* Updated model card for distilbert
* Updated the distilbert model card
* Updated model card for distilbert
* Updated the distilbert model card
* Addressed code review comments
* Addressed review comments
* fix pipeline
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* github why you do this
* fix
* make fixup
* disable cpu offload test
* fixup
* tmp reworks
* git branch movement
* make fixup
* add require_fsdp_v2_version
* dep issues
* update ruff and fixup
enable 2 types of case on XPU 1. test_resize_tokens_embeddings_with_deepspeed_multi_gpu 2. test_resize_embeddings_untied_with_deepspeed_multi_gpu
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
* More ReDOS fixes!
* Slight regex cleanup
* Cleanup regex replacement
* Drop that regex entirely too
* The regex didn't match config.json, let's make sure we don't either
* Cleanup allowed_value_chars a little
* Cleanup the import search
* Catch multi-condition blocks too
* Trigger tests
* Trigger tests
* Remove unnecessary masked_fill in deberta models
* Enable some code when exporting but not compiling
* add missing import
* style
* replace if by torch.cond
* style
* use numel
* style
* add unit tests
* style
* change empty value for dynamic cache
* replace != [] by numel()
* fix import issue
* style
* Update Siglip attention implementation
* Update tests for Siglip
* Remove one level of indentation
* Update test to be more specific
* Fixup
* Idefics2
* Idefics3
* Emu3
* SmolVLM
* Phi4 (just init small update)
* Idefics2 (test fix)
* Update siglip2 tests
* Update eager
* trigger
* Clean up
* Transfer inputs to device in test
* Fixing test
* Fixing test
* Revert contiguous
* Remove unused is_flash_attn_2_available
* Move flaky to specific models
* fix XPU UT error case brough by RNG difference btw XPU and CUDA
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
* enable tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits and tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits_bf16 on xpu
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
* Revert "enable tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits and tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits_bf16 on xpu"
This reverts commit 3ef83a4f0204642daa45fda56e8aca1afed24b4f.
---------
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
* Initial commit for Qwen3
* fix and add tests for qwen3 & qwen3_moe
* rename models for tests.
* fix
* fix
* fix and add docs.
* fix model name in docs.
* simplify modular and fix configuration issues
* Fix the red CI: ruff was updated
* revert ruff, version was wrong
* fix qwen3moe.
* fix
* make sure MOE can load
* fix copies
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* init commit
* style
* take comments into account
* add deepseekv3 modeling
* remove redundant code
* apply make style
* apply fix-copies
* make format
* add init files
* rename deepseekv3 into deepseek_v3 based on its model_type
* rename deepseekv3 into deepseek_v3 based on its model_type
* deepseek-v3 not deepseek_v3
* set model_type as deepseek_v3
* use default docs
* apply make
* fill type and docstring
* add rope_config_validation
* use custom DeepseekV3MLP
* hold code only for checkpoints congifuration; remove redundant
* revise rope yarn for DeepSeek variation
* rename DeepSeek-V3
* some refactoring
* revise load_hook to work properly; make moe func trainable; use llama instead of mixtral
* fix attention forward
* use -1 for not-changing dim when to use exapnd
* refactor DeepseekV3TopkRouter
* use reshape_for_rope instead of load_hook; revise attention forward for TP; rename q_head_dim with qk_head_dim
* register pre_hook and hook both
* make style
* use n_shared_experts
* Update src/transformers/models/deepseek_v3/configuration_deepseek_v3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add test file
* update modeling_file according to modular file
* make style
* add mapping for DeepseekV3ForSequenceClassification
* remove aux_loss_alpha
* add deepseek_v3 for perf
* add deepseek_v3
* rename test as deepseekv3
* use tiny-deepseek-v3
* remove DeepseekV3ForSequenceClassification
* cache before padding
* remote output_router_logits
* Revert "remote output_router_logits"
This reverts commit f264f800d04950390db8413b9efb24cef8186330.
* remove output_router_logits
* make e_score_correction_bias as buffer
* skip tests not compatible
* make style
* make e_score_correction_bias as buffer
* use rope_interleave instead of load_hook
* skip tests not compatible with MLA
* add doc for rope_interleave
* fix typo
* remove torch.no_grad for selecting topk
* fix post merge issue
* mrege with main and simplify
* nits
* final
* small fixes
* fix
* support TP better
* stash
* changes currently requires
* remove synch
* more fixes for TP
* temp fix for TP : some attention layers's FP8 scales are too small + shared is local colwise and anything is local if FP8 because weights are used
* updates to have generation work!
* push most of the changes
* reorder functions + call for contributions!
* update readme
* nits
* update
* ruff was updated on main
* merge with main and fix copies
* revert unrelated changes
* route all tokens to all experts when testing to avoid no gradient iddues
* finish fixing all tests
* fixup
* nit
* clean config
* last readme changes
* nit
* do cnit
* typo
* last nit
* one more one more
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: arthur@huggingface.co <arthur@ip-26-0-165-131.ec2.internal>
* Add image_token_id and video_token_id handling in Llava processors
* fix: image to video
* fix: correct image and video token ID handling in Llava processors
* fix: improve image and video token ID handling in Llava processors
* Optimize to_py_obj for python-native numeric lists and scalars
* Fix bug that tuple is not converted to list
* Try np.array for more robust type checking
* Apply review and add tests for to_py_obj
* Updated docker files to use uv pip install as uv is blazingly fast.
* Removed -y flag for uv pip uninstall.
* Passed --no-build-isolation flag
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* add audio chat templates
* update
* update
* nit
* green ci
* we dont care about the order anymore
* clean up after rebase
* overriden tests rename
* rename shieldgemma also
* one more rename
* require_read_token
* removde images/videos
* retrigger CI flaky
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: fix typos in test codes
* chore: format codes
* Added support for seed in `DataCollatorForWholeWordMask`, and also wrote tests.
Also fixed bugs where the code hardcoded values for mask replacement probability and random replacement probability, instead of using the values passed by the user.
* formatting issues
* Used better way to generate seed in TF. Made tests more consistent.
tests: fix asyncio.wait() usage for python>=3.7
Passing coroutings directly to `asyncio.wait()` is deprecated since
python 3.8 and removed starting from python 3.11. Instead, it's required
to explicitly wrap coroutine in the task with `asyncio.create_task()` which
first appeared in python 3.7.
We step into this issue running the following Transformers tests on a
system with python 3.11 or later (for example, Ubuntu 24.04 has python 3.12):
* `tests/trainer/test_trainer_distributed.py`
* `tests/extended/test_trainer_ext.py`
The error will be:
```
src/transformers/testing_utils.py:2380: in execute_subprocess_async
result = loop.run_until_complete(
/usr/lib/python3.12/asyncio/base_events.py:687: in run_until_complete
return future.result()
src/transformers/testing_utils.py:2368: in _stream_subprocess
await asyncio.wait(
...
E TypeError: Passing coroutines is forbidden, use tasks explicitly.
```
See: https://docs.python.org/3.10/library/asyncio-task.html#asyncio.wait
See: https://docs.python.org/3.10/library/asyncio-task.html#asyncio.wait
See: https://docs.python.org/3.7/library/asyncio-task.html#asyncio.create_task
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* process flattened images in fast image proc
* process flattened images in low proc and add tests
* remove print
* add unbalanced batch test pas image proc
* fix integration tests
* Use `deformable_detr` kernel from the Hub
Remove the `deformable_detr` kernel from `kernels/` and use the
pre-built kernel from the Hub instead.
* Add license header
* Add `kernels` as an extra `hub-kernels`
Also add it to `testing`, so that the kernel replacement gets tested
when using CUDA in CI.
* supersede paligemma forward to shift pos id indexing
* fix prepare_inputs_ as well
* fix modular error
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Make ViT Pooler configurable, so that it is possible to pick the activation function and the number of channels in the output
* Add documentation and allow functions as activations (instead of just string)
* formatting change
* Use ACT2FN
* Formatting change
* Formatting changes
* force pooler_act to be string
* force pooler_act to be string
* Add configs to OBJECTS_TO_IGNORE to make check_docstrings happy
* Making the same change in ijepa to make check_modular_conversion happy
* Add IJepaConfig to make CI happy
* rename pooler_size to pooler_output_size as defined in the config
* typo
* revert change to ignore variable
* Ran utils/check_docstrings.py --fix_and_overwrite
* revert unrelated change
* remove redundant defaults
* rename self.act -> self.activation
* tanh activation function in mapping
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* chore: fix typos in the tests
* fix: format codes
* chore: fix copy mismatch issue
* fix: format codes
* chore: fix copy mismatch issue
* chore: fix copy mismatch issue
* chore: fix copy mismatch issue
* chore: restore previous words
* chore: revert unexpected changes
The _fsdp_qlora_plugin_updates checks for LoraConfig but other PEFT
methods can also support quantized models, e.g. VeRA. Therefore, the
isinstance check is now looking for PeftConfig in general.
Moreover, the fsdp_plugin variable may be undefined in the 2nd if
condition, leading to an `UnboundLocalError` error. This is fixed by not
assigning the variable at all.
I checked for tests that may need updating but only found
test_fsdp_config_transformers_auto_wrap associated with this change.
AFAICT, this test does not cover the changed code, since the test does
not start the training loop. Therefore, I haven't updated any tests. LMK
if/how this fix should be tested.
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* no image
* test
* revert jax version updates
* make fixup
* update autodoc path for model_addition_debugger
* shieldgemma2
* add missing pages to toctree
* draft of model tracer visualiser
* add context manager in addition to decorator
* add debug utils to init
* move model debugging utils to dedicated file
* add documentation
* protect some imports
* format
* move and protect imports
* format
* doc: improve errors in case of broken dummy imports.
* format
* use automatic torch backend
* update doc
* fix backend
* (TEMP) move to dummies while backend wait
* update documentation
* doc
* add prompt depth anything model by modular transformer
* add prompt depth anything docs and imports
* update code style according transformers doc
* update code style: import order issue is fixed by custom_init_isort
* fix depth shape from B,1,H,W to B,H,W which is as the same as Depth Anything
* move prompt depth anything to vision models in _toctree.yml
* update backbone test; there is no need for resnet18 backbone test
* update init file & pass RUN_SLOW tests
* update len(prompt_depth) to prompt_depth.shape[0]
Co-authored-by: Joshua Lochner <admin@xenova.com>
* fix torch_int/model_doc
* fix typo
* update PromptDepthAnythingImageProcessor
* fix typo
* fix typo for prompt depth anything doc
* update promptda overview image link of huggingface repo
* fix some typos in promptda doc
* Update image processing to include pad_image, prompt depth position, and related explanations for better clarity and functionality.
* add copy disclaimer for prompt depth anything image processing
* fix some format typos in image processing and conversion scripts
* fix nn.ReLU(False) to nn.ReLU()
* rename residual layer as it's a sequential layer
* move size compute to a separate line/variable for easier debug in modular prompt depth anything
* fix modular format for prompt depth anything
* update modular prompt depth anything
* fix scale to meter and some internal funcs warp
* fix code style in image_processing_prompt_depth_anything.py
* fix issues in image_processing_prompt_depth_anything.py
* fix issues in image_processing_prompt_depth_anything.py
* fix issues in prompt depth anything
* update converting script similar to mllamma
* update testing for modeling prompt depth anything
* update testing for image_processing_prompt_depth_anything
* fix assertion in image_processing_prompt_depth_anything
* Update src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update docs/source/en/model_doc/prompt_depth_anything.md
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update docs/source/en/model_doc/prompt_depth_anything.md
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* update some testing
* fix testing
* fix
* add return doc for forward of prompt depth anything
* Update src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update tests/models/prompt_depth_anything/test_modeling_prompt_depth_anything.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix prompt depth order
* fix format for testing prompt depth anything
* fix minor issues in prompt depth anything doc
* fix format for modular prompt depth anything
* revert format for modular prompt depth anything
* revert format for modular prompt depth anything
* update format for modular prompt depth anything
* fix parallel testing errors
* fix doc for prompt depth anything
* Add header
* Fix imports
* Licence header
---------
Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Remove deprecated arguments for jax.numpy.clip.
* Remove deprecated arguments for jax.numpy.clip.
* Update jax version to 0.4.27 to 0.4.38.
* Avoid use of deprecated xla_bridge.get_backend().platform
Co-authored-by: Jake Vanderplas <jakevdp@google.com>
---------
Co-authored-by: Jake Vanderplas <jakevdp@google.com>
* feat: Saving tokenizer in collator when processing_class is None
* chore: Style issue
* chore: Typo
* dbg: Check why test failed
* dbg: Remove logics and another test failed which successed before, so should be the stablibility issue
* test: Init unit-test
* chore: Style
* chore: Add err log
* fix: Case
* Update tests/trainer/test_trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* chore: Try to use get_regression_trainer
* fix: Impl and style
* fix: Style
* fix: Case
* fix: Import err
* fix: Missed import
* fix: Import block un-sorted problem
* fix: Try another tokenizer
* fix: Test logic
* chore: Light updates
* chore: Reformat
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Disable inductor config setter by default
This is hard to debug and should be off by default
* remove default settings in autoquant too
* Add info to torchao.md about recommended settings
* satisfying Ruff format
Summary:
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Just import torch AdamW instead
* Update docs too
* Make AdamW undocumented
* make fixup
* Add a basic wrapper class
* Add it back to the docs
* Just remove AdamW entirely
* Remove some AdamW references
* Drop AdamW from the public init
* make fix-copies
* Cleanup some references
* make fixup
* Delete lots of transformers.AdamW references
* Remove extra references to adamw_hf
* fix "Cannot copy out of meta tensor; no data!" issue for BartForConditionalGeneration model
* follow Marc's suggestion to use _tie_weights to fix
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
* fix review comments.
Signed-off-by: N <matrix.yao@intel.com>
* fix quality
Signed-off-by: N <matrix.yao@intel.com>
---------
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Signed-off-by: N <matrix.yao@intel.com>
* Add expectation classes + tests
* Use typing Union instead of |
* Use bits to track score in properties cmp method
* Add exceptions and tests + comments
* Remove compute cap minor as it is not needed currently
* Simplify. Remove Properties class
* Add example Exceptions usage
* Expectations as dict subclass
* Update example Exceptions usage
* Refactor. Improve type name. Document score fn.
* Rename to DeviceProperties.
Mistaken use of De Morgan's law. Fixed "not (X or Y)"
to correct "not (X and Y)" check to raise a ValueError.
Added corresponding test to check "positive int or None" condition.
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* fall back to eager if output_attentions
* improve relative position embeddings
* run modular on got_ocr2
* run-slow: sam
* fix run-length encoding
* fix tf processor errors
* update tf_sam
* fix compile error
* re-run tests
* Try working around the processor registration bugs
* oops
* Update error message
* Clarify error
* Docstring docstring docstring
* The extra content is indexed by config class, so let's grab some values out of there
* Commit my confusion as a TODO
* Resolve my confusion
* Cleanup and mostly revert to the original
* Better autoclass fallback
* Don't nest f-strings you lunatic
* Clearer error message
* Less getattr()
* Revert a lot of changes to try a different approach!
* Try the global registry
* Check the dynamic list as well as the transformers root
* Move the dynamic list somewhere safer
* Move the dynamic list somewhere even safer
* More import cleanup
* Simplify all the register_for_auto_class methods
* Set _auto_class in the register() methods
* Stop setting the cls attribute in register()
* Restore specifying the model class for Model derivatives only
* Fix accidentally taking the .__class__ of a class
* Revert register_for_auto_class changes
* Fix get_possibly_dynamic_module
* No more ALL_CUSTOM_CLASSES
* Fix up get_possibly_dynamic_module as well
* Revert unnecessary formatting changes
* Trigger tests
* Set best_model_checkpoint only when ckpt exists.
Rather than set it explicitly without checking if the checkpoint directory even exists as before, now we moved the setting logic inside of _save_checkpoint and are only setting it if it exists.
* Added best_global_step to TrainerState.
* Added tests for best_model_checkpoint.
* Fixed hard-coded values in test to prevent fail.
* Added helper func and removed hard-coded best_step.
* Added side effect patch generator for _eval.
* Added evaluate side effect func.
* Removed erroneous patching.
* Fixed minor bug.
* Applied Ruff.
* Fixed Ruff problem in make style.
* Used Trainer.set_initial_training_values.
* add support for fast image processors in add-new-model-like
* fix header not found add-fast-image-processor-cli
* Encourage adding fast image processor
* nit
* start improve doc
* update docs
* make requested modifs
Corrects the type annotation to match actual usage. The variable was typed as
Dict[str, Dict[str, Callable]] but is actually used as Dict[str, Callable]
where keys are attention mechanism names and values are the corresponding
attention functions directly. This change makes the type annotation consistent
with how the dictionary is used in the codebase.
* refactor siglip2 fast image processor, add unused_kwargs in base fast image processor
* nits
* change unused_kwargs default to None
* update siglip2 fast image proc
* Don't accidentally mutate the base_model_tp_plan
* Co-authored by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Trigger tests
* Marking grad accum test as slow
* Add a flaky decorator
* Add a flaky decorator
* Use cyril's codeblock
* Don't copy() when it's None
* Use cyril's new codeblock
* make fixup
* test
* fix
* fix
* skip some and run some first
* test fsdp
* fix
* patches for generate
* test distributed
* copy
* don't test distributed loss for hpu
* require fp16 and run first
* changes from marc's PR fixing zero3
* better alternative
* return True when fp16 support on gaudi without creating bridge
* fix
* fix tested dtype in deepspeed inference test
* test
* fix
* test
* fix
* skip
* require fp16
* run first fsdp
* Apply suggestions from code review
* address comments
* address comments and refactor test
* reduce precison
* avoid doing gaudi1 specific stuff in the genreation loop
* document test_gradient_accumulation_loss_alignment_with_model_loss test a bit more
* Fix converter
* [Broken] Adds Gemma 3 to Hugging Face Transformers
* Consolidating Config and Processor params across impls
* Sorting out configuration parameters. Adds qk_norm before RoPE. Still not sure if RoPE is right.
* Additional plumbing for CausalLM and ConditionalGeneration variants
* incomplete draft of Orbax conversion script
* More complete checkpoint conversion
* Supporting Gemma 3 1B checkpoints
* Updating RoPE for multiple frequencies
* Adjustments to rotary embedder
* Proof of life for text-only operation
* Updating the conversion script to handle multimodal projection weights
* Fixing tet-only conversions
* Cleaner conversion script with multimodal support and a simpler processor
* Additional refatcors to the Gemma3Processor
* Simplified Processor to work over text representations
* Updated conversion script to join text and vision embeddings at converion time
* Logging for debugging
* Update src/transformers/models/gemma2/modeling_gemma2.py
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Removed extraneous Config params
* Switching to fast tokenizer for checkpoint conversions
* isolating siglip for performance tetsing
* Minor changes for debugging tests against baselines
* Adding average pooling for soft tokens
* Updating processor code to enable simpler embedding interleaving for arbitrary number of images in prompts
* Updating conversion script for ShieldGemma 2 conversion compatibility
* Allow disable_compile to be provided as a kwarg
* Refresh from modular
* Updated conversion script and corrected sliding window
* Fix type mismatch in cache_position (#4)
* Fix dtype (#5)
* Fix type mismatch in cache_position
* Actually fix in the modular file
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
---------
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
* fixes for embedding table overflow and missing image_soft_token_mask from Gemma3Processor
* Adding 2D pooling for image embeddings
* Revert "Adding 2D pooling for image embeddings"
This reverts commit 65350cf531296f050b2078a5b8e46f61642b2648.
* Gemma3 average pooling changed from 1D to 2D
* Major refactor to Gemma3MultimodalInputProjection
* Updating Gemm 3 Auto* registrations
* Add option to save Gemma 3 chat template with tokenizer during weights conversion
* Removing unused imports
* Moving out-of-vocab handling from Gemma3Processor to Gemma3ForConditionalGeneration
* Removing duplicate config property
* Removing final logit softcapping and 1-indexing of position ids
* Fixing image processor config and none --> None typo
* Fixing sliding window size for 1B
* Updating image_mean and image_std in Image Processor
* Attention masking changed to lower triangular
* Moving image special tokens to conversion script
* Mirror image processor defaults from conversion script into Gemma3ProcessorKwargs
* Remove special token variables from symbol space
* Moving image soft token mask computation from Gemma3Processor to Gemma3ForConditionalGeneration
* tie lm_head and embedding weights
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Correct tied weights in Gemma3CausalLM
* iterative bidirectional attention
* resolving merge conflicts
* Reverting to Gemma 2 HybridCache with sldiing window support and a sliding_window_pattern of 6
* Correcting RoPE scaling
* clean up first pass, dummy model geenration works
* final clean up before fixing tests
* causal lm test works, so fine
* Fix conversion
* Update src/transformers/models/gemma3/processing_gemma3.py
* model tests are happy
* processor tests are happy
* image processing tests added
* fixup
* Fix pre-processing in conversion
* Inputs merging
* Do not normalize vision embeddings
* Apply Ryan's (and team) changes to attention
* token type ids + mask
* template
* move embed scale, add rope scale, fix tests
* Add chat template to tokenizer
* Use prefix for causal model loading
* use existing code for sliding mask from gemma2
* self.embed_tokens already normalizes
* Correcting Gemma3TextConfig parameters in conversion script
* typo, modular overwrites my fixes
* enable device map for text model
* Conversion updates
* ultra nit: no einsums
* update image token
* copy deepcopy config + some docs
* add some test, still WIP
* Refactoring --include_chat_tempalte logic in converter
* Update src/transformers/models/gemma3/modular_gemma3.py
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
* Add eos tokens for instruct models
* dump so i can work on dgx
* Removing add_bos by default
* dump
* add fast im proc
* docs for PaS + fixup
* another fixup
* one more fixup
* fix tests
* Inverting prior BOS change
* ultra nit
* Reverting to Tokenizer saved with add_bos_token=True and chat template starting with BOS
* resize embeds, remove sqrt, add slow test outputs
* FA2 but quality is meh
* nit
* skip FA2, no idea what happened
* last bit for green CI
* please, green CI for docs
* T_T
* Fix for Gemma3 logits
* Support both options for system prompt
* Update src/transformers/models/gemma3/image_processing_gemma3_fast.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update docs/source/en/model_doc/gemma3.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Docs updates now that assets are live
* Style fixes
---------
Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Co-authored-by: Mayank Chaturvedi <imayank@google.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: Lysandre <hi@lysand.re>
* fix: handle input_channel_dim == channels_last
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
* fix: default PIL images to channels_last
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
* Apply suggestions from code review
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fixup from review batch
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
* test: add 1x1 PIL image to ambiguous channel test
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
* fix(mllama): avoid 0 dimension for image with impractical aspect ratio
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
---------
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* chore: fix typos in language models
* chore: fix typos in mistral model
* chore: fix model copy from issue
* chore: fix model copy from issue
* chore: fix model copy from issue
* chore: fix model copy from issue
* chore: fix model copy from issue
Fixed 2 issues regarding `tests/trainer/test_data_collator.py::TFDataCollatorIntegrationTest::test_all_mask_replacement`:
1. I got the error `RuntimeError: "bernoulli_tensor_cpu_p_" not implemented for 'Long'`. This is because the `mask_replacement_prob=1` and `torch.bernoulli` doesn't accept this type (which would be a `torch.long` dtype instead. I fixed this by manually casting the probability arguments in the `__post_init__` function of `DataCollatorForLanguageModeling`.
2. I also got the error `tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute Equal as input #1(zero-based) was expected to be a int64 tensor but is a int32 tensor [Op:Equal]` due to the line `tf.reduce_all((batch["input_ids"] == inputs) | (batch["input_ids"] == tokenizer.mask_token_id))` in `test_data_collator.py`. This occurs because the type of the `inputs` variable is `tf.int32`. Solved this by manually casting it to `tf.int64` in the test, as the expected return type of `batch["input_ids"]` is `tf.int64`.
* First draft of github action on PR opening for auto-assigning reviewers
* fix missing import
* Don't reassign reviewers if we already have them
* Temporarily comment out the opened line so we can test the script
* Correct path for codeowners file
* Update workflow permissions
* Update workflow permissions
* Update debug logs
* Strip inline comments
* Remove prefix
* Request reviews instead of assigning
* Request reviews instead of assigning
* Add TODO
* Use pull-request-target instead
* Update the script
* Set back to pull_request for testing
* Set to pull_request_target, testing works!
* Add licence
* Tighten up one of the globs
* Refactor things to be a bit less convoluted
* Only assign reviewers when marked ready for review
* Export base streamer.
Previously, the base streamer class was not exported so the set of available streamers was fixed to 3 streamer classes.
This change makes it so that customers may extend the default base streamer class.
* make fixup
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* avoid errors when the size of `input_ids` passed to PrefixConstrainedLogitsProcessor is zero
* use more reasonable process
* avoid early return
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* add swanlab integration
* feat(integrate): add SwanLab as an optional experiment tracking tool in transformers
- Integrated SwanLab into the transformers library as an alternative for experiment tracking.
- Users can now log training metrics, hyperparameters, and other experiment details to SwanLab by setting `report_to="swanlab"` in the `TrainingArguments`.
- Added necessary dependencies and documentation for SwanLab integration.
* Fix the spelling error of SwanLabCallback in callback.md
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Fix typo in comment
* Fix typo in comment
* Fix typos and update comments
* fix annotation
* chore: opt some comments
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: AAssets <20010618@qq.com>
Co-authored-by: ZeYi Lin <944270057@qq.com>
Co-authored-by: KAAANG <79990647+SAKURA-CAT@users.noreply.github.com>
* initial commit
* small fix
* move stuff to image processing file
* remove stuff in validate turn and fix return tensor
* remove liquid stuff
* in the process of addressing comments
* changes to get the right tokenization
* new __init__ works
* fixing defulat std and mean
* works
* small testing scipt -- to be deleted before merge
* remove redundant code
* addressing comments
* fix inits, add docs templates
* refactor processor, switch to gotocr image processor
* remove image proc from init
* refactor to working llava-style architecture
* Change AyaVisionModel to AyaVisionForConditionalGeneration
* add tests
* fixups
* update doc
* Adding logits_to_keep explicitly in ayavision forward to enable compatibility with cohere model
* better variable names + remove code paths
* Updates to aya_vision.md
* address comments
* adding copied from
* make style and remove unused projector_hidden_act from config
* sort init
* include usage of fast image proc and proc on cuda in doc
* update checkpoint iin test processor
* update checkpoint in test processor 2
* remove test_model and update docstring
* skip failing tests
---------
Co-authored-by: Saurabh Dash <saurabh@cohere.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
* Fix edge case for continue_final_message
* lstrip() correctly
* Add regression test
* Add a clearer error message when the final message is not present
* Add a clearer error message when the final message is not present
* Fix massive bug!
* Fix pipeline-peft interaction
* once again you have committed a debug breakpoint
* Remove extra testing line
* Add a test to check adapter loading
* Correct adapter path
* make fixup
* Remove unnecessary check
* Make check a little more stringent
transformers/image_processing_utils.py:41: UserWarning: The following named arguments are not valid for `SamImageProcessor.preprocess` and were ignored: 'point_pad_value'
* refactor image processor slow got ocr
* add working image processor fast
* fix fast image processor, update doc
* use one big loop for processing patches
* test
* docstring
* prepare distributed cache data
* fix cat dim
* test mvp
* add test checks
* like this?
* working test and solution
* nit
* nit
* add shape info
* clean code
* oups
* fix merge
* yups
* fix if
* now you can play
* fix shape issue
* try non blocking
* fix
* updates
* up
* updates
* fix most of thetests
* update
* update
* small updates
* up
* fix the remaining bug?
* update
* rename when you read from the file
* buffer issues
* current status
* cleanup
* properly allocate dumb memory
* update a small bug
* fix colwise rep issue
* fix keep in float 32 that was keeping everything in float 32
* typo
* more fixes with keep_in_fp32_modules as we use to serach on it
* fix ROPE dtype for TP
* remove what's breaking the tests
* updates
* update and fixes
* small cleanup after merging
* allocate 2x to be safe
* style, auto
* update
* yup nit
* fix
* remove slow as fuck torch api :(
* work
* fixup
* update
* brting the fix back
* fix and update
* fixes
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* updates because some suggestions were wrong 👀
* update?
* fuck this bloated function
* typo
* fix the dumb prefix thing once and forall
* fixes here and there
* updates
* remove prints
* fix strict cases
* styel
* properly fix keys on load!
* update
* fix base model prefix issue
* style
* update
* fix all?
* remoce 1 print
* fix the final etsts
* fixup
* last nits
* fix the detach issue which cause a 2x slowdown
* fixup
* small fixes
* ultra nit
* fix
* fix
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix: prevent model access error during Optuna hyperparameter tuning
The `transformers.integrations.integration_utils.run_hp_search_optuna` function releases model memory and sets trainer.model to None after each trial. This causes an AttributeError when subsequent Trainer.train calls attempt to access the model before reinitialization. This is only an issue when `fp16_full_eval` or `bf16_full_eval` flags are enabled.
* Update src/transformers/trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* size tuple
* delete original input_size
* use zip
* process the other case
* Update src/transformers/models/vitdet/modeling_vitdet.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* [VITDET] Test non-square image
* [Fix] Make Quality
* make fix style
* Update src/transformers/models/vitdet/modeling_vitdet.py
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* tests: revert change of torch_require_multi_gpu to be device agnostic
The 11c27dd33 modified `torch_require_multi_gpu()` to be device agnostic
instead of being CUDA specific. This broke some tests which are rightfully
CUDA specific, such as:
* `tests/trainer/test_trainer_distributed.py::TestTrainerDistributed`
In the current Transformers tests architecture `require_torch_multi_accelerator()`
should be used to mark multi-GPU tests agnostic to device.
This change addresses the issue introduced by 11c27dd33 and reverts
modification of `torch_require_multi_gpu()`.
Fixes: 11c27dd33 ("Enable BNB multi-backend support (#31098)")
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* fix bug: modification of frozen set
---------
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Disable warnings for stacked compressors
* Introduce two new hooks in HfQuantizer lifecycle
to allow updates to missing and unexpected keys
* Update missing and unexpected keys
for stacked compressors
* Add tests
* Fix: run_compressed cases
* Fix: uncompressed cases
* Rename compressed_tensor folder to compressed_tensors
Move RunCompressedTest to the same file
Update tests to unittest
* Fix potential regex catastrophic backtracking in NougatTokenizerFast
The original regex pattern in tokenization_nougat_fast.py was vulnerable to
catastrophic backtracking due to greedy quantifiers and nested alternations.
This commit replaces it with a more efficient pattern that:
1. Uses explicit character classes instead of dot (.)
2. Handles whitespace more precisely
3. Avoids unnecessary backtracking
4. Supports both lowercase and uppercase roman numerals
5. Maintains the same functionality while being more robust
* Try another regex
* Trying deepseek's answer
* Start with a simplification
* Another simplification
* Just rewrite the whole function myself
* Fix gptneox and gptsan
* Simplify the regex even further
* Tighten up the price regex a little
* Add possessive version of the regex
* Fix regex
* Much cleaner regexes
---------
Co-authored-by: openhands <openhands@all-hands.dev>
* fix: prevent second save in the end of training
* fix: prevent second save in the end of training
* test: added test for no duplicate save on epoch save strategy
* fix: removed TrainerControl
* chore: style formatting
---------
Co-authored-by: JaktensTid <jaktenstid1@gmail.com>
* Add dithering to the `Speech2TextFeatureExtractor` API.
- in kaldi : 4a8b7f6732/src/feat/feature-window.cc (L145)
- with dithering without a seed, the features become non-deterministic due
to small Gaussian noise added to the audio (i.e. 2 runs lead to little
different outputs)
* update the PR
- add dithering also for WhisperFeatureExtractor
- not adding to Wav2Vec2FeatureExtractor (no FBANK computation)
* add unit-tests for dithering, fix docstrings
* ruff
* utils/check_copies.py --fix_and_overwrite
* update code, add seed to unit-test
* adding explanation of dithering
* Fix XGLM loss computation (PyTorch and TensorFlow)
* Update expected output string in XGLM sample test
This updates the expected output string of test_xglm_sample for torch
2.0 to the correct one and removes the one for torch 1.13.1 + cu116
(transformers moved to torch 2.0 with PR #35358).
