate=16000)
|
||||
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
|
||||
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
|
||||
```
|
||||
|
||||
تمامًا مثل مُجزِّئ الرموز، يمكنك تطبيق الحشو أو البتر للتعامل مع التسلسلات المتغيرة في دفعة. الق نظرة على طول التسلسل لهاتين العينتين الصوتيتين:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]["array"].shape
|
||||
(173398,)
|
||||
|
||||
>>> dataset[1]["audio"]["array"].shape
|
||||
(106496,)
|
||||
```
|
||||
|
||||
قم بإنشاء دالة لمعالجة مجموعة البيانات بحيث يكون للنماذج الصوتية نفس الأطوال. حدد أقصى طول للعينة ، وسيقوم مستخرج الميزات إما بإضافة حشو أو بتر التسلسلات لمطابقتها:
|
||||
|
||||
```py
|
||||
>>> def preprocess_function(examples):
|
||||
... audio_arrays = [x["array"] for x in examples["audio"]]
|
||||
... inputs = feature_extractor(
|
||||
... audio_arrays,
|
||||
... sampling_rate=16000,
|
||||
... padding=True,
|
||||
... max_length=100000,
|
||||
... truncation=True,
|
||||
... )
|
||||
... return inputs
|
||||
```
|
||||
|
||||
قم بتطبيق `preprocess_function` على أول بضع أمثلة في مجموعة البيانات:
|
||||
|
||||
```py
|
||||
>>> processed_dataset = preprocess_function(dataset[:5])
|
||||
```
|
||||
|
||||
أطوال العينات الآن متساوية وتطابق الطول الأقصى المحدد. يمكنك الآن تمرير مجموعة البيانات المعالجة إلى النموذج!
|
||||
|
||||
```py
|
||||
>>> processed_dataset["input_values"][0].shape
|
||||
(100000,)
|
||||
|
||||
>>> processed_dataset["input_values"][1].shape
|
||||
(100000,)
|
||||
```
|
||||
|
||||
## رؤية الكمبيوتر Computer vision
|
||||
|
||||
بالنسبة لمهام رؤية الحاسوبية، ستحتاج إلى معالج صور [image processor](main_classes/image_processor) لإعداد مجموعة البيانات الخاصة بك لتناسب النموذج. تتكون معالجة الصور المسبقة من عدة خطوات لتحويل الصور إلى الشكل الذي يتوقعه النموذج. وتشمل هذه الخطوات، على سبيل المثال لا الحصر، تغيير الحجم والتطبيع وتصحيح قناة الألوان وتحويل الصور إلى موترات(tensors).
|
||||
|
||||
<Tip>
|
||||
|
||||
عادة ما تتبع معالجة الصور المسبقة شكلاً من أشكال زيادة البيانات (التضخيم). كلا العمليتين، معالجة الصور المسبقة وزيادة الصور تغيران بيانات الصورة، ولكنها تخدم أغراضًا مختلفة:
|
||||
|
||||
*زيادة البيانات: تغيير الصور عن طريق زيادة الصور بطريقة يمكن أن تساعد في منع الإفراط في التعميم وزيادة متانة النموذج. يمكنك أن تكون مبدعًا في كيفية زيادة بياناتك - ضبط السطوع والألوان، واالقص، والدوران، تغيير الحجم، التكبير، إلخ. ومع ذلك، كن حذرًا من عدم تغيير معنى الصور بزياداتك.
|
||||
*معالجة الصور المسبقة: تضمن معالجة الصور اتتطابق الصور مع تنسيق الإدخال المتوقع للنموذج. عند ضبط نموذج رؤية حاسوبية بدقة، يجب معالجة الصور بالضبط كما كانت عند تدريب النموذج في البداية.
|
||||
|
||||
يمكنك استخدام أي مكتبة تريدها لزيادة بيانات الصور. لمعالجة الصور المسبقة، استخدم `ImageProcessor` المرتبط بالنموذج.
|
||||
|
||||
</Tip>
|
||||
|
||||
قم بتحميل مجموعة بيانات [food101](https://huggingface.co/datasets/food101) (راجع دليل 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) لمزيد من التفاصيل حول كيفية تحميل مجموعة بيانات) لمعرفة كيف يمكنك استخدام معالج الصور مع مجموعات بيانات رؤية الحاسب:
|
||||
|
||||
<Tip>
|
||||
|
||||
استخدم معامل `split` من 🤗 Datasets لتحميل عينة صغيرة فقط من مجموعة التدريب نظرًا لحجم البيانات كبيرة جدًا!
|
||||
|
||||
</Tip>
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> dataset = load_dataset("food101", split="train[:100]")
|
||||
```
|
||||
|
||||
بعد ذلك، الق نظرة على الصورة مع ميزة 🤗 Datasets [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image):
|
||||
|
||||
```py
|
||||
>>> dataset[0]["image"]
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/>
|
||||
</div>
|
||||
|
||||
قم بتحميل معالج الصور باستخدام [`AutoImageProcessor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
||||
```
|
||||
|
||||
أولاً، دعنا نضيف بعض الزيادات إلى الصور. يمكنك استخدام أي مكتبة تفضلها، ولكن في هذا الدليل، سنستخدم وحدة [`transforms`](https://pytorch.org/vision/stable/transforms.html) من torchvision. إذا كنت مهتمًا باستخدام مكتبة زيادة بيانات أخرى، فتعرف على كيفية القيام بذلك في [دفاتر Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) أو [دفاتر Kornia](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb).
|
||||
|
||||
1. هنا نستخدم [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) لربط بعض التحولات معًا - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) و [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html).
|
||||
لاحظ بالنسبة لتغيير الحجم، يمكننا الحصول على متطلبات حجم الصورة من `image_processor`. بالنسبة لبعض النماذج، يُتوقع ارتفاع وعرض دقيقين، بينما بالنسبة للنماذج الأخرى، يتم تحديد الحافة الأقصر`shortest_edge` فقط.
|
||||
|
||||
```py
|
||||
>>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose
|
||||
|
||||
>>> size = (
|
||||
... image_processor.size["shortest_edge"]
|
||||
... if "shortest_edge" in image_processor.size
|
||||
... else (image_processor.size["height"], image_processor.size["width"])
|
||||
... )
|
||||
|
||||
>>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)])
|
||||
```
|
||||
|
||||
2. يقبل النموذج [`pixel_values`](model_doc/vision-encoder-decoder#transformers.VisionEncoderDecoderModel.forward.pixel_values)
|
||||
كإدخال له. يمكن لـ `ImageProcessor` التعامل مع تطبيع الصور، وتوليد موترات(tensors) مناسبة.
|
||||
قم بإنشاء دالة تجمع بين تضخيم بيانات الصور ومعالجة الصور المسبقة لمجموعة من الصور وتوليد `pixel_values`:
|
||||
|
||||
```py
|
||||
>>> def transforms(examples):
|
||||
... images = [_transforms(img.convert("RGB")) for img in examples["image"]]
|
||||
... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"]
|
||||
... return examples
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
في المثال أعلاه، قمنا بتعيين `do_resize=False` لأننا قمنا بالفعل بتغيير حجم الصور في تحويل زيادة الصور،
|
||||
واستفدنا من خاصية `size` من `image_processor` المناسب. إذا لم تقم بتغيير حجم الصور أثناء زيادة الصور،
|
||||
فاترك هذا المعلمة. بشكل افتراضي، ستتعامل `ImageProcessor` مع تغيير الحجم.
|
||||
|
||||
إذا كنت ترغب في تطبيع الصور كجزء من تحويل زيادة الصور، فاستخدم قيم `image_processor.image_mean`،
|
||||
و `image_processor.image_std`.
|
||||
</Tip>
|
||||
|
||||
3. ثم استخدم 🤗 Datasets[`~datasets.Dataset.set_transform`] لتطبيق التحولات أثناء التنقل:
|
||||
```py
|
||||
>>> dataset.set_transform(transforms)
|
||||
```
|
||||
|
||||
4. الآن عند الوصول إلى الصورة، ستلاحظ أن معالج الصور قد أضاف `pixel_values`. يمكنك تمرير مجموعة البيانات المعالجة إلى النموذج الآن!
|
||||
|
||||
```py
|
||||
>>> dataset[0].keys()
|
||||
```
|
||||
|
||||
هكذا تبدو الصورة بعد تطبيق التحولات. تم اقتصاص الصورة بشكل عشوائي وتختلف خصائص الألوان بها.
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> import matplotlib.pyplot as plt
|
||||
|
||||
>>> img = dataset[0]["pixel_values"]
|
||||
>>> plt.imshow(img.permute(1, 2, 0))
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/>
|
||||
</div>
|
||||
|
||||
<Tip>
|
||||
|
||||
بالنسبة للمهام مثل الكشف عن الأشياء، والتجزئة الدلالية، والتجزئة المثالية، والتجزئة الشاملة، يوفر `ImageProcessor`
|
||||
تقوم هذه الطرق بتحويل النواتج الأولية للنموذج إلى تنبؤات ذات معنى مثل مربعات الحدود،
|
||||
أو خرائط التجزئة.
|
||||
|
||||
</Tip>
|
||||
|
||||
### الحشو Pad
|
||||
|
||||
في بعض الحالات، على سبيل المثال، عند ضبط نموذج [DETR](./model_doc/detr) بدقة، يقوم النموذج بتطبيق زيادة المقياس أثناء التدريب. قد يتسبب ذلك في اختلاف أحجام الصور في دفعة واحدة. يمكنك استخدام [`DetrImageProcessor.pad`]
|
||||
من [`DetrImageProcessor`] وتحديد دالة `collate_fn` مخصصة لتجميع الصور معًا.
|
||||
|
||||
```py
|
||||
>>> def collate_fn(batch):
|
||||
... pixel_values = [item["pixel_values"] for item in batch]
|
||||
... encoding = image_processor.pad(pixel_values, return_tensors="pt")
|
||||
... labels = [item["labels"] for item in batch]
|
||||
... batch = {}
|
||||
... batch["pixel_values"] = encoding["pixel_values"]
|
||||
... batch["pixel_mask"] = encoding["pixel_mask"]
|
||||
... batch["labels"] = labels
|
||||
... return batch
|
||||
```
|
||||
|
||||
## متعدد الوسائط Mulimodal
|
||||
|
||||
بالنسبة للمهام التي تتطلب مدخلات متعددة الوسائط، ستحتاج إلى معالج [processor](main_classes/processors) لإعداد مجموعة البيانات الخاصة بك لتناسب النموذج. يقترن المعالج بين بمعالجين آخرين مثل محول النص إلى رمز ومستخرج الميزات.
|
||||
|
||||
قم بتحميل مجموعة بيانات [LJ Speech](https://huggingface.co/datasets/lj_speech) (راجع دليل 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) لمزيد من التفاصيل حول كيفية تحميل مجموعة بيانات) لمعرفة كيف يمكنك استخدام معالج للتعرف التلقائي على الكلام (ASR):
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> lj_speech = load_dataset("lj_speech", split="train")
|
||||
```
|
||||
|
||||
بالنسبة لـ ASR، فأنت تركز بشكل أساسي على `audio` و `text` لذا يمكنك إزالة الأعمدة الأخرى:
|
||||
|
||||
```py
|
||||
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
|
||||
```
|
||||
|
||||
الآن الق نظرة على أعمدة `audio` و `text`:
|
||||
```py
|
||||
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
|
||||
```
|
||||
|
||||
الآن الق نظرة على أعمدة `audio` و `text`:
|
||||
|
||||
```py
|
||||
>>> lj_speech[0]["audio"]
|
||||
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
|
||||
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
|
||||
'sampling_rate': 22050}
|
||||
|
||||
>>> lj_speech[0]["text"]
|
||||
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
|
||||
```
|
||||
|
||||
تذكر أنه يجب عليك دائمًا [إعادة أخذ العينات](preprocessing#audio) لمعدل أخذ العينات في مجموعة البيانات الصوتية الخاصة بك لمطابقة معدل أخذ العينات في مجموعة البيانات المستخدمة لتدريب النموذج مسبقًا!
|
||||
|
||||
```py
|
||||
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
|
||||
```
|
||||
|
||||
قم بتحميل معالج باستخدام [`AutoProcessor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
```
|
||||
|
||||
1. قم بإنشاء دالة لمعالجة بيانات الصوت الموجودة في `array` إلى `input_values`، ورموز `text` إلى `labels`. هذه هي المدخلات للنموذج:
|
||||
|
||||
```py
|
||||
>>> def prepare_dataset(example):
|
||||
... audio = example["audio"]
|
||||
|
||||
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
|
||||
|
||||
... return example
|
||||
```
|
||||
|
||||
2. قم بتطبيق دالة `prepare_dataset` على عينة:
|
||||
|
||||
```py
|
||||
>>> prepare_dataset(lj_speech[0])
|
||||
```
|
||||
|
||||
لقد أضاف المعالج الآن `input_values` و `labels`، وتم أيضًا إعادة أخذ العينات لمعدل أخذ العينات بشكل صحيح إلى 16 كيلو هرتز. يمكنك تمرير مجموعة البيانات المعالجة إلى النموذج الآن!
|
||||
543
docs/source/ar/quicktour.md
Normal file
543
docs/source/ar/quicktour.md
Normal file
@ -0,0 +1,543 @@
|
||||
# جولة سريعة
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
ابدأ رحلتك مع مكتبة 🤗 Transformers! سواء كنت مطورًا أو مستخدمًا عاديًا، ستساعدك هذه الجولة السريعة على البدء وستُظهر لك كيفية استخدام [`pipeline`] للاستنتاج، وتحميل نموذج مُدرب مسبقًا ومعالج مُسبق مع [AutoClass](./model_doc/auto)، وتدريب نموذج بسرعة باستخدام PyTorch أو TensorFlow. إذا كنت مبتدئًا، نوصي بالاطلاع على دروسنا أو [الدورة](https://huggingface.co/course/chapter1/1) للحصول على شرح أكثر تعمقًا للمفاهيم المقدمة هنا.
|
||||
|
||||
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
|
||||
|
||||
```bash
|
||||
!pip install transformers datasets evaluate accelerate
|
||||
```
|
||||
|
||||
ستحتاج أيضًا إلى تثبيت إطار عمل التعلم الآلي المفضل لديك:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```bash
|
||||
pip install torch
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## خط الأنابيب
|
||||
|
||||
<Youtube id="tiZFewofSLM"/>
|
||||
|
||||
يمثل [`pipeline`] أسهل وأسرع طريقة لاستخدام نموذج مُدرب مسبقًا للاستنتاج. يمكنك استخدام [`pipeline`] جاهزًا للعديد من المهام عبر طرق مختلفة، والتي يظهر بعضها في الجدول أدناه:
|
||||
|
||||
<Tip>
|
||||
|
||||
للاطلاع على القائمة الكاملة للمهام المتاحة، راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines).
|
||||
|
||||
</Tip>
|
||||
|
||||
<div dir="rtl">
|
||||
|
||||
| **المهمة** | **الوصف** | **الطريقة** | **معرف خط الأنابيب** |
|
||||
|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|
|
||||
| تصنيف النص | تعيين تسمية إلى تسلسل نص معين | NLP | pipeline(task=“sentiment-analysis”) |
|
||||
| توليد النص | توليد نص بناءً على موجه معين | NLP | pipeline(task=“text-generation”) |
|
||||
| تلخيص | توليد ملخص لتسلسل نص أو مستند | NLP | pipeline(task=“summarization”) |
|
||||
| تصنيف الصور | تعيين تسمية لصورة معينة | رؤية حاسوبية | pipeline(task=“image-classification”) |
|
||||
| تجزئة الصورة | تعيين تسمية لكل بكسل فردي في الصورة (يدعم التجزئة الدلالية، والمجملة، وتجزئة مثيلات) | رؤية حاسوبية | pipeline(task=“image-segmentation”) |
|
||||
| اكتشاف الأشياء | التنبؤ بحدود الأشياء وفئاتها في صورة معينة | رؤية حاسوبية | pipeline(task=“object-detection”) |
|
||||
| تصنيف الصوت | تعيين تسمية لبيانات صوتية معينة | صوتي | pipeline(task=“audio-classification”) |
|
||||
| التعرف على الكلام التلقائي | نسخ الكلام إلى نص | صوتي | pipeline(task=“automatic-speech-recognition”) |
|
||||
| الإجابة على الأسئلة البصرية | الإجابة على سؤال حول الصورة، مع إعطاء صورة وسؤال | متعدد الوسائط | pipeline(task=“vqa”) |
|
||||
| الإجابة على أسئلة المستندات | الإجابة على سؤال حول المستند، مع إعطاء مستند وسؤال | متعدد الوسائط | pipeline(task="document-question-answering") |
|
||||
| كتابة تعليق على الصورة | إنشاء تعليق على صورة معينة | متعدد الوسائط | pipeline(task="image-to-text") |
|
||||
|
||||
</div>
|
||||
ابدأ بإنشاء مثيل من [`pipeline`] وتحديد المهمة التي تريد استخدامه لها. في هذا الدليل، ستستخدم خط الأنابيب للتحليل النصي كنموذج:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline("sentiment-analysis")
|
||||
```
|
||||
|
||||
يقوم [`pipeline`] بتنزيل وتخزين نسخة احتياطية من نموذج افتراضي [مُدرب مسبقًا](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) ومعالج للتحليل النصي. الآن يمكنك استخدام `classifier` على النص المستهدف:
|
||||
|
||||
```py
|
||||
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
|
||||
[{'label': 'POSITIVE', 'score': 0.9998}]
|
||||
```
|
||||
|
||||
إذا كان لديك أكثر من إدخال واحد، قم بتمرير إدخالاتك كقائمة إلى [`pipeline`] لإرجاع قائمة من القواميس:
|
||||
|
||||
```py
|
||||
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
|
||||
>>> for result in results:
|
||||
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
|
||||
label: POSITIVE, with score: 0.9998
|
||||
label: NEGATIVE, with score: 0.5309
|
||||
```
|
||||
يمكن لخط الأنابيب أيضًا أن يتنقل خلال مجموعة بيانات كاملة لأي مهمة تريدها. كمثال على ذلك، دعنا نختار التعرف على الكلام التلقائي كمهمة لنا:
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
||||
```
|
||||
|
||||
قم بتحميل مجموعة بيانات صوتية (راجع دليل البدء السريع لـ 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart#audio) للحصول على مزيد من التفاصيل) التي تريد التنقل خلالها. على سبيل المثال، قم بتحميل مجموعة بيانات [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14):
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
|
||||
```
|
||||
|
||||
يجب التأكد من أن نفس الجودة الصوتية (معدل أخذ العينات) لمجموعة البيانات يتطابق مع معدل أخذ العينات الذي تم تدريب [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h) عليه:
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
|
||||
```
|
||||
|
||||
يتم تحميل الملفات الصوتية وإعادة تشكيلها تلقائيًا عند استدعاء العمود "audio".
|
||||
استخرج المصفوفات الموجية الخام من أول 4 عينات ومررها كقائمة إلى خط الأنابيب:
|
||||
|
||||
```py
|
||||
>>> result = speech_recognizer(dataset[:4]["audio"])
|
||||
>>> print([d["text"] for d in result])
|
||||
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT']
|
||||
```
|
||||
|
||||
بالنسبة لمجموعات البيانات الكبيرة التي تحتوي على مدخلات ضخمة (كما هو الحال في البيانات الصوتية أو المرئية)، يفضل تمرير مولد (generator) بدلاً من قائمة لتحميل جميع المدخلات في الذاكرة دفعة واحدة. راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines) للحصول على مزيد من المعلومات.
|
||||
|
||||
### ااستخدم نموذجًا ومجزئًا آخرين في خط الأنابيب
|
||||
|
||||
يمكن لخط الأنابيب [`pipeline`] استيعاب أي نموذج من [Hub](https://huggingface.co/models)، مما يسهل التكيف مع حالات الاستخدام الأخرى. على سبيل المثال، إذا كنت تريد نموذجًا قادرًا على التعامل مع النص الفرنسي، فاستخدم العلامات على Hub لفلتره نموذج مناسب. تعيد النتيجة الأولى المرشحة نموذج BERT متعدد اللغات [BERT model](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) الذي تم ضبطه مسبقًا للتحليل المشاعر والذي يمكنك استخدامه للنص الفرنسي:
|
||||
|
||||
```py
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي:
|
||||
|
||||
```py
|
||||
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
||||
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
|
||||
[{'label': '5 stars', 'score': 0.7273}]
|
||||
```
|
||||
إذا لم تجد نموذجًا جاهزًا يناسب مهمتك، فستحتاج إلى ضبط نموذج مُدرب مسبقًا على بياناتك. اطلع على [دليل الضبط الدقيق](./training) للتعرف على كيفية القيام بذلك. وبعد ضبط نموذجك المُدرب مسبقًا، يرجى مراعاة [المشاركة](./model_sharing) النموذج مع المجتمع على Hub لمساعدة الجميع في مجال التعلم الآلي! 🤗
|
||||
|
||||
## AutoClass
|
||||
|
||||
<Youtube id="AhChOFRegn4"/>
|
||||
|
||||
في الخلفية، تعمل فئتا [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] معًا لتشغيل دالة pipeline() الذي استخدمتها أعلاه. تعتبر [AutoClass](./model_doc/auto) اختصارًا يقوم تلقائيًا باسترداد بنية نموذج مُدرب مسبقًا من اسمه أو مساره. كل ما عليك فعله هو تحديد فئة `AutoClass` المناسبة لمهمتك وفئة المعالجة المرتبطة بها.
|
||||
|
||||
لنعد إلى المثال من القسم السابق ولنرى كيف يمكنك استخدام `AutoClass` لتكرار نتائج خط الأنابيب.
|
||||
|
||||
### المجزئ التلقائي (AutoTokenizer)
|
||||
|
||||
يتولى المجزئ مسؤولية تحويل النص إلى مصفوفة من الأرقام (رموز) يمكن للنموذج فهمها ومعالجتها. هناك قواعد متعددة تحكم عملية التجزئة، بما في ذلك كيفية تقسيم كلمة وما هو المستوى الذي يجب أن تقسيم الكلمات عنده (تعرف على المزيد حول المعالجة في [ملخص المجزئ](./tokenizer_summary)). أهم شيء يجب تذكره هو أنك تحتاج إلى إنشاء مثيل للمجزئ بنفس اسم النموذج لضمان استخدامك لقواعد التجزئة نفسها التي تم تدريب النموذج عليها.
|
||||
|
||||
قم بتحميل المجزئ باستخدام [`AutoTokenizer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
مرر نصك إلى المجزئ:
|
||||
|
||||
```py
|
||||
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
|
||||
>>> print(encoding)
|
||||
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
يعيد المجزئ قاموسًا يحتوي على:
|
||||
|
||||
* [input_ids](./glossary#input-ids): التمثيلات الرقمية لرموزك.
|
||||
* [attention_mask](./glossary#attention-mask): تشير إلى الرموز التي يجب الانتباه بها.
|
||||
|
||||
يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> pt_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="pt",
|
||||
... )
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> tf_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="tf",
|
||||
... )
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
اطلع على [الدليل التمهيدي للمعالجة المسبقة](./preprocessing) للحصول على مزيد من التفاصيل حول المعالجة، وكيفية استخدام [`AutoImageProcessor`] و [`AutoFeatureExtractor`] و [`AutoProcessor`] لمعالجة الصور والصوت والإدخالات متعددة الوسائط.
|
||||
|
||||
</Tip>
|
||||
|
||||
### AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
راجع [ملخص المهمة](./task_summary) للاطلاع على المهام التي تدعمها فئة [`AutoModel`].
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن قم بتمرير دفعة المدخلات المُعالجة مسبقًا مباشرة إلى النموذج. عليك فقط فك تعبئة القاموس عن طريق إضافة `**`:
|
||||
|
||||
# تدريب النموذج
|
||||
|
||||
الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. ما عليك سوى فك تعبئة القاموس عن طريق إضافة `**`:
|
||||
|
||||
```py
|
||||
>>> pt_outputs = pt_model(**pt_batch)
|
||||
```
|
||||
|
||||
يُخرج النموذج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` للحصول على الاحتمالات:
|
||||
|
||||
```py
|
||||
>>> from torch import nn
|
||||
|
||||
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
|
||||
>>> print(pt_predictions)
|
||||
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
راجع [ملخص المهام](./task_summary) للمهام المدعومة بواسطة فئة [`AutoModel`].
|
||||
|
||||
</Tip>
|
||||
|
||||
الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. يمكنك تمرير المصفوفات كما هي:
|
||||
|
||||
```py
|
||||
>>> tf_outputs = tf_model(tf_batch)
|
||||
```
|
||||
|
||||
يقوم النموذج بإخراج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` لاسترداد الاحتمالات:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
||||
>>> tf_predictions # doctest: +IGNORE_RESULT
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
تخرج جميع نماذج 🤗 Transformers (PyTorch أو TensorFlow) المصفوفات *قبل* دالة التنشيط النهائية (مثل softmax) لأن دالة التنشيط النهائية غالبًا ما تكون مدمجة مع دالة الخسارة. نواتج النموذج عبارة عن فئات بيانات خاصة، لذلك يتم استكمال سماتها تلقائيًا في IDE. وتتصرف مخرجات النموذج مثل زوج مرتب أو قاموس (يمكنك الفهرسة باستخدام عدد صحيح ، شريحة، أو سلسلة)، وفي هذه الحالة، يتم تجاهل السمات التي تساوي None.
|
||||
|
||||
</Tip>
|
||||
|
||||
### حفظ النموذج
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> pt_save_directory = "./pt_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> pt_model.save_pretrained(pt_save_directory)
|
||||
```
|
||||
|
||||
عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`PreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`TFPreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_save_directory = "./tf_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> tf_model.save_pretrained(tf_save_directory)
|
||||
```
|
||||
|
||||
عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
|
||||
## إنشاء نماذج مخصصة
|
||||
|
||||
يمكنك تعديل فئة تكوين النموذج لتغيير كيفية بناء النموذج. يحدد التكوين سمات النموذج، مثل عدد الطبقات المخفية أو رؤوس الاهتمام. تبدأ من الصفر عند تهيئة نموذج من فئة تكوين مخصصة. يتم تهيئة سمات النموذج بشكل عشوائي، ويجب تدريب النموذج قبل استخدامه للحصول على نتائج ذات معنى.
|
||||
|
||||
ابدأ باستيراد [`AutoConfig`]. ثم قم بتحميل النموذج المُدرب مسبقًا الذي تريد تعديله. ضمن [`AutoConfig.from_pretrained`]. يمكنك تحديد السمة التي تريد تغييرها، مثل عدد رؤوس الاهتمام:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoConfig
|
||||
|
||||
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`AutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> my_model = AutoModel.from_config(my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`TFAutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> my_model = TFAutoModel.from_config(my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
الق نظرة على دليل [إنشاء بنية مخصصة](./create_a_model) لمزيد من المعلومات حول بناء التكوينات المخصصة.
|
||||
|
||||
## المدرب - حلقة تدريب محسنة لـ PyTorch
|
||||
|
||||
جميع النماذج عبارة عن [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) قياسية، لذا يمكنك استخدامها في أي حلقة تدريب نموذجية. في حين يمكنك كتابة حلقة التدريب الخاصة بك، يوفر 🤗 Transformers فئة [`Trainer`] لـ PyTorch، والتي تحتوي على حلقة التدريب الأساسية وتضيف وظائف إضافية لميزات مثل التدريب الموزع، والدقة المختلطة، والمزيد.
|
||||
|
||||
وفقًا لمهمتك، ستقوم عادةً بتمرير المعلمات التالية إلى [`Trainer`]:
|
||||
|
||||
1. ستبدأ بـ [`PreTrainedModel`] أو [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
2. تحتوي [`TrainingArguments`] على فرط معلمات النموذج التي يمكنك تغييرها مثل معدل التعلم، وحجم الدفعة، وعدد العصور التي يجب التدريب عليها. يتم استخدام القيم الافتراضية إذا لم تحدد أي حجج تدريب:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments
|
||||
|
||||
>>> training_args = TrainingArguments(
|
||||
... output_dir="path/to/save/folder/",
|
||||
... learning_rate=2e-5,
|
||||
... per_device_train_batch_size=8,
|
||||
... per_device_eval_batch_size=8,
|
||||
... num_train_epochs=2,
|
||||
... )
|
||||
```
|
||||
|
||||
3. قم بتحميل فئة معالجة مسبقة مثل برنامج الترميز، أو معالج الصور، أو مستخرج الميزات، أو المعالج:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
4. قم بتحميل مجموعة بيانات:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT
|
||||
```
|
||||
|
||||
5. قم بإنشاء دالة لترميز مجموعة البيانات:
|
||||
|
||||
```py
|
||||
>>> def tokenize_dataset(dataset):
|
||||
... return tokenizer(dataset["text"])
|
||||
```
|
||||
|
||||
ثم قم بتطبيقه على مجموعة البيانات بأكملها باستخدام [`~datasets.Dataset.map`]:
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.map(tokenize_dataset, batched=True)
|
||||
```
|
||||
|
||||
6. [`DataCollatorWithPadding`] لإنشاء دفعة من الأمثلة من مجموعة البيانات الخاصة بك:
|
||||
|
||||
```py
|
||||
>>> from transformers import DataCollatorWithPadding
|
||||
|
||||
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
الآن قم بتجميع جميع هذه الفئات في [`Trainer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import Trainer
|
||||
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=dataset["train"],
|
||||
... eval_dataset=dataset["test"],
|
||||
... tokenizer=tokenizer,
|
||||
... data_collator=data_collator,
|
||||
... ) # doctest: +SKIP
|
||||
```
|
||||
عندما تكون مستعدًا، استدعِ [`~Trainer.train`] لبدء التدريب:
|
||||
|
||||
```py
|
||||
>>> trainer.train() # doctest: +SKIP
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
بالنسبة للمهام - مثل الترجمة أو التلخيص - التي تستخدم نموذج تسلسل إلى تسلسل، استخدم فئات [`Seq2SeqTrainer`] و [`Seq2SeqTrainingArguments`] بدلاً من ذلك.
|
||||
|
||||
</Tip>
|
||||
|
||||
يمكنك تخصيص سلوك حلقة التدريب عن طريق إنشاء فئة فرعية من الطرق داخل [`Trainer`]. يسمح لك ذلك بتخصيص ميزات مثل دالة الخسارة، والمحسن، والمجدول. راجع مرجع [`Trainer`] للتعرف على الطرق التي يمكن إنشاء فئات فرعية منها.
|
||||
|
||||
والطريقة الأخرى لتخصيص حلقة التدريب هي باستخدام [المستدعيات](./main_classes/callback). يمكنك استخدام المستدعيات للتكامل مع المكتبات الأخرى ومراقبة حلقة التدريب للإبلاغ عن التقدم أو إيقاف التدريب مبكرًا. لا تعدل المستدعيات أي شيء في حلقة التدريب نفسها. لتخصيص شيء مثل دالة الخسارة، تحتاج إلى إنشاء فئة فرعية من [`Trainer`] بدلاً من ذلك.
|
||||
|
||||
## التدريب باستخدام TensorFlow
|
||||
|
||||
جميع النماذج عبارة عن [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) قياسية، لذا يمكن تدريبها في TensorFlow باستخدام واجهة برمجة تطبيقات Keras. يوفر 🤗 Transformers طريقة [`~TFPreTrainedModel.prepare_tf_dataset`] لتحميل مجموعة البيانات الخاصة بك بسهولة كـ `tf.data.Dataset` حتى تتمكن من البدء في التدريب على الفور باستخدام دالتي `compile` و`fit` في Keras.
