Compare commits

..

160 Commits

Author SHA1 Message Date
b7fec03b1e modulaaar 2025-10-31 17:14:20 +00:00
b3db7306df minor changes 2025-10-31 17:09:41 +00:00
92eeed64e3 flag test as broken 2025-10-31 10:46:50 +00:00
c4400cbcbe Merge branch 'main' into siglip_and_check_model_changes 2025-10-31 10:36:42 +00:00
90d1b67db1 fix prepare_config_and_inputs_for_common bug in llava test (#41942)
fix bug

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-31 10:02:39 +01:00
3ee3c563dd Merge branch 'main' into siglip_and_check_model_changes 2025-10-30 15:10:47 +01:00
02c324f43f Fix: Gemma3TextConfig rope scaling assignments (#41934)
* Fix: Gemma3TextConfig rope scaling assignments

* Fix: type annotation for rope_parameters
2025-10-30 12:23:54 +00:00
b47b35637f Fix rope_parameters for gemma3 weights conversion script (#41922)
Fix rope_parameters for gemma3 weights conversion script.

Co-authored-by: Douglas Reid <21148125+douglas-reid@users.noreply.github.com>
2025-10-30 11:49:18 +00:00
e7e7eca06b fix some ut failures on XPU w/ torch 2.9 (#41941)
* fix some ut failures on XPU w/ torch 2.9

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-30 11:23:57 +01:00
cad7eeeb5e Minor fix in docker image build workflow (#41949)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-30 11:02:11 +01:00
f54d0db71d Merge branch 'main' into siglip_and_check_model_changes 2025-10-30 08:48:53 +01:00
40a9dc87d3 reorder/simplify 2025-10-30 08:47:35 +01:00
76fc50a152 Cache latest pytorch amd image locally on mi325 CI runner cluster (#41926) 2025-10-29 19:45:37 +01:00
91d34b0a99 fix initialization 2025-10-29 18:30:22 +01:00
448dd635e3 attn support 2025-10-29 18:01:33 +01:00
807983c2a7 missing docstring 2025-10-29 17:40:21 +01:00
5aa7610d12 Merge branch 'siglip_and_check_model_changes' of github.com:huggingface/transformers into siglip_and_check_model_changes 2025-10-29 17:38:35 +01:00
fe7c9228a4 fix tests 2025-10-29 17:38:22 +01:00
082dcf21d1 Merge branch 'main' into siglip_and_check_model_changes 2025-10-29 17:14:58 +01:00
4f93734169 fixup 2025-10-29 17:14:07 +01:00
76a14c7008 correct inheritance + protect executorch 2025-10-29 17:13:43 +01:00
a43b36cf80 fix some ut failures on XPU w/ torch 2.9 (#41923)
* fix 6 ut failures on XPU w/ torch 2.9

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix UT failures for 4 models on XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-29 16:15:33 +01:00
10d557123b Update some workflow files (#41892)
* update

* update

* final check

* final check

* final clean

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-29 14:42:05 +01:00
259d174e36 Fix Florence2 conversion script model_type KeyError (#41866)
hopefully fixed florence2_language keyerror
2025-10-29 13:07:30 +00:00
38df1e946d Allow parse_response to accept token IDs (#41849)
* Allow tokenizer.parse_response() to accept IDs/arrays directly

* Allow tokenizer.parse_response() to accept IDs/arrays directly
2025-10-29 13:04:57 +00:00
5462376a5c Fix invalid examples in QwenVL model docstrings and add Qwen3VL example (#41812) 2025-10-29 12:34:13 +00:00
e6142ad8d2 Add 6 huggingface notebooks on AMD dev cloud (#41883)
* Add 6 huggingface notebooks on AMD dev cloud

* Change all AMD huggingface notebook links to https protocol.

---------

Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>
2025-10-29 12:31:53 +00:00
21dfd6e716 evaluate>=0.4.6 is needed (#41920)
* evaluate>=0.4.6 is needed

* update

Signed-off-by: Stas Bekman <stas.bekman@snowflake.com>

---------

Signed-off-by: Stas Bekman <stas.bekman@snowflake.com>
Co-authored-by: Stas Bekman <stas.bekman@snowflake.com>
2025-10-29 12:20:53 +00:00
b22d0d07ac speed up loading checkpoints for zero stage 3 (#41850)
* update

* update

* update

---------

Co-authored-by: Robert Irvine <robert@seamlessml.com>
2025-10-29 11:59:08 +01:00
ca68be8560 handle inputs from non-automapped encoder layers 2025-10-29 10:47:30 +01:00
4d0b6758b9 Fix: avoid duplicate token in maybe_load_adapters (#41903) 2025-10-28 15:07:23 +00:00
2f9e3ae7f5 make lfm2_moe integration test pass on XPU (#41796)
* make lfm2_moe integration test pass on XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* xx

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update test_modeling_lfm2_moe.py

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-28 15:50:18 +01:00
1f0b490a2c revert changes in _is_package_available (#41891)
* update

* rm comment
2025-10-27 13:59:18 +01:00
8472ac6836 Fix installation cmds in docs (#41887)
* doc fixes

* Fix decorator

* up

* Revert changes
2025-10-27 11:08:05 +00:00
bf91715637 Fix torch.no_grad decorator in VLMS (#41888)
Fix decorator
2025-10-27 11:07:15 +00:00
77e8b9f8df Adds Universal Intelligence to awesome transformers documentation 2025-10-25 18:31:21 +02:00
e2e8dbed13 CI workflow for Flash Attn (#41857)
ci for flash attn

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-25 09:45:47 +02:00
7a833d1ccd 🚨 [Clip] Fix masking and enable flash attention on all model types (#41750)
* fix

* make kwargs fully passed and adjust with outputs xxx

* propogate metaclip 2

* propogate mlcd and fix test

* style

* fix repo consistency, need to add ignore rules as those are building blocks

* style

* oops

* fix mlcd
2025-10-24 20:44:10 +02:00
8bde822a86 Fix TypeError: find_adapter_config_file() got an unexpected keyword argument '_adapter_model_path' (#41604)
* Pass original dict instead of copy to maybe_load_adapters

* Revert "Pass original dict instead of copy to maybe_load_adapters"

This reverts commit 26fe1b3f35419fdc14932dfbda6bb39e4bdb9b34.

* Return cleaned version of adapter_kwargs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-10-24 19:52:14 +02:00
9bb51b311f Share embedding modules in BART, not only weights (#41821)
* Share embedding modules in BART, not only weights

Embedding modules are now shared between encoder, decoder
and shared - it is the same module, like in the T5 implementation.

This has the benefit that it does not matter which module is returned
in `get_input_embeddings`, the caller of the latter can be sure that
modifications done to that (e.g., hooks) apply to the embeddings.

Background: While revamping the gradient checkpointing tests in PEFT via
peft#2860 we found that the gradient enable step
(`modeling_utils.enable_input_require_grads`) does not work for BART.
This leads to gradient checkpointing with `use_reentrant=True` to
fail as it will not detect any gradients. The reason for this is that
the returned value by `get_input_embeddings` (`self.shared`) is not
the module that is called in the encoder, therefore any hooks added
to `self.shared` are not run - in this case the hook set by
`enable_input_require_grads`.

Since the background is a missing hook I've added a test that tests
directly the ability to define hooks and their ability to being called.

* Add explanatory comment

* Don't initialize embeddings when not neccessary

* make fix-copies

---------

Co-authored-by: nemo <git@ningu.net>
2025-10-24 17:22:02 +02:00
090a8946c6 Fix const parsing for dict inputs in chat schemas (#41824)
* Fix const parsing for dict inputs

* make fixup
2025-10-24 15:14:06 +01:00
4faf675232 Fix Qwen2Audio flash attention mask format for generation (#41843)
* Fix Qwen2Audio flash attention mask format for generation

* use create_bidirectional_mask instead

* fix

* fix

* empty

* fix
2025-10-24 14:45:48 +02:00
bb6028cb79 Fix MXFP4 quantizer to support variable num_local_experts and hidden_size (#41795)
Fix MXFP4 quantizer to support variable num_local_experts
2025-10-24 14:18:52 +02:00
7935b869dc Remove redundant code from Qwen3VLProcessor (#41836)
* Remove redundant code from Qwen3VLProcessor

* same modification to modular_qwen3_vl.py
2025-10-24 11:08:49 +00:00
c27efe6e65 further reducing flakiness in utils/check_bad_commit.py (#41658) (#41815)
* 111

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-24 11:36:01 +02:00
8c291846f5 extend 2 blip2 and falcon_h1 test cases to xpu (#41825)
* extend 2 blip2 and falcon_h1 test cases to xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* xx

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:15:15 +02:00
beb71b7575 extend 2 trainer test cases to xpu (#41829)
extend a trainer test cases to xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:11:15 +02:00
82451cbb30 extend bitnet cases to xpu, all 8 cases pass (#41831)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:05:12 +02:00
9c20660138 unpin torch/torchcodec for CircleCI (#41839)
CirCleCI with torch 2.9

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-24 08:19:38 +02:00
e4b920b3cf [Parakeet] add output_attention_mask (#41694)
* add output_attention_mask

* style
2025-10-23 23:09:20 +00:00
81b4f9882c transformers serve quantization docs + some api fixes for bitsandbytes (#41253)
* doc

* fix api

* fix

* fix

* fix

* fix args

* minor doc fix

* fix

* style

* rm check for now

* fix

* style

* Update docs/source/en/serving.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* add log and update value

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-23 16:00:54 +00:00
2a3f66d9d2 Deprecate warmup_ratio (#41326)
* dep

* style

* deprecate warmup_ratio

* better

* fix

* Revert "style"

This reverts commit cf4f9e7c4f7837a88eea6eeabf8b4dfe9455f6dc.

* Revert "dep"

This reverts commit 1800beb13f407ddb881d0af936860643e84ba085.

* update version
2025-10-23 17:17:21 +02:00
ca01fe4d13 transformers cli default flag fix (#41761) 2025-10-23 13:33:55 +00:00
f780932e05 Fixed some grammar mistakes (#41802)
Added spaces between words, fixed a typo and other errors
2025-10-23 12:39:58 +00:00
e7c5a60368 Fixed grammar mistakes (#41799)
* Fixed grammar mistakes

fixed a couple grammar mistakes

* Update README.md

* Change phrasing a bit more

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-10-23 12:34:02 +00:00
91b5a680c0 [Trainer] remove env vars (#41697)
* remove env var

* style

* fix value

* update

* fix

* style

* fix

* maybe this time

* rm tests

* fix
2025-10-23 14:17:20 +02:00
d4562bb8ae Fix Qwen3Next dtype API usage (#41735)
Replace torch.get_current_dtype() with torch.get_default_dtype() to fix FLA compatibility
2025-10-23 12:02:02 +00:00
e46c2ff32e Add a safeguard around a flaky test in gemma2 (#41811)
* Fix _compile flag in flex attn integration

* Revert fix and add precaution around test
2025-10-23 12:36:50 +02:00
3b6ddbcb88 make apollo test case pass (#41805)
make apollo test cases pass

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-23 12:07:31 +02:00
ff04520266 Bump AMD docker (#41792) 2025-10-23 10:44:20 +02:00
01f5ac70a3 flash attn pytest marker (#41781)
* flash attn marker

* 111

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-23 08:39:19 +00:00
2c5b888c95 [Onnx docs] Remove some traces (#41791)
fix
2025-10-23 10:34:25 +02:00
0eb372ba19 [quantization] fix torchao tests after 0.14.0 release (#41777)
* initial commit

* clean int4_weight_only

* make style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-23 08:26:44 +00:00
87be559508 Fix attention mask in mamba layers (#41790)
* not all mamba models are like LFM

* compile friendly

* adjust slow tests expectation

* naming
2025-10-22 18:15:38 +02:00
2ca506ca1d Fix chat schema tests (#41793)
* Fix chat schema tests

* make fixup
2025-10-22 15:00:49 +00:00
5426947e3a fix type annotation typo in docstring (#41788) 2025-10-22 13:58:18 +00:00
93671b4444 Swap columns and rows of the grid layout in LFM2-VL (#41755)
* swap columns and rows of the grid layout

* update integration tests

* fix the test case

* revert batched test change
2025-10-22 12:52:06 +00:00
18a3349a9f [quantization] Skip Fp8 tests when hardware capability < 8.9 (#41785)
* skipping tests

* style

* nit
2025-10-22 13:33:28 +02:00
e9f241bf89 [quantization] fix compressed_tensors tests (#41780)
fixing tests
2025-10-22 12:37:07 +02:00
7cd1d2b66c [v5] Delete legacy chat template saving (#41648)
* delete lagcy chat template saving

* fix tests

* fix qwen audio
2025-10-22 09:40:55 +00:00
48a36c96da fix: Gemma 3 weights conversion vision and multimodal projector paths (#41767)
fix: Gemma 3 vision and multimodal projector paths
2025-10-22 09:38:56 +00:00
9a27302803 Fix CUDA index out of bounds for q_idx in VLM token type masking for Gemma3, PaliGemma, and example modular (#41757)
* Fix CUDA index out of bounds for q_idx in Gemma3 token type masking

* Fix CUDA index out of bounds for q_idx in modular modeling_new_task_model

* Revert "Fix CUDA index out of bounds for q_idx in Gemma3 token type masking"

This reverts commit f8e5c2a42c305aebd00c46161bf22f520009c8fc.

* Fix CUDA index out of bounds for q_idx in PaliGemma token type masking

* Fix CUDA index out of bounds for q_idx in Gemma3 token type masking
2025-10-22 11:29:47 +02:00
4f8781f84f Remove invalid @staticmethod from module-level get_device_and_memory_breakdown (#41747)
Remove staticmethod decorator from function
2025-10-22 10:52:29 +02:00
a8cece13e2 Fix bark after #41445 (#41645)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-22 09:21:45 +02:00
2e67a9b602 Add LightGlue fast image processor (#41670)
* add fast image processor skel

* add working lightglue fast image processor + tests

* remove plot_keypoint_matching
2025-10-22 00:33:16 +02:00
264cce9e0a Chat response parsing (#40894)
* Initial commit

* Adding more tests, bugfixes, starting tool tests

* Add support for JSON parsers and some tool tests

* stash commit

* stash commit

* stash commit

* stash commit

* stash commit

* Fix cohere schema, fix a lot of the recursive parser code

* GPT-OSS passing too!

* Update tests

* make fixup

* Offset tracking partially done

* stash commit

* stash commit

* Assistant masking Just Works

* make fixup

* stash commit

* stash commit

* JMESPath approach

* stash commit before i rip this PR apart

* Remove broken offset code

* Remove broken offset code

* Update chat parsing code and add tests for Ernie + fix Cohere tests for new format

* Implement tokenizer method

* jmespath dependency handling

* Completed TODOs

* Add support to TextGenerationPipeline

* Update GPT-OSS schema and test cases

* make fixup

* Fix typing (??)

* missing future import

* Use old typing in tokenization_utils_base.py

* put jmespath in various extras

* Remove accidental newline

* Guard tests correctly

* Remove require_jinja on the schema tests since we don't actually apply chat templates there

* make fixup

* fix some bad linter changes

* Fix docstring

* Push draft documentation

* Extend tests, more documentation

* make fixup

* docs docs docs

* Add Processor support

* Add to toctree

* Flag markdown correctly

* Remove double backslashes in docs for simplicity

* Simplify node-regex-to-dict

* Add support to ImageTextToTextPipeline

* Add support to ImageTextToTextPipeline and save/loading support in Processors

* Begin reworking docs to start fitting in response parsing

* Fix rebase

* Expand documentation further

* Expand documentation further

* Refactor x-regex-to-dict to x-regex-key-value, update the parser logic docs section

* Refactor x-regex-to-dict to x-regex-key-value, update the parser logic docs section

* More docs update

* Update TextGenerationPipeline to support tools properly

* Some rebase fixes

* Re-add is_jmespath_available

* Re-add is_jmespath_available

* Add Qwen3 parser and test, add maybe-json support

* Rollback processor changes - we'll wait for legacy saving to be deprecated

* Make fixup

* Revert ImageTextToText changes for now

* Add pipeline test

* make fixup

* Resolve a todo

* Resolve more TODOs and clean up the spec a little

* Add ref in the tools doc

* Update docs/source/en/chat_response_parsing.md

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/utils/chat_parsing_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add a docstring for parse_response

* Add function docstring and reference it in the docs

* Fix generate link

* Revert Processor changes for now

* Use updated GPT-OSS format

* Print the dict keys instead of the whole dict so the example doesn't become too big

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-10-21 17:26:18 +01:00
3f2db2c205 Simplify pipeline padding logic (#41667)
* Remove a lot of unnecessary pad logic

* Remove unnecessary clone() calls since we're just doing a slice assignment

* Just make the full tensor instead of adding to a zeros tensor
2025-10-21 17:01:48 +01:00
1d651c749e Modernize CLIP modeling code (#41546)
* stranded

* update modular

* modularities

* update

* fx broken

* fx stillb roken

* update

* missed this

* fix metaclip
2025-10-21 16:04:43 +02:00
f39355ec23 [v5] Remove deprecated tranformers.onnx (#41700)
* Remove deprecated tranformers.onnx

* Remove transformers.onnx related doc

* style

* shouldn't have been removed

* fix mismatch between metaclip2 modular en config file

* remove onnx config from not_doctested.txt

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-10-21 15:22:41 +02:00
5995435d96 Update type hints in modeling_rope_utils.py to use | syntax (#41714)
* Update type hints to use | syntax for Union types

- Replace Union[str, os.PathLike] with str | os.PathLike
- Replace Optional[Union[str, dict]] with str | dict | None
- Keep Union for forward references like 'torch.dtype'
- Update imports to remove unused Union import where possible

This modernizes the type hints to use Python 3.10+ syntax while maintaining
compatibility with forward references.

* Update type hints in modeling_rope_utils.py to use | syntax

- Replace Union[float, dict[str, float]] with float | dict[str, float]
- Remove unused Union import
- Maintain backward compatibility

This modernizes the type hints to use Python 3.10+ syntax.
2025-10-21 12:05:11 +00:00
2383f3fcbb Fix graphormer model compilation with Cython 3.1.4 (#41671)
Hitting this kind of error when running:

```
cython src/transformers/models/deprecated/graphormer/algos_graphormer.pyx
```

```
Error compiling Cython file:
------------------------------------------------------------
...
    (nrows, ncols) = path.shape
    assert nrows == ncols
    cdef unsigned int n = nrows
    cdef unsigned int max_dist_copy = max_dist

    path_copy = path.astype(long, order='C', casting='safe', copy=True)
                            ^
------------------------------------------------------------
src/transformers/models/deprecated/graphormer/algos_graphormer.pyx:88:28: undeclared name not builtin: long
```

This appears to have changed between cython==3.0 and cython==3.1.  AFAICT the
correct type to use here would be `int`.  Switching to it makes the command
succeed and generate an algos_graphormer.c file.
2025-10-21 12:02:23 +00:00
c4e88f78ca Reduce warning noise caused by Tensor.new_tensor (#41748) 2025-10-21 11:54:13 +00:00
2fe4a30340 [kernels] Add version to function mapping (#41685)
add version
2025-10-21 13:27:18 +02:00
ede7976cd2 Fixed incorrect model_type for qwen2vl and qwen2.5vl when config is saved and loaded again (#41758)
* fixed incorrect model_type for qwen2vl and qwen2.5vl

* added tests
2025-10-21 10:54:58 +00:00
ee3a1002e2 [v5] Delete videos from image processing classes (#41607)
* delete

* why there were video tests in image file

* fix tests and copies

* docs and autto class
2025-10-21 12:03:31 +02:00
4e50b8459d upgrade xpu docker file to torch 2.8 (#41551)
* upgrade xpu docker file to torch 2.8

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update Dockerfile

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-21 10:03:04 +02:00
9aab965b1e Add vision contribution guide (#41456)
* vision contrib guide

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* Update CONTRIBUTING.md

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* update tiny things

---------

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
2025-10-20 18:56:47 +02:00
1a034ce1d2 Docs(zh-hans): Refine wording for professionalism in README (#40943)
* [docs] Polish Chinese README translation by replacing informal terms  with professional vocabulary

* [docs] Polish Simplified Chinese README for better professionalism and consistency

- Replace "抱抱脸" with "Hugging Face" to align with standard usage in Chinese developer community
- Replace "流水线" with "pipeline" to maintain consistency with code and technical terminology
- Add proper code formatting (`pipeline`) for API references to match Traditional Chinese version
- Update translation dictionary to reflect these standardized terms
- Improve overall readability and technical accuracy for Chinese developers

These changes enhance the professionalism of the documentation while maintaining consistency with established technical terminology used by the Chinese developer community.
2025-10-20 08:39:49 -07:00
6850ba853f Small Fix for imports (#41411)
small fix
2025-10-20 17:21:04 +02:00
bf0bce8d5f Apply RUFF PIE rules (#41727)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-20 13:32:23 +00:00
2cf8f833b0 Fix documentation issues (#41726)
Fix more documentation issues

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-20 13:31:02 +00:00
517197f795 Update type hints in tokenization_utils.py to use | syntax (#41713)
* Update type hints to use | syntax for Union types

- Replace Union[str, os.PathLike] with str | os.PathLike
- Replace Optional[Union[str, dict]] with str | dict | None
- Keep Union for forward references like 'torch.dtype'
- Update imports to remove unused Union import where possible

This modernizes the type hints to use Python 3.10+ syntax while maintaining
compatibility with forward references.

* Update type hints in tokenization_utils.py to use | syntax

- Replace Union[AddedToken, str] with AddedToken | str
- Replace Union[list[str], list[AddedToken]] with list[str] | list[AddedToken]
- Replace Union[str, list[str]] with str | list[str]
- Replace Union[int, list[int]] with int | list[int]
- Update error messages to use | syntax
- Maintain backward compatibility

This modernizes the type hints to use Python 3.10+ syntax.

* Fix error message formatting in tokenization_utils.py

- Fix error message to use Union syntax instead of | syntax in string
- This prevents potential issues with error message formatting
- Maintains type hint modernization while fixing error messages
2025-10-20 13:24:16 +00:00
9d4ee18e25 [doc] remove broken notebooks on AMD Dev Cloud (#41743)
revert
2025-10-20 14:36:53 +02:00
818f7f10e4 Revert "Remove upper version bound of pandas" (#41744)
Revert "Remove upper version bound of pandas (#41677)"

This reverts commit a15d77cd0c3e4c1d9f0a196da5996b735eead37e.
2025-10-20 14:25:32 +02:00
ce4ffeeb6c Fix typo in LFM-VL (#41742)
oops, remove untrelated commits
2025-10-20 13:55:41 +02:00
cb6f03fce4 Fix Qwen3-Omni inference when mixing video and image inputs in one batch (#41741)
* Fix qwen3omni inference when mixing video and image inputs in one batch

* Fix `router_aux_loss_coef`

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-10-20 11:35:02 +00:00
8fc5420913 Gemma3 conversion script maintenance (#41704)
* conversion: add include_vision_encoder flag (default true)

* conversion: update for inverted model.language_model weight path

* conversion: revert include_vision_encoder to True by default

* conversion: add chat template path flag
2025-10-20 12:52:22 +02:00
71db0d49e9 feat: add benchmark v2 ci with results pushed to dataset (#41672) 2025-10-20 08:56:58 +01:00
307c523854 further improve utils/check_bad_commit.py (#41658) (#41690)
* fix

* Update utils/check_bad_commit.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-10-17 23:07:00 +02:00
448c553ccb Update run_name docs in TrainingArguments (#41705)
Update run_name docs in TrainingArguments
2025-10-17 20:40:03 +00:00
cb4d4f5b75 pin torchcodec on CI docker image (#41703)
pin

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-17 20:50:18 +02:00
ac81541778 🌐 [i18n-KO] Translated gemma3n.md to Korean (#40873)
* fix: manual edits

* Apply suggestions from code review

Apply suggestions from code review and make additional revisions

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>

* Apply suggestions from code review

Apply suggestions from code review — updated inline links for related text

* Apply suggestions from code review

Apply suggestions from code review - final

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-17 09:57:05 -07:00
e7592f2508 [docs] Manual tp-plan (#41674)
* manual tp-plan

* feedback
2025-10-17 09:38:26 -07:00
347a0f9e83 Simplify GQA conditions in sdpa_attention.py (#41699)
Removed unnecessary checks for key being a torch.fx.Proxy in GQA conditions because fx tracing is no longer supported, and torch.export supports enable_gqa.
2025-10-17 16:36:38 +00:00
7e204ad121 [Attn] Allow dynamic causality in SDPA via Kwargs (#41692)
* is causal as kwarg

* Update src/transformers/integrations/sdpa_attention.py

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* fix comment

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-17 15:51:51 +00:00
a15d77cd0c Remove upper version bound of pandas (#41677)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 17:31:41 +02:00
12a50f294d Enable FURB rules in ruff (#41395)
* Apply ruff FURB rules

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Enable ruff FURB rules

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert changes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 15:00:40 +00:00
39b6d3bf7e Remove skipped tests without parents (#41691)
remove
2025-10-17 16:25:40 +02:00
75da795d8f 🚨 Remove torch.fx support (#41683)
* remove all

* fix comments

* better checks

* doc
2025-10-17 16:12:46 +02:00
080d704af1 Fix Pylint warnings (#41644)
* Fix pylint warnings

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Raise with an exception

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 13:09:42 +00:00
c01ceffeb4 Enable faiss-cpu on Windows (#41678)
faiss-cpu is supported on Windows

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 13:00:57 +00:00
10de06dace 🚨 [v5] Refactor RoPE for layer types (#39847)
* update

* batch update model code

* typos

* too many diffs, dump

* dump again

* another dump

* fix copies

* make `rope_scaling_dict` self attr

* fix a few more tests

* another update

* fix a few more tests, hopefully last ones

* fox copies

* fix copies again

* fix newly added models, I hate rebasing on main

* update config files

* modular files

* fix rope utils test

* docstring has to be indented more, why?

* oops forgot to update some modualr files

* copy from doesn't copy decorators?

* fix overriden test as well

* add a new test

* fix failing tests again

* update docstrings

* fix phi3

* fix two models

* fix copies

* forgot to add

* stupid bug from modular conversion

* fix slow tests

* update to call rotary emb once per model forward

* 3K tests failing?!

* update

* update more models

* fix copies

* fix the rest of tests hopefully

* fix after rebase

* fix the rope tests

* fix docs omni

* change a bit

* models with layer types

* why it was deleted?

* fix a few tests

* fix last test!

* delete extra empty lines

* add a test case

* more changes

* fix models

* typing hint for nested rope params

* missed when resolving conflicts

* delete layer types and fix typo

* fix copies

* fix copies

* update docs text

* docs

* huuge update all models

* fix copies

* rename attr to align with new format

* delete redundant rope tests

* trigger ci

* update the case

* this is why i hate rebasing

* maybe fixed?

* oops

* now fix?

* fix last tests and copies

* fix copies?