* Update expected output IDs in XGLM generation test
**Summary:** TorchAoConfig optionally contains a
`torchao.dtypes.Layout` object which is a dataclass and not
JSON serializable, and so the following fails:
```
import json
from torchao.dtypes import TensorCoreTiledLayout
from transformers import TorchAoConfig
config = TorchAoConfig("int4_weight_only", layout=TensorCoreTiledLayout())
config.to_json_string()
json.dumps(config.to_dict())
```
This also causes `quantized_model.save_pretrained(...)` to
fail because the first step of this call is to JSON serialize
the config. Fixes https://github.com/pytorch/ao/issues/1704.
**Test Plan:**
python tests/quantization/torchao_integration/test_torchao.py -k test_json_serializable
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* archive_file may not be specified
When loading a pre-trained model from a gguf file, resolved_archive_file may not be set. Guard against that case in the safetensors availability check.
* Remap partial disk offload to cpu for GGUF files
GGUF files don't support disk offload so attempt to remap them to the CPU when device_map is auto. If device_map is anything else but None, raise a NotImplementedError.
* Don't remap auto device_map and raise RuntimeError
If device_map=auto and modules are selected for disk offload, don't attempt to map them to any other device. Raise a runtime error when a GGUF model is configured to map any modules to disk.
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* allow processor to preprocess conversation + video metadata
* allow callable
* add test
* fix test
* nit: fix
* add metadata frames_indices
* Update src/transformers/processing_utils.py
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Update src/transformers/processing_utils.py
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* port updates from Orr and add one more test
* Update src/transformers/processing_utils.py
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* typo
* as dataclass
* style
* docstring + maek sure tests green
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Optimize Qwen2VL vision model by precomputing cos/sin embeds before ViT blocks
* Make rotary_pos_emb optional & fix type
* Adapt pre-computed cos/sin to Qwen2.5VL
* More concise
* tmp commit
* move tests to the right class
* remove ALL all_generative_model_classes = ...
* skip tf roberta
* skip InstructBlipForConditionalGenerationDecoderOnlyTest
* videollava
* reduce diff
* reduce diff
* remove on vlms
* fix a few more
* manual rebase bits
* more manual rebase
* remove all manual generative model class test entries
* fix up to ernie
* a few more removals
* handle remaining cases
* recurrent gemma
* it's better here
* make fixup
* tf idefics is broken
* tf bert + generate is broken
* don't touch tf :()
* don't touch tf :(
* make fixup
* better comments for test skips
* revert tf changes
* remove empty line removal
* one more
* missing one
* Add implementation for DataCollatorForMultipleChoice based on docs.
* Add DataCollatorForMultipleChoice to import structure.
* Remove custom DataCollatorForMultipleChoice implementations from example scripts.
* Remove custom implementations of DataCollatorForMultipleChoice from docs in English, Spanish, Japanese and Korean.
* Refactor torch version of DataCollatorForMultipleChoice to be more easily understandable.
* Apply suggested changes and run make fixup.
* fix copies, style and fixup
* add missing documentation
* nits
* fix docstring
* style
* nits
* isort
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* update env command to log deepspeed version
* suppress deepspeed import logging
* Add reminder to include configs to repro description in bug report.
* make fixup
* [WIP] update import utils for deepspeed
* Change to using is_deepspeed_available() from integrations.
* make fixup
* change order of unmasking of tokens
* library import
* class setup
* test function
* refactor
* add commit message
* test modified
* explict initiliasation of weights + made model smaller
* removed sepete testing file
* fixup
* fixup core
* test attention mask with token types
* tests fixup
* removed PaliGemmaAttentionMaskTest class
---------
Co-authored-by: sambhavnoobcoder <indosambahv@gmail.com>
* Adding option to save/reload scaler
* Removing duplicate variable
* Adding save/reload test
* Small fixes on deterministic algorithm call
* Moving LLM test to another file to isolate its environment
* Moving back to old file and using subprocess to run test isolated
* Reverting back accidental change
* Reverting back accidental change
* milti-gpu: fix inputs_embeds + position_embeds
Fixing the following errors in few models:
```
> hidden_states = inputs_embeds + pos_embeds
E RuntimeError: Expected all tensors to be on the same device, but found at least two devices, xpu:2 and xpu:3!
```
Fixes: #35762
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* multi-gpu: fix tensor device placements for various models
Fixes: #35762
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Apply make fix-copies
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
---------
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* feat: added warning to Trainer when label_names is not specified for PeftModel
* Update trainer.py
* feat: peft detectw ith `_is_peft_model`
* Update src/transformers/trainer.py
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* Applied formatting in trainer.py
---------
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* add RAdamScheduleFree optimizer
* revert schedulefree version to the minimum requirement
* refine is_schedulefree_available so that it can take min_version
* refine documents
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* make output_dir optional
* inintaied a basic testing module to validate and verify the changes
* Test output_dir default to 'tmp_trainer' when unspecified.
* test existing functionality of output_dir.
* test that output dir only created when needed
* final check
* added doc string and changed the tmp_trainer to trainer_output
* amke style fixes to test file.
* another round of fixup
---------
Co-authored-by: sambhavnoobcoder <indosambahv@gmail.com>
* Remove unused `max_size` variable in processor which was always `None` and triggered unnecessary deprecated warning
* Remove unused `max_size` variable in processor which was always `None` and triggered unnecessary deprecated warning
* Remove deprecated warnings and eliminate `max_size` usage
* Test use `int` as argument for `size`
Add a test to ensure test can pass successfully and backward compatibility
* The test pipelines still use `max_size`
Remove `max_size` from test pipelines and replace by `size` by a `Dict` with `'shortest_edge'` `'longest_edge'` as keys
* Reformatting
* Reformatting
* Revert "Reformatting"
This reverts commit c3040acee75440357cffd1f60c9d29ff5b2744b8.
* Revert "Reformatting"
This reverts commit ac4522e5c9a02d2d0c298295026db68ea26453df.
* Revert "The test pipelines still use `max_size`"
This reverts commit eaed96f041ffc32459536e1524d87f7a12ddee29.
* Revert "Test use `int` as argument for `size`"
This reverts commit 1925ee38c7c5eabb11832316712df1d4ba8043d0.
* Revert "Remove deprecated warnings and eliminate `max_size` usage"
This reverts commit d8e7e6ff9025931468fc1f3827cda1fa391003d5.
* Change version `4.26` to "a future version"
* Reformatting
* Revert "Change version `4.26` to "a future version""
This reverts commit 2b53f9e4
* Add is_torch_greater_or_equal test decorator
* Add common test for torch.export
* Fix bit
* Fix focalnet
* Fix imagegpt
* Fix seggpt
* Fix swin2sr
* Enable torch.export test for vision models
* Enable test for video models
* Remove json
* Enable for hiera
* Enable for ijepa
* Fix detr
* Fic conditional_detr
* Fix maskformer
* Enable test maskformer
* Fix test for deformable detr
* Fix custom kernels for export in rt-detr and deformable-detr
* Enable test for all DPT
* Remove custom test for deformable detr
* Simplify test to use only kwargs for export
* Add comment
* Move compile_compatible_method_lru_cache to utils
* Fix beit export
* Fix deformable detr
* Fix copies data2vec<->beit
* Fix typos, update test to work with dict
* Add seed to the test
* Enable test for vit_mae
* Fix beit tests
* [run-slow] beit, bit, conditional_detr, data2vec, deformable_detr, detr, focalnet, imagegpt, maskformer, rt_detr, seggpt, swin2sr
* Add vitpose test
* Add textnet test
* Add dinov2 with registers
* Update tests/test_modeling_common.py
* Switch to torch.testing.assert_close
* Fix masformer
* Remove save-load from test
* Add dab_detr
* Add depth_pro
* Fix and test RT-DETRv2
* Fix dab_detr
* Revert "Fix OS err (#36094)"
This reverts commit ba29a439adbe6f371710d0514659127264ae24b3.
* Revert "Save checkpoint to temporary directory to handle partial saves during failures (#35580)"
This reverts commit 20d17358c468b7aefca9e54c3461eb88d1ee34f9.
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add support for constant learning rate with cooldown
* Add more warmup and cooldown methods to 'get_wsc_schedule'
* Add more warmup and cooldown methods to 'get_wsc_schedule'
* Add more warmup and cooldown methods to 'get_wsc_schedule'
* Add more warmup and cooldown methods to 'get_wsc_schedule'
* Add more warmup and decay methods to 'get_wsd_schedule'
* support num_training_steps and num_stable_steps for get_wsd_schedule
* support num_training_steps and num_stable_steps for get_wsd_schedule
* get wsd scheduler before the `num_training_steps` decision
* fix code_quality
* Update stable branch logic
* fix code_quality
* Move stable stage decide to `get_wsd_schedule`
* Update docstring of `get_wsd_schedule`
* Update `num_train_steps` to optional
* Update `num_train_steps` to optional
* Update docstring of `get_wsd_schedule`
* Update src/transformers/optimization.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* implement config and model building blocks
* refactor model architechture
* update model outputs
* update init param to include use_fov_model
* update param name in config
* fix hidden_states and attentions outputs for fov
* sort config
* complete minor todos
* update patching
* update config for encoder
* fix config
* use correct defaults in config
* update merge for compatibility with different image size
* restructure encoder for custom configuration
* make fov model compatible with custom config
* replace word "decoder" with "fusion"
* weight conversion script
* fix fov squeeze
* update conversion script (without test)
* upload ruff image processing
* create fast image processing
* use torch interpolation for image processing
* complete post_process_depth_estimation
* config: fix imports and sort args
* apply inference in weight conversion
* use mllama script instead for weight conversion
* clean weight conversion script
* add depth-pro status in other files
* fill docstring in config
* formatting
* more formatting
* formatting with ruff
* formatting with style
* fix copied classes
* add examples; update weight convert script
* fix using check_table.py and isort
* fix config docstring
* add depth pro to sdpa docs
* undo unintentional changes in configuration_gemma.py
* minor fixes
* test image processing
* fixes and tests
* more fixes
* use output states from image_encoder instead
* Revert "use output states from image_encoder instead"
This reverts commit 2408ec54e4f27d2abbecdb8374e58f34d91d8e96.
* make embeddings dynamic
* reshape output hidden states and attentions as part of computation graph
* fix ruff formating
* fix docstring failure
* use num_fov_head_layers in tests
* update doc
* check consistency with config
* ruff formatting
* update test case
* fix ruff formatting
* add tests for fov
* use interpolation in postprocess
* run and fix slow tests locally
* use scaled_images_features for image and fov encoder
* return fused_hidden_states in fusion stage
* fix example
* fix ruff
* fix copyright license for all files
* add __all__ for each file
* minor fixes
- fix download spell
- add push_to_hub option
- fix Optional type hinting
- apply single loop for DepthProImageProcessor.preprocess
* return list in post_process_depth_estimation
* minor fixes
- capitalize start of docstring
- use ignore copy
- fix examples
- move docstring templates and custom output classes to top
- remove "-> None" typehinting from __init__
- type hinting for forward passes
- fix docstrings for custom output classes
* fix "ruff check"
* update upsample and projection
* major changes: (image size and merge optimization)
- add support for images of any size
- optimize merge operation
- remove image_size from config
- use full names instead of B, C, H, W
- remove interpolation from fusion stage
- add interpolation after merge
- move validations to config
- update integration test
- add type hints for functions
* fix push_to_hub option in weights conversion
* remove image_size in weights conversion
* major changes in the architecture
- remove all DepthProViT modules and support different backbones using the AutoModel API
- set default use_fov_model to False
- validate parameters in configuration
- update interpolate function: use "nearest" for faster computation
- update reshape_feature function: remove all special tokens, possible from different backbones
- update merge function: use padding from config instead of merge_out_size
- remove patch_to_batch and batch_to_patch conversions for now
- calculate out_size dynamically in the encoder
- leave head_mask calculation to the backbone
- fix bugs with merge
- add more comments
- update tests
* placeholder for unused config attributes
* improve docs amid review
* minor change in docs
* further optimize merge
* fix formatting
* remove unused patch/batch convertion functions
* use original F.interpolate
* improve function naming
* minor chages
- use torch_int instead of int
- use proper for newly initialized tensors
- use user provided return_dict for patch_encoder
- use if-else block instead in self.use_fov_model
* rearchitect upsample block for improved modularity
* update upsample keys in weight conversion
* improve padding in merge_patches
* use double-loop for merge
* update comments
* create feature_extractor, reduce some forward code
* introduce config.use_mask_token in dinov2
* minor fixes
* minor fixes for onnx
* update __init__ to latest format
* remove DepthProConfig.to_dict()
* major changes in backbone
* update config in weight conversion
* formatting
* converted model is fp32
* improve naming and docs for feature_extractor->reconstruct_feature_maps
* minor fixes; amid review
* create intermediate vars in func call
* use torch.testing.assert_close
* use ModuleList instead of Sequential and ModuleDict
* update docs
* include fov in integraiton tests
* update docs
* improve initialization of convolution layers
* fix unused fov keys
* update tests
* ruff format
* fix test, amid kaimming initialization
* add depthpro to toctree
* add residual layer to _no_split_modules
* architecture rework
* Update src/transformers/models/depth_pro/image_processing_depth_pro.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/depth_pro/image_processing_depth_pro_fast.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* update docs
* improve merge_patches
* use flatten with fov_output
* ruff formatting
* update resources section in docs
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix typo "final_kernal_size"
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix output typehint for DepthProDepthEstimator
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* residual operation in 2 steps
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* use image_size instead of global patch_size in interpolation
* replace all Sequential with ModuleList
* update fov
* update heads
* fix and update conversion script for heads
* ruff formatting
* remove float32 conversion
* use "Fov" instead of "FOV" in class names
* use "Fov" instead of "FOV" in config docs
* remove prune_heads
* update fusion stage
* use device in examples
* update processor
* ruff fixes
* add do_rescale in image_processor_dict
* skip test: test_fast_is_faster_than_slow
* ruff formatting
* DepthProImageProcessorFast in other files
* revert antialias removal
* add antialias in BaseImageProcessorFast
* Revert "revert antialias removal"
This reverts commit 5caa0bd8f9f7463b98410c04e6cfe8fef3adee18.
* Revert "add antialias in BaseImageProcessorFast"
This reverts commit 3ae1134780ae236872985523d9c0a444eabcc179.
* update processor for grouping and antialias
* try test_fast_is_faster_than_slow without "skip" or "flanky"
* update checkpoint
* update checkpoint
* use @is_flanky for processor test
* update checkpoint to "apple/DepthPro-hf"
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Fix StopStringCriteria to handle tokens above len(tokenizer)
This fixes#35244 by clipping token IDs to be within the tokenizer's vocabulary size before performing the embedding lookup. This prevents index errors when model.config.vocab_size > len(tokenizer).
The fix:
1. Adds a clamp operation to ensure token IDs are within bounds
2. Adds a test case to verify the behavior
* Use self.stop_strings instead of stop_strings
* Handle clipping correctly
* make fixup
* Update test to the new embedding vecs
* Use much bigger values in the mismatch test
* Typo fix
* Slight simplification
---------
Co-authored-by: openhands <openhands@all-hands.dev>
* Save state
* Make a failing test
* Better test
* mpt -> done, many more to go
* Rm extranious
* Bamba
* Bert
* big_bird
* biogpt
* bloom
* codegen
* ctrl
* data2vec
* dbrx
* Through up to Dbrx
* electra
* ernie
* falcon
* Fuyu/persimmon
* Include noop kwargs to base models
* Rebase
* Skip musigen
* Refactor/skip mllama
* Revert makefile
* Rm file
* Fix PT failing, need to modify rest of loss funcs to not resize
* Propagate some
* Continue
* More
* More options
* Mostly fixed
* Proved that it's the same
* Bloom is good
* Make ability to override loss func possible
* Fixup
* Clean
* Fix xglm
* Quality tests
* Skip OCR2
* Make specific loss for xglm
* Make order the same/line up 1:1
* xglm
* Skip fx output loss bloom model
* Didn't pass in pad_token_id
* Fix quality
* Nail in edge case of torch dtype
* Rm unused func
* Apply suggestions from code review
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* Refactor tests to only mock what we need, don't introduce injection functions
* SetUp/TearDown
* Do super
---------
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* added condition for top_k Doc mismatch fix
* initilation of test file for top_k changes
* added test for returning all labels
* added test for few labels
* tests/test_audio_classification_top_k.py
* final fix
* ruff fix
---------
Co-authored-by: sambhavnoobcoder <indosambahv@gmail.com>
* Fix how we compute the final non-padding token for Gemma (and probably other models)
* .size() -> .shape[]
* Propagating changes to other models
* Propagating changes to other models
* Change it for all ForSequenceClassification models
* Fix batch dim
* More TF fixes
* Copy the TF fix around as well
* Correct layer name for TFCTRL
* Cleaner .to()
* Clean up the nested if-else
* Use argmax() instead of .max().values
* add init and base image processing functions
* add add_fast_image_processor to transformers-cli
* add working fast image processor clip
* add fast image processor to doc, working tests
* remove "to be implemented" SigLip
* fix unprotected import
* fix unprotected vision import
* update ViTImageProcessorFast
* increase threshold slow fast ewuivalence
* add fast img blip
* add fast class in tests with cli
* improve cli
* add fast image processor convnext
* add LlavaPatchingMixin and fast image processor for llava_next and llava_onevision
* add device kwarg to ImagesKwargs for fast processing on cuda
* cleanup
* fix unprotected import
* group images by sizes and add batch processing
* Add batch equivalence tests, skip when center_crop is used
* cleanup
* update init and cli
* fix-copies
* refactor convnext, cleanup base
* fix
* remove patching mixins, add piped torchvision transforms for ViT
* fix unbatched processing
* fix f strings
* protect imports
* change llava onevision to class transforms (test)
* fix convnext
* improve formatting (following Pavel review)
* fix handling device arg
* improve cli
* fix
* fix inits
* Add distinction between preprocess and _preprocess, and support for arbitrary kwargs through valid_extra_kwargs
* uniformize qwen2_vl fast
* fix docstrings
* add add fast image processor llava
* remove min_pixels max_pixels from accepted size
* nit
* nit
* refactor fast image processors docstrings
* cleanup and remove fast class transforms
* update add fast image processor transformers cli
* cleanup docstring
* uniformize pixtral fast and make _process_image explicit
* fix prepare image structure llava next/onevision
* Use typed kwargs instead of explicit args
* nit fix import Unpack
* clearly separate pops and gets in base preprocess. Use explicit typed kwargs
* make qwen2_vl preprocess arguments hashable
* initial commit
* encoder+decoder layer changes WIP
* architecture checks
* working version of detection + segmentation
* fix modeling outputs
* fix return dict + output att/hs
* found the position embedding masking bug
* pre-training version
* added iamge processors
* typo in init.py
* iterupdate set to false
* fixed num_labels in class_output linear layer bias init
* multihead attention shape fixes
* test improvements
* test update
* dab-detr model_doc update
* dab-detr model_doc update2
* test fix:test_retain_grad_hidden_states_attentions
* config file clean and renaming variables
* config file clean and renaming variables fix
* updated convert_to_hf file
* small fixes
* style and qulity checks
* return_dict fix
* Merge branch main into add_dab_detr
* small comment fix
* skip test_inputs_embeds test
* image processor updates + image processor test updates
* check copies test fix update
* updates for check_copies.py test
* updates for check_copies.py test2
* tied weights fix
* fixed image processing tests and fixed shared weights issues
* added numpy nd array option to get_Expected_values method in test_image_processing_dab_detr.py
* delete prints from test file
* SafeTensor modification to solve HF Trainer issue
* removing the safetensor modifications
* make fix copies and hf uplaod has been added.
* fixed index.md
* fixed repo consistency
* styel fix and dabdetrimageprocessor docstring update
* requested modifications after the first review
* Update src/transformers/models/dab_detr/image_processing_dab_detr.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* repo consistency has been fixed
* update copied NestedTensor function after main merge
* Update src/transformers/models/dab_detr/modeling_dab_detr.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* temp commit
* temp commit2
* temp commit 3
* unit tests are fixed
* fixed repo consistency
* updated expected_boxes varible values based on related notebook results in DABDETRIntegrationTests file.
* temporarialy config modifications and repo consistency fixes
* Put dilation parameter back to config
* pattern embeddings have been added to the rename_keys method
* add dilation comment to config + add as an exception in check_config_attributes SPECIAL CASES
* delete FeatureExtractor part from docs.md
* requested modifications in modeling_dab_detr.py
* [run_slow] dab_detr
* deleted last segmentation code part, updated conversion script and changed the hf path in test files
* temp commit of requested modifications
* temp commit of requested modifications 2
* updated config file, resolved codepaths and refactored conversion script
* updated decodelayer block types and refactored conversion script
* style and quality update
* small modifications based on the request
* attentions are refactored
* removed loss functions from modeling file, added loss function to lossutils, tried to move the MLP layer generation to config but it failed
* deleted imageprocessor
* fixed conversion script + quality and style
* fixed config_att
* [run_slow] dab_detr
* changing model path in conversion file and in test file
* fix Decoder variable naming
* testing the old loss function
* switched back to the new loss function and testing with the odl attention functions
* switched back to the new last good result modeling file
* moved back to the version when I asked the review
* missing new line at the end of the file
* old version test
* turn back to newest mdoel versino but change image processor
* style fix
* style fix after merge main
* [run_slow] dab_detr
* [run_slow] dab_detr
* added device and type for head bias data part
* [run_slow] dab_detr
* fixed model head bias data fill
* changed test_inference_object_detection_head assertTrues to torch test assert_close
* fixes part 1
* quality update
* self.bbox_embed in decoder has been restored
* changed Assert true torch closeall methods to torch testing assertclose
* modelcard markdown file has been updated
* deleted intemediate list from decoder module
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* First commit
* Finish model implementation
* First commit
* Finish model implementation
* Register zamba2
* generated modeling and configuration
* generated modeling and configuration
* added hybrid cache
* fix attention_mask in mamba
* dropped unused loras
* fix flash2
* config docstrings
* fix config and fwd pass
* make fixup fixes
* text_modeling_zamba2
* small fixes
* make fixup fixes
* Fix modular model converter
* added inheritances in modular, renamed zamba cache
* modular rebase
* new modular conversion
* fix generated modeling file
* fixed import for Zamba2RMSNormGated
* modular file cleanup
* make fixup and model tests
* dropped inheritance for Zamba2PreTrainedModel
* make fixup and unit tests
* Add inheritance of rope from GemmaRotaryEmbedding
* moved rope to model init
* drop del self.self_attn and del self.feed_forward
* fix tests
* renamed lora -> adapter
* rewrote adapter implementation
* fixed tests
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Dropped adapter in-place sum
* removed rope from attention init
* updated rope
* created get_layers method
* make fixup fix
* make fixup fixes
* make fixup fixes
* update to new attention standard
* update to new attention standard
* make fixup fixes
* minor fixes
* cache_position
* removed cache_position postion_ids use_cache
* remove config from modular
* removed config from modular (2)
* import apply_rotary_pos_emb from llama
* fixed rope_kwargs
* Instantiate cache in Zamba2Model
* fix cache
* fix @slow decorator
* small fix in modular file
* Update docs/source/en/model_doc/zamba2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* several minor fixes
* inherit mamba2decoder fwd and drop position_ids in mamba
* removed docstrings from modular
* reinstate zamba2 attention decoder fwd
* use regex for tied keys
* Revert "use regex for tied keys"
This reverts commit 9007a522b1f831df6d516a281c0d3fdd20a118f5.
* use regex for tied keys
* add cpu to slow forward tests
* dropped config.use_shared_mlp_adapter
* Update docs/source/en/model_doc/zamba2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* re-convert from modular
* extended Zamba2RMSNormGated to n_groups>1
* removed einops import
* set _supports_sdpa = True
* add use_mem_eff_path flag for fused mamba2 fwd
* added docstring for use_mem_eff_ath flag
---------
Co-authored-by: root <root@node-2.us-southcentral1-a.compute.internal>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* layernorm_decay_fix
* W293 fix
* ruff format fix
* black format
* ruff format
* erase last layer
* add test_get_parameter_names_rmsnorm
* rmsnorm fix
* apply_chat_template: consistent return_tensors behaviour with return_assistant_tokens_mask flag
* test_chat_template_return_assistant_tokens_mask: support tokenizers with no attention mask
* test_chat_template_return_assistant_tokens_mask: skip tokenizers with no padding token
* test_chat_template_return_assistant_tokens_mask: force tokenizer padding_side=right
---------
Co-authored-by: Eduard Allakhverdov <goncharova@airi.net>
Co-authored-by: d.tarasov <d.tarasov@airi.net>
* Handle empty change indices in RLE conversion for masks
* [test] Add unit tests for RLE encoding of masks in SamProcessor
* [test] Update RLE conversion tests to use TensorFlow implementation
* [test] Fix formatting in SamProcessorTest according to check_code_quality action
* [test] Fix formatting in SamProcessorTest according to check_code_quality
* [test] Refactored rle test cases into one test and used tf tensors in tf test cases
* [test] Fix: removed self parameter from refactored methods
* [test] Removed nested methods in run-length encoding tests for PyTorch and TensorFlow
* [test] Added description to individual to run-length encoding tests for PyTorch and TensorFlow.
* initial POC
* - batch mix feature
* fix tests
* fix tests
* make style
* do not skip and instead fix tests
* update
* return back the test
* correct text with the correct ckpt
* start
* So far: 30%
* Small fix
* Continuing update
* Continuing
* Forgot to check if not None
* Continuing refactor
* Fix if else
* Fix ref
* Should make tests pass
* Keep grad norm same
* Document
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Err instead of info for logging RNG state error
* Seperate out to func
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Support for generate_argument: return_dict_in_generate=True, instead of returning a error
* fix: call test with return_dict_in_generate=True
* fix: Only import torch if it is present
* update: Encapsulate output_dict changes
* fix: added back original comments
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* correctly slice
* check mask
* Update modular_gemma2.py
* fix
* add tests
* fix typo
* finally fix mask slicing
* Finally correctly slice in all cases!!
* add test for all attention functions
* small fix in tests
* trick around dynamo tracing issue
* last update
* more robust
* kwargs propagation
* make it explicit for checkpointing
* apply modular
* Add some tp plans!
* More tp plans!
* Add it in the comment
* style
* Update configuration_mixtral.py
* Update configuration_phi.py
* update the layout according to special archs
* fix mixtral
* style
* trigger CIs
* trigger CIs
* CIs
* olmo2
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Added `segmentation_maps` support for DPT image processor
* Added tests for dpt image processor
* Moved preprocessing into separate functions
* Added # Copied from statements
* Fixed # Copied from statements
* Added `segmentation_maps` support for DPT image processor
* Added tests for dpt image processor
* Moved preprocessing into separate functions
* Added # Copied from statements
* Fixed # Copied from statements
* First commit
* Finish model implementation
* First commit
* Finish model implementation
* Register zamba2
* generated modeling and configuration
* generated modeling and configuration
* added hybrid cache
* fix attention_mask in mamba
* dropped unused loras
* fix flash2
* config docstrings
* fix config and fwd pass
* make fixup fixes
* text_modeling_zamba2
* small fixes
* make fixup fixes
* Fix modular model converter
* added inheritances in modular, renamed zamba cache
* modular rebase
* new modular conversion
* fix generated modeling file
* fixed import for Zamba2RMSNormGated
* modular file cleanup
* make fixup and model tests
* dropped inheritance for Zamba2PreTrainedModel
* make fixup and unit tests
* Add inheritance of rope from GemmaRotaryEmbedding
* moved rope to model init
* drop del self.self_attn and del self.feed_forward
* fix tests
* renamed lora -> adapter
* rewrote adapter implementation
* fixed tests
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Fix torch_forward in mamba2 layer
* Dropped adapter in-place sum
* removed rope from attention init
* updated rope
* created get_layers method
* make fixup fix
* make fixup fixes
* make fixup fixes
* update to new attention standard
* update to new attention standard
* make fixup fixes
* minor fixes
* cache_position
* removed cache_position postion_ids use_cache
* remove config from modular
* removed config from modular (2)
* import apply_rotary_pos_emb from llama
* fixed rope_kwargs
* Instantiate cache in Zamba2Model
* fix cache
* fix @slow decorator
* small fix in modular file
* Update docs/source/en/model_doc/zamba2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* several minor fixes
* inherit mamba2decoder fwd and drop position_ids in mamba
* removed docstrings from modular
* reinstate zamba2 attention decoder fwd
* use regex for tied keys
* Revert "use regex for tied keys"
This reverts commit 9007a522b1f831df6d516a281c0d3fdd20a118f5.
* use regex for tied keys
* add cpu to slow forward tests
* dropped config.use_shared_mlp_adapter
* Update docs/source/en/model_doc/zamba2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* re-convert from modular
---------
Co-authored-by: root <root@node-2.us-southcentral1-a.compute.internal>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* use torch.testing.assertclose instead to get more details about error in cis
* fix
* style
* test_all
* revert for I bert
* fixes and updates
* more image processing fixes
* more image processors
* fix mamba and co
* style
* less strick
* ok I won't be strict
* skip and be done
* up
* Fix test_pipelines_video_classification that was always failing
* Update video pipeline docstring to reflect actual return type
---------
Co-authored-by: Louis Groux <louis.cal.groux@gmail.com>
Works for fine-tuned or exported models:
```py
from transformers import AutoModelForImageClassification
checkpoint = "timm/vit_base_patch16_224.augreg2_in21k_ft_in1k"
model = AutoModelForImageClassification.from_pretrained(checkpoint)
model.push_to_hub("pcuenq/tw1")
```
The uploaded model will now show snippets for both the timm and the
transformers libraries.
* fix "test_chat_template_dict" in llava_onevision
* Update src/transformers/models/llava_next_video/processing_llava_next_video.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* get one video calles once
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* added bugfix in modular converter to keep modular assignments for docstrings, expected outputs etc.
* revert stracoder2 docstring copying, add forward in EMU3 to enable docstring assingment, remove verbatim assignments in modular converter
* added _FOR_DOC in assignments to keep, corrected wrong checkpoint name in ijepa's configuration
This is a continuation of 217c47e31bc0cd442443e5b4a62c8bc2785d53ee but
for another module. This issue was spotted in nixpkgs (again) when
building lm-eval package that used a different path in transformers
library to reach the same failure.