|
||||
|
||||
1. ستبدأ بـ [`TFPreTrainedModel`] أو [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model):
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
2. قم بتحميل فئة معالجة مسبقة مثل برنامج الترميز، أو معالج الصور، أو مستخرج الميزات، أو المعالج:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
3. قم بإنشاء دالة لترميز مجموعة البيانات:
|
||||
|
||||
```py
|
||||
>>> def tokenize_dataset(dataset):
|
||||
... return tokenizer(dataset["text"]) # doctest: +SKIP
|
||||
```
|
||||
|
||||
4. قم بتطبيق برنامج الترميز على مجموعة البيانات بأكملها باستخدام [`~datasets.Dataset.map`] ثم مرر مجموعة البيانات وبرنامج الترميز إلى [`~TFPreTrainedModel.prepare_tf_dataset`]. يمكنك أيضًا تغيير حجم الدفعة وخلط مجموعة البيانات هنا إذا أردت:
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP
|
||||
>>> tf_dataset = model.prepare_tf_dataset(
|
||||
... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer
|
||||
... ) # doctest: +SKIP
|
||||
```
|
||||
|
||||
5. عندما تكون مستعدًا، يمكنك استدعاء `compile` و`fit` لبدء التدريب. لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
>>> from tensorflow.keras.optimizers import Adam
|
||||
|
||||
>>> model.compile(optimizer='adam') # لا توجد وسيطة دالة الخسارة!
|
||||
>>> model.fit(tf_dataset) # doctest: +SKIP
|
||||
```
|
||||
|
||||
## ماذا بعد؟
|
||||
|
||||
الآن بعد أن أكملت الجولة السريعة في 🤗 Transformers، راجع أدلتنا لمعرفة كيفية القيام بأشياء أكثر تحديدًا مثل كتابة نموذج مخصص، وضبط نموذج مسبق التدريب لمهمة معينة، وكيفية تدريب نموذج باستخدام نص برمجي. إذا كنت مهتمًا بمعرفة المزيد عن المفاهيم الأساسية لـ 🤗 Transformers، فاحصل على فنجان من القهوة واطلع على أدلة المفاهيم الخاصة بنا!
|
||||
351
docs/source/ar/run_scripts.md
Normal file
351
docs/source/ar/run_scripts.md
Normal file
@ -0,0 +1,351 @@
|
||||
# التدريب باستخدام نص برمجى
|
||||
|
||||
بالإضافة إلى دفاتر الملاحظات [notebooks](./notebooks) الخاصة بـ 🤗 Transformers، هناك أيضًا نصوص برمجية توضيحية تُظهر كيفية تدريب نموذج لمهمة باستخدام [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch) أو [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) أو [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax).
|
||||
|
||||
كما ستجد النصوص البرمجية التي استخدمناها في [مشاريع الأبحاث](https://github.com/huggingface/transformers/tree/main/examples/research_projects) و [الأمثلة القديمة](https://github.com/huggingface/transformers/tree/main/examples/legacy) والتي ساهم بها المجتمع بشكل أساسي. هذه النصوص البرمجية غير مدعومة بشكل نشط وقد تتطلب إصدارًا محددًا من مكتبة 🤗 Transformers والذي من المحتمل أن يكون غير متوافق مع الإصدار الأحدث من المكتبة.
|
||||
|
||||
لا يُتوقع أن تعمل النصوص البرمجية التوضيحية بشكل مباشر على كل مشكلة، وقد تحتاج إلى تكييف النص البرمجي مع المشكلة التي تحاول حلها. ولمساعدتك في ذلك، تعرض معظم النصوص البرمجية كيفية معالجة البيانات قبل التدريب بشكل كامل، مما يتيح لك تحريرها حسب الحاجة لحالتك الاستخدام.
|
||||
|
||||
بالنسبة لأي ميزة ترغب في تنفيذها في نص برمجي توضيحي، يرجى مناقشتها في [المنتدى](https://discuss.huggingface.co/) أو في [قضية](https://github.com/huggingface/transformers/issues) قبل إرسال طلب سحب. وفي حين أننا نرحب بإصلاح الأخطاء، فمن غير المرجح أن نقوم بدمج طلب سحب الذي يضيف المزيد من الوظائف على حساب قابلية القراءة.
|
||||
|
||||
سيوضح هذا الدليل كيفية تشغيل نص برمجي توضيحي للتدريب على التلخيص في [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) و [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization). يُتوقع أن تعمل جميع الأمثلة مع كلا الإطارين ما لم يُنص على خلاف ذلك.
|
||||
|
||||
## الإعداد
|
||||
|
||||
لتشغيل الإصدار الأحدث من النصوص البرمجية التوضيحية بنجاح، يجب عليك **تثبيت 🤗 Transformers من المصدر** في بيئة افتراضية جديدة:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/transformers
|
||||
cd transformers
|
||||
pip install .
|
||||
```
|
||||
|
||||
بالنسبة للإصدارات الأقدم من النصوص البرمجية التوضيحية، انقر فوق الزر أدناه:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/transformers
|
||||
cd transformers
|
||||
pip install .
|
||||
```
|
||||
|
||||
بالنسبة للإصدارات الأقدم من النصوص البرمجية التوضيحية، انقر فوق الزر أدناه:
|
||||
|
||||
<details>
|
||||
<summary>أمثلة للإصدارات الأقدم من 🤗 Transformers</summary>
|
||||
<ul>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li>
|
||||
<li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li>
|
||||
</ul>
|
||||
</details>
|
||||
|
||||
ثم قم بالتبديل إلى النسخة الحالية من 🤗 Transformers إلى إصدار محدد، مثل v3.5.1 على سبيل المثال:
|
||||
|
||||
```bash
|
||||
git checkout tags/v3.5.1
|
||||
```
|
||||
|
||||
بعد إعداد إصدار المكتبة الصحيح، انتقل إلى مجلد الأمثلة الذي تختاره وقم بتثبيت المتطلبات المحددة:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## تشغيل نص برمجي
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets).
|
||||
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) على بنية تدعم الملخص.
|
||||
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
|
||||
- يتطلب نموذج T5 معامل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets/).
|
||||
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام Keras على بنية تدعم الملخص.
|
||||
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
|
||||
- يتطلب نموذج T5 ماعمل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
|
||||
|
||||
```bash
|
||||
python examples/tensorflow/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## التدريب الموزع والدقة المختلطة
|
||||
|
||||
يدعم [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) التدريب الموزع والدقة المختلطة، مما يعني أنه يمكنك أيضًا استخدامه في نص برمجي. لتمكين كلتا الميزتين:
|
||||
|
||||
- أضف معامل `fp16` لتمكين الدقة المختلطة.
|
||||
- قم بتعيين عدد وحدات معالجة الرسومات (GPUs) التي تريد استخدامها باستخدام حجة `nproc_per_node`.
|
||||
|
||||
```bash
|
||||
torchrun \
|
||||
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
|
||||
--fp16 \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
تستخدم نصوص TensorFlow البرمجية استراتيجية [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) للتدريب الموزع، ولا تحتاج إلى إضافة أي معامﻻت إضافية إلى النص البرمجي التدريبي. سيستخدم نص TensorFlow البرمجي وحدات معالجة الرسومات (GPUs) متعددة بشكل افتراضي إذا كانت متوفرة.
|
||||
|
||||
## تشغيل نص برمجي على وحدة معالجة الدقة الفائقة (TPU)
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. يدعم PyTorch وحدات معالجة الدقة الفائقة (TPUs) مع [XLA](https://www.tensorflow.org/xla) مجمع الدقة الفائقة للتعلم العميق (راجع [هنا](https://github.com/pytorch/xla/blob/master/README.md) لمزيد من التفاصيل). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتشغيل نص `xla_spawn.py` البرمجي واستخدم معامل `num_cores` لتعيين عدد وحدات معالجة الدقة الفائقة (TPU) التي تريد استخدامها.
|
||||
|
||||
```bash
|
||||
python xla_spawn.py --num_cores 8 \
|
||||
summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
|
||||
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. تستخدم نصوص TensorFlow البرمجية استراتيجية [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) للتدريب على وحدات معالجة الدقة الفائقة (TPUs). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتمرير اسم مورد وحدة معالجة الدقة الفائقة (TPU) إلى حجة `tpu`.
|
||||
```bash
|
||||
python run_summarization.py \
|
||||
--tpu name_of_tpu_resource \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 16 \
|
||||
--num_train_epochs 3 \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## تشغيل نص برمجي باستخدام 🤗 Accelerate
|
||||
|
||||
🤗 [Accelerate](https://huggingface.co/docs/accelerate) هي مكتبة خاصة بـ PyTorch فقط توفر طريقة موحدة لتدريب نموذج على عدة أنواع من الإعدادات (الاعتماد على وحدة المعالجة المركزية (CPU) فقط، أو وحدات معالجة الرسومات (GPUs) المتعددة، أو وحدات معالجة الدقة الفائقة (TPUs)) مع الحفاظ على الرؤية الكاملة لحلقة تدريب PyTorch. تأكد من تثبيت 🤗 Accelerate إذا لم يكن لديك بالفعل:
|
||||
|
||||
> ملاحظة: نظرًا لأن Accelerate في حالة تطوير سريع، يجب تثبيت إصدار Git من Accelerate لتشغيل النصوص البرمجية.
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/accelerate
|
||||
```
|
||||
|
||||
بدلاً من إستخدام النص البرمجي `run_summarization.py` يجب عليك استخدام النص البرمجي `run_summarization_no_trainer.py` . ستكون النصوص البرمجية المدعومة من 🤗 Accelerate لها ملف `task_no_trainer.py` في المجلد. ابدأ بتشغيل الأمر التالي لإنشاء وحفظ ملف تكوين:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
اختبر إعدادك للتأكد من أنه تم تكوينه بشكل صحيح:
|
||||
|
||||
```bash
|
||||
accelerate test
|
||||
```
|
||||
|
||||
الآن أنت مستعد لبدء التدريب:
|
||||
|
||||
```bash
|
||||
accelerate launch run_summarization_no_trainer.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir ~/tmp/tst-summarization
|
||||
```
|
||||
|
||||
## استخدام مجموعة بيانات مخصصة
|
||||
|
||||
يدعم النص البرمجي للتلخيص مجموعة بيانات مخصصة طالما أنها ملف CSV أو JSON Line. عندما تستخدم مجموعة بياناتك الخاصة، تحتاج إلى تحديد العديد من المعلمات الإضافية:
|
||||
|
||||
- `train_file` و`validation_file` يحددان مسار ملفات التدريب والتحقق الخاصة بك.
|
||||
- `text_column` النص المدخل الذي سيتم تلخيصه.
|
||||
- `summary_column` النص الملخص المستهدف الذي سيتم إخراجه.
|
||||
|
||||
سيبدو النص البرمجي للتلخيص الذي يستخدم مجموعة بيانات مخصصة على النحو التالي:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--train_file path_to_csv_or_jsonlines_file \
|
||||
--validation_file path_to_csv_or_jsonlines_file \
|
||||
--text_column text_column_name \
|
||||
--summary_column summary_column_name \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--overwrite_output_dir \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
## اختبار البرنامج النصي
|
||||
|
||||
من الجيد غالبًا تشغيل نصك البرمجي على عدد أقل من أمثلة مجموعة البيانات للتأكد من أن كل شيء يعمل كما هو متوقع قبل الالتزام بمجموعة بيانات كاملة والتي قد تستغرق ساعات لإكمالها. استخدم المعلمات التالية لتقليص مجموعة البيانات إلى عدد أقصى من العينات:
|
||||
|
||||
- `max_train_samples`
|
||||
- `max_eval_samples`
|
||||
- `max_predict_samples`
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py \
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--max_train_samples 50 \
|
||||
--max_eval_samples 50 \
|
||||
--max_predict_samples 50 \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
لا تدعم جميع أمثلة النصوص البرمجية المعلمة `max_predict_samples`. إذا لم تكن متأكدًا مما إذا كان نصك البرمجي يدعم هذه المعلمة، فأضف معلمة `-h` للتحقق:
|
||||
|
||||
```bash
|
||||
examples/pytorch/summarization/run_summarization.py -h
|
||||
```
|
||||
|
||||
## استئناف التدريب من نقطة تفتيش
|
||||
|
||||
خيار آخر مفيد لتمكينه هو استئناف التدريب من نقطة تفتيش سابقة. سيضمن ذلك أنك تستطيع الاستمرار من حيث توقفت دون البدء من جديد إذا تم مقاطعة تدريبك. هناك طريقتان لاستئناف التدريب من نقطة تفتيش.
|
||||
|
||||
تستخدم الطريقة الأولى المعلمة `output_dir previous_output_dir` لاستئناف التدريب من أحدث نقطة تفتيش مخزنة في `output_dir`. في هذه الحالة، يجب عليك إزالة `overwrite_output_dir`:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--output_dir previous_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
تستخدم الطريقة الثانية معلمة `resume_from_checkpoint path_to_specific_checkpoint` لاستئناف التدريب من مجلد نقطة تفتيش محددة.
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--resume_from_checkpoint path_to_specific_checkpoint \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
## شارك نموذجك
|
||||
|
||||
يمكن لجميع النصوص البرمجية رفع نموذجك النهائي إلى [مركز النماذج](https://huggingface.co/models). تأكد من تسجيل الدخول إلى Hugging Face قبل البدء:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
ثم أضف المعلمة `push_to_hub` إلى النص البرمجي . ستقوم هذه المعلمة بإنشاء مستودع باستخدام اسم مستخدم Hugging Face واسم المجلد المحدد في `output_dir`.
|
||||
|
||||
لإعطاء مستودعك اسمًا محددًا، استخدم المعلمة `push_to_hub_model_id` لإضافته. سيتم عرض المستودع تلقائيًا ضمن مساحة الاسم الخاصة بك.
|
||||
|
||||
يوضح المثال التالي كيفية رفع نموذج باستخدام اسم مستودع محدد:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/summarization/run_summarization.py
|
||||
--model_name_or_path google-t5/t5-small \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--dataset_name cnn_dailymail \
|
||||
--dataset_config "3.0.0" \
|
||||
--source_prefix "summarize: " \
|
||||
--push_to_hub \
|
||||
--push_to_hub_model_id finetuned-t5-cnn_dailymail \
|
||||
--output_dir /tmp/tst-summarization \
|
||||
--per_device_train_batch_size=4 \
|
||||
--per_device_eval_batch_size=4 \
|
||||
--overwrite_output_dir \
|
||||
--predict_with_generate
|
||||
```
|
||||
8
docs/source/ar/sagemaker.md
Normal file
8
docs/source/ar/sagemaker.md
Normal file
@ -0,0 +1,8 @@
|
||||
# تشغيل التدريب على Amazon SageMaker
|
||||
|
||||
تم نقل التوثيق إلى [hf.co/docs/sagemaker](https://huggingface.co/docs/sagemaker). وسيتم إزالة هذه الصفحة في الإصدار 5.0 من برنامج Transformers.
|
||||
|
||||
### جدول المحتويات
|
||||
|
||||
- [تدريب نماذج Hugging Face على Amazon SageMaker باستخدام SageMaker Python SDK](https://huggingface.co/docs/sagemaker/train)
|
||||
- [نشر نماذج Hugging Face على Amazon SageMaker باستخدام SageMaker Python SDK](https://huggingface.co/docs/sagemaker/inference)
|
||||
170
docs/source/ar/serialization.md
Normal file
170
docs/source/ar/serialization.md
Normal file
@ -0,0 +1,170 @@
|
||||
# التصدير إلى ONNX
|
||||
|
||||
غالباً ما يتطلب نشر نماذج 🤗 Transformers في بيئات الإنتاج أو يمكن أن يستفيد من تصدير النماذج إلى تنسيق تسلسلي يُمكن تحميله وتنفيذه على أجهزة وبرامج تشغيل مُتخصصة.
|
||||
|
||||
🤗 Optimum هو امتداد لـ Transformers يمكّن من تصدير النماذج من PyTorch أو TensorFlow إلى تنسيقات مُتسلسلة مثل ONNX و TFLite من خلال وحدة `exporters` الخاصة به. يوفر 🤗 Optimum أيضًا مجموعة من أدوات تحسين الأداء لتدريب النماذج وتشغيلها على أجهزة مستهدفة بكفاءة قصوى.
|
||||
|
||||
يوضح هذا الدليل كيفية تصدير نماذج 🤗 Transformers إلى ONNX باستخدام 🤗 Optimum، وللحصول على الدليل الخاص بتصدير النماذج إلى TFLite، يُرجى الرجوع إلى صفحة [التصدير إلى TFLite](tflite).
|
||||
|
||||
## التصدير إلى ONNX
|
||||
|
||||
مجمد [ONNX (Open Neural Network Exchange)](http://onnx.ai) هو معيار مفتوح يُحدد مجموعة مشتركة من العوامل وتنسيق ملف مشترك لتمثيل نماذج التعلم العميق في مجموعة متنوعة واسعة من الأطر، بما في ذلك PyTorch وTensorFlow. عندما يتم تصدير نموذج إلى تنسيق ONNX، يتم استخدام هذه المشغلات لبناء رسم بياني حاسوبي (يُطلق عليه غالبًا اسم _تمثيل وسيط_) والذي يمثل تدفق البيانات عبر الشبكة العصبية.
|
||||
|
||||
من خلال عرض رسم بياني بعوامل وأنواع بيانات معيارية، يُسهّل ONNX التبديل بين الأطر. على سبيل المثال، يُمكن تصدير نموذج مدرب في PyTorch إلى تنسيق ONNX ثم استيراده في TensorFlow (والعكس صحيح).
|
||||
|
||||
بمجرد التصدير إلى تنسيق ONNX، يُمكن:
|
||||
|
||||
- تحسين النموذج للاستدلال عبر تقنيات مثل [تحسين الرسم البياني](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) و [التكميم](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization).
|
||||
- تشغيله باستخدام ONNX Runtime عبر فئات [`ORTModelForXXX`](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort)، والتي تتبع نفس واجهة برمجة التطبيقات (API) لـ `AutoModel` التي اعتدت عليها في 🤗 Transformers.
|
||||
- تشغيله باستخدام [قنوات معالجة الاستدلال مُحسّنة](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines)، والتي لها نفس واجهة برمجة التطبيقات (API) مثل وظيفة [`pipeline`] في 🤗 Transformers.
|
||||
|
||||
يوفر 🤗 Optimum دعمًا لتصدير ONNX من خلال الاستفادة من كائنات التكوين. تأتي كائنات التكوين هذه جاهزة لعدد من معماريات النماذج، وقد تم تصميمها لتكون قابلة للتوسعة بسهولة إلى معماريات أخرى.
|
||||
|
||||
للاطلاع على قائمة بالتكوينات الجاهزة، يُرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/overview).
|
||||
|
||||
هناك طريقتان لتصدير نموذج 🤗 Transformers إلى ONNX، نعرض هنا كليهما:
|
||||
|
||||
- التصدير باستخدام 🤗 Optimum عبر واجهة سطر الأوامر (CLI).
|
||||
- التصدير باستخدام 🤗 Optimum مع `optimum.onnxruntime`.
|
||||
|
||||
### تصدير نموذج 🤗 Transformers إلى ONNX باستخدام واجهة سطر الأوامر
|
||||
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
|
||||
|
||||
```bash
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
|
||||
|
||||
```bash
|
||||
optimum-cli export onnx --help
|
||||
```
|
||||
```bash
|
||||
optimum-cli export onnx --help
|
||||
```
|
||||
|
||||
لتصدير نقطة تفتيش نموذج من 🤗 Hub، على سبيل المثال، `distilbert/distilbert-base-uncased-distilled-squad`، قم بتشغيل الأمر التالي:
|
||||
|
||||
```bash
|
||||
optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
|
||||
```
|
||||
|
||||
يجب أن تشاهد السجلات التي تشير إلى التقدم المحرز وتظهر المكان الذي تم فيه حفظ ملف `model.onnx` الناتج، مثل هذا:
|
||||
|
||||
```bash
|
||||
Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx...
|
||||
-[✓] ONNX model output names match reference model (start_logits, end_logits)
|
||||
- Validating ONNX Model output "start_logits":
|
||||
-[✓] (2, 16) matches (2, 16)
|
||||
-[✓] all values close (atol: 0.0001)
|
||||
- Validating ONNX Model output "end_logits":
|
||||
-[✓] (2, 16) matches (2, 16)
|
||||
-[✓] all values close (atol: 0.0001)
|
||||
The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx
|
||||
```
|
||||
|
||||
يوضح المثال أعلاه تصدير نقطة تفتيش من 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج ومحول الرموز في نفس الدليل (`local_path`). عند استخدام واجهة سطر الأوامر، قم بتمرير `local_path` إلى وسيط `model` بدلاً من اسم نقطة التفتيش على 🤗 Hub وقدم وسيط `--task`. يمكنك مراجعة قائمة المهام المدعومة في [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/task_manager). إذا لم يتم توفير وسيط `task`، فسيتم تعيينه افتراضيًا إلى هندسة النموذج دون أي رأس محدد للمهمة.
|
||||
|
||||
```bash
|
||||
optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/
|
||||
```
|
||||
|
||||
يمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد [المسرعات](https://onnx.ai/supported-tools.html#deployModel) العديدة التي تدعم معيار ONNX. على سبيل المثال، يمكننا تحميل النموذج وتشغيله باستخدام [ONNX Runtime](https://onnxruntime.ai/) كما يلي:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from optimum.onnxruntime import ORTModelForQuestionAnswering
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx")
|
||||
>>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx")
|
||||
>>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
تكون العملية مماثلة بالنسبة إلى نقاط تفتيش TensorFlow على Hub. على سبيل المثال، إليك كيفية تصدير نقطة تفتيش TensorFlow نقية من [منظمة Keras](https://huggingface.co/keras-io):
|
||||
|
||||
```bash
|
||||
optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/
|
||||
```
|
||||
|
||||
### تصدير نموذج 🤗 Transformers إلى ONNX باستخدام `optimum.onnxruntime`
|
||||
|
||||
كبديل لواجهة سطر الأوامر، يُمكنك تصدير نموذج 🤗 Transformers إلى ONNX برمجيًا كما يلي:
|
||||
|
||||
```python
|
||||
>>> from optimum.onnxruntime import ORTModelForSequenceClassification
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> model_checkpoint = "distilbert_base_uncased_squad"
|
||||
>>> save_directory = "onnx/"
|
||||
|
||||
>>> # تحميل نموذج من transformers وتصديره إلى ONNX
|
||||
>>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
||||
|
||||
>>> # حفظ نموذج onnx ومجزىء النصوص
|
||||
>>> ort_model.save_pretrained(save_directory)
|
||||
>>> tokenizer.save_pretrained(save_directory)
|
||||
```
|
||||
|
||||
### تصدير نموذج لهندسة غير مدعومة
|
||||
|
||||
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
|
||||
|
||||
### تصدير نموذج باستخدام `transformers.onnx`
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لم يعد يتم دعم `tranformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `tranformers.onnx`، ثبّت التبعيات الإضافية:
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
|
||||
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
||||
```
|
||||
|
||||
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
323
docs/source/ar/task_summary.md
Normal file
323
docs/source/ar/task_summary.md
Normal file
@ -0,0 +1,323 @@
|
||||
# ما الذي تستطيع مكتبة 🤗 Transformers القيام به؟
|
||||
|
||||
مكتبة 🤗 Transformers هي مجموعة من النماذج المُدرّبة مسبقًا الأفضل في فئتها لمهام معالجة اللغة الطبيعية (NLP)، ورؤية الحاسوب، ومعالجة الصوت والكلام. لا تحتوي المكتبة فقط على نماذج المحولات (Transformer) فحسب، بل تشمل أيضًا نماذج أخرى لا تعتمد على المحولات مثل الشبكات العصبية التلافيفية الحديثة لمهام رؤية الحاسوب. إذا نظرت إلى بعض المنتجات الاستهلاكية الأكثر شيوعًا اليوم، مثل الهواتف الذكية والتطبيقات وأجهزة التلفاز، فمن المحتمل أن تقف وراءها تقنية ما من تقنيات التعلم العميق. هل تريد إزالة جسم من خلفية صورة التقطتها بهاتفك الذكي؟ هذا مثال على مهمة التجزئة البانورامية (Panoptic Segmentation) ( لا تقلق إذا لم تفهم معناها بعد، فسوف نشرحها في الأقسام التالية!).
|
||||
|
||||
توفر هذه الصفحة نظرة عامة على مختلف مهام الكلام والصوت ورؤية الحاسوب ومعالجة اللغات الطبيعية المختلفة التي يمكن حلها باستخدام مكتبة 🤗 Transformers في ثلاثة أسطر فقط من التعليمات البرمجية!
|
||||
|
||||
## الصوت
|
||||
|
||||
تختلف مهام معالجة الصوت والكلام قليلاً عن باقي الوسائط، ويرجع ذلك ببشكل أساسي لأن الصوت كمدخل هو إشارة متصلة. على عكس النص، لا يمكن تقسيم الموجة الصوتية الخام بشكل مرتب في أجزاء منفصلة بالطريقة التي يمكن بها تقسيم الجملة إلى كلمات. وللتغلب على هذا، يتم عادةً أخذ عينات من الإشارة الصوتية الخام على فترات زمنية منتظمة. كلما زاد عدد العينات التي تؤخذ في فترة زمنية معينة، ارتفع معدل أخذ العينات (معدل التردد)، وصار الصوت أقرب إلى مصدر الصوت الأصلي.
|
||||
|
||||
قامت الطرق السابقة بمعالجة الصوت لاستخراج الميزات المفيدة منه. أصبح من الشائع الآن البدء بمهام معالجة الصوت والكلام عن طريق تغذية شكل الموجة الصوتية الخام مباشرة في مشفر الميزات (Feature Encoder) لاستخراج تمثيل صوتي له. وهذا يبسط خطوة المعالجة المسبقة ويسمح للنموذج بتعلم أهم الميزات.
|
||||
|
||||
### تصنيف الصوت
|
||||
|
||||
تصنيف الصوت (Audio Classification) هو مهمة يتم فيها تصنيف بيانات الصوت الصوت من مجموعة محددة مسبقًا من الفئات. إنه فئة واسعة تضم العديد من التطبيقات المحددة، والتي تشمل:
|
||||
|
||||
* تصنيف المشهد الصوتي: وضع علامة على الصوت باستخدام تسمية المشهد ("المكتب"، "الشاطئ"، "الملعب")
|
||||
* اكتشاف الأحداث الصوتية: وضع علامة على الصوت باستخدام تسمية حدث صوتي ("بوق السيارة"، "صوت الحوت"، "كسر زجاج")
|
||||
* الوسم: وصنيف صوت يحتوي على أصوات متعددة (أصوات الطيور، وتحديد هوية المتحدث في اجتماع)
|
||||
* تصنيف الموسيقى: وضع علامة على الموسيقى بتسمية النوع ("ميتال"، "هيب هوب"، "كانتري")
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline(task="audio-classification", model="superb/hubert-base-superb-er")
|
||||
>>> preds = classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.4532, 'label': 'hap'},
|
||||
{'score': 0.3622, 'label': 'sad'},
|
||||
{'score': 0.0943, 'label': 'neu'},
|
||||
{'score': 0.0903, 'label': 'ang'}]
|
||||
```
|
||||
|
||||
### التعرف التلقائي على الكلام
|
||||
|
||||
يقوم التعرف التلقائي على الكلام (ASR) هو عملية تحويل الكلام إلى نص. إنه أحد أكثر المهام الصوتية شيوعًا ويرجع ذلك جزئيًا إلى أن الكلام وسيلة طبيعية للتواصل البشري. واليوم، يتم تضمين أنظمة ASR في منتجات التقنية "الذكية" مثل مكبرات الصوت والهواتف والسيارات. يمكننا أن نطلب من مساعدينا الافتراضيين تشغيل الموسيقى، وضبط التذكيرات، وإخبارنا بأحوال الطقس.
|
||||
ولكن أحد التحديات الرئيسية التي ساعدت نماذج المحولات (Transformer) في التغلب عليها هو التعامل مع اللغات منخفضة الموارد. فمن خلال التدريب المسبق على كميات كبيرة من بيانات الصوتية، يُمكن ضبط النموذج بدقة (Fine-tuning) باستخدام ساعة واحدة فقط من بيانات الكلام المُوسم في لغة منخفضة الموارد إلى نتائج عالية الجودة مقارنة بأنظمة ASR السابقة التي تم تدريبها على بيانات موسومة أكثر بـ 100 مرة.
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-small")
|
||||
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
|
||||
{'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'}
|
||||
```
|
||||
|
||||
## رؤية الحاسب
|
||||
|
||||
كانت إحدى أوائل مهام رؤية الحاسب وأنجحها هى التعرف على صور أرقام الرموز البريدية باستخدام [شبكة عصبية تلافيفية (CNN)](glossary#convolution). تتكون الصورة من وحدات بيكسل، ولكل بكسل قيمة رقمية. وهذا يجعل من السهل تمثيل صورة كمصفوفة من قيم البكسل. يصف كل مزيج معين من قيم البكسل ألوان الصورة.
|
||||
|
||||
هناك طريقتان عامتان يمكن من خلالهما حل مهام رؤية الحاسب:
|
||||
|
||||
1. استخدام الالتفافات (Convolutions) لتعلم الميزات الهرمية للصورة بدءًا من الميزات منخفضة المستوى وصولًا إلى الأشياء المجردة عالية المستوى.
|
||||
2. تقسيم الصورة إلى أجزاء واستخدام نموذج المحولات (Transformer) ليتعلم تدريجياً كيف ترتبط كل جزء صورة ببعضها البعض لتشكيل صورة. على عكس النهج ا التصاعدي (Bottom-Up) الذي تفضله الشبكات العصبية التلافيفية CNN، هذا يشبه إلى حد ما البدء بصورة ضبابية ثم جعلها أوضح تدريجيًا.
|
||||
|
||||
### تصنيف الصور
|
||||
|
||||
يقوم تصنيف الصور (Image Classification) بوضع علامة على صورة كاملة من مجموعة محددة مسبقًا من الفئات. مثل معظم مهام التصنيف، هناك العديد من التطبيقات العملية لتصنيف الصور، والتي تشمل:
|
||||
|
||||
* الرعاية الصحية: تصنيف الصور الطبية للكشف عن الأمراض أو مراقبة صحة المريض
|
||||
* البيئة: تصنيف صور الأقمار الصناعية لرصد إزالة الغابات، أو إبلاغ إدارة الأراضي البرية أو اكتشاف حرائق الغابات
|
||||
* الزراعة: تصنيفر المحاصيل لمراقبة صحة النبات أو صور الأقمار الصناعية لمراقبة استخدام الأراضي
|
||||
* علم البيئة: تصنيف صور الأنواع الحيوانية أو النباتية لرصد أعداد الكائنات الحية أو تتبع الأنواع المهددة بالانقراض
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline(task="image-classification")
|
||||
>>> preds = classifier(
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> print(*preds, sep="\n")
|
||||
{'score': 0.4335, 'label': 'lynx, catamount'}
|
||||
{'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}
|
||||
{'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}
|
||||
{'score': 0.0239, 'label': 'Egyptian cat'}
|
||||
{'score': 0.0229, 'label': 'tiger cat'}
|
||||
```
|
||||
|
||||
### كشف الأجسام
|
||||
|
||||
على عكس تصنيف الصور، يقوم كشف الأجسام (Object Detection) بتحديد عدة أجسام داخل صورة ومواضع هذه الأجسام في صورة (يحددها مربع الإحاطة). بعض تطبيقات كشف الأجسام تشمل:
|
||||
|
||||
* المركبات ذاتية القيادة: اكتشاف أجسام المرورية اليومية مثل المركبات الأخرى والمشاة وإشارات المرور
|
||||
* الاستشعار عن بُعد: مراقبة الكوارث، والتخطيط الحضري، والتنبؤ بالطقس
|
||||
* اكتشاف العيوب: اكتشاف الشقوق أو الأضرار الهيكلية في المباني، وعيوب التصنيع
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> detector = pipeline(task="object-detection")
|
||||
>>> preds = detector(
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.9865,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}]
|
||||
```
|
||||
|
||||
### تجزئة الصور
|
||||
|
||||
تجزئة الصورة (Image Segmentation) هي مهمة على مستوى البكسل تقوم بتخصيص كل بكسل في صورة لفئة معينة. إنه يختلف عن كشف الأجسام، والذي يستخدم مربعات الإحاطة (Bounding Boxes) لتصنيف والتنبؤ بالأجسام في الصورة لأن التجزئة أكثر دقة. يمكن لتجزئة الصور اكتشاف الأجسام على مستوى البكسل. هناك عدة أنواع من تجزئة الصور:
|
||||
|
||||
* تجزئة مثيلات (Instance Segmentation): بالإضافة إلى تصنيف فئة كائن، فإنها تُصنّف أيضًا كل مثيل (Instance) مميز لكائن ("الكلب-1"، "الكلب-2")
|
||||
* التجزئة البانورامية (Panoptic Segmentation): مزيج من التجزئة الدلالية (Semantic Segmentation) وتجزئة المثيلات؛ فهو تُصنّف كل بكسل مع فئة دلالية **و** كل مثيل مميز لكائن
|
||||
|
||||
تُعد مهام تجزئة الصور مفيدة في المركبات ذاتية القيادة على إنشاء خريطة على مستوى البكسل للعالم من حولها حتى تتمكن من التنقل بأمان حول المشاة والمركبات الأخرى. كما أنها مفيدة للتصوير الطبي، حيث يمكن للدقة العالية لهذ المهمة أن تساعد في تحديد الخلايا غير الطبيعية أو خصائص الأعضاء. يمكن أيضًا استخدام تجزئة الصور في التجارة الإلكترونية لتجربة الملابس افتراضيًا أو إنشاء تجارب الواقع المُعزز من خلال تراكب الأجسام في العالم الحقيقي من خلال الكاميرا الهاتف الخاصة بك.