* fix minimax and gemma3n

* update typo

* deprecation end version

* final fix copies :fingers-crossed:

* oh my, add the docs in toctree

* oke, this is really the last fix

* fix copies and hope that tests won't start failing again

* use rope scaling if saved

* fix slow tests

* fix cwm and unrelated deepseek

* fix last

* update

* hope it works now, it took so long

* lets keep None for now, I will try to remove after checking tests

* some more fixes, i find and replace does not always find all cases

* last fix of tests

* arthur's comment for extra foreward kwargs

* delete unused code

* fix slow qwen tests

* delete layer types from models

* faulty modular conversion

* fix qwen omni

* fix copies and style

* address my comment

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-17 14:57:27 +02:00
def9a7ef05 Use | for Optional and Union typing (#41675)
Use | for Optional and Union typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 12:52:47 +00:00
0beda2aa3a Fix MarkDown syntax (#41676)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-17 12:44:27 +00:00
0b3aef1da9 🚨 Remove torchscript support (#41688)
* remove a lot

* remove the rest

* doc
2025-10-17 13:38:27 +02:00
7370a1babd path validation for security reason (#41256)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-17 12:36:04 +02:00
151d6adc86 Remove require_torch_bf16_gpu (#40979)
* More cleanup

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove more functions

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-10-17 12:35:19 +02:00
252d7cd952 Remove deprecated use_auth_token parameter (#41666)
* Remove deprecated use_auth_token

* code styl

* fix test

* Update examples/pytorch/speech-recognition/README.md
2025-10-17 09:57:46 +00:00
415cb37708 torch 2.9 still don't ❤️ torchcodec 0.8 💔 (#41686)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-17 11:57:28 +02:00
1eb45cd61d Fix ckpt in docs (#41659)
* fix ckpt in docs

* fix config ckpt
2025-10-17 11:00:34 +02:00
354567d955 Adding superglue fast image processing (#41394)
* Default implementation - no time improvement

* Improved implementation - apparently 2 times faster with only simple function refactor

* elementary torch first approach, still need further implementation of torch first method

* torch-first approach finished

* refactor processor

* refactor test

* partial doc update

* EfficientLoFTRImageProcessorFast based implementation

* EfficientLoFTRImageProcessorFast based implementation

* Logic checked - Test Passed - Validated execution speed

* use modular for efficientloftr

* fix import

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-10-16 19:34:09 +00:00
4dd4133d32 🌐 [i18n-KO] Translated ko-LFM2.md to Korean (#41502)
* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/model_doc/lfm2.md

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

* Update docs/source/ko/model_doc/lfm2.md

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

* Update docs/source/ko/model_doc/lfm2.md

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

* Update docs/source/ko/model_doc/lfm2.md

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

---------

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>
2025-10-16 11:29:04 -07:00
eefbf4ac8b 🌐 [i18n-KO] Translated llama4.md to Korean (#40396)
* docs: ko: llama4.md

* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

---------

Co-authored-by: TaskerJang <bymyself103@naver.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-10-16 11:28:27 -07:00
50ca781d78 🌐 [i18n-KO] Translated code_llama.md to Korean (#40558)
* docs: ko: code_llama.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

---------

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>
2025-10-16 11:27:46 -07:00
8739fc05c4 [i18n-KO] Translated big_bird.md to Korean (#40445)
* docs: ko: BigBird.md

* feat: nmt draft

* fix: manual edits
2025-10-16 11:23:56 -07:00
77b5ad65ee 🌐 [i18n-KO] Translated sam_hq.md to Korean (#41340)
* fix: manual edits

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-10-16 11:10:16 -07:00
a9731a725e 🌐 [i18n-KO] Translated chat_extras.md to Korean (#39863)
* docs: ko: chat_extras.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

* Apply suggestions from code review

* Update docs/source/ko/chat_extras.md
2025-10-16 10:41:03 -07:00
bdbc2d037b [Trainer] [Breaking change] use_cache default to False (#41585)
* use_cache default to `False` when training

* style

* Fix comment

* add checks

* style

* set

* switch
2025-10-16 18:51:36 +02:00
fe11cbb808 Erroring when KernelConfig is passed without use_kernels = True (#41657)
* update

* update
2025-10-16 18:08:46 +02:00
6344371a91 improve utils/check_bad_commit.py (#41658)
* robust

* robust

* robust

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-16 15:51:19 +00:00
a408384a88 Improve package version check (#41661)
fix
2025-10-16 17:31:58 +02:00
f7c33abab3 Small changes to benchmarking script (#41662) 2025-10-16 17:25:49 +02:00
9839d57a02 Fix serving continuous batching (#41624)
* udpate-serving-cb

* style

* style

* check none

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-10-16 17:24:21 +02:00
e85d5ab2bb Fix dtype casting with quantization (#41665)
fix dtype casting
2025-10-16 17:19:32 +02:00
1c36d407d5 Add in-out modalities as class attribute per model (#41366)
* update all models

* fix copies

* explanation comment

* better notation in omni model

* style

* fix copies

* output_modalities under generation mixin

* fix copies

* oh, glm4v also needs conversion
2025-10-16 17:11:06 +02:00
0215846d98 Switch to CB if cache_implementation == paged (#41655)
* Add a switch to CB in case of paged cache

* Added paged as a valid cache implem

* Added a fallback on inputs_ids as a name

* Rookie mistake

* Removed paged from cache implems

* Added warning about some  beam search args

* Moved up CB warning
2025-10-16 17:00:18 +02:00
9e99198e5e Use | for Optional and Union typing (#41646)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 14:29:54 +00:00
bf815e9b5e [Masks] Fix mask handling in eager for vision models (#41625)
add mask handling in case of models that do use it
2025-10-16 16:27:26 +02:00
vb
4a43e3d57c purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet (#41656) 2025-10-16 16:17:09 +02:00
8725ce10ed [Fix] Deepseek V3 expert bias routing (#41647)
* [Fix] Deepseek V3 expert bias routing

* [Fix] fix-copies

* [Fix] Run make style
2025-10-16 14:04:48 +00:00
1fb3fc4db0 [kernels] refactor function kernel calling (#41577)
* refactor function kernel callling

* nit

* don't pass the mapping

* use _kernels_available

* rm import
2025-10-16 15:43:02 +02:00
9176af574a Double router compute? (#41653)
* weird double router compute?

* flip it
2025-10-16 15:17:21 +02:00
503c933f36 Fix confusing cls assignment (#41642)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 13:01:07 +00:00
2aff20aff6 Fix typos in documentation (#41641)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:46 +00:00
981370c038 Format MarkDown documentation and tiny fixes (#41638)
* Fix MarkDown syntax

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:06 +00:00
eef9fb2af3 Fix EncoderDecoder cache (#41612)
* Fix EncoderDecoder cache

* Add the option for the ddp data tuples to have 2 elems

* Modifiy the order of the KV and sliding

* Adapted RAG and Whisper to new EncoderDecoderCache

* A single comma

* Remove kwargs in map

* Fixed order in manual injection cache test

* Slight changes to support legacy format

* Removed Nonnes
2025-10-16 14:55:41 +02:00
35dc8f0a2e Adjust device logging level and add minor fixes (#41636)
This commit addresses a noisy warning and improves the robustness of the base pipeline implementation.

- The device placement message in the pipeline base class has been changed from a `warning` to a `debug` log. This reduces log noise for users who are aware of their device setup, while still providing the information for debugging purposes.

- Additionally, potential `UnboundLocalError` exceptions in the `_pad` and `check_model_type` functions have been prevented by initializing variables before their conditional assignment.
2025-10-16 12:47:39 +00:00
2935a1be19 Fix fp32_ln for various models (#41605)
* Add is_causal to KosmosTextAttention

* Move get target_dtype to be imported elsewhere

* Fix fp32 flash attention bug in bark

* Fix is_causal in mllama

* Fix fp32 issue on StableLM

* Fix repo-consistency
2025-10-16 14:18:49 +02:00
b9bd8c45a1 [CI] Build translated docs (#41632)
fix
2025-10-16 14:01:33 +02:00
baecdb8a97 [Ernie 4.5 Moe] Fix Moe and offloading (#41385)
fix
2025-10-16 13:59:01 +02:00
44539827d5 [Executorch] Simplify for encoder models (#41627)
* Trigger Build

* revert extra treatment for executorch as we default to no vmapping now
2025-10-16 13:57:52 +02:00
143acfe2ce fix check inputs for text2text pipeline (#41556)
fix check inputs

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-16 11:42:41 +00:00
67fae90519 Fix FP-Quant quantization fallback CPU dispatch. (#41619)
* fp_quant fix

* Update quantizer_fp_quant.py
2025-10-16 11:41:01 +00:00
af2a66ced9 Migrate transformers cli to Typer (#41487)
* Add typer-slim as explicit dependency

* Migrate CLI to Typer

* code quality

* bump release candidate

* adapt test_cli.py

* Remove ./commands + adapt tests

* fix quality

* consistency

* doctested

* do not serve model in chat

* style

* will it fix them?

* fix test

* capitalize classes

* Rebase

* Rebase

* tests + fixup

tests + fixup

* csutom error message

* fix ?

* should be good

* fix caplog globally

* inner caplog

* last attempt

* Retry

* Let's try with capsys disabled

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-10-16 13:29:42 +02:00
a59124e27e Add missing dates to docs (#41576)
add dates
2025-10-16 09:32:28 +00:00
81f97b17d2 Remove randomly added script (#41650)
remove
2025-10-16 11:23:53 +02:00
c0a5cf19ad Fix tokenization test (#41649)
fix
2025-10-16 11:14:20 +02:00
3ef6f2c415 Allow passing tp_plan in from_pretrained directly (#41435)
* start

* allow passing it

* fix plans

* fix

* fix

* style

* style

* fix

* add_test

* oupsi indent

* fix

* fix

* fix for CI without accelerator

* fix import
2025-10-16 11:12:07 +02:00
59efd86da2 Add aux loss for GLM-4.5V (#41564)
* add aux

* update

* update config to text_config

* use qwen data class to avoid repeat again

* format

* update

* use 1e-4

* update

* update for remove init

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-10-16 09:04:21 +00:00
7b7d17f9bf 🚨 [v5] Toggle the serialization format in processors (#41474)
* toggle the serialization

* prob this fixes it

* fix tests

* typo

* delete legacy save entirely

* remove extra nesting in if

* revert test and serialzie a public attr instead of private
2025-10-16 10:19:22 +02:00
1675 changed files with 50584 additions and 42462 deletions

View File

@ -1,53 +0,0 @@
## Sentence structure
- Write short, declarative sentences most of the time.
- Vary sentence length to avoid sounding robotic. Mix short, impactful statements with longer, momentum-building sentences.
- Every time you use a comma, ask whether you can use a period instead.
- Avoid repeating the same words in a paragraph. Use synonyms or rephrase.
## Voice and tone
- Write like humans speak. Avoid corporate jargon and marketing fluff.
- Be confident and direct. Avoid softening phrases like "I think", "maybe", or "could".
- Use active voice instead of passive voice.
- Use positive phrasing - say what something *is* rather than what is *isn't*.
- Say "you" more than "we" when addressing external audiences.
- Use contractions like "I'll", "won't", and "can't" for a warmer tone.
## Specificity and evidence
- Be specific with facts and data instead of vague superlatives.
- Back up claims with concrete examples or metrics.
- Highlight customers and community members over company achievements.
- Use realistic, product-based examples instead of `foo/bar/baz` in code.
- Make content concrete, visual, and falsifiable.
## Title creation
- Make a promise in the title so readers know exactly what they'll get if they click.
- Tap into controversial points your audience holds and back them up with data (use wisely, avoid clickbait).
- Share something uniquely helpful that makes readers better at meaningful aspects of their lives.
- Avoid vague titles like "My Thoughts on XYZ". Titles should be opinions or shareable facts.
- Write placeholder titles first, complete the content, then spend time iterating on titles at the end.
## Ban phrases
- Avoid using "You can"
## Avoid LLM patterns
- Replace em dashes (-) with semicolons, commas, or sentence breaks.
- Avoid starting responses with "Great question!", "You're right!", or "Let me help you."
- Don't use phrases like "Let's dive into..."
- Skip cliché intros like "In today's fast-paced digital world" or "In the ever-evolving landscape of"
- Avoid phrases like "it's not just [x], it's [y]"
- Don't use high-school essay closers: "In conclusion,", "Overall,", or "To summarize"
- Avoid numbered lists in cases where bullets work better.
- Replace "In conclusion" with direct statements.
- Avoid hedge words: "might", "perhaps", "potentially" unless uncertainty is real.
- Don't stack hedging phrases: "may potentially", "it's important to note that".
- Don't create perfectly symmetrical paragraphs or lists that start with "Firstly... Secondly..."
- Avoid title-case headings: prefer sentence casing.
- Remove Unicode artifacts when copy-pasting: smart quotes ("), em-dashes, non-breaking spaces.
- Use '
- Delete empty citation placeholders like "[1]" with no actual source
## Punctuation and formatting
- Use Oxford commas consistently
- Use exclamation points sparingly
- Sentences can start with "But" and "And" but don't overuse
- Use periods instead of commas when possible for clarity

View File

@ -22,7 +22,6 @@ tests/generation/ @gante
/src/transformers/models/auto/ @ArthurZucker
/src/transformers/utils/ @ArthurZucker @Rocketknight1
/src/transformers/loss/ @ArthurZucker
/src/transformers/onnx/ @michaelbenayoun
# Specific files come after the sections/globs, so they take priority
/.circleci/config.yml @ArthurZucker @ydshieh

View File

@ -1,7 +1,10 @@
name: Self-hosted runner (benchmark)
on:
workflow_dispatch:
push:
branches: [main]
pull_request:
types: [ opened, labeled, reopened, synchronize ]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -9,6 +12,8 @@ concurrency:
env:
HF_HOME: /mnt/cache
DATASET_ID: hf-benchmarks/transformers
MODEL_ID: meta-llama/Llama-3.1-8B-Instruct
jobs:
benchmark:
@ -23,7 +28,7 @@ jobs:
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
container:
image: huggingface/transformers-pytorch-gpu
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host
steps:
- name: Get repo
@ -31,26 +36,12 @@ jobs:
with:
ref: ${{ github.event.pull_request.head.sha || github.sha }}
- name: Install libpq-dev & psql
run: |
apt update
apt install -y libpq-dev postgresql-client
- name: Install benchmark script dependencies
run: python3 -m pip install -r benchmark/requirements.txt
run: python3 -m pip install -r benchmark_v2/requirements.txt kernels
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
- name: Run database init script
run: |
psql -f benchmark/utils/init_db.sql
env:
PGDATABASE: metrics
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]" && python3 -m pip uninstall -y torchvision # temp fix
- name: Run benchmark
run: |
@ -61,13 +52,11 @@ jobs:
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
python3 benchmark_v2/run_benchmarks.py -b 32 -s 128 -n 256 --branch-name "$BRANCH_NAME" --commit-id "$commit_id" --commit-message "$commit_msg" --model-id "$MODEL_ID" --log-level INFO --push-result-to-dataset "$DATASET_ID"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
PUSH_TO_HUB_TOKEN: ${{ secrets.PUSH_TO_HUB_TOKEN }}
# Enable this to see debug logs
# HF_HUB_VERBOSITY: debug
# TRANSFORMERS_VERBOSITY: debug
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}

View File

@ -9,7 +9,7 @@ jobs:
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: aws-g5-4xlarge-cache-use1-public-80
container_image: huggingface/transformers-pytorch-gpu
container_image: huggingface/transformers-all-latest-gpu
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}

View File

@ -45,26 +45,52 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
title: 🤗 Results of the transformers-all-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
flash-attn-ci-image:
name: "PyTorch with Flash Attn [dev]"
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=2.8.0
TORCHCODEC=0.7.0
FLASH_ATTN=yes
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}:flash-attn
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -104,51 +130,8 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
@ -181,44 +164,6 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on:
@ -245,29 +190,47 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
cache-latest-pytorch-amd:
name: "Cache Latest Pytorch (AMD) Image"
needs: latest-pytorch-amd
runs-on:
group: amd-mi325-1gpu
steps:
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Pull and save docker image to cache
run: |
image="huggingface/transformers-pytorch-amd-gpu"
final_path="/mnt/image-cache/transformers-pytorch-amd-gpu.tar"
tmp_path="${final_path}.tmp"
echo "Pulling image: ${image}"
docker pull "${image}"
echo "Saving to temp file: ${tmp_path}"
docker save "${image}" -o "${tmp_path}"
echo "Moving to final path: ${final_path}"
mv -f "${tmp_path}" "${final_path}"
echo "Cache populated successfully at ${final_path}"
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on:
@ -294,19 +257,6 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
@ -319,8 +269,6 @@ jobs:
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:

View File

@ -41,9 +41,14 @@ env:
jobs:
check_new_failures:
name: " "
name: "Find commits for new failing tests"
strategy:
matrix:
run_idx: [1]
runs-on:
group: aws-g5-4xlarge-cache
outputs:
process: ${{ steps.check_file.outputs.process }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -54,14 +59,17 @@ jobs:
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
id: check_file
working-directory: /transformers
run: |
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
echo "process=true" >> $GITHUB_OUTPUT
else
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
echo "process=false" >> $GITHUB_OUTPUT
fi
- uses: actions/download-artifact@v4
@ -118,6 +126,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Install pytest-flakefinder
if: ${{ env.process == 'true' }}
run: python3 -m pip install pytest-flakefinder
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
@ -126,25 +138,63 @@ jobs:
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
cat new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Checkout back
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
process_new_failures_with_commit_info:
name: "process bad commit reports"
needs: check_new_failures
if: needs.check_new_failures.outputs.process == 'true'
runs-on:
group: aws-g5-4xlarge-cache
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- uses: actions/download-artifact@v4
with:
pattern: new_failures_with_bad_commit_${{ inputs.job }}*
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}
merge-multiple: true
- name: Check files
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
ls -la /transformers
ls -la /transformers/new_failures_with_bad_commit_${{ inputs.job }}
# Currently, we only run with a single runner by using `run_idx: [1]`. We might try to run with multiple runners
# to further reduce the false positive caused by flaky tests, which requires further processing to merge reports.
- name: Merge files
shell: bash
working-directory: /transformers
run: |
cp /transformers/new_failures_with_bad_commit_${{ inputs.job }}/new_failures_with_bad_commit_${{ inputs.job }}_1.json new_failures_with_bad_commit.json
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -156,7 +206,6 @@ jobs:
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -171,13 +220,12 @@ jobs:
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.

View File

@ -28,6 +28,9 @@ on:
report_repo_id:
required: false
type: string
pytest_marker:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -137,7 +140,7 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: |
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v -m '${{ inputs.pytest_marker }}' --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
ls -la
# Extract the exit code from the output file
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)

View File

@ -98,7 +98,7 @@ jobs:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
languages: ar de en es fr hi it ja ko pt zh
update_run_status:
name: Update Check Run Status

View File

@ -149,7 +149,7 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-push"
docker: huggingface/transformers-all-latest-gpu
docker: huggingface/transformers-all-latest-gpu:flash-attn
ci_event: push
report_repo_id: hf-internal-testing/transformers_ci_push
commit_sha: ${{ github.sha }}

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

View File

@ -1,334 +0,0 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_models_gpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_models_gpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup_gpu.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup_gpu.result }}
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

View File

@ -1,54 +0,0 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-22.04
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-22.04
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,652 +0,0 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- ci_*
- ci-*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
repository_dispatch:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -63,7 +63,7 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-pytorch-gpu
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}

View File

@ -0,0 +1,60 @@
name: Nvidia CI - Flash Attn
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci_flash_attn*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-flash-attn"
docker: huggingface/transformers-all-latest-gpu:flash-attn
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_flash_attn_ci
commit_sha: ${{ github.sha }}
pytest_marker: "flash_attn_test or flash_attn_3_test"
secrets: inherit

View File

@ -38,6 +38,10 @@ on:
default: ""
required: false
type: string
pytest_marker:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -127,6 +131,7 @@ jobs:
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
pytest_marker: ${{ inputs.pytest_marker }}
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -160,7 +165,7 @@ jobs:
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-gpu
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone

4
.gitignore vendored
View File

@ -98,6 +98,7 @@ celerybeat-schedule
# Environments
.env
.venv
.venv*
env/
venv/
ENV/
@ -171,3 +172,6 @@ tags
# modular conversion
*.modular_backup
# Cursor IDE files
.cursor/

View File

@ -14,7 +14,7 @@ This AGENTS.md file provides guidance for code agents working with this codebase
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
- Code style is enforced in the CI. You can install the style tools with `pip install -e ".[quality]"`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
@ -36,4 +36,4 @@ After making changes, you should usually run `make fixup` to ensure any copies a
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e ".[testing]"`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -112,7 +112,125 @@ New models are constantly released and if you want to implement a new model, ple
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/modular_transformers).
### Vision-Language Model Contribution Checklist
If you're contributing a **vision-language model** (or any multimodal model that processes images/videos), please follow this checklist. Maintainers will use this to review your PR, and completing these steps will significantly increase the likelihood of your PR being merged quickly.
**Required checklist for all vision-language model contributions:**
**1. Implement a modular file**
All new models should use the modular architecture pattern. Create a `modular_<model_name>.py` file using the modular model converter:
- Use the CLI, [`transformers add-new-model-like`](https://github.com/huggingface/transformers/blob/main/src/transformers/cli/add_new_model_like.py) to generate a modular skeleton and get started
- All code should be in the modular file if possible. Modeling must be in it, it's better if configuration is in it as well.
- Reuse existing patterns from similar models as much as possible
To verify your modular file is correct, run:
```bash
python utils/modular_model_converter.py <model_name>
```
This will generate the separate files (`modeling_*.py`, `configuration_*.py`, etc.) from your modular file. The CI will enforce that these generated files match your modular file.
**2. Add a fast image processor (for image models)**
If your model processes images, implement a fast image processor that uses `torch` and `torchvision` instead of PIL/numpy for better inference performance:
- See the detailed guide in [#36978](https://github.com/huggingface/transformers/issues/36978)
- Fast processors inherit from `BaseImageProcessorFast`
- Examples: `LlavaOnevisionImageProcessorFast`, `Idefics2ImageProcessorFast`
**3. Create a weight conversion script**
Add a `convert_<model_name>_to_hf.py` script that converts the original model weights to the HuggingFace format:
- Script should handle checkpoint loading, key mapping, and saving in HF format
- Include usage examples and documentation in the script
- Examples: [`convert_llava_onevision_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py), [`convert_idefics2_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py)
**4. Add integration tests with exact output matching**
At minimum, add an `IntegrationTest` class that tests end-to-end generation (processing and modelling) with **exact** output matching:
- For generative models: test that generated text matches expected output exactly
- For non-generative models: test that output logits match expected values
- Tests should use real checkpoints (load in 4-bit or half precision if the checkpoint is too big to fit in our CI runners) and real inputs
- Example pattern:
```python
class MyModelIntegrationTest(unittest.TestCase):
@slow
def test_model_integration(self):
model = MyModelForConditionalGeneration.from_pretrained("org/model-name")
processor = AutoProcessor.from_pretrained("org/model-name")
inputs = processor(images=image, text=prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_TEXT = "exact expected output"
self.assertEqual(processor.decode(output[0]), EXPECTED_TEXT)
```
See `tests/models/llava_onevision/test_modeling_llava_onevision.py` for complete examples.
**5. Update documentation**
Add or update model documentation:
- Create if the cli hasn't `docs/source/en/model_doc/<model_name>.md` with usage examples
- Include model description, paper link, and basic usage with `Pipeline` and `AutoModel`
- Add the model to the appropriate TOC files
**6. Look for reusable patterns**
The library has 400+ models with many established patterns:
- Search for similar models (e.g., other vision-language models)
- Reuse attention mechanisms, layer implementations, and processing patterns
- Check models like LLaVA, Idefics2, Fuyu for vision-language patterns
- Use provided decorators like (`auto_docstring`, `can_return_tuple`, `check_model_inputs` and `_can_record_outputs`) where relevant.
- Don't reinvent the wheel
**7. Run quality checks and read the output**
Before submitting your PR, install quality dependencies and run the full check suite:
```bash
pip install -e ".[quality]"
make fixup
```
**Important**: Take time to read the output of `make fixup`. It will:
- Lint and format your code automatically
- Run consistency checks (imports, docstrings, etc.)
- Show any remaining issues that need manual fixes
All checks must pass before your PR can be merged.
**If this checklist is complete, your PR has a very high likelihood of being merged!** Following these steps makes the maintainers' work much easier and will reduce the number of review iterations, getting your important work out there faster.
#### Copy-pastable checklist for maintainers
Here's a condensed version maintainers can copy into PRs:
```markdown
## Multimodal Model Addition Checklist
Please ensure your PR completes all following items. See the [full checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#vision-language-model-contribution-checklist) for details.
- [ ] **Modular file**: `modular_<model_name>.py` implemented and verified with `python utils/modular_model_converter.py <model_name>`
- [ ] **Fast image processor**: Implemented using `BaseImageProcessorFast` (see [#36978](https://github.com/huggingface/transformers/issues/36978))
- [ ] **Conversion script**: `convert_<model_name>_to_hf.py` added with usage examples
- [ ] **Integration tests**: End-to-end tests with exact output matching (text or logits)
- [ ] **Documentation**: Model docs added/updated in `docs/source/en/model_doc/`
- [ ] **Pattern reuse**: Verified against similar models (LLaVA, Idefics2, etc.)
- [ ] **Quality checks**: `make fixup` passes with no errors
```
## Do you want to add documentation?

View File

@ -64,8 +64,8 @@ limitations under the License.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
Transformers acts as the model-definition framework for state-of-the-art machine learning with text, computer
vision, audio, video, and multimodal models, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training

View File

@ -9,6 +9,12 @@ In this list, we showcase incredibly impactful and novel projects that have push
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [◉ Universal Intelligence](https://github.com/blueraai/universal-intelligence)
[Universal Intelligence](https://github.com/blueraai/universal-intelligence) aims to standardize models, tools, and agents —transforming them into simple, composable, portable, interoperable, framework-agnostic, hardware-agnostic interfaces (through auto-negotiation and resource sharing); for fast and accessible development of AI applications.
Keywords: Protocol, Open-source, LLMs, Large Language Models, Agents, Low-code
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.

View File

@ -16,7 +16,6 @@ import sys
from logging import Logger
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
# Add the parent directory to Python path to import benchmarks_entrypoint
@ -42,7 +41,7 @@ except ImportError:
GenerationConfig = None
StaticCache = None
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_XET_HIGH_PERFORMANCE"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
# Only set torch precision if torch is available
@ -145,7 +144,7 @@ def run_benchmark(
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def logits_to_probs(logits, temperature: float = 1.0, top_k: int | None = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
@ -155,7 +154,7 @@ def run_benchmark(
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def sample(logits, temperature: float = 1.0, top_k: int | None = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs

View File

@ -2,5 +2,5 @@ gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_transfer
hf_xet
pandas>=1.5.0

View File

@ -1,7 +1,7 @@
import hashlib
import json
import logging
from typing import Any, Optional
from typing import Any
KERNELIZATION_AVAILABLE = False
@ -22,16 +22,16 @@ class BenchmarkConfig:
self,
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
gpu_monitoring: bool = True, # NOTE: you may want to disable this at times as we have obsvered it could heavily slow down benchmarks on AMD
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
attn_implementation: str = "eager",
sdpa_backend: Optional[str] = None,
compile_mode: Optional[str] = None,
compile_options: Optional[dict[str, Any]] = None,
sdpa_backend: str | None = None,
compile_mode: str | None = None,
compile_options: dict[str, Any] | None = None,
kernelize: bool = False,
name: Optional[str] = None,
name: str | None = None,
skip_validity_check: bool = False,
) -> None:
# Benchmark parameters
@ -104,7 +104,7 @@ class BenchmarkConfig:
"attn_implementation": self.attn_implementation,
"sdpa_backend": self.sdpa_backend,
"compile_mode": self.compile_mode,
"compile_options": self.compile_options,
"compile_options": self.compile_options | {}, # to avoid inplace modification of the original dict
"kernelize": self.kernelize,
}
@ -128,15 +128,15 @@ class BenchmarkConfig:
def cross_generate_configs(
attn_impl_and_sdpa_backend: list[tuple[str, Optional[str]]],
compiled_mode: list[Optional[str]],
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
compiled_mode: list[str | None],
kernelized: list[bool],
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
gpu_monitoring: bool = True,
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
@ -169,7 +169,7 @@ def generate_all_configs(
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
gpu_monitoring: bool = True,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
@ -191,28 +191,24 @@ def generate_all_configs(
)
def generate_default_configs(
def generate_main_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"), # note: this one can fail with compile because of attn mask
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
}
return [ # TODO: test max-autotune instead of default
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", gpu_monitoring=False, **kwargs),
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", gpu_monitoring=True, **kwargs),
BenchmarkConfig(attn_implementation="eager", compile_mode="default", gpu_monitoring=True, **kwargs),
BenchmarkConfig(attn_implementation="flash_attention_2", gpu_monitoring=True, **kwargs),
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "max-autotune"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)

