mirror of
https://github.com/huggingface/transformers.git
synced 2025-11-05 04:34:37 +08:00
Compare commits
26 Commits
mllama_int
...
cache-refa
| Author | SHA1 | Date | |
|---|---|---|---|
| 34a3022fb0 | |||
| 38e8603451 | |||
| def346eb84 | |||
| 00b1f96ad0 | |||
| 4bb48fcfda | |||
| dbbc4d5104 | |||
| a952124942 | |||
| dc08253c46 | |||
| dd7458b53e | |||
| 5fa99012c1 | |||
| 7029a90c43 | |||
| 13ec4a4482 | |||
| 6a77408a80 | |||
| 0c6d2ff6c6 | |||
| 58dbcfe25a | |||
| 5b1b1f17d2 | |||
| f32757058c | |||
| c2004471a4 | |||
| fd83e14bb8 | |||
| 27916bc273 | |||
| e80c68a611 | |||
| aec9ccd6ea | |||
| 16a6624087 | |||
| 26c28af616 | |||
| 04d7a0b12a | |||
| 1c3cbcccc8 |
2
.github/workflows/doctest_job.yml
vendored
2
.github/workflows/doctest_job.yml
vendored
@ -31,7 +31,7 @@ jobs:
|
||||
group: aws-g5-4xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
|
||||
2
.github/workflows/doctests.yml
vendored
2
.github/workflows/doctests.yml
vendored
@ -18,7 +18,7 @@ jobs:
|
||||
group: aws-g5-4xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
job_splits: ${{ steps.set-matrix.outputs.job_splits }}
|
||||
split_keys: ${{ steps.set-matrix.outputs.split_keys }}
|
||||
|
||||
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
||||
6
.github/workflows/self-push.yml
vendored
6
.github/workflows/self-push.yml
vendored
@ -36,7 +36,7 @@ jobs:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
@ -136,7 +136,7 @@ jobs:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
@ -362,7 +362,7 @@ jobs:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
|
||||
@ -1,63 +0,0 @@
|
||||
name: Self-hosted runner scale set (AMD mi325 scheduled CI caller)
|
||||
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu scale set: amd-mi325-ci-1gpu
|
||||
# 2gpu scale set: amd-mi325-ci-2gpu
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
4
.github/workflows/self-scheduled.yml
vendored
4
.github/workflows/self-scheduled.yml
vendored
@ -55,7 +55,7 @@ jobs:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
@ -219,7 +219,7 @@ jobs:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
|
||||
@ -44,7 +44,7 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Português</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
|
||||
|
||||
@ -1,8 +1,11 @@
|
||||
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG TORCH_VISION='0.21.0'
|
||||
ARG TORCH_AUDIO='2.6.0'
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \
|
||||
apt clean && \
|
||||
@ -20,12 +23,9 @@ WORKDIR /
|
||||
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
# On ROCm, torchcodec is required to decode audio files
|
||||
# RUN python3 -m pip install --no-cache-dir torchcodec
|
||||
# Install transformers
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
|
||||
RUN python3 -m pip install --no-cache-dir torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
|
||||
|
||||
# Remove tensorflow and flax as they are no longer supported by transformers
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
@ -36,4 +36,4 @@ RUN cd transformers && python3 setup.py develop
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
@ -78,9 +78,6 @@ RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submod
|
||||
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
|
||||
# Add compressed-tensors for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir compressed-tensors
|
||||
|
||||
|
||||
@ -280,7 +280,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
الآن لإرسال النموذج إلى Hub، تأكد من تسجيل الدخول. إما تشغيل في المحطة الأوامر الطرفية الخاصة بك:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
أو من دفتر ملاحظات:
|
||||
|
||||
@ -41,7 +41,7 @@ picture-in-picture" allowfullscreen></iframe>
|
||||
قبل مشاركة نموذج على Hub، ستحتاج إلى بيانات اعتماد حساب Hugging Face الخاصة بك. إذا كنت تستخدم منصة الأوامر، فقم بتشغيل الأمر التالي في بيئة افتراضية حيث تم تثبيت 🤗 Transformers. سيقوم هذا الأمر بتخزين رمز الدخول الخاص بك في مجلد تخزين المؤقت لـ Hugging Face (`~/.cache/` بشكل افتراضي):
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
إذا كنت تستخدم دفتر ملاحظات مثل Jupyter أو Colaboratory، فتأكد من تثبيت مكتبة [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). تسمح لك هذه المكتبة بالتفاعل برمجيًا مع Hub.
|
||||
|
||||
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
يمكن لجميع النصوص البرمجية رفع نموذجك النهائي إلى [مركز النماذج](https://huggingface.co/models). تأكد من تسجيل الدخول إلى Hugging Face قبل البدء:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
ثم أضف المعلمة `push_to_hub` إلى النص البرمجي . ستقوم هذه المعلمة بإنشاء مستودع باستخدام اسم مستخدم Hugging Face واسم المجلد المحدد في `output_dir`.
|
||||
|
||||
@ -56,7 +56,7 @@ Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können
|
||||
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
|
||||
|
||||
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
Alle Skripte können Ihr endgültiges Modell in den [Model Hub](https://huggingface.co/models) hochladen. Stellen Sie sicher, dass Sie bei Hugging Face angemeldet sind, bevor Sie beginnen:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Dann fügen Sie dem Skript das Argument `push_to_hub` hinzu. Mit diesem Argument wird ein Repository mit Ihrem Hugging Face-Benutzernamen und dem in `output_dir` angegebenen Ordnernamen erstellt.