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> segmenter = pipeline(task="image-segmentation")
|
||||
>>> preds = segmenter(
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> print(*preds, sep="\n")
|
||||
{'score': 0.9879, 'label': 'LABEL_184'}
|
||||
{'score': 0.9973, 'label': 'snow'}
|
||||
{'score': 0.9972, 'label': 'cat'}
|
||||
```
|
||||
|
||||
### تقدير العمق
|
||||
|
||||
يقوم تقدير العمق (Depth Estimation) بالتنبؤ بمسافة كل بكسل في صورة من الكاميرا. تُعد هذه المهمة لرؤية الحاسب هذه مهمة بشكل خاص لفهم وإعادة بناء المشهد. فعلى سبيل المثال، في السيارات ذاتية القيادة، تحتاج المركبات إلى فهم مدى بُعد الأجسام مثل المشاة ولافتات المرور والمركبات الأخرى لتجنب العقبات والاصطدامات. تساعد معلومات العمق أيضًا في بناء التمثيلات ثلاثية الأبعاد من الصور ثنائية الأبعاد ويمكن استخدامها لإنشاء تمثيلات ثلاثية الأبعاد عالية الجودة للهياكل البيولوجية أو المباني.
|
||||
|
||||
هناك نهجان لتقدير العمق:
|
||||
|
||||
* التصوير المجسم (Stereo): يتم تقدير العمق عن طريق مقارنة صورتين لنفس الصورة من زوايا مختلفة قليلاً.
|
||||
* التصوير الأحادي (Monocular): يتم تقدير العمق من صورة واحدة.
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> depth_estimator = pipeline(task="depth-estimation")
|
||||
>>> preds = depth_estimator(
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
```
|
||||
|
||||
## معالجة اللغات الطبيعية
|
||||
|
||||
تُعد مهام معالجة اللغة الطبيعية (NLP) من بين أكثر أنواع المهام شيوعًا نظرًا لأن النص هو وسيلة طبيعية لنا للتواصل. ولكي يتمكن النموذج من فهم النص، يجب أولًا تحويله إلى صيغة رقمية. وهذا يعني تقسيم سلسلة النص إلى كلمات أو مقاطع كلمات منفصلة (رموز - Tokens)، ثم تحويل هذه الرموز إلى أرقام. ونتيجة لذلك، يمكنك تمثيل سلسلة من النص كتسلسل من الأرقام، وبمجرد حصولك على تسلسل من الأرقام، يمكن إدخاله إلى نموذج لحل جميع أنواع مهام معالجة اللغة الطبيعية!
|
||||
|
||||
### تصنيف النصوص
|
||||
|
||||
تمامًا مثل مهام التصنيف في أي مجال آخر، يقوم تصنيف النصوص (Text Classification) بتصنيف سلسلة نصية يمكن أن تكون جملة أو فقرة أو مستند) إلى فئة محددة مسبقًا. هناك العديد من التطبيقات العملية لتصنيف النصوص، والتي تشمل:
|
||||
|
||||
* تحليل المشاعر (Sentiment Analysis): تصنيف النص وفقًا لمعيار معين مثل `الإيجابية` أو `السلبية` والتي يمكن أن تُعلم وتدعم عملية صنع القرار في مجالات مثل السياسة والتمويل والتسويق
|
||||
* تصنيف المحتوى (Content Classification): تصنيف النص وفقًا لبعض الموضوعات للمساعدة في تنظيم وتصفية المعلومات في الأخبار وموجزات الوسائط الاجتماعية (`الطقس`، `الرياضة`، `التمويل`، إلخ).
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline(task="sentiment-analysis")
|
||||
>>> preds = classifier("Hugging Face is the best thing since sliced bread!")
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.9991, 'label': 'POSITIVE'}]
|
||||
```
|
||||
|
||||
### تصنيف الرموز
|
||||
|
||||
في أي مهمة من مهام معالجة اللغة الطبيعية NLP، تتم معالجة النص مسبقًا عن طريق تقسيمه إلى كلمات أو مقاطع كلمات فردية تُعرف باسم [الرموز](glossary#token). يقوم تصنيف الرموز (Token Classification) بتخصيص تصنيف لكل رمز من مجموعة محددة مسبقًا من التصنيفات.
|
||||
|
||||
هناك نوعان شائعان من تصنيف الرموز:
|
||||
|
||||
* التعرف على الكيانات المسماة (NER): تصنيف الرموز وفقًا لفئة الكيان مثل المنظمة أو الشخص أو الموقع أو التاريخ. يعد NER شائعًا بشكل خاص في الإعدادات الطبية الحيوية، حيث يُمكنه تصنيف الجينات والبروتينات وأسماء الأدوية.
|
||||
* ترميز الأجزاء اللغوية (POS): تصنيف الرموز وفقًا للدورها النحوي مثل الاسم أو الفعل أو الصفة. POS مفيد لمساعدة أنظمة الترجمة على فهم كيفية اختلاف كلمتين متطابقتين نحويًا (مثل كلمة "عَلَمَ" كاسم و "عَلِمَ" كفعل).
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline(task="ner")
|
||||
>>> preds = classifier("Hugging Face is a French company based in New York City.")
|
||||
>>> preds = [
|
||||
... {
|
||||
... "entity": pred["entity"],
|
||||
... "score": round(pred["score"], 4),
|
||||
... "index": pred["index"],
|
||||
... "word": pred["word"],
|
||||
... "start": pred["start"],
|
||||
... "end": pred["end"],
|
||||
... }
|
||||
... for pred in preds
|
||||
... ]
|
||||
>>> print(*preds, sep="\n")
|
||||
{'entity': 'I-ORG', 'score': 0.9968, 'index': 1, 'word': 'Hu', 'start': 0, 'end': 2}
|
||||
{'entity': 'I-ORG', 'score': 0.9293, 'index': 2, 'word': '##gging', 'start': 2, 'end': 7}
|
||||
{'entity': 'I-ORG', 'score': 0.9763, 'index': 3, 'word': 'Face', 'start': 8, 'end': 12}
|
||||
{'entity': 'I-MISC', 'score': 0.9983, 'index': 6, 'word': 'French', 'start': 18, 'end': 24}
|
||||
{'entity': 'I-LOC', 'score': 0.999, 'index': 10, 'word': 'New', 'start': 42, 'end': 45}
|
||||
{'entity': 'I-LOC', 'score': 0.9987, 'index': 11, 'word': 'York', 'start': 46, 'end': 50}
|
||||
{'entity': 'I-LOC', 'score': 0.9992, 'index': 12, 'word': 'City', 'start': 51, 'end': 55}
|
||||
```
|
||||
### الإجابة على الأسئلة
|
||||
|
||||
تُعدّ مهمة الإجابة عن الأسئلة (Question Answering) مهمة أخرى على مستوى الرموز (Token-Level) تُرجع إجابة لسؤال ما، وقد تعتمد هذه الإجابة على سياق (في النطاق المفتوح - Open-Domain) أو لا تعتمد على سياق (في النطاق المغلق - Closed-Domain). تحدث هذه المهمة عندما نسأل مساعدًا افتراضيًا عن شيء ما، مثل معرفة ما إذا كان مطعمٌ ما مفتوحًا. يمكن أن تُقدّم هذه المهمة أيضًا دعمًا للعملاء أو دعمًا تقنيًا، كما تُساعد محركات البحث في استرجاع المعلومات ذات الصلة التي نبحث عنها.
|
||||
|
||||
هناك نوعان شائعان من الإجابة على الأسئلة:
|
||||
|
||||
* الاستخراجية (Extractive): بالنظر إلى سؤال وسياق مُعيّن، فإن الإجابة هي مقطع نصيّ مُستخرج من السياق الذي يُحلّله النموذج.
|
||||
* التجريدية (Abstractive): بالنظر إلى سؤال وسياق مُعيّن، يتم إنشاء الإجابة من السياق؛ يتعامل نهج [`Text2TextGenerationPipeline`] مع هذا النهج بدلاً من [`QuestionAnsweringPipeline`] الموضح أدناه
|
||||
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> question_answerer = pipeline(task="question-answering")
|
||||
>>> preds = question_answerer(
|
||||
... question="What is the name of the repository?",
|
||||
... context="The name of the repository is huggingface/transformers",
|
||||
... )
|
||||
>>> print(
|
||||
... f"score: {round(preds['score'], 4)}, start: {preds['start']}, end: {preds['end']}, answer: {preds['answer']}"
|
||||
... )
|
||||
score: 0.9327, start: 30, end: 54, answer: huggingface/transformers
|
||||
```
|
||||
|
||||
### التلخيص
|
||||
|
||||
ينشئ التلخيص (Summarization) نسخة مختصرة من نص طويل مع محاولة الحفاظ على معظم معنى النص الأصلي. التلخيص هو مهمة تسلسل إلى تسلسل(Sequence-to-Sequence)؛؛ فهو تُنتج تسلسلًا نصيًا أقصر من النص المُدخل. هناك الكثير من المستندات الطويلة التي يمكن تلخيصها لمساعدة القراء على فهم النقاط الرئيسية بسرعة. مشاريع القوانين والوثائق القانونية والمالية وبراءات الاختراع والأوراق العلمية هي مجرد أمثلة قليلة للوثائق التي يمكن تلخيصها لتوفير وقت القراء وخدمة كمساعد للقراءة.
|
||||
|
||||
مثل الإجابة على الأسئلة، هناك نوعان من التلخيص:
|
||||
|
||||
* الاستخراجية (Extractive): تحديد واستخراج أهم الجمل من النص الأصلي
|
||||
* التجريدي (Abstractive): إنشاء ملخص مستهدف (الذي قد يتضمن كلمات جديدة غير موجودة في النص الأصلي) انطلاقًا من النص الأصلي؛ يستخدم نهج التلخيص التجريدي [`SummarizationPipeline`]
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> summarizer = pipeline(task="summarization")
|
||||
>>> summarizer(
|
||||
... "In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles."
|
||||
... )
|
||||
[{'summary_text': ' The Transformer is the first sequence transduction model based entirely on attention . It replaces the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention . For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers .'}]
|
||||
```
|
||||
|
||||
### الترجمة
|
||||
|
||||
تحوّل الترجمة تسلسل نص بلغة إلى لغة أخرى. من المهم مساعدة الأشخاص من خلفيات مختلفة على التواصل مع بعضهم البعض، ومساعدة المحتوى على الوصول إلى جمهور أوسع، وحتى أن يكون أداة تعليمية لمساعدة الأشخاص على تعلم لغة جديدة. إلى جانب التلخيص، تعد الترجمة مهمة من نوع تسلسل إلى تسلسل، حيث يتلقى النموذج تسلسلًا مُدخلًا ويُعيد تسلسلًا مُخرَجًا مُستهدفًا.
|
||||
|
||||
في الأيام الأولى، كانت نماذج الترجمة في الغالب أحادية اللغة، ولكن مؤخرًا، كان هناك اهتمام متزايد بالنماذج متعددة اللغات التي يمكنها الترجمة بين العديد من أزواج اللغات.
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning."
|
||||
>>> translator = pipeline(task="translation", model="google-t5/t5-small")
|
||||
>>> translator(text)
|
||||
[{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}]
|
||||
```
|
||||
|
||||
### نمذجة اللغة
|
||||
|
||||
نمذجة اللغة (Language Modeling) هي مهمة التنبؤ بالكلمة التالية في تسلسل نصي. لقد أصبح مهمة NLP شائعة للغاية لأن النموذج اللغوي المسبق التدريب يمكن أن يتم ضبطه بشكل دقيق للعديد من مهام الأخرى. في الآونة الأخيرة، كان هناك الكثير من الاهتمام بنماذج اللغة الكبيرة (LLMs) التي توضح التعلم من الصفر أو من عدد قليل من الأمثلة (Zero-shot or Few-shot Learning). وهذا يعني أن النموذج يمكنه حل المهام التي لم يتم تدريبه عليها بشكل صريح! يمكن استخدام نماذج اللغة لإنشاء نص سلس ومقنع، على الرغم من أنه يجب أن تكون حذرًا لأن النص قد لا يكون دائمًا دقيقًا.
|
||||
|
||||
هناك نوعان من نمذجة اللغة:
|
||||
|
||||
* السببية(Causal): هدف النموذج هو التنبؤ بالرمز (Token) التالي في التسلسل، ويتم إخفاء الرموز المستقبلية (Masking).
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> prompt = "Hugging Face is a community-based open-source platform for machine learning."
|
||||
>>> generator = pipeline(task="text-generation")
|
||||
>>> generator(prompt) # doctest: +SKIP
|
||||
```
|
||||
|
||||
* المقنّع (Masked): هدف النموذج هو التنبؤ برمز مُخفيّ ضمن التسلسل مع الوصول الكامل إلى الرموز الأخرى في التسلسل
|
||||
|
||||
```py
|
||||
>>> text = "Hugging Face is a community-based open-source <mask> for machine learning."
|
||||
>>> fill_mask = pipeline(task="fill-mask")
|
||||
>>> preds = fill_mask(text, top_k=1)
|
||||
>>> preds = [
|
||||
... {
|
||||
... "score": round(pred["score"], 4),
|
||||
... "token": pred["token"],
|
||||
... "token_str": pred["token_str"],
|
||||
... "sequence": pred["sequence"],
|
||||
... }
|
||||
... for pred in preds
|
||||
... ]
|
||||
>>> preds
|
||||
[{'score': 0.2236,
|
||||
'token': 1761,
|
||||
'token_str': ' platform',
|
||||
'sequence': 'Hugging Face is a community-based open-source platform for machine learning.'}]
|
||||
```
|
||||
|
||||
## متعدد الوسائط:
|
||||
|
||||
تتطلب المهام متعددة الوسائط (Multimodal) من النموذج معالجة وسائط بيانات متعددة (نص أو صورة أو صوت أو فيديو) لحل مشكلة معينة. يعد وصف الصورة (Image Captioning) مثالاً على مهمة متعددة الوسائط حيث يأخذ النموذج صورة كمدخل وينتج تسلسل نصيًا يصف الصورة أو بعض خصائصها.
|
||||
|
||||
على الرغم من أن النماذج متعددة الوسائط تعمل مع أنواع أو وسائط بيانات مختلفة، إلا أن خطوات المعالجة المسبقة تساعد النموذج داخليًا على تحويل جميع أنواع البيانات إلى متجهات تضمين (Embeddings) (متجهات أو قوائم من الأرقام التي تحتوي على معلومات ذات معنى حول البيانات). بالنسبة لمهمة مثل وصف الصورة، يتعلم النموذج العلاقات بين متجهات تضمين الصور ومتجهات تضمين النص.
|
||||
|
||||
### الإجابة على أسئلة المستندات:
|
||||
|
||||
الإجابة على أسئلة المستندات (Document Question Answering) هي مهمة تقوم بالإجابة على أسئلة اللغة الطبيعية من مستند مُعطى. على عكس مهمة الإجابة على الأسئلة على مستوى الرموز (Token-Level) التي تأخذ نصًا كمدخل، فإن الإجابة على أسئلة المستندات تأخذ صورة لمستند كمدخل بالإضافة إلى سؤال هذا حول المستند وتعيد الإجابة. يمكن استخدام الإجابة على أسئلة المستندات لتفسير المستندات المُنسّقة واستخراج المعلومات الرئيسية منها. في المثال أدناه، يمكن استخراج المبلغ الإجمالي والمبلغ المُسترد من إيصال الدفع..
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
|
||||
>>> url = "https://huggingface.co/datasets/hf-internal-testing/example-documents/resolve/main/jpeg_images/2.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> doc_question_answerer = pipeline("document-question-answering", model="magorshunov/layoutlm-invoices")
|
||||
>>> preds = doc_question_answerer(
|
||||
... question="ما هو المبلغ الإجمالي؟",
|
||||
... image=image,
|
||||
... )
|
||||
>>> preds
|
||||
[{'score': 0.8531, 'answer': '17,000', 'start': 4, 'end': 4}]
|
||||
```
|
||||
|
||||
نأمل أن تكون هذه الصفحة قد زودتك ببعض المعلومات الأساسية حول جميع أنواع المهام في كل طريقة وأهمية كل منها العملية. في القسم التالي، ستتعلم كيف تعمل مكتبة 🤗 Transformers لحل هذه المهام.
|
||||
279
docs/source/ar/tasks_explained.md
Normal file
279
docs/source/ar/tasks_explained.md
Normal file
@ -0,0 +1,279 @@
|
||||
# كيف تُنجز نماذج 🤗 Transformers المهام؟
|
||||
|
||||
في [ما الذي يمكن أن تفعله نماذج 🤗 Transformers](task_summary)، تعلمت عن معالجة اللغات الطبيعية (NLP)، والخطاب والصوت، ورؤية الحاسب، وبعض تطبيقاتها المهمة. ستلقي هذه الصفحة نظرة فاحصة على كيفية حل النماذج لهذه المهام وتوضيح ما يحدث ما يحدث وراء الكواليس. هناك العديد من الطرق لحل مهمة معينة، وقد تنفذ بعض النماذج تقنيات معينة أو حتى تتناول المهمة من زاوية جديدة، ولكن بالنسبة لنماذج Transformer، فإن الفكرة العامة هي نفسها. وبفضل تصميمها المرن، فنظراً لهيكلها المرن، تُعدّ معظم النماذج عبارة عن متغير من بنية المُشفّر (Encoder) أو المُفكّك (Decoder) أو المُشفّر - المُفكّك (Encoder-Decoder). بالإضافة إلى نماذج Transformer، تحتوي مكتبتنا أيضًا على العديد من الشبكات العصبية التلافيفية (CNNs)، والتي لا تزال تستخدم حتى اليوم لمهام رؤية الحاسب. سنشرح أيضًا كيف تعمل شبكة عصبية تلافيفية CNN الحديثة.
|
||||
|
||||
لشرح كيفية حل المهام، سنشرح ما يحدث داخل النموذج لإخراج تنبؤات مفيدة.
|
||||
|
||||
- [Wav2Vec2](model_doc/wav2vec2) لتصنيف الصوت والتعرف التلقائي على الكلام (ASR)
|
||||
- [Vision Transformer (ViT)](model_doc/vit) و [ConvNeXT](model_doc/convnext) لتصنيف الصور
|
||||
- [DETR](model_doc/detr) للكشف عن الأجسام
|
||||
- [Mask2Former](model_doc/mask2former) لتجزئة الصورة
|
||||
- [GLPN](model_doc/glpn) لتقدير العمق
|
||||
- [BERT](model_doc/bert) لمهام NLP مثل تصنيف النصوص، وتصنيف الرموز، والإجابة على الأسئلة التي تستخدم مشفرًا
|
||||
- [GPT2](model_doc/gpt2) لمهام NLP مثل توليد النصوص التي تستخدم فك تشفير
|
||||
- [BART](model_doc/bart) لمهام NLP مثل الملخص والترجمة التي تستخدم ترميز-فك تشفير
|
||||
|
||||
<Tip>
|
||||
|
||||
قبل المتابعة، من الجيد أن يكون لديك بعض المعرفة الأساسية بهيكلية المحولات (Transformer Architecture) الأصلية. إن معرفة كيفية عمل المُشفّرات (Encoders) والمُفكّكات (Decoders) وآلية الانتباه (Attention Mechanism) سوف تساعدك في فهم كيفية عمل نماذج Transformer المختلفة. إذا كنت مبتدئًا أو بحاجة إلى مراجعة، فراجع [دورتنا](https://huggingface.co/course/chapter1/4؟fw=pt) لمزيد من المعلومات!
|
||||
|
||||
</Tip>
|
||||
|
||||
## الكلام والصوت (Speech and audio)
|
||||
|
||||
يُعدّ [Wav2Vec2](model_doc/wav2vec2) نموذجًا مُدرَّبًا ذاتيًا (Self-Supervised) على بيانات الكلام غير المُصنّفة، ويُمكن ضبطه بدقة (Fine-tuning) على بيانات موسومة لأداء مهام تصنيف الصوت والتعرف التلقائي على الكلام.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/wav2vec2_architecture.png"/>
|
||||
</div>
|
||||
|
||||
يتكون هذا النموذج على أربعة مكونات رئيسية:
|
||||
|
||||
1. *مشفّر الميزات (Feature Encoder)* يأخذ الموجة الصوتية الخام، ويقوم بتطبيعها (Normalization) إلى متوسط صفري وانحراف معياري وحدوي، وتحويلها إلى تسلسل من متجهات الميزات التي يبلغ طول كل منها 20 مللي ثانية.
|
||||
|
||||
2. *وحدة التكميم (Quantization Module):** تتميز أشكال الموجات الصوتية بطبيعتها المُستمرة،، لذلك لا يمكن تقسيمها إلى وحدات منفصلة كما يمكن تقسيم التسلسل النصّي إلى كلمات ولهذا السبب يتم تمرير متجهات الميزات إلى *وحدة التكميم*، والتي تهدف إلى تعلم وحدات الكلام المنفصلة. يتم اختيار وحدة الكلام من مجموعة من الرموز، والمعروفة باسم *كتاب الرموز* (يمكنك اعتبار هذا بمثابة المفردات). ومن كتاب الرموز،يتم اختيار المتجه أو وحدة الكلام التي تُمثّل مدخل الصوت المُستمر على أفضل وجه، ويتم تمريرها عبر النموذج.
|
||||
3. **شبكة السياق (Context Network):** يتم إخفاء حوالي نصف متجهات الميزات بشكل عشوائي، ويتم تغذية متجه الميزة المُقنّع إلى *شبكة السياق*، والتي تعد مُشفّر محوّلات (Transformer Encoder) الذي يضيف أيضًا تضمينات موضعية نسبية (Relative Positional Embeddings)..
|
||||
|
||||
4. **مهمة التناقضية:** يتمثل الهدف من التدريب المسبق لشبكة السياق هو *مهمة تناقضية*. يجب على النموذج التنبؤ بالتمثيل الصحيح للكلام المُكمّم للتنبؤ المقنع من مجموعة من التمثيلات الخاطئة، مما يشجع النموذج على ا إيجاد متجه السياق ووحدة الكلام المُكمّمة الأكثر تشابهًا (التصنيف المستهدف).
|
||||
|
||||
بمجرد تدريب Wav2Vec2 مسبقًا، يمكنك ضبط دقته على بياناتك لتصنيف الصوت أو التعرف التلقائي على الكلام!
|
||||
|
||||
### تصنيف الصوت (Audio classification)
|
||||
|
||||
لاستخدام النموذج الذي تم تدريبه مسبقًا لتصنيف الصوت، أضف رأس تصنيف تسلسلي أعلى نموذج Wav2Vec2 الأساسي. رأس التصنيف هو طبقة خطية تستقبل الحالات المخفية للمشفر. تمثل الحالات المخفية الميزات التي تم تعلمها من كل إطار صوتي والذي يمكن أن يكون له أطوال مختلفة. لتحويلها إلى متجه واحد ثابت الطول، يتم تجميع الحالات المخفية أولاً ثم تحويلها إلى احتمالات عبر تصنيفات الفئات. يتم حساب التكلفة (الخسارة المتقاطعة) بين الاحتمالات والتصنيف المستهدف للعثور على الفئة الأكثر احتمالًا.
|
||||
|
||||
هل أنت مستعد لتجربة تصنيف الصوت؟ تحقق من دليلنا الشامل [تصنيف الصوت](tasks/audio_classification) لمعرفة كيفية ضبط دقة نموذج Wav2Vec2 واستخدامه للاستدلال!
|
||||
|
||||
### التعرف التلقائي على الكلام (Automatic speech recognition - ASR)
|
||||
|
||||
لاستخدام النموذج الذي تم تدريبه مسبقًا للتعرف التلقائي على الكلام، أضف رأس نمذجة لغوية أعلى نموذج Wav2Vec2 الأساسي لـ [[التصنيف الزمني الترابطي (CTC)](glossary#connectionist-temporal-classification-ctc). رأس النمذجة اللغوية عبارة عن طبقة خطية تقبل الحالات المخفية للمُشفّر وتحويلها إلى احتمالات. يمثل كل احتمال فئة رمزية (يأتي عدد الرموز من مفردات المهمة). يتم حساب تكلفة CTC بين الاحتمالات والأهداف للعثور على تسلسل الرموز الأكثر احتمالًا، والتي يتم فك تشفيرها بعد ذلك إلى نص مكتوب.
|
||||
|
||||
هل أنت مستعد لتجربة التعرف التلقائي على الكلام؟ تحقق من دليلنا الشامل [التعرف التلقائي على الكلام](tasks/asr) لمعرفة كيفية ضبط دقة نموذج Wav2Vec2 واستخدامه للاستدلال!
|
||||
|
||||
## رؤية الحاسب (Computer vision)
|
||||
|
||||
هناك طريقتان لتناول مهام رؤية الحاسب:
|
||||
|
||||
1. قم بتقسيم الصورة إلى تسلسل من الرقع ومعالجتها بالتوازي باستخدام مُحوّل Transformer.
|
||||
2. استخدم شبكة عصبية تلافيفية CNN) حديثة، مثل [ConvNeXT](model_doc/convnext)، والتي تعتمد على الطبقات التلافيفية ولكنها تعتمد تصميمات حديثة للشبكات.
|
||||
|
||||
<Tip>
|
||||
|
||||
يقوم النهج الثالث بمزج المحولات مع التلافيف (على سبيل المثال، [Convolutional Vision Transformer](model_doc/cvt) أو [LeViT](model_doc/levit)). لن نناقشها لأنها تجمع ببساطة بين النهجين اللذين نستعرضهما هنا.
|
||||
|
||||
</Tip>
|
||||
|
||||
يتم استخدام ViT و ConvNeXT بشكل شائع لتصنيف الصور، ولكن بالنسبة لمهام الرؤية الأخرى مثل اكتشاف الكائنات والتجزئة وتقدير العمق، سنلقي نظرة على DETR و Mask2Former و GLPN، على التوالي؛ فهذه النماذج هي الأنسب لتلك المهام.
|
||||
|
||||
### تصنيف الصور (Image classification)
|
||||
|
||||
يمكن استخدام كل من ViT و ConvNeXT لتصنيف الصور؛ الاختلاف الرئيسي هو أن ViT يستخدم آلية انتباه بينما يستخدم ConvNeXT الالتفافات.
|
||||
|
||||
#### المحول Transformer
|
||||
|
||||
[ViT](model_doc/vit) يستبدل التلافيف تمامًا بهندسة Transformer نقية. إذا كنت على دراية بـ Transformer الأصلي، فأنت بالفعل في طريقك إلى فهم ViT.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg"/>
|
||||
</div>
|
||||
|
||||
كان التغيير الرئيسي الذي قدمه ViT هو كيفية تغذية الصور إلى Transformer:
|
||||
|
||||
1. يتم تقسيم الصورة إلى رقع مربعة غير متداخلة، يتم تحويل كل منها إلى متجه أو يُسمى *تمثيل الرقعة*. يتم إنشاء تضمينات الرقع من طبقة تلافيفية ثنائية الأبعاد 2D والتي تقوم بإنشاء أبعاد الإدخال الصحيحة (والتي بالنسبة إلى Transformer الأساسي هي 768 قيمة لكل تضمين رقعة). إذا كان لديك صورة 224x224 بكسل، فيمكنك تقسيمها إلى 196 رقعة صورة 16x16. تمامًا مثل كيفية تجزئة النص إلى كلمات، يتم "تجزئة" الصورة إلى سلسلة من الرقع.
|
||||
|
||||
2. يتم إضافة *رمز قابل للتعلم* - تتم إضافة رمز خاص `[CLS]` - إلى بداية تمثيلات الرقع تمامًا مثل BERT. يتم استخدام الحالة المخفية النهائية للرمز `[CLS]` كمدخل لرأس التصنيف المُرفق؛ يتم تجاهل المخرجات الأخرى. تساعد هذه الرموز النموذج على تعلم كيفية ترميز تمثيل الصورة.
|
||||
|
||||
3. الشيء الأخير تتم إضافة "تمثيلات تموضع" إلى تمثيلات الرقع والرمز القابل للتعلم لأن النموذج لا يعرف كيفية ترتيب رقع الصورة. تكون تمثيلات التموضع قابلة للتعلم أيضًا ولها نفس حجم تمثيلات الرقع. وأخيرًا، يتم تمرير جميع التمثيلات إلى مُشفّر Transformer.
|
||||
|
||||
4. يتم تمرير الإخراج، وتحديدًا مخرج الرمز `[CLS]`، إلى رأس الإدراك المتعدد الطبقات (MLP). الهدف من التدريب المسبق لـ ViT هو التصنيف فقط. يقوم رأس MLP، مثل رؤوس التصنيف الأخرى، يحول رأس MLP المخرجات إلى احتمالات عبر تصنيفات الفئات ويحسب دالة التكلفة (الخسارة المتقاطعة) للعثور على الفئة الأكثر احتمالًا.
|
||||
|
||||
هل أنت مستعد لتجربة تصنيف الصور؟ تحقق من دليلنا الشامل [تصنيف الصور](tasks/image_classification) لمعرفة كيفية ضبط دقة نموذج ViT واستخدامه للاستدلال!
|
||||
|
||||
#### الشبكات العصبية التلافيفية (CNN)
|
||||
|
||||
<Tip>
|
||||
|
||||
يشرح هذا القسم بإيجاز الالتفافات، ولكن سيكون من المفيد أن يكون لديك فهم مسبق لكيفية تغيير شكل الصورة وحجمها. إذا كنت غير معتاد على الالتفافات، تحقق من [فصل الشبكات العصبية التلافيفية](https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb) من كتاب fastai!
|
||||
|
||||
</Tip>
|
||||
|
||||
[ConvNeXT](model_doc/convnext) هو بنية CNN تعتمد تصاميم الشبكات الجديدة والحديثة لتحسين الأداء. ومع ذلك، لا تزال الالتفافات هي جوهر النموذج. من منظور عام، [الالتفاف](glossary#convolution) هو عملية حيث يتم ضرب مصفوفة أصغر (*نواة*) بمقطع صغير من وحدات بكسل الصورة. يحسب بعض الميزات منه، مثل نسيج معين أو انحناء خط. ثم ينزلق إلى النافذة التالية من البكسلات؛ المسافة التي تقطعها الالتفاف تسمى *الخطوة*.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convolution.gif"/>
|
||||
</div>
|
||||
|
||||
<small>عملية التفاف أساسية بدون حشو أو خطو خطوة واسعة، مأخوذة من <a href="https://arxiv.org/abs/1603.07285">دليل لحساب الالتفاف للتعلم العميق.</a></small>
|
||||
|
||||
يمكنك تغذية هذا الناتج إلى طبقة التفاف أخرى، ومع كل طبقة متتالية، تتعلم الشبكة أشياء أكثر تعقيدًا وتجريدية مثل النقانق أو الصواريخ. بين طبقات الالتفاف، من الشائع إضافة طبقة تجميع لتقليل الأبعاد وجعل النموذج أكثر قوة للتغيرات في موضع الميزة.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png"/>
|
||||
</div>
|
||||
|
||||
يقوم ConvNeXT بتحديث شبكة CNN بطرق خمس:
|
||||
|
||||
1. تغيير عدد الكتل في كل مرحلة و"ترقيع" الصورة باستخدام خطوة أكبر وحجم نواة المقابل. تجعل استراتيجية التجزئة غير المتداخلة استراتيجية الترقيع مشابهة للطريقة التي يقسم بها ViT للصورة إلى رقع.