View File

@ -4,13 +4,16 @@ import logging
import os
import pathlib
import re
import tempfile
import time
from contextlib import nullcontext
from datetime import datetime
from queue import Queue
from typing import Any, Optional
from typing import Any
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from tqdm import trange
from transformers import (
@ -50,6 +53,8 @@ DEFAULT_PROMPT = "\n".join([
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
]) # fmt: skip
PUSH_TO_HUB_TOKEN = os.getenv("PUSH_TO_HUB_TOKEN", None)
def compact_json_numeric_arrays(data: dict):
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
@ -74,7 +79,7 @@ def get_git_revision() -> str:
return git_hash.readline().strip()
def get_sdpa_backend(backend_name: Optional[str]) -> Optional[torch.nn.attention.SDPBackend]:
def get_sdpa_backend(backend_name: str | None) -> torch.nn.attention.SDPBackend | None:
"""Get the SDPA backend enum from string name."""
if backend_name is None:
return None
@ -120,15 +125,19 @@ def flush_memory():
class BenchmarkStreamer(BaseStreamer):
def __init__(self, **kwargs) -> None:
self.timeout = kwargs.pop("timeout", 10)
self.timestamps = []
self.text_queue = Queue()
self.stop_signal = None
def put(self, value):
"""Receives tokens and logs the timestamp of the generation."""
self.timestamps.append(time.perf_counter())
self.text_queue.put(value)
def end(self):
self.timestamps.append(time.perf_counter())
self.text_queue.put(self.stop_signal)
def __iter__(self):
return self
@ -145,25 +154,34 @@ class BenchmarkRunner:
"""Main benchmark runner that coordinates benchmark execution."""
def __init__(
self, logger: logging.Logger, output_dir: str = "benchmark_results", commit_id: Optional[str] = None
self,
logger: logging.Logger,
output_dir: str | None = None,
branch_name: str | None = None,
commit_id: str | None = None,
commit_message: str | None = None,
) -> None:
# Those stay constant for the whole run
self.logger = logger
if output_dir is None:
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
self.output_dir = output_dir
self.branch_name = branch_name
self.commit_id = get_git_revision() if commit_id is None else commit_id
self.commit_message = commit_message
os.makedirs(self.output_dir, exist_ok=True)
self.profile_dir = None
# Attributes that are reset for each model
self._setup_for = ""
# Attributes that are reset for each run
self.model: Optional[GenerationMixin] = None
self.model: GenerationMixin | None = None
def cleanup(self) -> None:
del self.model
self.model = None
flush_memory()
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
def setup_benchmark(self, model_id: str, config: BenchmarkConfig) -> None:
# Some attributes only need to be set once per model
if self._setup_for != model_id:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
@ -200,10 +218,13 @@ class BenchmarkRunner:
self.model = self.model.eval().to(config.device)
# Kernelize the model if needed
if config.kernelize:
if config.kernelize and kernelize is not None and Mode is not None:
self.model = kernelize(self.model, mode=Mode.INFERENCE)
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
def run_benchmark(
self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0
) -> dict[str, Any] | None:
"""Run a single benchmark with the given model ID and config."""
sdpa_ctx = nullcontext()
if config.attn_implementation == "sdpa":
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
@ -214,7 +235,7 @@ class BenchmarkRunner:
# Quick validation: try one measurement first to see if this scenario works
flush_memory()
e2e_latency, token_generation_times, decoded_output, gpu_metrics = self.time_generate(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=1, gpu_monitor=None
)
if e2e_latency < 0:
@ -231,11 +252,11 @@ class BenchmarkRunner:
result = BenchmarkResult()
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
for _ in trange(config.measurement_iterations):
e2e_latency, token_generation_times, decoded_output, gpu_metrics = self.time_generate(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=config.num_tokens_to_generate,
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
)
result.accumulate(e2e_latency, token_generation_times, decoded_output, gpu_metrics)
result.accumulate(e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics)
self.logger.info("Benchmarking done. Cleaning up.")
# Profile if needed
@ -243,7 +264,12 @@ class BenchmarkRunner:
self.profile_generate(num_tokens_to_profile, config.name)
return {
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
"metadata": BenchmarkMetadata(
model_id=model_id,
branch_name=self.branch_name,
commit_id=self.commit_id,
commit_message=self.commit_message,
),
"measurements": result,
"config": config,
}
@ -251,8 +277,8 @@ class BenchmarkRunner:
def time_generate(
self,
max_new_tokens: int,
gpu_monitor: Optional[GPUMonitor] = None,
) -> tuple[float, list[float], str, Optional[GPURawMetrics]]:
gpu_monitor: GPUMonitor | None = None,
) -> tuple[float, list[float], str, GPURawMetrics | None]:
"""Time the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
# Prepare gpu monitoring if needed
if gpu_monitor is not None:
@ -277,10 +303,11 @@ class BenchmarkRunner:
raise RuntimeError(f"Generated {new_tokens} tokens, expected {max_new_tokens}")
# Decode outputs
decoded_output = self.tokenizer.decode(outputs[0, input_tokens:], skip_special_tokens=True)
shape_and_decoded_output = f"{tuple(outputs.shape)} | {decoded_output}"
# Compute intermediate quantities
e2e_latency = wall_time_1 - wall_time_0
token_generation_times = [t - wall_time_0 for t in streamer.timestamps[1:]]
return e2e_latency, token_generation_times, decoded_output, gpu_metrics
return e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics
def profile_generate(self, num_tokens_to_profile: int, config_name: str) -> None:
"""Profile the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
@ -304,7 +331,8 @@ class BenchmarkRunner:
benchmark_configs: list[BenchmarkConfig],
num_tokens_to_profile: int = 0,
pretty_print_summary: bool = True,
) -> dict[str, Any]:
) -> tuple[str, dict[str, Any]]:
"""Run multiple benchmarks for the given model ID and list of benchmark configs."""
all_results = {}
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
start_time = time.perf_counter()
@ -323,14 +351,14 @@ class BenchmarkRunner:
continue
# Otherwise, run the benchmark
self.setup_one_run(model_id, config)
self.setup_benchmark(model_id, config)
self.logger.info(
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
)
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
try:
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
results = self.run_benchmark(model_id, config, num_tokens_to_profile)
if results is not None:
all_results[config.hash] = results
@ -351,13 +379,13 @@ class BenchmarkRunner:
first_metadata = all_results[first_key]["metadata"].to_dict()
hardware_info = first_metadata.pop("hardware_info")
pretty_print_dict(first_metadata | hardware_info, tabs=1)
for value in all_results.values():
for result in all_results.values():
print("=" * 100)
print(f"Config: {value['config'].infer_name(compact=False)}\n")
value["measurements"].pprint(tabs=1)
print(f"Config: {result['config'].infer_name(compact=False)}\n")
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
print("=" * 100)
return all_results
return (timestamp, all_results)
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
"""Save benchmark results to JSON file."""
@ -386,3 +414,43 @@ class BenchmarkRunner:
self.logger.info(f"Results saved to {filepath}")
return filepath
def push_results_to_hub(self, dataset_id: str, results: dict[Any, Any], timestamp: str) -> None:
if PUSH_TO_HUB_TOKEN is None:
raise ValueError(
"PUSH_TO_HUB_TOKEN is not set, cannot push results to the Hub. When setting dataset_id, please also set the PUSH_TO_HUB_TOKEN environment variable."
)
n_results = len(results)
self.logger.info(f"Pushing {n_results} results to: {dataset_id}")
rows = []
for cfg_hash, entry in results.items():
row = {
"benchmark_config_hash": cfg_hash,
"config": entry["config"].to_dict(),
"measurements": entry["measurements"].to_dict(),
"metadata": entry["metadata"].to_dict(),
}
rows.append(row)
ds = Dataset.from_list(rows)
with tempfile.TemporaryDirectory() as tmp:
jsonl_path = os.path.join(tmp, "data.jsonl")
with open(jsonl_path, "w") as f:
json_lines = []
for ex in ds:
json_lines.append(json.dumps(ex, ensure_ascii=False))
f.write("\n".join(json_lines))
api = HfApi()
# NOTE: we expect the repository to already exist
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
file_name = f"benchmark_run_{timestamp}.jsonl"
api.upload_file(
path_or_fileobj=jsonl_path,
path_in_repo=file_name,
repo_id=dataset_id,
repo_type="dataset",
token=PUSH_TO_HUB_TOKEN,
)
self.logger.info(f"Succesfully uploaded results to: {dataset_id}")

View File

@ -1,6 +1,6 @@
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Optional, Union
from datetime import datetime, timezone
from typing import Any
import numpy as np
@ -59,19 +59,26 @@ class BenchmarkMetadata:
model_id: str
timestamp: str
branch_name: str
commit_id: str
commit_message: str
hardware_info: HardwareInfo
def __init__(self, model_id: str, commit_id: str):
def __init__(self, model_id: str, commit_id: str, branch_name: str = "main", commit_message: str = "") -> None:
self.model_id = model_id
self.timestamp = datetime.utcnow().isoformat()
self.timestamp = datetime.now(timezone.utc).isoformat()
self.branch_name = branch_name
self.commit_id = commit_id
self.commit_message = commit_message
self.hardware_info = HardwareInfo()
def to_dict(self) -> dict[str, Any]:
return {
"model_id": self.model_id,
"timestamp": self.timestamp,
"branch_name": self.branch_name,
"commit_id": self.commit_id,
"commit_message": self.commit_message,
"hardware_info": self.hardware_info.to_dict(),
}
@ -82,22 +89,22 @@ class BenchmarkResult:
def __init__(self) -> None:
self.e2e_latency = []
self.token_generation_times = [] # time at which each token was generated (relative to start of the generation)
self.decoded_outputs = []
self.shape_and_decoded_outputs = []
self.gpu_metrics = []
def accumulate(
self,
e2e_latency: float,
token_generation_times: list[float],
decoded_output: str,
gpu_metrics: Optional[GPURawMetrics],
shape_and_decoded_output: str,
gpu_metrics: GPURawMetrics | None,
) -> None:
self.e2e_latency.append(e2e_latency)
self.token_generation_times.append(token_generation_times)
self.decoded_outputs.append(decoded_output)
self.shape_and_decoded_outputs.append(shape_and_decoded_output)
self.gpu_metrics.append(gpu_metrics)
def to_dict(self) -> dict[str, Union[None, int, float]]:
def to_dict(self) -> dict[str, None | int | float]:
# Save GPU metrics as None if it contains only None values
if all(gm is None for gm in self.gpu_metrics):
gpu_metrics = None
@ -106,12 +113,12 @@ class BenchmarkResult:
return {
"e2e_latency": self.e2e_latency,
"token_generation_times": self.token_generation_times,
"decoded_outputs": self.decoded_outputs,
"shape_and_decoded_outputs": self.shape_and_decoded_outputs,
"gpu_metrics": gpu_metrics,
}
@classmethod
def from_dict(cls, data: dict[str, Union[None, int, float]]) -> "BenchmarkResult":
def from_dict(cls, data: dict[str, None | int | float]) -> "BenchmarkResult":
# Handle GPU metrics, which is saved as None if it contains only None values
if data["gpu_metrics"] is None:
gpu_metrics = [None for _ in range(len(data["e2e_latency"]))]
@ -123,7 +130,7 @@ class BenchmarkResult:
new_instance.accumulate(
e2e_latency=data["e2e_latency"][i],
token_generation_times=data["token_generation_times"][i],
decoded_output=data["decoded_output"][i],
shape_and_decoded_output=data["shape_and_decoded_outputs"][i],
gpu_metrics=gpu_metrics[i],
)
return new_instance
@ -134,19 +141,27 @@ class BenchmarkResult:
def get_measured_itl(self) -> list[float]:
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
def pprint(self, tabs: int = 0) -> None:
collated_stats = equalize_lengths_and_collate(
[
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
)
pretty_print_dict(
{
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
},
tabs=tabs,
)
def get_throughput(self, batch_size: int) -> float:
return [
batch_size * len(dt) / e2e_latency
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
]
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
stats_to_collate = [
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
if batch_size > 0:
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
collated_stats = equalize_lengths_and_collate(stats_to_collate)
dict_to_pprint = {
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
}
if batch_size > 0:
dict_to_pprint["Throughput"] = collated_stats[3]
pretty_print_dict(dict_to_pprint, tabs=tabs)

View File

@ -7,7 +7,6 @@ import time
from dataclasses import dataclass
from enum import Enum
from logging import Logger
from typing import Optional, Union
import gpustat
import psutil
@ -42,7 +41,7 @@ class HardwareInfo:
self.cpu_count = psutil.cpu_count()
self.memory_total_mb = int(psutil.virtual_memory().total / (1024 * 1024))
def to_dict(self) -> dict[str, Union[None, int, float, str]]:
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"gpu_name": self.gpu_name,
"gpu_memory_total_gb": self.gpu_memory_total_gb,
@ -109,7 +108,7 @@ class GPURawMetrics:
timestamp_0: float # in seconds
monitoring_status: GPUMonitoringStatus
def to_dict(self) -> dict[str, Union[None, int, float, str]]:
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"utilization": self.utilization,
"memory_used": self.memory_used,
@ -123,7 +122,7 @@ class GPURawMetrics:
class GPUMonitor:
"""Monitor GPU utilization during benchmark execution."""
def __init__(self, sample_interval_sec: float = 0.1, logger: Optional[Logger] = None):
def __init__(self, sample_interval_sec: float = 0.1, logger: Logger | None = None):
self.sample_interval_sec = sample_interval_sec
self.logger = logger if logger is not None else logging.getLogger(__name__)

View File

@ -4,4 +4,4 @@ gpustat>=1.0.0
torch>=2.0.0
transformers>=4.30.0
datasets>=2.10.0
huggingface_hub>=0.16.0
huggingface_hub>=0.16.0

View File

@ -20,31 +20,43 @@ in the ./benches directory, organizing outputs into model-specific subfolders.
import argparse
import logging
import random
import sys
import uuid
from framework.benchmark_config import BenchmarkConfig, generate_all_configs
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
from framework.benchmark_runner import BenchmarkRunner
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--output-dir", type=str, default="benchmark_results", help="Output dir for benchmark results")
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup", type=int, default=5, help="Number of warmup iterations")
parser.add_argument("--iterations", type=int, default=20, help="Number of measurement iterations")
parser.add_argument("--warmup", "-w", type=int, default=3, help="Number of warmup iterations")
parser.add_argument("--iterations", "-i", type=int, default=10, help="Number of measurement iterations")
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
parser.add_argument("--branch-name", type=str, help="Git branch name")
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
parser.add_argument("--commit-message", type=str, help="Git commit message")
parser.add_argument(
"--no-gpu-monitoring", action="store_true", help="Disables GPU monitoring during benchmark runs"
)
parser.add_argument(
"--push-result-to-dataset",
type=str,
default=None,
help="Name of the dataset to push results to. If not provided, results are not pushed to the Hub.",
)
args = parser.parse_args()
# Setup logging
@ -69,43 +81,62 @@ if __name__ == "__main__":
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
benchmark_configs = generate_all_configs(
if args.cross_generate:
benchmark_configs = generate_all_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
gpu_monitoring=not args.no_gpu_monitoring,
)
else:
benchmark_configs = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
# Otherwise, we benchmark across all combinations of dimensions
else:
main_config = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
random.shuffle(benchmark_configs)
# Otherwise, we benchmark across all combinations of dimensions
else:
kwargs = {
"warmup_iterations": args.warmup,
"measurement_iterations": args.iterations,
"gpu_monitoring": False,
"batch_size": args.batch_size[0],
"sequence_length": args.sequence_length[0],
"num_tokens_to_generate": args.num_tokens_to_generate[0],
"attn_implementation": "flex_attention",
"sdpa_backend": None,
"compile_mode": "default",
"kernelize": False,
}
)[0]
benchmark_configs = []
for num_tokens_to_generate in args.num_tokens_to_generate:
for sequence_length in args.sequence_length:
for batch_size in args.batch_size:
kwargs["batch_size"] = batch_size
kwargs["sequence_length"] = sequence_length
kwargs["num_tokens_to_generate"] = num_tokens_to_generate
benchmark_configs.append(BenchmarkConfig(**kwargs))
cfg_dict = main_config.to_dict()
cfg_dict["batch_size"] = batch_size
cfg_dict["sequence_length"] = sequence_length
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
cfg_dict.pop("name")
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
results = runner.run_benchmarks(
runner = BenchmarkRunner(
logger,
args.output_dir,
args.branch_name,
args.commit_id,
args.commit_message,
)
timestamp, results = runner.run_benchmarks(
args.model_id,
benchmark_configs[:3],
benchmark_configs,
args.num_tokens_to_profile,
pretty_print_summary=True,
)
# runner.save_results(args.model_id, results)
dataset_id = args.push_result_to_dataset
if dataset_id is not None and len(results) > 0:
runner.push_results_to_hub(
dataset_id,
results,
timestamp,
)

View File

@ -58,7 +58,6 @@ NOT_DEVICE_TESTS = {
"test_model_get_set_embeddings",
"test_model_main_input_name",
"test_correct_missing_keys",
"test_tie_model_weights",
"test_can_use_safetensors",
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
@ -88,6 +87,8 @@ def pytest_configure(config):
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
config.addinivalue_line("markers", "flash_attn_test: mark test which tests flash attention functionality")
config.addinivalue_line("markers", "flash_attn_3_test: mark test which tests flash attention 3 functionality")
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN git lfs install

View File

@ -17,7 +17,7 @@ RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"

View File

@ -9,10 +9,15 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.9.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# This needs to be compatible with the above `PYTORCH`.
ARG TORCHCODEC='0.8.0'
ARG FLASH_ATTN='false'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
@ -21,10 +26,44 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev]
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
# 2. For `torchcodec`, use `cpu` as we don't have `libnvcuvid.so` on the host runner. See https://github.com/meta-pytorch/torchcodec/issues/912
# **Important**: We need to specify `torchcodec` version if the torch version is not the latest stable one.
# 3. `set -e` means "exit immediately if any command fails".
RUN set -e; \
# Determine torch version
if [ ${#PYTORCH} -gt 0 ] && [ "$PYTORCH" != "pre" ]; then \
VERSION="torch==${PYTORCH}.*"; \
TORCHCODEC_VERSION="torchcodec==${TORCHCODEC}.*"; \
else \
VERSION="torch"; \
TORCHCODEC_VERSION="torchcodec"; \
fi; \
\
# Log the version being installed
echo "Installing torch version: $VERSION"; \
\
# Install PyTorch packages
if [ "$PYTORCH" != "pre" ]; then \
python3 -m pip install --no-cache-dir -U \
$VERSION \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/$CUDA; \
# We need to specify the version if the torch version is not the latest stable one.
python3 -m pip install --no-cache-dir -U \
$TORCHCODEC_VERSION --extra-index-url https://download.pytorch.org/whl/cpu; \
else \
python3 -m pip install --no-cache-dir -U --pre \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/nightly/$CUDA; \
python3 -m pip install --no-cache-dir -U --pre \
torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/cpu; \
fi
RUN python3 -m pip install --no-cache-dir -U timm
@ -53,7 +92,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
RUN python3 -m pip install --no-cache-dir quanto
# After using A10 as CI runner, let's run FA2 tests
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
RUN [ "$FLASH_ATTN" != "false" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
# TODO (ydshieh): check this again
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests

View File

@ -1,4 +1,4 @@
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
FROM rocm/pytorch:rocm7.0.2_ubuntu24.04_py3.12_pytorch_release_2.7.1
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -10,8 +10,8 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy importlib-metadata setuptools wheel ninja pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git
ARG REF=main
WORKDIR /
@ -39,6 +39,7 @@ RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
cd flash-attention && \
GPU_ARCHS="gfx942" python setup.py install
GPU_ARCHS="gfx942;gfx950" python setup.py install
# GPU_ARCHS builds for MI300, MI325 and MI355
RUN python3 -m pip install --no-cache-dir einops

View File

@ -3,11 +3,10 @@ LABEL maintainer="Hugging Face"
SHELL ["/bin/bash", "-c"]
ARG PYTHON_VER=3.11
ARG PYTHON_VER=3.12
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get remove -y python3.10 && apt-get autoremove -y
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
@ -23,7 +22,6 @@ RUN apt-get update && \
apt-utils \
build-essential \
ca-certificates \
clinfo \
curl \
git \
git-lfs \
@ -35,7 +33,6 @@ RUN apt-get update && \
rsync \
sudo \
libnl-genl-3-200 \
xpu-smi \
unzip \
ffmpeg \
tesseract-ocr \
@ -45,34 +42,47 @@ RUN apt-get update && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get update && \
apt-get install -y \
linux-headers-$(uname -r) \
linux-modules-extra-$(uname -r) \
linux-headers-$(uname -r) linux-modules-extra-$(uname -r) \
flex bison \
intel-fw-gpu intel-i915-dkms xpu-smi \
intel-fw-gpu intel-i915-dkms xpu-smi intel-ocloc clinfo\
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libegl-mesa0 libegl1 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo \
libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN pip install --upgrade pip
RUN pip install triton==3.3.0
# Use virtual env because Ubuntu-24 does not allowed pip on original python
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VER} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
RUN pip install --upgrade pip wheel
RUN pip install triton==3.4.0
RUN pip install evaluate torchdata pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree
RUN pip install gguf hqq compressed_tensors gptqmodel mergekit autoawq deepspeed torchao onnx
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft
RUN pip install torch==2.8.0+xpu torchvision==0.23.0+xpu torchaudio==2.8.0+xpu --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
RUN pip install torchcodec torchdata --no-cache-dir
RUN pip install evaluate pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree setuptools
RUN pip install gptqmodel --no-build-isolation
RUN pip install gguf hqq compressed_tensors autoawq deepspeed torchao onnx auto_round
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft diffusers trl kernels
# install liger-kernel
RUN pip install git+https://github.com/linkedin/Liger-Kernel.git --extra-index-url https://download.pytorch.org/whl/test/xpu
# install mergekit
RUN pip install --break-system-packages git+https://github.com/arcee-ai/mergekit.git@v0.1.3
# install bitsandbytes
RUN pip install git+https://github.com/bitsandbytes-foundation/bitsandbytes.git