Related: #35133
transformers.image_transforms.normalize documents and checks for the wrong type for std and mean arguments
Co-authored-by: Louis Groux <louis.cal.groux@gmail.com>
* Initial commit with template code generated by transformers-cli
* Multiple additions to SuperGlue implementation :
- Added the SuperGlueConfig
- Added the SuperGlueModel and its implementation
- Added basic weight conversion script
- Added new ImageMatchingOutput dataclass
* Few changes for SuperGlue
* Multiple changes :
- Added keypoint detection config to SuperGlueConfig
- Completed convert_superglue_to_pytorch and succesfully run inference
* Reverted unintentional change
* Multiple changes :
- Added SuperGlue to a bunch of places
- Divided SuperGlue into SuperGlueForImageMatching and SuperGlueModel
- Added testing images
* Moved things in init files
* Added docs (to be finished depending on the final implementation)
* Added necessary imports and some doc
* Removed unnecessary import
* Fixed make fix-copies bug and ran it
* Deleted SuperGlueModel
Fixed convert script
* Added SuperGlueImageProcessor
* Changed SuperGlue to support batching pairs of images and modified ImageMatchingOutput in consequences
* Changed convert_superglue_to_hf.py script to experiment different ways of reading an image and seeing its impact on performances
* Added initial tests for SuperGlueImageProcessor
* Added AutoModelForImageMatching in missing places and tests
* Fixed keypoint_detector_output instructions
* Fix style
* Adapted to latest main changes
* Added integration test
* Fixed bugs to pass tests
* Added keypoints returned by keypoint detector in the output of SuperGlue
* Added doc to SuperGlue
* SuperGlue returning all attention and hidden states for a fixed number of keypoints
* Make style
* Changed SuperGlueImageProcessor tests
* Revert "SuperGlue returning all attention and hidden states for a fixed number of keypoints"
Changed tests accordingly
This reverts commit 5b3b669c
* Added back hidden_states and attentions masked outputs with tests
* Renamed ImageMatching occurences into KeypointMatching
* Changed SuperGlueImageProcessor to raise error when batch_size is not even
* Added docs and clarity to hidden state and attention grouping function
* Fixed some code and done refactoring
* Fixed typo in SuperPoint output doc
* Fixed some of the formatting and variable naming problems
* Removed useless function call
* Removed AutoModelForKeypointMatching
* Fixed SuperGlueImageProcessor to only accept paris of images
* Added more fixes to SuperGlueImageProcessor
* Simplified the batching of attention and hidden states
* Simplified stack functions
* Moved attention instructions into class
* Removed unused do_batch_norm argument
* Moved weight initialization to the proper place
* Replaced deepcopy for instantiation
* Fixed small bug
* Changed from stevenbucaille to magic-leap repo
* Renamed London Bridge images to Tower Bridge
* Fixed formatting
* Renamed remaining "london" to "tower"
* Apply suggestions from code review
Small changes in the docs
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added AutoModelForKeypointMatching
* Changed images used in example
* Several changes to image_processing_superglue and style
* Fixed resample type hint
* Changed SuperGlueImageProcessor and added test case for list of 2 images
* Changed list_of_tuples implementation
* Fix in dummy objects
* Added normalize_keypoint, log_sinkhorn_iterations and log_optimal_transport docstring
* Added missing docstring
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved forward block at bottom
* Added docstring to forward method
* Added docstring to match_image_pair method
* Changed test_model_common_attributes to test_model_get_set_embeddings test method signature
* Removed AutoModelForKeypointMatching
* Removed image fixtures and added load_dataset
* Added padding of images in SuperGlueImageProcessor
* Cleaned up convert_superglue_to_hf script
* Added missing docs and fixed unused argument
* Fixed SuperGlueImageProcessor tests
* Transposed all hidden states from SuperGlue to reflect the standard (..., seq_len, feature_dim) shape
* Added SuperGlueForKeypointMatching back to modeling_auto
* Fixed image processor padding test
* Changed SuperGlue docs
* changes:
- Abstraction to batch, concat and stack of inconsistent tensors
- Changed conv1d's to linears to match standard attention implementations
- Renamed all tensors to be tensor0 and not tensor_0 and be consistent
- Changed match image pair to run keypoint detection on all image first, create batching tensors and then filling these tensors matches after matches
- Various changes in docs, etc
* Changes to SuperGlueImageProcessor:
- Reworked the input image pairs checking function and added tests accordingly
- Added Copied from statements
- Added do_grayscale tag (also for SuperPointImageProcessor)
- Misc changes for better code
* Formatting changes
* Reverted conv1d to linear conversion because of numerical differences
* fix: changed some code to be more straightforward (e.g. filtering keypoints) and converted plot from opencv to matplotlib
* fix: removed unnecessary test
* chore: removed commented code and added back hidden states transpositions
* chore: changed from "inconsistent" to "ragged" function names as suggested
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: applied suggestions
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: updated to display matched output
* chore: applied suggestion for check_image_pairs_input function
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* chore: changed check_image_pairs_input function name to validate_and_format_image_pairs and used validate_preprocess_arguments function
* tests: simplified tests for image input format and shapes
* feat: converted SuperGlue's use of Conv1d with kernel_size of 1 with Linear layers. Changed tests and conversion script accordingly
* feat: several changes to address comments
Conversion script:
- Reverted fuse batchnorm to linear conversion
- Changed all 'nn.Module' to respective SuperGlue models
- Changed conversion script to use regex mapping and match other recent scripts
Modeling SuperGlue:
- Added batching with mask and padding to attention
- Removed unnecessary concat, stack and batch ragged pairs functions
- Reverted batchnorm layer
- Renamed query, key, value and merge layers into q, k, v, out proj
- Removed Union of different Module into nn.Module in _init_weights method typehint
- Changed several method's signature to combine image0 and image1 inputs with appropriate doc changes
- Updated SuperGlue's doc with torch.no_grad()
Updated test to reflect changes in SuperGlue model
* refactor: changed validate_and_format_image_pairs function with clarity
* refactor: changed from one SuperGlueMLP class to a list of SuperGlueMLP class
* fix: fixed forgotten init weight change from last commit
* fix: fixed rebase mistake
* fix: removed leftover commented code
* fix: added typehint and changed some of arguments default values
* fix: fixed attribute default values for SuperGlueConfig
* feat: added SuperGlueImageProcessor post process keypoint matching method with tests
* fix: fixed SuperGlue attention and hidden state tuples aggregation
* chore: fixed mask optionality and reordered tensor reshapes to be cleaner
* chore: fixed docs and error message returned in validate_and_format_image_pairs function
* fix: fixed returned keypoints to be the ones that SuperPoint returns
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue (bis)
* fix: Changed SuperGlueMultiLayerPerceptron instantiation to avoid if statement
* fix: Changed convert_superglue_to_hf script to reflect latest SuperGlue changes and got rid of nn.Modules
* WIP: implement Attention from an existing class (like BERT)
* docs: Changed docs to include more appealing matching plot
* WIP: Implement Attention
* chore: minor typehint change
* chore: changed convert superglue script by removing all classes and apply conv to linear conversion in state dict + rearrange keys to comply with changes in model's layers organisation
* Revert "Fixed typo in SuperPoint output doc"
This reverts commit 2120390e827f94fcd631c8e5728d9a4980f4a503.
* chore: added comments in SuperGlueImageProcessor
* chore: changed SuperGlue organization HF repo to magic-leap-community
* [run-slow] refactor: small change in layer instantiation
* [run-slow] chore: replaced remaining stevenbucaille org to magic-leap-community
* [run-slow] chore: make style
* chore: update image matching fixture dataset HF repository
* [run-slow] superglue
* tests: overwriting test_batching_equivalence
* [run-slow] superglue
* tests: changed test to cope with value changing depending on cuda version
* [run-slow] superglue
* tests: changed matching_threshold value
* [run-slow] superglue
* [run-slow] superglue
* tests: changed tests for integration
* [run-slow] superglue
* fix: Changed tensor view and permutations to match original implementation results
* fix: updated convert script and integration test to include last change in model
* fix: increase tolerance for CUDA variances
* Apply suggestions from code review
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* [run-slow] superglue
* chore: removed blank whitespaces
* [run-slow] superglue
* Revert SuperPoint image processor accident changes
* [run-slow] superglue
* refactor: reverted copy from BERT class
* tests: lower the tolerance in integration tests for SuperGlue
* [run-slow] superglue
* chore: set do_grayscale to False in SuperPoint and SuperGlue image processors
* [run-slow] superglue
* fix: fixed imports in SuperGlue files
* chore: changed do_grayscale SuperGlueImageProcessing default value to True
* docs: added typehint to post_process_keypoint_matching method in SuperGlueImageProcessor
* fix: set matching_threshold default value to 0.0 instead of 0.2
* feat: added matching_threshold to post_process_keypoint_matching method
* docs: update superglue.md to include matching_threshold parameter
* docs: updated SuperGlueConfig docstring for matching_threshold default value
* refactor: removed unnecessary parameters in SuperGlueConfig
* fix: changed from matching_threshold to threshold
* fix: re-revert changes to make SuperGlue attention classes copies of BERT
* [run-slow] superglue
* fix: added missing device argument in post_processing method
* [run-slow] superglue
* fix: add matches different from -1 to compute valid matches in post_process_keypoint_matching (and docstring)
* fix: add device to image_sizes tensor instantiation
* tests: added checks on do_grayscale test
* chore: reordered and added Optional typehint to KeypointMatchingOutput
* LightGluePR suggestions:
- use `post_process_keypoint_matching` as default docs example
- add `post_process_keypoint_matching` in autodoc
- add `SuperPointConfig` import under TYPE_CHECKING condition
- format SuperGlueConfig docstring
- add device in convert_superglue_to_hf
- Fix typo
- Fix KeypointMatchingOutput docstring
- Removed unnecessary line
- Added missing SuperGlueConfig in __init__ methods
* LightGluePR suggestions:
- use batching to get keypoint detection
* refactor: processing images done in 1 for loop instead of 4
* fix: use @ instead of torch.einsum for scores computation
* style: added #fmt skip to long tensor values
* refactor: rollbacked validate_and_format_image_pairs valid and invalid case to more simple ones
* refactor: prepare_imgs
* refactor: simplified `validate_and_format_image_pairs`
* docs: fixed doc
---------
Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Convert more checkpoints
* Update docs, convert huge variant
* Update model name
* Update src/transformers/models/vitpose/modeling_vitpose.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Remove print statements
* Update docs/source/en/model_doc/vitpose.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Link to collection
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
`return unittest.skip()` used in the `test_model_parallel_beam_search` in
skip condition for xpu did not actually mark test to be skipped running
under pytest:
* 148 passed, 1 skipped
Other tests use `self.skipTest()`. Reusing this approach and moving the
condition outside the loop (since it does not depend on it) allows to skip
for xpu correctly:
* 148 skipped
Secondly, `device_map="auto"` is now implemented for XPU for IPEX>=2.5 and
torch>=2.6, so we can now enable these tests for XPU for new IPEX/torch
versions.
Fixes: 1ea3ad1ae ("[tests] use `torch_device` instead of `auto` for model testing (#29531)")
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Restore is_torch_greater_or_equal_than for backward compatibility
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
* review comments
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
---------
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
* Add input ids to model output
* Add text preprocessing for processor
* Fix snippet
* Add test for equivalence
* Add type checking guard
* Fixing typehint
* Fix test for added `input_ids` in output
* Add deprecations and "text_labels" to output
* Adjust tests
* Fix test
* Update code examples
* Minor docs and code improvement
* Remove one-liner functions and rename class to CamelCase
* Update docstring
* Fixup
* An attempt to fix#29554. Include 'LayerNorm.' in gamma/beta rename scope, reduce number of characters searched on every load considerably.
* Fix fix on load issue
* Fix gamma/beta warning test
* A style complaint
* Improve efficiency of weight norm key rename. Add better comments about weight norm and layer norm renaming.
* Habitual elif redunant with the return
* Replace deprecated batch_size with max_batch_size
- Functionality remains the same, because property getter batch_size(self) returned max_batch_size anyways.
- This change just avoids an unnecessary warning about deprecation.
* Use max_batch_size instead of deprecated batch_size with HybridCache
* Use max_batch_size instead of deprecated batch_size with HybridCache
- Change generated code to match original source
* DataCollatorForLanguageModeling class was updated with new parameters that provides more control over the token masking and relacing
* DataCollatorForLanguageModeling class was updated with new parameters that provides more control over the token masking and relacing
* Addressed review comments, modified the docstring and made a test for the DataCollatorForLanguageModeling
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
Enhanced installation section with troubleshooting, GPU setup, and OS-specific details.
* Update README.md
Enhanced installation section with troubleshooting, GPU setup, and OS-specific details.
* Update installation.md
Updated installation.md to include virtual environment and GPU setup instructions.
* Update installation.md
Updated installation.md to include virtual environment and GPU setup instructions.
* Update installation.md
Updated installation.md to include virtual environment, troubleshooting and GPU setup instructions.
* Update installation.md
* Update installation.md
* Update installation.md
* Update installation.md
Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.
* Update installation.md
Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.
* Update installation.md
Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.
* Update README.md
Removed numbering from README.md.
* Update README.md
Removed unnecessary "a)" formatting as per maintainer feedback.
* Update README.md
Added blank lines around code snippets for better readability.
* Update README.md
Removed the line "b) Install a backend framework:" from README.md as per feedback.
* Update README.md
Simplified "For Windows:" to "Windows" in README.md as per feedback as well as "For macOS/Linux:" to "macOS/Linux"
* Update README.md
Removed unnecessary heading and retained valid code snippet.
* Update README.md
Removed unnecessary heading "d) Optional: Install from source for the latest updates" as per feedback.
* Update README.md
Removed "GPU Setup (Optional)" section to align with minimal design feedback.
* Update installation.md
Removed "Create and Activate a Virtual Environment" section from installation.md as per feedback.
* Update installation.md
Adjusted "Troubleshooting" to a second-level heading and added an introductory line as per feedback.
* Update installation.md
Updated troubleshooting section with simplified headings and formatted code blocks as per feedback.
* Update installation.md
Integrated GPU setup instructions into the "Install with pip" section for better content flow.
* Update README.md
Removed Troubleshooting section from README.md for minimalism as per maintainer feedback.
* Update torchao.md: use auto-compilation
* Update torchao.md: indicate updating transformers to the latest
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Add the helium model.
* Add a missing helium.
* And add another missing helium.
* Use float for the rmsnorm mul.
* Add the Helium tokenizer converter.
* Add the pad token as suggested by Arthur.
* Update the RMSNorm + some other tweaks.
* Fix more rebase issues.
* fix copies and style
* fixes and add helium.md
* add missing tests
* udpate the backlink
* oups
* style
* update init, and expected results
* small fixes
* match test outputs
* style fixup, fix doc builder
* add dummies and we should be good to go!z
* update sdpa and fa2 documentation
---------
Co-authored-by: laurent <laurent.mazare@gmail.com>
* Removed duplicate class field definition.
* Removed duplicate code in try-except block.
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* model can convert to HF and be loaded back
* nit
* works in single batch generation but hallucinates
* use the image tokens
* add image generation
* now it works
* add tests
* update
* add modulare but it doesn't work for porting docstring :(
* skip some tests
* add slow tests
* modular removed the import?
* guess this works
* update
* update
* fix copies
* fix test
* fix copies
* update
* docs
* fix tests
* last fix tests?
* pls
* repo consistency
* more style
* style
* remove file
* address comments
* tiny bits
* update after the new modular
* fix tests
* add one more cond in check attributes
* decompose down/up/mid blocks
* allow static cache generation in VLMs
* nit
* fix copies
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/emu3.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix VAE upsampling
* Update src/transformers/models/emu3/modular_emu3.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* address comments
* state overwritten stuff explicitly
* fix copies
* add the flag for flex attn
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Introduce 5 integration tests for the 4 model classes + torch export
* ModernBert: reuse GemmaRotaryEmbedding via modular
* Revert #35589, keep rope_kwargs; rely on them in modular_modernbert
* Revert "Revert #35589, keep rope_kwargs; rely on them in modular_modernbert"
This reverts commit 11b44b9ee83e199cbfb7c5ba2d11f7a7fdbba2d3.
* Don't set rope_kwargs; override 'self.rope_init_fn' call instead
* bug fixes
* organize imports
* wrap cpu warning in reference_compile
* Avoid needing repad_logits_with_grad, always repad with grads when training
I'm not 100% that the conditional with "or labels is None" makes sense though - not sure what the intention is there. Perhaps we can remove that?
* Revert "Avoid needing repad_logits_with_grad, always repad with grads when training"
This reverts commit cedcb4e89bcea199a1135a0933e71f534b656239.
* Fix grammar: keep -> keeps
* Propagate grammar fix with modular_model_converter
---------
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
* Ensure that add_prefix_space is propagated to backend_tokenizer.pre_tokenizer
in PreTrainedTokenizerFast, rather than relying on subclasses to take care of this.
* Simplify setting self.add_prefix_space, ensure pre_tok exists
* Wrap in try-except to catch 'Custom PreTokenizer cannot be serialized'
862d1a346a/bindings/python/src/pre_tokenizers.rs (L672) produces the Exception. They're triggered by the roformer tests, as the RoFormerTokenizerFast uses a custom PreTokenizer.
* Propagate add_prefix_space in T5TokenizerFast to superclass
* look-ahead negation
* re add examples by default
* Fix the bug in topological sort
* Update create_dependency_mapping.py
* start adding test
* finalize test
* more tests
* style
* style
* update modular_modernbert -- add inputs_embeds param to ModernBertModel
* Fix implementation issues; extend to other classes; docstring
First of all, the inputs_embeds shouldn't fully replace `self.embeddings(input_ids)`, because this call also does layer normalization and dropout. So, now both input_ids and inputs_embeds is passed to the ModernBertEmbeddings, much like how BertEmbeddings is implemented.
I also added `inputs_embeds` to the docstring, and propagated the changes to the other model classes.
I also introduced an error if input_ids and input_embeds are both or neither provided.
Lastly, I fixed an issue with device being based solely on input_ids with attention_mask.
* Propagate inputs_embeds to ModernBertForMaskedLM correctly
Also reintroduce inputs_embeds test
---------
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
* setup loss_type in config at model init time
ensures no additional graph break introduced when torch.compile'ed
fixes#34615
Signed-off-by: ChanderG <mail@chandergovind.org>
* lookup loss mapping at init time instead of manual setup
Signed-off-by: ChanderG <mail@chandergovind.org>
* remove redundant lookup at loss_function time
* overwride losstype at init time
---------
Signed-off-by: ChanderG <mail@chandergovind.org>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* update codecarbon
* replace directly-specified-test-dirs with tmp_dir
* pass tmp_dir to all get_regression_trainer
* test_trainer.py: Use tmp_dir consistently for all output_dir arguments
* fix some with...as tmp_dir blocks
* reflect the comments to improve test_trainer.py
* refresh .gitignore
* update conversion script
* update for bias again
* remove pdv
* use my dir
* Update how we initialize the tokenizer
* Convert in bfloat16
* Undo that one again
* fix config dump
* .to() was broken for BatchMixFeature
* quick debug breakpoint
* put the breakpoint in the right place
* Add a config flag for the multimodal projector bias
* Add a config flag for the multimodal projector bias
* Conversion script can load chat templates
* Indent config for comparison
* Stop clobbering the config
* Re-enable the config clobber
* Get rid of the config manual save - it has no effect!
* Handle adapter bias correctly
* Default vision transformer activation to silu
* Remove legacy processing path
* One commit with all the debug breakpoints before I delete them all, in case I need to revert
* Update conversion
* Remove vLLM debugging instrumentation
* Drop xformers
* Remove debug enumerates
* make fixup
* make fixup
* Break copied from in pixtral
* Propagate multimodal_projector_bias change
* Propagate multimodal_projector_bias change
* Remove debug device .to()
* Restore attention weights output
* Fix Pixtral test
* Drop image_seq_length
* Drop image_seq_length
* Put the legacy processing code back
* Add the bias option to the llava_next_video config
* Add the bias option to the llava_next_video config
* Make certain args required in converter
* Make certain args required in converter
* typo
* make fixup
* Reverting some dtype changes since it seems to work without them
---------
Co-authored-by: arthur@huggingface.co <arthur@ip-26-0-166-244.ec2.internal>
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Updated docstring for _determine_best_metric.
* Updated docstring for metric_for_best_model.
* Added test case for save strategy.
* Updated incorrect test case.
* Changed eval_strategy to match save_strategy.
* Separated test cases for metric.
* Allow load_best_model when save_strategy == "best".
* Updated docstring for metric_for_best_model.
* fix: processing odd number of frames
* feat: add test case
* update: test one frame
* feat: support custom patch size
* fix: test with videos
* revert: change on patch repeat
* fix: much wow
* update: fixups
* fixup pls
* ruff fixup
* fix typo at least
* add audio_token attribute to proc
* expand input_ids
* and legacy and expanded input_ids
* test update
* split lines
* add possibility not to provide eos and bos audio tokens
* raise errors
* test incorrect number of audio tokens
* add example
* fmt
* typo
* first adding diffllama
* add Diff Attention and other but still with errors
* complate make attention Diff-Attention
* fix some bugs which may be caused by transformer-cli while adding model
* fix a bug caused by forgetting KV cache...
* Update src/transformers/models/diffllama/modeling_diffllama.py
You don't need to divide by 2 if we use same number of attention heads as llama. instead you can just split in forward.
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
fit to changeing "num_heads // 2" place
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
new codes are more meaningful than before
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
new codes are more meaningful than before
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
fit to changeing "num_heads // 2" place
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
fix 2times divide by sqrt(self.head_dim)
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
fix 2times divide by sqrt(self.head_dim)
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* Update src/transformers/models/diffllama/modeling_diffllama.py
fit to changeing "num_heads // 2" place.
and more visible
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* I found Attention missed implemented from paper still on e072544a3bfc69b8a903e062729f861108ffecd3.
* re-implemented
* adding groupnorm
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* align with transformers code style
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* fix typo
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* adding groupnorm
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* change SdpaAttention to DiffSdpaAttention
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* fix bug
* Update src/transformers/models/diffllama/modeling_diffllama.py
resolve "not same outputs" problem
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* fix bugs of places of "GroupNorm with scale" and etc
* Revert "fix bugs of places of "GroupNorm with scale" and etc"
This reverts commit 26307d92f6acd55e9fe89f2facff350f05760960.
* simplify multiple of attention (matmul) operations into one by repeating value_states
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* simplify multiple of attention (matmul) operations into one by repeating value_states
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* simplify multiple of attention (matmul) operations into one by repeating value_states
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
* remove missed type
* add diffllama model_doc
* apply make style/quality
* apply review comment about model
* apply review comment about test
* place diffllama alphabetically on the src/transformers/__init__.py
* fix forgot code
* Supports parameters that are not initialized with standard deviation 0 in the conventional method
* add DiffLlamaConfig to CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK on utils/check_config_docstrings.py
* remove unused property of config
* add to supported model list
* add to spda supported model list
* fix copyright, remove pretraining_tensor_parallel, and modify for initialization test
* remove unused import and etc.
* empty commit
* empty commit
* empty commit
* apply modular transformers but with bugs
* revert prev commit
* create src/transformers/model/diffllama/modular_diffllama.py
* run utils/modular_model_converter.py
* empty commit
* leaner modular diffllama
* remove more and more in modular_diffllama.pt
* remove more and more in modular_diffllama.pt
* resolve missing docstring entries
* force reset
* convert modular
---------
Co-authored-by: Minho Ryu <ryumin93@gmail.com>
`parallelize()` API is deprecated in favor of accelerate's `device_map="auto"`
and therefore is not accepting new features. At the same time `parallelize()`
implementation is currently CUDA-specific. This commit marks respective
ci tests with `@require_torch_gpu`.
Fixes: #35252
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* added logic for deleting adapters once loaded
* updated to the latest version of transformers, merged utility function into the source
* updated with missing check
* added peft version check
* Apply suggestions from code review
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* changes according to reviewer
* added test for deleting adapter(s)
* styling changes
* styling changes in test
* removed redundant code
* formatted my contributions with ruff
* optimized error handling
* ruff formatted with correct config
* resolved formatting issues
---------
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* Make kwargs uniform for SAM
* Remove unused attribute
* Make point_pad_value part of image_kwargs
* Update annotations
* Code review - use existing methods
* Use ProcessorTesterMixin
* Do not add ProcessorTesterMixin everywhere
* Improve modular transformers documentation
- Adds hints to general contribution guides
- Lists which utils scripts are available to generate single-files from modular files and check their content
* Show commands in copyable code cells
---------
Co-authored-by: Joel Koch <joel@bitcrowd.net>
* bugfix: torch.export failure caused by `_make_causal_mask`
Recent changes in torch dynamo prevent mutations on tensors converted with aten::_to_copy. To address this, we can clone such tensor before performing in-place operation `masked_fill_` only when the code is being compiled by torch dynamo.
(relevant issue: https://github.com/pytorch/pytorch/issues/127571)
* chore: use `is_torchdynamo_compiling` instead of `torch._dynamo.is_compiling`
* fixup mamba2 - caching and several other small fixes
* fixup cached forward
* correct fix this time
* fixup cache - we do not need to extend the attn mask it's handled by generate (gives total ids + mask at each step)
* remove unnecessary (un)squeeze
* fixup cache position
* simplify a few things
* [run-slow] mamba2
* multi gpu attempt two
* [run-slow] mamba2
* [run-slow] mamba2
* [run-slow] mamba2
* [run-slow] mamba2
* add newer slow path fix
* [run-slow] mamba2
* initial cut of modernbert for transformers
* small bug fixes
* fixes
* Update import
* Use compiled mlp->mlp_norm to match research implementation
* Propagate changes in modular to modeling
* Replace duplicate attn_out_dropout in favor of attention_dropout
cc @warner-benjamin let me know if the two should remain separate!
* Update BOS to CLS and EOS to SEP
Please confirm @warner-benjamin
* Set default classifier bias to False, matching research repo
* Update tie_word_embeddings description
* Fix _init_weights for ForMaskedLM
* Match base_model_prefix
* Add compiled_head to match research repo outputs
* Fix imports for ModernBertForMaskedLM
* Just use "gelu" default outright for classifier
* Fix config name typo: initalizer -> initializer
* Remove some unused parameters in docstring. Still lots to edit there!
* Compile the embeddings forward
Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.
But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.
* Add drafts for ForSequenceClassification/ForTokenClassification
* Add initial SDPA support (not exactly equivalent to FA2 yet!)
During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.
* Only use attention dropout if training
* Add initial eager attention support (also not equivalent to FA2 yet!)
Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.
Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value
The fill-mask results are good with eager.
* Add initial tests, output_attentions, output_hidden_states, prune_heads
Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped
* Remove kwargs from ModernBertForMaskedLM
Disable sparse_prediction by default to match the normal HF, can be enabled via config
* Remove/adjust/skip improper tests; warn if padding but no attn mask
* Run formatting etc.
* Run python utils/custom_init_isort.py
* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)
* Reformat init_weights based on review
* self -> module in attention forwards
* Remove if config.tie_word_embeddings
* Reformat output projection on a different line
* Remove pruning
* Remove assert
* Call contiguous() to simplify paths
* Remove prune_qkv_linear_layer
* Format code
* Keep as kwargs, only use if needed
* Remove unused codepaths & related config options
* Remove 3d attn_mask test; fix token classification tuple output
* Reorder: attention_mask above position_ids, fixes gradient checkpointing
* Fix usage if no FA2 or torch v2.5+
* Make torch.compile/triton optional
Should we rename 'compile'? It's a bit vague
* Separate pooling options into separate functions (cls, mean) - cls as default
* Simplify _pad_modernbert_output, remove unused labels path
* Update tied weights to remove decoder.weight, simplify decoder loading
* Adaptively set config.compile based on hf_device_map/device/resize, etc.
* Update ModernBertConfig docstring
* Satisfy some consistency checks, add unfinished docs
* Only set compile to False if there's more than 1 device
* Add docstrings for public ModernBert classes
* Dont replace docstring returns - ends up being duplicate
* Fix mistake in toctree
* Reformat toctree
* Patched FlexAttention, SDPA, Eager with Local Attention
* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial
both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2
* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'
* Repad all_hidden_states as well
* rename config.compile to reference_compile
* disable flex_attention since it crashes
* Update modernbert.md
* Using dtype min to mask in eager
* Fully remove flex attention for now
It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.
Also, update compile -> reference_compile in one more case
* Call contiguous to allow for .view()
* Copyright 2020 -> 2024
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update/simplify __init__ structure
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove "... if dropout_prob > 0 else identity"
As dropout with 0.0 should be efficient like identity
* re-use existing pad/unpad functions instead of creating new ones
* remove flexattention method
* Compute attention_mask and local_attention_mask once in modeling
* Simplify sequence classification prediction heads, only CLS now
Users can make custom heads if they feel like it
Also removes the unnecessary pool parameter
* Simplify module.training in eager attn
* Also export ModernBertPreTrainedModel
* Update the documentation with links to finetuning scripts
* Explain local_attention_mask parameter in docstring
* Simplify _autoset_attn_implementation, rely on super()
* Keep "in" to initialize Prediction head
Doublechecked with Benjamin that it's correct/what we used for pretraining
* add back mean pooling
* Use the pooling head in TokenClassification
* update copyright
* Reset config._attn_implementation_internal on failure
* Allow optional attention_mask in ForMaskedLM head
* fix failing run_slow tests
* Add links to the paper
* Remove unpad_no_grad, always pad/unpad without gradients
* local_attention_mask -> sliding_window_mask
* Revert "Use the pooling head in TokenClassification"
This reverts commit 99c38badd1dbce01d7aef41095fbf2f5cce87279.
There was no real motivation, no info on whether having this bigger head does anything useful.
* Simplify pooling, 2 options via if-else
---------
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Said Taghadouini <taghadouinisaid@gmail.com>
Co-authored-by: Benjamin Clavié <ben@clavie.eu>
Co-authored-by: Antoine Chaffin <ant54600@hotmail.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* docs: fix typo quickstart snippet in ColPali's model card
* docs: clean the ColPali's model card
* docs: make the `ColPaliForRetrieval`'s docstring more concise
* docs: add missing bash command used to convert weights for `vidore/colpali-v1.3-hf`
* initial commit for PR
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
* rename dynamic cache
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* add more unit tests
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* add integration test
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* add integration test
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* Add modular bamba file
* Remove trainer changes from unrelated PR
* Modify modular and cofig to get model running
* Fix some CI errors and beam search
* Fix a plethora of bugs from CI/docs/etc
* Add bamba to models with special caches
* Updat to newer mamba PR for mamba sublayer
* fix test_left_padding_compatibility
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* fix style
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* fix remaining tests
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* missed this test
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* ran make style
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* move slow tag to integration obj
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* make style
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* address comments
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* fix modular
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* left out one part of modular
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* change model
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* Make Rotary modular as well
* Update bamba.md
Added overview, update Model inference card and added config
* Update bamba.md
* Update bamba.md
* Update bamba.md
Minor fixes
* Add docs for config and model back
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
* Add warning when using fast kernels
* replaced generate example
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
* Address comments from PR
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
* Propagate attention fixes
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
* Fix attention interfaces to the new API
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
* Fix API for decoder layer
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
* Remove extra weights
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
---------
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: divya-kumari32 <72085811+divya-kumari32@users.noreply.github.com>
Co-authored-by: Antoni Viros <ani300@gmail.com>
* feat: add `benchmarks_entrypoint.py`
Adding `benchmarks_entrypoint.py` file, which will be run from the
benchmarks CI.
This python script will list all python files from the `benchmark/`
folder and run the included `run_benchmark` function, allowing people to
add new benchmarks scripts.
* feat: add `MetricsRecorder`
* feat: update dashboard
* fix: add missing arguments to `MetricsRecorder`
* feat: update dash & add datasource + `default.yml`
* fix: move responsibility to create `MetricsRecorder` in bench script
* fix: update incorrect datasource UID
* fix: incorrect variable values
* debug: benchmark entrypoint script
* refactor: update log level
* fix: update broken import
* feat: add debug log in `MetricsRecorder`
* debug: set log level to debug
* fix: set connection `autocommit` to `True`
* do not remove decoder_input_ids for the first segment
* do not remove eos token in generate_with_fallback
* when removing padding tokens, do not remove eos token
* remove eos token in generate (and not in generate_with_fallback!)