|
||||
|
||||
2. تقلص طبقة *العنق الزجاجي* عدد القنوات ثم تعيدها لأنها أسرع في إجراء التفاف 1x1، ويمكنك زيادة العمق. يقوم عنق الزجاجة المقلوب بالعكس عن طريق توسيع عدد القنوات وتقلصها، وهو أكثر كفاءة من حيث الذاكرة.
|
||||
|
||||
3. استبدل طبقة الالتفاف النموذجية 3x3 في طبقة عنق الزجاجة بـ *الالتفاف بالعمق*، والذي يطبق الالتفاف على كل قناة إدخال بشكل منفصل ثم يقوم بتكديسها معًا مرة أخرى في النهاية. هذا يوسع عرض الشبكة لتحسين الأداء.
|
||||
|
||||
4. لدى ViT مجال استقبال عالمي مما يعني أنه يمكنه رؤية المزيد من الصورة في وقت واحد بفضل آلية الانتباه الخاصة به. تحاول ConvNeXT محاكاة هذا التأثير عن طريق زيادة حجم النواة إلى 7x7.
|
||||
|
||||
5. يقوم ConvNeXT أيضًا بإجراء العديد من تغييرات تصميم الطبقة التي تُحاكي نماذج المحولات. هناك عدد أقل من طبقات التنشيط والطبقات التطبيع، يتم تبديل دالة التنشيط إلى GELU بدلاً من ReLU، ويستخدم LayerNorm بدلاً من BatchNorm.
|
||||
|
||||
يتم تمرير الإخراج من كتل الالتفاف إلى رأس تصنيف يحول المخرجات إلى احتمالات ويحسب دالة التكلفة (الخسارة المتقاطعة) للعثور على التصنيف الأكثر احتمالاً.
|
||||
|
||||
### اكتشاف الكائنات (Object detection)
|
||||
|
||||
[DETR](model_doc/detr)، *DEtection TRansformer*، هو نموذج اكتشاف كائنات من البداية إلى النهاية يجمع بين CNN مع محول المشفر-فك التشفير.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/detr_architecture.png"/>
|
||||
</div>
|
||||
|
||||
1. يأخذ العمود الفقري CNN *المدرب مسبقًا* صورة، ممثلة بقيم بكسلاتها، وينشئ خريطة ميزات منخفضة الدقة لها. يتم تطبيق التفاف 1x1 على خريطة الميزات لتقليل الأبعاد، و إنشاء خريطة ميزات جديدة بتمثيل صورة عالي المستوى. نظرًا لأن المحول (Transformer) هو نموذج تسلسلي، يتم تسوية خريطة الميزات إلى تسلسل من متجهات الميزات التي يتم دمجها مع تمثيلات التموضع.
|
||||
|
||||
2. يتم تمرير متجهات الميزات إلى المشفر، والذي يتعلم تمثيلات الصورة باستخدام طبقات الانتباه الخاصة به. بعد ذلك، يتم دمج الحالات المخفية للمُشفّر مع *استعلامات الكائنات* في فك التشفير. استعلامات الكائنات هي تمثيلات مكتسبة تركز على مناطق مختلفة من الصورة، ويتم تحديثها أثناء مرورها عبر كل طبقة انتباه. يتم تمرير الحالات المخفية لفك التشفير إلى شبكة تغذية أمامية التي تتنبأ بإحداثيات مربعات الإحاطة وتصنيف العلامة لكل استعلام كائن، أو `بدون كائن` إذا لم يكن هناك أي كائن.
|
||||
|
||||
يقوم DETR بفك تشفير كل استعلام كائن بالتوازي لإخراج *N* من التنبؤات النهائية، حيث *N* هو عدد الاستعلامات. على عكس النموذج التلقائي الذي يتنبأ بعنصر واحد في كل مرة، فإن "اكتشاف الكائنات" هو مهمة تنبؤ بمجموعة من التنبؤات (مثل `مربع إحاطة`، `تصنيف`) تقوم بإجراء *N* من التنبؤات في مرور واحدة.
|
||||
|
||||
3. يستخدم DETR دالة *خسارة المطابقة ثنائية الفئات* أثناء التدريب لمقارنة عدد ثابت من التنبؤات بمجموعة ثابتة من تصنيفات البيانات الحقيقية. إذا كان هناك عدد أقل من تصنيفات البيانات الحقيقية في مجموعة *N* من التصنيفات، فيتم حشوها بفئة "بدون كائن". تشجع دالة الخسارة هذه DETR على العثور على تعيين واحد لواحد بين التنبؤات وتصنيفات البيانات الحقيقية. إذا لم تكن مربعات الإحاطة أو تصنيفات الفئات صحيحة، يتم تكبد خسارة. وبالمثل، إذا تنبأ DETR بكائن غير موجود، فإنه يتم معاقبته. وهذا يشجع DETR على العثور على كائنات أخرى في الصورة بدلاً من التركيز على كائن بارز حقًا.
|
||||
|
||||
يتم إضافة رأس اكتشاف كائن أعلى DETR للعثور على تصنيف الكائن وإحداثيات مربع الإحاطة. هناك مكونان لرأس اكتشاف الكائنات: طبقة خطية لتحويل حالات فك التشفير المخفية إلى احتمالات عبر تصنيفات الفئات، وشبكةMLP للتنبؤ بمربع الإحاطة.
|
||||
|
||||
هل أنت مستعد لتجربة اكتشاف الكائنات؟ تحقق من دليلنا الشامل [دليل اكتشاف الكائنات](tasks/object_detection) لمعرفة كيفية ضبط نموذج DETR واستخدامه للاستدلال!
|
||||
|
||||
### تجزئة الصورة (Image segmentation)
|
||||
|
||||
يُعد [Mask2Former](model_doc/mask2former) بنيةً شاملةً لحل جميع أنواع مهام تجزئة الصور. عادةً ما تُصمم نماذج التجزئة التقليدية لمهمة فرعية محددة من مهام تجزئة الصور، مثل تجزئة المثيل أو التجزئة الدلالية أو التجزئة الشاملة. يصوغ Mask2Former كل مهمة من تلك المهام على أنها مشكلة *تصنيف الأقنعة*. يقوم تصنيف القناع بتجميع وحدات البكسل في *N* قطعة، ويتنبأ بـ *N* أقنعة وتصنيف الفئة المقابل لها لصورة معينة. سنشرح في هذا القسم كيفية عمل Mask2Former، ويمكنك بعد ذلك تجربة ضبط SegFormer في النهاية.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png"/>
|
||||
</div>
|
||||
|
||||
هناك ثلاثة مكونات رئيسية لـ Mask2Former:
|
||||
|
||||
1. العمود الفقري [Swin](model_doc/swin) يقبل صورة وينشئ خريطة ميزات منخفضة الدقة من 3 عمليات التفافات متتالية 3x3.
|
||||
|
||||
2. يتم تمرير خريطة الميزات إلى *فك تشفير البكسل* الذي يقوم تدريجياً بزيادة الميزات منخفضة الدقة إلى تمثيلات عالية الدقة لكل بكسل. في الواقع، يقوم فك تشفير البكسل بإنشاء ميزات متعددة المقاييس (تحتوي على كل من الميزات منخفضة وعالية الدقة) بدقة 1/32 و1/16 و1/8 من الصورة الأصلية.
|
||||
|
||||
3. يتم تغذية كل من خرائط الميزات ذات المقاييس المختلفة على التوالي إلى طبقة واحدة من طبقات فك التشفير في كل مرة لالتقاط الأجسام الصغيرة من ميزات الدقة العالية. يتمثل مفتاح Mask2Former آلية *الاهتمام المقنع* في فك التشفير. على عكس الانتباه المتقاطع الذي يمكن أن يركز على الصورة بأكملها، يركز الانتباه المقنع فقط على منطقة معينة من الصورة. هذا أسرع ويؤدي إلى أداء أفضل لأن الميزات المحلية لصورة كافية للنموذج للتعلم منها.
|
||||
|
||||
4. مثل [DETR](tasks_explained#object-detection)، يستخدم Mask2Former أيضًا استعلامات كائن مكتسبة ويجمعها مع ميزات الصورة من فك تشفير البكسل لإجراء تنبؤ مجموعة (`تصنيف الفئة`، `التنبؤ بالقناع`). يتم تمرير حالات فك التشفير المخفية إلى طبقة خطية وتحويلها إلى احتمالات عبر علامات التصنيف. يتم حساب دالة التكلفة (الخسارة المتقاطعة) بين الاحتمالات وتصنيف الفئة لتحديد الأكثر احتمالاً.
|
||||
|
||||
يتم إنشاء تنبؤات الأقنعة عن طريق الجمع بين تمثيلات البكسل وحالات فك التشفير المخفية النهائية. يتم حساب دالة الخسارة المتقاطعة سيجمويد وخسارة النرد بين الاحتمالات والقناع البيانات الحقيقية للعثور على القناع الأكثر احتمالاً.
|
||||
|
||||
هل أنت مستعد لتجربة يدك في اكتشاف الكائنات؟ تحقق من دليلنا الشامل [دليل تجزئة الصورة](tasks/semantic_segmentation) لمعرفة كيفية ضبط SegFormer واستخدامه للاستدلال!
|
||||
|
||||
### تقدير العمق (Depth estimation)
|
||||
|
||||
[GLPN](model_doc/glpn)، شبكة المسار العالمية المحلية، هي محول ل تقدير العمق الذي يجمع بين مشفر [SegFormer](model_doc/segformer) مع فك تشفير خفيف الوزن.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg"/>
|
||||
</div>
|
||||
|
||||
1. مثل ViT، يتم تقسيم الصورة إلى تسلسل من الرقع، باستثناء أن هذه رقع الصورة أصغر. هذا أفضل لمهام التنبؤ الكثيفة مثل التجزئة أو تقدير العمق. يتم تحويل رقع الصورة إلى تمثيلات للرقع (راجع قسم [تصنيف الصور](#image-classification) لمزيد من التفاصيل حول كيفية إنشاء تمثيلات الرقع)، والتي يتم تغذيتها إلى المشفر.
|
||||
|
||||
2. يقبل المشفر تمثيلات الرقع، ويمررها عبر عدة كتل مشفرة. يتكون كل كتلة من طبقات انتباه وMix-FFN. الغرض من هذا الأخير هو توفير معلومات موضعية. في نهاية كل كتلة مشفرة توجد طبقة *دمج الرقع* لإنشاء تمثيلات هرمية. يتم دمج ميزات كل مجموعة من الرقع المجاورة، ويتم تطبيق طبقة خطية على الميزات المدمجة لتقليل عدد الرقع إلى دقة 1/4. يصبح هذا المُدخل للكتلة المشفرة التالية، حيث تتكرر هذه العملية بأكملها حتى تحصل على ميزات الصورة بدقة 1/8 و1/16 و1/32.
|
||||
|
||||
3. يقوم فك تشفير خفيف الوزن بأخذ خريطة الميزات الأخيرة (مقياس 1/32) من المشفر وزيادة حجمها إلى مقياس 1/16. من هنا، يتم تمرير الميزة إلى وحدة *دمج الميزات الانتقائية (SFF)*، والتي تقوم باختيار ودمج الميزات المحلية والعالمية من خريطة انتباه لكل ميزة ثم زيادة حجمها إلى 1/8. تتم إعادة هذه العملية حتى تصبح الميزات فك التشفير بنفس حجم الصورة الأصلية. يتم تمرير الإخراج عبر طبقتين تلافيفتين ثم يتم تطبيق تنشيط سيجمويد للتنبؤ بعمق كل بكسل.
|
||||
|
||||
## معالجة اللغات الطبيعية (Natural language processing -NLP)
|
||||
|
||||
تم تصميم نموذج المحول Transformer في الأصل للترجمة الآلية، ومنذ ذلك الحين أصبح في الواقع البنية الافتراضية لحل جميع مهام NLP. تناسب بعض المهام بنية المشفر في نموذج المحول، في حين أن البعض الآخر أكثر ملاءمة لفك التشفير. لا تزال مهام أخرى تستخدم بنية المشفر-فك التشفير في نموذج المحول.
|
||||
|
||||
### تصنيف النصوص (Text classification)
|
||||
|
||||
يعد [BERT](model_doc/bert) نموذج يعتمد على المُشفّر فقط، وهو أول نموذج يُطبق بشكل فعال ثنائية الاتجاه العميقة لتعلم تمثيلات أكثر ثراءً للنص من خلال الانتباه إلى الكلمات على كلا الجانبين.
|
||||
|
||||
1. يستخدم BERT تجزئة [WordPiece](tokenizer_summary#wordpiece) لإنشاء تمثيل رمزي للنص. للتمييز بين جملة واحدة وزوج من الجمل، تتم إضافة رمز خاص `[SEP]` للتفريق بينهما. تتم إضافة رمز خاص `[CLS]` إلى بداية كل تسلسل نصي. ويتم استخدام الإخراج النهائي مع الرمز `[CLS]` كمدخل لرأس التصنيف لمهام التصنيف. كما يضيف BERT تضمينًا للمقطع للإشارة إلى ما إذا كان الرمز ينتمي إلى الجملة الأولى أو الثانية في زوج من الجمل.
|
||||
|
||||
2. يتم تدريب BERT المسبق باستخدام هدفين: نمذجة اللغة المقنعة وتنبؤ الجملة التالية. في نمذجة اللغة المقنعة، يتم إخفاء نسبة مئوية مُعيّنة من رموز الإدخال بشكل عشوائي، ويجب على النموذج التنبؤ بها. يحل هذا مشكلة ثنائية الاتجاه، حيث يمكن للنموذج أن يغش ويرى جميع الكلمات و"يتنبأ" بالكلمة التالية. تتم تمرير الحالات المخفية النهائية للرموز المقنعة المتوقعة إلى شبكة تغذية أمامية مع دالة Softmax عبر مفردات اللغة للتنبؤ بالكلمة المقنعة.
|
||||
|
||||
الهدف الثاني من التدريب المسبق هو توقع الجملة التالية. يجب على النموذج التنبؤ بما إذا كانت الجملة "ب" تتبع الجملة"أ". نصف الوقت تكون الجملة "ب" هي الجملة التالية، والنصف الآخر من الوقت، تكون الجملة "ب" عبارة عشوائية. يتم تمرير التنبؤ، سواء كانت الجملة التالية أم لا، إلى شبكة تغذية أمامية مع دالة Softmax عبر الفئتين (`IsNext` و`NotNext`).
|
||||
|
||||
3. يتم تمرير تمثيلات الإدخال عبر عدة طبقات مشفرة لإخراج بعض الحالات المخفية النهائية.
|
||||
|
||||
لاستخدام النموذج المسبق التدريب لتصنيف النصوص، أضف رأس تصنيف تسلسلي أعلى نموذج BERT الأساسي. رأس تصنيف التسلسلي هو طبقة خطية تقبل الحالات المخفية النهائية وتجري تحويلًا خطيًا لتحويلها إلى احتمالات logits. يتم حساب دالة التكلفة (الخسارة المتقاطعة) بين logits والهدف للعثور على التصنيف الأكثر احتمالًا.
|
||||
|
||||
هل أنت مستعد لتجربة تصنيف النصوص؟ تحقق من [دليل تصنيف النصوص](tasks/sequence_classification) الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilBERT واستخدامه للاستنتاج!
|
||||
|
||||
### تصنيف الرموز (Token classification)
|
||||
|
||||
لاستخدام BERT لمهام تصنيف الرموز مثل التعرف على الكيانات المسماة (NER)، أضف رأس تصنيف الرموز أعلى نموذج BERT الأساسي. رأس تصنيف الرموز هو طبقة خطية تقبل الحالات المخفية النهائية وتجري تحويلًا خطيًا لتحويلها إلى logits. يتم حساب دالة التكلفة (الخسارة المتقاطعة) بين logits وكل رمز للعثور على التصنيف الأكثر احتمالًا.
|
||||
|
||||
هل أنت مستعد لتجربة تصنيف الرموز؟ تحقق من [دليل تصنيف الرموز](tasks/token_classification) الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilBERT واستخدامه للاستنتاج!
|
||||
|
||||
### الإجابة على الأسئلة (Question answering)
|
||||
|
||||
لاستخدام BERT للإجابة على الأسئلة، أضف رأس تصنيف المدى أعلى نموذج BERT الأساسي. تقبل هذه الطبقة الخطية الحالات المخفية النهائية وتُجري تحويلًا خطيًا لحساب داية ونهاية `الامتداد` logits `span` البداية والنهاية المقابلة للإجابة. يتم حسابدالة التكلفة (الخسارة المتقاطعة) بين logits وموقع التصنيف للعثور على الامتداد الأكثر احتمالًا من النص المقابل للإجابة.
|
||||
|
||||
هل أنت مستعد لتجربة الإجابة على الأسئلة؟ راجع [دليل الإجابة على الأسئلة](tasks/question_answering) الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilBERT واستخدامه في الاستدلال!
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
💡 لاحظ مدى سهولة استخدام BERT لمهام مختلفة بمجرد تدريبه مسبقًا. كل ما تحتاج إليه هو إضافة رأس محدد إلى النموذج المسبق التدريب للتلاعب بالحالات المخفية إلى الإخراج المطلوب!
|
||||
|
||||
</Tip>
|
||||
|
||||
### توليد النصوص (Text generation)
|
||||
|
||||
يُعد [GPT-2](model_doc/gpt2) نموذجًا قائم على فك التشفير فقط تم تدريبه المسبق على كمية كبيرة من النصوص. يمكنه توليد نص مقنع (على الرغم من أنه ليس دائمًا صحيحًا!) بناءً على مُحفّز معين واستكمال مهام NLP الأخرى مثل الإجابة على الأسئلة على الرغم من أنه لم يتم تدريبه بشكل صريح على ذلك.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gpt2_architecture.png"/>
|
||||
</div>
|
||||
|
||||
1. يستخدم GPT-2 [ترميز الأزواج البايتية (BPE)](tokenizer_summary#byte-pair-encoding-bpe) لتجزئة الكلمات وإنشاء تمثيل رمزى. يتم إضافة تمثيلات موضعية إلى تمثيلات الرموز للإشارة إلى موضع كل رمز في التسلسل. يتم تمرير تمثيلات الإدخال عبر عدة كتل فك تشفير لإخراج بعض الحالات المخفية النهائية. داخل كل كتلة فك تشفير، يستخدم GPT-2 طبقة *انتباه ذاتي مقنع* مما يعني أن GPT-2 لا يمكنه الانتباه بالرموز المستقبلية. يُسمح له فقط بالاهتمام بالرموز الموجودة على اليسار. يختلف هذا عن رمز [`mask`] الخاص بـ BERT لأنه، في الانتباه الذاتي المقنع، يتم استخدام قناع انتباه لتعيين النتيجة إلى `0` للرموز المستقبلية.
|
||||
|
||||
2. يتم تمرير الإخراج من فك التشفير إلى رأس نمذجة اللغة، والتي تُجري تحويلًا خطيًا لتحويل الحالات المخفية إلى احتمالات logits. التصنيف هو الرمز التالي في التسلسل، والذي يتم إنشاؤه عن طريق تغيير موضع logits إلى اليمين بمقدار واحد. يتم حساب دالة التكلفة (الخسارة المتقاطعة) بين logits التي تم تغيير موضعها والتصنيفات لإخراج الرمز التالي الأكثر احتمالًا.
|
||||
|
||||
يستند هدف التدريب المسبق لـ GPT-2 بالكامل إلى [نمذجة اللغة السببية](glossary#causal-language-modeling)، والتنبؤ بالكلمة التالية في تسلسل. يجعل هذا GPT-2 جيدًا بشكل خاص في المهام التي تتضمن توليد النص.
|
||||
|
||||
هل أنت مستعد لتجربة توليد النصوص؟ تحقق من دليل [دليل نمذجة اللغة السببية](tasks/language_modeling#causal- الشامل الخاص بنا لمعرفة كيفية ضبط نموذج DistilGPT-2 واستخدامه للاستنتاج!
|
||||
|
||||
<Tip>
|
||||
|
||||
للحصول على مزيد من المعلومات حول توليد النص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!
|
||||
|
||||
</Tip>
|
||||
|
||||
### التلخيص (Summarization)
|
||||
|
||||
تم تصميم نماذج المشفر-فك التشفير مثل [BART](model_doc/bart) و [T5](model_doc/t5) لنمط تسلسل إلى تسلسل لمهمة التلخيص. سنشرح كيف يعمل BART في هذا القسم، ثم يمكنك تجربة ضبط T5 في النهاية.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bart_architecture.png"/>
|
||||
</div>
|
||||
|
||||
1. تتشابه بنية المشفر BART كثيرًا مع BERT وتقبل رمزًا وتمثيلًا موضعيًا للنص. يتم تدريب BART مسبقًا عن طريق إتلاف المُدخلات ثم إعادة بنائه باستخدام فك التشفير. على عكس المشفرات الأخرى ذات استراتيجيات الإتلاف المحددة، يمكن لـ BART تطبيق أي نوع من الإتلاف. ومع ذلك، فإن استراتيجية إتلاف "ملء النص" تعمل بشكل أفضل. في ملء النص، يتم استبدال عدد من امتدادات النص برمز **واحد** [`mask`]. هذا أمر مهم لأن النموذج يجب أن يتنبأ بالرموز المقنعة، ويعلّم النموذج التنبؤ بعدد الرموز المفقودة. يتم تمرير تمثيلات الإدخال والامتدادات المقنعة عبر المشفر لإخراج بعض الحالات المخفية النهائية، ولكن على عكس BERT، لا يضيف BART شبكة تغذية أمامية نهائية في النهاية للتنبؤ بكلمة.
|
||||
|
||||
2. يتم تمرير إخراج المشفر إلى فك التشفير، والذي يجب أن يتنبأ بالرموز المقنعة وأي رموز غير تالفة من ناتج المشفر. يمنح هذا فك التشفير سياقًا إضافيًا للمساعدة في استعادة النص الأصلي. يتم تمرير ناتج فك التشفير إلى رأس نمذجة اللغوية، والذي يجري تحويلًا خطيًا لتحويل الحالات المخفية إلى احتمالات(logits). يتم حساب دالة التكلفة (الخسارة المتقاطعة) بين الاحتمالات logits والتصنيف، وهو مجرد الرمز الذي تم تغيير موضعه إلى اليمين.
|
||||
|
||||
هل أنت مستعد لتجربة التلخيص؟ تحقق من دليل التلخيص الشامل الخاص بنا لمعرفة كيفية ضبط نموذج T5 واستخدامه للاستنتاج!
|
||||
|
||||
<Tip>
|
||||
|
||||
للحصول على مزيد من المعلومات حول توليد النص، راجع دليل استراتيجيات توليد النص!
|
||||
|
||||
</Tip>
|
||||
|
||||
### الترجمة (Translation)
|
||||
|
||||
تُعد الترجمة مثالًا آخر على مهام التسلسل إلى التسلسل، مما يعني أنه يمكنك استخدام نموذج المشفر-فك التشفير مثل [BART](model_doc/bart) أو [T5](model_doc/t5) للقيام بذلك. سنشرح كيف يعمل BART في هذا القسم، ثم يمكنك تجربة ضبط T5 في النهاية.
|
||||
|
||||
يتكيف BART مع الترجمة عن طريق إضافة مشفر منفصل يتم تهيئته بشكل عشوائي لتعيين لغة المصدر بمدخلات يمكن فك تشفيرها إلى لغة الهدف. يتم تمرير تمثيلات هذا المشفر الجديد إلى المشفر المسبق التدريب بدلاً من تمثيلات الكلمات الأصلية. يتم تدريب مشفر المصدر عن طريق تحديث مشفر المصدر وتمثيلات التموضع وتمثيلات الإدخال باستخدام دالة التكلفة (الخسارة المتقاطعة) من ناتج النموذج. يتم تجميد معلمات النموذج في هذه الخطوة الأولى، ويتم تدريب جميع معلمات النموذج معًا في الخطوة الثانية.
|
||||
|
||||
تم إصدار نسخة متعددة اللغات من BART، تسمى mBART، مُخصصة للترجمة ومُدرّبة مسبقًا على العديد من اللغات المختلفة.
|
||||
|
||||
هل أنت مستعد لتجربة الترجمة؟ تحقق من دليل الترجمة الشامل الخاص بنا لمعرفة كيفية ضبط نموذج T5 واستخدامه للاستنتاج!
|
||||
|
||||
<Tip>
|
||||
|
||||
**للحصول على مزيد من المعلومات حول توليد النصوص، راجع دليل [استراتيجيات توليد النصوص](generation_strategies)!**
|
||||
|
||||
</Tip>
|
||||
40
docs/source/ar/tflite.md
Normal file
40
docs/source/ar/tflite.md
Normal file
@ -0,0 +1,40 @@
|
||||
# التصدير إلى TFLite
|
||||
|
||||
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) هو إطار عمل خفيف الوزن لنشر نماذج التعلم الآلي على الأجهزة المحدودة الموارد، مثل الهواتف المحمولة، والأنظمة المدمجة، وأجهزة إنترنت الأشياء (IoT). تم تصميم TFLite لتشغيل النماذج وتحسينها بكفاءة على هذه الأجهزة ذات الطاقة الحاسوبية والذاكرة واستهلاك الطاقة المحدودة.
|
||||
|
||||
يُمثَّل نموذج TensorFlow Lite بتنسيق محمول فعال خاص يُعرَّف بامتداد الملف `.tflite`.
|
||||
|
||||
🤗 Optimum يقدم وظيفة لتصدير نماذج 🤗 Transformers إلى TFLite من خلال الوحدة النمطية `exporters.tflite`. بالنسبة لقائمة هندسات النماذج المدعومة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/tflite/overview).
|
||||
|
||||
لتصدير نموذج إلى TFLite، قم بتثبيت متطلبات البرنامج المطلوبة:
|
||||
|
||||
```bash
|
||||
pip install optimum[exporters-tf]
|
||||
```
|
||||
|
||||
للاطلاع على جميع المغامﻻت المتاحة، راجع [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model)، أو عرض المساعدة في سطر الأوامر:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --help
|
||||
```
|
||||
|
||||
لتصدير نسخة النموذج ل 🤗 Hub، على سبيل المثال، `google-bert/bert-base-uncased`، قم بتشغيل الأمر التالي:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/
|
||||
```
|
||||
|
||||
ستظهر لك السجلات التي تُبيّن التقدم وموقع حفظ ملف `model.tflite` الناتج، كما في المثال التالي:
|
||||
|
||||
```bash
|
||||
Validating TFLite model...
|
||||
-[✓] TFLite model output names match reference model (logits)
|
||||
- Validating TFLite Model output "logits":
|
||||
-[✓] (1, 128, 30522) matches (1, 128, 30522)
|
||||
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
|
||||
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
|
||||
- logits: max diff = 5.817413330078125e-05.
|
||||
The exported model was saved at: bert_tflite
|
||||
```
|
||||
|
||||
يُبيّن المثال أعلاه كيفية تصدير نسخة من النموذج ل 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج المجزء اللغوى في نفس المسار (`local_path`). عند استخدام CLI، قم بتمرير `local_path` إلى معامل `model` بدلاً من اسم النسخة على 🤗 Hub.
|
||||
198
docs/source/ar/tokenizer_summary.md
Normal file
198
docs/source/ar/tokenizer_summary.md
Normal file
@ -0,0 +1,198 @@
|
||||
# ملخص عن المجزئات اللغوية
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
في هذه الصفحة، سنتناول بالتفصيل عملية التجزئة.
|
||||
|
||||
<Youtube id="VFp38yj8h3A"/>
|
||||
|
||||
كما رأينا في [برنامج تعليمي حول المعالجة المسبقة](preprocessing)، فإن تجزئة النص يقسمه إلى كلمات أو
|
||||
الرموز الفرعية (كلمات جزئية)، والتي يتم بعد ذلك تحويلها إلى معرفات من خلال قائمة بحث. يعد تحويل الكلمات أو الرموز الفرعية إلى معرفات مباشرًا، لذا في هذا الملخص، سنركز على تقسيم النص إلى كلمات أو رموز فرعية (أي تجزئة النص).
|
||||
وبشكل أكثر تحديدًا، سنلقي نظرة على الأنواع الثلاثة الرئيسية من المُجزئات اللغوية المستخدمة في 🤗 المحولات: [ترميز الأزواج البايتية (BPE)](#byte-pair-encoding)، [WordPiece](#wordpiece)، و [SentencePiece](#sentencepiece)، ونعرض أمثلة
|
||||
على نوع المُجزئة الذي يستخدمه كل نموذج.
|
||||
|
||||
لاحظ أنه في كل صفحة نموذج، يمكنك الاطلاع على وثائق المُجزئة المرتبط لمعرفة نوع المُجزئ
|
||||
الذي استخدمه النموذج المُدرب مسبقًا. على سبيل المثال، إذا نظرنا إلى [`BertTokenizer`]، يمكننا أن نرى أن النموذج يستخدم [WordPiece](#wordpiece).
|
||||
|
||||
## مقدمة
|
||||
|
||||
إن تقسيم النص إلى أجزاء أصغر هو مهمة أصعب مما تبدو، وهناك طرق متعددة للقيام بذلك.
|
||||
على سبيل المثال، دعنا نلقي نظرة على الجملة `"Don't you love 🤗 Transformers? We sure do."`
|
||||
|
||||
<Youtube id="nhJxYji1aho"/>
|
||||
|
||||
يمكن تقسيم هذه الجملة ببساطة عن طريق المسافات، مما سينتج عنه ما يلي:```
|
||||
|
||||
```
|
||||
["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."]
|
||||
```
|
||||
|
||||
هذه خطوة أولى منطقية، ولكن إذا نظرنا إلى الرموز `"Transformers?"` و `"do."`، فإننا نلاحظ أن علامات الترقيم مُرفقة بالكلمات `"Transformer"` و `"do"`، وهو أمر ليس مثالي. يجب أن نأخذ علامات الترقيم في الاعتبار حتى لا يضطر النموذج إلى تعلم تمثيل مختلف للكلمة وكل رمز ترقيم مُحتمل قد يليها، الأمر الذي من شأنه أن يزيد بشكل هائل عدد التمثيلات التي يجب على النموذج تعلمها.
|
||||
مع مراعاة علامات الترقيم، سيُصبح تقسيم نصنا على النحو التالي:
|
||||
|
||||
```
|
||||
["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]
|
||||
```
|
||||
|
||||
أفضل. ومع ذلك، من غير الملائم كيفية تقسيم الكلمة `"Don't"`. `"Don't"` تعني `"do not"`، لذا سيكون من الأفضل تحليلها على أنها كلمتين مُدمجتين `["Do"، "n't"]`. هنا تبدأ الأمور في التعقيد، وهو جزء من سبب امتلاك كل نموذج لنوّعه الخاص من مُجزّئ النصوص (tokenizer). اعتمادًا على القواعد التي نطبقها لتقسيم النص، يسيتم إنشاء مخرجات مُجزّأة مُختلفة لنفس النص. ولن يؤدي النموذج المُدرب مسبقًا إلى الأداء بشكل صحيح إلا إذا قُدّم له مُدخل تم تقسيمه بنفس القواعد التي تم استخدامها لتقسيم بيانات التدريب الخاصة به.