View File

@ -24,7 +24,7 @@ pip install -e ".[dev]"
```
> [!NOTE]
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to work around it.
Then you need to install our special tool that builds the documentation:
@ -38,7 +38,7 @@ pip install git+https://github.com/huggingface/doc-builder
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
Once you have set up the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
@ -295,12 +295,11 @@ Here's an example of a tuple return, comprising several objects:
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate them to this dataset.
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
We have an automatic script running with the `make style` command that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library

View File

@ -123,8 +123,6 @@
title: تشغيل التدريب على Amazon SageMaker
- local: serialization
title: التصدير إلى ONNX
- local: torchscript
title: التصدير إلى TorchScript
- local: notebooks
title: دفاتر الملاحظات مع الأمثلة
- local: community
@ -260,8 +258,6 @@
# title: النماذج
# - local: main_classes/text_generation
# title: توليد النصوص
# - local: main_classes/onnx
# title: ONNX
# - local: main_classes/optimizer_schedules
# title: التحسين
# - local: main_classes/output

View File

@ -32,7 +32,7 @@
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
@ -111,60 +111,3 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
### تصدير نموذج لهندسة غير مدعومة
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
### تصدير نموذج باستخدام `transformers.onnx`
<Tip warning={true}>
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
</Tip>
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
```bash
pip install transformers[onnx]
```
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -1,154 +0,0 @@
# التصدير إلى TorchScript
<Tip>
هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
</Tip>
وفقًا لـ [وثائق TorchScript](https://pytorch.org/docs/stable/jit.html):
> TorchScript هي طريقة لإنشاء نماذج قابلة للتسلسل والتحسين من تعليمات PyTorch البرمجية.
هناك وحدتان من PyTorch، [JIT and TRACE](https://pytorch.org/docs/stable/jit.html)، تتيحان للمطورين تصدير نماذجهم لإعادة استخدامها في برامج أخرى مثل برامج C++ المُحسّنة للأداء.
نقدم واجهة تتيح لك تصدير نماذج 🤗 Transformers إلى TorchScript بحيث يمكن إعادة استخدامها في بيئة مختلفة عن برامج Python القائمة إلى PyTorch. هنا نشرح كيفية تصدير نماذجنا واستخدامها باستخدام TorchScript.
يتطلب تصدير نموذج أمرين:
- تهيئة مثيل للنموذج باستخدام علامة `torchscript`
- تمرير مُدخلات وهمية (dummy inputs) خلال النموذج
تنطوي هذه الضرورات على عدة أمور يجب على المطورين توخي الحذر بشأنها كما هو مفصل أدناه.
## علامة TorchScript والأوزان المرتبطة
علامة `torchscript` ضرورية لأن معظم نماذج اللغة 🤗 Transformers لها أوزان مرتبطة بين طبقة `Embedding` وطبقة `Decoding`. لا يسمح لك TorchScript بتصدير النماذج ذات الأوزان المرتبطة، لذلك من الضروري فصل الأوزان ونسخها مسبقًا.
النماذج المُهيأة باستخدام علامة `torchscript` لها طبقة `Embedding` وطبقة`Decoding` منفصلتين، مما يعني أنه لا ينبغي تدريبها لاحقًا. سيؤدي التدريب إلى عدم تزامن الطبقتين، مما يؤدي إلى نتائج غير متوقعة.
هذا لا ينطبق على النماذج التي لا تحتوي على رأس نموذج اللغة، حيث لا تملك أوزانًا مرتبطة. يمكن تصدير هذه النماذج بأمان دون علامة `torchscript`.
## المدخلات الوهمية والأطوال القياسية
تُستخدم المُدخلات الوهمية لتمرير أمامي خلال النموذج. أثناء انتشار قيم المُدخلات عبر الطبقات، يتتبع PyTorch العمليات المختلفة التي يتم تنفيذها على كل مصفوفة(tensor). ثم يتم استخدام هذه العمليات المُسجلة بعد ذلك لإنشاء *أثر* النموذج.
يتم إنشاء التتبع بالنسبة لأبعاد المُدخلات. وبالتالي، فهو مُقيّد بأبعاد المُدخلات الوهمية، ولن يعمل لأي طول تسلسل أو حجم دفعة مختلف. عند المحاولة بحجم مختلف، يتم رفع الخطأ التالي:
```
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
```
نوصي بتتبع النموذج باستخدام حجم مُدخلات وهمية لا يقل عن أكبر مُدخل سيتم تقديمه للنموذج أثناء الاستدلال. يمكن أن تساعد الحشوة(padding) في ملء القيم المفقودة. ومع ذلك، نظرًا لتتبع النموذج بحجم مُدخل أكبر، ستكون أبعاد المصفوفة ستكون كبيرة أيضًا، مما يؤدي عنه المزيد من الحسابات.
انتبه إلى إجمالي عدد العمليات المُنفذة على كل مُدخل وتابع الأداء عن كثب عند تصدير نماذج متغيرة طول التسلسل.
## استخدام TorchScript في Python
يوضح هذا القسم كيفية حفظ النماذج وتحميلها، بالإضافة إلى كيفية استخدام التتبع للاستدلال.
### حفظ نموذج
لتصدير `BertModel` باستخدام TorchScript، قم بتهيئة ـ `BertModel` من فئة `BertConfig` ثم احفظه على القرص تحت اسم الملف `traced_bert.pt`:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
### تحميل نموذج
يمكنك الآن تحميل `BertModel` المُحفظ سابقًا، `traced_bert.pt`، من القرص واستخدامه على `dummy_input` المُهيأ سابقًا:
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
### استخدام نموذج مُتتبع للاستدلال
استخدم النموذج المُتتبع للاستدلال باستخدام أسلوب `__call__` الخاص به:
```python
traced_model(tokens_tensor, segments_tensors)
```
## نشر نماذج Hugging Face TorchScript على AWS باستخدام Neuron SDK
قدمت AWS عائلة [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) من اﻷجهزة لخفض التكلفة وأداء التعلم الآلي عالي الأداء في البيئة السحابية. تعمل أجهزة Inf1 بواسطة شريحة Inferentia من AWS، وهي مُسرّع أجهزة مُخصص، متخصص في أعباء عمل الاستدلال للتعلم العميق. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) هي SDK لـ Inferentia التي تدعم تتبع نماذج المحولات وتحسينها للنشر على Inf1. توفر Neuron SDK ما يلي:
1. واجهة برمجة تطبيقات سهلة الاستخدام مع تغيير سطر واحد من التعليمات البرمجية لتتبع نموذج TorchScript وتحسينه للاستدلال في البيئة السحابية.
2. تحسينات الأداء الجاهزة للاستخدام [تحسين التكلفة والأداء](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>).
3. دعم نماذج Hugging Face المحولات المبنية باستخدام إما [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) أو [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
### الآثار المترتبة
تعمل نماذج المحولات المستندة إلى بنية [BERT (تمثيلات الترميز ثنائية الاتجاه من المحولات)](https://huggingface.co/docs/transformers/main/model_doc/bert) أو متغيراتها مثل [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) و [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) بشكل أفضل على Inf1 للمهام غير التوليدية مثل الإجابة على الأسئلة الاستخراجية، وتصنيف التسلسلات، وتصنيف الرموز (tokens). ومع ذلك، يمكن تكييف مهام توليد النصوص للعمل على Inf1 وفقًا لهذا [برنامج تعليمي AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). يمكن العثور على مزيد من المعلومات حول النماذج التي يمكن تحويلها جاهزة على Inferentia في قسم [ملاءمة بنية النموذج](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) من وثائق Neuron.
### التبعيات (Dependencies)
يتطلب استخدام AWS Neuron لتحويل النماذج [بيئة SDK Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) والتي تأتي مسبقًا على [AMI للتعلم العميق من AWS](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
### تحويل نموذج لـ AWS Neuron
قم بتحويل نموذج لـ AWS NEURON باستخدام نفس التعليمات البرمجية من [استخدام TorchScript في Python](torchscript#using-torchscript-in-python) لتتبع `BertModel`. قم باستيراد امتداد إطار عمل `torch.neuron` للوصول إلى مكونات Neuron SDK من خلال واجهة برمجة تطبيقات Python:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
كل ما عليك فعله هو تعديل السطر التالي:
```diff
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
```
يتيح ذلك لـ Neuron SDK تتبع النموذج وتحسينه لمثيلات Inf1.
لمعرفة المزيد حول ميزات AWS Neuron SDK والأدوات ودروس البرامج التعليمية والتحديثات الأخيرة، يرجى الاطلاع على [وثائق AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).

View File

@ -88,6 +88,8 @@
title: Tool use
- local: chat_templating_writing
title: Writing a chat template
- local: chat_response_parsing
title: Response parsing
title: Chat with models
- sections:
- local: serving
@ -227,8 +229,6 @@
title: ONNX
- local: executorch
title: ExecuTorch
- local: torchscript
title: TorchScript
title: Export to production
- isExpanded: false
sections:
@ -1255,6 +1255,8 @@
title: Importing Utilities
- local: internal/time_series_utils
title: Utilities for Time Series
- local: internal/rope_utils
title: Rotary Embeddings Utilities
title: Internal helpers
- sections:
- local: reference/environment_variables

View File

@ -55,6 +55,7 @@ deepspeed --num_gpus 2 trainer-program.py ...
</hfoptions>
## Order of accelerators
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:

View File

@ -95,9 +95,12 @@ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):]))
The chat model called the `get_current_temperature` tool with the correct parameters from the docstring. It inferred France as the location based on Paris, and that it should use Celsius for the units of temperature.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history. For
models that support [response parsing](./chat_response_parsing), the response parsing will be handled automatically, and you can just use
[`~PreTrainedTokenizer.parse_response] to extract the tool call. For other models, you'll need to manually translate the output
string into a tool call dict.
Hold the call in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
Regardless of the approach you use, the tool call should go in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
> [!WARNING]
> Although `tool_calls` is similar to the OpenAI API, the OpenAI API uses a JSON string as its `tool_calls` format. This may cause errors or strange model behavior if used in Transformers, which expects a dict.

View File

@ -0,0 +1,233 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Response Parsing
It is increasingly common for chat models to generate structured outputs, rather than just a single reply string.
The most common uses for structured outputs are [tool calling](./chat_extras) and [reasoning models](https://huggingface.co/reasoning-course).
Tool calling models can output tool calls, containing the name of the tool to call and any arguments to be passed to it,
while reasoning models often output reasoning steps as a "chain of thought". Some recent models even use both of these,
and may output reasoning and/or one or more tool calls before their final answer.
Models with structured outputs pose a challenge for chat templating, because the output needs to be parsed before it
can be appended to the chat. For a concrete example, let's say we ask [GPT-OSS](https://huggingface.co/openai/gpt-oss-120b)
what the weather is like, and it thinks and decides to call a tool. Here's what the raw model output might look like:
```txt
<|start|>analysis<|message|>The user asks: "What is the weather like in SF?" We need to get the location of the user? The user explicitly asks about SF (San Francisco).
So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data.
So we should call get_current_weather with location "San Francisco, CA". Let's do that.
We will call function get_current_weather.<|end|><|start|>commentary to=functions.get_current_weather<|channel|>commentary <|constrain|>json<|message|>{"location":"San Francisco, CA"}<|call|>
}
```
But if you want to append this to a chat, you'll need to format it as a chat message dict, like this:
```json
{
"role": "assistant",
"thinking": "The user asks: \"What is the weather like in SF?\" We need to get the location of the user? The user explicitly asks about SF (San Francisco). So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data. So we should call get_current_weather with location \"San Francisco, CA\". Let's do that.",
"tool_calls": [
{
"name": "get_current_weather",
"arguments": {
"location": "San Francisco, CA"
}
}
]
}
```
Chat **templates** give us a way to turn messages into formatted input for a model, but we need something else to
parse model output back into a standard message dict. This is what chat **parsing** is for.
## The [parse_response](~PreTrainedTokenizerBase.parse_response) method
Parsing a chat response on a model that supports it is straightforward. Simply take the raw, decoded output from
[generate](`~generation.GenerationMixin.generate`), and pass it to the tokenizer's [parse_response](~PreTrainedTokenizerBase.parse_response) method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype="auto", device_map="auto")
messages = [
{
"role": "user",
"content": "Hey! Can you summarize the end of the Cold War as briefly as possible? Like, comically briefly. It should really leave out almost most of the relevant information."
}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
out_text = tokenizer.decode(outputs)
parsed = tokenizer.parse_response(out_text)
print(parsed.keys())
```
And you should get:
```text
dict_keys(['thinking', 'content'])
```
And that's all you need to start using response parsing! `parse_response` should return a complete message dict that is ready to be appended to the chat history.
When the tokenizer does not support response parsing, `parse_response` will throw an error. We hope to add support
to more tokenizers over time.
## Developers: Understanding a simple response schema
Under the hood, `parse_response` uses a **JSON schema** to parse the model output. A JSON schema represents
the structure of the output message dict. The schema is augmented with additional fields that indicate how the
output message string should be parsed into the expected format. Let's take a look at the schema for a SmolLM response,
excluding tool calls for now:
```python
{
"x-regex": "(?:<think>\n?(?P<thinking>.+?)\n?</think>)?\s*(?P<content>.+?)?\s*(?:<\|im_end\|>|$)",
"type": "object",
"properties": {
"role": {"const": "assistant"},
"content": {"type": "string"},
"thinking": {"type": "string"}
}
}
```
We can see that the schema describes a JSON "object" (a `dict`, in other words) with three keys: `role`, `content`, and `thinking`.
Because all assistant responses have the role "assistant", the `role` key is a `const`(ant). The other two keys are strings, extracted
from the named groups in the regex in the `x-regex` field.
Like chat templates, response schemas are set as a property of the tokenizer. To enable response parsing, all you need
to do is set `tokenizer.response_schema` to a valid schema dict, and `tokenizer.parse_response()` will work! Again, like
chat templates, this schema will be saved with the processor, so once you set it, you can use `save_pretrained()` or `push_to_hub()` to
save and share the schema.
## Developers: Complex schemas
Now, let's look at a more complex schema, which includes tool calls, to gain more of an understanding of the parser
internals. For this, we'll use the `GPT-OSS` schema. GPT-OSS emits both tool calls and thinking blocks, and it uses
an unusual format where model responses are tagged with one of three "channels": `commentary` for things like
tool calls, `analysis` for chain of thought blocks, and `final` for messages intended to be sent to the user.
A full message where the model calls a tool named `get_current_weather` might look like this, with some extra linebreaks added for clarity:
```text
<|channel|>analysis<|message|>
The user asks: "What is the weather like in SF?" So we need to get the current weather in San Francisco, CA.
We need to call get_current_weather function. So we should call get_current_weather with location "San Francisco, CA".
<|end|>
<|start|>assistant<|channel|>commentary
to=functions.get_current_weather <|constrain|>json<|message|>
{
"location": "San Francisco, CA"
}
<|call|>
```
Parsing proceeds recursively; the output of a regex (or other parser) at one level becomes the input to the nodes below it.
In other words, don't feel like you have to parse the entire output in one enormous regex! Instead, start with the schema,
and then add regexes to extract the relevant chunks as you go. Here's a schema that will parse it, with some
explanatory comments:
```python
{
"type": "object",
"properties": {
"role": {"const": "assistant"},
# "content" and "thinking" are both similar to the previous example, and just extract a single string
# However, rather than using a single regex with named groups to extract both, we use a regex in each subkey.
# When an object node has no parser/regex, the entire input string is passed to all of its children, so
# parsing can either be done with named groups at the object level, or with separate regexes at the property level.
"content": {"type": "string", "x-regex": r"<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"},
"thinking": {"type": "string", "x-regex": r"<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"},
"tool_calls": {
# "x-regex-iterator" uses re.findall to find multiple possible manages, and returns them as an
# array/list. You don't need to worry about array handling, though - each item in the array will be
# parsed by the `items` schema, so just write the schema for a single item.
"x-regex-iterator": r"<\|channel\|>commentary (to=functions\..*?<\|message\|>.*?)(?:<\|call\|>|$)",
"type": "array",
"items": {
"type": "object",
"properties": {
# A const property is a fixed value, and the input has no effect on it.
"type": {"const": "function"},
# Here, we wrap the entire tool call dict in a `{"function": ...}` block. The input string is passed through to it unchanged.
"function": {
"type": "object",
"properties": {
"name": {"type": "string", "x-regex": r"^to=functions\.(\w+)"},
"arguments": {
"type": "object",
"x-regex": "<\|message\|>(.*)",
# The "x-parser" field indicates that the extracted string should be parsed as JSON.
# The output is then passed to the schema nodes below and recursive parsing continues.
"x-parser": "json",
"additionalProperties": {"type": "any"},
},
},
},
},
},
},
},
}
```
## Developers: Understanding the parser logic
The parser follows a few simple rules:
1. Each level of the schema receives input from the level above, applies any regex or parser it has, and then passes the output to its children.
2. The root level receives the entire decoded model output string as input.
3. If a node has structured content after parsing (for example, if the regex has named groups and returns a dict, or if the parser returns a dict or list),
then that structured content is mapped to the node's children, and each child node receives its corresponding value as input.
4. If an `object` (dict) node has unstructured (string) output, then the entire string is passed to all of its children. This allows child nodes
to handle parsing individually rather than requiring a single parent regex to extract all keys at once.
5. If an `array` (list) node has unstructured (string) output, then this throws an error.
There is a small set of allowable `x-` keys that indicate how parsing should be done at each node:
- `x-regex`: A regex string to apply to the input. If the regex has named groups, the output is a dict of group names to values. Named groups should only be used in `object` nodes.
Otherwise, the regex must have exactly one unnamed capturing group, and the output is the value of that group as a string.
- `x-regex-iterator`: A regex string to apply to the input using `re.findall()`. The output is a list of all matches.
This should only be used in `array` nodes, and the regex must have exactly one unnamed capturing group. The output is distributed to
the node's `items` schema.
- `x-parser`: Calls a built-in parser to apply to the input. Currently, the only supported parser is `json`, which parses the input string as JSON.
The output is passed to the child nodes for further parsing. Note that the `json` parser can return deeply nested output - in this case, the output
will be progressively unwrapped as it is passed through child nodes. The child nodes do not need additional `x-parser` or `x-regex` fields in this case,
but their structure must match the structure of the parsed JSON.
- `x-parser-args`: Only allowed in conjunction with `x-parser`. This is a dict of additional arguments that control parsing. Right now, the only supported
argument is `transform`, which specifies a `jmespath` transformation to apply to the output. This is useful when the JSON parser returns a structure
that needs to be modified to match the schema.
- `x-regex-key-value`: This is rarely necessary, but it can be useful when parsing key-value pairs in non-JSON format where the names of the keys are not known
in advance, such as when a model emits XML tool calls with arbitrary argument names. The regex must have exactly two named capturing groups,
`key` and `value`, and the output is a dict mapping keys to values. This should only be used in `object` nodes.
In general, multiple regexes/parsers cannot be combined at the same level. The exception is that `x-regex`, returning a single string, can be combined with the other parsers. In this case,
`x-regex` is applied first, and then the output is passed to the other parser, either `x-regex-iterator`, `x-parser`, or `x-regex-key-value`.
Putting these ideas together, you can see that the input flows through the schema, being parsed at each level and then distributed to child nodes. Each level
only needs to extract the input content that is relevant for that part of the schema, and can then let its child nodes handle the rest. Internally, this is handled
with a parser function that receives input, applies any regexes/parsers at the current level, then maps the result to its child nodes before recursively calling itself on each of them.
Recursion terminates when it reaches leaf nodes, usually primitive types like `string` or `number`, which simply return the input they receive.

View File

@ -6,13 +6,13 @@ rendered properly in your Markdown viewer.
This page regroups resources around 🤗 Transformers developed by the community.
## Community resources:
## Community resources
| Resource | Description | Author |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## Community notebooks:
## Community notebooks
| Notebook | Description | Author | |
|:----------|:-------------|:-------------|------:|

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) runs PyTorch models on mobile and edge devices. Export your Transformers models to the ExecuTorch format with [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch) with the command below.
```
```bash
optimum-cli export executorch \
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
--task "text-generation" \
@ -29,4 +29,5 @@ optimum-cli export executorch \
--qembedding 8w \
--output_dir="hf_smollm2"
```
Run `optimum-cli export executorch --help` to see all export options. For detailed export instructions, check the [README](optimum/exporters/executorch/README.md).

View File

@ -37,7 +37,6 @@ def model_init(trial):
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
```

View File

@ -320,7 +320,7 @@ df.sort_values(by=['skipped_proportion'], ascending=False)
You can focus on a specific test method using `--test_method_name`:
```bash
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
```
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).

View File

@ -0,0 +1,83 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Rotary Embedding
This page explains how the Rotary Embedding is computed and applied in Transformers and what types of RoPE are supported.
## Overview
Rotary Position Embeddings are a technique used to inject positional information into attention mechanisms without relying on explicit position encodings.
Instead of adding position vectors to token embeddings, RoPE rotates query and key vectors in the complex plane according to their positions enabling relative positional awareness and better extrapolation to unseen sequence lengths.
The Transformers library provides a flexible and extensible implementation of various RoPE types defined in `[`~modeling_rope_utils.ROPE_VALIDATION_FUNCTIONS`]`, including both the default and scaled variants:
| Rope Type | Description |
|------------|-------------|
| `"default"` | Standard rotary embedding as in LLaMA. |
| `"linear"` | Linear-scaled RoPE which allows longer context windows. |
| `"dynamic"` | NTK-aware scaling computed by rescaling frequency base (`θ`) for longer context. |
| `"yarn"` | YaRN scaling variant providing smoother extrapolation and stability. |
| `"longrope"` | [LongRoPE](https://github.com/microsoft/LongRoPE) scaling as in Phi-2 model series. |
| `"llama3"` | RoPE scaling as in Llama3.1. |
## Configuration in Model Configs
To enable and customize rotary embeddings, add a `rope_parameters` field to your models configuration file (`config.json`). This field controls the RoPE behavior across model layers. Note that each RoPE variant defines its own set of expected keys and missing keys will raise an error. See the example below which creates a llama config with default RoPE parameters:
```python
from transformers import LlamaConfig
config = LlamaConfig()
config.rope_parameters = {
"rope_type": "default", # type of RoPE to use
"rope_theta": 10000.0 # base frequency parameter
}
# If we want to apply a scaled RoPE type, we need to pass extra parameters
config.rope_parameters = {
"rope_type": "linear",
"rope_theta": 10000.0,
"factor": 8.0 # scale factor for context extension
}
```
## Per-Layer-Type RoPE Configuration
Some models such as Gemma-3 use different layer types with different attention mechanisms, i.e. "full attention" in some blocks and "sliding-window attention" in others. Transformers supports specifying distinct RoPE parameters per layer type for these models. In this case, `rope_parameters` should be a nested dictionary, where top-level keys correspond to `config.layer_types` and values are per-type RoPE parameters. During model initialization, each decoder layer will automatically look up the matching RoPE configuration based on its declared layer type.
```python
from transformers import Gemma3Config
config = Gemma3Config()
config.rope_parameters = {
"full_attention": {
"rope_type": "dynamic",
"rope_theta": 1000000.0,
"factor": 8.0,
"original_max_position_embeddings": 8096,
},
"sliding_attention": {
"rope_type": "default",
"rope_theta": 10000.0,
}
}
```
## Utilities
[[autodoc]] RopeParameters
- __call__

View File

@ -1,3 +1,3 @@
# Overview
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.

View File

@ -208,7 +208,7 @@ Some models have a unique way of storing past kv pairs or states that is not com
Mamba models, such as [Mamba](./model_doc/mamba), require a specific cache because the model doesn't have an attention mechanism or kv states. Thus, they are not compatible with the above [`Cache`] classes.
# Iterative generation
## Iterative generation
A cache can also work in iterative generation settings where there is back-and-forth interaction with a model (chatbots). Like regular generation, iterative generation with a cache allows a model to efficiently handle ongoing conversations without recomputing the entire context at each step.

View File

@ -67,6 +67,6 @@ Examples of use can be found in the [example scripts](../examples) or [example n
[[autodoc]] data.data_collator.DataCollatorWithFlattening
# DataCollatorForMultipleChoice
## DataCollatorForMultipleChoice
[[autodoc]] data.data_collator.DataCollatorForMultipleChoice

View File

@ -267,6 +267,7 @@ about how many forward passes you inputs are actually going to trigger, you can
independently of the inputs. The caveats from the previous section still apply.
## Pipeline FP16 inference
Models can be run in FP16 which can be significantly faster on GPU while saving memory. Most models will not suffer noticeable performance loss from this. The larger the model, the less likely that it will.
To enable FP16 inference, you can simply pass `dtype=torch.float16` or `dtype='float16'` to the pipeline constructor. Note that this only works for models with a PyTorch backend. Your inputs will be converted to FP16 internally.
@ -334,6 +335,7 @@ Pipelines available for audio tasks include the following.
Pipelines available for computer vision tasks include the following.
### DepthEstimationPipeline
[[autodoc]] DepthEstimationPipeline
- __call__
- all

View File

@ -43,6 +43,7 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
[[autodoc]] AwqConfig
## EetqConfig
[[autodoc]] EetqConfig
## GPTQConfig

View File

@ -50,14 +50,14 @@ several advanced alignment methods which can be used to map between the original
token space (e.g., getting the index of the token comprising a given character or the span of characters corresponding
to a given token).
# Multimodal Tokenizer
## Multimodal Tokenizer
Apart from that each tokenizer can be a "multimodal" tokenizer which means that the tokenizer will hold all relevant special tokens
as part of tokenizer attributes for easier access. For example, if the tokenizer is loaded from a vision-language model like LLaVA, you will
be able to access `tokenizer.image_token_id` to obtain the special image token used as a placeholder.
To enable extra special tokens for any type of tokenizer, you have to add the following lines and save the tokenizer. Extra special tokens do not
have to be modality related and can ne anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
have to be modality related and can be anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
to three more special tokens.
```python

View File

@ -23,6 +23,7 @@ The video processor extends the functionality of image processors by allowing Vi
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
```python

View File

@ -13,51 +13,66 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-11-21 and added to Hugging Face Transformers on 2025-07-08 and contributed by [yaswanthgali](https://huggingface.co/yaswanthgali).*
*This model was released on 2024-11-21 and added to Hugging Face Transformers on 2025-07-08.*
# AIMv2
[AIMv2](https://huggingface.co/papers/2411.14402) presents a novel method for pre-training large-scale vision encoders in a multimodal setting, combining images and text. The model, characterized by a straightforward pre-training process and scalability, pairs a vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. AIMV2 excels in both multimodal evaluations and vision benchmarks such as localization, grounding, and classification. Notably, the AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk and outperforms state-of-the-art contrastive models like CLIP and SigLIP in multimodal image understanding across various settings.
## Overview
<hfoptions id="usage">
<hfoption id="Pipeline">
The AIMv2 model was proposed in [Multimodal Autoregressive Pre-training of Large Vision Encoders](https://huggingface.co/papers/2411.14402) by Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby.
```py
import torch
from transformers import pipeline
The abstract from the paper is the following:
pipeline = pipeline(task="zero-shot-classification", model="apple/aimv2-large-patch14-native", dtype="auto")
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
*We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.*
</hfoption>
<hfoption id="AutoModel">
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
The original code can be found [here](https://github.com/apple/ml-aim).
## Usage Example
Here is an example of Image Feature Extraction using specific checkpoints on resized images and native resolution images:
```python
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-native")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-native")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
```
Here is an example of a checkpoint performing zero-shot classification:
```python
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit", dtype="auto")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit")
inputs = processor(images=image, text=text, add_special_tokens=True, truncation=True, padding=True, return_tensors="pt",)
inputs = processor(
images=image,
text=text,
add_special_tokens=True,
truncation=True,
padding=True,
return_tensors="pt",
)
outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=-1)
pred_idx = torch.argmax(probs, dim=-1).item()
predicted_label = text[pred_idx]
print(f"Predicted label: {predicted_label}")
```
</hfoption>
</hfoptions>
## Aimv2Config
[[autodoc]] Aimv2Config
@ -84,4 +99,3 @@ print(f"Predicted label: {predicted_label}")
[[autodoc]] Aimv2TextModel
- forward

View File

@ -13,17 +13,32 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-09-26 and added to Hugging Face Transformers on 2020-11-16 and contributed by [lysandre](https://huggingface.co/lysandre).*
*This model was released on 2019-09-26 and added to Hugging Face Transformers on 2020-11-16.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt="SDPA" src= "https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# ALBERT
[ALBERT](https://huggingface.co/papers/1909.11942) presents parameter-reduction techniques to enhance BERT by splitting the embedding matrix and using repeating layers. These methods reduce memory usage and training time, enabling better scalability. The model employs a self-supervised loss to improve inter-sentence coherence, achieving state-of-the-art results on GLUE, RACE, and SQuAD benchmarks with fewer parameters than BERT-large.
[ALBERT](https://huggingface.co/papers/1909.11942) is designed to address memory limitations of scaling and training of [BERT](./bert). It adds two parameter reduction techniques. The first, factorized embedding parametrization, splits the larger vocabulary embedding matrix into two smaller matrices so you can grow the hidden size without adding a lot more parameters. The second, cross-layer parameter sharing, allows layer to share parameters which keeps the number of learnable parameters lower.
ALBERT was created to address problems like -- GPU/TPU memory limitations, longer training times, and unexpected model degradation in BERT. ALBERT uses two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT:
- **Factorized embedding parameterization:** The large vocabulary embedding matrix is decomposed into two smaller matrices, reducing memory consumption.
- **Cross-layer parameter sharing:** Instead of learning separate parameters for each transformer layer, ALBERT shares parameters across layers, further reducing the number of learnable weights.
ALBERT uses absolute position embeddings (like BERT) so padding is applied at right. Size of embeddings is 128 While BERT uses 768. ALBERT can processes maximum 512 token at a time.
You can find all the original ALBERT checkpoints under the [ALBERT community](https://huggingface.co/albert) organization.
> [!TIP]
> Click on the ALBERT models in the right sidebar for more examples of how to apply ALBERT to different language tasks.
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -32,8 +47,13 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="fill-mask", model="albert/albert-base-v2", dtype="auto")
pipeline("Plants create [MASK] through a process known as photosynthesis.")
pipeline = pipeline(
task="fill-mask",
model="albert-base-v2",
dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.", top_k=5)
```
</hfoption>
@ -43,25 +63,76 @@ pipeline("Plants create [MASK] through a process known as photosynthesis.")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained("albert/albert-base-v2", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
model = AutoModelForMaskedLM.from_pretrained(
"albert/albert-base-v2",
dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto"
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
prompt = "Plants create energy through a process known as [MASK]."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predictions = outputs.logits[0, mask_token_index]
top_k = torch.topk(predictions, k=5).indices.tolist()
for token_id in top_k[0]:
print(f"Prediction: {tokenizer.decode([token_id])}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model albert-base-v2 --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- ALBERT uses absolute position embeddings. Pad inputs on the right, not the left.
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The embedding size `E` is different from the hidden size `H` because the embeddings are context independent (one embedding vector represents one token) and the hidden states are context dependent (one hidden state represents a sequence of tokens). The embedding matrix is also larger because `V x E` where `V` is the vocabulary size. As a result, it's more logical if `H >> E`. If `E < H`, the model has less parameters.
- The embedding size E differs from hidden size H for good reason. Embeddings represent individual tokens (context-independent). Hidden states represent token sequences (context-dependent). This makes H >> E logical. The embedding matrix spans V × E dimensions, where V is vocabulary size. Keeping E < H reduces parameter count.
## Resources
The resources provided in the following sections consist of a list of official Hugging Face and community (indicated by 🌎) resources to help you get started with AlBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- [`AlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification).
- Check the [Text classification task guide](../tasks/sequence_classification) on how to use the model.
<PipelineTag pipeline="token-classification"/>
- [`AlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- Check the [Token classification task guide](../tasks/token_classification) on how to use the model.
<PipelineTag pipeline="fill-mask"/>
- [`AlbertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- Check the [Masked language modeling task guide](../tasks/masked_language_modeling) on how to use the model.
<PipelineTag pipeline="question-answering"/>
- [`AlbertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- Check the [Question answering task guide](../tasks/question_answering) on how to use the model.
**Multiple choice**
- [`AlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model.
## AlbertConfig
@ -69,11 +140,7 @@ print(f"Predicted word: {predicted_word}")
## AlbertTokenizer
[[autodoc]] AlbertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
## AlbertTokenizerFast
@ -85,23 +152,19 @@ print(f"Predicted word: {predicted_word}")
## AlbertModel
[[autodoc]] AlbertModel
- forward
[[autodoc]] AlbertModel - forward
## AlbertForPreTraining
[[autodoc]] AlbertForPreTraining
- forward
[[autodoc]] AlbertForPreTraining - forward
## AlbertForMaskedLM
[[autodoc]] AlbertForMaskedLM
- forward
[[autodoc]] AlbertForMaskedLM - forward
## AlbertForSequenceClassification
[[autodoc]] AlbertForSequenceClassification
- forward
[[autodoc]] AlbertForSequenceClassification - forward
## AlbertForMultipleChoice
@ -109,10 +172,8 @@ print(f"Predicted word: {predicted_word}")
## AlbertForTokenClassification
[[autodoc]] AlbertForTokenClassification
- forward
[[autodoc]] AlbertForTokenClassification - forward
## AlbertForQuestionAnswering
[[autodoc]] AlbertForQuestionAnswering
- forward
[[autodoc]] AlbertForQuestionAnswering - forward

View File

@ -13,21 +13,46 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-02-11 and added to Hugging Face Transformers on 2023-03-01 and contributed by [adirik](https://huggingface.co/adirik).*
*This model was released on 2021-02-11 and added to Hugging Face Transformers on 2023-03-01.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Transformers" src="https://img.shields.io/badge/Transformers-6B5B95?style=flat&logo=transformers&logoColor=white">
</div>
</div>
# ALIGN
[ALIGN](https://huggingface.co/papers/2102.05918) is a multi-modal vision and language model utilizing a dual-encoder architecture with EfficientNet for vision and BERT for text. It employs contrastive learning to align visual and text representations using a noisy dataset of over one billion image-alt text pairs. Despite the noise, the scale of the dataset enables state-of-the-art performance in image classification and image-text retrieval tasks, surpassing more complex models.
[ALIGN](https://huggingface.co/papers/2102.05918) is pretrained on a noisy 1.8 billion alttext and image pair dataset to show that scale can make up for the noise. It uses a dualencoder architecture, [EfficientNet](./efficientnet) for images and [BERT](./bert) for text, and a contrastive loss to align similar imagetext embeddings together while pushing different embeddings apart. Once trained, ALIGN can encode any image and candidate captions into a shared vector space for zeroshot retrieval or classification without requiring extra labels. This scalefirst approach reduces dataset curation costs and powers stateoftheart imagetext retrieval and zeroshot ImageNet classification.
You can find all the original ALIGN checkpoints under the [Kakao Brain](https://huggingface.co/kakaobrain?search_models=align) organization.
> [!TIP]
> Click on the ALIGN models in the right sidebar for more examples of how to apply ALIGN to different vision and text related tasks.
The example below demonstrates zero-shot image classification with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="zero-shot-image-classification", model="kakaobrain/align-base", dtype="auto")
candidate_labels = ["a photo of a dog", "a photo of a cat", "a photo of a person"]
pipeline = pipeline(
task="zero-shot-image-classification",
model="kakaobrain/align-base",
device=0,
dtype=torch.bfloat16
)
candidate_labels = [
"a photo of a dog",
"a photo of a cat",
"a photo of a person"
]
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", candidate_labels=candidate_labels)
```
@ -41,7 +66,7 @@ from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
model = AutoModelForZeroShotImageClassification.from_pretrained("kakaobrain/align-base", dtype="auto")
model = AutoModelForZeroShotImageClassification.from_pretrained("kakaobrain/align-base", device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = requests.get(url, stream=True)
@ -67,8 +92,65 @@ for label, score in zip(candidate_labels, probs):
```
</hfoption>
</hfoptions>
## Notes
- ALIGN projects the text and visual features into latent space and the dot product between the projected image and text features is used as the similarity score. The example below demonstrates how to calculate the image-text similarity score with [`AlignProcessor`] and [`AlignModel`].
```py
# Example of using ALIGN for image-text similarity
from transformers import AlignProcessor, AlignModel
import torch
from PIL import Image
import requests
from io import BytesIO
# Load processor and model
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
# Download image from URL
url = "https://huggingface.co/roschmid/dog-races/resolve/main/images/Golden_Retriever.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)) # Convert the downloaded bytes to a PIL Image
texts = ["a photo of a cat", "a photo of a dog"]
# Process image and text inputs
inputs = processor(images=image, text=texts, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
outputs = model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
# Normalize embeddings for cosine similarity
image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=1, keepdim=True)
# Calculate similarity scores
similarity_scores = torch.matmul(text_embeds, image_embeds.T)
# Print raw scores
print("Similarity scores:", similarity_scores)
# Convert to probabilities
probs = torch.nn.functional.softmax(similarity_scores, dim=0)
print("Probabilities:", probs)
# Get the most similar text
most_similar_idx = similarity_scores.argmax().item()
print(f"Most similar text: '{texts[most_similar_idx]}'")
```
## Resources
- Refer to the [Kakao Brains Open Source ViT, ALIGN, and the New COYO Text-Image Dataset](https://huggingface.co/blog/vit-align) blog post for more details.
## AlignConfig
[[autodoc]] AlignConfig
@ -101,4 +183,3 @@ for label, score in zip(candidate_labels, probs):
[[autodoc]] AlignVisionModel
- forward

