mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-11-04 20:14:36 +08:00 
			
		
		
		
	Compare commits
	
		
			3 Commits
		
	
	
		
			multi_jobs
			...
			v4.44.0
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 984bc11b08 | |||
| af61272239 | |||
| 3e93524a13 | 
@ -61,7 +61,7 @@ from transformers.utils import check_min_version, send_example_telemetry
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
Array = Any
 | 
			
		||||
Dataset = datasets.arrow_dataset.Dataset
 | 
			
		||||
 | 
			
		||||
@ -60,7 +60,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils import check_min_version, send_example_telemetry
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
Array = Any
 | 
			
		||||
Dataset = datasets.arrow_dataset.Dataset
 | 
			
		||||
 | 
			
		||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -43,7 +43,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -58,7 +58,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -60,7 +60,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
 | 
			
		||||
 | 
			
		||||
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -47,7 +47,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
# You should update this to your particular problem to have better documentation of `model_type`
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logging.basicConfig(level=logging.INFO)
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
 | 
			
		||||
 | 
			
		||||
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = get_logger(__name__)
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
 | 
			
		||||
 | 
			
		||||
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version(
 | 
			
		||||
    "datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt"
 | 
			
		||||
 | 
			
		||||
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -50,7 +50,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -62,7 +62,7 @@ except (ModuleNotFoundError, ImportError):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
# region Checking dependencies
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -47,7 +47,7 @@ from transformers.utils import check_min_version, send_example_telemetry
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
task_to_keys = {
 | 
			
		||||
    "cola": ("sentence", None),
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
 | 
			
		||||
 | 
			
		||||
# region Dependencies and constants
 | 
			
		||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
			
		||||
check_min_version("4.44.0.dev0")
 | 
			
		||||
check_min_version("4.44.0")
 | 
			
		||||
 | 
			
		||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										2
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								setup.py
									
									
									
									
									
								
							@ -430,7 +430,7 @@ install_requires = [
 | 
			
		||||
 | 
			
		||||
setup(
 | 
			
		||||
    name="transformers",
 | 
			
		||||
    version="4.44.0.dev0",  # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
 | 
			
		||||
    version="4.44.0",  # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
 | 
			
		||||
    author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)",
 | 
			
		||||
    author_email="transformers@huggingface.co",
 | 
			
		||||
    description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow",
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,7 @@
 | 
			
		||||
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
 | 
			
		||||
# in the namespace without actually importing anything (and especially none of the backends).
 | 
			
		||||
 | 
			
		||||
__version__ = "4.44.0.dev0"
 | 
			
		||||
__version__ = "4.44.0"
 | 
			
		||||
 | 
			
		||||
from typing import TYPE_CHECKING
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -932,8 +932,6 @@ def _load_state_dict_into_meta_model(
 | 
			
		||||
                )
 | 
			
		||||
            )
 | 
			
		||||
        ):
 | 
			
		||||
            if is_fsdp_enabled():
 | 
			
		||||
                param_device = "cpu" if is_local_dist_rank_0() else "meta"
 | 
			
		||||
            # For backward compatibility with older versions of `accelerate` and for non-quantized params
 | 
			
		||||
            set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
 | 
			
		||||
        else:
 | 
			
		||||
@ -944,10 +942,7 @@ def _load_state_dict_into_meta_model(
 | 
			
		||||
            if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
 | 
			
		||||
                module, tensor_name = get_module_from_name(model, param_name)
 | 
			
		||||
                value = getattr(module, tensor_name)
 | 
			
		||||
                param_to = "cpu"
 | 
			
		||||
                if is_fsdp_enabled() and not is_local_dist_rank_0():
 | 
			
		||||
                    param_to = "meta"
 | 
			
		||||
                value = type(value)(value.data.to(param_to), **value.__dict__)
 | 
			
		||||
                value = type(value)(value.data.to("cpu"), **value.__dict__)
 | 
			