* reconciliate short-from/ long-form behavior
* correct avg_logprobs calculation
* handle eos token in segments
* handle decoder_input_ids and eos token in _prepare_decoder_input_ids
* fix incorrect time precision
* always remove eos token
* always remove decoder_input_ids
* no need to handle decoder_inputs_ids and eos token
* no need to remove decoder_input_ids
* no need to handle eos token
* fix num_beams in _retrieve_logit_processors
* remove todo unconsistency
* no need to add eos token
* last_timestamp_pos should indeed be timestamp token pos
* patch generate to enable compatibility with GenerationTesterMixin tests
* adapt test_generate_continue_from_past_key_values
* adapt test_prompt_lookup_decoding_matches_greedy_search
* adapt generic GenerationMixin tests to whisper's generate
* fix speculative decoding
* fix
* [run-slow] whisper
* change HF_HUB_TOKEN for require_read_token
* [run-slow] whisper
* prioritize kwargs over generation_config
* remove unnecessary args
* [run-slow] whisper
* update tests
* [run-slow] whisper
* add comment
* update test
* [run-slow] whisper
* update test + revert require_read_token
* docstring updates
* revert tokenizer decode args change
* do not use a patch + docstring updates
* [run-slow] whisper
* make
* [run-slow] whisper
* add a flag to force unique call to generate
* test update
* [run-slow] whisper
* add force_unique_generate_call arg
* do not use a patch
* correct the timestamps for the pad tokens
* docstring update
* docstring update
* docstring update
* upodate TF tests
* add require_read_token
* [run-slow] whisper
* test reset dynamo
* [run-slow] whisper
* fix
* [run-slow] whisper
* avoid iterating twice on current_segments
* [run-slow] whisper
* [run-slow] whisper
---------
Co-authored-by: Eustache Le Bihan <eustlb@users.noreply.huggingface.co>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* feat: add support for sdpa and gradient checkpointing
* fix: ruff format
* fix: config sdpa
* fix: sdpa layer naming convention
* fix: update test_eager_matches_sdpa_inference to handle vision_hidden_states
* test: skip incompatible tests and fix loading issue with sdpa
- Updated tests to skip cases flash and dynamic compile.
- Minor adjustment to ensure correct loading of model with sdpa for dispatch test.
* style: apply Ruff formatting
* ruff fix again after rebase
* [run-slow] sam
* [run-slow] sam
* refactor: Address review comments and improve sub-config handling in SAM model tests
- Added attributes for sub_configs as per PR #34410.
- Enabled tests for configs, ensuring the composite model (SAM) has several sub-configs in the main config.
- Added class attribute _is_composite=True to the tester class
- test_sdpa_can_dispatch_composite_models added
* [run-slow] sam
* style: ruff
* [run-slow] sam
* style: ruff again ...
* [run-slow] sam
* Add Falcon3 documentation
* Update Falcon3 documentation
* Change Falcon to Falcon3
* Update docs and run make fix-copies
* Add blog post and huggingface models links
* refactor image_processing_auto logic
* fix fast image processor tests
* Fix tests fast vit image processor
* Add safeguard when use_fast True and torchvision not available
* change default use_fast back to None, add warnings
* remove debugging print
* call get_image_processor_class_from_name once
* don't use no_sync when deepspeed doesn't support it for certain zero stages
* chore: lint
* fix no_sync context for deepspeed across all zero types
* chore: lint
* add more cases
* fix method not found in unittest
Signed-off-by: Lin, Fanli <fanli.lin@intel.com>
* fix more cases
* add more models
* add all
* no unittest.case
* remove for oneformer
* fix style
---------
Signed-off-by: Lin, Fanli <fanli.lin@intel.com>
* draft, run model as compreszed/uncompressed mode
* draft
* run run_compressed=False
* run_compressed as attr
* set run_compressed=False using quantization_config
* remove redundant line
* make is_qat_trainable dependent on run_compressed status
* add tests
* lint
* full in docstring
* add decompress
* comments
* decompress if model is compresssed and not run_compressed
* apply_quant_config logic fix -- populate statedict properly
* comments
* remove non compressed model
* make is_compressed as property
* cosmetic
* run apply_quant_config for non-compressed models -- popualte scales and zeropoints
* add pahtway for decompressing sparse models
* typo on is_quantization_compressed
* lint
* fix typo
* fix(utils): Support the newest Union type in chat template
* fix(utils/chat_template): Backward compatibility for the newest Union type
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add files
* Init
* Add TimmWrapperModel
* Fix up
* Some fixes
* Fix up
* Remove old file
* Sort out import orders
* Fix some model loading
* Compatible with pipeline and trainer
* Fix up
* Delete test_timm_model_1/config.json
* Remove accidentally commited files
* Delete src/transformers/models/modeling_timm_wrapper.py
* Remove empty imports; fix transformations applied
* Tidy up
* Add image classifcation model to special cases
* Create pretrained model; enable device_map='auto'
* Enable most tests; fix init order
* Sort imports
* [run-slow] timm_wrapper
* Pass num_classes into timm.create_model
* Remove train transforms from image processor
* Update timm creation with pretrained=False
* Fix gamma/beta issue for timm models
* Fixing gamma and beta renaming for timm models
* Simplify config and model creation
* Remove attn_implementation diff
* Fixup
* Docstrings
* Fix warning msg text according to test case
* Fix device_map auto
* Set dtype and device for pixel_values in forward
* Enable output hidden states
* Enable tests for hidden_states and model parallel
* Remove default scriptable arg
* Refactor inner model
* Update timm version
* Fix _find_mismatched_keys function
* Change inheritance for Classification model (fix weights loading with device_map)
* Minor bugfix
* Disable save pretrained for image processor
* Rename hook method for loaded keys correction
* Rename state dict keys on save, remove `timm_model` prefix, make checkpoint compatible with `timm`
* Managing num_labels <-> num_classes attributes
* Enable loading checkpoints in Trainer to resume training
* Update error message for output_hidden_states
* Add output hidden states test
* Decouple base and classification models
* Add more test cases
* Add save-load-to-timm test
* Fix test name
* Fixup
* Add do_pooling
* Add test for do_pooling
* Fix doc
* Add tests for TimmWrapperModel
* Add validation for `num_classes=0` in timm config + test for DINO checkpoint
* Adjust atol for test
* Fix docs
* dev-ci
* dev-ci
* Add tests for image processor
* Update docs
* Update init to new format
* Update docs in configuration
* Fix some docs in image processor
* Improve docs for modeling
* fix for is_timm_checkpoint
* Update code examples
* Fix header
* Fix typehint
* Increase tolerance a bit
* Fix Path
* Fixing model parallel tests
* Disable "parallel" tests
* Add comment for metadata
* Refactor AutoImageProcessor for timm wrapper loading
* Remove custom test_model_outputs_equivalence
* Add require_timm decorator
* Fix comment
* Make image processor work with older timm versions and tensor input
* Save config instead of whole model in image processor tests
* Add docstring for `image_processor_filename`
* Sanitize kwargs for timm image processor
* Fix doc style
* Update check for tensor input
* Update normalize
* Remove _load_timm_model function
---------
Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com>
Original issue: https://github.com/huggingface/peft/issues/2256
There is a potential error when using load_best_model_at_end=True with a
prompt learning PEFT method. This is because Trainer uses load_adapter
under the hood but with some prompt learning methods, there is an
optimization on the saved model to remove parameters that are not
required for inference, which in turn requires a change to the model
architecture. This is why load_adapter will fail in such cases and users
should instead set load_best_model_at_end=False and use
PeftModel.from_pretrained. As this is not obvious, we now intercept the
error and add a helpful error message.
* add "Translating Benchmarks.md to Chinese "
* Removed all the English original text (which was previously kept as comments in the document) and refined some of the Chinese expressions.
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
* Correct the new defaults (#34377)
* Correct the new defaults
* CIs
* add check
* Update utils.py
* Update utils.py
* Add the max_length in generate test checking shape without passing length
* style
* CIs
* fix fx CI issue
* [auto. ping] Avoid sending empty info + add more team members (#34383)
* update
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix glm (#34388)
* Fix duplicated
* fix import
* Use non nested images and batched text Idefics2/3 (#34222)
* add support for non nested images and add tests
* add tests error scenario
* fix style
* added single and no image to error tests
* Fix onnx non-expotable inplace aten op (#34376)
* fix onnx non-expotable inplace op
* mistral, qwen2, qwen2_vl, starcoder2
* fixup copies
* Fix right padding in LLaVA models (#34305)
* fix right pad llavas
* device mismatch
* no filter (#34391)
* no filter
* no filter
* no filter
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* SynthID: better example (#34372)
* better example
* Update src/transformers/generation/configuration_utils.py
* Update src/transformers/generation/logits_process.py
* nits
* Tests: upgrade `test_eager_matches_sdpa_generate` (#34386)
* Fix bnb training test failure (#34414)
* Fix bnb training test: compatibility with OPTSdpaAttention
* Avoid check expected exception when it is on CUDA (#34408)
* update
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix typos in agents_advanced.md (#34405)
* [docs] Cache implementations (#34325)
cache
* [run-slow] hubert
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
Add conversion integration test, and make batchnorm explicit variable
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
fix make fixup styling changes
* [run-slow] hubert
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
* [run-slow] hubert
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
Add conversion integration test, and make batchnorm explicit variable
* Support BatchNorm in Hubert pos_conv_emb as in fairseq
fix make fixup styling changes
* [run-slow] hubert
* [run-slow] hubert
---------
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
Co-authored-by: Rudy Delouya <rudy.delouya@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
In method `Trainer#get_batch_samples`, the return values should be a
list of batch samples and an integer indicating the number of items that
exist in the batch. However, this was not actually a case and what was
returned instead of an integer, was a tensor with one element. In the
multi-GPU setup, this tensor is placed in a different device than the
loss tensor, causing the loss function to raise a `RuntimeError`.
The problem arises from
5d7739f15a/src/transformers/trainer.py (L5139-L5144),
where the outer `sum` operates over a list of tensors which means that
the final result is also a tensor. To counter this issue, a new check
(after the accelerator gathering) has been added in order to convert a
potential tensor to an integer before returning the
`num_items_in_batch`.
* Option to set 'non_blocking' for to(device) operation for performance improvements. Defaults to 'false', thus no behavioral changes.
* Enabling non_blocking in to() operation of BatchFeature.
* Improved docstring on utilization of non_blocking
* Force non_blocking as keyword argument
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
---------
Co-authored-by: Daniel Bogdoll <dbogdoll@umich.edu>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix GA bugs and add unit test
* narrow down model loss unit test diff gap
* format code to make ruff happy
* send num_items_in_batch argument to decoder
* fix GA loss bug in BertLMHeadModel
* use TinyStories-33M to narrow down diff gap
* fotmat code
* missing .config
* avoid add extra args
---------
Co-authored-by: kangsheng <kangsheng@meituan.com>
* update modular and add examples
* style
* improve example comments
* style
* fix small logic issue for imports
* fix relative order issue when files do not make sense
* Improve comments
* trigger CIs
* gpt neox flex attention + refactor
* some formatting
* small fix on dropout
* add assertion on flex attn test
* flaky ci :(
* add head mask support
* style
* handle dtype, replace torch where
* fixup flex with output attns
* code review and several other fixes
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* style
* remove unnecessary comment
* remove incorrect comment
* make flex attn check more agnostic tor versions and centralized
* change peft input dtype check to value since q and k could be affected by other stuff like RoPE
* i forgor
* flaky
* code review and small fixes
* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add base tp plan for qwen2 and qwen2moe
* add parallel tp for starcoder2
* fix modular conversion
* add infer dim for qkv states
* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fixed typo in multi gpu docs and OLMoE version
* Fixed typos in docs for agents, agents advanced, knowledge distillation, and image feature extraction
* Fixed incorrect usage of model.image_guided_detection in zero shot object detection docs
* Use torch.nn.attention.sdpa_kernel instead of deprecated torch.backends.cuda.sdp_kernel
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Fix test_eager_matches_sdpa_inference for XPU backend
As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
which is implemented on PyTorch level using aten operators and is device
agnostic with respect to implementation of each aten operator. Thus, we can
reuse CUDA (or CPU) MATH weights for XPU.
Fixes: #34888
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Use torch.amp.autocast instead of deprecated torch.cuda.amp.autocast in nemotron
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
---------
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* [PEFT] Set eval mode when loading PEFT adapter
Resolves#34469
When calling model.load_adapter to load a PEFT adapter, by default the
adapter should be set to eval mode. This is now correctly done. Users
can still pass is_trainable=True to load the adapter in training mode.
* Linter
* Initial draft
* Add .jinja file loading for processors
* Add processor saving of naked chat template files
* make fixup
* Add save-load test for tokenizers
* Add save-load test for tokenizers
* stash commit
* Try popping the file
* make fixup
* Pop the arg correctly
* Pop the arg correctly
* Add processor test
* Fix processor code
* stash commit
* Processor clobbers child tokenizer's chat template
* Processor clobbers child tokenizer's chat template
* make fixup
* Split processor/tokenizer files to avoid interactions
* fix test
* Expand processor tests
* Rename arg to "save_raw_chat_template" across all classes
* Update processor warning
* Move templates to single file
* Move templates to single file
* Improve testing for processor/tokenizer clashes
* Improve testing for processor/tokenizer clashes
* Extend saving test
* Test file priority correctly
* make fixup
* Don't pop the chat template file before the slow tokenizer gets a look
* Remove breakpoint
* make fixup
* Fix error
* change apply_rotary_pos_emb
* upload for glm-edge
* remove useless part
* follow the suggestion
* fix
* format
* format
* test
* format again
* format again
* remove modular change
* remove modular change
* this apply_rotary_pos_emb need modify?
* fix with this
* format
* format
* ruff check
* modify modular_glm failed
* remove partial_rotary_factor of function partial_rotary_factor
* fix wrong change of examples/research_projects
* revert
* remove line 118
* use q_rot
* fix test_tiny_timestamp_generation
* fix test_large_timestamp_generation
* fix test_whisper_shortform_single_batch_prev_cond
* fix test_whisper_shortform_multi_batch_hard_prev_cond
* return_timestamps necessary with long form
* fix test_default_multilingual_transcription_long_form
* fix test_tiny_token_timestamp_generation_longform
* fix test_whisper_longform_multi_batch_hard
* Update tests/models/whisper/test_modeling_whisper.py
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* fix typo
* do not expect special tokens
* fix test_whisper_longform_single_batch_beam
* fix test_whisper_longform_multi_batch_hard_prev_cond
* update test_whisper_longform_multi_batch_hard_prev_cond
* update test_whisper_longform_multi_batch_hard_prev_cond
* these tests does not make sense anymore
* this test does not make sense anymore
* make fixup
* suggested nits
* add test with forced_decoder_ids
* this test does not make sense anymore
* change assert for unittest test cases
* make fixup
* test with prompt_ids and task and language
* fix unittest test case call
* fix test_tiny_generation
* fix test_tiny_en_generation
* fix test_tiny_en_batched_generation
* fix test_tiny_longform_timestamps_generation
* fix test_tiny_timestamp_generation
* fix test_large_generation
* fix test_large_batched_generation
* fix test_large_generation_multilingual
* fix test_large_timestamp_generation
* fix test_large_timestamp_generation
* fix test_tiny_token_timestamp_generation_longform
* fix test_tiny_en_batched_generation
* make fixup
* [run-slow] whisper
---------
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
The old AWQ version is failing with the latest (unreleased)
transformers, giving the error:
> ImportError: cannot import name 'shard_checkpoint' from
'transformers.modeling_utils'
This has been resolved in awq v0.2.7:
https://github.com/casper-hansen/AutoAWQ/pull/644
* allow unused parameter passthrough when chunking in asr pipelines
* format code
* format
* run fixup
* update tests
* update parameters to pipline in test
* updates parametrs in tests
* change spelling in gitignore
* revert .gitignore to main
* add git ignore of devcontainer folder
* assert asr output follows expected inference output type
* run fixup
* Remove .devcontainer from .gitignore
* remove compliance check
* CI Skip EETQ tests while package is broken
EETQ tries to import the shard_checkpoint function from transformers but
the function has been removed. Therefore, trying to use EETQ currently
results in an import error. This fix results in EETQ tests being skipped
if there is an import error.
The issue has been reported to EETQ:
https://github.com/NetEase-FuXi/EETQ/issues/34
* Raise helpful error when trying to use eetq
* Forget to raise the error in else clause
* skip nested deepspeed.zero.Init call
* make fixup
* solve conflict
* solve conflict
* put back local
* use context mangers instead of local thread
* Skip recursive calls to deepspeed.zero.Init
* Skip recursive calls to deepspeed.zero.Init
* back to old notebooks
* make style
* add tensor processing system to separate logic for models
* format refactoring
* small fix
* make some methods private
* move custom methods to processors
* refactor tensor processing
* format fix
* add deformable detr image processor fast
* add fast processor to doc
* fix copies
* nit docstring
* Add tests gpu/cpu and fix docstrings
* fix docstring
* import changes from detr
* fix imports
* rebase and fix
* fix input data format change in detr and rtdetr fast
* add support for openai api image_url input
* change continue to elif
* Explicitely add support for OpenAI/TGI chat format
* rewrite content to transformers chat format and add tests
* Add support for typing of image type in chat templates
* add base64 to possible image types
* refactor nesting
* Fix post process function called in the instance segmentation example of mask2former
* fix description and additional notes for post_process_instance_segmentation of maskformers
* remove white space in maskformers post_process_instance_segmentation doc
* change image.size[::-1] to height and width for clarity in segmentation examples
* add Cambricon MLUs support
* fix mlu device rng state
* up for quality check
* up mlu to support fp16
* fix mlu device dependency error
* fix mlu device dependency error
* enable mlu device for bf16
* fix mlu device memory tracker
* Cambricon support SDPA and flash_attn
* MLU devices : Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu
* softcapping
* soft cap before the mask
* style
* ...
* super nit
* update
* fixes
* update
* small issue with modular
* fix modular imports
* update
* fixup
* simplify a hell lot
* simplify cleaning imports
* finish fixing
* update our design
* nits
* use a deprecation cycle
* updates
* Fix modular (recursive deps need to always be computed after merges!)
* push
* fix
* update
* fix modular order
* make fix-copies
* updates
* update
* ?
* don't compile for now
* ?
* fix some stuff
* donc!
* fix copies
* update
* fixup
* ?
* fix two tests
* fix?
* for now, don't use head info
* eager when output attentoin and sdpa or flash as it's the simplest behaviour (for our tests as well :))
* fix-copies
* revert sdpa check
* Apply suggestions from code review
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
* rebase, fix-copies and push
* add a slow integration test
* update the test
* fix left padding issue
* fix test
* remove duplicate scaling
* quality
* add a small test and make sure it works
* 2b
---------
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
19d58d31f has introduced a context manager to manage subtests of
test_training_gradient_checkpointing. However, test body was not
moved under "with" statement. Thus, while tests are correctly
marked as skipped, test bodies were still executed. In some cases,
as with llama this caused attribute errors.
Fixes: #34722
Fixes: 19d58d31f ("Add MLLama (#33703)")
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Add model skeletion with transformers-cli add-new-model-like
* Convert config to modular, add rms_norm_eps, delete clip_qkv
* Convert model to modular, add RMSNorm
* Add flash attention with qk norm and no qkv clipping
* Add decoder layer with RMSNorm after attention/feedforward layers
* Add base and causal model
* Add converter improvements from OLMo repo
* Update weight loading in OLMo to HF converter
* Set correct default for rms_norm_eps
* Set correct pipeline_model_mapping in test
* Run make fixup
* Fix model type
* Re-run modular conversion
* Manually set config docs to fix build errors
* Convert olmo-1124 to olmo_1124 to fix flash attention docs errors
* Start updating tests
* Update tests
* Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to olmo_1124
* Rename input_layernorm and post_attention_layernorm to reflect their ops better
* Use correct tokenizer
* Remove test unsupported by GPT2 tokenizer
* Create GenerationConfig outside of from_pretrained call
* Use simpler init file structure
* Add explicit __all__ to support simplified init
* Make safetensor serialization the default
* Update OLMo November 2024 docs
* Remove FSDP wrapping from sub-models.
* solve conflict trainer.py
* make fixup
* add unit test for fsdp_auto_wrap_policy when using auto_find_batch_size
* put back extract_model_from_parallel
* use transformers unwrap_model
* Update llm_engine.py
- Added support for optional token and max_tokens parameters in the constructor.
- Provided usage examples and detailed documentation for each method.
* save/load sub-configs
* nit forgot these
* fix copies
* move test to common
* use dict for sub-configs
* add load-save-laod test
* clean up modeling check
* oops this are correct keys
* fix some tests, missed some composite configs
* this model was missed
FIX Broken repr of TorchAoConfig
The __repr__ method references a non-existent self.kwargs. This is now
fixed.
There does not appear to be a uniform way of defining __repr__ for
quantization configs. I copied the method as implemented for HQQ:
e2ac16b28a/src/transformers/utils/quantization_config.py (L285-L287)
* Skip DeepSpeed ZeRO Stage 3 model initialization when it is intended to be quantized.
* Propagate the quantization state using a context manager
* make fixup
* Update README_ko.md
Delete the blank paragraph in the language selection button and Edit to synchronize with the English version of README.md
* [i18n-KO] Update README_ko.md
* Additional edit for keep consistency with main [documentation](https://huggingface.co/docs/transformers/v4.44.2/ko/index). (메인 문서와 일관성 유지를 위한 수정)
* Update README_ko.md
Additional update.
* Change docs link to Korean translated page if it exists.
* Change doc link to korean translated if it exists.
Change the link of doc and delete a row 'migration' of the table Learn more[더 알아보기], since it does not exist in the main version of doc.
* modify a link of the main README.md
from
`https://huggingface.co/docs/transformers/index#supported-frameworks`
to
`https://huggingface.co/docs/transformers/index#supported-models-and-frameworks`
since the title of 'supported table' changed.
* [i18n-ko] edit links and sync with main `README.md`
* docs/change comment to Korean1
Change English comment to Korean
Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
* docs/change comment to Korean2
Change English comment to Korean
Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
* revise to original
to seperate `edit_README_ko_md` and `README.md`
* Synchronization with English documentation.
Synchronization with English documentation, and translated a line of comment from English to Korean.
---------
Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
* feat: add text support to TensorBoardCallback
* feat: ignore long strings in trainer progress
* docs: add docstring for max_str_len
* style: remove trailing whitespace
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* kinda works
* update
* add tests
* update
* use special tokens in processors
* typo
* fix copies
* fix
* fix moshi after rebase
* update
* fix tests
* update
* Update docs/source/en/main_classes/tokenizer.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update docs
* test for load time adding tokens
* fix some more tests which are now fetched better
* one more fix
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update trainer for easier handling of accumulate + proper reporting
* test
* Fixup tests
* Full fix
* Fix style
* rm comment
* Fix tests
* Minimize test + remove py 311 check
* Unused import
* Forward contrib credits from discussions
* Fix reported metrics
* Refactor, good as it's going to get
* rm pad tok id check
* object detection and audio are being annoying
* Fin
* Fin x2
---------
Co-authored-by: Gyanateet Dutta <Ryukijano@users.noreply.github.com>
* blip2 tests
* instructblips
* copies
* fix slow tests
* fix
* uncomment this
* clean up after rebase
* should be model main input
* fix overwritten tests
* oops len should be multiple of frame number
* style
* fix some tests
* Standardize image-text-to-text-models-output
add post_process_image_text_to_text to chameleon and cleanup
Fix legacy kwarg behavior and deprecation warning
add post_process_image_text_to_text to qwen2_vl and llava_onevision
Add post_process_image_text_to_text to idefics3, mllama, pixtral processor
* nit var name post_process_image_text_to_text udop
* nit fix deprecation warnings
* Add image-text-to-text pipeline
* add support for image url in chat template for pipeline
* Reformat to be fully compatible with chat templates
* Add tests chat template
* Fix imports and tests
* Add pipeline tag
* change logic handling of single prompt ans multiple images
* add pipeline mapping to models
* fix batched inference
* fix tests
* Add manual batching for preprocessing
* Fix outputs with nested images
* Add support for all common processing kwargs
* Add default padding when multiple text inputs (batch size>1)
* nit change version deprecation warning
* Add support for text only inference
* add chat_template warnings
* Add pipeline tests and add copied from post process function
* Fix batched pipeline tests
* nit
* Fix pipeline tests blip2
* remove unnecessary max_new_tokens
* revert processing kosmos2 and remove unnecessary max_new_tokens
* fix pipeline tests idefics
* Force try loading processor if pipeline supports it
* revert load_processor change
* hardcode loading only processor
* remove unnecessary try except
* skip imagetexttotext tests for kosmos2 as tiny model causes problems
* Make code clearer
* Address review comments
* remove preprocessing logic from pipeline
* fix fuyu
* add BC resize fuyu
* Move post_process_image_text_to_text to ProcessorMixin
* add guard in post_process
* fix zero shot object detection pipeline
* add support for generator input in pipeline
* nit
* change default image-text-to-text model to llava onevision
* fix owlv2 size dict
* Change legacy deprecation warning to only show when True
* replace total_batched_samples with step while counting grad accum step
* remove unused variable
* simplify condition for update step
* fix format by ruff
* simplify update step condition using accelerator.sync_gradients
* simplify update condition using do_sync_step
* remove print for test
---------
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* add fast image processor rtdetr
* add gpu/cpu test and fix docstring
* remove prints
* add to doc
* nit docstring
* avoid iterating over images/annotations several times
* change torch typing
* Add image processor fast documentation
* add mamba architecture for gguf
* add logic for weights conversion, some fixes and refactoring
* add lm_head layers, unit test refactoring
* more fixes for tests
* remove lm_head creation
* remove unused comments
* tmp commit
* tmp commit
* cull overwrites of deleted tests
* typo
* more specific docstring
* make fixup
* parameterize at the top?
* correction
* more deletions :D
* tmp commit
* for VLMs too
* fix _check_outputs
* test nit
* make fixup
* fix another flaky
* test_generate_from_inputs_embeds -- handle missing attention mask
* fix repr string format for tokenizer objects
The repr of tokenizer tokens looks confusing and just stupid, like this: `Tokenizer(...), added_tokens_decoder={1: ..., 2: ...}`. The dict that is the value of the added_tokens_decoder attribute is outside of the parentheses of the tokenizer object, whereas all other attributes are inside the parentheses like they should be.
This commit fixes this bug.
* cos: add newline before closing parenthesis of repr string
* potential bug fix for drop path
* variable name change
* forgot to rename the variables
* back to original
* modify dpr properly
* check_copies auto fix
* corresponsing swin2 changes
* auto fix
* linting
* default value for drop_path_rate as 0.0
* Update src/transformers/models/glm/modeling_glm.py
* maskformer fix
* ruff format
* changes made to tf code as well
* lint
---------
Co-authored-by: abhijit deo <167164474+deo-abhijit@users.noreply.github.com>
* Separator in regex
* Standardize separator for relative path in auto generated message
* open() encoding
* Replace `\` on `os.path.abspath`
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* feat: Added int conversion and unwrapping
* test: added tests for post_process_keypoint_detection of SuperPointImageProcessor
* docs: changed docs to include post_process_keypoint_detection method and switched from opencv to matplotlib
* test: changed test to not depend on SuperPointModel forward
* test: added missing require_torch decorator
* docs: changed pyplot parameters for the keypoints to be more visible in the example
* tests: changed import torch location to make test_flax and test_tf
* Revert "tests: changed import torch location to make test_flax and test_tf"
This reverts commit 39b32a2f69500bc7af01715fc7beae2260549afe.
* tests: fixed import
* chore: applied suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* tests: fixed import
* tests: fixed import (bis)
* tests: fixed import (ter)
* feat: added choice of type for target_size and changed tests accordingly
* docs: updated code snippet to reflect the addition of target size type choice in post process method
* tests: fixed imports (...)
* tests: fixed imports (...)
* style: formatting file
* docs: fixed typo from image[0] to image.size[0]
* docs: added output image and fixed some tests
* Update docs/source/en/model_doc/superpoint.md
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix: included SuperPointKeypointDescriptionOutput in TYPE_CHECKING if statement and changed tests results to reflect changes to SuperPoint from absolute keypoints coordinates to relative
* docs: changed SuperPoint's docs to print output instead of just accessing
* style: applied make style
* docs: added missing output type and precision in docstring of post_process_keypoint_detection
* perf: deleted loop to perform keypoint conversion in one statement
* fix: moved keypoint conversion at the end of model forward
* docs: changed SuperPointInterestPointDecoder to SuperPointKeypointDecoder class name and added relative (x, y) coordinates information to its method
* fix: changed type hint
* refactor: removed unnecessary brackets
* revert: SuperPointKeypointDecoder to SuperPointInterestPointDecoder
* Update docs/source/en/model_doc/superpoint.md
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
---------
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* enable average tokens across devices
* reduce earlier in case model needs it
* simplify if statement
* reformat code to make ruff happy
* add doc for argument: average_tokens_across_devices
* cannot find world size when pytorch is unavailable
* format code
---------
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* [docs] update input documentation for MAMBA2 and MISTRAL models to include cache_position and attention_mask details
* [docs] correct input documentation for MISTRAL model to reference `input_ids` instead of `decoder_input_ids`
* [docs] clarify cache_position description in MISTRAL model documentation
* Add _determine_best_metric and new saving logic.
1. Logic to determine the best logic was separated out from
`_save_checkpoint`.
2. In `_maybe_log_save_evaluate`, whether or not a new best metric was
achieved is determined after each evaluation, and if the save strategy
is "best' then the TrainerControl is updated accordingly.
* Added SaveStrategy.
Same as IntervalStrategy, but with a new attribute called BEST.
* IntervalStrategy -> SaveStrategy
* IntervalStratgy -> SaveStrategy for save_strat.
* Interval -> Save in docstring.
* Updated docstring for save_strategy.
* Added SaveStrategy and made according changes.
`save_strategy` previously followed `IntervalStrategy` but now follows
`SaveStrategy`.
Changes were made accordingly to the code and the docstring.
* Changes from `make fixup`.
* Removed redundant metrics argument.
* Added new test_save_best_checkpoint test.
1. Checks for both cases where `metric_for_best_model` is explicitly
provided and when it's not provided.
2. The first case should have two checkpoints saved, whereas the second
should have three saved.
* Changed should_training_end saving logic.
The Trainer saves a checkpoints at the end of training by default as
long as `save_strategy != SaveStrategy.NO`. This condition was modified
to include `SaveStrategy.BEST` because it would be counterintuitive that
we'd only want the best checkpoint to be saved but the last one is as
well.
* `args.metric_for_best_model` default to loss.
* Undo metric_for_best_model update.
* Remove checking metric_for_best_model.
* Added test cases for loss and no metric.
* Added error for metric and changed default best_metric.
* Removed unused import.
* `new_best_metric` -> `is_new_best_metric`
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Applied `is_new_best_metric` to all.
Changes were made for consistency and also to fix a potential bug.
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* exclude fsdp from delay_optimizer_creation
* add test case for trainer: FSDP mode and fp8 as mixed precision
* rearrange imports
* ruff formatted
* adapt _init_fsdp to fp8
* use _init_fsdp only when resume_from_checkpoint
* In case of FDP, self.layer will be CheckpointWrapper which has no len() method
* delete _init_fsdp
* solve conflict
* fix conflict
* make fixup
* Fix batch size handling in prediction_loop for DataLoaderShard
Updated the prediction_loop method in the Trainer class to correctly handle batch size when using DataLoaderShard. This ensures that the batch size is retrieved from total_batch_size for distributed training scenarios, preventing TypeError related to NoneType during evaluation.
* Update src/transformers/trainer.py
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* Applied the fix to remove unused imports
---------
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* Correct the new defaults
* CIs
* add check
* Update utils.py
* Update utils.py
* Add the max_length in generate test checking shape without passing length
* style
* CIs
* fix fx CI issue
When loading a LoRA adapter, so far, there was only a warning when there
were unexpected keys in the checkpoint. Now, there is also a warning
when there are missing keys.
This change is consistent with
https://github.com/huggingface/peft/pull/2118 in PEFT and the planned PR
https://github.com/huggingface/diffusers/pull/9622 in diffusers.
Apart from this change, the error message for unexpected keys was
slightly altered for consistency (it should be more readable now). Also,
besides adding a test for the missing keys warning, a test for
unexpected keys warning was also added, as it was missing so far.
* translated gguf.md into chinese
* Apply suggestions from code review
I have updated the PR accordingly.Thank you very much for detailed guidance,and I 'll pay more attention to the details next time.
Co-authored-by: Isotr0py <2037008807@qq.com>
* Apply suggestions from code review
Co-authored-by: Isotr0py <2037008807@qq.com>
---------
Co-authored-by: Isotr0py <2037008807@qq.com>
* Add SynthIDTextWatermarkLogitsProcessor
* esolving comments.
* Resolving comments.
* esolving commits,
* Improving SynthIDWatermark tests.