View File

@ -13,37 +13,35 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2022-11-12 and added to Hugging Face Transformers on 2023-01-04 and contributed by [jongjyh](https://huggingface.co/jongjyh).*
*This model was released on 2022-11-12 and added to Hugging Face Transformers on 2023-01-04.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# AltCLIP
[AltCLIP](https://huggingface.co/papers/2211.06679v2) alters the text encoder in CLIP by replacing it with a pretrained multilingual text encoder XLM-R. This modification enables the model to achieve state-of-the-art performance on tasks such as ImageNet-CN, Flicker30k-CN, and COCO-CN, while maintaining performance close to CLIP on other tasks. The approach involves a two-stage training schema with teacher learning and contrastive learning to align language and image representations, extending CLIP's capabilities to multilingual understanding.
[AltCLIP](https://huggingface.co/papers/2211.06679) replaces the [CLIP](./clip) text encoder with a multilingual XLM-R encoder and aligns image and text representations with teacher learning and contrastive learning.
This model was contributed by [jongjyh](https://huggingface.co/jongjyh).
You can find all the original AltCLIP checkpoints under the [AltClip](https://huggingface.co/collections/BAAI/alt-clip-diffusion-66987a97de8525205f1221bf) collection.
> [!TIP]
> Click on the AltCLIP models in the right sidebar for more examples of how to apply AltCLIP to different tasks.
The examples below demonstrates how to calculate similarity scores between an image and one or more captions with the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="zero-shot-image-classification", model="kakaobrain/align-base", dtype="auto")
candidate_labels = ["a photo of a dog", "a photo of a cat", "a photo of a person"]
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", candidate_labels=candidate_labels)
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AutoProcessor
from transformers import AltCLIPModel, AltCLIPProcessor
model = AltCLIPModel.from_pretrained("BAAI/AltCLIP", dtype="auto")
processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
model = AltCLIPModel.from_pretrained("BAAI/AltCLIP", dtype=torch.bfloat16)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
@ -51,8 +49,8 @@ image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
@ -62,10 +60,48 @@ for label, prob in zip(labels, probs[0]):
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
# !pip install torchao
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AltCLIPProcessor, TorchAoConfig
model = AltCLIPModel.from_pretrained(
"BAAI/AltCLIP",
quantization_config=TorchAoConfig("int4_weight_only", group_size=128),
dtype=torch.bfloat16,
)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
print(f"{label}: {prob.item():.4f}")
```
## Notes
- AltCLIP uses bidirectional attention instead of causal attention and it uses the `[CLS]` token in XLM-R to represent a text embedding.
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalize images for the model.
- [`AltCLIPProcessor`] combines [`CLIPImageProcessor`] and [`XLMRobertaTokenizer`] into a single instance to encode text and prepare images.
## AltCLIPConfig
[[autodoc]] AltCLIPConfig
- from_text_vision_configs
## AltCLIPTextConfig
@ -75,24 +111,18 @@ for label, prob in zip(labels, probs[0]):
[[autodoc]] AltCLIPVisionConfig
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor
## AltCLIPModel
[[autodoc]] AltCLIPModel
- forward
- get_text_features
- get_image_features
## AltCLIPTextModel
[[autodoc]] AltCLIPTextModel
- forward
## AltCLIPVisionModel
[[autodoc]] AltCLIPVisionModel
- forward
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor

View File

@ -13,20 +13,28 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2025-09-02 and added to Hugging Face Transformers on 2025-10-07.*
*This model was released on 2025-09-02 and added to Hugging Face Transformers on 2025-08-28.*
# Apertus
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
</div>
# Apertus
## Overview
[Apertus](https://www.swiss-ai.org) is a family of large language models from the Swiss AI Initiative.
> [!TIP]
> Coming soon
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -34,8 +42,13 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="swiss-ai/Apertus-8B", dtype="auto")
pipeline("Plants generate energy through a process known as ")
pipeline = pipeline(
task="text-generation",
model="swiss-ai/Apertus-8B",
dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
@ -43,15 +56,28 @@ pipeline("Plants generate energy through a process known as ")
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("swiss-ai/Apertus-8B")
model = ArceeForCausalLM.from_pretrained("swiss-ai/Apertus-8B", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(
"swiss-ai/Apertus-8B",
)
model = AutoModelForCausalLM.from_pretrained(
"swiss-ai/Apertus-8B",
dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
inputs = tokenizer("Plants generate energy through a process known as ", return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model swiss-ai/Apertus-8B --device 0
```
</hfoption>

View File

@ -17,6 +17,7 @@ rendered properly in your Markdown viewer.
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
@ -28,6 +29,11 @@ rendered properly in your Markdown viewer.
The Arcee model is architecturally similar to Llama but uses `x * relu(x)` in MLP layers for improved gradient flow and is optimized for efficiency in both training and inference scenarios.
> [!TIP]
> The Arcee model supports extended context with RoPE scaling and all standard transformers features including Flash Attention 2, SDPA, gradient checkpointing, and quantization support.
The example below demonstrates how to generate text with Arcee using [`Pipeline`] or the [`AutoModel`].
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -35,8 +41,15 @@ The Arcee model is architecturally similar to Llama but uses `x * relu(x)` in ML
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="arcee-ai/AFM-4.5B", dtype="auto")
pipeline("Plants generate energy through a process known as ")
pipeline = pipeline(
task="text-generation",
model="arcee-ai/AFM-4.5B",
dtype=torch.float16,
device=0
)
output = pipeline("The key innovation in Arcee is")
print(output[0]["generated_text"])
```
</hfoption>
@ -44,12 +57,16 @@ pipeline("Plants generate energy through a process known as ")
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, ArceeForCausalLM
tokenizer = AutoTokenizer.from_pretrained("arcee-ai/AFM-4.5B")
model = ArceeForCausalLM.from_pretrained("arcee-ai/AFM-4.5B", dtype="auto")
model = ArceeForCausalLM.from_pretrained(
"arcee-ai/AFM-4.5B",
dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("Plants generate energy through a process known as ", return_tensors="pt")
inputs = tokenizer("The key innovation in Arcee is", return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
@ -85,4 +102,4 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
## ArceeForTokenClassification
[[autodoc]] ArceeForTokenClassification
- forward
- forward

View File

@ -13,10 +13,11 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-10-08 and added to Hugging Face Transformers on 2024-12-06 and contributed by [m-ric](https://huggingface.co/m-ric).*
*This model was released on 2024-10-08 and added to Hugging Face Transformers on 2024-12-06.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
@ -24,27 +25,48 @@ rendered properly in your Markdown viewer.
# Aria
[Aria](https://huggingface.co/papers/2410.05993) is an open multimodal-native model designed to integrate diverse information sources and deliver comprehensive understanding. It employs a Mixture-of-Experts architecture with 3.9B and 3.5B activated parameters per visual and text token, respectively. Aria outperforms models like Pixtral-12B and Llama3.2-11B across various multimodal, language, and coding tasks. The model is pre-trained through a 4-stage pipeline that enhances language understanding, multimodal capabilities, long context handling, and instruction following. Aria's weights and codebase are open-sourced to facilitate adoption and adaptation in real-world applications.
[Aria](https://huggingface.co/papers/2410.05993) is a multimodal mixture-of-experts (MoE) model. The goal of this model is to open-source a training recipe for creating a multimodal native model from scratch. Aria has 3.9B and 3.5B activated parameters per visual and text token respectively. Text is handled by a MoE decoder and visual inputs are handled by a lightweight visual encoder. It is trained in 4 stages, language pretraining, multimodal pretraining, multimodal long-context pretraining, and multimodal post-training.
You can find all the original Aria checkpoints under the [Aria](https://huggingface.co/rhymes-ai?search_models=aria) organization.
> [!TIP]
> Click on the Aria models in the right sidebar for more examples of how to apply Aria to different multimodal tasks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="image-to-text", model="rhymes-ai/Aria", dtype="auto")
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", text="What is shown in this image?")
pipeline = pipeline(
"image-to-text",
model="rhymes-ai/Aria",
device=0,
dtype=torch.bfloat16
)
pipeline(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
text="What is shown in this image?"
)
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
model = AutoModelForCausalLM.from_pretrained("rhymes-ai/Aria", dtype="auto")
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria",
device_map="auto",
dtype=torch.bfloat16,
attn_implementation="sdpa"
)
processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
messages = [
@ -59,7 +81,8 @@ messages = [
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
ipnuts = inputs.to(model.device, torch.bfloat16)
output = model.generate(**inputs,
output = model.generate(
**inputs,
max_new_tokens=15,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
@ -74,6 +97,51 @@ print(response)
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4 and the [rhymes-ai/Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) checkpoint. This checkpoint replaces grouped GEMM with `torch.nn.Linear` layers for easier quantization.
```py
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoProcessor
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
processor = AutoProcessor.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
)
messages = [
{
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
inputs = inputs.to(model.device, torch.bfloat16)
output = model.generate(
**inputs,
max_new_tokens=15,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
```
## AriaImageProcessor
[[autodoc]] AriaImageProcessor
@ -94,17 +162,15 @@ print(response)
[[autodoc]] AriaTextModel
## AriaTextForCausalLM
[[autodoc]] AriaTextForCausalLM
## AriaModel
[[autodoc]] AriaModel
- forward
## AriaTextForCausalLM
[[autodoc]] AriaTextForCausalLM
## AriaForConditionalGeneration
[[autodoc]] AriaForConditionalGeneration
- forward

View File

@ -13,55 +13,82 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-04-05 and added to Hugging Face Transformers on 2022-11-21 and contributed by [nielsr](https://huggingface.co/nielsr).*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
*This model was released on 2021-04-05 and added to Hugging Face Transformers on 2022-11-21.*
# Audio Spectrogram Transformer
[Audio Spectrogram Transformer](https://huggingface.co/papers/2104.01778) applies a Vision Transformer to audio by converting audio into spectrograms, achieving state-of-the-art results in audio classification without using convolutional layers. It outperforms existing models on benchmarks like AudioSet, ESC-50, and Speech Commands V2, demonstrating the effectiveness of purely attention-based models in this domain.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
The Audio Spectrogram Transformer model was proposed in [AST: Audio Spectrogram Transformer](https://huggingface.co/papers/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
The Audio Spectrogram Transformer applies a [Vision Transformer](vit) to audio, by turning audio into an image (spectrogram). The model obtains state-of-the-art results
for audio classification.
The abstract from the paper is the following:
*In the past decade, convolutional neural networks (CNNs) have been widely adopted as the main building block for end-to-end audio classification models, which aim to learn a direct mapping from audio spectrograms to corresponding labels. To better capture long-range global context, a recent trend is to add a self-attention mechanism on top of the CNN, forming a CNN-attention hybrid model. However, it is unclear whether the reliance on a CNN is necessary, and if neural networks purely based on attention are sufficient to obtain good performance in audio classification. In this paper, we answer the question by introducing the Audio Spectrogram Transformer (AST), the first convolution-free, purely attention-based model for audio classification. We evaluate AST on various audio classification benchmarks, where it achieves new state-of-the-art results of 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech Commands V2.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/audio_spectogram_transformer_architecture.png"
alt="drawing" width="600"/>
<small> Audio Spectrogram Transformer architecture. Taken from the <a href="https://huggingface.co/papers/2104.01778">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/YuanGongND/ast).
## Usage tips
- When fine-tuning the Audio Spectrogram Transformer (AST) on your own dataset, it's recommended to take care of the input normalization (to make
sure the input has mean of 0 and std of 0.5). [`ASTFeatureExtractor`] takes care of this. Note that it uses the AudioSet
mean and std by default. You can check [`ast/src/get_norm_stats.py`](https://github.com/YuanGongND/ast/blob/master/src/get_norm_stats.py) to see how
the authors compute the stats for a downstream dataset.
- Note that the AST needs a low learning rate (the authors use a 10 times smaller learning rate compared to their CNN model proposed in the
[PSLA paper](https://huggingface.co/papers/2102.01243)) and converges quickly, so please search for a suitable learning rate and learning rate scheduler for your task.
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="audio-classification",model="MIT/ast-finetuned-audioset-10-10-0.4593", dtype="auto")
pipeline("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac")
from transformers import ASTForAudioClassification
model = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593", attn_implementation="sdpa", dtype=torch.float16)
...
```
</hfoption>
<hfoption id="AutoModel"
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
```py
import torch
from datasets import load_dataset
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `MIT/ast-finetuned-audioset-10-10-0.4593` model, we saw the following speedups during inference.
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation").sort("id")
sampling_rate = dataset.features["audio"].sampling_rate
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
| 1 | 27 | 6 | 4.5 |
| 2 | 12 | 6 | 2 |
| 4 | 21 | 8 | 2.62 |
| 8 | 40 | 14 | 2.86 |
feature_extractor = AutoFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
model = AutoModelForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
## Resources
inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with the Audio Spectrogram Transformer.
with torch.no_grad():
logits = model(**inputs).logits
<PipelineTag pipeline="audio-classification"/>
predicted_class_ids = torch.argmax(logits, dim=-1).item()
print(f"Predicted label: {model.config.id2label[predicted_class_ids]}")
```
- A notebook illustrating inference with AST for audio classification can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/AST).
- [`ASTForAudioClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
- See also: [Audio classification](../tasks/audio_classification).
</hfoption>
</hfoptions>
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## ASTConfig
@ -81,4 +108,3 @@ print(f"Predicted label: {model.config.id2label[predicted_class_ids]}")
[[autodoc]] ASTForAudioClassification
- forward

View File

@ -29,7 +29,7 @@ model = AutoModel.from_pretrained("google-bert/bert-base-cased")
will create a model that is an instance of [`BertModel`].
There is one class of `AutoModel` for each task, and for each backend (PyTorch, TensorFlow, or Flax).
There is one class of `AutoModel` for each task.
## Extending the Auto Classes
@ -48,7 +48,7 @@ You will then be able to use the auto classes like you would usually do!
<Tip warning={true}>
If your `NewModelConfig` is a subclass of [`~transformers.PretrainedConfig`], make sure its
If your `NewModelConfig` is a subclass of [`~transformers.PreTrainedConfig`], make sure its
`model_type` attribute is set to the same key you use when registering the config (here `"new-model"`).
Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
@ -73,14 +73,14 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
[[autodoc]] AutoImageProcessor
## AutoProcessor
[[autodoc]] AutoProcessor
## AutoVideoProcessor
[[autodoc]] AutoVideoProcessor
## AutoProcessor
[[autodoc]] AutoProcessor
## Generic model classes
The following auto classes are available for instantiating a base model class without a specific head.
@ -161,6 +161,10 @@ The following auto classes are available for the following computer vision tasks
[[autodoc]] AutoModelForKeypointDetection
### AutoModelForKeypointMatching
[[autodoc]] AutoModelForKeypointMatching
### AutoModelForMaskedImageModeling
[[autodoc]] AutoModelForMaskedImageModeling
@ -197,10 +201,6 @@ The following auto classes are available for the following computer vision tasks
[[autodoc]] AutoModelForZeroShotObjectDetection
### AutoModelForKeypointMatching
[[autodoc]] AutoModelForKeypointMatching
## Audio
The following auto classes are available for the following audio tasks.
@ -261,6 +261,8 @@ The following auto classes are available for the following multimodal tasks.
[[autodoc]] AutoModelForImageTextToText
## Time Series
### AutoModelForTimeSeriesPrediction
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -13,39 +13,32 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-06-24 and added to Hugging Face Transformers on 2023-05-30 and contributed by [elisim](https://huggingface.co/elisim) and [kashif](https://huggingface.co/kashif).*
*This model was released on 2021-06-24 and added to Hugging Face Transformers on 2023-05-30.*
# Autoformer
[Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://huggingface.co/papers/2106.13008) addresses the challenge of long-term time series forecasting by introducing a novel decomposition architecture. Autoformer integrates an Auto-Correlation mechanism that progressively decomposes trend and seasonal components, enhancing the model's ability to capture intricate temporal patterns. This approach surpasses traditional self-attention methods in both efficiency and accuracy, achieving state-of-the-art results with a 38% relative improvement across six benchmarks in diverse applications including energy, traffic, economics, weather, and disease forecasting.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="AutoformerForPrediction">
## Overview
```py
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoformerForPrediction
The Autoformer model was proposed in [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://huggingface.co/papers/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
file = hf_hub_download(
repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
)
batch = torch.load(file)
This model augments the Transformer as a deep decomposition architecture, which can progressively decompose the trend and seasonal components during the forecasting process.
model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly", dtype="auto")
outputs = model.generate(
past_values=batch["past_values"],
past_time_features=batch["past_time_features"],
past_observed_mask=batch["past_observed_mask"],
static_categorical_features=batch["static_categorical_features"],
future_time_features=batch["future_time_features"],
)
The abstract from the paper is the following:
mean_prediction = outputs.sequences.mean(dim=1)
```
*Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease.*
</hfoption>
</hfoptions>
This model was contributed by [elisim](https://huggingface.co/elisim) and [kashif](https://huggingface.co/kashif).
The original code can be found [here](https://github.com/thuml/Autoformer).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Check out the Autoformer blog-post in HuggingFace blog: [Yes, Transformers are Effective for Time Series Forecasting (+ Autoformer)](https://huggingface.co/blog/autoformer)
## AutoformerConfig
@ -60,4 +53,3 @@ mean_prediction = outputs.sequences.mean(dim=1)
[[autodoc]] AutoformerForPrediction
- forward

View File

@ -13,64 +13,250 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2025-05-13 and added to Hugging Face Transformers on 2025-03-04 and contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).*
*This model was released on 2025-05-13 and added to Hugging Face Transformers on 2025-03-04.*
# AyaVision
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
[Aya Vision](https://huggingface.co/papers/2505.08751) ntroduce two key innovations for multilingual multimodal learning: a synthetic annotation framework that generates high-quality, diverse instruction data across languages, and a cross-modal model merging technique that prevents catastrophic forgetting while preserving strong text-only performance. These methods enable effective alignment between vision and language without degrading existing capabilities. Aya-Vision-8B surpasses comparable models like Qwen-2.5-VL-7B, Pixtral-12B, and even larger models such as Llama-3.2-90B-Vision, while the larger Aya-Vision-32B outperforms models more than twice its size, including Molmo-72B. Overall, the approach demonstrates efficient scaling and state-of-the-art multilingual multimodal performance with reduced computational demands.
# Aya Vision
[Aya Vision](https://huggingface.co/papers/2505.08751) is a family of open-weight multimodal vision-language models from Cohere Labs. It is trained with a synthetic annotation framework that generates high-quality multilingual image captions, improving Aya Vision's generated responses. In addition, a cross-modal model merging technique is used to prevent the model from losing its text capabilities after adding vision capabilities. The model combines a CommandR-7B language model with a SigLIP vision encoder.
You can find all the original Aya Vision checkpoints under the [Aya Vision](https://huggingface.co/collections/CohereLabs/cohere-labs-aya-vision-67c4ccd395ca064308ee1484) collection.
> [!TIP]
> This model was contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).
>
> Click on the Aya Vision models in the right sidebar for more examples of how to apply Aya Vision to different image-to-text tasks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
```python
from transformers import pipeline
pipeline = pipeline(task="image-text-to-text", model="CohereLabs/aya-vision-8b", dtype="auto")
pipe = pipeline(model="CohereLabs/aya-vision-8b", task="image-text-to-text", device_map="auto")
# Format message with the aya-vision chat template
messages = [
{"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "Que montre cette image?"},
{"type": "image", "url": "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo="},
{"type": "text", "text": "Bu resimde hangi anıt gösterilmektedir?"},
]},
]
pipeline(text=messages, max_new_tokens=300, return_full_text=False)
]
outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
print(outputs)
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
# pip install 'git+https://github.com/huggingface/transformers.git@v4.49.0-Aya Vision'
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained("CohereLabs/aya-vision-8b)
model = AutoModelForImageTextToText.from_pretrained("CohereLabs/aya-vision-8b", dtype="auto")
model_id = "CohereLabs/aya-vision-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", dtype=torch.float16
)
# Format message with the aya-vision chat template
messages = [
{"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "Que montre cette image?"},
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
]},
]
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
)
).to(model.device)
outputs = model.generate(
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(processor.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
Quantization reduces the memory footprint of large models by representing weights at lower precision. Refer to the [Quantization](../quantization/overview) overview for supported backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```python
import torch
from transformers import (
AutoProcessor,
AutoModelForImageTextToText,
BitsAndBytesConfig
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
processor = AutoProcessor.from_pretrained("CohereLabs/aya-vision-32b", use_fast=True)
model = AutoModelForImageTextToText.from_pretrained(
"CohereLabs/aya-vision-32b",
quantization_config=bnb_config,
device_map="auto"
)
inputs = processor.apply_chat_template(
[
{"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/roschmid/dog-races/resolve/main/images/Border_Collie.jpg"},
{"type": "text", "text":"Describe what you see."}
]}
],
padding=True,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
generated = model.generate(**inputs, max_new_tokens=50)
print(processor.tokenizer.decode(generated[0], skip_special_tokens=True))
```
## Notes
- Images are represented with the `<image>` tag in the chat template.
- Use the [`~ProcessorMixin.apply_chat_template`] method to correctly format inputs.
- The example below demonstrates inference with multiple images.
```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained("CohereForAI/aya-vision-8b")
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="auto", dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
gen_text = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text)
```
- The example below demonstrates inference with batched inputs.
```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="auto", dtype=torch.float16
)
batch_messages = [
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
],
]
batch_inputs = processor.apply_chat_template(
batch_messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
batch_outputs = model.generate(
**batch_inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
for i, output in enumerate(batch_outputs):
response = processor.tokenizer.decode(
output[batch_inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
print(f"Response {i+1}:\n{response}\n")
```
## AyaVisionProcessor
[[autodoc]] AyaVisionProcessor
@ -82,7 +268,6 @@ print(processor.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_sp
## AyaVisionModel
[[autodoc]] AyaVisionModel
- forward
## AyaVisionForConditionalGeneration