		||||
                setattr(module, tensor_name, value)
 | 
			
		||||
            # TODO: consider removing used param_parts from state_dict before return
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -53,6 +53,60 @@ logger = logging.get_logger(__name__)
 | 
			
		||||
_CONFIG_FOR_DOC = "NemotronConfig"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
 | 
			
		||||
def _prepare_4d_causal_attention_mask_with_cache_position(
 | 
			
		||||
    attention_mask: torch.Tensor,
 | 
			
		||||
    sequence_length: int,
 | 
			
		||||
    target_length: int,
 | 
			
		||||
    dtype: torch.dtype,
 | 
			
		||||
    device: torch.device,
 | 
			
		||||
    min_dtype: float,
 | 
			
		||||
    cache_position: torch.Tensor,
 | 
			
		||||
    batch_size: int,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
 | 
			
		||||
    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        attention_mask (`torch.Tensor`):
 | 
			
		||||
            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
 | 
			
		||||
        sequence_length (`int`):
 | 
			
		||||
            The sequence length being processed.
 | 
			
		||||
        target_length (`int`):
 | 
			
		||||
            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
 | 
			
		||||
        dtype (`torch.dtype`):
 | 
			
		||||
            The dtype to use for the 4D attention mask.
 | 
			
		||||
        device (`torch.device`):
 | 
			
		||||
            The device to plcae the 4D attention mask on.
 | 
			
		||||
        min_dtype (`float`):
 | 
			
		||||
            The minimum value representable with the dtype `dtype`.
 | 
			
		||||
        cache_position (`torch.Tensor`):
 | 
			
		||||
            Indices depicting the position of the input sequence tokens in the sequence.
 | 
			
		||||
        batch_size (`torch.Tensor`):
 | 
			
		||||
            Batch size.
 | 
			
		||||
    """
 | 
			
		||||
    if attention_mask is not None and attention_mask.dim() == 4:
 | 
			
		||||
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
 | 
			
		||||
        causal_mask = attention_mask
 | 
			
		||||
    else:
 | 
			
		||||
        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
 | 
			
		||||
        if sequence_length != 1:
 | 
			
		||||
            causal_mask = torch.triu(causal_mask, diagonal=1)
 | 
			
		||||
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
 | 
			
		||||
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
 | 
			
		||||
            mask_length = attention_mask.shape[-1]
 | 
			
		||||
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
 | 
			
		||||
            padding_mask = padding_mask == 0
 | 
			
		||||
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
 | 
			
		||||
                padding_mask, min_dtype
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    return causal_mask
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _cast_if_autocast_enabled(*args):
 | 
			
		||||
    if not torch.is_autocast_enabled():
 | 
			
		||||
        return args
 | 
			
		||||
@ -902,27 +956,18 @@ class NemotronModel(NemotronPreTrainedModel):
 | 
			
		||||
                else past_seen_tokens + sequence_length + 1
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None and attention_mask.dim() == 4:
 | 
			
		||||
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
 | 
			
		||||
            if attention_mask.max() != 0:
 | 
			
		||||
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
 | 
			
		||||
            causal_mask = attention_mask
 | 
			
		||||
        else:
 | 
			
		||||
            causal_mask = torch.full(
 | 
			
		||||
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
 | 
			
		||||
            )
 | 
			
		||||
            if sequence_length != 1:
 | 
			
		||||
                causal_mask = torch.triu(causal_mask, diagonal=1)
 | 
			
		||||
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
 | 
			
		||||
            causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
 | 
			
		||||
                mask_length = attention_mask.shape[-1]
 | 
			
		||||
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
 | 
			
		||||
                padding_mask = padding_mask == 0
 | 
			
		||||
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
 | 
			
		||||
                    padding_mask, min_dtype
 | 
			
		||||
                )
 | 
			
		||||
        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
 | 
			
		||||
        causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
 | 
			
		||||
            attention_mask,
 | 
			
		||||
            sequence_length=sequence_length,
 | 
			
		||||
            target_length=target_length,
 | 
			
		||||
            dtype=dtype,
 | 
			
		||||
            device=device,
 | 
			
		||||
            min_dtype=min_dtype,
 | 
			
		||||
            cache_position=cache_position,
 | 
			
		||||
            batch_size=input_tensor.shape[0],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if (
 | 
			