* switch to PT version
* detector as pretrained model + style
* update training + style
* rebase
* Update logits_process.py
* Improving SynthIDWatermark tests.
* Shift detector training to wikitext negatives and stabilize with lower learning rate.
* Clean up.
* in for 7B
* cleanup
* upport python 3.8.
* README and final cleanup.
* HF Hub upload and initiaze.
* Update requirements for synthid_text.
* Adding SynthIDTextWatermarkDetector.
* Detector testing.
* Documentation changes.
* Copyrights fix.
* Fix detector api.
* ironing out errors
* ironing out errors
* training checks
* make fixup and make fix-copies
* docstrings and add to docs
* copyright
* BC
* test docstrings
* move import
* protect type hints
* top level imports
* watermarking example
* direct imports
* tpr fpr meaning
* process_kwargs
* SynthIDTextWatermarkingConfig docstring
* assert -> exception
* example updates
* no immutable dict (cant be serialized)
* pack fn
* einsum equivalent
* import order
* fix test on gpu
* add detector example
---------
Co-authored-by: Sumedh Ghaisas <sumedhg@google.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: sumedhghaisas2 <138781311+sumedhghaisas2@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
* Enable grad accum fix across all models + trainer fully in forward()
* handle peft case
* Account for DDP: need to run scale tests
* Use accelerator state
* Quality
* Guard
* Experiment w/ only fairseq fix
* Fairseq only
* Revert multiply_grads fix
* Mult by grad accum to fully bring back solution
* Style
* Good to go now
* Skip fx tests for now
* Bookmark
* Working now
* Added Deberta model type for 'add_prefix_space' functionality
* housekeeping
---------
Co-authored-by: Filippos Ventirozos <filippos.ventirozos@autotrader.co.uk>
* Added Example Doc for token classification on all tokenClassificationModels copied from llama
* Refactor code to add code sample docstrings for Gemma and Gemma2 models (including modular Gemma)
* Refactor code to update model checkpoint names for Qwen2 models
* Add option for running ffmpeg_microphone_live as a background process
* Code quality checks for audio_utils
* Code clean up for audio_utils
* Fixing logic in ffmpeg_microphone calls in audio_utils
* Allowing any arbitrary arguments to be passed to ffmpeg_microphone_live
* Formatting
* Fixing last problems with adding ffmpeg_additional_args
* Fixing default arguments and formatting issues
* Fixing comments for ffmpeg_additional_args
* Adding two shorts tests for ffmpeg_microphone_live
* Fixing test bug
* add colorize_depth and matplotlib availability check
* add post_process_depth_estimation for zoedepth + tests
* add post_process_depth_estimation for DPT + tests
* add post_process_depth_estimation in DepthEstimationPipeline & special case for zoedepth
* run `make fixup`
* fix import related error on tests
* fix more import related errors on test
* forgot some `torch` calls in declerations
* remove `torch` call in zoedepth tests that caused error
* updated docs for depth estimation
* small fix for `colorize` input/output types
* remove `colorize_depth`, fix various names, remove matplotlib dependency
* fix formatting
* run fixup
* different images for test
* update examples in `forward` functions
* fixed broken links
* fix output types for docs
* possible format fix inside `<Tip>`
* Readability related updates
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Readability related update
* cleanup after merge
* refactor `post_process_depth_estimation` to return dict; simplify ZoeDepth's `post_process_depth_estimation`
* rewrite dict merging to support python 3.8
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* this worked in normal generation, needs more tests
* fix almost all tests in t5
* nit
* longt5, umt5, mt5
* style
* udop, pix2struct
* more models
* fix some tests
* fix onnx tests
* tracing tests fixed
* compile enabled and tested for t5 models
* fix small bug in slow tests
* [run-slow] t5
* uncomment
* style
* update with new generation refactoring
* nit
* fix copies
* this is the fix, had to change t5 to fix copies
* update
* [run-slow] t5
* [run-slow] t5
* update
* add test for encoder only T5
* clean up after rebase
* fix pop2piano
* add comment
* style
* fix copies after rebase
* fix copies missed this one
* first try
* codestyle
* idefics2 is happy
* [run-slow] llava, llava_next, video_llava, vipllava, llava_next_video, idefics, idefics2, kosmos2, fuyu, blip, blip_2, instructblip, instructblipvideo, paligemma
* fix-copies
* [run-slow] llava, llava_next, video_llava, vipllava, llava_next_video, idefics, idefics2, kosmos2, fuyu, blip, blip_2, instructblip, instructblipvideo
* blip-2 needs to init vision from config
* when was this removed O_o
* minor fix
* tests
* this way?
* tests
* model-agnostic code
* codestyle
* add tests for idefics
* modify general test for VLMs
* no generation test for vlm yet!
* no generation test here also
* wanr in VIT-SDPA if output attn
* add more tests
* user can pass dict as attn impl
* repo consistency
* update
* muicgen
* no prints
* forgot speech enc-dec and clip
* how many composite models we have?
* musicgen meelody is same as mudicgen
* +siglip
* fix tests + add some more
* remove idefics custom overriden code
* make idefics2 automappable
* nits
* skip tests
* doctests
* Update src/transformers/models/idefics2/configuration_idefics2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/clip/test_modeling_clip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics2/test_modeling_idefics2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics2/test_modeling_idefics2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/configuration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* major update, no need for automap
* clean up
* add FA2 test
* more tests
* style
* skip tests
* why did these started failing now?
* no attributes for FA2 needed
* one tiny test
* address comment about FA2 false warning
* style
* add new models and resolve conflicts
* fix copies
* let it be this way for now, come back tomorrow to review
* some more fixes
* update
* more updates
* update
* fix copies
* style and tests
* another big update
* fix tests
* fix tests
* update
* another update
* fix tests
* fix copies
* fix tests
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Trigger UDOP tests
* Try forcing dtype in LayoutLMV3
* Do checks to see where uint8 is getting in
* Do checks to see where uint8 is getting in
* Found it!
* Add .astype(np.float32)
* Remove forced check, make fixup
* Checking where exactly the uint8 creeps in
* More checking on the uint8 issues
* Manually upcast in rescale()
* Remove UDOP trigger
* bookmark
* Bookmark
* Bookmark
* Actually implement
* Pass in kwarg explicitly
* Adjust for if we do or don't have labels
* Bookmark fix for od
* bookmark
* Fin
* closer
* Negate accelerate grad accum div
* Fixup not training long enough
* Add in compute_loss to take full model output
* Document
* compute_loss -> compute_loss_fn
* Add a test
* Refactor
* Refactor
* Uncomment tests
* Update tests/trainer/test_trainer.py
Co-authored-by: Daniel Han <danielhanchen@gmail.com>
---------
Co-authored-by: Daniel Han <danielhanchen@gmail.com>
* Support Llama 3.2 conversion (text models)
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
* Fix rope factor
* Update chat template
Initialize from a well-known template.
The guidance is that the changes should be applied to 3.1 models as
well.
* Remove import
* Support Llama Guard 3 conversion
* Tokenizer details
* Fix eos added token in base models
* Fix generation config for base models
* Specify revision for known tokenizers
* Style
* Reuse chat templates for older models
* Improve error when converting tokenizer < Llama 3
---------
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
There's a bug on M1 macs with transformer >= 4.43.0 and torch >= 2.1.0, where if a model has tied embeddings, then the fast loading from #31771 causes a bus error when the model is actually run. This can be solved by disabling `_supports_param_buffer_assignment` for these models.
More info in comments in #33357
* fix(Wav2Vec2ForCTC): torch export
Resolves the issue described in #34022 by implementing the
masking of the hidden states using an elementwise multiplication
rather than indexing with assignment.
The torch.export functionality seems to mark the tensor as frozen
even though the update is legal.
This change is a workaround for now to allow the export of the
model as a FxGraph. Further investigation is required to find
the real solution in pytorch.
* [run-slow] hubert, unispeech, unispeech_sat, wav2vec2
* change cpu offload warning for fp8 quantization
* change cpu offload warning for fp4 quantization
* change cpu offload variable name for fp8 and fp4 quantization
Update 'trainer._get_eval_sampler()' to support 'group_by_length' argument
Trainer didn't support grouping by length for evaluation, which made evaluation slow with 'eval_batch_size'>1.
Updated 'trainer._get_eval_sampler()' method was based off of 'trainer._get_train_sampler()'.
* auto-gptq requirement is removed & model is changed & tokenizer pad token is assigned
* values func is changed with extensions & sequence key value bug is fixed
* map key value check is added in ExtensionsTree
* empty trimmed_ids bug is fixed
* tail_id IndexError is fixed
* empty trimmed_ids bug fix is updated for failed test
* too much specific case for specific tokenizer is removed
* input_ids check is updated
* require auto-gptq import is removed
* key error check is changed with empty list check
* empty input_ids check is added
* empty trimmed_ids fix is checked with numel function
* usage change comments are added
* test changes are commented
* comment style and quality bugs are fixed
* test comment style and quality bug is fixed
* Fix FSDP Initialization for resume training
* Added init_fsdp function to work with dummy values
* Fix FSDP initialization for resuming training
* Added CUDA decorator for tests
* Added torch_gpu decorator to FSDP tests
* Fixup for failing code quality tests
* add idefics
* conflicts after merging main
* enable tests but need to fix some
* fix tests
* no print
* fix/skip some slow tests
* continue not skip
* rebasing broken smth, this is the fix
* mistral qna start
* mixtral qna
* oops
* qwen2 qna
* qwen2moe qna
* add missing input embed methods
* add copied to all methods, can't directly from llama due to the prefix
* make top level copied from
* refactor: benchmarks
Based on a discussion with @LysandreJik & @ArthurZucker, the goal of
this PR is to improve transformers' benchmark system.
This is a WIP, for the moment the infrastructure required to make things
work is not ready. Will update the PR description when it is the case.
* feat: add db init in benchmarks CI
* fix: pg_config is missing in runner
* fix: add psql to the runner
* fix: connect info from env vars + PR comments
* refactor: set database as env var
* fix: invalid working directory
* fix: `commit_msg` -> `commit_message`
* fix: git marking checked out repo as unsafe
* feat: add logging
* fix: invalid device
* feat: update grafana dashboard for prod grafana
* feat: add `commit_id` to header table
* feat: commit latest version of dashboard
* feat: move measurements into json field
* feat: remove drop table migration queries
* fix: `torch.arrange` -> `torch.arange`
* fix: add missing `s` to `cache_position` positional argument
* fix: change model
* revert: `cache_positions` -> `cache_position`
* fix: set device for `StaticCache`
* fix: set `StaticCache` dtype
* feat: limit max cache len
* fix script
* raise error on failure!
* not try catch
* try to skip generate compilation
* update
* update docker image!
* update
* update again!@
* update
* updates
* ???
* ??
* use `torch.cuda.synchronize()`
* fix json
* nits
* fix
* fixed!
* f**k
* feat: add TTNT panels
* feat: add try except
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* Generate using exported model and enable gemma2-2b in ExecuTorch
* [run_slow] gemma, gemma2
* truncate expected output message
* Bump required torch version to support gemma2 export
* [run_slow] gemma, gemma2
---------
Co-authored-by: Guang Yang <guangyang@fb.com>
Allow for hyphenated field names in long-options
argparse converts hyphens into underscores before assignment (e.g., an
option passed as `--long-option` will be stored under `long_option`), So
there is no need to pass options as literal attributes, as in
`--long_option` (with an underscore instead of a hyphen). This commit
ensures that this behavior is respected by `parse_args_into_dataclasses`
as well.
Issue: #33933
Co-authored-by: Daniel Marti <mrtidm@amazon.com>
* add sdpa to OPT
* chore: remove redundant whitespace in OPTDecoder class
* fixup
* bug fix
* add sdpa and attention generate test
* fixup
* Refactor OPTAttention forward method for improved readability and maintainability
* undo refactor for _shape and key,val states
* add OPT to doc, fixup didn't find it for some reason
* change order
* change default attn_implemntation in testing to eager
* [run-slow] opt
* change test_eager_matches_sdpa_generate to the one llama
* Update default attention implementation in testing common
* [run-slow] opt
* remove uneeded print
* [run-slow] opt
* refactor model testers to have attn_implementation="eager"
* [run-slow] opt
* convert test_eager_matches_sdpa_generate to opt-350M
* bug fix when creating mask for opt
* [run-slow] opt
* if layer head mask default to eager
* if head mask is not none fall to eager
* [run-slow] opt
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Clean up Unpack imports (#33631)
clean up Unpack imports
* Fix DPT /Dinov2 sdpa regression on main (#33660)
* fallback to eager if output attentions.
* fix copies
* handle dependency errors in check_imports (#33622)
* handle dependency errors in check_imports
* change log level to warning
* add back self.max_position_embeddings = config.max_position_embeddings (#33550)
* add back self.max_position_embeddings = config.max_position_embeddings
* fix-copies
* Fix Llava conversion for LlavaQwen2ForCausalLM with Clip vision tower (#33613)
fix llavaqwen2 model conversion
* Uniformize kwargs for Udop processor and update docs (#33628)
* Add optional kwargs and uniformize udop
* cleanup Unpack
* nit Udop
* Generation: deprecate `PreTrainedModel` inheriting from `GenerationMixin` (#33203)
* Enable BNB multi-backend support (#31098)
* enable cpu bnb path
* fix style
* fix code style
* fix 4 bit path
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* add multi backend refactor tests
* fix style
* tweak 4bit quantizer + fix corresponding tests
* tweak 8bit quantizer + *try* fixing corresponding tests
* fix dequant bnb 8bit
* account for Intel CPU in variability of expected outputs
* enable cpu and xpu device map
* further tweaks to account for Intel CPU
* fix autocast to work with both cpu + cuda
* fix comments
* fix comments
* switch to testing_utils.torch_device
* allow for xpu in multi-gpu tests
* fix tests 4bit for CPU NF4
* fix bug with is_torch_xpu_available needing to be called as func
* avoid issue where test reports attr err due to other failure
* fix formatting
* fix typo from resolving of merge conflict
* polish based on last PR review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix CI
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix error log
* fix error msg
* add \n in error log
* make quality
* rm bnb cuda restriction in doc
* cpu model don't need dispatch
* fix doc
* fix style
* check cuda avaliable in testing
* fix tests
* Update docs/source/en/model_doc/chameleon.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/model_doc/llava_next.md
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix doc
* fix check multibackends
* fix import sort
* remove check torch in bnb
* docs: update bitsandbytes references with multi-backend info
* docs: fix small mistakes in bnb paragraph
* run formatting
* reveret bnb check
* move bnb multi-backend check to import_utils
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix bnb check
* minor fix for bnb
* check lib first
* fix code style
* Revert "run formatting"
This reverts commit ac108c6d6b34f45a5745a736ba57282405cfaa61.
* fix format
* give warning when bnb version is low and no cuda found]
* fix device assignment check to be multi-device capable
* address akx feedback on get_avlbl_dev fn
* revert partially, as we don't want the function that public, as docs would be too much (enforced)
---------
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix error string after refactoring into get_chat_template (#33652)
* Fix error string after refactoring into get_chat_template
* Take suggestion from CR
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* uniformize git processor (#33668)
* uniformize git processor
* update doctring
* Modular `transformers`: modularity and inheritance for new model additions (#33248)
* update exampel
* update
* push the converted diff files for testing and ci
* correct one example
* fix class attributes and docstring
* nits
* oups
* fixed config!
* update
* nitd
* class attributes are not matched against the other, this is missing
* fixed overwriting self.xxx now onto the attributes I think
* partial fix, now order with docstring
* fix docstring order?
* more fixes
* update
* fix missing docstrings!
* examples don't all work yet
* fixup
* nit
* updated
* hick
* update
* delete
* update
* update
* update
* fix
* all default
* no local import
* fix more diff
* some fix related to "safe imports"
* push fixed
* add helper!
* style
* add a check
* all by default
* add the
* update
* FINALLY!
* nit
* fix config dependencies
* man that is it
* fix fix
* update diffs
* fix the last issue
* re-default to all
* alll the fixes
* nice
* fix properties vs setter
* fixup
* updates
* update dependencies
* make sure to install what needs to be installed
* fixup
* quick fix for now
* fix!
* fixup
* update
* update
* updates
* whitespaces
* nit
* fix
* simplify everything, and make it file agnostic (should work for image processors)
* style
* finish fixing all import issues
* fixup
* empty modeling should not be written!
* Add logic to find who depends on what
* update
* cleanup
* update
* update gemma to support positions
* some small nits
* this is the correct docstring for gemma2
* fix merging of docstrings
* update
* fixup
* update
* take doc into account
* styling
* update
* fix hidden activation
* more fixes
* final fixes!
* fixup
* fixup instruct blip video
* update
* fix bugs
* align gemma2 with the rest as well
* updats
* revert
* update
* more reversiom
* grind
* more
* arf
* update
* order will matter
* finish del stuff
* update
* rename to modular
* fixup
* nits
* update makefile
* fixup
* update order of the checks!
* fix
* fix docstring that has a call inside
* fiix conversion check
* style
* add some initial documentation
* update
* update doc
* some fixup
* updates
* yups
* Mostly todo gimme a minut
* update
* fixup
* revert some stuff
* Review docs for the modular transformers (#33472)
Docs
* good update
* fixup
* mmm current updates lead to this code
* okay, this fixes it
* cool
* fixes
* update
* nit
* updates
* nits
* fix doc
* update
* revert bad changes
* update
* updates
* proper update
* update
* update?
* up
* update
* cool
* nits
* nits
* bon bon
* fix
* ?
* minimise changes
* update
* update
* update
* updates?
* fixed gemma2
* kind of a hack
* nits
* update
* remove `diffs` in favor of `modular`
* fix make fix copies
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Fix CIs post merging modular transformers (#33681)
update
* Fixed docstring for cohere model regarding unavailability of prune_he… (#33253)
* Fixed docstring for cohere model regarding unavailability of prune_head() methods
The docstring mentions that cohere model supports prune_heads() methods. I have fixed the docstring by explicitly mentioning that it doesn't support that functionality.
* Update src/transformers/models/cohere/modeling_cohere.py
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Generation tests: update imagegpt input name, remove unused functions (#33663)
* Improve Error Messaging for Flash Attention 2 on CPU (#33655)
Update flash-attn error message on CPU
Rebased to latest branch
* Gemma2: fix config initialization (`cache_implementation`) (#33684)
* Fix ByteLevel alphabet missing when Sequence pretokenizer is used (#33556)
* Fix ByteLevel alphabet missing when Sequence pretokenizer is used
* Fixed formatting with `ruff`.
* Uniformize kwargs for image-text-to-text processors (#32544)
* uniformize FUYU processor kwargs
* Uniformize instructblip processor kwargs
* Fix processor kwargs and tests Fuyu, InstructBlip, Kosmos2
* Uniformize llava_next processor
* Fix save_load test for processor with chat_template only as extra init args
* Fix import Unpack
* Fix Fuyu Processor import
* Fix FuyuProcessor import
* Fix FuyuProcessor
* Add defaults for specific kwargs kosmos2
* Fix Udop to return BatchFeature instead of BatchEncoding and uniformize kwargs
* Add tests processor Udop
* remove Copied from in processing Udop as change of input orders caused by BatchEncoding -> BatchFeature
* Fix overwrite tests kwargs processors
* Add warnings and BC for changes in processor inputs order, change docs, add BC for text_pair as arg for Udop
* Fix processing test fuyu
* remove unnecessary pad_token check in instructblip ProcessorTest
* Fix BC tests and cleanup
* FIx imports fuyu
* Uniformize Pix2Struct
* Fix wrong name for FuyuProcessorKwargs
* Fix slow tests reversed inputs align fuyu llava-next, change udop warning
* Fix wrong logging import udop
* Add check images text input order
* Fix copies
* change text pair handling when positional arg
* rebase on main, fix imports in test_processing_common
* remove optional args and udop uniformization from this PR
* fix failing tests
* remove unnecessary test, fix processing utils and test processing common
* cleanup Unpack
* cleanup
* fix conflict grounding dino
* 🚨🚨 Setting default behavior of assisted decoding (#33657)
* tests: fix pytorch tensor placement errors (#33485)
This commit fixes the following errors:
* Fix "expected all tensors to be on the same device" error
* Fix "can't convert device type tensor to numpy"
According to pytorch documentation torch.Tensor.numpy(force=False)
performs conversion only if tensor is on CPU (plus few other restrictions)
which is not the case. For our case we need force=True since we just
need a data and don't care about tensors coherency.
Fixes: #33517
See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* bump tokenizers, fix added tokens fast (#32535)
* update based on tokenizers release
* update
* nits
* update
* revert re addition
* don't break that yet
* fmt
* revert unwanted
* update tokenizers version
* update dep table
* update
* update in conversion script as well
* some fix
* revert
* fully revert
* fix training
* remove set trace
* fixup
* update
* update
* [Pixtral] Improve docs, rename model (#33491)
* Improve docs, rename model
* Fix style
* Update repo id
* fix code quality after merge
* HFQuantizer implementation for compressed-tensors library (#31704)
* Add compressed-tensors HFQuantizer implementation
* flag serializable as False
* run
* revive lines deleted by ruff
* fixes to load+save from sparseml, edit config to quantization_config, and load back
* address satrat comment
* compressed_tensors to compressed-tensors and revert back is_serializable
* rename quant_method from sparseml to compressed-tensors
* tests
* edit tests
* clean up tests
* make style
* cleanup
* cleanup
* add test skip for when compressed tensors is not installed
* remove pydantic import + style
* delay torch import in test
* initial docs
* update main init for compressed tensors config
* make fix-copies
* docstring
* remove fill_docstring
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* review comments
* review comments
* comments - suppress warnings on state dict load, tests, fixes
* bug-fix - remove unnecessary call to apply quant lifecycle
* run_compressed compatability
* revert changes not needed for compression
* no longer need unexpected keys fn
* unexpected keys not needed either
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* add to_diff_dict
* update docs and expand testing
* Update _toctree.yml with compressed-tensors
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update doc
* add note about saving a loaded model
---------
Co-authored-by: George Ohashi <george@neuralmagic.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Sara Adkins <sara@neuralmagic.com>
Co-authored-by: Sara Adkins <sara.adkins65@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Dipika Sikka <ds3822@columbia.edu>
Co-authored-by: Dipika <dipikasikka1@gmail.com>
* update model card for opt
* add batch size to inference table
* [slow-run] opt
* [run-slow] opt
---------
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: chengchengpei <5881383+chengchengpei@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Tibor Reiss <75096465+tibor-reiss@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Muhammad Naufil <m.naufil1@gmail.com>
Co-authored-by: sizhky <yyeshr@gmail.com>
Co-authored-by: Umar Butler <umar@umar.au>
Co-authored-by: Jonathan Mamou <jonathan.mamou@intel.com>
Co-authored-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Benjamin Fineran <bfineran@users.noreply.github.com>
Co-authored-by: George Ohashi <george@neuralmagic.com>
Co-authored-by: Sara Adkins <sara@neuralmagic.com>
Co-authored-by: Sara Adkins <sara.adkins65@gmail.com>
Co-authored-by: Dipika Sikka <ds3822@columbia.edu>
Co-authored-by: Dipika <dipikasikka1@gmail.com>
Add Translate docs into Arabic - section files CONCEPTUAL GUIDES
---------------------------------------------------------------------------------------
Philosophy [i18n-ar] Translated file : docs/source/ar/philosophy.md into Arabic #33064
Glossary [i18n-ar] Translated file : docs/source/ar/glossary.md into Arabic #33038
What 🤗 Transformers can do [i18n-ar] Translated file : docs/source/ar/task_summary.md into Arabic #33073
How 🤗 Transformers solve tasks [i18n-ar] Translated file : docs/source/ar/tasks_explained.md into Arabic #33074
The Transformer model family [i18n-ar] Translated file : docs/source/ar/model_summary.md into Arabic #33047
Summary of the tokenizers [i18n-ar] Translated file : docs/source/ar/tokenizer_summary.md into Arabic #33078
Attention [i18n-ar] Translated file : docs/source/ar/attention.md into Arabic #33021
Padding and truncation [i18n-ar] Translated file : docs/source/ar/pad_truncation.md into Arabic #33050
BERTology [i18n-ar] Translated file : docs/source/ar/bertology.md into Arabic #33024
Perplexity of fixed-length models [i18n-ar] Translated file : docs/source/ar/perplexity.md into Arabic #33063
Pipelines for webserver inference [i18n-ar] Translated file : docs/source/ar/pipeline_webserver.md into Arabic #33066
Model training anatomy [i18n-ar] Translated file : docs/source/ar/model_memory_anatomy.md into Arabic #33045
Getting the most out of LLMs [i18n-ar] Translated file : docs/source/ar/llm_tutorial_optimization.md into Arabic #33043
* rebasing changes
* fixing style
* adding some doc to functions
* remove bitblas
* change dtype
* fixing check_code_quality
* fixing import order
* adding doc to tree
* Small update on BitLinear
* adding some tests
* sorting imports
* small update
* reformatting
* reformatting
* reformatting with ruff
* adding assert
* changes after review
* update disk offloading
* adapting after review
* Update after review
* add is_serializable back
* fixing style
* adding serialization test
* make style
* small updates after review
* Fix Failed tests with mobile bert
* Cast to the correct dtype
* Code fixup
* Fix padding_idx larger that embedding_size
* Reduce covariance more. use 1e-7 instead of 1e-5
* Comment fix
* Reduce covariance more. use 1e-9 instead of 1e-7
* Copy new config
* all but MRA fixed
* fix mra
* very flaky
* skip instead
* make fixup
---------
Co-authored-by: Joao Gante <joao@huggingface.co>
* improve modular
* style
* Update modular_model_converter.py
* pretty print warning
* style
* Support to remove unused classes as part of added dependencies as well
* nits
* correct bug
* add example
* style
* Add documentation
* Fix issue in oneformer preprocessing
* [run slow] oneformer
* [run_slow] oneformer
* Make the same fixes in DQA and object detection pipelines
* Fix BatchFeature.to() instead
* Revert pipeline-specific changes
* Add the same check in Pixtral's methods
* Add the same check in BatchEncoding
* make sure torch is imported
* Update many similar visual pipelines
* Add input tests
* Add ImageToText as well
* Add output tests
* Add output tests
* Add output tests
* OutputElement -> Output
* Correctly test elements
* make fixup
* fix typo in the task list
* Fix VQA testing
* Add copyright to image_classification.py
* Revert changes to VQA pipeline because outputs have differences - will move to another PR
* make fixup
* Remove deprecation warnings
* Add Auto model for image-text-to-text
* Remove donut from processing auto, add chameleon ti image text to text models
* add qwen2_vl and llava_onevision
* add pixtral to auto model for image-text-to-text
* add mllama and idefics3
* remove models in IGNORE_NON_AUTO_CONFIGURED
* add AutoModelForImageTextToText to tests and doc
* start working on adding position ids
* add docs
* Refactor modeling_biogpt.py and modeling_opt.py for code consistency
* fix 2 PR comments
* move position_ids to end of args
* remove trailing white space
* add comment with TODO
* bug fix gradient checkpointing
* fixup
* missed on position_ids
* remove _attention_to_position_ids and refactor embedding class
* remove redundent code
---------
Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il>
* Initial commit for MyT5 model
* custom implementation of MyT5 tokenizer, unused files deleted
* unittest for myt5 tokenizer
* upadate of import structure and style
* removed remmanents of MyT5Config
* fixed docstrings
* Updates after review: filled documentaion file, new docstrings and tests added
* Fixed code style issues
* fixed copied from to refer to function
* updated loading myt5 tokenizer in tests, added sample byte map file to fixtures
* changes after review
* removed redundant copied from
* removed redundant copied from
* optimalization and loading model from hf
* [run_slow] myt5
* [run-slow] myt5
* Updated en documentation for myt5
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* onboard phimoe model
* removed debug code
* added unit tests
* updated docs
* formatted
* fixed unit tests
* fixed test case
* fixed format
* refactored code
* fixed expected outputs in the integration tests
* Added a warning msg
* Addressed comments
* Addressed comments
* fixed test cases
* added paper link
* Addressed comments
* Refactored PhimoeForCausalLM forward fn
* Refactored PhimoeRotaryEmbedding class
* fixed test cases
* fixed testcase
* fixed test case
* Addressed comments
* fixed test cases
* fixed testcases
* Used cache position instead to get the seq len
* intilize new embeddings from normal distrib
* Fix typo in comments
* Fix typo in comments
* Fix style
* Fix variables naming
* Add tests
* Fix style
* code consistency nit
* Add deepspeed support
* Add deepspeed support
* Conver embeddings weights to float32 before computations
* Add deepspeed tests
* Cover when vocab_size is smaller than embedding_size
* Style fix
* Add tests for vocab_size smaller than hiddin_size
* Style fix
* Nits in tests
* Nits in tests
* Check for deepspeed before importing it
* Increase vocab_size for positive definite covariance matrix test
* Add warning
* Add multivariate_resizing flag and implement resizing for lm_heads
* Fix typo
* Fix wrong bias indexing
* Fix bias is zero check
* remove multivariate_resizing flag from tests
* Intialize bias from old bias normal distribution
* Fixup
* Code usability
* Use mean_resizing instead of multivariate_resizing
* Fix up
* Fix comments and docs
* Error condition bug fix
* Update error message
* Update src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Making change in the rest of the repo
* Formatting
* Formatting with ruff
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Add support for `weights_only` flag when loading state_dict
Summary:
This is to enable loading a state_dict with wrapper tensor subclasses (used in torchao to
for quantized weights)
Test Plan:
tested locally with torchao weights, also need https://github.com/huggingface/transformers/pull/32306:
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TorchAoConfig
from torchao.utils import benchmark_model
import torchao
DEVICE_TYPE = "cuda"
def init_model_and_benchmark(model_id, torch_dtype=torch.bfloat16, quantization_config=None):
tokenizer = AutoTokenizer.from_pretrained(model_id)
if quantization_config is not None:
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=DEVICE_TYPE, torch_dtype=torch.\bfloat16, quantization_config=quantization_config)
else:
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=DEVICE_TYPE, torch_dtype=torch.\bfloat16, weights_only=False)
# sanity check: run the model
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(DEVICE_TYPE)
output = model.generate(**input_ids, max_new_tokens=1000)
print(tokenizer.decode(output[0], skip_special_tokens=True))
NUM_WARMUP = 1
NUM_RUNS = 5
if quantization_config is not None:
torchao.quantization.utils.recommended_inductor_config_setter()
model = torch.compile(model, mode="max-autotune")
benchmark_model(model.generate, NUM_WARMUP, kwargs=input_ids, device_type=DEVICE_TYPE)
print("running benchmark")
results = benchmark_model(model.generate, NUM_RUNS, kwargs=input_ids, device_type=DEVICE_TYPE)
return model, results
model_id = "jerryzh168/test-model"
torchao.quantization.utils.recommended_inductor_config_setter()
bf16_model, bf16_time = init_model_and_benchmark(model_id)
print(f"bf16: {bf16_time}")
```
Reviewers:
Subscribers:
Tasks:
Tags:
* format
* [PEFT] Support low_cpu_mem_usage for PEFT loading
PEFT added support for low_cpu_mem_usage=True when loading adapters in
https://github.com/huggingface/peft/pull/1961. This feature is now
available when installing PEFT v0.13.0. With this PR, this option is
also supported when loading PEFT adapters directly into transformers
models.
Additionally, with this PR,
https://github.com/huggingface/diffusers/pull/9510 will be unblocked,
which implements this option in diffusers.
* Fix typo
* fix beam indices in token_timestamps
* fix attention_mask in FA2
* correct translation example with the right example
* correct how somes tests are using outputs + correct num_frames
* fix shortform batch prev cond tests
* make fix-copies
* make fix-copies
* take care of shifting beam indices
* [run-slow] whisper
* [run-slow] whisper
* add unit tests for splinter_tokenizer
* add unit test for splinter tokenizer, pass in the question_token to be saved on save_pretrained called
* remove unused import
* remove vocab_splinter.txt, add Copied from, use fmt:on and fmt:off to prevent autoformatting on long lines
* remove all the spaces
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Use all state dict keys when checking if root module is initialized.