View File

@ -13,10 +13,11 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-12-18 and added to Hugging Face Transformers on 2024-12-19 and contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).*
*This model was released on 2024-12-18 and added to Hugging Face Transformers on 2024-12-19.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
@ -24,52 +25,106 @@ rendered properly in your Markdown viewer.
# Bamba
[Bamba-9B](https://github.com/state-spaces/mamba) is a new hybrid language model that combines Mamba2 and Transformer layers to improve inference efficiency. By interleaving Mamba2 layers, it avoids the memory bottleneck of the Transformers growing KV-cache, achieving up to 2.5× higher throughput and 2× lower latency in vLLM. The model has 9 billion parameters and was trained on 2.2 trillion tokens of open data, with full training recipes and checkpoints released for reproducibility. It integrates seamlessly with Hugging Face tools like Transformers, TRL, vLLM, and llama.cpp, and comes with additional resources such as a stateless shuffle dataloader and quantization support. Developed in collaboration with IBM, Princeton, CMU, and UIUC, Bamba is intended as an open, efficient foundation for experimenting with hybrid architectures.
[Bamba](https://huggingface.co/blog/bamba) is a 9B parameter decoder-only language model built on the [Mamba-2](./mamba2) architecture. It is pretrained in two stages - it starts by training on 2T tokens from the [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) dataset and then trained on an additional 200B tokens from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia).
You can find all the original Bamba checkpoints under the [Bamba](https://huggingface.co/collections/ibm-ai-platform/bamba-674f1388b9bbc98b413c7bab) collection.
> [!TIP]
> This model was contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
>
> Click on the Bamba models in the right sidebar for more examples of how to apply Bamba to different text generation tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="ibm-fms/Bamba-9B", dtype="auto")
pipeline("Plants generate energy through a process known as ")
pipeline = pipeline(
task="text-generation",
model="ibm-ai-platform/Bamba-9B-v2",
dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained("ibm-ai-platform/Bamba-9B-v2", dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
inputs = tokenizer("Plants generate energy through a process known as ", return_tensors='pt', return_token_type_ids=False)
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo "Plants create energy through a process known as" | transformers run --task text-generation --model ibm-ai-platform/Bamba-9B-v2 --device 0
```
</hfoption>
</hfoptions>
## Usage tips
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
- Bamba supports padding-free training. This concatenates distinct training examples while processing inputs as separate batches. Expect ~2x inference acceleration (varies by model and data distribution). Memory usage drops when examples have varying lengths since you avoid padding token overhead.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
- Padding-free training requires the flash-attn, mamba-ssm, and causal-conv1d packages. Pass these arguments alongside `input_ids` and `labels`:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
- `position_ids`: `torch.LongTensor` - position index of each token in each sequence
- `seq_idx`: `torch.LongTensor` - index of each sequence in the batch
- `FlashAttentionKwargs`:
- `cu_seq_lens_q`: `torch.LongTensor` - cumulative sequence lengths of all queries
- `cu_seq_lens_k`: `torch.LongTensor` - cumulative sequence lengths of all keys
- `max_length_q`: `int` - longest query length in the batch
- `max_length_k`: `int` - longest key length in the batch
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained(
"ibm-ai-platform/Bamba-9B-v2",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
- Don't provide `attention_mask` inputs. The [`DataCollatorWithFlattening`] generates these arguments automatically when you set `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for details.
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- Bamba supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
- Each of the [`FlashAttentionKwargs`]
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
- `max_length_q: int`: the longest query length in the batch.
- `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
```python
from transformers import DataCollatorWithFlattening
# Example of using padding-free training
data_collator = DataCollatorWithFlattening(
tokenizer=tokenizer,
return_seq_idx=True,
return_flash_attn_kwargs=True
)
```
## BambaConfig

View File

@ -9,50 +9,165 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
*This model was released on {release_date} and added to Hugging Face Transformers on 2023-07-17 and contributed by [ylacombe](https://huggingface.co/ylacombe) and [sanchit-gandhi](https://github.com/sanchit-gandhi).*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
*This model was released on 2023-04-09 and added to Hugging Face Transformers on 2023-07-17.*
# Bark
[Bark](https://github.com/suno-ai/bark) is a text-to-audio generative model capable of producing realistic speech, music, and sound effects directly from text prompts. Its built using a transformer-based architecture that models audio tokens rather than phonemes, enabling it to capture tone, emotion, and multilingual speech without explicit linguistic preprocessing. Bark uses semantic and coarse acoustic tokens, trained on diverse multilingual datasets, to generate natural prosody and expressive delivery. Its outputs are decoded from discrete audio representations, similar in spirit to models like EnCodec or VALL-E, allowing highly expressive and context-aware audio synthesis.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
[Bark](https://huggingface.co/suno/bark) is a transformer-based text-to-speech model proposed by Suno AI in [suno-ai/bark](https://github.com/suno-ai/bark).
Bark is made of 4 main models:
- [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that takes as input tokenized text, and predicts semantic text tokens that capture the meaning of the text.
- [`BarkCoarseModel`] (also referred to as the 'coarse acoustics' model): a causal autoregressive transformer, that takes as input the results of the [`BarkSemanticModel`] model. It aims at predicting the first two audio codebooks necessary for EnCodec.
- [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively predicts the last codebooks based on the sum of the previous codebooks embeddings.
- having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio array.
It should be noted that each of the first three modules can support conditional speaker embeddings to condition the output sound according to specific predefined voice.
This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe) and [Sanchit Gandhi (sanchit-gandhi)](https://github.com/sanchit-gandhi).
The original code can be found [here](https://github.com/suno-ai/bark).
### Optimizing Bark
Bark can be optimized with just a few extra lines of code, which **significantly reduces its memory footprint** and **accelerates inference**.
#### Using half-precision
You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision.
```python
from transformers import BarkModel
from accelerate import Accelerator
import torch
from transformers import pipeline
pipeline = pipeline(task="text-to-audio", model="suno/bark-small", dtype="auto")
output = pipeline("Plants create energy through a process known as photosynthesis.")
audio = output["audio"]
device = Accelerator().device
model = BarkModel.from_pretrained("suno/bark-small", dtype=torch.float16).to(device)
```
</hfoption>
<hfoption id="BarkModel">
#### Using CPU offload
```py
import torch
from scipy.io.wavfile import write as write_wav
from transformers import AutoProcessor, BarkModel
As mentioned above, Bark is made up of 4 sub-models, which are called up sequentially during audio generation. In other words, while one sub-model is in use, the other sub-models are idle.
processor = AutoProcessor.from_pretrained("suno/bark")
model = BarkModel.from_pretrained("suno/bark", dtype="auto")
If you're using a CUDA GPU or Intel XPU, a simple solution to benefit from an 80% reduction in memory footprint is to offload the submodels from device to CPU when they're idle. This operation is called *CPU offloading*. You can use it with one line of code as follows:
inputs = processor("Plants create energy through a process known as photosynthesis.", voice_preset="v2/en_speaker_6")
audio_array = model.generate(**inputs)
audio_array = audio_array.cpu().numpy().squeeze()
sample_rate = model.generation_config.sample_rate
write_wav("bark_generation.wav", sample_rate, audio_array)
```python
model.enable_cpu_offload()
```
</hfoption>
</hfoptions>
Note that 🤗 Accelerate must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/accelerate/basic_tutorials/install)
#### Using Flash Attention 2
Flash Attention 2 is an even faster, optimized version of the previous optimization.
##### Installation
First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features).
Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
##### Usage
To load a model using Flash Attention 2, we can pass the `attn_implementation="flash_attention_2"` flag to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference:
```python
model = BarkModel.from_pretrained("suno/bark-small", dtype=torch.float16, attn_implementation="flash_attention_2").to(device)
```
##### Performance comparison
The following diagram shows the latency for the native attention implementation (no optimisation) against Flash Attention 2. In all cases, we generate 400 semantic tokens on a 40GB A100 GPU with PyTorch 2.1:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ylacombe/benchmark-comparison/resolve/main/Bark%20Optimization%20Benchmark.png">
</div>
To put this into perspective, on an NVIDIA A100 and when generating 400 semantic tokens with a batch size of 16, you can get 17 times the [throughput](https://huggingface.co/blog/optimizing-bark#throughput) and still be 2 seconds faster than generating sentences one by one with the native model implementation. In other words, all the samples will be generated 17 times faster.
#### Combining optimization techniques
You can combine optimization techniques, and use CPU offload, half-precision and Flash Attention 2 all at once.
```python
from transformers import BarkModel
from accelerate import Accelerator
import torch
device = Accelerator().device
# load in fp16 and use Flash Attention 2
model = BarkModel.from_pretrained("suno/bark-small", dtype=torch.float16, attn_implementation="flash_attention_2").to(device)
# enable CPU offload
model.enable_cpu_offload()
```
Find out more on inference optimization techniques [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one).
### Usage tips
Suno offers a library of voice presets in a number of languages [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c).
These presets are also uploaded in the hub [here](https://huggingface.co/suno/bark-small/tree/main/speaker_embeddings) or [here](https://huggingface.co/suno/bark/tree/main/speaker_embeddings).
```python
>>> from transformers import AutoProcessor, BarkModel
>>> processor = AutoProcessor.from_pretrained("suno/bark")
>>> model = BarkModel.from_pretrained("suno/bark")
>>> voice_preset = "v2/en_speaker_6"
>>> inputs = processor("Hello, my dog is cute", voice_preset=voice_preset)
>>> audio_array = model.generate(**inputs)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
Bark can generate highly realistic, **multilingual** speech as well as other audio - including music, background noise and simple sound effects.
```python
>>> # Multilingual speech - simplified Chinese
>>> inputs = processor("惊人的!我会说中文")
>>> # Multilingual speech - French - let's use a voice_preset as well
>>> inputs = processor("Incroyable! Je peux générer du son.", voice_preset="fr_speaker_5")
>>> # Bark can also generate music. You can help it out by adding music notes around your lyrics.
>>> inputs = processor("♪ Hello, my dog is cute ♪")
>>> audio_array = model.generate(**inputs)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
The model can also produce **nonverbal communications** like laughing, sighing and crying.
```python
>>> # Adding non-speech cues to the input text
>>> inputs = processor("Hello uh ... [clears throat], my dog is cute [laughter]")
>>> audio_array = model.generate(**inputs)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
To save the audio, simply take the sample rate from the model config and some scipy utility:
```python
>>> from scipy.io.wavfile import write as write_wav
>>> # save audio to disk, but first take the sample rate from the model config
>>> sample_rate = model.generation_config.sample_rate
>>> write_wav("bark_generation.wav", sample_rate, audio_array)
```
## BarkConfig
@ -105,4 +220,3 @@ write_wav("bark_generation.wav", sample_rate, audio_array)
[[autodoc]] BarkSemanticConfig
- all

View File

@ -13,18 +13,22 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-10-29 and added to Hugging Face Transformers on 2020-11-16 and contributed by [sshleifer](https://huggingface.co/sshleifer).*
*This model was released on 2019-10-29 and added to Hugging Face Transformers on 2020-11-16.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# BART
[BART](https://huggingface.co/papers/1910.13461) is a Transformer-based sequence-to-sequence model trained as a denoising autoencoder: text is corrupted with noise and the model learns to reconstruct the original. Its architecture combines a bidirectional encoder like BERT with a left-to-right decoder like GPT, making it a general framework for many pretraining approaches. Using techniques like sentence shuffling and span in-filling, BART achieves strong results on both generation and comprehension tasks, matching RoBERTa on GLUE and SQuAD while setting new state-of-the-art results in summarization, dialogue, and question answering. It also boosts machine translation performance and allows ablation experiments that replicate and compare other pretraining schemes.
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. It's pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -33,8 +37,14 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="summarization", model="facebook/bart-large-cnn", dtype="auto")
pipeline("The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.")
pipeline = pipeline(
task="fill-mask",
model="facebook/bart-large",
dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
</hfoption>
@ -42,30 +52,48 @@ pipeline("The tower is 324 metres (1,063 ft) tall, about the same height as an 8
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/bart-large",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to(model.device)
text="""
The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.
"""
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers run --task fill-mask --model facebook/bart-large --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- Pad inputs on the right. BERT uses absolute position embeddings.
- The facebook/bart-large-cnn checkpoint lacks `mask_token_id`. It can't perform mask-filling tasks.
- BART ignores `token_type_ids` for sequence classification. Use [`BartTokenizer`] or `encode()` for proper splitting.
- [`BartModel`] creates `decoder_input_ids` automatically if you don't pass them. This differs from other model APIs but helps with mask-filling tasks.
- Model predictions match the original implementation when `forced_bos_token_id=0.` This works only if your text starts with a space.
- Use [`generate`] for conditional generation tasks like summarization.
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
- BART doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
## BartConfig
@ -106,4 +134,3 @@ print(tokenizer.decode(outputs[0]))
[[autodoc]] BartForCausalLM
- forward

View File

@ -13,11 +13,25 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-10-23 and added to Hugging Face Transformers on 2020-11-27 and contributed by [moussakam](https://huggingface.co/moussakam).*
*This model was released on 2020-10-23 and added to Hugging Face Transformers on 2020-11-27.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BARThez
[BARThez](https://huggingface.co/papers/2010.12321) is the first BART model for the French language, pretrained on a large monolingual French corpus. Unlike BERT-based models like CamemBERT and FlauBERT, BARThez includes both an encoder and a decoder pretrained, making it well-suited for generative tasks. Evaluated on the FLUE benchmark and a new summarization dataset, OrangeSum, BARThez demonstrates strong performance. Additionally, continuing the pretraining of multilingual BART on BARThez's corpus results in mBARTHez, which outperforms or matches CamemBERT and FlauBERT.
[BARThez](https://huggingface.co/papers/2010.12321) is a [BART](./bart) model designed for French language tasks. Unlike existing French BERT models, BARThez includes a pretrained encoder-decoder, allowing it to generate text as well. This model is also available as a multilingual variant, mBARThez, by continuing pretraining multilingual BART on a French corpus.
You can find all of the original BARThez checkpoints under the [BARThez](https://huggingface.co/collections/dascim/barthez-670920b569a07aa53e3b6887) collection.
> [!TIP]
> This model was contributed by [moussakam](https://huggingface.co/moussakam).
> Refer to the [BART](./bart) docs for more usage examples.
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -26,8 +40,13 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline("fill-mask", model="moussaKam/barthez", dtype="auto")
pipeline("Les plantes créent <mask> grâce à un processus appelé photosynthèse.")
pipeline = pipeline(
task="fill-mask",
model="moussaKam/barthez",
dtype=torch.float16,
device=0
)
pipeline("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.")
```
</hfoption>
@ -37,15 +56,32 @@ pipeline("Les plantes créent <mask> grâce à un processus appelé photosynthè
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained("moussaKam/barthez", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("moussaKam/barthez")
tokenizer = AutoTokenizer.from_pretrained(
"moussaKam/barthez",
)
model = AutoModelForMaskedLM.from_pretrained(
"moussaKam/barthez",
dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt").to(model.device)
inputs = tokenizer("Les plantes créent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Les plantes produisent <mask> grâce à un processus appelé photosynthèse." | transformers run --task fill-mask --model moussaKam/barthez --device 0
```
</hfoption>

View File

@ -13,47 +13,92 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-09-20 and added to Hugging Face Transformers on 2021-10-18 and contributed by [dqnguyen](https://huggingface.co/dqnguyen).*
*This model was released on 2021-09-20 and added to Hugging Face Transformers on 2021-10-18.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BARTpho
[BARTpho](https://huggingface.co/papers/2109.09701) introduces two versions—BARTpho_word and BARTpho_syllable—as the first large-scale monolingual sequence-to-sequence models pre-trained for Vietnamese. Leveraging the "large" architecture and pre-training scheme of BART, BARTpho excels in generative NLP tasks. Evaluations on Vietnamese text summarization demonstrate that BARTpho surpasses mBART, setting a new state-of-the-art. The model is released to support future research and applications in generative Vietnamese NLP.
[BARTpho](https://huggingface.co/papers/2109.09701) is a large-scale Vietnamese sequence-to-sequence model. It offers a word-based and syllable-based version. This model is built on the [BART](./bart) large architecture with its denoising pretraining.
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BARTpho).
You can find all the original checkpoints under the [VinAI](https://huggingface.co/vinai/models?search=bartpho) organization.
> [!TIP]
> This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen).
> Check out the right sidebar for examples of how to apply BARTpho to different language tasks.
The example below demonstrates how to summarize text with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline("text2text-generation", model="vinai/bartpho-syllable", dtype="auto")
pipeline("Thực vật tạo ra năng lượng thông qua một quá trình được gọi là")
pipeline = pipeline(
task="summarization",
model="vinai/bartpho-word",
dtype=torch.float16,
device=0
)
text = """
Quang tổng hợp hay gọi tắt là quang hợp là quá trình thu nhận và chuyển hóa năng lượng ánh sáng Mặt trời của thực vật,
tảo và một số vi khuẩn để tạo ra hợp chất hữu cơ phục vụ bản thân cũng như làm nguồn thức ăn cho hầu hết các sinh vật
trên Trái Đất. Quang hợp trong thực vật thường liên quan đến chất tố diệp lục màu xanh lá cây và tạo ra oxy như một sản phẩm phụ
"""
pipeline(text)
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import BartForConditionalGeneration, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("vinai/bartpho-syllable", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable")
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bartpho-word",
)
model = BartForConditionalGeneration.from_pretrained(
"vinai/bartpho-word",
dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Thực vật tạo ra năng lượng thông qua một quá trình được gọi là", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
text = """
Quang tổng hợp hay gọi tắt là quang hợp là quá trình thu nhận và chuyển hóa năng lượng ánh sáng Mặt trời của thực vật,
tảo và một số vi khuẩn để tạo ra hợp chất hữu cơ phục vụ bản thân cũng như làm nguồn thức ăn cho hầu hết các sinh vật
trên Trái Đất. Quang hợp trong thực vật thường liên quan đến chất tố diệp lục màu xanh lá cây và tạo ra oxy như một sản phẩm phụ
"""
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Quang tổng hợp hay gọi tắt là quang hợp là quá trình thu nhận và chuyển hóa năng lượng ánh sáng Mặt trời của thực vật,
tảo và một số vi khuẩn để tạo ra hợp chất hữu cơ phục vụ bản thân cũng như làm nguồn thức ăn cho hầu hết các sinh vật
trên Trái Đất. Quang hợp trong thực vật thường liên quan đến chất tố diệp lục màu xanh lá cây và tạo ra oxy như một sản phẩm phụ" | \
transformers run --task summarization --model vinai/bartpho-word --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- BARTpho uses BART's large architecture plus an extra layer-normalization layer on the encoder and decoder. Replace BART-specific classes with mBART-specific classes.
- This implementation handles tokenization through the `monolingual_vocab_file`. This contains Vietnamese-specific token types from the multilingual vocabulary. For other languages, replace `monolingual_vocab_file` with one specialized for your target language.
- BARTpho uses the large architecture of BART with an additional layer-normalization layer on top of the encoder and decoder. The BART-specific classes should be replaced with the mBART-specific classes.
- This implementation only handles tokenization through the `monolingual_vocab_file` file. This is a Vietnamese-specific subset of token types taken from that multilingual vocabulary. If you want to use this tokenizer for another language, replace the `monolingual_vocab_file` with one specialized for your target language.
## BartphoTokenizer

View File

@ -13,55 +13,120 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-06-15 and added to Hugging Face Transformers on 2021-08-04 and contributed by [nielsr](https://huggingface.co/nielsr).*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
*This model was released on 2021-06-15 and added to Hugging Face Transformers on 2021-08-04.*
# BEiT
[BEiT: BERT Pre-Training of Image Transformers](https://huggingface.co/papers/2106.08254) introduces a self-supervised vision representation model inspired by BERT. BEiT pre-trains Vision Transformers by predicting visual tokens from masked image patches. This approach outperforms supervised pre-training methods. Experiments show that BEiT achieves competitive results on image classification and semantic segmentation, with a base-size model reaching 83.2% top-1 accuracy on ImageNet-1K, surpassing DeiT trained from scratch. A large-size BEiT model achieves 86.3% on ImageNet-1K, even outperforming a ViT-L model pre-trained on ImageNet-22K.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
The BEiT model was proposed in [BEiT: BERT Pre-Training of Image Transformers](https://huggingface.co/papers/2106.08254) by
Hangbo Bao, Li Dong and Furu Wei. Inspired by BERT, BEiT is the first paper that makes self-supervised pre-training of
Vision Transformers (ViTs) outperform supervised pre-training. Rather than pre-training the model to predict the class
of an image (as done in the [original ViT paper](https://huggingface.co/papers/2010.11929)), BEiT models are pre-trained to
predict visual tokens from the codebook of OpenAI's [DALL-E model](https://huggingface.co/papers/2102.12092) given masked
patches.
The abstract from the paper is the following:
*We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation
from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked image
modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e, image
patches (such as 16x16 pixels), and visual tokens (i.e., discrete tokens). We first "tokenize" the original image into
visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-training
objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT, we
directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder.
Experimental results on image classification and semantic segmentation show that our model achieves competitive results
with previous pre-training methods. For example, base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-1K,
significantly outperforming from-scratch DeiT training (81.8%) with the same setup. Moreover, large-size BEiT obtains
86.3% only using ImageNet-1K, even outperforming ViT-L with supervised pre-training on ImageNet-22K (85.2%).*
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/beit).
## Usage tips
- BEiT models are regular Vision Transformers, but pre-trained in a self-supervised way rather than supervised. They
outperform both the [original model (ViT)](vit) as well as [Data-efficient Image Transformers (DeiT)](deit) when fine-tuned on ImageNet-1K and CIFAR-100. You can check out demo notebooks regarding inference as well as
fine-tuning on custom data [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (you can just replace
[`ViTImageProcessor`] by [`BeitImageProcessor`] and
[`ViTForImageClassification`] by [`BeitForImageClassification`]).
- There's also a demo notebook available which showcases how to combine DALL-E's image tokenizer with BEiT for
performing masked image modeling. You can find it [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BEiT).
- As the BEiT models expect each image to be of the same size (resolution), one can use
[`BeitImageProcessor`] to resize (or rescale) and normalize images for the model.
- Both the patch resolution and image resolution used during pre-training or fine-tuning are reflected in the name of
each checkpoint. For example, `microsoft/beit-base-patch16-224` refers to a base-sized architecture with patch
resolution of 16x16 and fine-tuning resolution of 224x224. All checkpoints can be found on the [hub](https://huggingface.co/models?search=microsoft/beit).
- The available checkpoints are either (1) pre-trained on [ImageNet-22k](http://www.image-net.org/) (a collection of
14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million
images and 1,000 classes).
- BEiT uses relative position embeddings, inspired by the T5 model. During pre-training, the authors shared the
relative position bias among the several self-attention layers. During fine-tuning, each layer's relative position
bias is initialized with the shared relative position bias obtained after pre-training. Note that, if one wants to
pre-train a model from scratch, one needs to either set the `use_relative_position_bias` or the
`use_relative_position_bias` attribute of [`BeitConfig`] to `True` in order to add
position embeddings.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/beit_architecture.jpg"
alt="drawing" width="600"/>
<small> BEiT pre-training. Taken from the <a href="https://huggingface.co/papers/2106.08254">original paper.</a> </small>
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="microsoft/beit-base-patch16-224-pt22k", dtype="auto")
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
from transformers import BeitForImageClassification
model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224", attn_implementation="sdpa", dtype=torch.float16)
...
```
</hfoption>
<hfoption id="AutoModel">
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
```python
import torch
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.5.1, OS Ubuntu 20.04) with `float16` and
`microsoft/beit-base-patch16-224` model, we saw the following improvements during training and inference:
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
#### Training
image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
model = AutoModelForImageClassification.from_pretrained("microsoft/beit-base-patch16-224-pt22k", dtype="auto")
| num_training_steps | batch_size | image_size | is_cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | SDPA peak mem (MB) | Mem saving (%) |
|--------------------|------------|--------------|---------|----------------------------|---------------------------|-------------|----------------------|--------------------|----------------|
| 50 | 2 | (1048, 640) | True | 0.984 | 0.746 | 31.975 | 6738.915 | 4319.886 | 55.998 |
inputs = image_processor(image, return_tensors="pt")
#### Inference
with torch.no_grad():
logits = model(**inputs).logits
| Image batch size | Eager (s/iter) | Eager CI, % | Eager memory (MB) | SDPA (s/iter) | SDPA CI, % | SDPA memory (MB) | SDPA speedup | SDPA memory saved (%) |
|-------------------:|-----------------:|:--------------|--------------------:|----------------:|:-------------|-------------------:|---------------:|----------------------:|
| 1 | 0.012 | ±0.3% | 3.76657e+08 | 0.011 | ±0.5% | 3.75739e+08 | 1.05 | 0.244 |
| 4 | 0.013 | ±0.1% | 4.03147e+08 | 0.011 | ±0.2% | 3.90554e+08 | 1.178 | 3.225 |
| 16 | 0.045 | ±0.1% | 4.96697e+08 | 0.035 | ±0.1% | 4.51232e+08 | 1.304 | 10.076 |
| 32 | 0.088 | ±0.1% | 6.24417e+08 | 0.066 | ±0.1% | 5.33488e+08 | 1.325 | 17.044 |
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```
## Resources
</hfoption>
</hfoptions>
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BEiT.
<PipelineTag pipeline="image-classification"/>
- [`BeitForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
**Semantic segmentation**
- [Semantic segmentation task guide](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## BEiT specific outputs
@ -102,4 +167,3 @@ print(model.config.id2label[predicted_label])
[[autodoc]] BeitForSemanticSegmentation
- forward

View File

@ -13,46 +13,131 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-07-29 and added to Hugging Face Transformers on 2020-11-16 and contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).*
*This model was released on 2019-07-29 and added to Hugging Face Transformers on 2020-11-16.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BertGeneration
[BertGeneration](https://huggingface.co/papers/1907.12461) leverages pre-trained BERT checkpoints for sequence-to-sequence tasks using an EncoderDecoderModel framework. This approach achieves state-of-the-art results in Machine Translation, Text Summarization, Sentence Splitting, and Sentence Fusion, demonstrating the utility of initializing both encoder and decoder with pre-trained models.
[BertGeneration](https://huggingface.co/papers/1907.12461) leverages pretrained BERT checkpoints for sequence-to-sequence tasks with the [`EncoderDecoderModel`] architecture. BertGeneration adapts the [`BERT`] for generative tasks.
You can find all the original BERT checkpoints under the [BERT](https://huggingface.co/collections/google/bert-release-64ff5e7a4be99045d1896dbc) collection.
> [!TIP]
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
>
> Click on the BertGeneration models in the right sidebar for more examples of how to apply BertGeneration to different sequence generation tasks.
The example below demonstrates how to use BertGeneration with [`EncoderDecoderModel`] for sequence-to-sequence tasks.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="text2text-generation", model="google/bert_for_seq_generation_L-24_bbc_encoder", dtype="auto")
pipeline("Plants generate energy through a process known as ")
pipeline = pipeline(
task="text2text-generation",
model="google/roberta2roberta_L-24_discofuse",
dtype=torch.float16,
device=0
)
pipeline("Plants create energy through ")
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import EncoderDecoderModel, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
model = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
inputs = tokenizer("Plants generate energy through a process known as ", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
input_ids = tokenizer(
"Plants create energy through ", add_special_tokens=False, return_tensors="pt"
).input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through " | transformers run --task text2text-generation --model "google/roberta2roberta_L-24_discofuse" --device 0
```
</hfoption>
</hfoptions>
## Usage tips
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
- Use [`BertGenerationEncoder`] and [`BertGenerationDecoder`] with [`EncoderDecoderModel`] for sequence-to-sequence tasks.
- Summarization, sentence splitting, sentence fusion, and translation don't require special tokens in the input.
- Don't add `EOS` tokens to the end of inputs for most generation tasks.
The example below uses [BitsAndBytesConfig](../quantizationbitsandbytes) to quantize the weights to 4-bit.
```python
import torch
from transformers import EncoderDecoderModel, AutoTokenizer, BitsAndBytesConfig
# Configure 4-bit quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model = EncoderDecoderModel.from_pretrained(
"google/roberta2roberta_L-24_discofuse",
quantization_config=quantization_config,
dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
input_ids = tokenizer(
"Plants create energy through ", add_special_tokens=False, return_tensors="pt"
).input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
## Notes
- [`BertGenerationEncoder`] and [`BertGenerationDecoder`] should be used in combination with [`EncoderDecoderModel`] for sequence-to-sequence tasks.
```python
from transformers import BertGenerationEncoder, BertGenerationDecoder, BertTokenizer, EncoderDecoderModel
# leverage checkpoints for Bert2Bert model
# use BERT's cls token as BOS token and sep token as EOS token
encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-large-uncased", bos_token_id=101, eos_token_id=102)
# add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
decoder = BertGenerationDecoder.from_pretrained(
"google-bert/bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102
)
bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder)
# create tokenizer
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
input_ids = tokenizer(
"This is a long article to summarize", add_special_tokens=False, return_tensors="pt"
).input_ids
labels = tokenizer("This is a short summary", return_tensors="pt").input_ids
# train
loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss
loss.backward()
```
- For summarization, sentence splitting, sentence fusion and translation, no special tokens are required for the input.
- No EOS token should be added to the end of the input for most generation tasks.
## BertGenerationConfig

View File

@ -13,49 +13,73 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-03-24 and added to Hugging Face Transformers on 2020-11-16 and contributed by [cl-tohoku](https://huggingface.co/cl-tohoku).*
*This model was released on 2019-03-24 and added to Hugging Face Transformers on 2020-11-16.*
# BertJapanese
[BERTJapanese](https://github.com/cl-tohoku/bert-japanese) is a collection of pretrained BERT models for Japanese, developed at Tohoku University and released on Hugging Face. The models follow the original BERT architecture, with base models (12 layers, 768 hidden units, 12 heads) and large models (24 layers, 1024 hidden units, 16 heads). Training was performed on large-scale Japanese corpora such as Wikipedia and the Japanese portion of Common Crawl, with different tokenization strategies including subword and character-based. Multiple versions exist (v1, v2, v3), improving coverage and accuracy for Japanese natural language processing tasks
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
Run the command below to install the Japanese dependencies.
## Overview
```bash
!pip install transformers["ja"]
The BERT models trained on Japanese text.
There are models with two different tokenization methods:
- Tokenize with MeCab and WordPiece. This requires some extra dependencies, [fugashi](https://github.com/polm/fugashi) which is a wrapper around [MeCab](https://taku910.github.io/mecab/).
- Tokenize into characters.
To use *MecabTokenizer*, you should `pip install transformers["ja"]` (or `pip install -e .["ja"]` if you install
from source) to install dependencies.
See [details on cl-tohoku repository](https://github.com/cl-tohoku/bert-japanese).
Example of using a model with MeCab and WordPiece tokenization:
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾輩 ある [SEP]
>>> outputs = bertjapanese(**inputs)
```
<hfoptions id="usage">
<hfoption id="Pipeline">
Example of using a model with Character tokenization:
```py
import torch
from transformers import pipeline
```python
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
pipeline = pipeline(task="fill-mask", model="tohoku-nlp/bert-base-japanese", dtype="auto")
pipeline("植物は[MASK]を光合成と呼ばれる過程を通じて作り出します。")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] [SEP]
>>> outputs = bertjapanese(**inputs)
```
</hfoption>
<hfoption id="AutoModel">
This model was contributed by [cl-tohoku](https://huggingface.co/cl-tohoku).
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
<Tip>
model = AutoModelForMaskedLM.from_pretrained("tohoku-nlp/bert-base-japanese", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("tohoku-nlp/bert-base-japanese")
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
API reference information.
inputs = tokenizer("植物は[MASK]を光合成と呼ばれる過程を通じて作り出します。", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
```
</hfoption>
</hfoptions>
</Tip>
## BertJapaneseTokenizer

View File

@ -13,17 +13,25 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2018-10-11 and added to Hugging Face Transformers on 2020-11-16 and contributed by [thomwolf](https://huggingface.co/thomwolf).*
*This model was released on 2018-10-11 and added to Hugging Face Transformers on 2020-11-16.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BERT
[BERT](https://huggingface.co/papers/1810.04805) introduces a bidirectional transformer model for language representation, pre-trained using masked language modeling and next sentence prediction. BERT achieves state-of-the-art results across various NLP tasks by fine-tuning with minimal task-specific modifications, significantly improving benchmarks like GLUE, MultiNLI, and SQuAD.
[BERT](https://huggingface.co/papers/1810.04805) is a bidirectional transformer pretrained on unlabeled text to predict masked tokens in a sentence and to predict whether one sentence follows another. The main idea is that by randomly masking some tokens, the model can train on text to the left and right, giving it a more thorough understanding. BERT is also very versatile because its learned language representations can be adapted for other NLP tasks by fine-tuning an additional layer or head.
You can find all the original BERT checkpoints under the [BERT](https://huggingface.co/collections/google/bert-release-64ff5e7a4be99045d1896dbc) collection.
> [!TIP]
> Click on the BERT models in the right sidebar for more examples of how to apply BERT to different language tasks.
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -32,7 +40,12 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="fill-mask", model="google-bert/bert-base-uncased", dtype="auto")
pipeline = pipeline(
task="fill-mask",
model="google-bert/bert-base-uncased",
dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
@ -43,23 +56,41 @@ pipeline("Plants create [MASK] through a process known as photosynthesis.")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-uncased", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained(
"google-bert/bert-base-uncased",
)
model = AutoModelForMaskedLM.from_pretrained(
"google-bert/bert-base-uncased",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to(model.device)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model google-bert/bert-base-uncased --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- Pad inputs on the right. BERT uses absolute position embeddings.
- Inputs should be padded on the right because BERT uses absolute position embeddings.
## BertConfig
@ -78,12 +109,6 @@ print(f"Predicted word: {predicted_word}")
[[autodoc]] BertTokenizerFast
## Bert specific outputs
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
## BertModel
[[autodoc]] BertModel
@ -128,3 +153,7 @@ print(f"Predicted word: {predicted_word}")
[[autodoc]] BertForQuestionAnswering
- forward
## Bert specific outputs
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput

View File

@ -13,11 +13,25 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-05-20 and added to Hugging Face Transformers on 2020-11-16 and contributed by [dqnguyen](https://huggingface.co/dqnguyen).*
*This model was released on 2020-05-20 and added to Hugging Face Transformers on 2020-11-16.*
# BERTweet
[BERTweet](https://huggingface.co/papers/2005.10200) is a large-scale pre-trained language model for English Tweets, sharing the architecture of BERT-base and trained using the RoBERTa pre-training procedure. It surpasses strong baselines like RoBERTa-base and XLM-R-base, achieving superior results in Part-of-speech tagging, Named-entity recognition, and text classification tasks.
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## BERTweet
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but it's pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
> [!TIP]
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -26,37 +40,58 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="text-classification", model="vinai/bertweet-base", dtype="auto")
result = pipeline("SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:")
print(f"Label: {result[0]['label']}, Score: {result[0]['score']}")
pipeline = pipeline(
task="fill-mask",
model="vinai/bertweet-base",
dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="Pipeline">
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("vinai/bertweet-base", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bertweet-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"vinai/bertweet-base",
dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to(model.device)
inputs = tokenizer("SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:", return_tensors="pt")
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax(dim=-1).item()
label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {label}")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers run --task fill-mask --model vinai/bertweet-base --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- Use [`AutoTokenizer`] or [`BertweetTokenizer`]. They come preloaded with custom vocabulary for tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Install the [emoji](https://pypi.org/project/emoji/) library too.
- Pad inputs on the right (`padding="max_length"`). BERT uses absolute position embeddings.
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because it's preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
## BertweetTokenizer
[[autodoc]] BertweetTokenizer

View File

@ -13,11 +13,24 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-07-28 and added to Hugging Face Transformers on 2021-03-30 and contributed by [vasudevgupta](https://huggingface.co/vasudevgupta).*
*This model was released on 2020-07-28 and added to Hugging Face Transformers on 2021-03-30.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# BigBird
[BigBird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) introduces a sparse-attention mechanism that reduces the quadratic dependency on sequence length to linear, enabling handling of much longer sequences compared to models like BERT. BigBird combines sparse, global, and random attention to approximate full attention efficiently. This allows it to process sequences up to 8 times longer on similar hardware, improving performance on long document NLP tasks such as question answering and summarization. Additionally, the model supports novel applications in genomics.
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesnt try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
> [!TIP]
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -26,7 +39,12 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="fill-mask", model="google/bigbird-roberta-base", dtype="auto")
pipeline = pipeline(
task="fill-mask",
model="google/bigbird-roberta-base",
dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
@ -37,26 +55,47 @@ pipeline("Plants create [MASK] through a process known as photosynthesis.")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained("google/bigbird-roberta-base", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-roberta-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/bigbird-roberta-base",
dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to(model.device)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model google/bigbird-roberta-base --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- Pad inputs on the right. BigBird uses absolute position embeddings.
- BigBird supports `original_full` and `block_sparse` attention. Use `original_full` for sequences under 1024 tokens since sparse patterns don't help much with smaller inputs.
- Current implementation uses 3-block window size and 2 global blocks. It only supports ITC-implementation and doesn't support `num_random_blocks=0`.
- Sequence length must be divisible by the block size.
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
- The sequence length must be divisible by the block size.
## Resources
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
## BigBirdConfig
@ -117,4 +156,3 @@ print(f"Predicted word: {predicted_word}")
[[autodoc]] BigBirdForQuestionAnswering
- forward

View File

@ -13,11 +13,26 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-07-28 and added to Hugging Face Transformers on 2021-05-07 and contributed by [vasudevgupta](https://huggingface.co/vasudevgupta).*
*This model was released on 2020-07-28 and added to Hugging Face Transformers on 2021-05-07.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BigBirdPegasus
[BigBird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) introduces a sparse-attention mechanism that reduces the quadratic dependency on sequence length to linear, enabling handling of much longer sequences compared to models like BERT. BigBird combines sparse, global, and random attention to approximate full attention efficiently. This allows it to process sequences up to 8 times longer on similar hardware, improving performance on long document NLP tasks such as question answering and summarization. The model is also a universal approximator of sequence functions and Turing complete, preserving the capabilities of full attention models. Additionally, BigBird explores applications in genomics data.
[BigBirdPegasus](https://huggingface.co/papers/2007.14062) is an encoder-decoder (sequence-to-sequence) transformer model for long-input summarization. It extends the [BigBird](./big_bird) architecture with an additional pretraining objective borrowed from [Pegasus](./pegasus) called gap sequence generation (GSG). Whole sentences are masked and the model has to fill in the gaps in the document. BigBirdPegasus's ability to keep track of long contexts makes it effective at summarizing lengthy inputs, surpassing the performance of base Pegasus models.
You can find all the original BigBirdPegasus checkpoints under the [Google](https://huggingface.co/google/models?search=bigbird-pegasus) organization.
> [!TIP]
> This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta).
>
> Click on the BigBirdPegasus models in the right sidebar for more examples of how to apply BigBirdPegasus to different language tasks.
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -26,8 +41,16 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="summarization", model="google/bigbird-pegasus-large-arxiv", dtype="auto")
pipeline("Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems. These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.")
pipeline = pipeline(
task="summarization",
model="google/bigbird-pegasus-large-arxiv",
dtype=torch.float32,
device=0
)
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
```
</hfoption>
@ -35,31 +58,82 @@ pipeline("Plants are among the most remarkable and essential life forms on Earth
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("google/bigbird-pegasus-large-arxiv", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-pegasus-large-arxiv"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/bigbird-pegasus-large-arxiv",
dtype=torch.bfloat16,
device_map="auto",
)
text="""
Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
"""
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers">
```bash
echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers run --task summarization --model google/bigbird-pegasus-large-arxiv --device 0
```
</hfoption>
</hfoptions>
## Usage tips
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
- BigBirdPegasus uses [`PegasusTokenizer`].
- Pad inputs on the right. BigBird uses absolute position embeddings.
- BigBirdPegasus supports `original_full` and `block_sparse` attention. Use `original_full` for sequences under 1024 tokens since sparse patterns don't help much with smaller inputs.
- Current implementation uses 3-block window size and 2 global blocks. It only supports ITC-implementation and doesn't support `num_random_blocks=0`.
- Sequence length must be divisible by the block size.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```py
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/bigbird-pegasus-large-arxiv",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-pegasus-large-arxiv"
)
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- BigBirdPegasus also uses the [`PegasusTokenizer`].
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
- BigBirdPegasus supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
- The sequence length must be divisible by the block size.
## Resources
Read the [Understanding BigBird's Block Sparse Attention](https://huggingface.co/blog/big-bird) blog post for more details about how BigBird's attention works.
## BigBirdPegasusConfig
@ -90,4 +164,3 @@ print(tokenizer.decode(outputs[0]))
[[autodoc]] BigBirdPegasusForCausalLM
- forward