|
||||
|
||||
يُعد كل من [spaCy](https://spacy.io/) و [Moses](http://www.statmt.org/moses/?n=Development.GetStarted) هما مجزّئي النصوص التي تعتمد على القواعد
|
||||
الشائعة. عند تطبيقها على مثالنا، فإن *spaCy* و *Moses* ستخرج نّصًا مثل:
|
||||
|
||||
```
|
||||
["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]
|
||||
```
|
||||
|
||||
كما يمكنك أن ترى، يتم هنا استخدام التقسيم المكاني والترقيم، وكذلك تقسيم الكلمات القائم على القواعد. يعد التقسيم المكاني والترقيم والتحليل القائم على القواعد كلاهما مثالين على تقسيم الكلمات، والذي يُعرّف بشكل غير مُحدد على أنه تقسيم الجُمل إلى كلمات. في حين أنها الطريقة الأكثر بديهية لتقسيم النصوص إلى أجزاء أصغر،
|
||||
يمكن أنها تؤدى إلى مشكلات لمجموعات النصوص الضخمة. في هذه الحالة، عادةً ما يؤدي التقسيم المكاني والترقيم
|
||||
إلى إنشاء مفردات كبيرة جدًا (مجموعة من جميع الكلمات والرموز الفريدة المستخدمة). على سبيل المثال، يستخدم [Transformer XL](model_doc/transfo-xl) التقسيم المكاني والترقيم، مما يؤدي إلى حجم مُفردات يبلغ 267735!
|
||||
|
||||
يفرض حجم المُفردات الكبير هذا على النموذج أن يكون لديه مصفوفة تضمين (embedding matrix) ضخمة كطبقة إدخال وإخراج، مما يؤدي إلى زيادة كل من التعقيد الزمني والذاكرة. بشكل عام، نادرًا ما يكون لدى نماذج المحولات حجم مفردات
|
||||
أكبر من 50000، خاصة إذا تم تدريبها مسبقًا على لغة واحدة فقط.
|
||||
|
||||
لذا إذا كان التقسيم المكاني و الترقيم البسيط غير مرضٍ، فلماذا لا نقسّم الحروف ببساطة؟
|
||||
|
||||
<Youtube id="ssLq_EK2jLE"/>
|
||||
|
||||
في حين أن تقسيم الأحرف بسيط للغاية ومن شأنه أن يقلل بشكل كبير من التعقيد الزمني والذاكرة، إلا أنه يجعل من الصعب
|
||||
على النموذج تعلم تمثيلات المدخلات ذات معنى. على سبيل المثال، يعد تعلم تمثيل مستقل عن السياق للحرف "t" أكثر صعوبة من تعلم تمثيل مستقل عن السياق لكلمة "اليوم". لذلك، غالبًا ما يكون تحليل الأحرف مصحوبًا بفقدان الأداء. لذا للحصول على أفضل ما في العالمين، تستخدم نماذج المحولات نظامًا هجينًا بين تقسيم على مستوى الكلمة وتقسيم علي مستوى الأحرف يسمى **تقسيم الوحدات الفرعية للّغة** (subword tokenization).
|
||||
|
||||
## تقسيم الوحدات الفرعية للّغة (Subword Tokenization)
|
||||
|
||||
<Youtube id="zHvTiHr506c"/>
|
||||
|
||||
تعتمد خوارزميات تقسيم الوحدات الفرعية subword على المبدأ القائل بأن الكلمات الشائعة الاستخدام لا ينبغي تقسيمها إلى وحدات فرعية أصغر، ولكن يجب تفكيك الكلمات النادرة إلى رموز فرعية ذات معنى. على سبيل المثال، قد يتم اعتبار "annoyingly"
|
||||
كلمة نادرة ويمكن تحليلها إلى "annoying" و "ly". كل من "annoying" و "ly" كـ subwords مستقلة ستظهر بشكل متكرر أكثر في حين أن معنى "annoyingly" يتم الاحتفاظ به من خلال المعنى المركب لـ "annoying" و "ly". هذا مفيد بشكل خاص في اللغات التلصيقية مثل التركية، حيث يمكنك تشكيل كلمات مُركبة طويلة (تقريبًا) بشكل تعسفي عن طريق ضم الرموز الفرعية معًا.
|
||||
|
||||
يسمح تقسيم subword للنموذج بأن يكون له حجم مفردات معقول مع القدرة على تعلم تمثيلات مستقلة عن السياق ذات معنى. بالإضافة إلى ذلك، يمكّن تقسيم subword النموذج من معالجة الكلمات التي لم يسبق له رؤيتها من قبل، عن طريق تحليلها إلى رموز فرعية معروفة. على سبيل المثال، يقوم المحلل [`~transformers.BertTokenizer`] بتحليل"I have a new GPU!" كما يلي:
|
||||
|
||||
```py
|
||||
>>> from transformers import BertTokenizer
|
||||
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer.tokenize("I have a new GPU!")
|
||||
["i", "have", "a", "new", "gp", "##u", "!"]
|
||||
```
|
||||
|
||||
نظرًا لأننا نستخدم نموذجًا غير حساس لحالة الأحرف (uncased model)، فقد تم تحويل الجملة إلى أحرف صغيرة أولاً. يمكننا أن نرى أن الكلمات `["i"، "have"، "a"، "new"]` موجودة في مفردات مُجزّئ النصوص، ولكن الكلمة "gpu" غير موجودة. وبالتالي، يقوم مُجزّئ النصوص بتقسيم "gpu" إلى رموز فرعية معروفة: `["gp" و "##u"]`. يعني "##" أنه يجب ربط بقية الرمز بالرمز السابق، دون مسافة (للترميز أو عكس عملية تقسيم الرموز).
|
||||
|
||||
كمثال آخر، يقوم المحلل [`~transformers.XLNetTokenizer`] بتقسيم نّص مثالنا السابق كما يلي:
|
||||
|
||||
```py
|
||||
>>> from transformers import XLNetTokenizer
|
||||
|
||||
>>> tokenizer = XLNetTokenizer.from_pretrained("xlnet/xlnet-base-cased")
|
||||
>>> tokenizer.tokenize("Don't you love 🤗 Transformers? We sure do.")
|
||||
["▁Don", "'", "t", "▁you", "▁love", "▁"، "🤗"، "▁"، "Transform"، "ers"، "؟"، "▁We"، "▁sure"، "▁do"، "."]
|
||||
```
|
||||
سنعود إلى معنى تلك `"▁"` عندما نلقي نظرة على [SentencePiece](#sentencepiece). كما يمكنك أن ترى،
|
||||
تم تقسيم الكلمة النادرة "Transformers" إلى الرموز الفرعية الأكثر تكرارًا `"Transform"` و `"ers"`.
|
||||
|
||||
دعنا الآن نلقي نظرة على كيفية عمل خوارزميات تقسيم subword المختلفة. لاحظ أن جميع خوارزميات التقسيم هذه تعتمد على بعض أشكال التدريب الذي يتم عادةً على مجموعة البيانات التي سيتم تدريبها النموذج عليها.
|
||||
|
||||
<a id='byte-pair-encoding'></a>
|
||||
|
||||
### ترميز الأزواج البايتية (BPE)
|
||||
|
||||
تم تقديم رميز أزواج البايت (BPE) في ورقة بحثية بعنوان [الترجمة الآلية العصبية للكلمات النادرة باستخدام وحدات subword (Sennrich et al.، 2015)](https://arxiv.org/abs/1508.07909). يعتمد BPE على مُجزّئ أولي يقسم بيانات التدريب إلى
|
||||
كلمات. يمكن أن يكون التحليل المسبق بسيطًا مثل التقسيم المكاني، على سبيل المثال [GPT-2](model_doc/gpt2)، [RoBERTa](model_doc/roberta). تشمل التقسيم الأكثر تقدمًا معتمد على التحليل القائم على القواعد، على سبيل المثال [XLM](model_doc/xlm)، [FlauBERT](model_doc/flaubert) الذي يستخدم Moses لمعظم اللغات، أو [GPT](model_doc/openai-gpt) الذي يستخدم spaCy و ftfy، لحساب تكرار كل كلمة في مجموعة بيانات التدريب.
|
||||
|
||||
بعد التحليل المسبق، يتم إنشاء مجموعة من الكلمات الفريدة وقد تم تحديد تكرار كل كلمة في تم تحديد بيانات التدريب. بعد ذلك، يقوم BPE بإنشاء مفردات أساسية تتكون من جميع الرموز التي تحدث في مجموعة الكلمات الفريدة ويتعلم قواعد الدمج لتشكيل رمز جديد من رمزين من المفردات الأساسية. إنه يفعل ذلك حتى تصل المفردات إلى حجم المفردات المطلوب. لاحظ أن حجم المفردات هو فرط معلمة لتحديد قبل تدريب مُجزّئ النصوص.
|
||||
|
||||
كمثال، دعنا نفترض أنه بعد التقسيم الأولي، تم تحديد مجموعة الكلمات التالية بما في ذلك تكرارها:
|
||||
|
||||
```
|
||||
("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
|
||||
```
|
||||
|
||||
وبالتالي، فإن المفردات الأساسية هي `["b"، "g"، "h"، "n"، "p"، "s"، "u"]`. من خلال تقسيم جميع الكلمات إلى رموز من
|
||||
المفردات الأساسية، نحصل على:
|
||||
|
||||
```
|
||||
("h" "u" "g"، 10)، ("p" "u" "g"، 5)، ("p" "u" "n"، 12)، ("b" "u" "n"، 4)، ("h" "u" "g" "s"، 5)
|
||||
```
|
||||
|
||||
بعد ذلك، يقوم BPE بعدد مرات حدوث كل زوج من الرموز المحتملة ويختار زوج الرموز الذي يحدث بشكل متكرر. في
|
||||
في المثال أعلاه، يحدث "h" متبوعًا بـ "u" _10 + 5 = 15_ مرة (10 مرات في 10 مرات
|
||||
حدوث "hug"، 5 مرات في 5 مرات حدوث "hugs"). ومع ذلك، فإن أكثر أزواج الرموز شيوعًا هو "u" متبوعًا
|
||||
بواسطة "g"، والتي تحدث _10 + 5 + 5 = 20_ مرة في المجموع. وبالتالي، فإن أول قاعدة دمج يتعلمها المحلل هي تجميع جميع
|
||||
رموز "u" التي تتبعها "g" معًا. بعد ذلك، يتم إضافة "ug" إلى المفردات. تصبح مجموعة الكلمات
|
||||
|
||||
```
|
||||
("h" "ug"، 10)، ("p" "ug"، 5)، ("p" "u" "n"، 12)، ("b" "u" "n"، 4)، ("h" "ug" "s"، 5)
|
||||
```
|
||||
|
||||
بعد ذلك، يحدد BPE ثاني أكثر أزواج الرموز شيوعًا. إنه "u" متبوعًا بـ "n"، والذي يحدث 16 مرة. "u"،
|
||||
يتم دمج "n" في "un" ويضاف إلى المفردات. ثالث أكثر أزواج الرموز شيوعًا هو "h" متبوعًا
|
||||
بواسطة "ug"، والتي تحدث 15 مرة. مرة أخرى يتم دمج الزوج ويتم إضافة "hug" إلى المفردات.
|
||||
|
||||
في هذه المرحلة، تكون المفردات هي `["b"، "g"، "h"، "n"، "p"، "s"، "u"، "ug"، "un"، "hug"]` ومجموعة الكلمات الفريدة لدينا
|
||||
تمثيله كما يلي:
|
||||
|
||||
```
|
||||
("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)
|
||||
```
|
||||
|
||||
بافتراض أن تدريب ترميز الأزواج البايت سيتوقف عند هذه النقطة، فسيتم تطبيق قواعد الدمج التي تم تعلمها بعد ذلك على الكلمات الجديدة (طالما أن هذه الكلمات الجديدة لا تشمل رموزًا لم تكن في المفردات الأساسية). على سبيل المثال، سيتم تقسيم كلمة "bug" إلى `["b"، "ug"]` ولكن سيتم تقسيم "mug" على أنها `["<unk>"، "ug"]` نظرًا لأن الرمز "m" غير موجود في المفردات الأساسية. بشكل عام، لا يتم استبدال الأحرف الفردية مثل "m" بالرمز "<unk>" لأن بيانات التدريب تتضمن عادةً ظهورًا واحدًا على الأقل لكل حرف، ولكن من المحتمل أن يحدث ذلك لرموز خاصة جدًا مثل الرموز التعبيرية.
|
||||
|
||||
كما ذكرنا سابقًا، فإن حجم المفردات، أي حجم المفردات الأساسية + عدد عمليات الدمج، هو معامل يجب اختياره. على سبيل المثال، لدى [GPT](model_doc/openai-gpt) حجم مفردات يبلغ 40478 منذ أن كان لديهم 478 حرفًا أساسيًا واختاروا التوقف عن التدريب بعد 40,000 عملية دمج.
|
||||
|
||||
#### ترميز الأزواج البايتية على مستوى البايت
|
||||
|
||||
قد تكون المفردات الأساسية التي تتضمن جميع الأحرف الأساسية كبيرة جدًا إذا *على سبيل المثال* تم اعتبار جميع أحرف اليونيكود
|
||||
كأحرف أساسية. لذا، ليكون لديك مفردات أساسية أفضل، يستخدم [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) البايتات كمفردات أساسية، وهي حيلة ذكية لإجبار المفردات الأساسية على أن تكون بحجم 256 مع ضمان أن يتم تضمين كل حرف أساسي في المفردات. مع بعض القواعد الإضافية للتعامل مع علامات الترقيم، يمكن لمُجزّئ النصوص GPT2 تجزئة أي نص دون الحاجة إلى رمز <unk>. لدى [GPT-2](model_doc/gpt) حجم مفردات يبلغ 50257، والذي يتوافق مع رموز 256 base byte، ورمز خاص لنهاية النص والرموز التي تم تعلمها باستخدام 50000 عملية دمج.
|
||||
|
||||
<a id='wordpiece'></a>
|
||||
|
||||
### WordPiece
|
||||
|
||||
تعتبر WordPiece خوارزمية تجزئة الكلمات الفرعية subword المستخدمة لـ [BERT](model_doc/bert)، [DistilBERT](model_doc/distilbert)، و [Electra](model_doc/electra). تم توضيح الخوارزمية في [البحث الصوتي الياباني والكوري
|
||||
(Schuster et al.، 2012)](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf) وهو مشابه جدًا
|
||||
BPE. أولاً، يقوم WordPiece بتكوين المفردات لتضمين كل حرف موجود في بيانات التدريب
|
||||
وتعلم تدريجياً عددًا معينًا من قواعد الدمج. على عكس BPE، لا يختار WordPiece أكثر زوج الرموز المتكررة، ولكن تلك التي تزيد من احتمال بيانات التدريب بمجرد إضافتها إلى المفردات.
|
||||
|
||||
لذا، ماذا يعني هذا بالضبط؟ بالإشارة إلى المثال السابق، فإن زيادة احتمال بيانات التدريب تعادل إيجاد زوج الرموز، الذي يكون احتمال تقسيمه على احتمالات رمزه الأول تليها رمزه الثاني هو الأكبر بين جميع أزواج الرموز. *مثال* `"u"`، تليها `"g"` كانت قد اندمجت فقط إذا كان احتمال `"ug"` مقسومًا على `"u"`، `"g"` كان سيكون أكبر من أي زوج آخر من الرموز. بديهيًا، WordPiece مختلف قليلاً عن BPE في أنه يقيم ما يفقده عن طريق دمج رمزين للتأكد من أنه يستحق ذلك.
|
||||
|
||||
<a id='unigram'></a>
|
||||
|
||||
### Unigram
|
||||
|
||||
Unigram هو خوارزمية توكنيز subword التي تم تقديمها في [تنظيم subword: تحسين نماذج الترجمة الشبكة العصبية
|
||||
نماذج مع مرشحين subword متعددة (Kudo، 2018)](https://arxiv.org/pdf/1804.10959.pdf). على عكس BPE أو
|
||||
WordPiece، يقوم Unigram بتكوين مفرداته الأساسية إلى عدد كبير من الرموز ويقللها تدريجياً للحصول على مفردات أصغر. يمكن أن تتوافق المفردات الأساسية على سبيل المثال مع جميع الكلمات المسبقة التوكنز والسلاسل الفرعية الأكثر شيوعًا. لا يتم استخدام Unigram مباشرة لأي من النماذج في المحولات، ولكنه يستخدم بالاقتران مع [SentencePiece](#sentencepiece).
|
||||
|
||||
في كل خطوة تدريب، يحدد خوارزمية Unigram خسارة (غالبًا ما يتم تعريفها على أنها اللوغاريتم) عبر بيانات التدريب بالنظر إلى المفردات الحالية ونموذج اللغة unigram. بعد ذلك، بالنسبة لكل رمز في المفردات، يحسب الخوارزمية مقدار زيادة الخسارة الإجمالية إذا تم إزالة الرمز من المفردات. ثم يقوم Unigram بإزالة p (مع p عادة ما تكون 10% أو 20%) في المائة من الرموز التي تكون زيادة الخسارة فيها هي الأدنى، *أي* تلك
|
||||
الرموز التي تؤثر أقل على الخسارة الإجمالية عبر بيانات التدريب. تتكرر هذه العملية حتى تصل المفردات إلى الحجم المطلوب. يحتفظ خوارزمية Unigram دائمًا بالشخصيات الأساسية بحيث يمكن توكنز أي كلمة.
|
||||
|
||||
نظرًا لأن Unigram لا يعتمد على قواعد الدمج (على عكس BPE وWordPiece)، فإن للخوارزمية عدة طرق
|
||||
توكنز نص جديد بعد التدريب. على سبيل المثال، إذا كان محول Unigram المدرب يعرض المفردات:
|
||||
|
||||
```
|
||||
["b"، "g"، "h"، "n"، "p"، "s"، "u"، "ug"، "un"، "hug"]،
|
||||
```
|
||||
|
||||
يمكن توكنز `"hugs"` على أنه `["hug"، "s"]`، أو `["h"، "ug"، "s"]` أو `["h"، "u"، "g"، "s"]`. إذن ماذا
|
||||
لاختيار؟ يحفظ Unigram احتمال كل رمز في فيلق التدريب بالإضافة إلى حفظ المفردات بحيث
|
||||
يمكن حساب احتمال كل توكنز ممكن بعد التدريب. ببساطة، يختار الخوارزمية الأكثر
|
||||
توكنز المحتملة في الممارسة، ولكنه يوفر أيضًا إمكانية أخذ عينات من توكنز ممكن وفقًا لاحتمالاتها.
|
||||
|
||||
تتم تعريف هذه الاحتمالات بواسطة الخسارة التي يتم تدريب المحول عليها. بافتراض أن بيانات التدريب تتكون
|
||||
من الكلمات \\(x_{1}، \dots، x_{N}\\) وأن مجموعة جميع التوكنزات الممكنة لكلمة \\(x_{i}\\) هي
|
||||
يتم تعريفها على أنها \\(S(x_{i})\\)، ثم يتم تعريف الخسارة الإجمالية على النحو التالي
|
||||
|
||||
$$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )$$
|
||||
|
||||
<a id='sentencepiece'></a>
|
||||
|
||||
### SentencePiece
|
||||
|
||||
تحتوي جميع خوارزميات توكنز الموصوفة حتى الآن على نفس المشكلة: من المفترض أن النص المدخل يستخدم المسافات لفصل الكلمات. ومع ذلك، لا تستخدم جميع اللغات المسافات لفصل الكلمات. أحد الحلول الممكنة هو استخداممعالج مسبق للغة محدد، *مثال* [XLM](model_doc/xlm) يلذي يستخدم معالجات مسبقة محددة للصينية واليابانية والتايلاندية.
|
||||
لحل هذه المشكلة بشكل أعم، [SentencePiece: A simple and language independent subword tokenizer and
|
||||
detokenizer for Neural Text Processing (Kudo et al.، 2018)](https://arxiv.org/pdf/1808.06226.pdf) يتعامل مع المدخلات
|
||||
كتدفق بيانات خام، وبالتالي يشمل المسافة في مجموعة الأحرف التي سيتم استخدامها. ثم يستخدم خوارزمية BPE أو unigram
|
||||
لبناء المفردات المناسبة.
|
||||
|
||||
يستخدم [`XLNetTokenizer`] SentencePiece على سبيل المثال، وهو أيضًا سبب تضمين تم تضمين حرف `"▁"` في المفردات. عملية فك التشفير باستخدام SentencePiece سهلة للغاية نظرًا لأنه يمكن دائمًا دمج الرموز معًا واستبدال `"▁"` بمسافة.
|
||||
|
||||
تستخدم جميع نماذج المحولات في المكتبة التي تستخدم SentencePiece بالاقتران مع unigram. أمثلة على النماذج
|
||||
باستخدام SentencePiece هي [ALBERT](model_doc/albert)، [XLNet](model_doc/xlnet)، [Marian](model_doc/marian)، و [T5](model_doc/t5).
|
||||
154
docs/source/ar/torchscript.md
Normal file
154
docs/source/ar/torchscript.md
Normal file
@ -0,0 +1,154 @@
|
||||
# التصدير إلى TorchScript
|
||||
|
||||
<Tip>
|
||||
|
||||
هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
|
||||
|
||||
</Tip>
|
||||
|
||||
وفقًا لـ [وثائق TorchScript](https://pytorch.org/docs/stable/jit.html):
|
||||
|
||||
> TorchScript هي طريقة لإنشاء نماذج قابلة للتسلسل والتحسين من تعليمات PyTorch البرمجية.
|
||||
|
||||
هناك وحدتان من PyTorch، [JIT and TRACE](https://pytorch.org/docs/stable/jit.html)، تتيحان للمطورين تصدير نماذجهم لإعادة استخدامها في برامج أخرى مثل برامج C++ المُحسّنة للأداء.
|
||||
|
||||
نقدم واجهة تتيح لك تصدير نماذج 🤗 Transformers إلى TorchScript بحيث يمكن إعادة استخدامها في بيئة مختلفة عن برامج Python القائمة إلى PyTorch. هنا نشرح كيفية تصدير نماذجنا واستخدامها باستخدام TorchScript.
|
||||
|
||||
يتطلب تصدير نموذج أمرين:
|
||||
|
||||
- تهيئة مثيل للنموذج باستخدام علامة `torchscript`
|
||||
- تمرير مُدخلات وهمية (dummy inputs) خلال النموذج
|
||||
|
||||
تنطوي هذه الضرورات على عدة أمور يجب على المطورين توخي الحذر بشأنها كما هو مفصل أدناه.
|
||||
|
||||
## علامة TorchScript والأوزان المرتبطة
|
||||
|
||||
علامة `torchscript` ضرورية لأن معظم نماذج اللغة 🤗 Transformers لها أوزان مرتبطة بين طبقة `Embedding` وطبقة `Decoding`. لا يسمح لك TorchScript بتصدير النماذج ذات الأوزان المرتبطة، لذلك من الضروري فصل الأوزان ونسخها مسبقًا.
|
||||
|
||||
النماذج المُهيأة باستخدام علامة `torchscript` لها طبقة `Embedding` وطبقة`Decoding` منفصلتين، مما يعني أنه لا ينبغي تدريبها لاحقًا. سيؤدي التدريب إلى عدم تزامن الطبقتين، مما يؤدي إلى نتائج غير متوقعة.
|
||||
|
||||
هذا لا ينطبق على النماذج التي لا تحتوي على رأس نموذج اللغة، حيث لا تملك أوزانًا مرتبطة. يمكن تصدير هذه النماذج بأمان دون علامة `torchscript`.
|
||||
|
||||
## المدخلات الوهمية والأطوال القياسية
|
||||
|
||||
تُستخدم المُدخلات الوهمية لتمرير أمامي خلال النموذج. أثناء انتشار قيم المُدخلات عبر الطبقات، يتتبع PyTorch العمليات المختلفة التي يتم تنفيذها على كل مصفوفة(tensor). ثم يتم استخدام هذه العمليات المُسجلة بعد ذلك لإنشاء *أثر* النموذج.
|
||||
|
||||
يتم إنشاء التتبع بالنسبة لأبعاد المُدخلات. وبالتالي، فهو مُقيّد بأبعاد المُدخلات الوهمية، ولن يعمل لأي طول تسلسل أو حجم دفعة مختلف. عند المحاولة بحجم مختلف، يتم رفع الخطأ التالي:
|
||||
|
||||
```
|
||||
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
|
||||
```
|
||||
|
||||
نوصي بتتبع النموذج باستخدام حجم مُدخلات وهمية لا يقل عن أكبر مُدخل سيتم تقديمه للنموذج أثناء الاستدلال. يمكن أن تساعد الحشوة(padding) في ملء القيم المفقودة. ومع ذلك، نظرًا لتتبع النموذج بحجم مُدخل أكبر، ستكون أبعاد المصفوفة ستكون كبيرة أيضًا، مما يؤدي عنه المزيد من الحسابات.
|
||||
|
||||
انتبه إلى إجمالي عدد العمليات المُنفذة على كل مُدخل وتابع الأداء عن كثب عند تصدير نماذج متغيرة طول التسلسل.
|
||||
|
||||
## استخدام TorchScript في Python
|
||||
|
||||
يوضح هذا القسم كيفية حفظ النماذج وتحميلها، بالإضافة إلى كيفية استخدام التتبع للاستدلال.
|
||||
|
||||
### حفظ نموذج
|
||||
|
||||
لتصدير `BertModel` باستخدام TorchScript، قم بتهيئة ـ `BertModel` من فئة `BertConfig` ثم احفظه على القرص تحت اسم الملف `traced_bert.pt`:
|
||||
|
||||
```python
|
||||
from transformers import BertModel, BertTokenizer, BertConfig
|
||||
import torch
|
||||
|
||||
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
# Tokenizing input text
|
||||
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
|
||||
tokenized_text = enc.tokenize(text)
|
||||
|
||||
# Masking one of the input tokens
|
||||
masked_index = 8
|
||||
tokenized_text[masked_index] = "[MASK]"
|
||||
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
|
||||
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
|
||||
|
||||
# Creating a dummy input
|
||||
tokens_tensor = torch.tensor([indexed_tokens])
|
||||
segments_tensors = torch.tensor([segments_ids])
|
||||
dummy_input = [tokens_tensor, segments_tensors]
|
||||
|
||||
# Initializing the model with the torchscript flag
|
||||
# Flag set to True even though it is not necessary as this model does not have an LM Head.
|
||||
config = BertConfig(
|
||||
vocab_size_or_config_json_file=32000,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
# Instantiating the model
|
||||
model = BertModel(config)
|
||||
|
||||
# The model needs to be in evaluation mode
|
||||
model.eval()
|
||||
|
||||
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
|
||||
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
|
||||
|
||||
# Creating the trace
|
||||
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
|
||||
torch.jit.save(traced_model, "traced_bert.pt")
|
||||
```
|
||||
|
||||
### تحميل نموذج
|
||||
|
||||
يمكنك الآن تحميل `BertModel` المُحفظ سابقًا، `traced_bert.pt`، من القرص واستخدامه على `dummy_input` المُهيأ سابقًا:
|
||||
|
||||
```python
|
||||
loaded_model = torch.jit.load("traced_bert.pt")
|
||||
loaded_model.eval()
|
||||
|
||||
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
|
||||
```
|
||||
|
||||
### استخدام نموذج مُتتبع للاستدلال
|
||||
|
||||
استخدم النموذج المُتتبع للاستدلال باستخدام أسلوب `__call__` الخاص به:
|
||||
|
||||
```python
|
||||
traced_model(tokens_tensor, segments_tensors)
|
||||
```
|
||||
|
||||
## نشر نماذج Hugging Face TorchScript على AWS باستخدام Neuron SDK
|
||||
|
||||
قدمت AWS عائلة [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) من اﻷجهزة لخفض التكلفة وأداء التعلم الآلي عالي الأداء في البيئة السحابية. تعمل أجهزة Inf1 بواسطة شريحة Inferentia من AWS، وهي مُسرّع أجهزة مُخصص، متخصص في أعباء عمل الاستدلال للتعلم العميق. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) هي SDK لـ Inferentia التي تدعم تتبع نماذج المحولات وتحسينها للنشر على Inf1. توفر Neuron SDK ما يلي:
|
||||
|
||||
1. واجهة برمجة تطبيقات سهلة الاستخدام مع تغيير سطر واحد من التعليمات البرمجية لتتبع نموذج TorchScript وتحسينه للاستدلال في البيئة السحابية.
|
||||
2. تحسينات الأداء الجاهزة للاستخدام [تحسين التكلفة والأداء](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>).
|
||||
3. دعم نماذج Hugging Face المحولات المبنية باستخدام إما [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) أو [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
|
||||
|
||||
### الآثار المترتبة
|
||||
|
||||
تعمل نماذج المحولات المستندة إلى بنية [BERT (تمثيلات الترميز ثنائية الاتجاه من المحولات)](https://huggingface.co/docs/transformers/main/model_doc/bert) أو متغيراتها مثل [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) و [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) بشكل أفضل على Inf1 للمهام غير التوليدية مثل الإجابة على الأسئلة الاستخراجية، وتصنيف التسلسلات، وتصنيف الرموز (tokens). ومع ذلك، يمكن تكييف مهام توليد النصوص للعمل على Inf1 وفقًا لهذا [برنامج تعليمي AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). يمكن العثور على مزيد من المعلومات حول النماذج التي يمكن تحويلها جاهزة على Inferentia في قسم [ملاءمة بنية النموذج](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) من وثائق Neuron.
|
||||
|
||||
### التبعيات (Dependencies)
|
||||
|
||||
يتطلب استخدام AWS Neuron لتحويل النماذج [بيئة SDK Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) والتي تأتي مسبقًا على [AMI للتعلم العميق من AWS](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
|
||||
|
||||
### تحويل نموذج لـ AWS Neuron
|
||||
|
||||
قم بتحويل نموذج لـ AWS NEURON باستخدام نفس التعليمات البرمجية من [استخدام TorchScript في Python](torchscript#using-torchscript-in-python) لتتبع `BertModel`. قم باستيراد امتداد إطار عمل `torch.neuron` للوصول إلى مكونات Neuron SDK من خلال واجهة برمجة تطبيقات Python:
|
||||
|
||||
```python
|
||||
from transformers import BertModel, BertTokenizer, BertConfig
|
||||
import torch
|
||||
import torch.neuron
|
||||
```
|
||||
|
||||
كل ما عليك فعله هو تعديل السطر التالي:
|
||||
|
||||
```diff
|
||||
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
|
||||
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
|
||||
```
|
||||
|
||||
يتيح ذلك لـ Neuron SDK تتبع النموذج وتحسينه لمثيلات Inf1.
|
||||
|
||||
لمعرفة المزيد حول ميزات AWS Neuron SDK والأدوات ودروس البرامج التعليمية والتحديثات الأخيرة، يرجى الاطلاع على [وثائق AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).
|
||||
720
docs/source/ar/trainer.md
Normal file
720
docs/source/ar/trainer.md
Normal file
@ -0,0 +1,720 @@
|
||||
# Trainer
|
||||
|
||||
تُتيح وحدة [`Trainer`] حلقة تدريب وتقييم متكاملة لنماذج PyTorch المطبقة في مكتبة Transformers. تحتاج فقط إلى تمرير المكونات الضرورية للتدريب (النموذج، والمجزىء النصى، ومجموعة البيانات، دالة التقييم، معلمات التدريب الفائقة، إلخ)، وستتولى فئة [`Trainer`] الباقي. هذا يُسهّل بدء التدريب بشكل أسرع دون كتابة حلقة التدريب الخاصة بك يدويًا. ولكن في الوقت نفسه، فإن [`Trainer`] قابل للتخصيص بدرجة كبيرة ويوفر العديد من خيارات التدريب حتى تتمكن من تخصيصه وفقًا لاحتياجات التدريب الخاصة بك بدقة.