|
||||
|
||||
@ -72,6 +72,8 @@
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -103,10 +105,6 @@
|
||||
title: Agents
|
||||
- local: tools
|
||||
title: Tools
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: transformers_as_backend
|
||||
title: Inference server backends
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -179,8 +177,6 @@
|
||||
title: FBGEMM
|
||||
- local: quantization/finegrained_fp8
|
||||
title: Fine-grained FP8
|
||||
- local: quantization/fp_quant
|
||||
title: FP-Quant
|
||||
- local: gguf
|
||||
title: GGUF
|
||||
- local: quantization/gptq
|
||||
@ -445,16 +441,10 @@
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/ernie
|
||||
title: ERNIE
|
||||
- local: model_doc/ernie4_5
|
||||
title: Ernie4_5
|
||||
- local: model_doc/ernie4_5_moe
|
||||
title: Ernie4_5_MoE
|
||||
- local: model_doc/ernie_m
|
||||
title: ErnieM
|
||||
- local: model_doc/esm
|
||||
title: ESM
|
||||
- local: model_doc/exaone4
|
||||
title: EXAONE-4.0
|
||||
- local: model_doc/falcon
|
||||
title: Falcon
|
||||
- local: model_doc/falcon3
|
||||
@ -485,8 +475,6 @@
|
||||
title: GLM
|
||||
- local: model_doc/glm4
|
||||
title: glm4
|
||||
- local: model_doc/glm4_moe
|
||||
title: glm4_moe
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
@ -699,8 +687,6 @@
|
||||
title: XLM-V
|
||||
- local: model_doc/xlnet
|
||||
title: XLNet
|
||||
- local: model_doc/xlstm
|
||||
title: xLSTM
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
- local: model_doc/zamba
|
||||
@ -729,10 +715,6 @@
|
||||
title: DAB-DETR
|
||||
- local: model_doc/deepseek_v2
|
||||
title: DeepSeek-V2
|
||||
- local: model_doc/deepseek_vl
|
||||
title: DeepseekVL
|
||||
- local: model_doc/deepseek_vl_hybrid
|
||||
title: DeepseekVLHybrid
|
||||
- local: model_doc/deformable_detr
|
||||
title: Deformable DETR
|
||||
- local: model_doc/deit
|
||||
@ -759,8 +741,6 @@
|
||||
title: DPT
|
||||
- local: model_doc/efficientformer
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientloftr
|
||||
title: EfficientLoFTR
|
||||
- local: model_doc/efficientnet
|
||||
title: EfficientNet
|
||||
- local: model_doc/eomt
|
||||
@ -983,8 +963,6 @@
|
||||
title: Donut
|
||||
- local: model_doc/emu3
|
||||
title: Emu3
|
||||
- local: model_doc/evolla
|
||||
title: Evolla
|
||||
- local: model_doc/flava
|
||||
title: FLAVA
|
||||
- local: model_doc/gemma3
|
||||
@ -1117,8 +1095,6 @@
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/voxtral
|
||||
title: Voxtral
|
||||
- local: model_doc/xclip
|
||||
title: X-CLIP
|
||||
title: Multimodal models
|
||||
|
||||
@ -60,11 +60,11 @@ You will see it prints "I just entered the attention computation" as many times
|
||||
|
||||
## Dynamically switching attention function
|
||||
|
||||
You could dynamically change the model's attention function as well:
|
||||
You could dynamically change the model's attention function as well, by overriding the `config._attn_implementation` field:
|
||||
|
||||
```python
|
||||
# Back to use original sdpa implementation
|
||||
model.set_attn_implementation("sdpa")
|
||||
model.config._attn_implementation = "sdpa"
|
||||
|
||||
model(torch.ones(1, 5, dtype=int))
|
||||
```
|
||||
@ -72,34 +72,6 @@ model(torch.ones(1, 5, dtype=int))
|
||||
and it will stop printing the statements, as it now uses the `sdpa` attention.
|
||||
This allows to quickly change an attention function, without needing to reload the model!
|
||||
|
||||
## Different attention per backbone in multimodal models
|
||||
|
||||
For multimodal models different attention functions may work better for each backbone module. For example, some vision backbones perform better in fp32, but are incompatible with FlashAttention. To continue using FlashAttention while keeping the vision encoder in fp32, create a dict and map each config to an attention implementation as shown below.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForImageTextToText
|
||||
|
||||
model_id = "facebook/chameleon-7b"
|
||||
|
||||
attention_implementation_per_backbone = {"vision_config": "sdpa", "text_config": "flash_attention_2"}
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation=attention_implementation_per_backbone)
|
||||
|
||||
# NOTE: keys in the attention implementation have to be the same as the sub-config names
|
||||
for key in attention_implementation_per_backbone:
|
||||
assert key in model.config.sub_configs, f"Invalid key in `attention_implementation`"
|
||||
|
||||
# You can omit certain backbones - the default attention function (SDPA) will be used
|
||||
# This is equivalent to the previous example
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2"})
|
||||
|
||||
|
||||
# Set the same attention implementation for all backbones with single string, same as in non-multimodal models
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager")
|
||||
|
||||
# Alternatively use a dict with an empty key for global configuration
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"": "eager"})
|
||||
```
|
||||
|
||||
## What about new args needed in my custom attention function?
|
||||
|
||||
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
|
||||
|
||||
@ -64,9 +64,9 @@ Arguments can also be passed directly to `@auto_docstring` for more control. Use
|
||||
It builds upon the standard Transformer architecture with unique modifications.""",
|
||||
custom_args="""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
)
|
||||
class MySpecialModel(PreTrainedModel):
|
||||
@ -85,40 +85,13 @@ class MySpecialModel(PreTrainedModel):
|
||||
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
|
||||
r"""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
# ...
|
||||
```
|
||||
|
||||
You should also use the `@auto_docstring` decorator for classes that inherit from [`~utils.ModelOutput`].
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Custom model outputs with additional fields.
|
||||
"""
|
||||
)
|
||||
class MyModelOutput(ImageClassifierOutput):
|
||||
r"""
|
||||
loss (`torch.FloatTensor`, *optional*):
|
||||
The loss of the model.
|
||||
custom_field (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
||||
A custom output field specific to this model.
|
||||
"""
|
||||
|
||||
# Standard fields like hidden_states, logits, attentions etc. can be automatically documented if the description is the same as the standard arguments.
|
||||
# However, given that the loss docstring is often different per model, you should document it in the docstring above.
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
# Custom fields need to be documented in the docstring above
|
||||
custom_field: Optional[torch.FloatTensor] = None
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="functions">
|
||||
|
||||
@ -198,7 +171,7 @@ class MyModel(PreTrainedModel):
|
||||
|
||||
There are some rules for documenting different types of arguments and they're listed below.
|
||||
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `auto_docstring.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `auto_docstring.py`.
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `args_doc.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `args_doc.py`.
|
||||
|
||||
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
|
||||
|
||||
@ -272,7 +245,7 @@ When working with modular files (`modular_model.py`), follow the guidelines belo
|
||||
The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
|
||||
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `auto_docstring.py` file.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `args_doc.py` file.
|
||||
3. Adding argument descriptions in one of two ways as shown below.
|
||||
|
||||
| method | description | usage |
|
||||
@ -280,7 +253,7 @@ The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
|
||||
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
|
||||
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `auto_docstring.py`.
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `args_doc.py`.
|
||||
|
||||
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.
|
||||
|
||||
|
||||
@ -128,34 +128,6 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Cache position
|
||||
|
||||
The cache position tracks where to insert new tokens in the attention cache. It represents the *absolute* position of each token in the context, independent of padding or batch structure. Suppose you already cached `N` tokens and are now processing `K` new tokens. The cache position for the new tokens will range from `N` to `N + K - 1`. In other words, you're processing tokens at positions - `[N, N + 1, N + 2, ..., N + K - 1]`.
|
||||
|
||||
Cache position is used internally for two purposes:
|
||||
|
||||
1. Selecting new tokens to process in the input sequence and ensuring only tokens that haven’t been cached yet are passed to the model's `forward`.
|
||||
2. Storing key/value pairs at the correct positions in the cache. This is especially important for fixed-size caches, like [`StaticCache`], that pre-allocates a specific cache length.
|
||||
|
||||
The generation loop usually takes care of the cache position, but if you're writing a custom generation method, it is important that cache positions are accurate since they are used to write and read key/value states into fixed slots.