		||||
            self.config._attn_implementation == "sdpa"
 | 
			
		||||
            and attention_mask is not None
 | 
			
		||||
@ -1086,11 +1131,36 @@ class NemotronForCausalLM(NemotronPreTrainedModel):
 | 
			
		||||
            if past_key_values:
 | 
			
		||||
                position_ids = position_ids[:, -input_ids.shape[1] :]
 | 
			
		||||
 | 
			
		||||
                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
 | 
			
		||||
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)
 | 
			
		||||
 | 
			
		||||
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
 | 
			
		||||
        if inputs_embeds is not None and cache_position[0] == 0:
 | 
			
		||||
            model_inputs = {"inputs_embeds": inputs_embeds}
 | 
			
		||||
        else:
 | 
			
		||||
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases
 | 
			
		||||
            model_inputs = {"input_ids": input_ids}
 | 
			
		||||
 | 
			
		||||
        if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
 | 
			
		||||
            if inputs_embeds is not None:
 | 
			
		||||
                batch_size, sequence_length = inputs_embeds.shape
 | 
			
		||||
                device = inputs_embeds.device
 | 
			
		||||
            else:
 | 
			
		||||
                batch_size, sequence_length = input_ids.shape
 | 
			
		||||
                device = input_ids.device
 | 
			
		||||
 | 
			
		||||
            dtype = self.lm_head.weight.dtype
 | 
			
		||||
            min_dtype = torch.finfo(dtype).min
 | 
			
		||||
 | 
			
		||||
            attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                sequence_length=sequence_length,
 | 
			
		||||
                target_length=past_key_values.get_max_length(),
 | 
			
		||||
                dtype=dtype,
 | 
			
		||||
                device=device,
 | 
			
		||||
                min_dtype=min_dtype,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
                batch_size=batch_size,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        model_inputs.update(
 | 
			
		||||
            {
 | 
			
		||||
 | 
			
		||||
@ -12,7 +12,6 @@
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
import importlib
 | 
			
		||||
import inspect
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
 | 
			
		||||
 | 
			
		||||
from packaging import version
 | 
			
		||||
@ -200,16 +199,11 @@ class Bnb4BitHfQuantizer(HfQuantizer):
 | 
			
		||||
                    if unexpected_keys is not None and k in unexpected_keys:
 | 
			
		||||
                        unexpected_keys.remove(k)
 | 
			
		||||
 | 
			
		||||
            param_kwargs = {}
 | 
			
		||||
            sig = inspect.signature(bnb.nn.Params4bit.from_prequantized)
 | 
			
		||||
            if "module" in sig.parameters:
 | 
			
		||||
                param_kwargs["module"] = module
 | 
			
		||||
            new_value = bnb.nn.Params4bit.from_prequantized(
 | 
			
		||||
                data=param_value,
 | 
			
		||||
                quantized_stats=quantized_stats,
 | 
			
		||||
                requires_grad=False,
 | 
			
		||||
                device=target_device,
 | 
			
		||||
                **param_kwargs,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            new_value = param_value.to("cpu")
 | 
			
		||||
 | 
			
		||||
@ -692,7 +692,7 @@ def is_torchdynamo_compiling():
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        return torch.compiler.is_compiling()
 | 
			
		||||
    except AttributeError:
 | 
			
		||||
    except Exception:
 | 
			
		||||
        try:
 | 
			
		||||
            import torch._dynamo as dynamo  # noqa: F401
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user