|
||||
|
||||
<Tip>
|
||||
|
||||
بالإضافة إلى فئة [`Trainer`], توفر مكتبة Transformers أيضًا فئة [`Seq2SeqTrainer`] للمهام التسلسلية مثل الترجمة أو التلخيص. هناك أيضًا فئة [`~trl.SFTTrainer`] من مكتبة [TRL](https://hf.co/docs/trl) التي تغلّف فئة [`Trainer`] وهي مُحُسَّنة لتدريب نماذج اللغة مثل Llama-2 وMistral باستخدام تقنيات التوليد اللغوي. كما يدعم [`~trl.SFTTrainer`] ميزات مثل حزم التسلسلات، وLoRA، والقياس الكمي، وDeepSpeed مما يُمكّن من التدريب بكفاءة على نماذج ضخمة الحجم.
|
||||
|
||||
<br>
|
||||
|
||||
لا تتردد في الاطلاع على [مرجع API](./main_classes/trainer) لهذه الفئات الأخرى من النوع [`Trainer`] لمعرفة المزيد حول متى يتم استخدام كل منها. بشكل عام، [`Trainer`] هو الخيار الأكثر تنوعًا ومناسبًا لمجموعة واسعة من المهام. تم تصميم [`Seq2SeqTrainer`] للمهام التسلسلية ، و [`~trl.SFTTrainer`] مُصمم لتدريب نماذج اللغة الكبيرة.
|
||||
|
||||
</Tip>
|
||||
|
||||
قبل البدء، تأكد من تثبيت مكتبة [Accelerate](https://hf.co/docs/accelerate) - وهي مكتبة تُمكّن تشغيل تدريب PyTorch في بيئات مُوزعة.
|
||||
|
||||
```bash
|
||||
pip install accelerate
|
||||
|
||||
# upgrade
|
||||
pip install accelerate --upgrade
|
||||
```
|
||||
|
||||
يوفر هذا الدليل نظرة عامة على فئة [`Trainer`].
|
||||
|
||||
## الاستخدام الأساسي
|
||||
|
||||
يتضمن [`Trainer`] جميع التعليمات البرمجية التي ستجدها في حلقة التدريب الأساسية:
|
||||
|
||||
1. قم بتنفيذ خطوة تدريب لحساب الخسارة
|
||||
2. احسب المشتقات باستخدام طريقة [`~accelerate.Accelerator.backward`]
|
||||
3. تحديث الأوزان بناءً على المشتقات
|
||||
4. كرر هذه العملية حتى تصل إلى عدد محدد مسبقًا من الدورات (epochs).
|
||||
|
||||
تُجرد فئة [`Trainer`] كل هذه التعليمات البرمجية حتى لا تضطر إلى القلق بشأن كتابة حلقة تدريب يدويًا في كل مرة أما إذا كنت بدأت للتو في PyTorch والتدريب. كل ما عليك فعله هو توفير المكونات الأساسية اللازمة للتدريب، مثل النموذج ومجموعة بيانات، وتتعامل فئة [`Trainer`] مع كل شيء آخر.
|
||||
|
||||
إذا كنت تُريد تحديد أي خيارات تدريب أو معلمات فائقة، فيمكنك العثور عليها في فئة [`TrainingArguments`]. على سبيل المثال، دعنا نحدد أين يتم حفظ النموذج في `output_dir` ورفع النموذج إلى Hub بعد التدريب باستخدام `push_to_hub=True`.
|
||||
|
||||
```py
|
||||
from transformers import TrainingArguments
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir="your-model"،
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=16,
|
||||
per_device_eval_batch_size=16,
|
||||
num_train_epochs=2,
|
||||
weight_decay=0.01,
|
||||
eval_strategy="epoch"،
|
||||
save_strategy="epoch"،
|
||||
load_best_model_at_end=True,
|
||||
push_to_hub=True,
|
||||
)
|
||||
```
|
||||
مرر `training_args` إلى [`Trainer`] جنبًا إلى جنب مع النموذج، ومجموعة بيانات، وشئ لمعالجة مجموعة البيانات مسبقًا (حسب نوع البيانات، فقد يكون محللًا رمزيًا أو مستخرج ميزات أو معالج صور)، وجامع بيانات، ودالة لحساب المقاييس التي تُريد تتبعها أثناء التدريب.
|
||||
|
||||
أخيرًا، استدعِ [`~Trainer.train`] لبدء التدريب!
|
||||
|
||||
```py
|
||||
from transformers import Trainer
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset["train"]،
|
||||
eval_dataset=dataset["test"]،
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### نقاط الحفظ
|
||||
|
||||
تحفظ فئة [`Trainer`] نقاط الحفظ النموذج في الدليل المحدد في معامل `output_dir` من [`TrainingArguments`]. ستجد نقاط الحفظ في مجلد فرعي يسمى `checkpoint-000` حيث تتوافق الأرقام في النهاية مع خطوة التدريب. إن حفظ نقاط الحفظ مفيد لاستئناف التدريب لاحقًا.
|
||||
|
||||
```py
|
||||
# استأنف من أحدث نقطة حفظ
|
||||
trainer.train(resume_from_checkpoint=True)
|
||||
|
||||
# استأنف من نقطة حفظ محددة محفوظة في دليل الإخراج
|
||||
trainer.train(resume_from_checkpoint="your-model/checkpoint-1000")
|
||||
```
|
||||
|
||||
يمكنك حفظ نقاط الحفظ الخاصة بك (لا يتم حفظ حالة المُجزىء اللغوى تقائيًا) إلى Hub عن طريق تعيين `push_to_hub=True` في [`TrainingArguments`] لرفعها. الخيارات الأخرى لاتخاذ القرار بشأن كيفية حفظ هذة النقاط الخاصة بك هي الإعداد في معامل [`hub_strategy`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.hub_strategy):
|
||||
|
||||
* `hub_strategy="checkpoint"` يدفع أحدث نقطة حفظ إلى مجلد فرعي يسمى "last-checkpoint" يمكنك استئناف التدريب منه
|
||||
* `hub_strategy="all_checkpoints"` يدفع جميع نقاط الحفظ إلى الدليل المحدد في `output_dir` (سترى نقطة حفظ واحدة لكل مجلد في مستودع النموذج الخاص بك)
|
||||
|
||||
عند استئناف التدريب من نقطة حفظ، تُحاول [`Trainer`] الحفاظ على حالات RNG Python وNumPy وPyTorch كما كانت عندما تم حفظ نقطة الحفظ. ولكن لأن PyTorch لديها العديد من الإعدادات الافتراضية غير الحتمية مُتنوعة، فإن حالات RNG ليست مضمونة لتكون هي نفسها. إذا كنت تريد تمكين الحتمية الكاملة، فراجع دليل [التحكم في مصادر العشوائية](https://pytorch.org/docs/stable/notes/randomness#controlling-sources-of-randomness) لمعرفة ما يُمكنك تمكينه لجعل تدريبك حتميًا تمامًا. ضع في اعتبارك أنه من خلال جعل إعدادات معينة حتمية، فقد يكون التدريب أبطأ.
|
||||
|
||||
## تخصيص المدرب
|
||||
|
||||
في حين أن فئة [`Trainer`] مُصممة لتكون سهلة الوصول وسهلة الاستخدام، فإنها توفر أيضًا الكثير من قابلية التخصيص للمستخدمين المغامرين. يُمكن إنشاء فئات فرعية من العديد من أساليب [`Trainer`] وتجاوزها لدعم الوظائف التي تُريدها، دون الحاجة إلى إعادة كتابة حلقة التدريب بأكملها من البداية لاستيعابها. تتضمن هذه الأساليب:
|
||||
|
||||
* [`~Trainer.get_train_dataloader`] ينشئ DataLoader للتدريب
|
||||
* [`~Trainer.get_eval_dataloader`] ينشئ DataLoader للتقييم
|
||||
* [`~Trainer.get_test_dataloader`] ينشئ DataLoader للاختبار
|
||||
* [`~Trainer.log`] يسجل معلومات حول مختلف الكائنات التي تراقب التدريب
|
||||
* [`~Trainer.create_optimizer_and_scheduler`] ينشئ محسنًا ومخططًا لمُعدل التعلم إذا لم يتم تمريرهما في `__init__`؛ يمكن أيضًا تخصيص هذه الوظائف بشكل منفصل باستخدام [`~Trainer.create_optimizer`] و [`~Trainer.create_scheduler`] على التوالي
|
||||
* [`~Trainer.compute_loss`] يحسب دالة الخسارة على دفعة من مُدخلات التدريب
|
||||
* [`~Trainer.training_step`] يُنفذ خطوة التدريب
|
||||
* [`~Trainer.prediction_step`] يُنفذ خطوة التنبؤ والاختبار
|
||||
* [`~Trainer.evaluate`] يُقيّم النموذج ويعيد مقاييس التقييم
|
||||
* [`~Trainer.predict`] يُجري التنبؤات (مع المقاييس إذا كانت العلامات متاحة) على مجموعة الاختبار
|
||||
|
||||
على سبيل المثال، إذا كنت تريد تخصيص طريقة [`~Trainer.compute_loss`] لاستخدام دالة خسارة ذات ترجيح بدلاً من ذلك.
|
||||
|
||||
|
||||
```py
|
||||
from torch import nn
|
||||
from transformers import Trainer
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False):
|
||||
labels = inputs.pop("labels")
|
||||
# forward pass
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.get("logits")
|
||||
# compute custom loss for 3 labels with different weights
|
||||
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device))
|
||||
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
```
|
||||
|
||||
### دوال الاستدعاء Callbacks
|
||||
|
||||
خيار آخر لتخصيص [`Trainer`] هو استخدام [دوال الاستدعاء](callbacks). لا *تغير* دوال الاستدعاء أي شيء في حلقة التدريب. إنهم تفحص حالة حلقة التدريب ثم تُنفذ بعض الإجراءات (مثل الإيقاف المبكر أو تسجيل النتائج، إلخ) اعتمادًا على الحالة. وبعبارة أخرى، لا يمكن استخدام دالة الاستدعاء لتنفيذ شيء مثل دالة خسارة مخصصة، ويجب عليك تجاوز دالة [`~Trainer.compute_loss`] لذلك.
|
||||
|
||||
على سبيل المثال، إذا كنت تريد إضافة دالة استدعاء إيقاف مبكر إلى حلقة التدريب بعد 10 خطوات.
|
||||
|
||||
```py
|
||||
from transformers import TrainerCallback
|
||||
|
||||
class EarlyStoppingCallback(TrainerCallback):
|
||||
def __init__(self, num_steps=10):
|
||||
self.num_steps = num_steps
|
||||
|
||||
def on_step_end(self, args, state, control, **kwargs):
|
||||
if state.global_step >= self.num_steps:
|
||||
return {"should_training_stop": True}
|
||||
else:
|
||||
return {}
|
||||
```
|
||||
|
||||
ثم مرره إلى معامل `callback` في [`Trainer`].
|
||||
|
||||
```py
|
||||
from transformers import Trainer
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset["train"]،
|
||||
eval_dataset=dataset["test"]،
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
callback=[EarlyStoppingCallback()],
|
||||
)
|
||||
```
|
||||
|
||||
## تسجيل الأحداث (Logging)
|
||||
|
||||
<Tip>
|
||||
|
||||
راجع مرجع [API](./main_classes/logging) للتسجيل للحصول على مزيد من المعلومات حول مستويات التسجيل المختلفة للأحداث.
|
||||
|
||||
</Tip>
|
||||
|
||||
يتم تعيين [`Trainer`] إلى `logging.INFO` افتراضيًا والذي يُبلغ عن الأخطاء والتحذيرات ومعلومات أساسية أخرى. يتم تعيين نسخة [`Trainer`] - في البيئات الموزعة - إلى `logging.WARNING` والتي يُبلغ فقط عن الأخطاء والتحذيرات. يمكنك تغيير مستوى تسجيل الأحداث باستخدام معاملي [`log_level`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level) و [`log_level_replica`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level_replica) في [`TrainingArguments`].
|
||||
|
||||
لتهيئة إعداد مُستوى تسجيل اﻷحداث لكل عقدة، استخدم معامل [`log_on_each_node`](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.log_on_each_node) لتحديد ما إذا كان سيتم استخدام مُستوى السجل على كل عقدة أو فقط على العقدة الرئيسية.
|
||||
|
||||
<Tip>
|
||||
|
||||
يحدد [`Trainer`] مُستوى التسجيل بشكل مُنفصل لكل عقدة في طريقة [`Trainer.__init__`]، لذا فقد ترغب في التفكير في تعيين هذا الإعداد في وقت سابق إذا كنت تستخدم وظائف Transformers الأخرى قبل إنشاء كائن [`Trainer`].
|
||||
|
||||
</Tip>
|
||||
|
||||
على سبيل المثال، لتعيين التعليمات البرمجية والوحدات النمطية الرئيسية الخاصة بك لاستخدام نفس مُستوى التسجيل وفقًا لكل عقدة:
|
||||
|
||||
```py
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s"،
|
||||
datefmt="%m/%d/%Y %H:%M:%S"،
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
|
||||
trainer = Trainer(...)
|
||||
```
|
||||
|
||||
استخدم تركيبات مختلفة من `log_level` و `log_level_replica` لتهيئة ما يتم تسجيله على كل من العقد.
|
||||
|
||||
|
||||
<hfoptions id="logging">
|
||||
<hfoption id="single node">
|
||||
|
||||
```bash
|
||||
my_app.py ... --log_level warning --log_level_replica error
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="multi-node">
|
||||
|
||||
أضف معلمة `log_on_each_node 0` لبيئات متعددة العقد.
|
||||
|
||||
```bash
|
||||
my_app.py ... --log_level warning --log_level_replica error --log_on_each_node 0
|
||||
|
||||
# set to only report errors
|
||||
my_app.py ... --log_level error --log_level_replica error --log_on_each_node 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## NEFTune
|
||||
|
||||
[NEFTune](https://hf.co/papers/2310.05914) هي تقنية يمكن أن تحسن الأداء عن طريق إضافة ضوضاء إلى مُتجهات التعلم أثناء التدريب. لتمكينه في [`Trainer`], قم بتعيين معامل `neftune_noise_alpha` في [`TrainingArguments`] للتحكم في مقدار الضوضاء المُضافة.
|
||||
|
||||
```py
|
||||
from transformers import TrainingArguments, Trainer
|
||||
|
||||
training_args = TrainingArguments(..., neftune_noise_alpha=0.1)
|
||||
trainer = Trainer(..., args=training_args)
|
||||
```
|
||||
|
||||
يتم تعطيل NEFTune بعد التدريب لاستعادة طبقة التعلم الأصلية لتجنب أي سلوك غير متوقع.
|
||||
|
||||
## نواة Liger
|
||||
[Liger-Kernel](https://github.com/linkedin/Liger-Kernel) Kernel هي مجموعة من نوى Triton التي طورتها Linkedin مُصممة خصيصًا لتدريب نماذج اللغة الكبيرة (LLM). لقد قمنا بتنفيذ RMSNorm و RoPE و SwiGLU و CrossEntropy و FusedLinearCrossEntropy مُتوافقة مع Hugging Face، والمزيد قادم. يُمكنها زيادة إنتاجية التدريب متعدد وحدات معالجة الرسومات (GPU) بنسبة 20٪ وتقليل استخدام الذاكرة بنسبة 60٪. تعمل النواة بشكل تلقائي مع flash attention و PyTorch FSDP و Microsoft DeepSpeed.
|
||||
|
||||
احصل على زيادة في الإنتاجية بنسبة 20٪ وتقليل استخدام الذاكرة بنسبة 60٪ على تدريب نماذج LLaMA 3-8B. حقق أطوال سياق أكبر وأحجام دفعات أكبر. كما أنها مُفيدة إذا كنت تُريد زيادة حجم نموذجك إلى تدريب بنماذج متعددة الرؤوس أو أحجام مُفردات ضخمة. أطلق العنان للتدريب بنماذج متعددة الرؤوس (medusa) والمزيد. راجع التفاصيل والأمثلة في [Liger](https://github.com/linkedin/Liger-Kernel/tree/main/examples)
|
||||
تأكد أولاً من تثبيت مستودع Liger الرسمي:
|
||||
```bash
|
||||
pip install liger-kernel
|
||||
```
|
||||
يجب عليك تمرير `use_liger_kernel=True` لتطبيق نواة `liger` على نموذجك، على سبيل المثال:
|
||||
|
||||
```python
|
||||
from transformers import TrainingArguments
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir="your-model",
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=16,
|
||||
per_device_eval_batch_size=16,
|
||||
num_train_epochs=2,
|
||||
weight_decay=0.01,
|
||||
eval_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
load_best_model_at_end=True,
|
||||
push_to_hub=True,
|
||||
use_liger_kernel=True
|
||||
)
|
||||
```
|
||||
|
||||
تدعم النواة معماريات نماذج Llama و Gemma و Mistral و Mixtral. يُمكن العثور على أحدث قائمة بالنمائج المدعومة [هنا](https://github.com/linkedin/Liger-Kernel). عندما يتم تعيين `use_liger_kernel` إلى `True`، سيتم تصحيح الطبقات المُقابلة في النموذج الأصلي باستخدام تطبيق Liger الفعال، لذلك لا تحتاج إلى فعل أي شيء إضافي بخلاف تعيين قيمة المعامل.
|
||||
|
||||
## المُحسِّنات
|
||||
يمكنك اختيار مُحسِّن مدمج للتدريب باستخدام:
|
||||
```python
|
||||
from transformers import TrainingArguments
|
||||
training_args = TrainingArguments(..., optim="adamw_torch")
|
||||
```
|
||||
اطلع على [`OptimizerNames`](https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py) للاطلاع على القائمة الكاملة للخيارات. نُدرج أمثلة مُتقدمة في الأقسام أدناه.
|
||||
|
||||
يمكنك أيضًا استخدام مُحسِّن PyTorch عشوائي عبر:
|
||||
```python
|
||||
import torch
|
||||
|
||||
optimizer_cls = torch.optim.AdamW
|
||||
optimizer_kwargs = {
|
||||
"lr": 4e-3,
|
||||
"betas": (0.9, 0.999),
|
||||
"weight_decay": 0.05,
|
||||
}
|
||||
|
||||
from transformers import Trainer
|
||||
trainer = Trainer(..., optimizer_cls_and_kwargs=(optimizer_cls, optimizer_kwargs))
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
### GaLore
|
||||
|
||||
إسقاط التدرج ذو الرتبة المنخفضة (GaLore) هو إستراتيجية تدريب ذات رتبة منخفضة فعّالة من حيث الذاكرة، تسمح بتعلم المعلمات الكاملة ولكنها أكثر كفاءة من حيث الذاكرة من أساليب التكيّف الشائعة ذات الرتبة المنخفضة، مثل LoRA.
|
||||
|
||||
أولاً، تأكد من تثبيت المستودع الرسمي لـ GaLore:
|
||||
|
||||
```bash
|
||||
pip install galore-torch
|
||||
```
|
||||
|
||||
ثم أضف ببساطة أحد `["galore_adamw"، "galore_adafactor"، "galore_adamw_8bit"]` في `optim` جنبًا إلى جنب مع `optim_target_modules`، والتي يمكن أن تكون قائمة من السلاسل أو التعبيرات النمطية regex أو المسار الكامل المطابق لأسماء الوحدات المستهدفة التي تريد تكييفها. فيما يلي مثال على النص البرمجي كامل(تأكد من `pip install trl datasets`):
|
||||
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
import trl
|
||||
|
||||
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
train_dataset = datasets.load_dataset('imdb', split='train')
|
||||
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-galore"،
|
||||
max_steps=100,
|
||||
per_device_train_batch_size=2,
|
||||
optim="galore_adamw"،
|
||||
optim_target_modules=[r".*.attn.*"، r".*.mlp.*"]
|
||||
)
|
||||
|
||||
model_id = "google/gemma-2b"
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_config(config).to(0)
|
||||
|
||||
trainer = trl.SFTTrainer(
|
||||
model=model,
|
||||
args=args,
|
||||
train_dataset=train_dataset,
|
||||
dataset_text_field='text',
|
||||
max_seq_length=512,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
لتمرير معامﻻت إضافية يدعمها GaLore، يجب عليك تمرير `optim_args` بشكل صحيح، على سبيل المثال:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
import trl
|
||||
|
||||
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
train_dataset = datasets.load_dataset('imdb', split='train')
|
||||
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-galore",
|
||||
max_steps=100,
|
||||
per_device_train_batch_size=2,
|
||||
optim="galore_adamw",
|
||||
optim_target_modules=[r".*.attn.*", r".*.mlp.*"],
|
||||
optim_args="rank=64, update_proj_gap=100, scale=0.10",
|
||||
)
|
||||
|
||||
model_id = "google/gemma-2b"
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_config(config).to(0)
|
||||
|
||||
trainer = trl.SFTTrainer(
|
||||
model=model,
|
||||
args=args,
|
||||
train_dataset=train_dataset,
|
||||
dataset_text_field='text',
|
||||
max_seq_length=512,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
يمكنك قراءة المزيد حول الطريقة في [المستودع الأصلي](https://github.com/jiaweizzhao/GaLore) أو [الورقة البحثية](https://arxiv.org/abs/2403.03507).
|
||||
|
||||
حاليًا، يمكنك فقط تدريب الطبقات الخطية التي تعتبر طبقات GaLore وستستخدم التحلل ذو الرتبة المنخفضة للتدريب بينما سيتم تحسين الطبقات المتبقية بالطريقة التقليدية.
|
||||
|
||||
لاحظ أنه سيستغرق الأمر بعض الوقت قبل بدء التدريب (~3 دقائق لنموذج 2B على NVIDIA A100)، ولكن يجب أن يسير التدريب بسلاسة بعد ذلك.
|
||||
|
||||
يمكنك أيضًا إجراء تحسين طبقة تلو الأخرى عن طريق إضافة `layerwise` إلى اسم المُحسِّن كما هو موضح أدناه:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
import trl
|
||||
|
||||
from transformers import TrainingArguments، AutoConfig، AutoTokenizer، AutoModelForCausalLM
|
||||
|
||||
train_dataset = datasets.load_dataset('imdb'، split='train')
|
||||
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-galore"،
|
||||
max_steps=100،
|
||||
per_device_train_batch_size=2،
|
||||
optim="galore_adamw_layerwise"،
|
||||
optim_target_modules=[r".*.attn.*"، r".*.mlp.*"]
|
||||
)
|
||||
|
||||
model_id = "google/gemma-2b"
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_config(config).to(0)
|
||||
|
||||
trainer = trl.SFTTrainer(
|
||||
model=model،
|
||||
args=args،
|
||||
train_dataset=train_dataset،
|
||||
dataset_text_field='text'،
|
||||
max_seq_length=512،
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
لاحظ أن تحسين الطبقة تجريبي إلى حد ما ولا يدعم DDP (Distributed Data Parallel)، وبالتالي يمكنك تشغيل التعليمات البرمجية للتدريب على وحدة معالجة الرسومات (GPU) واحدة فقط. يرجى الاطلاع على [هذا القسم المناسب](https://github.com/jiaweizzhao/GaLore?tab=readme-ov-file#train-7b-model-with-a-single-gpu-with-24gb-memory) لمزيد من التفاصيل. قد لا تدعم الميزات الأخرى مثل تقليم التدرجات أو DeepSpeed، إلخ. من الصندوق. يرجى [تقديم تقرير عن المشكلة على GitHub](https://github.com/huggingface/transformers/issues) إذا واجهتك مثل هذه المشكلة.
|
||||
|
||||
### محسنات LOMO
|
||||
|
||||
تم تقديم مُحسِّنات LOMO في [التدريب على المعلمات الكاملة لنماذج اللغة الكبيرة باستخدام موارد محدودة](https://hf.co/papers/2306.09782) و [AdaLomo: تحسين ذاكرة منخفضة بمعدل تعلم متكيف](https://hf.co/papers/2310.10195).
|
||||
يتكون كلاهما من طريقة فعالة لضبط المعلمات الكاملة. تدمج محسنات LOMO حساب الاشتقاق وتحديث المعلمات في خطوة واحدة لتقليل استخدام الذاكرة. محسنات LOMO المدعومة هي `"lomo"` و `"adalomo"`. أولاً قم بتثبيت LOMO من pypi `pip install lomo-optim` أو قم بتثبيته من المصدر باستخدام `pip install git+https://github.com/OpenLMLab/LOMO.git`.
|
||||
|
||||
<Tip>
|
||||
|
||||
وفقًا للمؤلفين، يوصى باستخدام `AdaLomo` بدون `grad_norm` للحصول على أداء أفضل وسرعة أعلى.
|
||||
|
||||
</Tip>
|
||||
|
||||
فيما يلي نص برمجي بسيط يوضح كيفية ضبط نموذج [google/gemma-2b](https://huggingface.co/google/gemma-2b) على مجموعة بيانات IMDB في الدقة الكاملة:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
from transformers import TrainingArguments، AutoTokenizer، AutoModelForCausalLM
|
||||
import trl
|
||||
|
||||
train_dataset = datasets.load_dataset('imdb'، split='train')
|
||||
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-lomo"،
|
||||
max_steps=100،
|
||||
per_device_train_batch_size=4،
|
||||
optim="adalomo"،
|
||||
gradient_checkpointing=True،
|
||||
logging_strategy="steps"،
|
||||
logging_steps=1،
|
||||
learning_rate=2e-6،
|
||||
save_strategy="no"،
|
||||
run_name="lomo-imdb"،
|
||||
)
|
||||
|
||||
model_id = "google/gemma-2b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id، low_cpu_mem_usage=True).to(0)
|
||||
|
||||
trainer = trl.SFTTrainer(
|
||||
model=model،
|
||||
args=args،
|
||||
train_dataset=train_dataset،
|
||||
dataset_text_field='text'،
|
||||
max_seq_length=1024،
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### مُحسِّن GrokAdamW
|
||||
تم تصميم مُحسِّن GrokAdamW لتعزيز أداء التدريب واستقراره، خاصةً للنماذج التي تستفيد من دوال إشارة `grokking`. لاستخدام `GrokAdamW`، قم أولاً بتثبيت حزمة المُحسِّن باستخدام `pip install grokadamw`.
|
||||
<Tip>
|
||||
يُعد GrokAdamW مفيدًا بشكل خاص للنماذج التي تتطلب تقنيات تحسين مُتقدمة لتحقيق أداء واستقرار أفضل.
|
||||
</Tip>
|
||||
|
||||
فيما يلي نص برمجى بسيط لشرح كيفية ضبط [google/gemma-2b](https://huggingface.co/google/gemma-2b) بدقة على مجموعة بيانات IMDB باستخدام مُحسِّن GrokAdamW:
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
from transformers import TrainingArguments, AutoTokenizer, AutoModelForCausalLM, Trainer
|
||||
|
||||
# تحميل مجموعة البيانات IMDB
|
||||
train_dataset = datasets.load_dataset('imdb', split='train')
|
||||
|
||||
# تعريف معامﻻت التدريب
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-grokadamw",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
optim="grokadamw",
|
||||
logging_strategy="steps",
|
||||
logging_steps=1,
|
||||
learning_rate=2e-5,
|
||||
save_strategy="no",
|
||||
run_name="grokadamw-imdb",
|
||||
)
|
||||
|
||||
# تحميل النموذج والمجزىء اللغوي
|
||||
model_id = "google/gemma-2b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
|
||||
|
||||
# تهيئة المدرب
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=args,
|
||||
train_dataset=train_dataset,
|
||||
)
|
||||
|
||||
# تدريب النموذج
|
||||
trainer.train()
|
||||
```
|
||||
يوضح هذا النص البرمجى كيفية ضبط نموذج google/gemma-2b بدقة على مجموعة بيانات IMDB باستخدام مُحسِّن GrokAdamW. يتم تكوين TrainingArguments لاستخدام GrokAdamW، ويتم تمرير مجموعة البيانات إلى Trainer للتدريب.
|
||||
|
||||
### مُحسِّن بدون جدوله (Schedule Free Optimizer)
|
||||
تم تقديم مُحسِّنات بدون جدوله في [The Road Less Scheduled](https://hf.co/papers/2405.15682).
|
||||
يستبدل التعلم بدون جدوله زخم المُحسِّن الأساسي بمزيج من المتوسط والتداخل، لإزالة الحاجة تمامًا إلى تخفيف مُعدل التعلم باستخدام جدوله تقليديه.
|
||||
المُحسِّنات المدعومة لـ SFO هي "schedule_free_adamw" و "schedule_free_sgd". قم أولاً بتثبيت `schedulefree` من pypi باستخدام الأمر `pip install schedulefree`.
|
||||
|
||||
فيما يلي نص برمجى بسيط لشرح كيفية ضبط [google/gemma-2b](https://huggingface.co/google/gemma-2b) بدقة على مجموعة بيانات IMDB بدقة كاملة:
|
||||
```python
|
||||
import torch
|
||||
import datasets
|
||||
from transformers import TrainingArguments, AutoTokenizer, AutoModelForCausalLM
|
||||
import trl
|
||||
|
||||
train_dataset = datasets.load_dataset('imdb', split='train')
|
||||
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-schedulefree",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
optim="schedule_free_adamw",
|
||||
gradient_checkpointing=True,
|
||||
logging_strategy="steps",
|
||||
logging_steps=1,
|
||||
learning_rate=2e-6,
|
||||
save_strategy="no",
|
||||
run_name="sfo-imdb",
|
||||
)
|
||||
|
||||
model_id = "google/gemma-2b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
|
||||
|
||||
trainer = trl.SFTTrainer(
|
||||
model=model,
|
||||
args=args,
|
||||
train_dataset=train_dataset,
|
||||
dataset_text_field='text',
|
||||
max_seq_length=1024,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
## تسريع ومدرب
|
||||
|
||||
يتم تشغيل فئة [`Trainer`] بواسطة [تسريع](https://hf.co/docs/accelerate)، وهي مكتبة لتدريب نماذج PyTorch بسهولة في بيئات موزعة مع دعم عمليات التكامل مثل [FullyShardedDataParallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) و [DeepSpeed](https://www.deepspeed.ai/).
|
||||
|
||||
<Tip>
|
||||
|
||||
تعرف على المزيد حول استراتيجيات تجزئة FSDP، وتفريغ وحدة المعالجة المركزية (CPU)، والمزيد مع [`Trainer`] في [دليل Fully Sharded Data Parallel](fsdp).
|
||||
|
||||
</Tip>
|
||||
|
||||
لاستخدام Accelerate مع [`Trainer`]]، قم بتشغيل الأمر [`accelerate.config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) لإعداد التدريب لبيئة التدريب الخاصة بك. نشئ هذا الأمر ملف `config_file.yaml` الذي سيتم استخدامه عند تشغيل نص للتدريب البرمجى. على سبيل المثال، بعض تكوينات المثال التي يمكنك إعدادها هي:
|
||||
|
||||
<hfoptions id="config">
|
||||
<hfoption id="DistributedDataParallel">
|
||||
|
||||
```yml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0 #change rank as per the node
|
||||
main_process_ip: 192.168.20.1
|
||||
main_process_port: 9898
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 2
|
||||
num_processes: 8
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="FSDP">
|
||||
|
||||
```yml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
distributed_type: FSDP
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch_policy: BACKWARD_PRE
|
||||
fsdp_forward_prefetch: true
|
||||
fsdp_offload_params: false
|
||||
fsdp_sharding_strategy: 1
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_sync_module_states: true
|
||||
fsdp_transformer_layer_cls_to_wrap: BertLayer
|
||||
fsdp_use_orig_params: true
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DeepSpeed">
|
||||
|
||||
```yml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
deepspeed_config_file: /home/user/configs/ds_zero3_config.json
|
||||
zero3_init_flag: true
|
||||
distributed_type: DEEPSPEED
|
||||
downcast_bf16: 'no'
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
num_machines: 1
|
||||
num_processes: 4
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DeepSpeed with Accelerate plugin">
|
||||
|
||||
```yml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 0.7
|
||||
offload_optimizer_device: cpu
|
||||
offload_param_device: cpu
|
||||
zero3_init_flag: true
|
||||
zero_stage: 2
|
||||
distributed_type: DEEPSPEED
|
||||
downcast_bf16: 'no'
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 4
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
يُعد أمر [`accelerate_launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) هو الطريقة المُوصى بها لتشغيل نص البرمجى للتدريب على نظام موزع باستخدام Accelerate و [`Trainer`] مع المعلمات المحددة في `config_file.yaml`. يتم حفظ هذا الملف في مجلد ذاكرة التخزين المؤقت لـ Accelerate ويتم تحميله تلقائيًا عند تشغيل `accelerate_launch`.