|
||||
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
messages = [{"role": "user", "content": "You are a helpful assistant."}]
|
||||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
@ -165,7 +137,7 @@ The legacy format is essentially the same data structure but organized different
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, we recommend to convert to [`DynamicCache`] with [`~DynamicCache.from_legacy_cache`]. Note that legacy cache format is deprecated and not used anymore in `Transformers`. You can convert back to tuple format with [`DynamicCache.to_legacy_cache`] functions, which is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~Cache.from_legacy_cache`] and [`Cache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -181,4 +153,4 @@ generation_outputs = model.generate(**inputs, return_dict_in_generate=True, retu
|
||||
|
||||
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
|
||||
legacy_format_cache = cache.to_legacy_cache()
|
||||
```
|
||||
```
|
||||
@ -271,7 +271,7 @@ The model is ready to be pushed to the Hub now. Log in to your Hugging Face acco
|
||||
<hfoption id="huggingface-CLI">
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
@ -356,67 +356,23 @@ A [`Constraint`] can be used to force the generation to include specific tokens
|
||||
|
||||
## Caches
|
||||
|
||||
[[autodoc]] CacheLayerMixin
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] DynamicLayer
|
||||
- update
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] StaticLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] SlidingWindowLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] CacheProcessor
|
||||
- pre_update
|
||||
- post_update
|
||||
|
||||
[[autodoc]] OffloadedCacheProcessor
|
||||
- pre_update
|
||||
|
||||
[[autodoc]] QuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] Cache
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
- update
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
- validate
|
||||
|
||||
[[autodoc]] DynamicCache
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
|
||||
[[autodoc]] QuantizedCache
|
||||
|
||||
[[autodoc]] QuantoQuantizedCache
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] HQQQuantizedCache
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] OffloadedCache
|
||||
|
||||
[[autodoc]] StaticCache
|
||||
@ -425,24 +381,20 @@ A [`Constraint`] can be used to force the generation to include specific tokens
|
||||
|
||||
[[autodoc]] HybridCache
|
||||
|
||||
[[autodoc]] HybridChunkedCache
|
||||
|
||||
[[autodoc]] SlidingWindowCache
|
||||
|
||||
[[autodoc]] EncoderDecoderCache
|
||||
- get_seq_length
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] MambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
|
||||
|
||||
## Watermark Utils
|
||||
|
||||
[[autodoc]] WatermarkingConfig
|
||||
|
||||
@ -247,114 +247,3 @@ first and last layer will be shown. This is useful when some layers (typically c
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
||||
## Analyzer of skipped tests
|
||||
|
||||
### Scan skipped tests - for model adders and maintainers
|
||||
|
||||
This small util is a power user tool intended for model adders and maintainers. It lists all test methods
|
||||
existing in `test_modeling_common.py`, inherited by all model tester classes, and scans the repository to measure
|
||||
how many tests are being skipped and for which models.
|
||||
|
||||
### Rationale
|
||||
|
||||
When porting models to transformers, tests fail as they should, and sometimes `test_modeling_common` feels irreconcilable with the peculiarities of our brand new model. But how can we be sure we're not breaking everything by adding a seemingly innocent skip?
|
||||
|
||||
This utility:
|
||||
- scans all test_modeling_common methods
|
||||
- looks for times where a method is skipped
|
||||
- returns a summary json you can load as a DataFrame/inspect
|
||||
|
||||
**For instance test_inputs_embeds is skipped in a whooping 39% proportion at the time of writing this util.**
|
||||
|
||||

|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
You can run the skipped test analyzer in two ways:
|
||||
|
||||
#### Full scan (default)
|
||||
|
||||
From the root of `transformers` repo, scans all common test methods and outputs the results to a JSON file (default: `all_tests_scan_result.json`).
|
||||
|
||||
```bash
|
||||
python utils/scan_skipped_tests.py --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--output_dir` (optional): Directory where the JSON results will be saved. Defaults to the current directory.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```
|
||||
🔬 Parsing 331 model test files once each...
|
||||
📝 Aggregating 224 tests...
|
||||
(224/224) test_update_candidate_strategy_with_matches_1es_3d_is_nonecodet_schedule_fa_kwargs
|
||||
✅ Scan complete.
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/all_tests_scan_result.json
|
||||
|
||||
```
|
||||
|
||||
And it will generate `all_tests_scan_result.json` file that you can inspect. The JSON is indexed by method name, and each entry follows this schema, indicating the origin as well (from `common`or `GenerationMixin`.)
|
||||
|
||||
```json
|
||||
{
|
||||
"<method_name>": {
|
||||
"origin": "<test suite>"
|
||||
"models_ran": ["<model_name>", ...],
|
||||
"models_skipped": ["<model_name>", ...],
|
||||
"skipped_proportion": <float>,
|
||||
"reasons_skipped": ["<model_name>: <reason>",
|
||||
...
|
||||
]
|
||||
},
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
Which you can visualise as above with e.g. `pandas`
|
||||
|
||||
```python
|
||||
df = pd.read_json('all_tests_scan_result.json').T
|
||||
df.sort_values(by=['skipped_proportion'], ascending=False)
|
||||
|
||||
```
|
||||
|
||||
### Scan a single test method
|
||||
|
||||
You can focus on a specific test method using `--test_method_name`:
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).
|
||||
- `--output_dir` (optional): Directory where the JSON result will be saved.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds
|
||||
|
||||
🔬 Parsing 331 model test files once each...
|
||||
|
||||
== test_inputs_embeds ==
|
||||
|
||||
Ran : 199/323
|
||||
Skipped : 124/323 (38.4%)
|
||||
- aimv2: Aimv2 does not use inputs_embeds
|
||||
- align: Inputs_embeds is tested in individual model tests
|
||||
- altclip: Inputs_embeds is tested in individual model tests
|
||||
- audio_spectrogram_transformer: AST does not use inputs_embeds
|
||||
- beit: BEiT does not use inputs_embeds
|
||||
- bit: Bit does not use inputs_embeds
|
||||
- blip: Blip does not use inputs_embeds
|
||||
- blip_2: Inputs_embeds is tested in individual model tests
|
||||
- bridgetower:
|
||||
- canine: CANINE does not have a get_input_embeddings() method.
|
||||
- ...
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/scan_test_inputs_embeds.json
|
||||
|
||||
```
|
||||
@ -341,7 +341,7 @@ A known issue with transformer models is that the self-attention mechanism grows
|
||||
|
||||
FlashAttention and [FlashAttention-2](./perf_infer_gpu_one#flashattention-2) break up the attention computation into smaller chunks and reduces the number of intermediate read/write operations to the GPU memory to speed up inference. FlashAttention-2 improves on the original FlashAttention algorithm by also parallelizing over sequence length dimension and better partitioning work on the hardware to reduce synchronization and communication overhead.
|
||||
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or set with `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface) after the model is loaded.