* Apply style corrections
* Add comment explaining change.
* Change comment phrasing.
* Update an keyerror on _save_check_point prevent confusion of missing metric keys
* Update grammar error and case sensitive.
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* adding update KeyError on _evaluate function to align with _save_checkpoint function
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* When we set self.dt_proj.bias = None, it removes the bias parameter from the model. When we later tried to assign a tensor to self.dt_proj.bias, it caused a TypeError because PyTorch expects a Parameter object.
* When we set self.dt_proj.bias = None, it removes the bias parameter from the model. When we later tried to assign a tensor to self.dt_proj.bias, it caused a TypeError because PyTorch expects a Parameter object.
* When we set self.dt_proj.bias = None, it removes the bias parameter from the model. When we later tried to assign a tensor to self.dt_proj.bias, it caused a TypeError because PyTorch expects a Parameter object.
* Trainer - deprecate tokenizer for processing_class
* Extend chage across Seq2Seq trainer and docs
* Add tests
* Update to FutureWarning and add deprecation version
* add support for custom inputs and batched inputs in ProcessorTesterMixin
* Fix batch_size behavior ProcessorTesterMixin
* Change format prepare inputs batched
* Remove override test pixtral processor
* Remove unnecessary tests and cleanup after new prepare_inputs functions
* Fix instructBlipVideo image processor
* fix(copy): fixup copy
* fix(deformable_detr): move weight initialization to the right place
* fix(grounding_dino): move weight initialization to the right place
* fix(rt_detr): move weight initialization to the right place
* [run-slow] deformable_detr, grounding_dino, rt_detr
* Remove max_new_tokens arg
* Add ASR pipeline to testing
* make fixup
* Factor the output test out into a util
* Full error reporting
* Full error reporting
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Small comment
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Add include_loss_for_metrics
* Fix styling
* Initialize inputs and losses to avoid AttributeError
* Ruff styling
* Refactor compute_metrics and update EvalPrediction
* Change Naming
* Added include_for_metrics to group both args
* Fix style
* Change warnings to logger
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix(m2m_100): skip dropout in eval for flash_attn
* fix(misc): skip dropout in eval for flash attn various models
* chore(m2m_100): copy flash attn from bart
* chore: run make fix-copies
* [run-slow] bart, m2m_100
* refactor image features selection
* break line
* remove whitespace
* add pr comments: include projection and rename function
* make fix-copies
* fix get_image_feature in vip llava
* Fix Mamba slow path bug with dtype mismatch.
* Update test_modeling_mamba.py
* Improve style.
* Fix issue with cache position of dtype mismatch test.
* Change test for slow path.
* Revert changes.
* Switch to buggy code and add test to catch it.
* Fix the dtype mismatch bug and add test code to verify it.
* Fix minor bug with test.
* Fix incorrect dtype of model output.
* Fix incorrect dtype of cache.
* Fix incorrect dtype of ssm cache.
* Fix incorrect dtype of conv state.
* Remove assertion for ssm state.
* Add assertion for conv state dtype.
* Fix all issues with dtype mismatch test.
* HQQ model serialization attempt
* fix hqq dispatch and unexpected keys
* style
* remove check_old_param
* revert to check HQQLinear in quantizer_hqq.py
* revert to check HQQLinear in quantizer_hqq.py
* update HqqConfig default params
* make ci happy
* make ci happy
* revert to HQQLinear check in quantizer_hqq.py
* check hqq_min version 0.2.0
* set axis=1 as default in quantization_config.py
* validate_env with hqq>=0.2.0 version message
* deprecated hqq kwargs message
* make ci happy
* remove run_expected_keys_check hack + bump to 0.2.1 min hqq version
* fix unexpected_keys hqq update
* add pre_quantized check
* add update_expected_keys to base quantizerr
* ci base.py fix?
* ci base.py fix?
* fix "quantization typo" src/transformers/utils/quantization_config.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix post merge
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Enable non-safetensor serialization and deserialization for TorchAoConfig quantized model
Summary:
After https://github.com/huggingface/huggingface_hub/pull/2440 we added non-safetensor serialization and deserialization
in huggingface, with this we can now add the support in transformers
Note that we don't plan to add safetensor serialization due to different goals of wrapper tensor subclass and safetensor
see README for more details
Test Plan:
tested locally
Reviewers:
Subscribers:
Tasks:
Tags:
* formatting
* formatting
* minor fix
* formatting
* address comments
* comments
* minor fix
* update doc
* refactor compressed tensor quantizer
* fix return type
* update to union
* fix gate_logits typing
* fix num_experts type
* fix typing
* run fix-copies
* add doc for top_k
* run fix-copies
* empty commit to trigger CI
* Make audio classification pipeline spec-compliant and add test
* Check that test actually running in CI
* Try a different pipeline for the CI
* Move the test so it gets triggered
* Move it again, this time into task_tests!
* make fixup
* indentation fix
* comment
* Move everything from testing_utils to test_pipeline_mixin
* Add output testing too
* revert small diff with main
* make fixup
* Clarify comment
* Update tests/pipelines/test_pipelines_audio_classification.py
Co-authored-by: Lucain <lucainp@gmail.com>
* Update tests/test_pipeline_mixin.py
Co-authored-by: Lucain <lucainp@gmail.com>
* Rename function and js_args -> hub_args
* Cleanup the spec recursion
* Check keys for all outputs
---------
Co-authored-by: Lucain <lucainp@gmail.com>
* Cleanup return_text and return_full_text options in TextGenerationPipeline
* Cleanup return_text and return_full_text options in TextGenerationPipeline
* Cleanup return_text and return_full_text options in TextGenerationPipeline
* Cleanup return_text and return_full_text options in TextGenerationPipeline
* Revert pipeline code, but update docs instead
* Restore pipeline test
* add bloom arch support for gguf
* apply format
* small refactoring, bug fix in GGUF_TENSOR_MAPPING naming
* optimize bloom GGUF_TENSOR_MAPPING
* implement reverse reshaping for bloom gguf
* add qkv weights test
* add q_8 test for bloom
Update siglip.md
This was already partially fixed relative to the deployed docs. But the partial fix made it inconsistent. Additionally, giving the full text ("This is a photo of...") is likely not the desired output.
* clean_up_tokenization_spaces=False if unset
* deprecate warning
* updating param for old models
* update models
* make fix-copies
* fix-copies and update bert models
* warning msg
* update prophet and clvp
* updating test since space before is arbitrarily removed
* remove warning for 4.45
* Add Idefics 3!
* fixes to make both pipelines identical
* fix for quantized models
* First pass at the review
* remove vocab size from the main config (it's still in the text_config)
* hot fix for merve
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* re-add model_type for text_config
* remove support for old_cache
* remove hidden_size from main config
* rename idefics3 HF repo
* few changes suggested in the PR
* fix to input_data_format computation
* remove overwrite of _autoset_attn_implementation following @zucchini-nlp suggestion
* improve example
* few improvements from amy's review
* big change to enable processing input images as numpy arrays
* Changes to the code to uniformize processor kwargs
* image processing tests
* image processing tests fixes and some bugs they discovered
* addressed review comments from Yoni
* fix modeling tests
* remove special tokens that are not special
* fixes tests
* skip failing tests - they also fail for idefics2
* added paper and readded the tests with multi gpu, who knows
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* review amy until image_processing_idefics3
* last comments from Amy
* review amy
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* doc improvement - amy review
* fix runtime error during fine-tuning
* amy's review
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* ruff
* amy's comment on the order
* ruff ruff
* fix copies
* square images when they are not splitted
* ruff :(
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics3/test_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix small bug introduced in refactor
* amy's image processing changes
* fixes peft tests and ruff
* modify to_pil_image from transformers. and review from emanuele.
* add modified to_pil_image
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add compressed-tensors HFQuantizer implementation
* flag serializable as False
* run
* revive lines deleted by ruff
* fixes to load+save from sparseml, edit config to quantization_config, and load back
* address satrat comment
* compressed_tensors to compressed-tensors and revert back is_serializable
* rename quant_method from sparseml to compressed-tensors
* tests
* edit tests
* clean up tests
* make style
* cleanup
* cleanup
* add test skip for when compressed tensors is not installed
* remove pydantic import + style
* delay torch import in test
* initial docs
* update main init for compressed tensors config
* make fix-copies
* docstring
* remove fill_docstring
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* review comments
* review comments
* comments - suppress warnings on state dict load, tests, fixes
* bug-fix - remove unnecessary call to apply quant lifecycle
* run_compressed compatability
* revert changes not needed for compression
* no longer need unexpected keys fn
* unexpected keys not needed either
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* add to_diff_dict
* update docs and expand testing
* Update _toctree.yml with compressed-tensors
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update doc
* add note about saving a loaded model
---------
Co-authored-by: George Ohashi <george@neuralmagic.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Sara Adkins <sara@neuralmagic.com>
Co-authored-by: Sara Adkins <sara.adkins65@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Dipika Sikka <ds3822@columbia.edu>
Co-authored-by: Dipika <dipikasikka1@gmail.com>
This commit fixes the following errors:
* Fix "expected all tensors to be on the same device" error
* Fix "can't convert device type tensor to numpy"
According to pytorch documentation torch.Tensor.numpy(force=False)
performs conversion only if tensor is on CPU (plus few other restrictions)
which is not the case. For our case we need force=True since we just
need a data and don't care about tensors coherency.
Fixes: #33517
See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Fixed docstring for cohere model regarding unavailability of prune_head() methods
The docstring mentions that cohere model supports prune_heads() methods. I have fixed the docstring by explicitly mentioning that it doesn't support that functionality.
* Update src/transformers/models/cohere/modeling_cohere.py
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update exampel
* update
* push the converted diff files for testing and ci
* correct one example
* fix class attributes and docstring
* nits
* oups
* fixed config!
* update
* nitd
* class attributes are not matched against the other, this is missing
* fixed overwriting self.xxx now onto the attributes I think
* partial fix, now order with docstring
* fix docstring order?
* more fixes
* update
* fix missing docstrings!
* examples don't all work yet
* fixup
* nit
* updated
* hick
* update
* delete
* update
* update
* update
* fix
* all default
* no local import
* fix more diff
* some fix related to "safe imports"
* push fixed
* add helper!
* style
* add a check
* all by default
* add the
* update
* FINALLY!
* nit
* fix config dependencies
* man that is it
* fix fix
* update diffs
* fix the last issue
* re-default to all
* alll the fixes
* nice
* fix properties vs setter
* fixup
* updates
* update dependencies
* make sure to install what needs to be installed
* fixup
* quick fix for now
* fix!
* fixup
* update
* update
* updates
* whitespaces
* nit
* fix
* simplify everything, and make it file agnostic (should work for image processors)
* style
* finish fixing all import issues
* fixup
* empty modeling should not be written!
* Add logic to find who depends on what
* update
* cleanup
* update
* update gemma to support positions
* some small nits
* this is the correct docstring for gemma2
* fix merging of docstrings
* update
* fixup
* update
* take doc into account
* styling
* update
* fix hidden activation
* more fixes
* final fixes!
* fixup
* fixup instruct blip video
* update
* fix bugs
* align gemma2 with the rest as well
* updats
* revert
* update
* more reversiom
* grind
* more
* arf
* update
* order will matter
* finish del stuff
* update
* rename to modular
* fixup
* nits
* update makefile
* fixup
* update order of the checks!
* fix
* fix docstring that has a call inside
* fiix conversion check
* style
* add some initial documentation
* update
* update doc
* some fixup
* updates
* yups
* Mostly todo gimme a minut
* update
* fixup
* revert some stuff
* Review docs for the modular transformers (#33472)
Docs
* good update
* fixup
* mmm current updates lead to this code
* okay, this fixes it
* cool
* fixes
* update
* nit
* updates
* nits
* fix doc
* update
* revert bad changes
* update
* updates
* proper update
* update
* update?
* up
* update
* cool
* nits
* nits
* bon bon
* fix
* ?
* minimise changes
* update
* update
* update
* updates?
* fixed gemma2
* kind of a hack
* nits
* update
* remove `diffs` in favor of `modular`
* fix make fix copies
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* enable cpu bnb path
* fix style
* fix code style
* fix 4 bit path
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* add multi backend refactor tests
* fix style
* tweak 4bit quantizer + fix corresponding tests
* tweak 8bit quantizer + *try* fixing corresponding tests
* fix dequant bnb 8bit
* account for Intel CPU in variability of expected outputs
* enable cpu and xpu device map
* further tweaks to account for Intel CPU
* fix autocast to work with both cpu + cuda
* fix comments
* fix comments
* switch to testing_utils.torch_device
* allow for xpu in multi-gpu tests
* fix tests 4bit for CPU NF4
* fix bug with is_torch_xpu_available needing to be called as func
* avoid issue where test reports attr err due to other failure
* fix formatting
* fix typo from resolving of merge conflict
* polish based on last PR review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix CI
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix error log
* fix error msg
* add \n in error log
* make quality
* rm bnb cuda restriction in doc
* cpu model don't need dispatch
* fix doc
* fix style
* check cuda avaliable in testing
* fix tests
* Update docs/source/en/model_doc/chameleon.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/model_doc/llava_next.md
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix doc
* fix check multibackends
* fix import sort
* remove check torch in bnb
* docs: update bitsandbytes references with multi-backend info
* docs: fix small mistakes in bnb paragraph
* run formatting
* reveret bnb check
* move bnb multi-backend check to import_utils
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix bnb check
* minor fix for bnb
* check lib first
* fix code style
* Revert "run formatting"
This reverts commit ac108c6d6b34f45a5745a736ba57282405cfaa61.
* fix format
* give warning when bnb version is low and no cuda found]
* fix device assignment check to be multi-device capable
* address akx feedback on get_avlbl_dev fn
* revert partially, as we don't want the function that public, as docs would be too much (enforced)
---------
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add sdpa to dinov2
* fixup
* add dinov2 to sdpa doc
* update doc order
* [run-slow] dinov2
* common to eager
* [run-slow] dinov2
* update attn implementation in common
* update test_modeling_dinov2 to have mask_ration, num_masks and mask_length similar to vit
* [run-slow] dinov2
---------
Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il>
* fix: handle padding in contrastive search for decoder-only models
* fix: handle padding in contrastive search for encoder-decoder models
* tests: move padding contrastive test to test_util, add t5 test
* fix: handle if model_kwargs["decoder_attention_mask"] is None
* refactor: improve padding input contrastive search generation tests
* chore: _ranking_fast to use LongTensor for cosine_matrix_mask
* add check and prepare args for BC to ProcessorMixin, improve ProcessorTesterMixin
* change size and crop_size in processor kwargs tests to do_rescale and rescale_factor
* remove unnecessary llava processor kwargs test overwrite
* nit
* change data_arg_name to input_name
* Remove unnecessary test override
* Remove unnecessary tests Paligemma
* Move test_prepare_and_validate_optional_call_args to TesterMixin, add docstring
* change sequence_bias type of SequenceBiasLogitsProcessor tp list, add config tests for all processors
* fix format
* small fix for all_token_bias_pairs_are_valid internal func
* small typo fix in description
* improve test impl, some SequenceBiasLogitsProcessor refactoring
* add tests
* fix whisper
* update
* nit
* add qwen2-vl
* more updates!
* better this way
* fix this one
* fix more tests
* fix final tests, hope so
* fix led
* Update tests/generation/test_utils.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* pr comments
* not pass pixels and extra for low-mem tests, very flaky because of visio tower
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* clean mimi commit
* some nits suggestions from Arthur
* make fixup
* rename repo id + change readme
* Update docs/source/en/model_doc/mimi.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add flaky flag to batching equivalence due to audio_codes failing sometimes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* modify rt detr to improve inference times when compiled
* Remove redundant "to"
* Fix conditional lru_cache and missing shapes_list
* nit unnecessary list creation
* Fix compile error when ninja not available and custon kernel activated
* fix patch_attention_mask incorrect setting which leads to the difference in the generated text if batch > 1
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* fix format
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* [run_slow] idefics2
---------
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* added sequences_scores to the output
* added beam_indices to output
* added test to check for beam_indices, sequences_scores and their shape
* removed redundant whitespaces
* make fixup
* idefics2 enable_input_require_grads not aligned with disable_input_require_grads
make peft+idefics2 checkpoints disable fail
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* split test case
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* fix ci failure
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* refine test
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* refactor weight_norm + propose uniformed solution to reconcile meta load_state_dict with classic loading
* make style
* fix sew
* fix sew and sew_d tests
* Fix failing tensor placement in Whisper
* fix long form generation tests
* more return_timestamps=True
* make fixup
* [run_slow] whisper
* [run_slow] whisper
* Uniformize kwargs for LlaVa and update docs
* Change order of processor inputs in docstring
* Improve BC support for reversed images and text inputs
* cleanup llava processor call docstring
* Add encoded inputs as valid text inputs in reverse input check, add deprecation version in warning
* Put function check reversed images text outside base processor class
* Refactor _validate_images_text_input_order
* Add ProcessingUtilTester
* fix processing and test_processing
* initial commit
* gloups
* updates
* work
* weights match
* nits
* nits
* updates to support the tokenizer :)
* updates
* Pixtral processor (#33454)
* rough outline
* Add in image break and end tokens
* Fix
* Udo some formatting changes
* Set patch_size default
* Fix
* Fix token expansion
* nit in conversion script
* Fix image token list creation
* done
* add expected results
* Process list of list of images (#33465)
* updates
* working image and processor
* this is the expected format
* some fixes
* push current updated
* working mult images!
* add a small integration test
* Uodate configuration docstring
* Formatting
* Config docstring fix
* simplify model test
* fixup modeling and etests
* Return BatchMixFeature in image processor
* fix some copies
* update
* nits
* Update model docstring
* Apply suggestions from code review
* Fix up
* updates
* revert modeling changes
* update
* update
* fix load safe
* addd liscence
* update
* use pixel_values as required by the model
* skip some tests and refactor
* Add pixtral image processing tests (#33476)
* Image processing tests
* Add processing tests
* woops
* defaults reflect pixtral image processor
* fixup post merge
* images -> pixel values
* oups sorry Mr docbuilder
* isort
* fix
* fix processor tests
* small fixes
* nit
* update
* last nits
* oups this was really breaking!
* nits
* is composition needs to be true
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix long seq bug
* fixed format
* fixed fn copy inconsistency
* fix long seq bug
* fixed format
* fixed fn copy inconsistency
* Addressed comments
* added a unit test
* fixed cache position
* Added a warning msg to the forward fn
* fixed test case
* test(tokenizers): add a test showing conflict with sentencepiece
This is due to the fact that protobuf C implementation uses a global
pool for all added descriptors, so if two different files add
descriptors, they will end up conflicting.
* fix(tokenizers): mitigate sentencepiece/protobuf conflict
When sentencepiece is available, use that protobuf instead of the
internal one.
* chore(style): fix with ruff
* Fix default revision for pipelines
* dummy change to trigger CI
* revert dummy change
* dummy change to trigger CI
* revery dummy change
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* Update tokenization_whisper.py
Fix issue with flax whisper model
* Update tokenization_whisper_fast.py
Fix issue with flax whisper model
* Update tokenization_whisper.py
just check len of token_ids
* Update tokenization_whisper_fast.py
just use len of token_ids
* Update tokenization_whisper_fast.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list
* Update tokenization_whisper.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list
* Update test_tokenization_whisper.py to add test for _convert_to_list method
* Update test_tokenization_whisper.py to fix code style issues
* Fix code style
* Fix code check again
* Update test_tokenization)whisper.py to Improve code style
* Update test_tokenization_whisper.py to run each of jax, tf and flax modules if available
* Update tests/models/whisper/test_tokenization_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update test_tokenization_whisper.py and use require_xxx decorators instead of `is_xxx_available()` method
* Revert the changes automatically applied by formatter and was unrelated to PR
* Format for minimal changes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add tests for linear shape behavior
* fix linear shape behavior
ended up adding the reshape at the end, after f8f8bf16_rowwise, because adding
it directly after quantize_fp8_per_row caused f8f8bf16_rowwise to drop the
seq_len dimension. (i.e., (17, 23, 1014) -> (17, 1024))
* save shape up front + comment
* Make StaticCache configurable at model construct time
* integrations import structure
* add new doc file to toc
---------
Co-authored-by: Guang Yang <guangyang@fb.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* Bug Fix: Update hub.py
Bug:
TypeError: argument of type 'NoneType' is not iterable
Analysis:
The error `TypeError: argument of type 'NoneType' is not iterable` suggests that `model_card.data.tags` is `None`, and the code is trying to iterate through it using `not in`.
Fix:
1. **Check if `model_card.data.tags` is `None` before the loop**:
Since you're checking the variable `tags` before the loop, you should also ensure that `model_card.data.tags` is not `None`. You can do this by initializing `model_card.data.tags` to an empty list if it's `None`.
2. **Updated code**:
Add a check and initialize the `tags` if it is `None` before proceeding with the iteration.
This way, if `model_card.data.tags` is `None`, it gets converted to an empty list before checking the contents. This prevents the `TypeError`.
* Update hub.py
* Update docs for GGUF supported models
* Add tensor mappings and define class GGUFPhi3Converter
* Fix tokenizer
* Working version
* Attempt to fix some CI failures
* Run ruff format
* Add vocab, merges, decoder methods like LlamaConverter
* Resolve conflicts since Qwen2Moe was added to gguf
- I missed one place when resolving conflict
- I also made a mistake with tests_ggml.py and now has been fixed to reflect
its master version.
* Import structure & first three model refactors
* Register -> Export. Export all in __all__. Sensible defaults according to filename.
* Apply most comments from Amy and some comments from Lucain
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
* Style
* Add comment
* Clearer .py management
* Raise if not in backend mapping
* More specific type
* More efficient listdir
* Misc fixes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
* Fixed typo: insted to instead
* Fixed typo: relase to release
* Fixed typo: nighlty to nightly
* Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks
* Fixed typo in comment: quantizd to quantized
* Fixed typo: architecutre to architecture
* Fixed typo: contibution to contribution
* Fixed typo: Presequities to Prerequisites
* Fixed typo: faste to faster
* Fixed typo: extendeding to extending
* Fixed typo: segmetantion_maps to segmentation_maps
* Fixed typo: Alternativelly to Alternatively
* Fixed incorrectly defined variable: output to output_disabled
* Fixed typo in library name: tranformers.onnx to transformers.onnx
* Fixed missing import: import tensorflow as tf
* Fixed incorrectly defined variable: token_tensor to tokens_tensor
* Fixed missing import: import torch
* Fixed incorrectly defined variable and typo: uromaize to uromanize
* Fixed incorrectly defined variable and typo: uromaize to uromanize
* Fixed typo in function args: numpy.ndarry to numpy.ndarray
* Fixed Inconsistent Library Name: Torchscript to TorchScript
* Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor
* Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice
* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch
* Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings
* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch
* Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments
* Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR
* Fixed Inconsistent Model Name Typo: EART to BERT
* Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow
* Fixed Broken Link for Speech Emotion Classification with Wav2Vec2
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed Punctuation: Two commas
* Fixed Punctuation: No Space between XLM-R and is
* Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method
* Added backticks to display model.fit() in codeblock
* Added backticks to display openai-community/gpt2 in codeblock
* Fixed Minor Typo: will to with
* Fixed Minor Typo: is to are
* Fixed Minor Typo: in to on
* Fixed Minor Typo: inhibits to exhibits
* Fixed Minor Typo: they need to it needs
* Fixed Minor Typo: cast the load the checkpoints To load the checkpoints
* Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM
* Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state
* Added missing verbosity level: fatal
* Fixed Minor Typo: take To takes
* Fixed Minor Typo: heuristic To heuristics
* Fixed Minor Typo: setting To settings
* Fixed Minor Typo: Content To Contents
* Fixed Minor Typo: millions To million
* Fixed Minor Typo: difference To differences
* Fixed Minor Typo: while extract To which extracts
* Fixed Minor Typo: Hereby To Here
* Fixed Minor Typo: addition To additional
* Fixed Minor Typo: supports To supported
* Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark
* Fixed Minor Typo: a To an
* Fixed Minor Typo: a To an
* Fixed Minor Typo: Chain-of-though To Chain-of-thought
* add self.head_dim for VisionAttention in Qwen2-VL
* add self.head_dim for VisionAttention in Qwen2-VL
* fix ci
* black the test_modeling_qwen2_vl.py
* use ruff to format test_modeling_qwen2_vl.py
* [run-slow] qwen2_vl
* use tying for python3.8
* fix the import format
* use ruff to fix the ci error I001
* [run-slow] qwen2_vl
* remove unused import
* commit for rebase
* use ruff fix ci
* [run-slow] qwen2_vl
---------
Co-authored-by: root <liji>
* Add validation for maximum sequence length in modeling_whisper.py
Added a validation check to ensure that the sequence length of labels does not exceed the maximum allowed length of 448 tokens. If the sequence length exceeds this limit, a ValueError is raised with a descriptive error message.
This change prevents the model from encountering errors or unexpected behavior due to excessively long sequences during training or fine-tuning, ensuring consistent input dimensions and improving overall robustness.
* Change exception message in src/transformers/models/whisper/modeling_whisper.py
The exception message is for whisper's label's sequence max length.
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Change 448 to config.max_target_positions in src/transformers/models/whisper/modeling_whisper.py
It's for whisper's config.max_target_positions.
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Change method's documentation in src/transformers/models/whisper/modeling_whisper.py
* Add test for maximum label's sequence length in test_modeling_whisper.py
* Add self to modeling_whisper.py
* Update test_modeling_whisper.py with respect to automatic validations
* Update modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Separate test_labels_sequence_max_length tests in test_modeling_whisper.py
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Remove assert from test_modeling_whisper.py
* Add max_target_positions to WhisperModelTester in test_modeling_whisper.py
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py
* Change test_labels_sequence_max_length_error_after_changing_config in test_modeling_whisper.py
* Change self.config.max_target_positions to self.max_target_positions modeling_whisper.py
* Add new tests in test_modeling_whisper.py
* Update test_modeling_whisper.py
---------
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Load remote code only once
* Use hash as load indicator
* Add a new option `force_reload` for old behavior (i.e. always reload)
* Add test for dynamic module is cached
* Add more type annotations to improve code readability
* Address comments from code review
* Add validate images and test processing utils
* Remove encoded text from possible inputs in tests
* Removed encoded inputs as valid in processing_utils
* change text input check to be recursive
* change text check to all element of lists and not just the first one in recursive checks
* [InstructBLIP] qformer_tokenizer is required input
* Bit safer
* Add to instructblipvideo processor
* Fix up
* Use video inputs
* Update tests/models/instructblipvideo/test_processor_instructblipvideo.py
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* use gguf internal dequantize
* add Q5_0 test
* add iq1 test
* add remained test
* remove duplicated test
* update docs
* add gguf version limit
* make style
* update gguf import catch
* revert vocab_size patch
* make style
* use GGUF_MIN_VERSION everywhere
* remove to restiction for 4-bit model
* Update src/transformers/modeling_utils.py
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* bitsandbytes: prevent dtype casting while allowing device movement with .to or .cuda
* quality fix
* Improve warning message for .to() and .cuda() on bnb quantized models
---------
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* don't run custom when not needed?
* update test fetcher filtering
* fixup and updates
* update
* update
* reduce burden
* nit
* nit
* mising comma
* this?
* this?
* more parallelism
* more
* nit for real parallelism on tf and torch examples
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update to make it more custom
* update to make it more custom
* update to make it more custom
* update to make it more custom
* update
* update
* update
* update
* update
* update
* use correct path
* fix path to test files and examples
* filter-tests
* filter?
* filter?
* filter?
* nits
* fix naming of the artifacts to be pushed
* list vs files
* list vs files
* fixup
* fix list of all tests
* fix the install steps
* fix the install steps
* fix the config
* fix the config
* only split if needed
* only split if needed
* extend should fix it
* extend should fix it
* arg
* arg
* update
* update
* run tests
* run tests
* run tests
* more nits
* update
* update
* update
* update
* update
* update
* update
* simpler way to show the test, reduces the complexity of the generated config
* simpler way to show the test, reduces the complexity of the generated config
* style
* oups
* oups
* fix import errors
* skip some tests for now
* update doctestjob
* more parallelism
* fixup
* test only the test in examples
* test only the test in examples
* nits
* from Arthur
* fix generated congi
* update
* update
* show tests
* oups
* oups
* fix torch job for now
* use single upload setp
* oups
* fu**k
* fix
* nit
* update
* nit
* fix
* fixes
* [test-all]
* add generate marker and generate job
* oups
* torch job runs not generate tests
* let repo utils test all utils
* UPdate
* styling
* fix repo utils test
* more parallel please
* don't test
* update
* bit more verbose sir
* more
* hub were skipped
* split by classname
* revert
* maybe?
* Amazing catch
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* fix
* update
* update
* maybe non capturing
* manual convert?
* pass artifacts as parameters as otherwise the config is too long
* artifact.json
* store output
* might not be safe?
* my token
* mmm?
* use CI job IS
* can't get a proper id?
* ups
* build num
* update
* echo url
* this?
* this!
* fix
* wget
* ish
* dang
* udpdate
* there we go
* update
* update
* pass all
* not .txt
* update
* fetcg
* fix naming
* fix
* up
* update
* update
* ??
* update
* more updates
* update
* more
* skip
* oups
* pr documentation tests are currently created differently
* update
* hmmmm
* oups
* curl -L
* update
* ????
* nit
* mmmm
* ish
* ouf
* update
* ish
* update
* update
* updatea
* nit
* nit
* up
* oups
* documentation_test fix
* test hub tests everything, just marker
* update
* fix
* test_hub is the only annoying one now
* tf threads?
* oups
* not sure what is happening?
* fix?
* just use folder for stating hub
* I am getting fucking annoyed
* fix the test?
* update
* uupdate
* ?
* fixes
* add comment!
* nit
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* first attempt at allowing both conversions from codestral and from the original mamba ssm
* allow fp16, seems default for mamba2
* dtype fix
* simplify codestral check, dont overwrite pad/eos/bos when codestral
* change file -> directory
* use path join to be safe
* style
* apply code review
- add util mamba2 tokenizer (gptneox with left padding)
- add models dict
* fix copies
* add tokenizer to docs
* empty commit to check for weird err
* make conversion user dependent on model type, defaults for original paper models
* small comment nit
* remove norm_before_gate in conversion
* simplify model dict by using shared keys directly + remove unnecessary attributes
* fix tokenization: remove separate mamba2 tokenizer, add padding option as kwarg to gptneox one and reuse it for the conversion script
* simplify even further as we pass padding side via **kwargs already
* pass module to Params4bit.from_prequantized to ensure quant_state
* make sure to check bnb version
* revert min bnb version and use inspect on method instead
* use version instead of inspect to prevent performance hit
* make the property name readable
* Customising the separator used for splicing in DataCollatorWithFlattening
* update DataCollatorWithFlattening docs
---------
Co-authored-by: weifangyuan <i.weifangyuan@yuewen.com>
* Adding SDPA support for RoBERTa-based models
* add not is_cross_attention
* fix copies
* fix test
* add minimal test for camembert and xlm_roberta as their test class does not inherit from ModelTesterMixin
* address some review comments
* use copied from
* style
* consistency
* fix lists
---------
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* init fix
* fix mask during cached forward, move mask related stuff to own function
* adjust tests as left padding does not change logits as much anymore + batch gen (with todo on logits comp)
* revert overwriting new integration tests
* move some comments to docstring
* add Blip2ForImageTextRetrieval
* use one line and remove unnecessary space in tests
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* use value from the config, rather than hardcoded
* change order of params in Blip2QFormerModel.forward
* update docstring
* fix style
* update test_inference_opt
* move embeddings out of Blip2QFormerModel
* remove from_vision_qformer_configs
* remove autocast float16 in Blip2QFormerModel
* rename fiels into vision_projection,text_projection,use_image_text_matching_head
* use CLIPOutput for Blip2ImageTextMatchingModelOutput
* remove past_key_values_length from Blip2TextEmbeddings
* fix small typo in the CLIPOutput docstring
* add Blip2ForImageTextRetrieval to Zero Shot Image Classification mapping
* update docstring and add require_torch_fp16
* rollback test_inference_opt
* use use_image_text_matching_head=True in convert
* skip test_model_get_set_embeddings
* fix create_rename_keys error on new itm fields
* revert to do scale after dot product between "query" and "key"
* fix ValueError on convert script for blip2-opt-2.7b
* update org of paths to Salesforce
* add is_pipeline_test_to_skip for VisualQuestionAnsweringPipelineTests
* [run_slow] blip_2
* removed Blip2ForImageTextRetrieval from IGNORE_NON_AUTO_CONFIGURED
* fix docstring of Blip2ImageTextMatchingModelOutput
* [run_slow] blip_2
* fix multi-gpu tests
* [run_slow] blip_2
* [run_slow] blip_2
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Very small change to one of the parameters
np.random.randint second parameter is not included in the possible options. Therefore, we want the upper range to be 2, so that we have some 1 labels in our classification as well.