|
||||
|
||||
على سبيل المثال، لتشغيل النص البرنامجي للتدريب [run_glue.py](https://github.com/huggingface/transformers/blob/f4db565b695582891e43a5e042e5d318e28f20b8/examples/pytorch/text-classification/run_glue.py#L4) مع تكوين FSDP:
|
||||
|
||||
```bash
|
||||
accelerate launch \
|
||||
./examples/pytorch/text-classification/run_glue.py \
|
||||
--model_name_or_path google-bert/bert-base-cased \
|
||||
--task_name $TASK_NAME \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--max_seq_length 128 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
يمكنك أيضًا تحديد المعلمات من ملف `config_file.yaml` مباشرة في سطر الأوامر:
|
||||
|
||||
```bash
|
||||
accelerate launch --num_processes=2 \
|
||||
--use_fsdp \
|
||||
--mixed_precision=bf16 \
|
||||
--fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \
|
||||
--fsdp_transformer_layer_cls_to_wrap="BertLayer" \
|
||||
--fsdp_sharding_strategy=1 \
|
||||
--fsdp_state_dict_type=FULL_STATE_DICT \
|
||||
./examples/pytorch/text-classification/run_glue.py
|
||||
--model_name_or_path google-bert/bert-base-cased \
|
||||
--task_name $TASK_NAME \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--max_seq_length 128 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
اطلع على برنامج تعليمي [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) لمعرفة المزيد حول `accelerate_launch` والتكوينات المخصصة.
|
||||
412
docs/source/ar/training.md
Normal file
412
docs/source/ar/training.md
Normal file
@ -0,0 +1,412 @@
|
||||
# ضبط نموذج مُدرب مسبقًا
|
||||
|
||||
هناك فوائد كبيرة لاستخدام نموذج مُدرب مسبقًا. فهو يقلل من تكاليف الحوسبة، ويحد من أثرنا البيئي، ويتيح لك استخدام أحدث النماذج دون الحاجة إلى تدريبها من الصفر. توفر مكتبة 🤗 Transformers إمكانية الوصول إلى آلاف النماذج المُدربة مسبقًا لمجموعة واسعة من المهام. عندما تستخدم نموذجًا مُدربًا مسبقًا، فإنك تقوم بتدريبه على مجموعة بيانات خاصة بمهمتك. يُعرف ذلك بالضبط الدقيق، وهي تقنية تدريب قوية للغاية. في هذا البرنامج التعليمي، سوف تقوم بضبط نموذج مُدرب مسبقًا باستخدام إطار عمل للتعلم العميق الذي تختاره:
|
||||
|
||||
* ضبط نموذج مُدرب مسبقًا باستخدام 🤗 Transformers [`Trainer`].
|
||||
* ضبط نموذج مُدرب مسبقًا في TensorFlow باستخدام Keras.
|
||||
* ضبط نموذج مُدرب مسبقًا في PyTorch الأصلي.
|
||||
|
||||
<a id='data-processing'></a>
|
||||
|
||||
## إعداد مجموعة بيانات
|
||||
|
||||
قبل أن تتمكن من ضبط نموذج مُدرب مسبقًا، قم بتنزيل مجموعة بيانات وإعدادها للتدريب. أظهر البرنامج التعليمي السابق كيفية معالجة البيانات للتدريب، والآن لديك الفرصة لاختبار تلك المهارات!
|
||||
|
||||
ابدأ بتحميل مجموعة بيانات [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> dataset = load_dataset("yelp_review_full")
|
||||
>>> dataset["train"][100]
|
||||
{'label': 0,
|
||||
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
|
||||
```
|
||||
|
||||
كما تعلم الآن، تحتاج إلى محول نص إلى رمز (tokenizer) لمعالجة النص وتضمين استراتيجيات للحشو والقص للتعامل مع أي أطوال متسلسلة متغيرة. لمعالجة مجموعة البيانات الخاصة بك في خطوة واحدة، استخدم طريقة 🤗 Datasets [`map`](https://huggingface.co/docs/datasets/process#map) لتطبيق دالة معالجة مسبقة على مجموعة البيانات بأكملها:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
|
||||
|
||||
>>> def tokenize_function(examples):
|
||||
... return tokenizer(examples["text"], padding="max_length", truncation=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
|
||||
|
||||
>>> def tokenize_function(examples):
|
||||
... return tokenizer(examples["text"], padding="max_length", truncation=True)
|
||||
|
||||
|
||||
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
```
|
||||
|
||||
إذا كنت ترغب، يمكنك إنشاء مجموعة فرعية أصغر من مجموعة البيانات الكاملة لضبطها لتقليل الوقت الذي تستغرقه:
|
||||
|
||||
```py
|
||||
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
||||
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
||||
```
|
||||
|
||||
<a id='trainer'></a>
|
||||
|
||||
## التدريب
|
||||
|
||||
في هذه المرحلة، يجب عليك اتباع القسم الذي يتوافق مع الإطار الذي تريد استخدامه. يمكنك استخدام الروابط
|
||||
في شريط التنقل الأيمن للقفز إلى الإطار الذي تريده - وإذا كنت تريد إخفاء كل المحتوى لإطار معين،
|
||||
فاستخدم الزر في الركن العلوي الأيمن من كتلة الإطار!
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="nvBXf7s7vTI"/>
|
||||
|
||||
## التدريب باستخدام PyTorch Trainer
|
||||
|
||||
تقدم مكتبة 🤗 Transformers فئة [`Trainer`] مُحسّنة لتدريب نماذج 🤗 Transformers، مما يسهل بدء التدريب دون الحاجة إلى كتابة حلقة التدريب الخاصة بك يدويًا. تدعم واجهة برمجة تطبيقات [`Trainer`] مجموعة واسعة من خيارات التدريب والميزات مثل التسجيل، وتراكم التدرجات، والدقة المختلطة.
|
||||
|
||||
ابدأ بتحميل نموذجك وتحديد عدد التصنيفات المتوقعة. من بطاقة مجموعة بيانات Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields)، تعرف أنه يوجد خمسة تصنيفات:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
سترى تحذيرًا بشأن بعض أوزان النموذج المُدرب مسبقًا لن تُستخدم وبعض الأوزان الأخرى ستُبدء بشكل عشوائي. لا تقلق، هذا أمر طبيعي تمامًا! يتم التخلص من رأس النموذج المُدرب مسبقًا لشبكة BERT، ويتم استبداله برأس تصنيف يُبدء بشكل عشوائي. سوف تقوم بضبط الرأس الجديد للنموذج بدقة على مهمة تصنيف التسلسلات الخاصة بك، مما ينقل المعرفة من النموذج المُدرب مسبقًا إليه.
|
||||
|
||||
</Tip>
|
||||
|
||||
### اختيار أحسن العوامل والمتغيرات للتدريب (Training hyperparameters)
|
||||
|
||||
بعد ذلك، قم بإنشاء كائن من فئة [`TrainingArguments`] والتي تحتوي على جميع العوامل والمتغيرات التي يمكنك ضبطها بالإضافة إلى خيارات تنشيط التدريب المختلفة. بالنسبة لهذا البرنامج التعليمي، يمكنك البدء بمعاملات التدريب الافتراضية [hyperparameters](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments)، ولكن لا تتردد في تجربتها للعثور على الإعدادات المثلى.
|
||||
|
||||
حدد مكان حفظ النسخ من تدريبك:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments
|
||||
|
||||
>>> training_args = TrainingArguments(output_dir="test_trainer")
|
||||
```
|
||||
|
||||
### التقييم
|
||||
|
||||
لا يقوم [`Trainer`] تلقائيًا بتقييم أداء النموذج أثناء التدريب. ستحتاج إلى تمرير دالة إلى [`Trainer`] لحساب وإبلاغ المقاييس. توفر مكتبة [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) دالة [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) بسيطة يمكنك تحميلها باستخدام الدالة [`evaluate.load`] (راجع هذا [الدليل السريع](https://huggingface.co/docs/evaluate/a_quick_tour) لمزيد من المعلومات):
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> import evaluate
|
||||
|
||||
>>> metric = evaluate.load("accuracy")
|
||||
```
|
||||
|
||||
استدعِ دالة [`~evaluate.compute`] على `metric` لحساب دقة تنبؤاتك. قبل تمرير تنبؤاتك إلى دالة `compute`، تحتاج إلى تحويل النتائج الخام logits إلى تنبؤات نهائية (تذكر أن جميع نماذج 🤗 Transformers تعيد نتائج الخام logits):
|
||||
|
||||
```py
|
||||
>>> def compute_metrics(eval_pred):
|
||||
... logits، labels = eval_pred
|
||||
... predictions = np.argmax(logits, axis=-1)
|
||||
... return metric.compute(predictions=predictions, references=labels)
|
||||
```
|
||||
|
||||
إذا كنت ترغب في مراقبة مقاييس التقييم الخاصة بك أثناء الضبط الدقيق، فحدد معلمة `eval_strategy` في معاملات التدريب الخاصة بك لإظهار مقياس التقييم في نهاية كل حقبة تدريبه:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments, Trainer
|
||||
|
||||
>>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
|
||||
```
|
||||
|
||||
### المدرب
|
||||
|
||||
قم بإنشاء كائن [`Trainer`] باستخدام نموذجك، ومعاملات التدريب، ومجموعات البيانات التدريبية والاختبارية، ودالة التقييم:
|
||||
|
||||
```py
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=small_train_dataset,
|
||||
... eval_dataset=small_eval_dataset,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
```
|
||||
|
||||
ثم قم بضبط نموذجك عن طريق استدعاء [`~transformers.Trainer.train`]:
|
||||
|
||||
```py
|
||||
>>> trainer.train()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<a id='keras'></a>
|
||||
|
||||
<Youtube id="rnTGBy2ax1c"/>
|
||||
|
||||
## تدريب نموذج TensorFlow باستخدام Keras
|
||||
|
||||
يمكنك أيضًا تدريب نماذج 🤗 Transformers في TensorFlow باستخدام واجهة برمجة تطبيقات Keras!
|
||||
|
||||
### تحميل البيانات لـ Keras
|
||||
|
||||
عندما تريد تدريب نموذج 🤗 Transformers باستخدام واجهة برمجة تطبيقات Keras، فأنت بحاجة إلى تحويل مجموعة البيانات الخاصة بك إلى تنسيق يفهمه
|
||||
Keras. إذا كانت مجموعة البيانات الخاصة بك صغيرة، فيمكنك ببساطة تحويلها بالكامل إلى مصفوفات NumPy وإرسالها إلى Keras.
|
||||
دعونا نجرب ذلك أولاً قبل أن نقوم بأي شيء أكثر تعقيدًا.
|
||||
|
||||
أولاً، قم بتحميل مجموعة بيانات. سنستخدم مجموعة بيانات CoLA من معيار [GLUE benchmark](https://huggingface.co/datasets/glue)،
|
||||
نظرًا لأنه مهمة تصنيف نص ثنائي بسيطة، وسنأخذ فقط قسم التدريب الآن.
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("glue"، "cola")
|
||||
dataset = dataset ["train"] # خذ فقط قسم التدريب الآن
|
||||
```
|
||||
|
||||
بعد ذلك، قم بتحميل أداة المُجزّئ اللغوي وقم بترميز البيانات كمصفوفات NumPy. لاحظ أن التصنيفات هي بالفعل قائمة من 0 و 1،
|
||||
لذا يمكننا ببساطة تحويل ذلك مباشرة إلى مصفوفة NumPy بدون ترميز!
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer
|
||||
import numpy as np
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
||||
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
|
||||
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
|
||||
tokenized_data = dict(tokenized_data)
|
||||
|
||||
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
|
||||
```
|
||||
|
||||
أخيرًا، قم بتحميل وتجميع وتناسب النموذج. لاحظ أن نماذج Transformers تحتوي جميعها على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك:
|
||||
|
||||
```py
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
|
||||
# تحميل وتجميع النموذج الخاص بنا
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
|
||||
# معدلات التعلم المنخفضة أفضل غالبًا لضبط النماذج الدقيقة
|
||||
model.compile(optimizer=Adam(3e-5)) # لا توجد دالة خسارة!
|
||||
|
||||
model.fit(tokenized_data, labels)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
أنت لست مضطرًا لتمرير دالة خسارة إلى نماذجك عند تجميعها! تختار نماذج Hugging Face تلقائيًا
|
||||
دالة خسارة مناسبة لمهمتها وهندسة نموذجها إذا تُركت هذه الحجة فارغة. يمكنك دائمًا
|
||||
تجاوز ذلك عن طريق تحديد دالة خسارة بنفسك إذا كنت تريد ذلك!
|
||||
|
||||
</Tip>
|
||||
|
||||
يعمل هذا النهج بشكل رائع لمجموعات البيانات الصغيرة، ولكن بالنسبة لمجموعات البيانات الأكبر، فقد تجد أنه يصبح مشكلة. لماذا؟
|
||||
لأن المصفوفة المرمزة والتصنيفات يجب أن يتم تحميلها بالكامل في الذاكرة، ولأن NumPy لا يتعامل مع
|
||||
المصفوفات"غير المنتظمة"، لذا حشو كل عينة إلى طول أطول عينة في مجموعة البيانات بأكملها. سيؤدي ذلك إلى زيادة حجم المصفوفة لديك، وستبطئ الرموز الزائده من عملية التدريب أيضًا!
|
||||
|
||||
### تحميل البيانات كـ tf.data.Dataset
|
||||
|
||||
إذا كنت تريد تجنب إبطاء التدريب، فيمكنك تحميل بياناتك كـ `tf.data.Dataset` بدلاً من ذلك. على الرغم من أنه يمكنك كتابة خط أنابيب `tf.data` الخاص بك إذا كنت تريد، إلا أن لدينا طريقتين مختصرتين للقيام بذلك:
|
||||
- [`~TFPreTrainedModel.prepare_tf_dataset`]: هذه هي الطريقة التي نوصي بها في معظم الحالات. نظرًا لأنه طريقة
|
||||
على نموذجك، فيمكنه فحص النموذج لتحديد الأعمدة القابلة للاستخدام كمدخلات للنموذج تلقائيًا،
|
||||
واستبعاد الأعمدة الأخرى لإنشاء مجموعة بيانات أبسط وأكثر كفاءة.
|
||||
- [`~datasets.Dataset.to_tf_dataset`]: هذه الطريقة أكثر أساسية، وهي مفيدة عندما تريد التحكم بدقة في كيفية
|
||||
إنشاء مجموعة البيانات الخاصة بك، عن طريق تحديد أعمدة `columns` و `label_cols` المحددة التي سيتم تضمينها.
|
||||
|
||||
قبل أن تتمكن من استخدام [`~TFPreTrainedModel.prepare_tf_dataset`]، ستحتاج إلى إضافة مخرجات المُجزئ إلى مجموعة البيانات الخاصة بك كأعمدة، كما هو موضح في
|
||||
عينة التعليمات البرمجية التالية:
|
||||
|
||||
```py
|
||||
def tokenize_dataset (data):
|
||||
# ستتم إضافة مفاتيح القاموس الذي تمت إعادته كأعمدة إلى مجموعة البيانات
|
||||
return tokenizer(data["text"])
|
||||
|
||||
|
||||
dataset = dataset.map(tokenize_dataset)
|
||||
```
|
||||
|
||||
تذكر أن مجموعات بيانات Hugging Face يتم تخزينها على القرص بشكل افتراضي، لذا فلن يؤدي ذلك إلى تضخيم استخدام الذاكرة لديك! بمجرد إضافة الأعمدة، يمكنك بث الدفعات من مجموعة البيانات وإضافة الترميز إلى كل دفعة، مما يقلل بشكل كبير من عدد رموز الترقيم مقارنة بترميز مجموعة البيانات بأكملها.
|
||||
|
||||
|
||||
```py
|
||||
>>> tf_dataset = model.prepare_tf_dataset(dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
لاحظ أنه في عينة التعليمات البرمجية أعلاه، تحتاج إلى تمرير المُجزئ اللغوي إلى `prepare_tf_dataset` حتى تتمكن من حشو الدُفعات بشكل صحيح أثناء تحميلها.
|
||||
إذا كانت جميع العينات في مجموعة البيانات الخاصة بك بنفس الطول ولم يكن الترميز ضروريًا، فيمكنك تخطي هذا المعامل.
|
||||
إذا كنت بحاجة إلى القيام بشيء أكثر تعقيدًا من مجرد ترميز العينات (على سبيل المثال، إفساد الرموز للنمذجة اللغوية المُقنعة)،
|
||||
فيمكنك استخدام معامل `collate_fn` بدلاً من ذلك لتمرير دالة يتم استدعاؤها لتحويل
|
||||
قائمة العينات إلى دفعة وتطبيق أي معالجة مسبقة تريدها. راجع أمثلةنا [examples](https://github.com/huggingface/transformers/tree/main/examples) أو
|
||||
[دفاتر الملاحظات](https://huggingface.co/docs/transformers/notebooks) لرؤية هذا النهج في العمل.
|
||||
|
||||
بمجرد إنشاء `tf.data.Dataset`، يمكنك تجميع النموذج وتناسبه كما هو الحال من قبل:
|
||||
|
||||
```py
|
||||
model.compile(optimizer=Adam(3e-5)) # No loss argument!
|
||||
|
||||
model.fit(tf_dataset)
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='pytorch_native'></a>
|
||||
## تدريب في PyTorch الأصلي
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Dh9CL8fyG80"/>
|
||||
|
||||
[`Trainer`] يهتم بحلقة التدريب ويسمح لك بضبط نموذج في سطر واحد من التعليمات البرمجية. بالنسبة للمستخدمين الذين يفضلون كتابة حلقة التدريب الخاصة بهم، يمكنك أيضًا ضبط نموذج 🤗 Transformers في PyTorch الأصلي.
|
||||
|
||||
في هذه المرحلة، قد تحتاج إلى إعادة تشغيل دفتر الملاحظات الخاص بك أو تنفيذ التعليمات البرمجية التالية لتحرير بعض الذاكرة:
|
||||
|
||||
```py
|
||||
del model
|
||||
del trainer
|
||||
torch.cuda.empty_cache()
|
||||
```
|
||||
|
||||
بعد ذلك، قم بمعالجة `tokenized_dataset` يدويًا لإعداده للتدريب.
|
||||
|
||||
1. إزالة عمود `text` لأن النموذج لا يقبل النص الخام كإدخال:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
|
||||
```
|
||||
|
||||
2. إعادة تسمية عمود `label` إلى `labels` لأن النموذج يتوقع أن يكون الاسم `labels`:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets = tokenized_datasets.rename_column("label"، "labels")
|
||||
```
|
||||
|
||||
3. قم بتعيين تنسيق مجموعة البيانات لإرجاع مؤشرات PyTorch بدلاً من القوائم:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets.set_format("torch")
|
||||
```
|
||||
|
||||
بعد ذلك، قم بإنشاء مجموعة فرعية أصغر من مجموعة البيانات كما هو موضح سابقًا لتسريع الضبط الدقيق:
|
||||
|
||||
```py
|
||||
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
||||
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
||||
```
|
||||
|
||||
### DataLoader
|
||||
|
||||
قم بإنشاء `DataLoader` لمجموعات بيانات التدريب والاختبار الخاصة بك حتى تتمكن من التكرار عبر دفعات البيانات:
|
||||
|
||||
```py
|
||||
>>> from torch.utils.data import DataLoader
|
||||
|
||||
>>> train_dataloader = DataLoader(small_train_dataset، shuffle=True، batch_size=8)
|
||||
>>> eval_dataloader = DataLoader(small_eval_dataset، batch_size=8)
|
||||
```
|
||||
|
||||
قم بتحميل نموذجك مع عدد التصنيفات المتوقعة:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased"، num_labels=5)
|
||||
```
|
||||
|
||||
### المحسن ومخطط معدل التعلم
|
||||
|
||||
قم بإنشاء محسن ومخطط معدل تعلم لضبط النموذج الدقيق. دعنا نستخدم [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) المحسن من PyTorch:
|
||||
|
||||
```py
|
||||
>>> from torch.optim import AdamW
|
||||
|
||||
>>> optimizer = AdamW(model.parameters()، lr=5e-5)
|
||||
```
|
||||
|
||||
قم بإنشاء مخطط معدل التعلم الافتراضي من [`Trainer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import get_scheduler
|
||||
|
||||
>>> num_epochs = 3
|
||||
>>> num_training_steps = num_epochs * len(train_dataloader)
|
||||
>>> lr_scheduler = get_scheduler(
|
||||
... name="linear"، optimizer=optimizer، num_warmup_steps=0، num_training_steps=num_training_steps
|
||||
... )
|
||||
```
|
||||
|
||||
أخيرًا، حدد `device` لاستخدام وحدة معالجة الرسومات (GPU) إذا كان لديك حق الوصول إليها. وإلا، فقد يستغرق التدريب على وحدة المعالجة المركزية (CPU) عدة ساعات بدلاً من دقائق قليلة.
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
|
||||
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
>>> model.to(device)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
احصل على وصول مجاني إلى وحدة معالجة رسومات سحابية إذا لم يكن لديك واحدة مع دفتر ملاحظات مستضاف مثل [Colaboratory](https://colab.research.google.com/) أو [SageMaker StudioLab](https://studiolab.sagemaker.aws/).
|
||||
|
||||
</Tip>
|
||||
|
||||
رائع، الآن أنت مستعد للتدريب! 🥳
|
||||
|
||||
### حلقة التدريب
|
||||
|
||||
لمراقبة تقدم التدريب الخاص بك، استخدم مكتبة [tqdm](https://tqdm.github.io/) لإضافة شريط تقدم فوق عدد خطوات التدريب:
|
||||
|
||||
```py
|
||||
>>> from tqdm.auto import tqdm
|
||||
|
||||
>>> progress_bar = tqdm(range(num_training_steps))
|
||||
|
||||
>>> model.train()
|
||||
>>> for epoch in range(num_epochs):
|
||||
... for batch in train_dataloader:
|
||||
... batch = {k: v.to(device) for k، v in batch.items()}
|
||||
... outputs = model(**batch)
|
||||
... loss = outputs.loss
|
||||
... loss.backward()
|
||||
|
||||
... optimizer.step()
|
||||
... lr_scheduler.step()
|
||||
... optimizer.zero_grad()
|
||||
... progress_bar.update(1)
|
||||
```
|
||||
|
||||
### تقييم
|
||||
|
||||
تمامًا كما أضفت وظيفة تقييم إلى [`Trainer`]]، تحتاج إلى القيام بنفس الشيء عندما تكتب حلقة التدريب الخاصة بك. ولكن بدلاً من حساب الإبلاغ عن المقياس في نهاية كل حقبة، هذه المرة ستقوم بتجميع جميع الدفعات باستخدام [`~evaluate.add_batch`] وحساب المقياس في النهاية.
|
||||
|
||||
```py
|
||||
>>> import evaluate
|
||||
|
||||
>>> metric = evaluate.load("accuracy")
|
||||
>>> model.eval()
|
||||
>>> for batch in eval_dataloader:
|
||||
... batch = {k: v.to(device) for k، v in batch.items()}
|
||||
... with torch.no_grad():
|
||||
... outputs = model(**batch)
|
||||
|
||||
... logits = outputs.logits
|
||||
... predictions = torch.argmax(logits، dim=-1)
|
||||
... metric.add_batch(predictions=predictions، references=batch["labels"])
|
||||
|
||||
>>> metric.compute()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='additional-resources'></a>
|
||||
|
||||
## موارد إضافية
|
||||
|
||||
لمزيد من الأمثلة على الضبط الدقيق، راجع:
|
||||
|
||||
- [🤗 أمثلة المحولات](https://github.com/huggingface/transformers/tree/main/examples) تتضمن
|
||||
النصوص البرمجية لتدريب مهام NLP الشائعة في PyTorch وTensorFlow.
|
||||
|
||||
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
|
||||
171
docs/source/ar/troubleshooting.md
Normal file
171
docs/source/ar/troubleshooting.md
Normal file
@ -0,0 +1,171 @@
|
||||
# استكشاف الأخطاء وإصلاحها
|
||||
|
||||
تحدث الأخطاء أحيانًا، لكننا هنا للمساعدة! يغطي هذا الدليل بعض المشكلات الأكثر شيوعًا التي واجهناها وكيفية حلها. مع ذلك، لا يُقصد بهذا الدليل أن يكون مجموعة شاملة لكل مشكلات 🤗 Transformers. لمزيد من المساعدة في استكشاف مشكلتك وإصلاحها، جرب ما يلي:
|
||||
<Youtube id="S2EEG3JIt2A"/>
|
||||
|
||||
|
||||
1. اطلب المساعدة على [المنتديات](https://discuss.huggingface.co/). هناك فئات محددة يمكنك نشر سؤالك فيها، مثل [المبتدئين](https://discuss.huggingface.co/c/beginners/5) أو [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9). تأكد من كتابة منشور جيد وواضح على المنتدى مع بعض التعليمات البرمجية القابلة للتكرار لزيادة احتمالية حل مشكلتك!
|
||||
<Youtube id="_PAli-V4wj0"/>
|
||||
|
||||
2. قم بإنشاء [مشكلة](https://github.com/huggingface/transformers/issues/new/choose) في مستودع 🤗 Transformers إذا كانت هناك مشكلة متعلقة بالمكتبة. حاول تضمين أكبر قدر ممكن من المعلومات التي تصف المشكلة لمساعدتنا في معرفة ما هو الخطأ وكيفية إصلاحه.
|
||||
|
||||
3. تحقق من دليل [الترحيل](migration) إذا كنت تستخدم إصدارًا أقدم من مكتبة 🤗 Transformers حيث تم إدخال بعض التغييرات المهمة بين الإصدارات.
|
||||
|
||||
|
||||
للحصول على مزيد من التفاصيل حول استكشاف الأخطاء وإصلاحها والحصول على المساعدة، راجع [الفصل 8](https://huggingface.co/course/chapter8/1?fw=pt) من دورة Hugging Face.
|
||||
|
||||
## بيئات جدار الحماية
|
||||
|
||||
بعض وحدات معالجة الرسومات (GPU) على السحابة وإعدادات الشبكة الداخلية محمية بجدار حماية من الاتصالات الخارجية، مما يؤدي إلى حدوث خطأ في الاتصال. عندما تحاول تعليمات البرنامج النصي تنزيل أوزان النموذج أو مجموعات البيانات، سيتوقف التنزيل ثم ينتهي بخطأ مثل:
|
||||
|
||||
```
|
||||
ValueError: Connection error, and we cannot find the requested files in the cached path.
|
||||
Please try again or make sure your Internet connection is on.
|
||||
```
|
||||
|
||||
في هذه الحالة، يجب محاولة تشغيل 🤗 Transformers في [وضع عدم الاتصال](installation#offline-mode) لتجنب خطأ الاتصال.
|
||||
|
||||
## CUDA نفاد الذاكرة
|
||||
|
||||
يمكن أن يكون تدريب النماذج الكبيرة التي تحتوي على ملايين المعلمات أمرًا صعبًا بدون الأجهزة المناسبة. أحد الأخطاء الشائعة التي قد تواجهها عند نفاد ذاكرة GPU هو:
|
||||
|
||||
```
|
||||
CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacity; 9.70 GiB already allocated; 179.81 MiB free; 9.85 GiB reserved in total by PyTorch)
|
||||
```
|
||||
|
||||
فيما يلي بعض الحلول المحتملة التي يمكنك تجربتها لتقليل استخدام الذاكرة:
|
||||
|
||||
- قلل من قيمة [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) في [`TrainingArguments`].
|
||||
|
||||
- حاول استخدام [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) في [`TrainingArguments`] لزيادة حجم الدُفعة بشكل فعال.
|
||||
|
||||
<Tip>
|
||||
راجع دليل [الأداء](performance) لمزيد من التفاصيل حول تقنيات توفير الذاكرة.
|
||||
</Tip>
|
||||
|
||||
## عدم القدرة على تحميل نموذج TensorFlow محفوظ
|
||||
|
||||
تقوم طريقة TensorFlow [model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) بحفظ النموذج بالكامل - الهندسة المعمارية، الأوزان، تكوين التدريب - في ملف واحد. ومع ذلك، عند تحميل ملف النموذج مرة أخرى، قد تواجه خطأ لأن مكتبة 🤗 Transformers قد لا تقوم بتحميل جميع الكائنات المتعلقة بـ TensorFlow في ملف النموذج. لتجنب المشكلات المتعلقة بحفظ وتحميل نماذج TensorFlow، نوصي بما يلي:
|
||||
|
||||
- احفظ أوزان النموذج كملف `h5` باستخدام [`model.save_weights`](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) ثم أعد تحميل النموذج باستخدام [`~TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```python
|
||||
>>> from transformers import TFPreTrainedModel
|
||||
>>> from tensorflow import keras
|
||||
|
||||
>>> model.save_weights("some_folder/tf_model.h5")
|
||||
>>> model = TFPreTrainedModel.from_pretrained("some_folder")
|
||||
```
|
||||
|
||||
- احفظ النموذج باستخدام [`~TFPretrainedModel.save_pretrained`] وقم بتحميله مرة أخرى باستخدام [`~TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```python
|
||||
>>> from transformers import TFPreTrainedModel
|
||||
|
||||
>>> model.save_pretrained("path_to/model")
|
||||
>>> model = TFPreTrainedModel.from_pretrained("path_to/model")
|
||||
```
|
||||
|
||||
## ImportError
|
||||
|
||||
خطأ شائع آخر قد تواجهه، خاصة إذا كان نموذجًا تم إصداره حديثًا، هو `ImportError`:
|
||||
|
||||
```
|
||||
ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location)
|
||||
```
|
||||
|
||||
بالنسبة لأنواع الأخطاء هذه، تحقق من أن لديك أحدث إصدار من مكتبة Hugging Face Transformers مثبتًا للوصول إلى أحدث النماذج:
|
||||
|
||||
```bash
|
||||
pip install transformers --upgrade
|
||||
```
|
||||
|
||||
## خطأ CUDA: تم تشغيل التأكيد على جانب الجهاز
|
||||
|
||||
في بعض الأحيان، قد تواجه خطأ CUDA عامًا حول خطأ في كود الجهاز.
|
||||
|
||||
```
|
||||
RuntimeError: CUDA error: device-side assert triggered
|
||||
```
|
||||
|
||||
يجب عليك محاولة تشغيل الكود على وحدة المعالجة المركزية (CPU) أولاً للحصول على رسالة خطأ أكثر دقة. أضف متغير البيئة التالي في بداية كودك للتبديل إلى وحدة المعالجة المركزية:
|
||||
|
||||
```python
|
||||
>>> import os
|
||||
|
||||
>>> os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
||||
```
|
||||
|
||||
الخيار الآخر هو الحصول على تتبع مكدس أفضل من GPU. أضف متغير البيئة التالي في بداية كودك للحصول على تتبع المكدس للإشارة إلى مصدر الخطأ:
|
||||
|
||||
```python
|
||||
>>> import os
|
||||
|
||||
>>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
```
|
||||
|
||||
## إخراج غير صحيح عند عدم إخفاء رموز الحشو
|
||||
|
||||
في بعض الحالات، قد يكون `hidden_state` غير صحيحة إذا تضمنت `input_ids` رموز حشو. ولإثبات ذلك، قم بتحميل نموذج ومجزىء لغوى. يمكنك الوصول إلى `pad_token_id` للنموذج لمعرفة قيمته. قد تكون `pad_token_id` `None` لبعض النماذج، ولكن يمكنك دائمًا تعيينها يدويًا.