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
@ -353,14 +353,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
)
|
||||
|
||||
# Change the model's attention dynamically after loading
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-2b",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
model.set_attention_implementation("flash_attention_2")
|
||||
```
|
||||
|
||||
### PyTorch scaled dot product attention
|
||||
@ -368,7 +360,7 @@ model.set_attention_implementation("flash_attention_2")
|
||||
Scaled dot product attention (SDPA) is automatically enabled in PyTorch 2.0 and it supports FlashAttention, xFormers, and PyTorch's C++ implementation. SDPA chooses the most performant attention algorithm if you're using a CUDA backend. For other backends, SDPA defaults to the PyTorch C++ implementation.
|
||||
|
||||
> [!TIP]
|
||||
> SDPA automatically supports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
> SDPA automaticallysupports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
|
||||
Use the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to explicitly enable or disable any of the four attention algorithms. For example, use `SDPBackend.FLASH_ATTENTION` to enable FlashAttention.
|
||||
|
||||
|
||||
@ -33,7 +33,6 @@ By default, `TrainingArguments.report_to` is set to `"all"`, so a [`Trainer`] wi
|
||||
it's the second one).
|
||||
- [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4
|
||||
or tensorboardX).
|
||||
- [`~integrations.TrackioCallback`] if [trackio](https://github.com/gradio-app/trackio) is installed.
|
||||
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
|
||||
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.com/site/) is installed.
|
||||
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
|
||||
@ -73,9 +72,6 @@ Here is the list of the available [`TrainerCallback`] in the library:
|
||||
|
||||
[[autodoc]] integrations.TensorBoardCallback
|
||||
|
||||
[[autodoc]] integrations.TrackioCallback
|
||||
- setup
|
||||
|
||||
[[autodoc]] integrations.WandbCallback
|
||||
- setup
|
||||
|
||||
|
||||
@ -93,10 +93,6 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
|
||||
|
||||
[[autodoc]] QuarkConfig
|
||||
|
||||
## FPQuantConfig
|
||||
|
||||
[[autodoc]] FPQuantConfig
|
||||
|
||||
## AutoRoundConfig
|
||||
|
||||
[[autodoc]] AutoRoundConfig
|
||||
|
||||
@ -258,10 +258,6 @@ The following auto classes are available for the following computer vision tasks
|
||||
|
||||
[[autodoc]] AutoModelForKeypointDetection
|
||||
|
||||
### AutoModelForKeypointMatching
|
||||
|
||||
[[autodoc]] AutoModelForKeypointMatching
|
||||
|
||||
### AutoModelForMaskedImageModeling
|
||||
|
||||
[[autodoc]] AutoModelForMaskedImageModeling
|
||||
|
||||
@ -14,50 +14,25 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# CLAP
|
||||
|
||||
[CLAP (Contrastive Language-Audio Pretraining)](https://huggingface.co/papers/2211.06687) is a multimodal model that combines audio data with natural language descriptions through contrastive learning.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
It incorporates feature fusion and keyword-to-caption augmentation to process variable-length audio inputs and to improve performance. CLAP doesn't require task-specific training data and can learn meaningful audio representations through natural language.
|
||||
## Overview
|
||||
|
||||
You can find all the original CLAP checkpoints under the [CLAP](https://huggingface.co/collections/laion/clap-contrastive-language-audio-pretraining-65415c0b18373b607262a490) collection.
|
||||
The CLAP model was proposed in [Large Scale Contrastive Language-Audio pretraining with
|
||||
feature fusion and keyword-to-caption augmentation](https://huggingface.co/papers/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
>
|
||||
> Click on the CLAP models in the right sidebar for more examples of how to apply CLAP to different audio retrieval and classification tasks.
|
||||
CLAP (Contrastive Language-Audio Pretraining) is a neural network trained on a variety of (audio, text) pairs. It can be instructed in to predict the most relevant text snippet, given an audio, without directly optimizing for the task. The CLAP model uses a SWINTransformer to get audio features from a log-Mel spectrogram input, and a RoBERTa model to get text features. Both the text and audio features are then projected to a latent space with identical dimension. The dot product between the projected audio and text features is then used as a similar score.
|
||||
|
||||
The example below demonstrates how to extract text embeddings with the [`AutoModel`] class.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
*Contrastive learning has shown remarkable success in the field of multimodal representation learning. In this paper, we propose a pipeline of contrastive language-audio pretraining to develop an audio representation by combining audio data with natural language descriptions. To accomplish this target, we first release LAION-Audio-630K, a large collection of 633,526 audio-text pairs from different data sources. Second, we construct a contrastive language-audio pretraining model by considering different audio encoders and text encoders. We incorporate the feature fusion mechanism and keyword-to-caption augmentation into the model design to further enable the model to process audio inputs of variable lengths and enhance the performance. Third, we perform comprehensive experiments to evaluate our model across three tasks: text-to-audio retrieval, zero-shot audio classification, and supervised audio classification. The results demonstrate that our model achieves superior performance in text-to-audio retrieval task. In audio classification tasks, the model achieves state-of-the-art performance in the zeroshot setting and is able to obtain performance comparable to models' results in the non-zero-shot setting. LAION-Audio-6*
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
model = AutoModel.from_pretrained("laion/clap-htsat-unfused", torch_dtype=torch.float16, device_map="auto")
|
||||
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
|
||||
|
||||
texts = ["the sound of a cat", "the sound of a dog", "music playing"]
|
||||
|
||||
inputs = tokenizer(texts, padding=True, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
text_features = model.get_text_features(**inputs)
|
||||
|
||||
print(f"Text embeddings shape: {text_features.shape}")
|
||||
print(f"Text embeddings: {text_features}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
|
||||
The original code can be found [here](https://github.com/LAION-AI/Clap).
|
||||
|
||||
## ClapConfig
|
||||
|
||||
|
||||
@ -1,220 +0,0 @@
|
||||
<!--Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# DeepseekVL
|
||||
|
||||
[Deepseek-VL](https://arxiv.org/abs/2403.05525) was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages [LLaMA](./llama) as its text encoder, while [SigLip](./siglip) is used for encoding images.
|
||||
|
||||
You can find all the original Deepseek-VL checkpoints under the [DeepSeek-community](https://huggingface.co/deepseek-community) organization.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Deepseek-VL models in the right sidebar for more examples of how to apply Deepseek-VL to different vision and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="deepseek-community/deepseek-vl-1.3b-chat",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
pipe(text=messages, max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
```
|
||||
### Notes
|
||||
|
||||
- Do inference with multiple images in a single conversation.