View File

@ -13,17 +13,26 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on {release_date} and added to Hugging Face Transformers on 2022-12-05 and contributed by [kamalkraj](https://huggingface.co/kamalkraj).*
*This model was released on 2022-10-19 and added to Hugging Face Transformers on 2022-12-05.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BioGPT
[BioGPT](https://huggingface.co/papers/bbac409) is a domain-specific generative Transformer language model designed for biomedical text generation and mining. Trained on 15M PubMed abstracts, BioGPT excels in various biomedical NLP tasks, outperforming previous models. It achieves notable F1 scores of 44.98%, 38.42%, and 40.76% on BC5CDR, KD-DTI, and DDI end-to-end relation extraction tasks, respectively, and sets a new record with 78.2% accuracy on PubMedQA. Additionally, BioGPT demonstrates superior text generation capabilities, producing fluent descriptions for biomedical terms.
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
> [!TIP]
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -32,8 +41,14 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="microsoft/biogpt", dtype="auto")
pipeline("Ibuprofen is best used for ")
generator = pipeline(
task="text-generation",
model="microsoft/biogpt",
dtype=torch.float16,
device=0,
)
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
print(result)
```
</hfoption>
@ -43,21 +58,77 @@ pipeline("Ibuprofen is best used for ")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("microsoft/biogpt", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Ibuprofen is best used for ", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Ibuprofen is best used for" | transformers run --task text-generation --model microsoft/biogpt --device 0
```
</hfoption>
</hfoptions>
## Usage tips
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
- Pad inputs on the right. BioGPT uses absolute position embeddings.
- BioGPT reuses previously computed key-value attention pairs. Access this feature with the `past_key_values` parameter in [`BioGPTModel.forward`].
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/BioGPT-Large",
quantization_config=bnb_config,
dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
## Notes
- Pad inputs on the right because BioGPT uses absolute position embeddings.
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
attn_implementation="eager"
)
## BioGptConfig
@ -77,7 +148,7 @@ print(tokenizer.decode(outputs[0]))
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification
@ -87,4 +158,3 @@ print(tokenizer.decode(outputs[0]))
[[autodoc]] BioGptForSequenceClassification
- forward

View File

@ -13,49 +13,43 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-12-24 and added to Hugging Face Transformers on 2022-12-07 and contributed by [nielsr](https://huggingface.co/nielsr).*
*This model was released on 2019-12-24 and added to Hugging Face Transformers on 2022-12-07.*
# Big Transfer (BiT)
[Big Transfer (BiT): General Visual Representation Learning](https://huggingface.co/papers/1912.11370) proposes a method for scaling up pre-training of ResNetv2 architectures. This approach, called Big Transfer (BiT), combines specific components and uses a simple heuristic for transfer learning, achieving strong performance across over 20 datasets. BiT demonstrates robustness across various data regimes, from 1 example per class to 1M total examples. It achieves 87.5% top-1 accuracy on ILSVRC-2012, 99.4% on CIFAR-10, and 76.3% on the 19-task Visual Task Adaptation Benchmark (VTAB). On small datasets, BiT reaches 76.8% on ILSVRC-2012 with 10 examples per class and 97.0% on CIFAR-10 with 10 examples per class. The paper includes a detailed analysis of the key components contributing to high transfer performance.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
import torch
from transformers import pipeline
The BiT model was proposed in [Big Transfer (BiT): General Visual Representation Learning](https://huggingface.co/papers/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
BiT is a simple recipe for scaling up pre-training of [ResNet](resnet)-like architectures (specifically, ResNetv2). The method results in significant improvements for transfer learning.
pipeline = pipeline(task="image-classification", model="google/bit-50", dtype="auto")
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
The abstract from the paper is the following:
</hfoption>
<hfoption id="AutoModel">
*Transfer of pre-trained representations improves sample efficiency and simplifies hyperparameter tuning when training deep neural networks for vision. We revisit the paradigm of pre-training on large supervised datasets and fine-tuning the model on a target task. We scale up pre-training, and propose a simple recipe that we call Big Transfer (BiT). By combining a few carefully selected components, and transferring using a simple heuristic, we achieve strong performance on over 20 datasets. BiT performs well across a surprisingly wide range of data regimes -- from 1 example per class to 1M total examples. BiT achieves 87.5% top-1 accuracy on ILSVRC-2012, 99.4% on CIFAR-10, and 76.3% on the 19 task Visual Task Adaptation Benchmark (VTAB). On small datasets, BiT attains 76.8% on ILSVRC-2012 with 10 examples per class, and 97.0% on CIFAR-10 with 10 examples per class. We conduct detailed analysis of the main components that lead to high transfer performance.*
```python
import torch
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/google-research/big_transfer).
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
## Usage tips
image_processor = AutoImageProcessor.from_pretrained("google/bit-50")
model = AutoModelForImageClassification.from_pretrained("google/bit-50", dtype="auto")
- BiT models are equivalent to ResNetv2 in terms of architecture, except that: 1) all batch normalization layers are replaced by [group normalization](https://huggingface.co/papers/1803.08494),
inputs = image_processor(image, return_tensors="pt")
2) [weight standardization](https://huggingface.co/papers/1903.10520) is used for convolutional layers. The authors show that the combination of both is useful for training with large batch sizes, and has a significant
impact on transfer learning.
with torch.no_grad():
logits = model(**inputs).logits
## Resources
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BiT.
</hfoption>
</hfoptions>
<PipelineTag pipeline="image-classification"/>
- [`BitForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## BitConfig
@ -80,4 +74,3 @@ print(model.config.id2label[predicted_label])
[[autodoc]] BitForImageClassification
- forward

View File

@ -17,14 +17,6 @@ rendered properly in your Markdown viewer.
# BitNet
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="microsoft/BitNet-b1.58-3B", dtype="auto")
pipeline("The future of artificial intelligence is")
```
## Overview
Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
@ -46,22 +38,22 @@ Several versions of the model weights are available on Hugging Face:
### Model Details
* **Architecture:** Transformer-based, modified with `BitLinear` layers (BitNet framework).
* Uses Rotary Position Embeddings (RoPE).
* Uses squared ReLU (ReLU²) activation in FFN layers.
* Employs [`subln`](https://proceedings.mlr.press/v202/wang23u.html) normalization.
* No bias terms in linear or normalization layers.
* Uses Rotary Position Embeddings (RoPE).
* Uses squared ReLU (ReLU²) activation in FFN layers.
* Employs [`subln`](https://proceedings.mlr.press/v202/wang23u.html) normalization.
* No bias terms in linear or normalization layers.
* **Quantization:** Native 1.58-bit weights and 8-bit activations (W1.58A8).
* Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
* Activations are quantized to 8-bit integers using absmax quantization (per-token).
* **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
* Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
* Activations are quantized to 8-bit integers using absmax quantization (per-token).
* **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
* **Parameters:** ~2 Billion
* **Training Tokens:** 4 Trillion
* **Context Length:** Maximum sequence length of **4096 tokens**.
* *Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
* **Context Length:** Maximum sequence length of **4096 tokens**.
* *Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
* **Training Stages:**
1. **Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
2. **Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
3. **Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
1. **Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
2. **Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
3. **Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
* **Tokenizer:** LLaMA 3 Tokenizer (vocab size: 128,256).
## Usage tips

View File

@ -13,44 +13,53 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-04-28 and added to Hugging Face Transformers on 2021-01-05 and contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).*
*This model was released on 2020-04-28 and added to Hugging Face Transformers on 2021-01-05.*
# Blenderbot Small
[Blender](https://huggingface.co/papers/2004.13637) focuses on building open-domain chatbots by emphasizing the importance of various conversational skills beyond just scaling model parameters and data size. The model variants include 90M, 2.7B, and 9.4B parameters, demonstrating that with the right training data and generation strategies, large-scale models can learn to provide engaging talking points, listen, display knowledge, empathy, and personality, while maintaining a consistent persona. Human evaluations indicate that the best models outperform existing approaches in terms of engagingness and humanness in multi-turn dialogues. The paper also analyzes failure cases to highlight the limitations of the work.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
Note that [`BlenderbotSmallModel`] and
[`BlenderbotSmallForConditionalGeneration`] are only used in combination with the checkpoint
[facebook/blenderbot-90M](https://huggingface.co/facebook/blenderbot-90M). Larger Blenderbot checkpoints should
instead be used with [`BlenderbotModel`] and
[`BlenderbotForConditionalGeneration`]
```py
import torch
from transformers import pipeline
## Overview
pipeline = pipeline(task="text-generation", model="facebook/blenderbot_small-90M", dtype="auto")
pipeline("Plants create energy through a process known as photosynthesis.")
```
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.
</hfoption>
<hfoption id="AutoModel">
The abstract of the paper is the following:
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
*Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that
scaling neural models in the number of parameters and the size of the data they are trained on gives improved results,
we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of
skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to
their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent
persona. We show that large scale models can learn these skills when given appropriate training data and choice of
generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models
and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn
dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing
failure cases of our models.*
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
inputs = tokenizer("Plants create energy through a process known as photosynthesis.", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
```
</hfoption>
</hfoptions>
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The authors' code can be
found [here](https://github.com/facebookresearch/ParlAI).
## Usage tips
- Pad inputs on the right. Blenderbot Small uses absolute position embeddings.
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## BlenderbotSmallConfig
@ -82,4 +91,3 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
[[autodoc]] BlenderbotSmallForCausalLM
- forward

View File

@ -13,46 +13,69 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-04-28 and added to Hugging Face Transformers on 2020-11-16 and contributed by [sshleifer](https://huggingface.co/sshleifer).*
*This model was released on 2020-04-28 and added to Hugging Face Transformers on 2020-11-16.*
# Blenderbot
[Blender](https://huggingface.co/papers/2004.13637) focuses on building open-domain chatbots by emphasizing the importance of various conversational skills beyond just scaling model parameters and data size. The model variants include 90M, 2.7B, and 9.4B parameters, demonstrating that with the right training data and generation strategies, large-scale models can learn to provide engaging talking points, listen, display knowledge, empathy, and personality, while maintaining a consistent persona. Human evaluations indicate that the best models outperform existing approaches in terms of engagingness and humanness in multi-turn dialogues. The paper also analyzes failure cases to highlight the limitations of the work.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
import torch
from transformers import pipeline
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.
pipeline = pipeline(task="text-generation", model="facebook/blenderbot-400M-distill", dtype="auto")
pipeline("Plants create energy through a process known as photosynthesis.")
The abstract of the paper is the following:
*Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that
scaling neural models in the number of parameters and the size of the data they are trained on gives improved results,
we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of
skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to
their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent
persona. We show that large scale models can learn these skills when given appropriate training data and choice of
generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models
and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn
dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing
failure cases of our models.*
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/facebookresearch/ParlAI) .
## Usage tips and example
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
An example:
```python
>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(reply_ids))
["<s> That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?</s>"]
```
</hfoption>
<hfoption id="AutoModel">
## Implementation Notes
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
- Blenderbot uses a standard [seq2seq model transformer](https://huggingface.co/papers/1706.03762) based architecture.
- Available checkpoints can be found in the [model hub](https://huggingface.co/models?search=blenderbot).
- This is the *default* Blenderbot model class. However, some smaller checkpoints, such as
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
[BlenderbotSmall](blenderbot-small).
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
## Resources
inputs = tokenizer("Plants create energy through a process known as photosynthesis.", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
```
</hfoption>
</hfoptions>
## Usage tips
- Pad inputs on the right. Blenderbot uses absolute position embeddings.
- Blenderbot uses a standard seq2seq transformer architecture.
- This is the default Blenderbot model class. Smaller checkpoints like `facebook/blenderbot_small_90M` have different architectures and need [`BlenderbotSmall`].
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## BlenderbotConfig
@ -86,4 +109,3 @@ See [`~transformers.BartForConditionalGeneration`] for arguments to *forward* an
[[autodoc]] BlenderbotForCausalLM
- forward

View File

@ -13,48 +13,49 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2023-01-30 and added to Hugging Face Transformers on 2023-02-09 and contributed by [nielsr](https://huggingface.co/nielsr).*
*This model was released on 2023-01-30 and added to Hugging Face Transformers on 2023-02-09.*
# BLIP-2
[BLIP-2](https://huggingface.co/papers/2301.12597) bootstraps vision-language pre-training using frozen image encoders and large language models. It employs a lightweight, 12-layer Transformer encoder to bridge the modality gap, achieving state-of-the-art results on various vision-language tasks. Specifically, BLIP-2 surpasses Flamingo by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. The model also demonstrates strong zero-shot image-to-text generation capabilities following natural language instructions.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
import torch
from transformers import pipeline
The BLIP-2 model was proposed in [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://huggingface.co/papers/2301.12597) by
Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. BLIP-2 leverages frozen pre-trained image encoders and large language models (LLMs) by training a lightweight, 12-layer Transformer
encoder in between them, achieving state-of-the-art performance on various vision-language tasks. Most notably, BLIP-2 improves upon [Flamingo](https://huggingface.co/papers/2204.14198), an 80 billion parameter model, by 8.7%
on zero-shot VQAv2 with 54x fewer trainable parameters.
pipeline = pipeline(task="visual-question-answering", model="Salesforce/blip2-opt-2.7b", dtype="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipeline(question="What is shown in this image?", image=url)
```
The abstract from the paper is the following:
</hfoption>
<hfoption id="AutoModel">
*The cost of vision-and-language pre-training has become increasingly prohibitive due to end-to-end training of large-scale models. This paper proposes BLIP-2, a generic and efficient pre-training strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pre-trained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various vision-language tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model's emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.*
```py
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
alt="drawing" width="600"/>
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = AutoModelForVisualQuestionAnswering.from_pretrained("Salesforce/blip2-opt-2.7b", dtype="auto")
<small> BLIP-2 architecture. Taken from the <a href="https://huggingface.co/papers/2301.12597">original paper.</a> </small>
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/salesforce/LAVIS/tree/5ee63d688ba4cebff63acee04adaef2dee9af207).
question = "Question: What is shown in this image? Answer:"
inputs = processor(images=image, text=question, return_tensors="pt")
## Usage tips
output = model.generate(**inputs)
print(processor.batch_decode(output, skip_special_tokens=True)[0])
```
- BLIP-2 can be used for conditional text generation given an image and an optional text prompt. At inference time, it's recommended to use the [`generate`] method.
- One can use [`Blip2Processor`] to prepare images for the model, and decode the predicted tokens ID's back to text.
</hfoption>
</hfoptions>
> [!NOTE]
> BLIP models after release v4.46 will raise warnings about adding `processor.num_query_tokens = {{num_query_tokens}}` and expand model embeddings layer to add special `<image>` token. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you. Adding these attributes means that BLIP will add the number of query tokens required per image and expand the text with as many `<image>` placeholders as there will be query tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings.
The attributes can be obtained from model config, as `model.config.num_query_tokens` and model embeddings expansion can be done by following [this link](https://gist.github.com/zucchini-nlp/e9f20b054fa322f84ac9311d9ab67042).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BLIP-2.
- Demo notebooks for BLIP-2 for image captioning, visual question answering (VQA) and chat-like conversations can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BLIP-2).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## Blip2Config
@ -108,4 +109,3 @@ print(processor.batch_decode(output, skip_special_tokens=True)[0])
## Blip2VisionModelWithProjection
[[autodoc]] Blip2VisionModelWithProjection

View File

@ -13,49 +13,77 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2022-01-28 and added to Hugging Face Transformers on 2022-12-21 and contributed by [ybelkada](https://huggingface.co/ybelkada).*
*This model was released on 2022-01-28 and added to Hugging Face Transformers on 2022-12-21.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# BLIP
[BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://huggingface.co/papers/2201.12086) proposes a new VLP framework that excels in both vision-language understanding and generation tasks. BLIP enhances the use of noisy web data through a bootstrapping process involving synthetic caption generation and noise filtering. This approach leads to state-of-the-art results in image-text retrieval, image captioning, and visual question answering, with notable improvements in recall@1, CIDEr, and VQA scores. Additionally, BLIP demonstrates strong generalization to videolanguage tasks in a zero-shot setting.
[BLIP](https://huggingface.co/papers/2201.12086) (Bootstrapped Language-Image Pretraining) is a vision-language pretraining (VLP) framework designed for *both* understanding and generation tasks. Most existing pretrained models are only good at one or the other. It uses a captioner to generate captions and a filter to remove the noisy captions. This increases training data quality and more effectively uses the messy web data.
You can find all the original BLIP checkpoints under the [BLIP](https://huggingface.co/collections/Salesforce/blip-models-65242f40f1491fbf6a9e9472) collection.
> [!TIP]
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
>
> Click on the BLIP models in the right sidebar for more examples of how to apply BLIP to different vision language tasks.
The example below demonstrates how to visual question answering with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="visual-question-answering", model="Salesforce/blip-vqa-base", dtype="auto")
pipeline = pipeline(
task="visual-question-answering",
model="Salesforce/blip-vqa-base",
dtype=torch.float16,
device=0
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipeline(question="What is shown in this image?", image=url)
pipeline(question="What is the weather in this image?", image=url)
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = AutoModelForVisualQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base", dtype="auto")
model = AutoModelForVisualQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base",
dtype=torch.float16,
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
question = "What is shown in this image?"
inputs = processor(images=image, text=question, return_tensors="pt")
question = "What is the weather in this image?"
inputs = processor(images=image, text=question, return_tensors="pt").to(model.device, torch.float16)
output = model.generate(**inputs)
print(processor.batch_decode(output, skip_special_tokens=True)[0])
processor.batch_decode(output, skip_special_tokens=True)[0]
```
</hfoption>
</hfoptions>
## Resources
Refer to this [notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) to learn how to fine-tune BLIP for image captioning on a custom dataset.
## BlipConfig
[[autodoc]] BlipConfig
@ -96,6 +124,11 @@ print(processor.batch_decode(output, skip_special_tokens=True)[0])
[[autodoc]] BlipTextModel
- forward
## BlipTextLMHeadModel
[[autodoc]] BlipTextLMHeadModel
- forward
## BlipVisionModel
[[autodoc]] BlipVisionModel
@ -115,9 +148,3 @@ print(processor.batch_decode(output, skip_special_tokens=True)[0])
[[autodoc]] BlipForQuestionAnswering
- forward
## BlipTextLMHeadModel
[[autodoc]] BlipTextLMHeadModel
- forward

View File

@ -17,36 +17,46 @@ rendered properly in your Markdown viewer.
# BLOOM
[BLOOM](https://huggingface.co/papers/2211.05100) is a 176-billion parameter open-access large language model built collaboratively by hundreds of researchers to promote wider accessibility of LLM technology. It is a decoder-only Transformer trained on the ROOTS corpus, which includes text from hundreds of sources across 46 natural and 13 programming languages. BLOOM demonstrates competitive performance across diverse benchmarks, with further gains achieved through multitask prompted finetuning. The model and code are publicly released under the Responsible AI License to support open research and applications.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
import torch
from transformers import pipeline
The [BLOOM](https://huggingface.co/papers/2211.05100) model has been proposed with its various versions through the [BigScience Workshop](https://bigscience.huggingface.co/). BigScience is inspired by other open science initiatives where researchers have pooled their time and resources to collectively achieve a higher impact.
The architecture of BLOOM is essentially similar to GPT3 (auto-regressive model for next token prediction), but has been trained on 46 different languages and 13 programming languages.
Several smaller versions of the models have been trained on the same dataset. BLOOM is available in the following versions:
pipeline = pipeline(task="text-generation", model="bigscience/bloom-560m", dtype="auto")
pipeline("Plants create energy through a process known as photosynthesis.")
```
- [bloom-560m](https://huggingface.co/bigscience/bloom-560m)
- [bloom-1b1](https://huggingface.co/bigscience/bloom-1b1)
- [bloom-1b7](https://huggingface.co/bigscience/bloom-1b7)
- [bloom-3b](https://huggingface.co/bigscience/bloom-3b)
- [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1)
- [bloom](https://huggingface.co/bigscience/bloom) (176B parameters)
</hfoption>
<hfoption id="AutoModel">
## Resources
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BLOOM. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
<PipelineTag pipeline="text-generation"/>
inputs = tokenizer("Plants create energy through a process known as photosynthesis.", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
```
- [`BloomForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
</hfoption>
</hfoptions>
See also:
- [Causal language modeling task guide](../tasks/language_modeling)
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
⚡️ Inference
- A blog on [Optimization story: Bloom inference](https://huggingface.co/blog/bloom-inference-optimization).
- A blog on [Incredibly Fast BLOOM Inference with DeepSpeed and Accelerate](https://huggingface.co/blog/bloom-inference-pytorch-scripts).
⚙️ Training
- A blog on [The Technology Behind BLOOM Training](https://huggingface.co/blog/bloom-megatron-deepspeed).
## BloomConfig
@ -82,4 +92,3 @@ print(tokenizer.decode(outputs[0]))
[[autodoc]] BloomForQuestionAnswering
- forward