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
>>> import torch
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model.config.pad_token_id
|
||||
0
|
||||
```
|
||||
|
||||
يوضح المثال التالي المُخرجات بدون إخفاء رموز الحشو:
|
||||
|
||||
```python
|
||||
>>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]])
|
||||
>>> output = model(input_ids)
|
||||
>>> print(output.logits)
|
||||
tensor([[ 0.0082, -0.2307],
|
||||
[ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>)
|
||||
```
|
||||
|
||||
هنا المُخرجات الفعلية للتسلسل الثاني:
|
||||
|
||||
```python
|
||||
>>> input_ids = torch.tensor([[7592]])
|
||||
>>> output = model(input_ids)
|
||||
>>> print(output.logits)
|
||||
tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
|
||||
```
|
||||
|
||||
يجب عليك في معظم الوقت توفير `attention_mask` للنموذج لتجاهل رموز الحشو لتجنب هذا الخطأ الصامت. الآن يتطابق مُخرجات التسلسل الثاني مع مُخرجاته الفعلية:
|
||||
|
||||
<Tip>
|
||||
بشكل افتراضي، ينشئ مجزىء النصوص `attention_mask` لك استنادًا إلى إعدادات المجزىء المحدد.
|
||||
</Tip>
|
||||
|
||||
```python
|
||||
>>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]])
|
||||
>>> output = model(input_ids, attention_mask=attention_mask)
|
||||
>>> print(output.logits)
|
||||
tensor([[ 0.0082, -0.2307],
|
||||
[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
|
||||
```
|
||||
|
||||
لا ينشئ 🤗 Transformers تلقائيًا `attention_mask` لإخفاء رمز الحشو إذا تم توفيره لأن:
|
||||
|
||||
- بعض النماذج ليس لها رمز حشو.
|
||||
|
||||
- بالنسبة لبعض الاستخدامات، يريد المستخدمون أن ينتبه النموذج إلى رمز الحشو.
|
||||
## ValueError: فئة التكوين غير المعترف بها XYZ لهذا النوع من AutoModel
|
||||
|
||||
بشكل عام، نوصي باستخدام فئة [`AutoModel`] لتحميل النسخ المدربة مسبقًا من النماذج. يمكن لهذه الفئة أن تستنتج وتُحمل تلقائيًا البنية الصحيحة من نسخ معينة بناءً على التكوين. إذا رأيت هذا الخطأ `ValueError` عند تحميل نموذج من نسخة، فهذا يعني أن الفئة التلقائية (Auto) لم تتمكن من العثور على خريطة من التكوين في نقطة التفتيش المعطاة إلى نوع النموذج الذي تُحاول تحميله. وغالبًا ما يحدث هذا عندما لا تدعم نقطة التفتيش مهمة معينة.
|
||||
|
||||
على سبيل المثال، سترى هذا الخطأ في المثال التالي لأنه لا يوجد GPT2 للإجابة على الأسئلة:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor, AutoModelForQuestionAnswering
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("openai-community/gpt2-medium")
|
||||
>>> model = AutoModelForQuestionAnswering.from_pretrained("openai-community/gpt2-medium")
|
||||
ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering.
|
||||
Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ...
|
||||
```
|
||||
@ -112,7 +112,7 @@ Bevor Sie irgendwelchen Code schreiben, empfehlen wir Ihnen dringend, die besteh
|
||||
|
||||
Sie benötigen grundlegende `git`-Kenntnisse, um zu 🤗 Transformers beizutragen. Obwohl `git` nicht das einfachste Werkzeug ist, hat es ein sehr gutes Handbuch. Geben Sie `git --help` in eine Shell ein und genießen Sie es! Wenn Sie Bücher bevorzugen, ist [Pro Git](https://git-scm.com/book/en/v2) eine gute Anlaufstelle.
|
||||
|
||||
Sie benötigen **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** oder höher, um zu 🤗 Transformers beizutragen. Folgen Sie den nachstehenden Schritten, um mit dem Beitrag zu beginnen:
|
||||
Sie benötigen **[Python 3.9](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** oder höher, um zu 🤗 Transformers beizutragen. Folgen Sie den nachstehenden Schritten, um mit dem Beitrag zu beginnen:
|
||||
|
||||
1. Forken Sie das [Repository](https://github.com/huggingface/transformers), indem Sie auf den **[Fork](https://github.com/huggingface/transformers/fork)**-Button auf der Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes auf Ihrem GitHub-Account erstellt.
|
||||
|
||||
|
||||
@ -43,7 +43,7 @@ Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" l
|
||||
|
||||
```py
|
||||
>>> model = AutoModel.from_pretrained(
|
||||
... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash
|
||||
... "julien-c/EsperBERTo-small", revision="4c77982" # tag name, or branch name, or commit hash
|
||||
... )
|
||||
```
|
||||
|
||||
|
||||
@ -11,4 +11,4 @@ black_avoid_patterns = {
|
||||
"{processor_class}": "FakeProcessorClass",
|
||||
"{model_class}": "FakeModelClass",
|
||||
"{object_class}": "FakeObjectClass",
|
||||
}
|
||||
}
|
||||
@ -5,6 +5,8 @@
|
||||
title: Quick tour
|
||||
- local: installation
|
||||
title: Installation
|
||||
- local: add_new_model
|
||||
title: Adding a new model to `transformers`
|
||||
title: Get started
|
||||
- sections:
|
||||
- local: pipeline_tutorial
|
||||
@ -24,7 +26,9 @@
|
||||
- local: model_sharing
|
||||
title: Share your model
|
||||
- local: agents
|
||||
title: Agents
|
||||
title: Agents 101
|
||||
- local: agents_advanced
|
||||
title: Agents, supercharged - Multi-agents, External tools, and more
|
||||
- local: llm_tutorial
|
||||
title: Generation with LLMs
|
||||
- local: conversations
|
||||
@ -79,6 +83,8 @@
|
||||
title: Image Feature Extraction
|
||||
- local: tasks/mask_generation
|
||||
title: Mask Generation
|
||||
- local: tasks/keypoint_detection
|
||||
title: Keypoint Detection
|
||||
- local: tasks/knowledge_distillation_for_image_classification
|
||||
title: Knowledge Distillation for Computer Vision
|
||||
title: Computer Vision
|
||||
@ -94,6 +100,8 @@
|
||||
title: Text to speech
|
||||
- local: tasks/image_text_to_text
|
||||
title: Image-text-to-text
|
||||
- local: tasks/video_text_to_text
|
||||
title: Video-text-to-text
|
||||
title: Multimodal
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -120,7 +128,7 @@
|
||||
- local: custom_models
|
||||
title: Share a custom model
|
||||
- local: chat_templating
|
||||
title: Templates for chat models
|
||||
title: Chat templates
|
||||
- local: trainer
|
||||
title: Trainer
|
||||
- local: sagemaker
|
||||
@ -141,6 +149,12 @@
|
||||
title: Troubleshoot
|
||||
- local: gguf
|
||||
title: Interoperability with GGUF files
|
||||
- local: tiktoken
|
||||
title: Interoperability with TikToken files
|
||||
- local: modular_transformers
|
||||
title: Modularity in `transformers`
|
||||
- local: how_to_hack_models
|
||||
title: Model Hacking (overwriting a class to your usage)
|
||||
title: Developer guides
|
||||
- sections:
|
||||
- local: quantization/overview
|
||||
@ -163,6 +177,12 @@
|
||||
title: FBGEMM_FP8
|
||||
- local: quantization/optimum
|
||||
title: Optimum
|
||||
- local: quantization/torchao
|
||||
title: TorchAO
|
||||
- local: quantization/bitnet
|
||||
title: BitNet
|
||||
- local: quantization/compressed_tensors
|
||||
title: compressed-tensors
|
||||
- local: quantization/contribute
|
||||
title: Contribute new quantization method
|
||||
title: Quantization Methods
|
||||
@ -198,6 +218,8 @@
|
||||
title: CPU inference
|
||||
- local: perf_infer_gpu_one
|
||||
title: GPU inference
|
||||
- local: perf_infer_gpu_multi
|
||||
title: Multi-GPU inference
|
||||
title: Optimizing inference
|
||||
- local: big_models
|
||||
title: Instantiate a big model
|
||||
@ -288,6 +310,8 @@
|
||||
title: Trainer
|
||||
- local: main_classes/deepspeed
|
||||
title: DeepSpeed
|
||||
- local: main_classes/executorch
|
||||
title: ExecuTorch
|
||||
- local: main_classes/feature_extractor
|
||||
title: Feature Extractor
|
||||
- local: main_classes/image_processor
|
||||
@ -370,6 +394,8 @@
|
||||
title: ESM
|
||||
- local: model_doc/falcon
|
||||
title: Falcon
|
||||
- local: model_doc/falcon_mamba
|
||||
title: FalconMamba
|
||||
- local: model_doc/fastspeech2_conformer
|
||||
title: FastSpeech2Conformer
|
||||
- local: model_doc/flan-t5
|
||||
@ -390,6 +416,8 @@
|
||||
title: Gemma
|
||||
- local: model_doc/gemma2
|
||||
title: Gemma2
|
||||
- local: model_doc/glm
|
||||
title: GLM
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
@ -408,6 +436,10 @@
|
||||
title: GPTSAN Japanese
|
||||
- local: model_doc/gpt-sw3
|
||||
title: GPTSw3
|
||||
- local: model_doc/granite
|
||||
title: Granite
|
||||
- local: model_doc/granitemoe
|
||||
title: GraniteMoe
|
||||
- local: model_doc/herbert
|
||||
title: HerBERT
|
||||
- local: model_doc/ibert
|
||||
@ -470,6 +502,8 @@
|
||||
title: MT5
|
||||
- local: model_doc/mvp
|
||||
title: MVP
|
||||
- local: model_doc/myt5
|
||||
title: myt5
|
||||
- local: model_doc/nemotron
|
||||
title: Nemotron
|
||||
- local: model_doc/nezha
|
||||
@ -482,6 +516,10 @@
|
||||
title: Nyströmformer
|
||||
- local: model_doc/olmo
|
||||
title: OLMo
|
||||
- local: model_doc/olmo_1124
|
||||
title: OLMo November 2024
|
||||
- local: model_doc/olmoe
|
||||
title: OLMoE
|
||||
- local: model_doc/open-llama
|
||||
title: Open-Llama
|
||||
- local: model_doc/opt
|
||||
@ -496,6 +534,8 @@
|
||||
title: Phi
|
||||
- local: model_doc/phi3
|
||||
title: Phi-3
|
||||
- local: model_doc/phimoe
|
||||
title: PhiMoE
|
||||
- local: model_doc/phobert
|
||||
title: PhoBERT
|
||||
- local: model_doc/plbart
|
||||
@ -506,8 +546,6 @@
|
||||
title: QDQBert
|
||||
- local: model_doc/qwen2
|
||||
title: Qwen2
|
||||
- local: model_doc/qwen2_audio
|
||||
title: Qwen2Audio
|
||||
- local: model_doc/qwen2_moe
|
||||
title: Qwen2MoE
|
||||
- local: model_doc/rag
|
||||
@ -572,6 +610,8 @@
|
||||
title: XLNet
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
- local: model_doc/zamba
|
||||
title: Zamba
|
||||
title: Text models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -692,6 +732,8 @@
|
||||
title: Bark
|
||||
- local: model_doc/clap
|
||||
title: CLAP
|
||||
- local: model_doc/dac
|
||||
title: dac
|
||||
- local: model_doc/encodec
|
||||
title: EnCodec
|
||||
- local: model_doc/hiera
|
||||
@ -700,8 +742,12 @@
|
||||
title: Hubert
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/mimi
|
||||
title: Mimi
|
||||
- local: model_doc/mms
|
||||
title: MMS
|
||||
- local: model_doc/moshi
|
||||
title: Moshi
|
||||
- local: model_doc/musicgen
|
||||
title: MusicGen
|
||||
- local: model_doc/musicgen_melody
|
||||
@ -798,6 +844,8 @@
|
||||
title: IDEFICS
|
||||
- local: model_doc/idefics2
|
||||
title: Idefics2
|
||||
- local: model_doc/idefics3
|
||||
title: Idefics3
|
||||
- local: model_doc/instructblip
|
||||
title: InstructBLIP
|
||||
- local: model_doc/instructblipvideo
|
||||
@ -818,16 +866,22 @@
|
||||
title: Llava
|
||||
- local: model_doc/llava_next
|
||||
title: LLaVA-NeXT
|
||||
- local: model_doc/llava-next-video
|
||||
- local: model_doc/llava_next_video
|
||||
title: LLaVa-NeXT-Video
|
||||
- local: model_doc/llava_onevision
|
||||
title: LLaVA-Onevision
|
||||
- local: model_doc/lxmert
|
||||
title: LXMERT
|
||||
- local: model_doc/matcha
|
||||
title: MatCha
|
||||
- local: model_doc/mgp-str
|
||||
title: MGP-STR
|
||||
- local: model_doc/mllama
|
||||
title: mllama
|
||||
- local: model_doc/nougat
|
||||
title: Nougat
|
||||
- local: model_doc/omdet-turbo
|
||||
title: OmDet-Turbo
|
||||
- local: model_doc/oneformer
|
||||
title: OneFormer
|
||||
- local: model_doc/owlvit
|
||||
@ -840,6 +894,12 @@
|
||||
title: Perceiver
|
||||
- local: model_doc/pix2struct
|
||||
title: Pix2Struct
|
||||
- local: model_doc/pixtral
|
||||
title: Pixtral
|
||||
- local: model_doc/qwen2_audio
|
||||
title: Qwen2Audio
|
||||
- local: model_doc/qwen2_vl
|
||||
title: Qwen2VL
|
||||
- local: model_doc/sam
|
||||
title: Segment Anything
|
||||
- local: model_doc/siglip
|
||||
|
||||
@ -46,7 +46,7 @@ The next step is to pass all the relevant training objects to the [`~accelerate.
|
||||
|
||||
## Backward
|
||||
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`] method:
|
||||
|
||||
```py
|
||||
>>> for epoch in range(num_epochs):
|
||||
|
||||
@ -889,3 +889,72 @@ used by hundreds and possibly even thousands of developers and researchers. You
|
||||
your achievements with the community.
|
||||
|
||||
**You have made another model that is super easy to access for everyone in the community! 🤯**
|
||||
|
||||
## Model additions and their timeline: when is a model added to transformers?
|
||||
|
||||
We aim for `transformers` to have support for new model architectures and checkpoints as early as possible:
|
||||
availability can range from day-0 (and hour-0) releases for some models, to a few days/weeks for others.
|
||||
|
||||
The availability of this is usually up to the model contributors, as well as how excited the community is for the
|
||||
architecture.
|
||||
|
||||
We can split the model architecture possibilities in four sections:
|
||||
- Day-0 integration
|
||||
- Same-week integration
|
||||
- Post-release integration
|
||||
- Hub-first release
|
||||
|
||||
Let's dive into each of these and see how we (the transformers team) can help you contribute your architecture and get
|
||||
your architecture to be very easily used by all members of the community.
|
||||
|
||||
### Day-0 integration
|
||||
|
||||
For a day-0 integration to work, we'll usually want to work hand-in-hand with you directly. In order to keep your
|
||||
architecture private until your checkpoints and release are ready, we'll work together in a private fork of
|
||||
transformers.
|
||||
|
||||
If you plan on having a transformers-first release, this is a great option: we run CI ahead of time, ensure the
|
||||
documentation is clear, and we aim to optimize your model as much as possible (providing quantization, optimizing it
|
||||
with Flash-Attention/SDPA, optimizing the KV cache, etc).
|
||||
|
||||
We can also lend you a hand in adding the model, reviewing it early, and help you make sure the `transformers`
|
||||
API works as expected!
|
||||
|
||||
If this is the path you wish to go with, we ask for you to reach out in advance, especially if the architecture is
|
||||
particularly novel (at least a few days, but a few weeks will enable the absolute best integration). In order to reach
|
||||
out, please contact transformers@huggingface.co 🤗.
|
||||
|
||||
### Same-week integration
|
||||
|
||||
A same-week integration usually happens when model authors do not reach out; but we see significant community
|
||||
requests.
|
||||
|
||||
In order to specify you'd like for us to integrate a specific model, we'll redirect you to our
|
||||
[issue tracker](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&projects=&template=new-model-addition.yml)
|
||||
where you can request a specific model.
|
||||
|
||||
The more activity on the issue, the faster/more likely we are to integrate the model!
|
||||
|
||||
### Post-release integration
|
||||
|
||||
A post-release integration usually happens when there has not been sufficient activity/requests to warrant a same-week
|
||||
integration, or that we lack the sufficient bandwidth to integrate it.
|
||||
|
||||
We very gladly welcome community contributions in those instances; more than half of the library was contributed
|
||||
by contributors external to Hugging Face. If this is something that is interesting to you, we recommend that you look
|
||||
at our [open issues tagged with "New model"](https://github.com/huggingface/transformers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+model%22).
|
||||
|
||||
We recommend you try your hand at a heavily requested model as this will multiply the impact of your contribution.
|
||||
We'll be there to help you in case that's your first contribution 🤗.
|
||||
|
||||
### Code-on-Hub release
|
||||
|
||||
Finally, transformers has a "remote-code" possibility, in which contributions are not made within the toolkit, but on
|
||||
the Hub. This can be particularly interesting for groups that are using `transformers` as a backbone for their project,
|
||||
but don't have the bandwidth to contribute the model to transformers directly.
|
||||
|
||||
In case the model is very successful, then we'll very likely end up integrating it in `transformers` at the end - as this
|
||||
provides better documentation, CI, maintenance, and optimizations - but this remains a great way to make your model
|
||||
accessible day-0 with minimal friction.
|
||||
|
||||
This guide is a great starting point for a Hub-first release: [Custom models](./custom_models)
|
||||
@ -19,7 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
### What is an agent?
|
||||
|
||||
Large Language Models (LLMs) trained to perform [causal language modeling](./tasks/language_modeling.) can tackle a wide range of tasks, but they often struggle with basic tasks like logic, calculation, and search. When prompted in domains in which they do not perform well, they often fail to generate the answer we expect them to.
|
||||
Large Language Models (LLMs) trained to perform [causal language modeling](./tasks/language_modeling) can tackle a wide range of tasks, but they often struggle with basic tasks like logic, calculation, and search. When prompted in domains in which they do not perform well, they often fail to generate the answer we expect them to.
|
||||
|
||||
One approach to overcome this weakness is to create an *agent*.
|
||||
|
||||
@ -28,8 +28,8 @@ An agent is a system that uses an LLM as its engine, and it has access to functi
|
||||
These *tools* are functions for performing a task, and they contain all necessary description for the agent to properly use them.
|
||||
|
||||
The agent can be programmed to:
|
||||
- devise a series of actions/tools and run them all at once like the [`CodeAgent`] for example
|
||||
- plan and execute actions/tools one by one and wait for the outcome of each action before launching the next one like the [`ReactJsonAgent`] for example
|
||||
- devise a series of actions/tools and run them all at once, like the [`CodeAgent`]
|
||||
- plan and execute actions/tools one by one and wait for the outcome of each action before launching the next one, like the [`ReactJsonAgent`]
|
||||
|
||||
### Types of agents
|
||||
|
||||
@ -46,7 +46,18 @@ We implement two versions of ReactJsonAgent:
|
||||
- [`ReactCodeAgent`] is a new type of ReactJsonAgent that generates its tool calls as blobs of code, which works really well for LLMs that have strong coding performance.
|
||||
|
||||
> [!TIP]
|
||||
> Read [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) blog post to learn more the ReAct agent.
|
||||
> Read [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) blog post to learn more about ReAct agents.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img
|
||||
class="block dark:hidden"
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif"
|
||||
/>
|
||||
<img
|
||||
class="hidden dark:block"
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif"
|
||||
/>
|
||||
</div>
|
||||
|
||||

|
||||
|
||||
@ -103,7 +114,7 @@ To start with, please install the `agents` extras in order to install all defaul
|
||||
pip install transformers[agents]
|
||||
```
|
||||
|
||||
Build your LLM engine by defining a `llm_engine` method which accepts a list of [messages](./chat_templating.) and returns text. This callable also needs to accept a `stop` argument that indicates when to stop generating.
|
||||
Build your LLM engine by defining a `llm_engine` method which accepts a list of [messages](./chat_templating) and returns text. This callable also needs to accept a `stop` argument that indicates when to stop generating.
|
||||
|
||||
```python
|
||||
from huggingface_hub import login, InferenceClient
|
||||
@ -119,19 +130,20 @@ def llm_engine(messages, stop_sequences=["Task"]) -> str:
|
||||
```
|
||||
|
||||
You could use any `llm_engine` method as long as:
|
||||
1. it follows the [messages format](./chat_templating.md) (`List[Dict[str, str]]`) for its input `messages`, and it returns a `str`.
|
||||
1. it follows the [messages format](./chat_templating) (`List[Dict[str, str]]`) for its input `messages`, and it returns a `str`.
|
||||
2. it stops generating outputs at the sequences passed in the argument `stop_sequences`
|
||||
|
||||
Additionally, `llm_engine` can also take a `grammar` argument. In the case where you specify a `grammar` upon agent initialization, this argument will be passed to the calls to llm_engine, with the `grammar` that you defined upon initialization, to allow [constrained generation](https://huggingface.co/docs/text-generation-inference/conceptual/guidance) in order to force properly-formatted agent outputs.
|
||||
|
||||
You will also need a `tools` argument which accepts a list of `Tools` - it can be an empty list. You can also add the default toolbox on top of your `tools` list by defining the optional argument `add_base_tools=True`.
|
||||
|
||||
Now you can create an agent, like [`CodeAgent`], and run it. For convenience, we also provide the [`HfEngine`] class that uses `huggingface_hub.InferenceClient` under the hood.
|
||||
Now you can create an agent, like [`CodeAgent`], and run it. You can also create a [`TransformersEngine`] with a pre-initialized pipeline to run inference on your local machine using `transformers`.
|
||||
For convenience, since agentic behaviours generally require stronger models such as `Llama-3.1-70B-Instruct` that are harder to run locally for now, we also provide the [`HfApiEngine`] class that initializes a `huggingface_hub.InferenceClient` under the hood.
|
||||
|
||||
```python
|
||||
from transformers import CodeAgent, HfEngine
|
||||
from transformers import CodeAgent, HfApiEngine
|
||||
|
||||
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
llm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
|
||||
|
||||
agent.run(
|
||||
@ -141,7 +153,7 @@ agent.run(
|
||||
```
|
||||
|
||||
This will be handy in case of emergency baguette need!
|
||||
You can even leave the argument `llm_engine` undefined, and an [`HfEngine`] will be created by default.
|
||||
You can even leave the argument `llm_engine` undefined, and an [`HfApiEngine`] will be created by default.
|
||||
|
||||
```python
|
||||
from transformers import CodeAgent
|
||||
@ -282,7 +294,8 @@ Transformers comes with a default toolbox for empowering agents, that you can ad
|
||||
- **Speech to text**: given an audio recording of a person talking, transcribe the speech into text ([Whisper](./model_doc/whisper))
|
||||
- **Text to speech**: convert text to speech ([SpeechT5](./model_doc/speecht5))
|
||||
- **Translation**: translates a given sentence from source language to target language.
|
||||
- **Python code interpreter**: runs your the LLM generated Python code in a secure environment. This tool will only be added to [`ReactJsonAgent`] if you use `add_base_tools=True`, since code-based tools can already execute Python code
|
||||
- **DuckDuckGo search***: performs a web search using DuckDuckGo browser.
|
||||
- **Python code interpreter**: runs your the LLM generated Python code in a secure environment. This tool will only be added to [`ReactJsonAgent`] if you initialize it with `add_base_tools=True`, since code-based agent can already natively execute Python code
|
||||
|
||||
|
||||
You can manually use a tool by calling the [`load_tool`] function and a task to perform.
|
||||
@ -312,62 +325,37 @@ model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
|
||||
print(model.id)
|
||||
```
|
||||
|
||||
This code can be converted into a class that inherits from the [`Tool`] superclass.
|
||||
This code can quickly be converted into a tool, just by wrapping it in a function and adding the `tool` decorator:
|
||||
|
||||
|
||||
The custom tool needs:
|
||||
- An attribute `name`, which corresponds to the name of the tool itself. The name usually describes what the tool does. Since the code returns the model with the most downloads for a task, let's name is `model_download_counter`.
|
||||
- An attribute `description` is used to populate the agent's system prompt.
|
||||
- An `inputs` attribute, which is a dictionary with keys `"type"` and `"description"`. It contains information that helps the Python interpreter make educated choices about the input.
|
||||
- An `output_type` attribute, which specifies the output type.
|
||||
- A `forward` method which contains the inference code to be executed.
|
||||
```py
|
||||
from transformers import tool
|
||||
|
||||
@tool
|
||||
def model_download_tool(task: str) -> str:
|
||||
"""
|
||||
This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
|
||||
It returns the name of the checkpoint.
|
||||
|
||||
```python
|
||||
from transformers import Tool
|
||||
from huggingface_hub import list_models
|
||||
|
||||
class HFModelDownloadsTool(Tool):
|
||||
name = "model_download_counter"
|
||||
description = (
|
||||
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
|
||||
"It returns the name of the checkpoint."
|
||||
)
|
||||
|
||||
inputs = {
|
||||
"task": {
|
||||
"type": "text",
|
||||
"description": "the task category (such as text-classification, depth-estimation, etc)",
|
||||
}
|
||||
}
|
||||
output_type = "text"
|
||||
|
||||
def forward(self, task: str):
|
||||
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
|
||||
return model.id
|
||||
Args:
|
||||
task: The task for which
|
||||
"""
|
||||
model = next(iter(list_models(filter="text-classification", sort="downloads", direction=-1)))
|
||||
return model.id
|
||||
```
|
||||
|
||||
Now that the custom `HfModelDownloadsTool` class is ready, you can save it to a file named `model_downloads.py` and import it for use.
|
||||
The function needs:
|
||||
- A clear name. The name usually describes what the tool does. Since the code returns the model with the most downloads for a task, let's put `model_download_tool`.
|
||||
- Type hints on both inputs and output
|
||||
- A description, that includes an 'Args:' part where each argument is described (without a type indication this time, it will be pulled from the type hint).
|
||||
All these will be automatically baked into the agent's system prompt upon initialization: so strive to make them as clear as possible!
|
||||
|
||||
> [!TIP]
|
||||
> This definition format is the same as tool schemas used in `apply_chat_template`, the only difference is the added `tool` decorator: read more on our tool use API [here](https://huggingface.co/blog/unified-tool-use#passing-tools-to-a-chat-template).
|
||||
|
||||
```python
|
||||
from model_downloads import HFModelDownloadsTool
|
||||
|
||||
tool = HFModelDownloadsTool()
|
||||
```
|
||||
|
||||
You can also share your custom tool to the Hub by calling [`~Tool.push_to_hub`] on the tool. Make sure you've created a repository for it on the Hub and are using a token with read access.
|
||||
|
||||
```python
|
||||
tool.push_to_hub("{your_username}/hf-model-downloads")
|
||||
```
|
||||
|
||||
Load the tool with the [`~Tool.load_tool`] function and pass it to the `tools` parameter in your agent.
|
||||
|
||||
```python
|
||||
from transformers import load_tool, CodeAgent
|
||||
|
||||
model_download_tool = load_tool("m-ric/hf-model-downloads")
|
||||
Then you can directly initialize your agent:
|
||||
```py
|
||||
from transformers import CodeAgent
|
||||
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
|
||||
agent.run(
|
||||
"Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
|
||||
@ -379,7 +367,7 @@ You get the following:
|
||||
======== New task ========
|
||||
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
|
||||
==== Agent is executing the code below:
|
||||
most_downloaded_model = model_download_counter(task="text-to-video")
|
||||
most_downloaded_model = model_download_tool(task="text-to-video")
|
||||
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
|
||||
====
|
||||
```
|
||||
@ -387,7 +375,6 @@ print(f"The most downloaded model for the 'text-to-video' task is {most_download
|
||||
And the output:
|
||||
`"The most downloaded model for the 'text-to-video' task is ByteDance/AnimateDiff-Lightning."`
|
||||
|
||||
|
||||
### Manage your agent's toolbox
|
||||
|
||||
If you have already initialized an agent, it is inconvenient to reinitialize it from scratch with a tool you want to use. With Transformers, you can manage an agent's toolbox by adding or replacing a tool.
|
||||
@ -442,123 +429,3 @@ To speed up the start, tools are loaded only if called by the agent.
|
||||
This gets you this image:
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png">
|
||||
|
||||
|
||||
### Use gradio-tools
|
||||
|
||||
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
|
||||
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces.
|
||||
|
||||
Transformers supports `gradio_tools` with the [`Tool.from_gradio`] method. For example, let's use the [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) from `gradio-tools` toolkit for improving prompts to generate better images.
|
||||
|
||||
Import and instantiate the tool, then pass it to the `Tool.from_gradio` method:
|
||||
|
||||
```python
|
||||
from gradio_tools import StableDiffusionPromptGeneratorTool
|
||||
from transformers import Tool, load_tool, CodeAgent
|
||||
|
||||
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
|
||||
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
|
||||
```
|
||||
|
||||
Now you can use it just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit`.
|
||||
|
||||
```python
|
||||
image_generation_tool = load_tool('huggingface-tools/text-to-image')
|
||||
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
|
||||
|
||||
agent.run(
|
||||
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
|
||||
)
|
||||
```
|
||||
|
||||
The model adequately leverages the tool:
|
||||
```text
|
||||
======== New task ========
|
||||
Improve this prompt, then generate an image of it.
|
||||
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
|
||||
==== Agent is executing the code below:
|
||||
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
|
||||
while improved_prompt == "QUEUE_FULL":
|
||||
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
|
||||
print(f"The improved prompt is {improved_prompt}.")
|
||||
image = image_generator(prompt=improved_prompt)
|
||||
====
|
||||
```
|
||||
|
||||
Before finally generating the image:
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
|
||||
|
||||
|
||||
> [!WARNING]
|
||||
> gradio-tools require *textual* inputs and outputs even when working with different modalities like image and audio objects. Image and audio inputs and outputs are currently incompatible.
|
||||
|
||||
### Use LangChain tools
|
||||
|
||||
We love Langchain and think it has a very compelling suite of tools.
|
||||
To import a tool from LangChain, use the `from_langchain()` method.
|
||||
|
||||
Here is how you can use it to recreate the intro's search result using a LangChain web search tool.
|
||||
|
||||
```python
|
||||
from langchain.agents import load_tools
|
||||
from transformers import Tool, ReactCodeAgent
|
||||
|
||||
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
|
||||
|
||||
agent = ReactCodeAgent(tools=[search_tool])
|
||||
|
||||
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
|
||||
```
|
||||
|
||||
## Gradio interface
|
||||
|
||||
You can leverage `gradio.Chatbot`to display your agent's thoughts using `stream_to_gradio`, here is an example:
|
||||
|
||||
```py
|
||||
import gradio as gr
|
||||
from transformers import (
|
||||
load_tool,
|
||||
ReactCodeAgent,
|
||||
HfEngine,
|
||||
stream_to_gradio,
|
||||
)
|
||||
|
||||
# Import tool from Hub
|
||||
image_generation_tool = load_tool("m-ric/text-to-image")
|
||||
|
||||
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
|
||||
|
||||
# Initialize the agent with the image generation tool
|
||||
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
|
||||
|
||||
|
||||
def interact_with_agent(task):
|
||||
messages = []
|
||||
messages.append(gr.ChatMessage(role="user", content=task))
|
||||
yield messages
|
||||
for msg in stream_to_gradio(agent, task):
|
||||
messages.append(msg)
|
||||
yield messages + [
|
||||
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
|
||||
]
|
||||
yield messages
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
|
||||
submit = gr.Button("Run illustrator agent!")
|
||||
chatbot = gr.Chatbot(
|
||||
label="Agent",
|
||||
type="messages",
|
||||
avatar_images=(
|
||||
None,
|
||||
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
||||
),
|
||||
)
|
||||
submit.click(interact_with_agent, [text_input], [chatbot])
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
```
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user