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What’s the difference between"},
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||||
{"type": "text", "text": " and "},
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
]
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
|
||||
{"type": "text", "text": "What do you see in this image?"}
|
||||
]
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## DeepseekVLConfig
|
||||
|
||||
[[autodoc]] DeepseekVLConfig
|
||||
|
||||
## DeepseekVLProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLProcessor
|
||||
|
||||
## DeepseekVLImageProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLImageProcessor
|
||||
|
||||
## DeepseekVLModel
|
||||
|
||||
[[autodoc]] DeepseekVLModel
|
||||
- forward
|
||||
|
||||
## DeepseekVLForConditionalGeneration
|
||||
|
||||
[[autodoc]] DeepseekVLForConditionalGeneration
|
||||
- forward
|
||||
@ -1,219 +0,0 @@
|
||||
<!--Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# DeepseekVLHybrid
|
||||
|
||||
[Deepseek-VL-Hybrid](https://arxiv.org/abs/2403.05525) was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages [LLaMA](./llama) as its text encoder, while [SigLip](./siglip) is used for encoding low-resolution images and [SAM (Segment Anything Model)](./sam) is incorporated to handle high-resolution image encoding, enhancing the model’s ability to process fine-grained visual details. Deepseek-VL-Hybrid is a variant of Deepseek-VL that uses [SAM (Segment Anything Model)](./sam) to handle high-resolution image encoding.
|
||||
|
||||
You can find all the original Deepseek-VL-Hybrid checkpoints under the [DeepSeek-community](https://huggingface.co/deepseek-community) organization.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Deepseek-VL-Hybrid models in the right sidebar for more examples of how to apply Deepseek-VL-Hybrid to different vision and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="deepseek-community/deepseek-vl-7b-chat",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
pipe(text=messages, max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-7b-chat")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
```
|
||||
### Notes
|
||||
|
||||
- Do inference with multiple images in a single conversation.
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-7b-chat")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What’s the difference between"},
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||||
{"type": "text", "text": " and "},
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
]
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
|
||||
{"type": "text", "text": "What do you see in this image?"}
|
||||
]
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## DeepseekVLHybridConfig
|
||||
|
||||
[[autodoc]] DeepseekVLHybridConfig
|
||||
|
||||
## DeepseekVLHybridProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLHybridProcessor
|
||||
|
||||
## DeepseekVLHybridImageProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLHybridImageProcessor
|
||||
|
||||
## DeepseekVLHybridModel
|
||||
|
||||
[[autodoc]] DeepseekVLHybridModel
|
||||
- forward
|
||||
|
||||
## DeepseekVLHybridForConditionalGeneration
|
||||
|
||||
[[autodoc]] DeepseekVLHybridForConditionalGeneration
|
||||
- forward
|
||||
@ -1,149 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the MIT License; you may not use this file except in compliance with
|
||||
the License.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# EfficientLoFTR
|
||||
|
||||
[EfficientLoFTR](https://huggingface.co/papers/2403.04765) is an efficient detector-free local feature matching method that produces semi-dense matches across images with sparse-like speed. It builds upon the original [LoFTR](https://huggingface.co/papers/2104.00680) architecture but introduces significant improvements for both efficiency and accuracy. The key innovation is an aggregated attention mechanism with adaptive token selection that makes the model ~2.5× faster than LoFTR while achieving higher accuracy. EfficientLoFTR can even surpass state-of-the-art efficient sparse matching pipelines like [SuperPoint](./superpoint) + [LightGlue](./lightglue) in terms of speed, making it suitable for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the EfficientLoFTR models in the right sidebar for more examples of how to apply EfficientLoFTR to different computer vision tasks.
|
||||
|
||||
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
|
||||
image1 = Image.open(requests.get(url_image1, stream=True).raw)
|
||||
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
|
||||
image2 = Image.open(requests.get(url_image2, stream=True).raw)
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("zju-community/efficientloftr")
|
||||
model = AutoModelForKeypointMatching.from_pretrained("zju-community/efficientloftr")
|
||||
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints and matches
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- EfficientLoFTR is designed for efficiency while maintaining high accuracy. It uses an aggregated attention mechanism with adaptive token selection to reduce computational overhead compared to the original LoFTR.
|
||||
|
||||
```py
|
||||
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("zju-community/efficientloftr")
|
||||
model = AutoModelForKeypointMatching.from_pretrained("zju-community/efficientloftr")
|
||||
|
||||
# EfficientLoFTR requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Extract matching information
|
||||
keypoints = outputs.keypoints # Keypoints in both images
|
||||
matches = outputs.matches # Matching indices
|
||||
matching_scores = outputs.matching_scores # Confidence scores
|
||||
```
|
||||
|
||||
- The model produces semi-dense matches, offering a good balance between the density of matches and computational efficiency. It excels in handling large viewpoint changes and texture-poor scenarios.
|
||||
|
||||
- For better visualization and analysis, use the [`~EfficientLoFTRImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
|
||||
|
||||
```py
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- Visualize the matches between the images using the built-in plotting functionality.
|
||||
|
||||
```py
|
||||
# Easy visualization using the built-in plotting method
|
||||
visualized_images = processor.visualize_keypoint_matching(images, processed_outputs)
|
||||
```
|
||||
|
||||
- EfficientLoFTR uses a novel two-stage correlation layer that achieves accurate subpixel correspondences, improving upon the original LoFTR's fine correlation module.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2nJZQlFToCYp_iLurvcZ4.png">
|
||||
</div>
|
||||
|
||||
## Resources
|
||||
|
||||
- Refer to the [original EfficientLoFTR repository](https://github.com/zju3dv/EfficientLoFTR) for more examples and implementation details.
|
||||
- [EfficientLoFTR project page](https://zju3dv.github.io/efficientloftr/) with interactive demos and additional information.
|
||||
|
||||
## EfficientLoFTRConfig
|
||||
|
||||
[[autodoc]] EfficientLoFTRConfig
|
||||
|
||||
## EfficientLoFTRImageProcessor
|
||||
|
||||
[[autodoc]] EfficientLoFTRImageProcessor
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## EfficientLoFTRModel
|
||||
|
||||
[[autodoc]] EfficientLoFTRModel
|
||||
|
||||
- forward
|
||||
|
||||
## EfficientLoFTRForKeypointMatching
|
||||
|
||||
[[autodoc]] EfficientLoFTRForKeypointMatching
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
@ -47,8 +47,7 @@ Here is a quick example of how to encode and decode an audio using this model:
|
||||
>>> inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt")
|
||||
|
||||
>>> encoder_outputs = model.encode(inputs["input_values"], inputs["padding_mask"])
|
||||
>>> # `encoder_outputs.audio_codes` contains discrete codes
|
||||
>>> audio_values = model.decode(**encoder_outputs, padding_mask=inputs["padding_mask"])[0]
|
||||
>>> audio_values = model.decode(encoder_outputs.audio_codes, encoder_outputs.audio_scales, inputs["padding_mask"])[0]
|
||||
>>> # or the equivalent with a forward pass
|
||||
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values
|
||||
```
|
||||
|
||||
@ -14,83 +14,29 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ERNIE
|
||||
|
||||
[ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
|
||||
[ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244) are a series of powerful models proposed by baidu, especially in Chinese tasks.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
ERNIE (Enhanced Representation through kNowledge IntEgration) is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking.
|
||||
## Overview
|
||||
ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks,
|
||||
including [ERNIE1.0](https://huggingface.co/papers/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
|
||||
[ERNIE3.0](https://huggingface.co/papers/2107.02137), [ERNIE-Gram](https://huggingface.co/papers/2010.12148), [ERNIE-health](https://huggingface.co/papers/2110.07244), etc.