* Add a fix for the case when tokenizers are passed as a string
* Support image processors and feature extractors as well
* Reverting load_feature_extractor and load_image_processor
* Add test
* Test is torch-only
* Add tests for preprocessors and feature extractors and move test
* Extremely experimental fix
* Revert that change, wrong branch!
* Typo!
* Split tests
* update ExportableState callbacks state before saving trainer_state on save_checkpoint
* run make fixup and fix format
* manage multiple stateful callbacks of same class
* Log additional test metrics with the CometCallback.
Also follow the same metric naming convention as other callbacks
* Merge 2 subsequent if-statements
* Trigger Build
---------
Co-authored-by: Aliaksandr Kuzmik <alexander.kuzmik99@gmail.com>
* fix: multilingual midel convert to tflite get wrong token
* fix: modify test_force_tokens_logits_processor the checking value as scores.dtype.min
---------
Co-authored-by: kent.sc.hung <kent.sc.hung@benq.com>
Co-authored-by: Aya <[kent831217@gmail.com]>
* Add changes for uroman package to handle non-Roman characters
* Update docs for uroman changes
* Modifying error message to warning, for backward compatibility
* Update instruction for user to install uroman
* Update docs for uroman python version dependency and backward compatibility
* Update warning message for python version compatibility with uroman
* Refine docs
* Add new Jinja features:
- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format
* Add new Jinja features:
- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format
* Fix strftime template
* Add template strip() just to be safe
* Remove the do extension to make porting easier, and also because it's the least useful
* Rename test
* strftime -> strftime_now
* Split test
* Update test to use strftime_now
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Add .float() in all generation methods logit outputs
* Switch float-casting of logits to training only for main models
* Add `num_logits_to_keep` in Llama and add it by default in generate
* Apply style
* Add num_logits_to_keep as arg in prepare_input_for_generation
* Add support for Mistral
* Revert models except llama and mistral
* Fix default None value in _supports_num_logits_to_keep()
* Fix dimension of dummy input
* Add exception for prophetnet in _supports_num_logits_to_keep()
* Update _supports_num_logits_to_keep() to use inspect.signature()
* Add deprecation cycle + remove modification with pretraining_tp
* Apply style
* Add most used models
* Apply style
* Make `num_logits_to_keep` an int in all cases to remove if-else clause
* Add compile check for the warning
* Fix torch versions
* style
* Add gemma2
* Update warning version
* Add comment about .float operations in generation utils
* Add tests in GenerationTesterMixin and ModelTesterMixin
* Fix batch size for assisted decoding in tests
* fix small issues in test
* refacor test
* fix slicing removing dim issue
* Add nemotron support (should fix check-copy issue in CIs)
* Trigger new CIs
* Trigger new CIs
* Bump version
* Bump version in TODO
* Trigger CIs
* remove blank space
* Trigger CIs
* link for optimizer names
Add a note and link to where the user can find more optimizer names easily because there are many more optimizers than are mentioned in the docstring.
* make fixup
* fix: Parameterized norm freezing
For the R18 model, the authors don't freeze norms in the backbone.
* Update src/transformers/models/rt_detr/configuration_rt_detr.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Add representation for Conv1D, for better output info.
* code format for Conv1D
* We add a __repr__ func for Conv1D, this allows the print (or output) of the model's info has a better description for Conv1D.
* Fix: fix all model_type of Llava-Next-Video to llava_next_video
* Fix doc for llava_next_video
* * Fix formatting issues
* Change llava-next-video.md file name into llava_next_video.md to make it compatible with implementation
* Fix docs TOC for llava-next-video
* Update the Kubernetes CPU training example
* Add namespace arg
Signed-off-by: Dina Suehiro Jones <dina.s.jones@intel.com>
---------
Signed-off-by: Dina Suehiro Jones <dina.s.jones@intel.com>
* Add TorchAOHfQuantizer
Summary:
Enable loading torchao quantized model in huggingface.
Test Plan:
local test
Reviewers:
Subscribers:
Tasks:
Tags:
* Fix a few issues
* style
* Added tests and addressed some comments about dtype conversion
* fix torch_dtype warning message
* fix tests
* style
* TorchAOConfig -> TorchAoConfig
* enable offload + fix memory with multi-gpu
* update torchao version requirement to 0.4.0
* better comments
* add torch.compile to torchao README, add perf number link
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
* Update modeling_tf_deberta.py
Corrected some codes which do not support mixed precision
* Update modeling_tf_deberta_v2.py
Corrected some codes which do not support mixed precision
* Update modeling_tf_deberta_v2.py
* Update modeling_tf_deberta.py
* Add files via upload
* Add files via upload
* Add padding="max_length" to tokenizer kwargs and change crop_size to size for image_processor kwargs
* remove crop_size argument in align processor tests to be coherent with base tests
* Add pad_token when loading tokenizer if needed, change test override tokenizer kwargs, remove unnecessary test overwrites in grounding dino
* Fixed wrong argument in is_torch_mps_available() function call.
* Fixed wrong argument in is_torch_mps_available() function call.
* sorted the import.
* Fixed wrong argument in is_torch_mps_available() function call.
* Fixed wrong argument in is_torch_mps_available() function call.
* Update src/transformers/utils/import_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* removed extra space.
* Added type hint for the min_version parameter.
* Added missing import.
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Rename "Templates for Chat Models" doc to "Chat Templates"
* Small formatting fix
* Small formatting fix
* Small formatting fix
* Cleanup tool calling docs as well
* Remove unneeded 'revision'
* Move tip to below main code example
* Little bonus section on template editing
* fix sliding window attention (flash2) in gemma2 model
* [run-slow] gemma
* fix slicing attention_mask for flash_attn2
* fix slicing attention_mask when flash_attn is used
* add missing comment
* slice the last seq_len tokens in the key, value states
* revert code of slicing key, value states
* fix typo
* uniform kwargs
* make style
* add comments
* remove return_tensors
* remove common_kwargs from processor since it propagates
* make style
* return_token_type_ids to True
* revert the default imagekwargs since does not accept any value in the image processro
* revert processing_utils.py
* make style
* add molbap's commit
* fix typo
* fix common processor
* remain
* Revert "add molbap's commit"
This reverts commit a476c6ee88318ce40d73ea31e2dc2d4faa8ae410.
* add unsync PR
* revert
* make CI happy
* nit
* import annotationformat
* Revert "fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276)"
This reverts commit 62c60a30181a65e1a3a7f19c3055a240a6a21335.
We uncovered an issue with this change that caused our training runs to hang.
* `is_torchdynamo_compiling` -- cast a wide exception net (#32476)
* cast a wide net
* make fix-copies with a few manual changes
* add copied from
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Migrate import checks to secondary accelerate calls
* better errs too
* Revert, just keep the import checks + remove accelerate-specific things
* Rm extra'
* Empty commit for ci
* Small nits
* Final
* add new model like
* draft cuda forward - mismatched keys (sharding on conv1)
* match keys successfully
* fix split
* get generation/forward running (wrong gens, norm?)
* :update
* some refactoring
* fixes
* works up until copy to cache
* fix
* update
* NON WORKING VERSION
* version that work?
* nit
* fix config
* fix conversion script
* working cuda forward
* nit
* update
* simplifcation
* make mamba slow simple work
* no einops
* todo
* fix style
* no einops
* update fix no einsum
* nit
* remove einops
* bug: scan_output differs strongly
* add rms norm option
* fix fast + slow generation with and w/o cache ✔️
* draft integration tests
* remove a big chunk of the einsum
* fix slow, fast generations, without any einsum
* fix copies
* fix structure
* fix up modeling and tests
* fix tests
* clamping is indeed worse
* recover mamba2 cache test
* fix copies
* no cache position (yet)
* fix tf tests
* fix matmul for generate
* fixup
* skip cache tests for now
* [run-slow]mamba2
* tune out hidden states for padding
* test batched generation
* propagate attention mask changes
* fix past length
* fix integration test
* style
* address comments
* update readme
* add mamba2 version check
* fix tests
* [run-slow]mamba2
* skip edge tests
* [run-slow]mamba2
* last fixup
* [run-slow]mamba2
* update README
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* save total_vocab_size = vocab_size + user added tokens to speed up operation
* updating length when added_tokens_decoder is set
* add test len(tokenizer)
* Mixtral: remove unnecessary plus 1 when calculating rotary_seq_len, allowing position_ids=None (no auto position_ids generation could be unsafe)
* fix typo [:-1] to [:, -1]
* to meet formatting requirement
* to meet formatting requirement
* remove white space
* MixtralFlashAttention2: put "+ 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. Fix format/style issue.
* propagate to startcoder2, phi3, mixtral and qwen2
* update qwen2_moe
* Initial implementation of OffloadedCache
* enable usage via cache_implementation
* Address feedback, add tests, remove legacy methods.
* Remove flash-attn, discover synchronization bugs, fix bugs
* Prevent usage in CPU only mode
* Add a section about offloaded KV cache to the docs
* Fix typos in docs
* Clarifications and better explanation of streams
* Fix conflicting key in init kwargs in PreTrainedTokenizerBase
* Update code to check for callable key in save_pretrained
* Apply PR suggestions
* Invoke CI
* Updates based on PR suggestion
* Fixed staticmethods with self as first argument.
* Fixed staticmethods with self as first argument.
* Fixed staticmethods with self as first argument.
* Fixed staticmethods with self as first argument.
* Remove user-defined tokens which can be obtained through merges
* Remove debug line
* formatting
* Refactor spm slow -> fast converter
* revert unnecessary refactor
* set comprehension
* remove test files
* Use `vocab_scores`
* Always replace spiece underline with space in decode
* we no longer need token filtering
* Add save fast load slow unit test
* Remove tokenizers version check
* Remove duplicate code
* Make `<start_of_turn>` and `<end_of_turn>` special tokens
* Bias merge priority with length if score is the same
* Add unit test for merge priority
* CI
* tmp
* skip files not in the diff
* use git.Repo instead of an external subprocess
* add tiny change to confirm that the diff is working on pushed changes
* add make quality task
* more profesh main commit reference
fixes#32329 : The Torch code is correct - to get an average of 10% of the total, we want to take 50% of the remainder after we've already masked 80% with [MASK] in the previous step.
* mvp
* added test (a few models need fixes)
* fix a few test cases
* test nits
* harder test 😈
* revert changes in stablelm
* test with improved condition
* add todo
* tmp commit
* merged with main
* nits
* add todo
* final corrections
* add docs for generation compilation
* docs nits
* add tip
* PR suggestions
* add more details to the compilation docs
* fix cache positions
* cache is now init in generate; update docs
* tag test as flaky
* docs
* post rebase make fixup and other nits
* remove unintended changes
* whisper (encoder-decoder) not supported
* move token default updates to ; add tests for token defaults
* push changes
* manual rebase
* chameleon doesn't support this
* fix test_static_cache_mha_mqa_gqa (broken in another PR)
* docs: dynamic is better with end-to-end compilation
* Add check for target_sizes is None in post_process_image_guided_detection
* Make sure Owlvit and Owlv2 in sync
* Fix incorrect indentation; add check for correct size of target_sizes
* No more default chat templates
* Add the template to the GPT-SW3 tests since it's not available by default now
* Fix GPT2 test
* Fix Bloom test
* Fix Bloom test
* Remove default templates again
* fix: default value reflects the runtime environment variables rather than the ones present at import time.
* Fix: Change `deterministic` to None by default; use env var if None
* Updated ruff version and fixed the required code accorindg to the latest version.
* Updated ruff version and fixed the required code accorindg to the latest version.
* Added noqa directive to ignore 1 error shown by ruff
* add DataCollatorBatchFlattening
* Update data_collator.py
* change name
* new FA2 flow if position_ids is provided
* add comments
* minor fix
* minor fix data collator
* add test cases for models
* add test case for data collator
* remove extra code
* formating for ruff check and check_repo.py
* ruff format
ruff format tests src utils
* custom_init_isort.py
* feat(cache): StaticCache uses index_copy_ to avoid useless copy
Using index_copy_ allows for explicit in-place change of the tensor.
Some backends (XLA) will otherwise copy the tensor, making the code
slower and using more memory.
Proposed implementation will end up using less memory and on XLA will
result in less compilation, but the change is also quite generic, making
no change whatsoever on CUDA or CPU backend.
* feat(cache): SlidingWindowCache uses index_copy_ to avoid useless copy
Applying the same change done in StaticCache.
* fix(cache): fallback of index_copy_ when not implemented
* fix(cache): in index_copy_ ensure tensors are on same device
* [run slow] llama
* fix(cache): add move of cache_position to same device in SlidingWindowCache
* Revert "[run slow] llama"
This reverts commit 02608dd14253ccd464e31c108e0cd94364f0e8b9.
* gguf conversion forces add_prefix_space=False for llama3, this is not required and forces from_slow, which fails. changing to None + test
* typo
* clean test
* Change resize_token_embeddings to make it return same Class that is passed to it
* Add explanatory comment as requested in review
* Add explanatory comments for add resizing function in lxmert
* Add comment for padding_idx and moving _resize_bias in lxmert to LxmertForPreTraining
---------
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MBP.attlocal.net>
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MacBook-Pro.local>
* Add YaRN and Dynamic-YaRN RoPE Scaling Methods
YaRN (Yet another RoPE extension method) combines the NTK-By-Parts
Interpolation and Attention Scaling methods, improving upon existing
RoPE interpolation methods for longer context window sizes.
Fine-tuned models maintain their original performance across benchmarks
while enabling efficient extrapolation and transfer learning for
quicker convergence, especially in compute-limited environments.
We implement YaRN and Dynamic-YaRN for the following list of models:
- LLaMA
- Falcon
- GPT-NeoX
- Olmo
- Persimmon
- Phi
- StableLM
- OpenLLaMA
New unit tests are added to assert YaRN's correct behavior on both
short and long sequence inputs.
For more details, please refer to https://arxiv.org/abs/2309.00071.
Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
* Refactor YaRN implementation for LLaMA
Iterate on YaRN implementation for LLaMA and remove diff from remaining
models for increased PR modularity.
This commit includes the following changes:
- Merge 'yarn_rope_scaling' and 'rope_scaling' dictionaries
- Remove unnecessary attributes ('extrapolation_factor' and 'finetuned')
from YaRN classes
- Inherit 'forward' method in YaRN classes from superclass
- Rename 'yarn' method to 'compute_yarn_scaling'
- Extend YaRN tests with further assertions
- Fix style inconsistencies
Co-authored-by: Miguel Monte e Freitas <miguelmontefreitas@tecnico.ulisboa.pt>
* Refactor Tensor Building Logic for YaRN
- Comply with the the tensor building logic introduced in #30743
- Add referencing to the optimized Attention Factor equation
- Remove Dynamic YaRN for a more agile deployment
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
* remove unwanted file
---------
Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* fix mask creation of gpt2 and gpt_neox caused by me
* forgot the reshape of masks when shape > 2
* add tests for gpt neox and gpt2
* nit on a comment
* Add llama3-llava-next-8b to llava_next conversion script
Adds support for the lmms-lab/llama3-llava-next-8b model to the
convert_llava_next_weights_to_hf.py script, along with an example
prompt generated from the llava_llama_3 conv_template in the LLaVA-NeXT
repo.
* Exclude <|begin_of_text|> from prompt example
This token gets added automatically, so it should not be included in the
prompt example.
* Add llava-next-72b and llava-next-110b
Adds the Qwen-based LLaVA-Next models to the conversion script, along
with changes to load the models on multiple GPUs for inference.
* Add llama3 and qwen prompt formats to docs
* Chat prompt and padding side left for llama3 batched
* update
* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove code
* better naming
---------
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Replacing ProgressCallbacks deepcopy with a shallowcopy
* Using items instead of entries
* code cleanup for copy in trainer callback
* Style fix for ProgressCallback
* add language to words
_collate_word_timestamps uses the return_language flag to determine whether the language of the chunk should be added to the word's information
* ran style checks
added missing comma
* add new language test
test that the pipeline can return both the language and timestamp
* remove model configuration in test
Removed model configurations that do not influence test results
* remove model configuration in test
Removed model configurations that do not influence test results
Make problem_type condition consistent with num_labels condition
The latter condition generally overrides the former, so this is more of a code reading issue. I'm not sure the bug would ever actually get triggered under normal use.
* 1,100%!
* Clean
* Don't touch DS
* Experiment with dtype allocation
* skip test_load_save_without_tied_weights test
* A little faster
* Include proper upscaling?
* Fixup tests
* Potentially skip?
* Let's see if this fixes git history
* Maintain new dtype
* Fin
* Rm hook idea for now
* New approach, see what breaks
* stage
* Clean
* Stash
* Should be fin now, just need to mark failing models
* Clean up
* Simplify
* Deal with weird models
* Enc/Dec
* Skip w/ reason
* Adjust test
* Fix test
* one more test
* Keep experimenting
* Fix ref
* TO REMOVE: testing feedback CI
* Right push
* Update tests/utils/test_modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* disable
* Add new func
* Test nits from Amy
* Update src/transformers/modeling_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Adjust comment
* Adjust comment on skip
* make private
* Fin
* Should be a not flag
* Clarify and rename test
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* tmp commit
* shorter
* nit
* explicit kwargs
* propagate changes
* mass propagation with a few manual touches (let's see how CI behaves)
* fix cacheless case
* Update src/transformers/generation/utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* make fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Change `Trainer.get_optimizer_cls_and_kwargs` to `self.`
* Make `get_optimizer_cls_and_kwargs` an instance method
* Fixing typo
* Revert `get_optimizer_cls_and_kwargs` to staticmethod
* restore newline to trainer.py eof
* Add warning message for and parameters
* Fix when the warning is raised
* Formatting changes
* Improve testing and remove duplicated warning from _fix_key
* add gather_use_object arguments
* fix name and pass the CI test for Seq2SeqTrainer
* make style
* make it to functools
* fix typo
* add accelerate version:
* adding warning
* Update src/transformers/trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* make style
* Update src/transformers/training_args.py
* check function move to initial part
* add test for eval_use_gather_object
* fix minor
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix galore lr display with lr schedulers
* style
* add some tests to check for displayed lrs
* copy-paste err for warmup steps
* standardize the default lr to be only in the optimizer
* trying out my luck with the reads
* cast image features to model.dtype where needed to support FP16 or other precision in pipelines
* Update src/transformers/pipelines/image_feature_extraction.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use .to instead
* Add FP16 pipeline support for zeroshot audio classification
* Remove unused torch imports
* Add docs on FP16 pipeline
* Remove unused import
* Add FP16 tests to pipeline mixin
* Add fp16 placeholder for mask_generation pipeline test
* Add FP16 tests for all pipelines
* Fix formatting
* Remove torch_dtype arg from is_pipeline_test_to_skip*
* Fix format
* trigger ci
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Repeating an important warning in the chat template docs
* Update docs/source/en/chat_templating.md
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Reword for clarity
* Reword for clarity
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Add siglip loss function
* Update docs
* Enable training tests
[experimental] enable GC training tests as it has worked for my own data
* Remove test_training* overrides to enable training tests
[run_slow] siglip
* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip
* Skip GC training tests for SiglipForImageClassification
* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel
* Remove copied from to fix CI
* Update CometCallback to allow reusing of the running experiment
* Fixups
* Remove useless TODO
* Add checks for minimum version of the Comet SDK
* Fix documentation and links.
Also simplify how the Comet Experiment name is passed
* Add torch_empty_cache_steps to TrainingArguments
* Fix formatting
* Add torch_empty_cache_steps to docs on single gpu training
* Remove check for torch_empty_cache_steps <= max_steps
* Captalize Tip
* Be device agnostic
* Fix linting
* Fix init for rt-detr heads
* Fixup
* Add separate prior_prob value to config for initialization
* Add bbox init
* Change to 1 / num_labels init
* Adjust weights init test
* Fix style for test
* [fix BUG] pad labels before use it in preprocess_logits_for_metrics
* a more readable fix
labels can't use `gather` before pass to `preprocess_logits_for_metrics`, so must split into 2 if-block
* add a comment
* oh code quality check
* remove incorrect urls pointing to the llava repository
* remove incorrect urls pointing to the llava repository; removing entire comments
* remove incorrect urls pointing to the llava repository; removing entire comments; ran fix-copies
* ran fixup
* add gather_use_object arguments
* fix name and pass the CI test for Seq2SeqTrainer
* make style
* make it to functools
* fix typo
* add accelerate version:
* adding warning
* Update src/transformers/trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* make style
* Update src/transformers/training_args.py
* check function move to initial part
* add test for eval_use_gather_object
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* squash into single commit
* run diff once more
* docstring
* tests
* minor chnages and ready to go
* Update src/transformers/models/llava_next_video/processing_llava_next_video.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/vipllava/test_modeling_vipllava.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [run-slow] llava-next-video
* [run-slow] llava-next-video
* [run-slow] llava_next_video
* fix two tests
* fix slow tests
* remove logit checks due to numeric errors
* run test once more
* [run-slow] llava_next_video
* final try to pass the test
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* style
* fix
* style
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix llama fsdp
* fixup
* adding FSDP tests for CPU offloading
* fixes
* fix tests
* fix tests
* add it for mixtral
* propagate the changes on other models
* Update src/transformers/models/phi/modeling_phi.py
* Delete utils/testing_scripts/fsdp_cpu_offloading.py
Remove script - FSDP + CPU offloading it tested in the test suite
* Delete utils/testing_scripts/dummy_fsdp_config.yml
* Update + add cache_positions docstring
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* starting support for sdpa in `gptneox` models
* small comment on tests
* fix dropout
* documentation and style
* clarify concrete paths for reference
* generalise attn projections and rope application
added head mask check to sdpa mask creation
handle sdpa memory backend bug via own version flag
* update docs and style
* move dtype casting outside of general attn_projection_and_rope function
fix flash_attn_2 stuff
* more generic attn warning if output_attns or head_mask
* simplify head mask check by moving head mask creation to a later point
* remove copied llama artifact
* remove padding_mask from attention function signature
* removing unnecessary comments, only "save" attn implementation once
* [run_slow] gpt_neox
* Add initial implementation of `spectrogram_batch`
* Format the initial implementation
* Add test suite for the `spectrogram_batch`
* Update `spectrogram_batch` to ensure compatibility with test suite
* Update `spectrogram_batch` to include pre and post-processing
* Add `amplitude_to_db_batch` function and associated tests
* Add `power_to_db_batch` function and associated tests
* Reimplement the test suite for `spectrogram_batch`
* Fix errors in `spectrogram_batch`
* Add the function annotation for `spectrogram_batch`
* Address code quality
* Re-add `test_chroma_equivalence` function
* Update src/transformers/audio_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/audio_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* PR SPLIT: moving origina changes for adding user defined symbols
* adding gemma test and generalizing gemma converter
* ruff
* update common test
* update serialization test
* deberta v2 tests updates as rust version adds '.' as a user added token, so a space is not added
* removing commented lines
* applying feedback - user only added_tokens to add and check piece.type instead of trainer_spec for user_defined_symbols
* add comment referencing sentencepiece
* Consider inheritance in type checking for tensors
Add an additional check to bypass type assertion when both tensors are
torch.Tensor instances.
* Fix the quality issue
* Update chat template docs
* Minor bug in the version check
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Replace backticks with bolding because the doc builder was trying to parse them
* Replace backticks with bolding because the doc builder was trying to parse them
* Replace backticks with bolding because the doc builder was trying to parse them
* More cleanups to avoid upsetting the doc builder
* Add one more tip at the end
---------
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Fix single letter stop strings
* Change the 0 to a 1 to avoid potential empty vector headaches later
* Restructure for clarity
* Update tests/generation/test_stopping_criteria.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add the unsqueeze
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Improve Python interpreter
* Add with and assert statements
* Prevent overwriting existing tools
* Check interpreter errors are well logged in code agent
* Add lazy evaluation for and and or
* Improve variable assignment
* Fix early return statements in functions
* Add small import fix on interpreter tool
* Pass datasets trust_remote_code
* Pass trust_remote_code in more tests
* Add trust_remote_dataset_code arg to some tests
* Revert "Temporarily pin datasets upper version to fix CI"
This reverts commit b7672826cad31e30319487af876e608d8af7d37b.
* Pass trust_remote_code in librispeech_asr_dummy docstrings
* Revert "Pin datasets<2.20.0 for examples"
This reverts commit 833fc17a3e3f0dcb40cff2ffd86c00ad9ecadab9.
* Pass trust_remote_code to all examples
* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects
* Pass trust_remote_code to tests
* Pass trust_remote_code to docstrings
* Fix flax examples tests requirements
* Pass trust_remote_dataset_code arg to tests
* Replace trust_remote_dataset_code with trust_remote_code in one example
* Fix duplicate trust_remote_code
* Replace args.trust_remote_dataset_code with args.trust_remote_code
* Replace trust_remote_dataset_code with trust_remote_code in parser
* Replace trust_remote_dataset_code with trust_remote_code in dataclasses
* Replace trust_remote_dataset_code with trust_remote_code arg
* xpu: support xpu backend from stock pytorch (>=2.4)
Fixes: https://github.com/huggingface/transformers/issues/31237
XPU backend is available in the stock PyTorch starting from
version 2.4, see [1]. This commit extends huggingface transformers
to support XPU from both IPEX and the stock pytorch. IPEX is being
tried first.
See: https://github.com/pytorch/pytorch/issues/114842
Requires: https://github.com/huggingface/accelerate/pull/2825
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* xpu: enable gpt2 and decision_transformer tests for xpu pytorch backend
Note that running xpu tests requires TRANSFORMERS_TEST_DEVICE_SPEC=spec.py
passed to the test runner:
import torch
DEVICE_NAME = 'xpu'
MANUAL_SEED_FN = torch.xpu.manual_seed
EMPTY_CACHE_FN = torch.xpu.empty_cache
DEVICE_COUNT_FN = torch.xpu.device_count
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
---------
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* Let's try moving chat templates out of IDEFICS and into the generic ProcessorMixin
* Chat templates should not be mandatory
* Chat templates should not be mandatory
* Not all classes will have default chat templates
* stash commit
* Add chat template docstring
* Clean up docstring
* Add chat templates to LLaVA/LLaVA-next
* Docstring fixup
* Quick IDEFICS2 fixup
* Remove some old references to the Conversation class
* make fixup
* Change JSON serialization to custom json.dumps to prevent escaping of "<", ">", "&", "'"
* caller has control over the order, remove sort_key=True
* Move tojson into a proper function and expose a couple of other args
---------
Co-authored-by: jun.4 <jun.4@kakaobrain.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
* Draft fast image processors
* Draft working fast version
* py3.8 compatible cache
* Enable loading fast image processors through auto
* Tidy up; rescale behaviour based on input type
* Enable tests for fast image processors
* Smarter rescaling
* Don't default to Fast
* Safer imports
* Add necessary Pillow requirement
* Woops
* Add AutoImageProcessor test
* Fix up
* Fix test for imagegpt
* Fix test
* Review comments
* Add warning for TF and JAX input types
* Rearrange
* Return transforms
* NumpyToTensor transformation
* Rebase - include changes from upstream in ImageProcessingMixin
* Safe typing
* Fix up
* convert mean/std to tesnor to rescale
* Don't store transforms in state
* Fix up
* Update src/transformers/image_processing_utils_fast.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Warn if fast image processor available
* Update src/transformers/models/vit/image_processing_vit_fast.py
* Transpose incoming numpy images to be in CHW format
* Update mapping names based on packages, auto set fast to None
* Fix up
* Fix
* Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test
* Update src/transformers/models/vit/image_processing_vit_fast.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Add equivalence and speed tests
* Fix up
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* First draft, still missing automatic function conversion
* First draft of the automatic schema generator
* Lots of small fixes
* the walrus has betrayed me
* please stop committing your debug breakpoints
* Lots of cleanup and edge cases, looking better now
* Comments and bugfixes for the type hint parser
* More cleanup
* Add tests, update schema generator
* Update tests, proper handling of return values
* Small docstring change
* More doc updates
* More doc updates
* Add json_schema decorator
* Clean up the TODOs and finish the docs
* self.maxDiff = None to see the whole diff for the nested list test
* add import for add_json_schema
* Quick test fix
* Fix something that was bugging me in the chat template docstring
* Less "anyOf" when unnecessary
* Support return types for the templates that need them
* Proper return type tests
* Switch to Google format docstrings
* Update chat templating docs to match new format
* Stop putting the return type in with the other parameters
* Add Tuple support
* No more decorator - we just do it implicitly!
* Add enum support to get_json_schema
* Update docstring
* Add copyright header
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add copyright header
* make fixup
* Fix indentation
* Reformat chat_template_utils
* Correct return value
* Make regexes module-level
* Support more complex, multi-line arg docstrings
* Update error message for ...
* Update ruff
* Add document type validation
* Refactor docs
* Refactor docs
* Refactor docs
* Clean up Tuple error
* Add an extra test for very complex defs and docstrings and clean everything up for it
* Document enum block
* Quick test fixes
* Stop supporting type hints in docstring to fix bugs and simplify the regex
* Update docs for the regex change
* Clean up enum regex
* Wrap functions in {"type": "function", "function": ...}
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Temporary tool calling commit
* Add type hints to chat template utils, partially update docs (incomplete!)
* Code cleanup based on @molbap's suggestion
* Add comments to explain regexes
* Fix up type parsing for unions and lists
* Add custom exception types and adjust tests to look for them
* Update docs with a demo!
* Docs cleanup
* Pass content as string
* Update tool call formatting
* Update docs with new function format
* Update docs
* Update docs with a second tool to show the model choosing correctly
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Rename to test_model_common_attributes
The method name is misleading - it is testing being able to get and set embeddings, not common attributes to all models
* Explicitly skip
* Update TVP model to interpolate pre-trained image pad prompter encodings
* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding
* added required comments
* Update TVP model to interpolate pre-trained image pad prompter encodings
* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding
* added required comments
* docstring and argument fix
* doc fixes and test case fix suggested in review.
* varibale typo fix
* styling and name fixes for padding interpolation flag.
* Remove ConversationalPipeline and Conversation object, as they have been deprecated for some time and are due for removal
* Update not-doctested.txt
* Fix JA and ZH docs
* Fix JA and ZH docs some more
* Fix JA and ZH docs some more
* Implement JSON dump conversion for torch_dtype in TrainingArguments
* Add unit test for converting torch_dtype in TrainingArguments to JSON
* move unit test for converting torch_dtype into TrainerIntegrationTest class
* reformating using ruff
* convert dict_torch_dtype_to_str to private method _dict_torch_dtype_to_str
---------
Co-authored-by: jun.4 <jun.4@kakaobrain.com>
* fix: wav2vec2_with_lm decoding error
Fixed an error where some language models could
not be loaded due to a decoding error, since it
was impossible to select the 'unigram_encoding'
value.
* fix: unexpected keyword argument
Fixed unexpected keyword argument caused by
passing kwargs directly to BeamSearchDecoderCTC.