View File

@ -13,11 +13,13 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-12-13 and added to Hugging Face Transformers on 2025-10-07 and contributed by [itazap](https://huggingface.co/itazap).*
*This model was released on 2024-12-13 and added to Hugging Face Transformers on 2025-09-19.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
@ -25,36 +27,62 @@ rendered properly in your Markdown viewer.
# Byte Latent Transformer (BLT)
[Byte Latent Transformer](https://huggingface.co/papers/2412.09871) is a byte-level LLM architecture that matches tokenization-based LLM performance at scale. It encodes bytes into dynamically sized patches based on entropy, optimizing compute and model capacity where data complexity is higher. This approach improves inference efficiency and robustness, with the first flop-controlled scaling study up to 8B parameters and 4T training bytes. BLT demonstrates better scaling than tokenization-based models by dynamically selecting long patches for predictable data, enhancing reasoning and long-tail generalization.
## Overview
<hfoptions id="usage">
<hfoption id="Pipeline">
The BLT model was proposed in [Byte Latent Transformer: Patches Scale Better Than Tokens](https://huggingface.co/papers/2412.09871) by Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li1, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman†, Srinivasan Iyer.
BLT is a byte-level LLM that achieves tokenization-level performance through entropy-based dynamic patching.
```py
import torch
from transformers import pipeline
The abstract from the paper is the following:
pipeline = pipeline(task="text-generation", model="itazap/blt-1b-hf", dtype="auto")
pipeline("Plants generate energy through a process known as ")
```
*We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference
efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating
more compute and model capacity where increased data complexity demands it. We present the first flop controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.*
## Usage Tips
- **Dual Model Architecture**: BLT consists of two separate trained models:
- **Patcher (Entropy Model)**: A smaller transformer model that predicts byte-level entropy to determine patch boundaries and segment input.
- **Main Transformer Model**: The primary model that processes the patches through a Local Encoder, Global Transformer, and Local Decoder.
- **Dynamic Patching**: The model uses entropy-based dynamic patching where:
- High-entropy regions (complex data) get shorter patches with more computational attention
- Low-entropy regions (predictable data) get longer patches for efficiency
- This allows the model to allocate compute resources where they're most needed
- **Local Encoder**: Processes byte sequences with cross-attention to patch embeddings
- **Global Transformer**: Processes patch-level representations with full attention across patches
- **Local Decoder**: Generates output with cross-attention back to the original byte sequence
- **Byte-Level Tokenizer**: Unlike traditional tokenizers that use learned vocabularies, BLT's tokenizer simply converts text to UTF-8 bytes and maps each byte to a token ID. There is no need for a vocabulary.
The model can be loaded via:
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("itazap/blt-1b-hf", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("itazap/blt-1b-hf")
model = AutoModelForCausalLM.from_pretrained(
"itazap/blt-1b-hf",
device_map="auto",
)
inputs = tokenizer("Plants generate energy through a process known as ", return_tensors='pt', return_token_type_ids=False)
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
prompt = "my name is"
generated_ids = model.generate(
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, use_cache=False
)
print(tokenizer.decode(generated_ids[0]))
```
</hfoption>
</hfoptions>
This model was contributed by [itazap](https://huggingface.co/<itazap>).
The original code can be found [here](<https://github.com/facebookresearch/blt>).
## BltConfig
@ -67,4 +95,3 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
[[autodoc]] BltForCausalLM
- forward

View File

@ -13,49 +13,48 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-10-20 and added to Hugging Face Transformers on 2023-06-20 and contributed by [stefan-it](https://huggingface.co/stefan-it).*
> [!WARNING]
> This model is in maintenance mode only, we do not accept any new PRs changing its code.
>
> If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: pip install -U transformers==4.30.0.
*This model was released on 2020-10-20 and added to Hugging Face Transformers on 2023-06-20.*
# BORT
[BORT](https://huggingface.co/papers/2010.10499) extracts an optimal subset of architectural parameters from BERT, significantly reducing its size to 5.5% of BERT-large's effective size and 16% of its net size. BORT can be pretrained in 288 GPU hours, which is 1.2% of the time required for RoBERTa-large and 33% of BERT-large. It is 7.9x faster on a CPU and outperforms other compressed and some non-compressed variants, achieving performance improvements of 0.3% to 31% on various NLU benchmarks.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
<Tip warning={true}>
```py
import torch
from transformers import pipeline
This model is in maintenance mode only, we do not accept any new PRs changing its code.
pipeline = pipeline(task="fill-mask", model="amazon/bort", dtype="auto")
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
You can do so by running the following command: `pip install -U transformers==4.30.0`.
</hfoption>
<hfoption id="AutoModel">
</Tip>
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
## Overview
model = AutoModelForMaskedLM.from_pretrained("amazon/bort", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("amazon/bort")
The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://huggingface.co/papers/2010.10499) by
Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the
authors refer to as "Bort".
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
```
The abstract from the paper is the following:
</hfoption>
</hfoptions>
*We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by
applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as
"Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the
original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which
is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large
(Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same
hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the
architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%,
absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.*
This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/alexa/bort/).
## Usage tips
- BORT uses the RoBERTa tokenizer instead of the BERT tokenizer. Check RoBERTa's documentation for API reference and usage examples.
- BORT's model architecture is based on BERT, refer to [BERT's documentation page](bert) for the
model's API reference as well as usage examples.
- BORT uses the RoBERTa tokenizer instead of the BERT tokenizer, refer to [RoBERTa's documentation page](roberta) for the tokenizer's API reference as well as usage examples.
- BORT requires a specific fine-tuning algorithm, called [Agora](https://adewynter.github.io/notes/bort_algorithms_and_applications.html#fine-tuning-with-algebraic-topology) ,
that is sadly not open-sourced yet. It would be very useful for the community, if someone tries to implement the
algorithm to make BORT fine-tuning work.

View File

@ -13,44 +13,124 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2022-06-17 and added to Hugging Face Transformers on 2023-01-25 and contributed by [anahita-b](https://huggingface.co/anahita-b), [Tile](https://huggingface.co/Tile), and [shaoyent](https://huggingface.co/shaoyent).*
*This model was released on 2022-06-17 and added to Hugging Face Transformers on 2023-01-25.*
# BridgeTower
[BridgeTower](https://huggingface.co/papers/2206.08657) introduces bridge layers connecting the top layers of uni-modal encoders to each layer of the cross-modal encoder, enabling effective bottom-up cross-modal alignment and fusion. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various vision-language tasks, outperforming previous models with similar pre-training data and minimal additional parameters and computational costs. When scaled, it surpasses models trained on much larger datasets.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="BridgeTowerForContrastiveLearning">
## Overview
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, BridgeTowerForContrastiveLearning
The BridgeTower model was proposed in [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://huggingface.co/papers/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a
bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder thus achieving remarkable performance on various downstream tasks with almost negligible additional performance and computational costs.
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of a cat walking in the snow", "A football player scoring a goal"]
This paper has been accepted to the [AAAI'23](https://aaai.org/Conferences/AAAI-23/) conference.
processor = AutoProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc", dtype="auto")
The abstract from the paper is the following:
scores = dict()
for text in texts:
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
# Get similarity score by computing cosine similarity
score = torch.cosine_similarity(outputs.image_embeds, outputs.text_embeds, dim=1).item()
scores[text] = score
print(f"Text: '{text}' - Score: {score:.4f}")
*Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years.
Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder.
Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the crossmodal encoder.
This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks.
In particular, on the VQAv2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs.
Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.*
best_text = max(scores, key=scores.get)
print(f"\nBest matching text: '{best_text}' with score: {scores[best_text]:.4f}")
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bridgetower_architecture%20.jpg"
alt="drawing" width="600"/>
<small> BridgeTower architecture. Taken from the <a href="https://huggingface.co/papers/2206.08657">original paper.</a> </small>
This model was contributed by [Anahita Bhiwandiwalla](https://huggingface.co/anahita-b), [Tiep Le](https://huggingface.co/Tile) and [Shaoyen Tseng](https://huggingface.co/shaoyent). The original code can be found [here](https://github.com/microsoft/BridgeTower).
## Usage tips and examples
BridgeTower consists of a visual encoder, a textual encoder and cross-modal encoder with multiple lightweight bridge layers.
The goal of this approach was to build a bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder.
In principle, one can apply any visual, textual or cross-modal encoder in the proposed architecture.
The [`BridgeTowerProcessor`] wraps [`RobertaTokenizer`] and [`BridgeTowerImageProcessor`] into a single instance to both
encode the text and prepare the images respectively.
The following example shows how to run contrastive learning using [`BridgeTowerProcessor`] and [`BridgeTowerForContrastiveLearning`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs
```
</hfoption>
</hfoptions>
The following example shows how to run image-text retrieval using [`BridgeTowerProcessor`] and [`BridgeTowerForImageAndTextRetrieval`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs.logits[0, 1].item()
```
The following example shows how to run masked language modeling using [`BridgeTowerProcessor`] and [`BridgeTowerForMaskedLM`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> text = "a <mask> looking out of the window"
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # prepare inputs
>>> encoding = processor(image, text, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**encoding)
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
>>> print(results)
.a cat looking out of the window.
```
Tips:
- This implementation of BridgeTower uses [`RobertaTokenizer`] to generate text embeddings and OpenAI's CLIP/ViT model to compute visual embeddings.
- Checkpoints for pre-trained [bridgeTower-base](https://huggingface.co/BridgeTower/bridgetower-base) and [bridgetower masked language modeling and image text matching](https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm) are released.
- Please refer to [Table 5](https://huggingface.co/papers/2206.08657) for BridgeTower's performance on Image Retrieval and other down stream tasks.
- The PyTorch version of this model is only available in torch 1.10 and higher.
## BridgeTowerConfig
@ -98,4 +178,3 @@ print(f"\nBest matching text: '{best_text}' with score: {scores[best_text]:.4f}"
[[autodoc]] BridgeTowerForImageAndTextRetrieval
- forward

View File

@ -9,38 +9,83 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
*This model was released on 2021-08-10 and added to Hugging Face Transformers on 2023-09-15 and contributed by [jinho8345](https://huggingface.co/jinho8345).*
*This model was released on 2021-08-10 and added to Hugging Face Transformers on 2023-09-15.*
# BROS
[BROS](https://huggingface.co/papers/2108.04539) is a pre-trained language model designed for key information extraction (KIE) from document images by focusing on the spatial relationships of text rather than visual features. It encodes the relative 2D positions of text elements and uses an area-masking pre-training strategy to learn spatial-textual dependencies from unlabeled documents. Unlike vision-text models, BROS effectively integrates text and layout information alone, achieving competitive or superior results on major KIE benchmarks (FUNSD, SROIE*, CORD, SciTSR). The model also addresses two key challenges in KIE—handling incorrect text order and learning efficiently with limited labeled data.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="BrosForTokenClassification">
## Overview
```py
import torch
from transformers import AutoProcessor, AutoModelForTokenClassification
The BROS model was proposed in [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://huggingface.co/papers/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
processor = AutoProcessor.from_pretrained("jinho8345/bros-base-uncased")
model = AutoModelForTokenClassification.from_pretrained("jinho8345/bros-base-uncased", dtype="auto")
BROS stands for *BERT Relying On Spatiality*. It is an encoder-only Transformer model that takes a sequence of tokens and their bounding boxes as inputs and outputs a sequence of hidden states. BROS encode relative spatial information instead of using absolute spatial information.
text = "Plants create energy through a process known as photosynthesis."
encoding = processor.tokenizer(text, add_special_tokens=False, return_tensors="pt")
bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
encoding["bbox"] = bbox
It is pre-trained with two objectives: a token-masked language modeling objective (TMLM) used in BERT, and a novel area-masked language modeling objective (AMLM)
In TMLM, tokens are randomly masked, and the model predicts the masked tokens using spatial information and other unmasked tokens.
AMLM is a 2D version of TMLM. It randomly masks text tokens and predicts with the same information as TMLM, but it masks text blocks (areas).
outputs = model(**encoding)
predictions = torch.argmax(outputs.logits, dim=-1)
tokens = processor.tokenizer.convert_ids_to_tokens(encoding["input_ids"][0])
`BrosForTokenClassification` has a simple linear layer on top of BrosModel. It predicts the label of each token.
`BrosSpadeEEForTokenClassification` has an `initial_token_classifier` and `subsequent_token_classifier` on top of BrosModel. `initial_token_classifier` is used to predict the first token of each entity, and `subsequent_token_classifier` is used to predict the next token of within entity. `BrosSpadeELForTokenClassification` has an `entity_linker` on top of BrosModel. `entity_linker` is used to predict the relation between two entities.
print("Token predictions:")
for token, pred in zip(tokens, predictions[0]):
print(f"'{token}' -> Class {pred.item()}")
`BrosForTokenClassification` and `BrosSpadeEEForTokenClassification` essentially perform the same job. However, `BrosForTokenClassification` assumes input tokens are perfectly serialized (which is very challenging task since they exist in a 2D space), while `BrosSpadeEEForTokenClassification` allows for more flexibility in handling serialization errors as it predicts next connection tokens from one token.
`BrosSpadeELForTokenClassification` perform the intra-entity linking task. It predicts relation from one token (of one entity) to another token (of another entity) if these two entities share some relation.
BROS achieves comparable or better result on Key Information Extraction (KIE) benchmarks such as FUNSD, SROIE, CORD and SciTSR, without relying on explicit visual features.
The abstract from the paper is the following:
*Key information extraction (KIE) from document images requires understanding the contextual and spatial semantics of texts in two-dimensional (2D) space. Many recent studies try to solve the task by developing pre-trained language models focusing on combining visual features from document images with texts and their layout. On the other hand, this paper tackles the problem by going back to the basic: effective combination of text and layout. Specifically, we propose a pre-trained language model, named BROS (BERT Relying On Spatiality), that encodes relative positions of texts in 2D space and learns from unlabeled documents with area-masking strategy. With this optimized training scheme for understanding texts in 2D space, BROS shows comparable or better performance compared to previous methods on four KIE benchmarks (FUNSD, SROIE*, CORD, and SciTSR) without relying on visual features. This paper also reveals two real-world challenges in KIE tasks-(1) minimizing the error from incorrect text ordering and (2) efficient learning from fewer downstream examples-and demonstrates the superiority of BROS over previous methods.*
This model was contributed by [jinho8345](https://huggingface.co/jinho8345). The original code can be found [here](https://github.com/clovaai/bros).
## Usage tips and examples
- [`~transformers.BrosModel.forward`] requires `input_ids` and `bbox` (bounding box). Each bounding box should be in (x0, y0, x1, y1) format (top-left corner, bottom-right corner). Obtaining of Bounding boxes depends on external OCR system. The `x` coordinate should be normalized by document image width, and the `y` coordinate should be normalized by document image height.
```python
def expand_and_normalize_bbox(bboxes, doc_width, doc_height):
# here, bboxes are numpy array
# Normalize bbox -> 0 ~ 1
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] / width
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] / height
```
</hfoption>
</hfoptions>
- [`~transformers.BrosForTokenClassification.forward`, `~transformers.BrosSpadeEEForTokenClassification.forward`, `~transformers.BrosSpadeEEForTokenClassification.forward`] require not only `input_ids` and `bbox` but also `box_first_token_mask` for loss calculation. It is a mask to filter out non-first tokens of each box. You can obtain this mask by saving start token indices of bounding boxes when creating `input_ids` from words. You can make `box_first_token_mask` with following code,
```python
def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (list[str])
input_ids_list: list[list[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)
# filter out the indices that are out of max_seq_length
box_end_token_indices = box_end_token_indices[box_end_token_indices < max_seq_length - 1]
if len(box_start_token_indices) > len(box_end_token_indices):
box_start_token_indices = box_start_token_indices[: len(box_end_token_indices)]
# set box_start_token_indices to True
box_first_token_mask[box_start_token_indices] = True
return box_first_token_mask
```
## Resources
- Demo scripts can be found [here](https://github.com/clovaai/bros).
## BrosConfig
@ -70,4 +115,3 @@ for token, pred in zip(tokens, predictions[0]):
[[autodoc]] BrosSpadeELForTokenClassification
- forward

View File

@ -13,49 +13,127 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-05-28 and added to Hugging Face Transformers on 2021-06-01 and contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).*
*This model was released on 2021-05-28 and added to Hugging Face Transformers on 2021-06-01.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ByT5
[ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://huggingface.co/papers/2105.13626) explores the use of standard Transformer architectures to process byte sequences directly, eliminating the need for tokenization. This approach offers benefits such as language-agnostic processing, robustness to noise, and reduced preprocessing complexity. The study demonstrates that byte-level models can compete with token-level models in terms of parameter count, training computational cost, and inference speed. Additionally, byte-level models show superior performance on tasks sensitive to spelling and pronunciation. The paper introduces a new set of pre-trained byte-level Transformer models based on the T5 architecture.
[ByT5](https://huggingface.co/papers/2105.13626) is tokenizer-free version of the [T5](./t5) model designed to works directly on raw UTF-8 bytes. This means it can process any language, more robust to noise like typos, and simpler to use because it doesn't require a preprocessing pipeline.
You can find all the original ByT5 checkpoints under the [Google](https://huggingface.co/google?search_models=byt5) organization.
> [!TIP]
> Refer to the [T5](./t5) docs for more examples of how to apply ByT5 to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="text2text-generation", model="google/byt5-small", dtype="auto")
pipeline("translate English to French: Plants generate energy through a process known as photosynthesis.")
pipeline = pipeline(
task="text2text-generation",
model="google/byt5-small",
dtype=torch.float16,
device=0
)
pipeline("translate English to French: The weather is nice today")
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/byt5-small")
tokenizer = AutoTokenizer.from_pretrained(
"google/byt5-small"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-small",
dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("translate English to French: Plants generate energy through a process known as photosynthesis.", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
input_ids = tokenizer("summarize: Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy.", return_tensors="pt").to(model.device)
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfopton>
</hfoption>
<hfoption id="transformers">
```bash
echo -e "translate English to French: Life is beautiful." | transformers run --task text2text-generation --model google/byt5-small --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Quantization
- Use the tokenizer for batched inference and training.
- ByT5 uses top byte values (258, 257, etc.) for masking instead of sentinel tokens like `{extra_id_0}`.
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-xl",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("google/byt5-xl")
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to(model.device)
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- It is recommended to use the tokenizer for batched inference and training.
- The example below shows how to use the model without a tokenizer.
```python
import torch
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small")
num_special_tokens = 3
input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + num_special_tokens
labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + num_special_tokens
loss = model(input_ids, labels=labels).loss
loss.item()
```
- ByT5 uses the top byte values (258, 257, etc.) for masking instead of sentinel tokens like `{extra_id_0}`.
```python
# Example: character-level denoising with mask tokens
input_ids = tokenizer("The dog chases a ball in the park.").input_ids
masked_input = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]])
output = model.generate(masked_input, max_length=100)
```
## ByT5Tokenizer
[[autodoc]] ByT5Tokenizer
See [`ByT5Tokenizer`] for all details.

View File

@ -13,50 +13,108 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2019-11-10 and added to Hugging Face Transformers on 2020-11-16 and contributed by [almanach](https://huggingface.co/almanach).*
*This model was released on 2019-11-10 and added to Hugging Face Transformers on 2020-11-16.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
</div>
# CamemBERT
[CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) is a French version of the BERT model, trained on 138GB of French text. It addresses the limitation of existing models that are either English-centric or multilingual, offering improved performance in French-specific tasks such as part-of-speech tagging, dependency parsing, named-entity recognition, and natural language inference. The pretrained CamemBERT model is released to encourage further research and applications in French NLP.
[CamemBERT](https://huggingface.co/papers/1911.03894) is a language model based on [RoBERTa](./roberta), but trained specifically on French text from the OSCAR dataset, making it more effective for French language tasks.
What sets CamemBERT apart is that it learned from a huge, high quality collection of French data, as opposed to mixing lots of languages. This helps it really understand French better than many multilingual models.
Common applications of CamemBERT include masked language modeling (Fill-mask prediction), text classification (sentiment analysis), token classification (entity recognition) and sentence pair classification (entailment tasks).
You can find all the original CamemBERT checkpoints under the [ALMAnaCH](https://huggingface.co/almanach/models?search=camembert) organization.
> [!TIP]
> This model was contributed by the [ALMAnaCH (Inria)](https://huggingface.co/almanach) team.
>
> Click on the CamemBERT models in the right sidebar for more examples of how to apply CamemBERT to different NLP tasks.
The examples below demonstrate how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="fill-mask", model="almanach/camembert-base", dtype="auto")
pipeline("Les plantes créent <mask> grâce à un processus appelé photosynthèse.")
pipeline = pipeline("fill-mask", model="camembert-base", dtype=torch.float16, device=0)
pipeline("Le camembert est un délicieux fromage <mask>.")
```
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from transformers import AutoTokenizer, AutoModelForMaskedLM
model = AutoModelForMaskedLM.from_pretrained("almanach/camembert-base", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-base")
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
model = AutoModelForMaskedLM.from_pretrained("camembert-base", dtype="auto", device_map="auto", attn_implementation="sdpa")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to(model.device)
inputs = tokenizer("Les plantes créent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt")
outputs = model(**inputs)
mask_token_id = tokenizer.mask_token_id
mask_position = (inputs.input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
predicted_word = tokenizer.decode(outputs.logits[0, mask_position].argmax(dim=-1))
print(f"Predicted word: {predicted_word}")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Le camembert est un délicieux fromage <mask>." | transformers run --task fill-mask --model camembert-base --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing weights in lower precision. Refer to the [Quantization](../quantization/overview) overview for available options.
The example below uses [bitsandbytes](../quantization/bitsandbytes) quantization to quantize the weights to 8-bits.
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM, BitsAndBytesConfig
import torch
quant_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForMaskedLM.from_pretrained(
"almanach/camembert-large",
quantization_config=quant_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-large")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
## CamembertConfig
[[autodoc]] CamembertConfig
@ -100,4 +158,3 @@ print(f"Predicted word: {predicted_word}")
## CamembertForQuestionAnswering
[[autodoc]] CamembertForQuestionAnswering

View File

@ -13,11 +13,24 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2021-03-11 and added to Hugging Face Transformers on 2021-06-30 and contributed by [nielsr](https://huggingface.co/nielsr).*
*This model was released on 2021-03-11 and added to Hugging Face Transformers on 2021-06-30.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# CANINE
[CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://huggingface.co/papers/2103.06874) presents CANINE, a neural encoder that processes text directly at the Unicode character level without explicit tokenization or vocabulary. It addresses the challenges of varying language suitability and vocabulary limitations by using a downsampling strategy to manage longer sequences and a deep Transformer stack to capture context. CANINE achieves a 2.8 F1 score improvement on TyDi QA compared to a similar mBERT model, despite having 28% fewer parameters.
[CANINE](https://huggingface.co/papers/2103.06874) is a tokenization-free Transformer. It skips the usual step of splitting text into subwords or wordpieces and processes text character by character. That means it works directly with raw Unicode, making it especially useful for languages with complex or inconsistent tokenization rules and even noisy inputs like typos. Since working with characters means handling longer sequences, CANINE uses a smart trick. The model compresses the input early on (called downsampling) so the transformer doesn't have to process every character individually. This keeps things fast and efficient.
You can find all the original CANINE checkpoints under the [Google](https://huggingface.co/google?search_models=canine) organization.
> [!TIP]
> Click on the CANINE models in the right sidebar for more examples of how to apply CANINE to different language tasks.
The example below demonstrates how to generate embeddings with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
@ -26,8 +39,13 @@ rendered properly in your Markdown viewer.
import torch
from transformers import pipeline
pipeline = pipeline(task="text-classification", model="google/canine-s", dtype="auto")
pipeline("Plants are amazing because they can create energy from the sun.")
pipeline = pipeline(
task="feature-extraction",
model="google/canine-c",
device=0,
)
pipeline("Plant create energy through a process known as photosynthesis.")
```
</hfoption>
@ -35,25 +53,41 @@ pipeline("Plants are amazing because they can create energy from the sun.")
```py
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import AutoModel
model = AutoModelForSequenceClassification.from_pretrained("google/canine-s", dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
model = AutoModel.from_pretrained("google/canine-c")
inputs = tokenizer("Plants are amazing because they can create energy from the sun.", return_tensors="pt")
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax(dim=-1).item()
label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {label}")
text = "Plant create energy through a process known as photosynthesis."
input_ids = torch.tensor([[ord(char) for char in text]])
outputs = model(input_ids)
pooled_output = outputs.pooler_output
sequence_output = outputs.last_hidden_state
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plant create energy through a process known as photosynthesis." | transformers run --task feature-extraction --model google/canine-c --device 0
```
</hfoption>
</hfoptions>
## Usage tips
## Notes
- CANINE skips tokenization entirely. It works directly on raw characters, not subwords. Use it with or without a tokenizer. For batched inference and training, use the tokenizer to pad and truncate all sequences to the same length.
- CANINE is designed for fine-tuning on downstream tasks. The pretrained model handles masked language modeling or next sentence prediction.
- CANINE skips tokenization entirely — it works directly on raw characters, not subwords. You can use it with or without a tokenizer. For batched inference and training, it is recommended to use the tokenizer to pad and truncate all sequences to the same length.
```py
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer("google/canine-c")
inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
```
- CANINE is primarily designed to be fine-tuned on a downstream task. The pretrained model can be used for either masked language modeling or next sentence prediction.
## CanineConfig
@ -94,4 +128,3 @@ print(f"Predicted label: {label}")
[[autodoc]] CanineForQuestionAnswering
- forward

View File

@ -13,54 +13,163 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-05-16 and added to Hugging Face Transformers on 2024-07-17 and contributed by [joaogante](https://huggingface.co/joaogante) and [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
*This model was released on 2024-05-16 and added to Hugging Face Transformers on 2024-07-17.*
# Chameleon
[Chameleon: Mixed-Modal Early-Fusion Foundation Models](https://huggingface.co/papers/2405.09818v1) is a Vision-Language Model that uses vector quantization to tokenize images, enabling it to generate multimodal output. It handles images and texts in any sequence, including interleaved formats, and produces textual responses. Chameleon demonstrates superior performance in image captioning, outperforms Llama-2 in text-only tasks, and is competitive with Mixtral 8x7B and Gemini-Pro. It also performs non-trivial image generation and matches or exceeds the performance of larger models like Gemini Pro and GPT-4V in long-form mixed-modal generation tasks.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Overview
```py
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models](https://huggingface.co/papers/2405.09818) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The abstract from the paper is the following:
*We present Chameleon, a family of early-fusion token-based mixed-modal models capable of understanding and generating images and text in any arbitrary sequence. We outline a stable training
approach from inception, an alignment recipe, and an architectural parameterization tailored for the
early-fusion, token-based, mixed-modal setting. The models are evaluated on a comprehensive range
of tasks, including visual question answering, image captioning, text generation, image generation, and
long-form mixed modal generation. Chameleon demonstrates broad and general capabilities, including
state-of-the-art performance in image captioning tasks, outperforms Llama-2 in text-only tasks while
being competitive with models such as Mixtral 8x7B and Gemini-Pro, and performs non-trivial image
generation, all in a single model. It also matches or exceeds the performance of much larger models,
including Gemini Pro and GPT-4V, according to human judgments on a new long-form mixed-modal
generation evaluation, where either the prompt or outputs contain mixed sequences of both images and
text. Chameleon marks a significant step forward in unified modeling of full multimodal documents*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/chameleon_arch.png"
alt="drawing" width="600"/>
<small> Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the <a href="https://huggingface.co/papers/2405.09818">original paper.</a> </small>
This model was contributed by [joaogante](https://huggingface.co/joaogante) and [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/facebookresearch/chameleon).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to set `processor.tokenizer.padding_side = "left"` before generating.
- Note that Chameleon was tuned for safety alignment. If the model is refusing to answer, consider asking a more concrete question, instead of an open question.
- Chameleon generates in chat format which means that the generated text will always be the "assistant's turn". You can enable a text completion generation by passing `return_for_text_completion=True` when calling the processor.
> [!NOTE]
> Chameleon implementation in Transformers uses a special image token to indicate where to merge image embeddings. For special image token we didn't add a new one but used one of the reserved tokens: `<reserved08707>`. You have to add `<image>` to your prompt in the place where the image should be embedded for correct generation.
## Usage example
### Single image inference
Chameleon is a gated model so make sure to have access and login to Hugging Face Hub using a token.
Here's how to load the model and perform inference in half-precision (`torch.bfloat16`):
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from transformers import pipeline
pipeline = pipeline(task="image-to-text", model="facebook/chameleon-7b", dtype="auto")
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", text="What is shown in this image? <image>"
)
```
</hfoption>
<hfoption id="ChameleonForConditionalGeneration">
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, ChameleonForConditionalGeneration
import requests
processor = AutoProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", dtype="auto")
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", dtype=torch.bfloat16, device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
# prepare image and text prompt
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What is shown in this image?<image>"
prompt = "What do you see in this image?<image>"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch.bfloat16)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### Multi image inference
Chameleon can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", dtype=torch.bfloat16, device_map="auto")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batched prompt, where the first one is a multi-image prompt and the second is not
prompts = [
"What do these images have in common?<image><image>",
"<image>What is shown in this image?"
]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(device=model.device, dtype=torch.bfloat16)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes` and to have access to a GPU/accelerator that is supported by the library.
<Tip>
bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit [this link](https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend).
We value your feedback to help identify bugs before the full release! Check out [these docs](https://huggingface.co/docs/bitsandbytes/main/en/non_cuda_backends) for more details and feedback links.
</Tip>
Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", quantization_config=quantization_config, device_map="auto")
```
### Use Flash-Attention 2 and SDPA to further speed-up generation
The models supports both, Flash-Attention 2 and PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) which can be enables for optimization. SDPA is the default options when you load the model, If you want to switch for Flash Attention 2, first make sure to install flash-attn. Refer to the [original repository](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration
model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
).to(0)
```
## ChameleonConfig
@ -98,4 +207,3 @@ print(processor.decode(output[0], skip_special_tokens=True))
[[autodoc]] ChameleonForConditionalGeneration
- forward

View File

@ -13,41 +13,65 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
*This model was released on 2022-11-02 and added to Hugging Face Transformers on 2022-12-01 and contributed by [OFA-Sys](https://huggingface.co/OFA-Sys).*
*This model was released on 2022-11-02 and added to Hugging Face Transformers on 2022-12-01.*
# Chinese-CLIP
[Chinese-CLIP](https://huggingface.co/papers/2211.01335) constructs a large-scale dataset of Chinese image-text pairs and pretrains models of varying sizes, from 77 to 958 million parameters. It employs a two-stage pretraining method, initially freezing the image encoder before optimizing all parameters. Experiments show superior performance on MUGE, Flickr30K-CN, and COCO-CN for zero-shot learning and finetuning, and competitive results in zero-shot image classification on the ELEVATER benchmark.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
<hfoptions id="usage">
<hfoption id="ChineseCLIPModel">
## Overview
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, ChineseCLIPModel
The Chinese-CLIP model was proposed in [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://huggingface.co/papers/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
Chinese-CLIP is an implementation of CLIP (Radford et al., 2021) on a large-scale dataset of Chinese image-text pairs. It is capable of performing cross-modal retrieval and also playing as a vision backbone for vision tasks like zero-shot image classification, open-domain object detection, etc. The original Chinese-CLIP code is released [at this link](https://github.com/OFA-Sys/Chinese-CLIP).
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16", dtype="auto")
processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
The abstract from the paper is the following:
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]
*The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). Our codes, pretrained models, and demos have been released.*
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
The Chinese-CLIP model was contributed by [OFA-Sys](https://huggingface.co/OFA-Sys).
print("Text-image similarity probabilities:")
for i, (text, prob) in enumerate(zip(texts, probs[0])):
print(f"'{text}' -> {prob.item():.4f} ({prob.item()*100:.1f}%)")
## Usage example
The code snippet below shows how to compute image & text features and similarities:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import ChineseCLIPProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Squirtle, Bulbasaur, Charmander, Pikachu in English
>>> texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]
>>> # compute image feature
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize
>>> # compute text features
>>> inputs = processor(text=texts, padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize
>>> # compute image-text similarity scores
>>> inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # probs: [[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]]
```
</hfoption>
</hfoptions>
Currently, following scales of pretrained Chinese-CLIP models are available on 🤗 Hub:
- [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
- [OFA-Sys/chinese-clip-vit-large-patch14](https://huggingface.co/OFA-Sys/chinese-clip-vit-large-patch14)
- [OFA-Sys/chinese-clip-vit-large-patch14-336px](https://huggingface.co/OFA-Sys/chinese-clip-vit-large-patch14-336px)
- [OFA-Sys/chinese-clip-vit-huge-patch14](https://huggingface.co/OFA-Sys/chinese-clip-vit-huge-patch14)
## ChineseCLIPConfig
@ -91,4 +115,3 @@ for i, (text, prob) in enumerate(zip(texts, probs[0])):
[[autodoc]] ChineseCLIPVisionModel
- forward

Some files were not shown because too many files have changed in this diff Show More