|
||||
|
||||
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5.md), and [Ernie 4.5 MoE](./ernie4_5_moe.md).
|
||||
These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [nghuyong](https://huggingface.co/nghuyong), and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
>
|
||||
> Click on the ERNIE models in the right sidebar for more examples of how to apply ERNIE to different language tasks.
|
||||
### Usage example
|
||||
Take `ernie-1.0-base-zh` as an example:
|
||||
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="nghuyong/ernie-3.0-xbase-zh"
|
||||
)
|
||||
|
||||
pipeline("巴黎是[MASK]国的首都。")
|
||||
```Python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"nghuyong/ernie-3.0-xbase-zh",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"nghuyong/ernie-3.0-xbase-zh",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
inputs = tokenizer("巴黎是[MASK]国的首都。", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "巴黎是[MASK]国的首都。" | transformers run --task fill-mask --model nghuyong/ernie-3.0-xbase-zh --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
Model variants are available in different sizes and languages.
|
||||
### Model checkpoints
|
||||
|
||||
| Model Name | Language | Description |
|
||||
|:-------------------:|:--------:|:-------------------------------:|
|
||||
@ -105,11 +51,18 @@ Model variants are available in different sizes and languages.
|
||||
| ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
|
||||
## Resources
|
||||
|
||||
You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official
|
||||
repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html)
|
||||
and [ERNIE's legacy branch](https://github.com/PaddlePaddle/ERNIE/tree/legacy/develop).
|
||||
and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro).
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## ErnieConfig
|
||||
|
||||
@ -163,4 +116,4 @@ and [ERNIE's legacy branch](https://github.com/PaddlePaddle/ERNIE/tree/legacy/de
|
||||
## ErnieForQuestionAnswering
|
||||
|
||||
[[autodoc]] ErnieForQuestionAnswering
|
||||
- forward
|
||||
- forward
|
||||
@ -1,99 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5Config
|
||||
|
||||
[[autodoc]] Ernie4_5Config
|
||||
|
||||
## Ernie4_5Model
|
||||
|
||||
[[autodoc]] Ernie4_5Model
|
||||
- forward
|
||||
|
||||
## Ernie4_5ForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5ForCausalLM
|
||||
- forward
|
||||
@ -1,183 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5 Moe
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 Moe model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
|
||||
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
|
||||
experts.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Distributed Generation with Tensor Parallelism
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
tp_plan="auto",
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Quantization with Bitsandbytes
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5_MoeConfig
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeConfig
|
||||
|
||||
## Ernie4_5_MoeModel
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeModel
|
||||
- forward
|
||||
|
||||
## Ernie4_5_MoeForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeForCausalLM
|
||||
- forward
|
||||
- generate
|
||||
@ -1,95 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Evolla
|
||||
|
||||
## Overview
|
||||
|
||||
The Evolla model was proposed in [Decoding the Molecular Language of Proteins with Evolla](https://doi.org/10.1101/2025.01.05.630192) by [Zhou et al.](https://doi.org/10.1101/2025.01.05.630192).
|
||||
|
||||
Evolla is an advanced 80-billion-parameter protein-language generative model designed to decode the molecular language of proteins. It integrates information from protein sequences, structures, and user queries to generate precise and contextually nuanced insights into protein function. Trained on an unprecedented AI-generated dataset of 546 million protein question-answer pairs and 150 billion word tokens, Evolla significantly advances research in proteomics and functional genomics, providing expert-level insights and shedding light on the molecular logic encoded in proteins.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Proteins, nature’s intricate molecular machines, are the products of billions of years of evolution and play fundamental roles in sustaining life. Yet, deciphering their molecular language - that is, understanding how protein sequences and structures encode and determine biological functions - remains a corner-stone challenge in modern biology. Here, we introduce Evolla, an 80 billion frontier protein-language generative model designed to decode the molecular language of proteins. By integrating information from protein sequences, structures, and user queries, Evolla generates precise and contextually nuanced insights into protein function. A key innovation of Evolla lies in its training on an unprecedented AI-generated dataset: 546 million protein question-answer pairs and 150 billion word tokens, designed to reflect the immense complexity and functional diversity of proteins. Post-pretraining, Evolla integrates Direct Preference Optimization (DPO) to refine the model based on preference signals and Retrieval-Augmented Generation (RAG) for external knowledge incorporation, improving response quality and relevance. To evaluate its performance, we propose a novel framework, Instructional Response Space (IRS), demonstrating that Evolla delivers expert-level insights, advancing research in proteomics and functional genomics while shedding light on the molecular logic encoded in proteins. The online demo is available at http://www.chat-protein.com/.*
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
processor = EvollaProcessor.from_pretrained("westlake-repl/Evolla-10B-DPO-hf")
|
||||
model = EvollaForProteinText2Text.from_pretrained("westlake-repl/Evolla-10B-DPO-hf")
|
||||
# aa_seq should have same length as foldseek
|
||||
protein_inputs = [
|
||||
{
|
||||
|
||||
"aa_seq": "MATGGRRG...",
|
||||
"foldseek": "###lqpfd...", # hashtag means the low-confidence foldseek tokens
|
||||
},
|
||||
{
|
||||
"aa_seq": "MLPGLALL...",
|
||||
"foldseek": "dfwwkwad...",
|
||||
}
|
||||
]
|
||||
message_list = [
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are an AI expert that can answer any questions about protein.",
|
||||
},
|
||||
{"role": "user", "content": "What is the function of this protein?"},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are an AI expert that can answer any questions about protein.",
|
||||
},
|
||||
{"role": "user", "content": "What is the function of this protein?"},
|
||||
]
|
||||
]
|
||||
input_dict = processor(
|
||||
protein_informations, messages_list, return_tensors="pt", text_max_length=512, protein_max_length=1024
|
||||
)
|
||||
with torch.no_grad():
|
||||
generated_ids = hf_model.generate(**input_dict)
|
||||
generated_texts = processor.batch_decode(
|
||||
generated_ids, skip_special_tokens=True
|
||||
)
|
||||
```
|
||||
|
||||
Tips:
|
||||
|
||||
- This model was contributed by [Xibin Bayes Zhou](https://huggingface.co/XibinBayesZhou).
|
||||
- The original code can be found [here](https://github.com/westlake-repl/Evolla).
|
||||
|
||||
|
||||
## EvollaConfig
|
||||
|
||||
[[autodoc]] EvollaConfig
|
||||
|
||||
## EvollaModel
|
||||
|
||||
[[autodoc]] EvollaModel
|
||||
- forward
|
||||
|
||||
## EvollaForProteinText2Text
|
||||
|
||||
[[autodoc]] EvollaForProteinText2Text
|
||||
- forward
|
||||
|
||||
## EvollaProcessor
|
||||
|
||||
[[autodoc]] EvollaProcessor
|
||||
- __call__
|
||||
@ -1,208 +0,0 @@
|
||||
<!--Copyright 2025 The LG AI Research and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# EXAONE 4
|
||||
|
||||
## Overview
|
||||
|
||||
**[EXAONE 4.0](https://github.com/LG-AI-EXAONE/EXAONE-4.0)** model is the language model, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
|
||||
to support Spanish in addition to English and Korean.