* style: wav2vec2_with_lm
Changed single quotes to double quotes.
* Add list check for image and question
* Handle passing two lists and update docstring
* Add tests
* Add support for dataset
* Add test for dataset as input
* fixup
* fix unprotected import
* fix unprotected import
* fix import again
* fix param type
* Initial attempt
* Updates: PR suggestions
* Interpolate the relative position bias when interpolate_pos_encoding is True
* Add slow tag for the added tests
* Add in DATA2VEC_VISION_INPUTS_DOCSTRING
* Fix contrastive_search for new cache structure, and improve performance by removing inneficient torch.stack(torch.split(x, top_k, dim=0))
* Fix _contrastive_search for non-standard cache using ellipsis slicing
* Fix all outputs.logits memory leaks for all decoding strategies!
* Fix small error in _contrastive_search()
* Make all necessary change and revert for the new class
* Apply coding style
* Remove pipes in type hints for compatibility
* correct type hint
* apply style
* Use DynamicCache by default and solve conflicts
* Fix rebase issues
* Add `_supports_dynamic_cache_class` in models for models that support DynamicCache but not other caches to make DynamicCache the default for more models
* Create generation config to return legacy format by default, or to choose not to
* style
* Fix case when use_cache is False
* Remove default DynamicCache in assiste_decoding if assistant_model does not support it + fix _seen_tokens when cropping cache
* Update prepare_inputs_for_generation() for case with empty DynamicCache
* Correct return of args in _assisted_decoding
* Remove EfficientDynamicCache as it is no longer needed
* Correct mistake in generation config
* Move cache logic of assisted decoding to AssistedCandidateGenerator.__init__
* change DynamicCache function names from "split" to "batch_split" for readability + apply coding style
* Remove `_supports_dynamic_cache_class` attribute after rebase
* Correct missing line lost in conflict resolution during rebasing
* Add special case for Jamba
* Fix jamba test
* Coding style
* coding style
* Correct missing import in rebasing
* Simplify _validate_model_kwargs based on removal of _supports_dynamic_cache attribute
* Simplify code paths in _contrastive_search
* coding style
* Update docstrings of cache methods
* Update prepare_inputs_for_generation() -> past_key_values are always Cache objects
The StoppingCriteriaList allocates is_done without specifying dtype=torch.bool. On XLA this allocates a float tensor and causes a failure on the following line:
is_done = is_done | criteria(input_ids, scores, **kwargs)
by attempting to OR float with bool.
* Added interpolate pos encoding feature and test to deit
* Added interpolate pos encoding feature and test for deit TF model
* readded accidentally delted test for multi_gpu
* storing only patch_size instead of entire config and removed commented code
* Update modeling_tf_deit.py to remove extra line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add tokenizer_summary to es/_toctree.yml
* add tokenizer_summary to es/
* fix link to Transformes XL in en/
* translate until Subword tokenization section
* fix GPT link in en/
* fix other GPT link in en/
* fix typo in en/
* translate the doc
* run make fixup
* Remove .md in Transformer XL link
* fix some link issues in es/
* fix typo
* fix the get_size_with_aspect_ratio in max_size situation
* make fix-up
* add more general solution
* consider when max_size is not defined
* fix typo
* fix typo
* simple fix
* fix error
* fix if else error
* fix error of size overwrite
* fix yolos image processing
* fix detr image processing
* make
* add longest related test script
* Update src/transformers/models/yolos/image_processing_yolos.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add more test
* add test script about longest size
* remove deprecated
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
While running the model.prepare_tf_dataset() method,
it raises the error below:
```
TypeError: Cannot convert [array([322., 1.])] to EagerTensor of dtype int64
```
This happens, in "DataCollatorForSeq2Seq" function when we are try
to convert the labels to tensors. While converting the labels to tensors,
the labels can be in the format of list of list or list of ndarrays.
There is no problem converting the list of list lables. There is a problem
when the list of ndarrays are float values(like below).
```
[array([322., 1.])]
```
so the exception raises while trying to convert this label to tensors using
below code.
```
batch["labels"] = tf.constant(batch["labels"], dtype=tf.int64)
```
The labels are always integer values, so this got converted to float
values in the label padding operation below.
```
batch["labels"] = [
call(label)
if padding_side == "right"
else np.concatenate([[self.label_pad_token_id] * (max_label_length - len(label)), label])
for label in labels
]
```
Here we have 2 cases:
1 - Concatenating an array having integer padding token value with labels.
2 - Concatenating an empty array with labels.
----------------------------------------------------------------------------------------
case 1: Concatenating an array having integer padding token value with labels.
WORKS EXPECTED:
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([-100, -100, 233, 1])
```
----------------------------------------------------------------------------------------
Case 2: Concatenating an empty array with labels.
GIVES THE ISSUE:
This scenorio can happen when the label has the maximum label length -- No padding needed.
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([233., 1.])
```
----------------------------------------------------------------------------------------
Solution:
----------------------------------------------------------------------------------------
We need to concatenate a ndarray of dtype int with labels.
AFTER FIX:
----------
case 1:
```
label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])
o/p:
array([-100, -100, 233, 1])
```
case 2:
```
label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])
o/p:
array([233, 1])
```
* token healing impl + trie with extensions
* make fixup
* prefix-robust space tokenization
* examples readme and requirements
* make fixup
* allow input prompt and model
* redundant defaults
* Specialized Trie
* make fixup
* updated tests with new inherited Tree
* input ids to auto device_map
* rm unused import
* Update src/transformers/generation/utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* naming convention
* Revert "naming convention"
This reverts commit dd39d9c5b7a969e2d8a8d2a8e54f121b82dc44f0.
* naming convention
* last -hopefully- changes
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Corrected a typo in security.md. Changed `use_safetenstors` to `use_safetensors` in the section discussing the usage of safe formats for loading models to prevent arbitrary code execution.
* current working example!
* commit regex and result file
* update
* nit
* push the conversion file
* oups
* roadmap and nits
* attempt diffs for 3 files
* persimmon
* nit
* add diff file that is the same as the modeling_llama.py
* fix rope nits
* updates
* updates with converted versions
* give some breathing space to the code
* delete
* update
* update
* push the actual result
* update regex patterns
* update regex patterns
* fix some issues
* fix some issues
* fix some issues
* updates
* updates
* updates
* updates
* updates
* revert changes done to llama
* updates
* update gemma
* updates
* oups
* current state
* current state
* update
* ouiiii
* nit
* clear diffs
* nit
* fixup
* update
* doc 🚀
* 🔥
* for now use gemma
* deal with comments
* style
* handle funtions
* deal with assigns
* todos
* process inheritage
* keep decorators?
* 🤗
* deal with duplicates
* fixup
* correctly remove duplicate code
* run ruff post script
* ruff deals pretty well with imports, let's leave it to him
* ah maybe not lol
* for now remove all imports from child.
* nit
* conversion of llama
* okay
* convert starcoder2
* synch with main
* update llama diff
* updates
* https://docs.astral.sh/ruff/rules/redefined-while-unused/ fixes the imports, bit needs later version of ruff
* updates
* okay actual state
* non zero exit
* update!
* revert unrelated
* remove other diff files
* updates
* cleanup
* update
* less diff!
* stash
* current updates
* updates
* No need for call
* finished fining deps
* update
* current changes
* current state
* current state
* new status
* nit
* finally
* fixes
* nits
* order is now expected
* use logger info instead of prints
* fixup
* up
* nit
* update
* nits
* update
* correct merge
* update
* update
* update
* add warning
* update caution message
* update
* better merging strategy
* copy class statements :wink
* fixups
* nits
* update
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* nits
* smaller header
* do cleanup some stuff
* even simpler header?
* fixup
* updates
* ruff
* update examples
* nit
* TODO
* state
* OUUUUUUF
* current state
* nits
* final state
* add a readme
* fixup
* remove diff llama
* fix
* nit
* dummy noy funny
* ruff format tests src utils --check
* everless diffs
* less diffs and fix test
* fixes
* naming nit?
* update converter and add supper example
* nits
* updated for function signatures
* update
* update
* add converted dummies
* autoformat
* single target assign fix
* fixup
* fix some imports
* fixes
* don't push them
* `# noqa: F841`
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Description of quantization_config
Added missing description about quantization_config in replace_with_bnb_linear for better readability.
* Removed trailing spaces
`mask` variable is not defined. probably a writing mistake. it should be `segmentation_map`. `segmentation_map` should be a `1` channel image rather than `RGB`.
[on a different note, the `mask_url` is the same as `raw_image`. could provide a better example.
* Fix has_file in offline mode
* harmonize env variable for offline mode
* Switch to HF_HUB_OFFLINE
* fix test
* revert test_offline to test TRANSFORMERS_OFFLINE
* Add new offline test
* merge conflicts
* docs
* seems like `split_special_tokens` is used here
* split special token
* add new line at end of file
* moving split special token test to common tests
* added assertions
* test
* fixup
* add co-author
* passing rest of args to gptsan_japanese, fixing tests
* removing direct comparison of fast and slow models
* adding test support for UDOP and LayoutXLM
* ruff fix
* readd check if slow tokenizer
* modify test to handle bos tokens
* removing commented function
* trigger build
* applying review feedback - updated docstrings, var names, and simplified tests
* ruff fixes
* Update tests/test_tokenization_common.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* applying feedback, comments
* shutil temp directory fix
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
Co-authored-by: itazap <itazap@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MacBook-Pro.local>
* added interpolation for vitmae model in pytorch as well as tf.
* Update modeling_vit_mae.py
irreugalr import fixed
* small changes and proper formatting
* changes suggested in review.
* modified decoder interpolate_func
* arguments and docstring fix
* Apply suggestions from code review
doc fixes
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add test that currently fails
* test passed
* all perceiver passed
* fixup, style, quality, repo-consistency, all passed
* Apply suggestions from code review: default to False + compute sqrt once only
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix a minor bracket
* replace dim with self._num_channels
* add arguments to the rest preprocessors
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add prefix space ignored in llama #29625
* adding test with add_prefix_space=False
* ruff
---------
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
* Add a check that warmup_setps is either 0 or >= 1
Update training_args.py to add a check that warmup_setps is either 0 or >= 1. Otherwise, raise an error.
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [build-ci-image]
* correct branch
* push ci image
* [build-ci-image]
* update scheduled as well
* [push-ci-image]
* [build-ci-image]
* [push-ci-image]
* update deps
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* oups [build-ci-image]
* [push-ci-image]
* fix
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* updated
* [build-ci-image] update tag
* [build-ci-image]
* [build-ci-image]
* fix tag
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* [build-ci-image]
* github name
* commit_title?
* fetch
* update
* it not found
* dev
* dev
* [push-ci-image]
* dev
* dev
* update
* dev
* dev print dev commit message dev
* dev ? dev
* dev
* dev
* dev
* dev
* [build-ci-image]
* [build-ci-image]
* [push-ci-image]
* revert unwanted
* revert convert as well
* no you are not important
* [build-ci-image]
* Update .circleci/config.yml
* pin tf probability dev
If required padding for a crop larger than input image is odd-numbered,
the padding would be rounded down instead of rounded up, causing the
output dimension to be one smaller than it should be.
* add model_memory_anatomy to es/_toctree.yml
* copy model_memory_anatomy.md to es/
* translate first section
* translate doc
* chage forward activations
* fix sentence and and link to Trainer
* fix Trainer link
* Introduce configured_state
* Include note on tuning
* Allow for users to have defined a state already
* Include tests
* Add note on hpam tune
* Guard a bit better
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Finish rebase
* Finish rebase
* Guard carefully
* Fixup test
* Refactor
* Fin refactor
* Comment
* Update wrt feedback
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix for custom pipeline configuration
* fix for custom pipelines
* remove extra exception
* added test for custom pipelines extra tag
* format with ruff
* limit extra tag for first time only
* format with ruff
* improve tests for custom pipelines
Fix num_hidden_layers in initialization
Originally, the initialization was using config.num_layers instead of config.num_hidden_layers. This fixes that.
* Add MistralForTokenClassification
* Add tests and docs
* Add token classification for Mixtral and Qwen2
* Save llma for token classification draft
* Add token classification support for Llama, Gemma, Persimmon, StableLm and StarCoder2
* Formatting
* Add token classification support for Qwen2Moe model
* Add dropout layer to each ForTokenClassification model
* Add copied from in tests
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Propagate suggested changes
* Style
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Support arbitrary processor
* fix
* nit
* update
* nit
* nit
* fix and revert
* add a small test
* better check
* fixup
* bug so let's just use class for now
* oups
* .
* Remove deprecated logic and warnings
* Add back some code that seems to be important...
* Let's just add all he nllb stuff back; removing it is a bit more involved
* Remove kwargs
* Remove more kwargs
* Fix llama model forward function with attention=True, same-length encoded sequence.
* Fix style
* propagate fix to modeling_cohere, gemma, dbrx, and olmo (which copy the same sdpa masking logic from llama)
* Fix style
* ignore unnecessary sdpa mask converter when output_attentions=True
* add tests checking sdpa and eager outputs match when output_attentions=True
* Split if statements in two lines
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix formatting
* Add fix to new jetmoe model
* Add missing output_attentions argument to jetmoe mask creation
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add support for mixing languages in a single batch
* Update docstring
* Enable different detected languages in batch
* Do not require input_features
* Test list of languages
* Fix comment
* Make init_tokens length-1 if possible, broadcast at the end
* Test for ValueError with language list of incorrect length
* Slow test for batched multilingual transcription
* fixup
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Address review, refactor
* Second attempt to move this line where it was originally
* Split test, fix a bug
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Adding model_parallel = False
* Revert "Adding model_parallel = False"
This reverts commit ba1d99976acb598824ce3347dbe7d848daa21e79.
* Trainer: circumvent error for model in which is_parallelizable is True but does not have model_parallel attribute
2024-05-14 14:39:25 +01:00
4257 changed files with 435404 additions and 197195 deletions
- run:if [[ "$CIRCLE_PULL_REQUEST" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
description:Submit a bug report to help us improve transformers
labels:["bug"]
body:
- type:markdown
attributes:
value:|
Thanks for taking the time to fill out this bug report! 🤗
Before you submit your bug report:
- If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
- Try our [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat) -- it might be able to help you with your issue
- type:textarea
id:system-info
attributes:
@ -17,51 +28,51 @@ body:
description:|
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
Models:
- text models: @ArthurZucker and @younesbelkada
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @eustlb
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @gante
- pipelines: @Narsil
- flax: @gante and @Rocketknight1
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- Flax: @Rocketknight1
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
@ -95,17 +106,18 @@ body:
label:Reproduction
description:|
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
Please include relevant config information with your code, for example your Trainers, TRL, Peft, and DeepSpeed configs.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
description:Submit a proposal/request for a new transformers feature
labels:["feature"]
labels:["Feature request"]
body:
- type:textarea
id:feature-request
@ -19,7 +19,7 @@ body:
label:Motivation
description:|
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers and trigger CI."
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN:${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH:true
RUN_PT_TF_CROSS_TESTS:1
HF_HOME:/mnt/cache
TRANSFORMERS_IS_CI:yes
OMP_NUM_THREADS:8
MKL_NUM_THREADS:8
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
# runners for the push CI that is running on the same machine.
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN:${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH:true
RUN_PT_TF_CROSS_TESTS:1
HF_HOME:/mnt/cache
TRANSFORMERS_IS_CI:yes
OMP_NUM_THREADS:8
MKL_NUM_THREADS:8
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN:${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH:true
CUDA_VISIBLE_DEVICES:0,1
jobs:
get_runner:
name:"Get runner to use"
runs-on:ubuntu-22.04
outputs:
RUNNER:${{ steps.set_runner.outputs.RUNNER }}
steps:
- name:Get runner to use
shell:bash
run:|
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
options:--gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -46,15 +77,37 @@ jobs:
- name:Show installed libraries and their versions
working-directory:/transformers
run:pip freeze
- name:NVIDIA-SMI
run:|
nvidia-smi
- name:Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell:bash
run:|
echo "${{ github.actor }}"
github_actor=${{ github.actor }}
github_actor=${github_actor/'-'/'_'}
echo "$github_actor"
echo "github_actor=$github_actor" >> $GITHUB_ENV
- name:Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell:bash
run:|
echo "${{ env.github_actor }}"
if [ "${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" != "" ]; then
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) or on our [discord](https://discord.com/invite/hugging-face-879548962464493619) first. This helps us respond quicker to fixing issues related to the library versus general questions.
> [!TIP]
> We have a [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat), and we highly encourage you to ask all your questions there. There is always a chance your bug can be fixed with a simple flag 👾🔫
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
@ -129,7 +132,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.9](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -160,7 +163,7 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
@ -218,10 +221,10 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
make sure you install the [documentation builder](https://github.com/huggingface/doc-builder).
```bash
pip install ".[docs]"
pip install hf-doc-builder
```
Run the following command from the root of the repository:
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
Like the slow tests, there are other environment variables available which not enabled by default during testing:
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself.
@ -263,9 +263,9 @@ You are not required to read the following guidelines before opening an issue. H
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:
```
> How big is your gpu cluster?
> How big is your GPU cluster?
Our cluster is made of 256 gpus.
Our cluster is made of 256 GPUs.
```
If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment.
<ahref="https://huggingface.com/models"><imgalt="Checkpoints on Hub"src="https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen"></a>
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
Transformers is a library of pretrained text, computer vision, audio, video, and multimodal models for inference and training. Use Transformers to fine-tune models on your data, build inference applications, and for generative AI use cases across multiple modalities.
These models can be applied on:
There are over 500K+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Explore the [Hub](https://huggingface.com/) today to find a model and use Transformers to help you get started right away.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
## Installation
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.0+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
🤗 Transformers is backed by the three most popular deep learning libraries — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — with a seamless integration between them. It's straightforward to train your models withone before loading them for inference with the other.
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
## Online demos
```py
# venv
python-mvenv.my-env
source.my-env/bin/activate
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
Here are a few examples:
In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Named Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Natural Language Inference with RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Depth Estimation with Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
In Audio:
- [Automatic Speech Recognition with Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In Multimodal tasks:
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Image captioning with LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Zero-shot Image Classification with SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Zero-shot Object Detection with OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Zero-shot Image Segmentation with CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Automatic Mask Generation with SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## If you are looking for custom support from the Hugging Face team
To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
```python
>>>fromtransformersimportpipeline
# Allocate a pipeline for sentiment-analysis
>>>classifier=pipeline('sentiment-analysis')
>>>classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label':'POSITIVE','score':0.9996980428695679}]
# uv
uvvenv.my-env
source.my-env/bin/activate
```
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
Install Transformers in your virtual environment.
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
Install Transformers from source if you want the latest changes in the library or are interested in contributing. However, the *latest* version may not be stable. Feel free to open an [issue](https://github.com/huggingface/transformers/issues) if you encounter an error.
Get started with Transformers right away with the [Pipeline](https://huggingface.co/docs/transformers/pipeline_tutorial) API. The `Pipeline` is a high-level inference class that supports text, audio, vision, and multimodal tasks. It handles preprocessing the input and returns the appropriate output.
Instantiate a pipeline and specify model to use for text generation. The model is downloaded and cached so you can easily reuse it again. Finally, pass some text to prompt the model.
pipeline("the secret to baking a really good cake is ")
[{'generated_text':'the secret to baking a really good cake is 1) to use the right ingredients and 2) to follow the recipe exactly. the recipe for the cake is as follows: 1 cup of sugar, 1 cup of flour, 1 cup of milk, 1 cup of butter, 1 cup of eggs, 1 cup of chocolate chips. if you want to make 2 cakes, how much sugar do you need? To make 2 cakes, you will need 2 cups of sugar.'}]
```
To chat with a model, the usage pattern is the same. The only difference is you need to construct a chat history (the input to `Pipeline`) between you and the system.
> [!TIP]
> You can also chat with a model directly from the command line.
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
```py
fromtransformersimportpipeline
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
>>> from transformers import AutoTokenizer, AutoModel
The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
</details>
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers?
## Why should I use Transformers?
1. Easy-to-use state-of-the-art models:
- High performance on natural language understanding & generation, computer vision, and audio tasks.
- Low barrier to entry for educators and practitioners.
- High performance on natural language understanding & generation, computer vision, audio, video, and multimodal tasks.
- Low barrier to entry for researchers, engineers, and developers.
- Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models.
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 400,000 pretrained models across all modalities.
- Share trained models instead of training from scratch.
- Reduce compute time and production costs.
- Dozens of model architectures with 1M+ pretrained checkpoints across all modalities.
1. Choose the right framework for every part of a model's lifetime:
1. Choose the right framework for every part of a models lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation, and production.
- Move a single model between PyTorch/JAX/TF2.0 frameworks at will.
- Pick the right framework for training, evaluation, and production.
1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
- Model internals are exposed as consistently as possible.
- Model files can be used independently of the library for quick experiments.
<imgalt="Hugging Face Enterprise Hub"src="https://github.com/user-attachments/assets/247fb16d-d251-4583-96c4-d3d76dda4925">
</a><br>
## Why shouldn't I use Transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- The training API is optimized to work with PyTorch models provided by Transformers. For generic machine learning loops, you should use another library like [Accelerate](https://huggingface.co/docs/accelerate).
- The [example scripts]((https://github.com/huggingface/transformers/tree/main/examples)) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
## Installation
## 100 projects using Transformers
### With pip
Transformers is more than a toolkit to use pretrained models, it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
In order to celebrate Transformers 100,000 stars, we wanted to put the spotlight on the
community with the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built with Transformers.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
If you own or use a project that you believe should be part of the list, please open a PR to add it!
First, create a virtual environment with the version of Python you're going to use and activate it.
## Example models
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
You can test most of our models directly on their [Hub model pages](https://huggingface.co/models).
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
Expand each modality below to see a few example models for various use cases.
```bash
pip install transformers
```
<details>
<summary>Audio</summary>
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
- Audio classification with [Whisper](https://huggingface.co/openai/whisper-large-v3-turbo)
- Automatic speech recognition with [Moonshine](https://huggingface.co/UsefulSensors/moonshine)
- Keyword spotting with [Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- Speech to speech generation with [Moshi](https://huggingface.co/kyutai/moshiko-pytorch-bf16)
- Text to audio with [MusicGen](https://huggingface.co/facebook/musicgen-large)
- Text to speech with [Bark](https://huggingface.co/suno/bark)
### With conda
</details>
🤗 Transformers can be installed using conda as follows:
<details>
<summary>Computer vision</summary>
```shell script
conda install conda-forge::transformers
```
- Automatic mask generation with [SAM](https://huggingface.co/facebook/sam-vit-base)
- Depth estimation with [DepthPro](https://huggingface.co/apple/DepthPro-hf)
- Image classification with [DINO v2](https://huggingface.co/facebook/dinov2-base)
- Keypoint detection with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue)
- Object detection with [RT-DETRv2](https://huggingface.co/PekingU/rtdetr_v2_r50vd)
- Pose Estimation with [VitPose](https://huggingface.co/usyd-community/vitpose-base-simple)
- Universal segmentation with [OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_swin_large)
- Video classification with [VideoMAE](https://huggingface.co/MCG-NJU/videomae-large)
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
</details>
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
<details>
<summary>Multimodal</summary>
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
- Audio or text to text with [Qwen2-Audio](https://huggingface.co/Qwen/Qwen2-Audio-7B)
- Document question answering with [LayoutLMv3](https://huggingface.co/microsoft/layoutlmv3-base)
- Image or text to text with [Qwen-VL](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct)
- OCR-based document understanding with [GOT-OCR2](https://huggingface.co/stepfun-ai/GOT-OCR-2.0-hf)
- Table question answering with [TAPAS](https://huggingface.co/google/tapas-base)
- Unified multimodal understanding and generation with [Emu3](https://huggingface.co/BAAI/Emu3-Gen)
- Vision to text with [Llava-OneVision](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf)
- Visual question answering with [Llava](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- Visual referring expression segmentation with [Kosmos-2](https://huggingface.co/microsoft/kosmos-2-patch14-224)
## Model architectures
</details>
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
<details>
<summary>NLP</summary>
Current number of checkpoints: 
- Masked word completion with [ModernBERT](https://huggingface.co/answerdotai/ModernBERT-base)
- Named entity recognition with [Gemma](https://huggingface.co/google/gemma-2-2b)
- Question answering with [Mixtral](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
- Summarization with [BART](https://huggingface.co/facebook/bart-large-cnn)
- Translation with [T5](https://huggingface.co/google-t5/t5-base)
- Text generation with [Llama](https://huggingface.co/meta-llama/Llama-3.2-1B)
- Text classification with [Qwen](https://huggingface.co/Qwen/Qwen2.5-0.5B)
🤗 Transformers currently provides the following architectures: see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## Learn more
| Section | Description |
|-|-|
| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
@ -14,7 +14,7 @@ Models uploaded on the Hugging Face Hub come in different formats. We heavily re
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetenstors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code
@ -36,5 +36,4 @@ Please inspect the code of the tools before passing them to the Agent to protect
## Reporting a Vulnerability
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.
Feel free to submit vulnerability reports to [security@huggingface.co](mailto:security@huggingface.co), where someone from the HF security team will review and recommend next steps. If reporting a vulnerability specific to open source, please note [Huntr](https://huntr.com) is a vulnerability disclosure program for open source software.
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
FLAIR is a powerful PyTorch NLP framework, covering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
@ -39,15 +39,15 @@ MindsDB is a low-code ML platform, which automates and integrates several ML fra
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
[langchain](https://github.com/langchain-ai/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retrieval mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
[transformers.js](https://github.com/huggingface/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
`MetricsRecorder` is thread-safe, in the sense of the python [`Thread`](https://docs.python.org/3/library/threading.html#threading.Thread). This means you can start a background thread to do the readings on the device measurements while not blocking the main thread to execute the model measurements.
cf [`llama.py`](./llama.py) to see an example of this in practice.
# arguments specific to this wrapper for our own customization
parser.add_argument("--ensure_empty",type=bool,default=True,help="If to create a temporary directory.")
parser.add_argument(
"--commit",
type=list_str,
default="",
help="Comma-separated list of branch names and/or commit sha values on which the benchmark will run. If `diff` is specified, it will run on both the current head and the `main` branch.",
)
parser.add_argument("--metrics",type=str,help="The metrics to be included in the summary.")
parser.add_argument("--repo_id",type=str,default=None,help="The repository to which the file will be uploaded.")
parser.add_argument("--path_in_repo",type=str,default=None,help="Relative filepath in the repo.")
parser.add_argument("--token",type=str,default=None,help="A valid user access token (string).")
In this folder you will find various docker files, and some subfolders.
- dockerfiles (ex: `consistency.dockerfile`) present under `~/docker` are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example `torch-light` is a very light weights container (703MiB).
- subfolders contain dockerfiles used for our `slow` CIs, which *can* be used for GPU tasks, but they are **BIG** as they were not specifically designed for a single model / single task. Thus the `~/docker/transformers-pytorch-gpu` includes additional dependencies to allow us to run ALL model tests (say `librosa` or `tesseract`, which you do not need to run LLMs)
Note that in both case, you need to run `uv pip install -e .`, which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the `transformers` code is thus updated.
We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! :hugs:
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
### Translating the Transformers documentation into your language
# Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
As part of our mission to democratize machine learning, we aim to make the Transformers library available in many more languages! Follow the steps below to help translate the documentation into your language.
**🗞️ Open an issue**
## Open an Issue
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
1. Navigate to the Issues page of this repository.
2. Check if anyone has already opened an issue for your language.
3. If not, create a new issue by selecting the "Translation template" from the "New issue" button.
4. Post a comment indicating which chapters you’d like to work on, and we’ll add your name to the list.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
## Fork the Repository
1. First, fork the Transformers repo by clicking the Fork button in the top-right corner.
2. Clone your fork to your local machine for editing with the following command:
Replace `YOUR-USERNAME` with your GitHub username.
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
## Copy-paste the English version with a new language code
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
The documentation files are organized in the following directory:
- **docs/source**: This contains all documentation materials organized by language.
**📋 Copy-paste the English version with a new language code**
To copy the English version to your new language directory:
The documentation files are in one leading directory:
1. Navigate to your fork of the repository:
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
```bash
cd ~/path/to/transformers/docs
```
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
Replace `~/path/to` with your actual path.
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
2. Run the following command:
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
```bash
cp -r source/en source/LANG-ID
```
**✍️ Start translating**
Replace `LANG-ID` with the appropriate ISO 639-1 or ISO 639-2 language code (see [this table](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) for reference).
The fun part comes - translating the text!
## Start translating
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
Begin translating the text!
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
- If the `_toctree.yml` file doesn’t exist for your language, create one by copying the English version and removing unrelated sections.
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
```yaml
- sections:
- local:pipeline_tutorial# Do not change this! Use the same name for your .md file
title:Pipelines for inference# Translate this!
...
title:Tutorials# Translate this!
```
Here’s an example structure for the `_toctree.yml` file:
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
```yaml
- sections:
- local: pipeline_tutorial # Keep this name for your .md file
title: Pipelines for Inference # Translate this
...
title: Tutorials # Translate this
```
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
2. Once you’ve translated the `_toctree.yml`, move on to translating the associated MDX files.
## Collaborate and share
If you'd like assistance with your translation, open an issue and tag `@stevhliu`. Feel free to share resources or glossaries to ensure consistent terminology.
مع تزايد حجم النماذج اللغوية، برز التوازي كأحد الاستراتيجيات لتدريب نماذج أكبر على أجهزة محدودة وتسريع عملية التدريب بمقدار كبير. أنشأنا في Hugging Face، قمنا بإنشاء مكتبة [ Accelerate](https://huggingface.co/docs/accelerate) لمساعدة المستخدمين على تدريب أي نموذج من Transformers بسهولة على أي نوع من الإعدادات الموزعة، سواء كان ذلك على عدة وحدات معالجة رسومات (GPUs) على جهاز واحد أو على عدة وحدات معالجة رسومات موزعة على عدة أجهزة. في هذا الدليل، تعلم كيفية تخصيص حلقة تدريب PyTorch الأصلية لتمكين التدريب في بيئة موزعة.
## الإعداد
ابدأ بتثبيت 🤗 Accelerate:
```bash
pip install accelerate
```
ثم قم باستيراد وإنشاء كائن [`~accelerate.Accelerator`]. سيقوم [`~accelerate.Accelerator`] تلقائيًا باكتشاف نوع الإعداد الموزع الخاص بك وتهيئة جميع المكونات اللازمة للتدريب. لن تحتاج إلى وضع نموذجك على جهاز بشكل معين.
```py
>>>fromaccelerateimportAccelerator
>>>accelerator=Accelerator()
```
## الاستعداد للتسريع
الخطوة التالية هي تمرير جميع كائنات التدريب ذات الصلة إلى دالة الإعداد [`~accelerate.Accelerator.prepare`]. ويشمل ذلك DataLoaders للتدريب والتقييم، ونموذجًا ومُحَسِّنً المعاملات (optimizer):
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## تدريب
بمجرد إضافة أسطر الكود ذات الصلة، قم بتشغيل التدريب الخاص بك في أحد النصوص أو الدفاتر مثل Colaboratory.
### التدريب باستخدام نص برمجي
إذا كنت تشغل التدريب الخاص بك من نص برمجي، فقم بتشغيل الأمر التالي لإنشاء وحفظ ملف تكوين:
```bash
accelerate config
```
ثم قم بتشغيل التدريب الخاص بك باستخدام:
```bash
accelerate launch train.py
```
### التدريب باستخدام دفتر ملاحظات
يمكن أيضًا تشغيل 🤗 Accelerate في دفاتر إذا كنت تخطط لاستخدام وحدات معالجة الرسوميات (TPUs) في Colaboratory. قم بتغليف كل الكود المسؤول عن التدريب في دالة، ومررها إلى [`~accelerate.notebook_launcher`]:
```py
>>>fromaccelerateimportnotebook_launcher
>>>notebook_launcher(training_function)
```
للحصول على مزيد من المعلومات حول 🤗 Accelerate وميزاته الغنية، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/accelerate).
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.