|
||||
|
||||
The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.
|
||||
|
||||
In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:
|
||||
|
||||
1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
|
||||
2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.
|
||||
|
||||
For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).
|
||||
|
||||
All model weights including quantized versions are available at [Huggingface Collections](https://huggingface.co/collections/LGAI-EXAONE/exaone-40-686b2e0069800c835ed48375).
|
||||
|
||||
|
||||
## Model Details
|
||||
|
||||
### Model Specifications
|
||||
|
||||
| Model Configuration | 32B | 1.2B |
|
||||
|:-------------------|:-----:|:------:|
|
||||
| d_model | 5,120 | 2,048 |
|
||||
| Number of layers | 64 | 30 |
|
||||
| Normalization | QK-Reorder-LN | QK-Reorder-LN |
|
||||
| Non-linearity | SwiGLU | SwiGLU |
|
||||
| Feedforward dimension | 27,392 | 4,096 |
|
||||
| Attention type | Hybrid (3:1 Local-Global) | Global |
|
||||
| Head type | GQA | GQA |
|
||||
| Number of heads | 40 | 32 |
|
||||
| Number of KV heads | 8 | 8 |
|
||||
| Head size | 128 | 64 |
|
||||
| Max sequence length | 131,072 | 65,536 |
|
||||
| RoPE theta | 1,000,000 | 1,000,000 |
|
||||
| Tokenizer | BBPE | BBPE |
|
||||
| Vocab size | 102,400 | 102,400 |
|
||||
| Tied word embedding | False | True |
|
||||
| Knowledge cut-off | Nov. 2024 | Nov. 2024 |
|
||||
|
||||
|
||||
## Usage tips
|
||||
|
||||
### Non-reasoning mode
|
||||
|
||||
For general use, you can use the EXAONE 4.0 models with the following example:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "LGAI-EXAONE/EXAONE-4.0-32B"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="bfloat16",
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
# choose your prompt
|
||||
prompt = "Explain how wonderful you are"
|
||||
prompt = "Explica lo increíble que eres"
|
||||
prompt = "너가 얼마나 대단한지 설명해 봐"
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=False,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
### Reasoning mode
|
||||
|
||||
The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
enable_thinking=True,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The model generation with reasoning mode can be affected sensitively by sampling parameters, so please refer to the [Usage Guideline](https://github.com/LG-AI-EXAONE/EXAONE-4.0#usage-guideline) on official GitHub page for better quality.
|
||||
|
||||
### Agentic tool use
|
||||
|
||||
The EXAONE 4.0 models can be used as agents with their tool calling capabilities. You can provide tool schemas to the model for effective tool calling.
|
||||
|
||||
```python
|
||||
import random
|
||||
|
||||
def roll_dice(max_num: int):
|
||||
return random.randint(1, max_num)
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "roll_dice",
|
||||
"description": "Roll a dice with the number 1 to N. User can select the number N.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["max_num"],
|
||||
"properties": {
|
||||
"max_num": {
|
||||
"type": "int",
|
||||
"description": "Max number of the dice"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "Roll D6 dice twice!"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=1024,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## Exaone4Config
|
||||
|
||||
[[autodoc]] Exaone4Config
|
||||
|
||||
## Exaone4Model
|
||||
|
||||
[[autodoc]] Exaone4Model
|
||||
- forward
|
||||
|
||||
## Exaone4ForCausalLM
|
||||
|
||||
[[autodoc]] Exaone4ForCausalLM
|
||||
- forward
|
||||
|
||||
## Exaone4ForSequenceClassification
|
||||
|
||||
[[autodoc]] Exaone4ForSequenceClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForTokenClassification
|
||||
|
||||
[[autodoc]] Exaone4ForTokenClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForQuestionAnswering
|
||||
|
||||
[[autodoc]] Exaone4ForQuestionAnswering
|
||||
- forward
|
||||
@ -267,8 +267,3 @@ visualizer("<img>What is shown in this image?")
|
||||
|
||||
[[autodoc]] Gemma3ForConditionalGeneration
|
||||
- forward
|
||||
|
||||
## Gemma3ForSequenceClassification
|
||||
|
||||
[[autodoc]] Gemma3ForSequenceClassification
|
||||
- forward
|
||||
|
||||
@ -1,35 +0,0 @@
|
||||
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Glm4Moe
|
||||
|
||||
## Overview
|
||||
|
||||
This will update After model release.
|
||||
|
||||
## Glm4MoeConfig
|
||||
|
||||
[[autodoc]] Glm4MoeConfig
|
||||
|
||||
## Glm4MoeModel
|
||||
|
||||
[[autodoc]] Glm4MoeModel
|
||||
- forward
|
||||
|
||||
## Glm4MoeForCausalLM
|
||||
|
||||
[[autodoc]] Glm4MoeForCausalLM
|
||||
- forward
|
||||
@ -48,32 +48,6 @@ for i in output:
|
||||
|
||||
This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co/SukritiSharma) and [Alexander Brooks](https://huggingface.co/abrooks9944).
|
||||
|
||||
## Notes
|
||||
|
||||
- `GraniteMoeHybridForCausalLM` supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
|
||||
|
||||
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
|
||||
|
||||
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
|
||||
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
|
||||
- Each of the [`FlashAttentionKwargs`]
|
||||
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
|
||||
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
|
||||
- `max_length_q: int`: the longest query length in the batch.
|
||||
- `max_length_k: int`: the longest key length in the batch.
|
||||
|
||||
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
|
||||
|
||||
```python
|
||||
from transformers import DataCollatorWithFlattening
|
||||
|
||||
# Example of using padding-free training
|
||||
data_collator = DataCollatorWithFlattening(
|
||||
tokenizer=tokenizer,
|
||||
return_seq_idx=True,
|
||||
return_flash_attn_kwargs=True
|
||||
)
|
||||
```
|
||||
|
||||
## GraniteMoeHybridConfig
|
||||
|
||||
@ -87,4 +61,4 @@ This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co
|
||||
## GraniteMoeHybridForCausalLM
|
||||
|
||||
[[autodoc]] GraniteMoeHybridForCausalLM
|
||||
- forward
|
||||
- forward
|
||||
@ -1,4 +1,4 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
@ -14,107 +14,53 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# I-JEPA
|
||||
|
||||
[I-JEPA](https://huggingface.co/papers/2301.08243) is a self-supervised learning method that learns semantic image representations by predicting parts of an image from other parts of the image. It compares the abstract representations of the image (rather than pixel level comparisons), which avoids the typical pitfalls of data augmentation bias and pixel-level details that don't capture semantic meaning.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find the original I-JEPA checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=ijepa) organization.
|
||||
> [!TIP]
|
||||
> This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
## Overview
|
||||
|
||||
The I-JEPA model was proposed in [Image-based Joint-Embedding Predictive Architecture](https://huggingface.co/papers/2301.08243) by Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas.
|
||||
I-JEPA is a self-supervised learning method that predicts the representations of one part of an image based on other parts of the same image. This approach focuses on learning semantic features without relying on pre-defined invariances from hand-crafted data transformations, which can bias specific tasks, or on filling in pixel-level details, which often leads to less meaningful representations.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image- based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample tar- get blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transform- ers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
|
||||
|
||||
> Click on the I-JEPA models in the right sidebar for more examples of how to apply I-JEPA to different image representation and classification tasks.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
The example below demonstrates how to extract image features with [`Pipeline`] or the [`AutoModel`] class.
|
||||
<small> I-JEPA architecture. Taken from the <a href="https://huggingface.co/papers/2301.08243">original paper.</a> </small>
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
The original code can be found [here](https://github.com/facebookresearch/ijepa).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
feature_extractor = pipeline(
|
||||
task="image-feature-extraction",
|
||||
model="facebook/ijepa_vith14_1k",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
features = feature_extractor("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", return_tensors=True)
|
||||
## How to use
|
||||
|
||||
print(f"Feature shape: {features.shape}")
|
||||
Here is how to use this model for image feature extraction:
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
```python
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.nn.functional import cosine_similarity
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vith14_1k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vith14_1k", torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
return outputs.last_hidden_state.mean(dim=1)
|
||||
|
||||
|
||||
embed_1 = infer(image_1)
|
||||
embed_2 = infer(image_2)
|
||||
|
||||
similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModel, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vitg16_22k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vitg16_22k", quantization_config=quantization_config, torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
model_id = "facebook/ijepa_vith14_1k"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModel.from_pretrained(model_id)
|
||||
|
||||
@torch.no_grad()
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
@ -128,6 +74,15 @@ similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with I-JEPA.
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
|
||||
- [`IJepaForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
|
||||
## IJepaConfig
|
||||
|
||||
[[autodoc]] IJepaConfig
|
||||
@ -140,5 +95,4 @@ print(similarity)
|
||||
## IJepaForImageClassification
|
||||
|
||||
[[autodoc]] IJepaForImageClassification
|
||||
- forward
|
||||
|
||||
- forward
|
||||
@ -10,31 +10,37 @@ specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
-->
|
||||
|
||||
# LightGlue
|
||||
|
||||
[LightGlue](https://arxiv.org/abs/2306.13643) is a deep neural network that learns to match local features across images. It revisits multiple design decisions of SuperGlue and derives simple but effective improvements. Cumulatively, these improvements make LightGlue more efficient - in terms of both memory and computation, more accurate, and much easier to train. Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching two sets of local features extracted from two images, with the goal of being faster than SuperGlue. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them.
|
||||
## Overview
|
||||
|
||||
You can find all the original LightGlue checkpoints under the [ETH-CVG](https://huggingface.co/ETH-CVG) organization.
|
||||
The LightGlue model was proposed in [LightGlue: Local Feature Matching at Light Speed](https://arxiv.org/abs/2306.13643)
|
||||
by Philipp Lindenberger, Paul-Edouard Sarlin and Marc Pollefeys.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the LightGlue models in the right sidebar for more examples of how to apply LightGlue to different computer vision tasks.
|
||||
Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching
|
||||
two sets of local features extracted from two images, its goal is to be faster than SuperGlue. Paired with the
|
||||
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
|
||||
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
*We introduce LightGlue, a deep neural network that learns to match local features across images. We revisit multiple
|
||||
design decisions of SuperGlue, the state of the art in sparse matching, and derive simple but effective improvements.
|
||||
Cumulatively, they make LightGlue more efficient - in terms of both memory and computation, more accurate, and much
|
||||
easier to train. One key property is that LightGlue is adaptive to the difficulty of the problem: the inference is much
|
||||
faster on image pairs that are intuitively easy to match, for example because of a larger visual overlap or limited
|
||||
appearance change. This opens up exciting prospects for deploying deep matchers in latency-sensitive applications like
|
||||
3D reconstruction. The code and trained models are publicly available at this [https URL](https://github.com/cvg/LightGlue)*
|
||||
|
||||
```py
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
|
||||
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
|
||||
matching scores.
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
@ -53,70 +59,31 @@ model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints and matches
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
You can use the `post_process_keypoint_matching` method from the `LightGlueImageProcessor` to get the keypoints and matches in a readable format:
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
```
|
||||
|
||||
## Notes
|
||||
You can visualize the matches between the images by providing the original images as well as the outputs to this method:
|
||||
```python
|
||||
processor.plot_keypoint_matching(images, outputs)
|
||||
```
|
||||
|
||||
- LightGlue is adaptive to the task difficulty. Inference is much faster on image pairs that are intuitively easy to match, for example, because of a larger visual overlap or limited appearance change.
|
||||

|
||||
|
||||
```py
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
|
||||
# LightGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
matches = outputs.matches # Matching indices
|
||||
matching_scores = outputs.matching_scores # Confidence scores
|
||||
```
|
||||
|
||||
- The model outputs matching indices, keypoints, and confidence scores for each match, similar to SuperGlue but with improved efficiency.
|
||||
- For better visualization and analysis, use the [`LightGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
|
||||
|
||||
```py
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- Visualize the matches between the images using the built-in plotting functionality.
|
||||
|
||||
```py
|
||||
# Easy visualization using the built-in plotting method
|
||||
processor.plot_keypoint_matching(images, processed_outputs)
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/duPp09ty8NRZlMZS18ccP.png">
|
||||
</div>
|
||||
|
||||
## Resources
|
||||
|
||||
- Refer to the [original LightGlue repository](https://github.com/cvg/LightGlue) for more examples and implementation details.
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/cvg/LightGlue).
|
||||
|
||||
## LightGlueConfig
|
||||
|
||||
@ -130,13 +97,8 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
- post_process_keypoint_matching
|
||||
- plot_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## LightGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] LightGlueForKeypointMatching
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
@ -77,12 +77,4 @@ The resource should ideally demonstrate something new instead of duplicating an
|
||||
- encode_inputs
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## Mask2FormerImageProcessorFast
|
||||
|
||||
[[autodoc]] Mask2FormerImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
@ -76,14 +76,6 @@ This model was contributed by [francesco](https://huggingface.co/francesco). The
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## MaskFormerImageProcessorFast
|
||||
|
||||
[[autodoc]] MaskFormerImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## MaskFormerFeatureExtractor
|
||||
|
||||
[[autodoc]] MaskFormerFeatureExtractor
|
||||
|
||||
@ -13,125 +13,116 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Mistral 3
|
||||
# Mistral3
|
||||
|
||||
[Mistral 3](https://mistral.ai/news/mistral-small-3) is a latency optimized model with a lot fewer layers to reduce the time per forward pass. This model adds vision understanding and supports long context lengths of up to 128K tokens without compromising performance.
|
||||
## Overview
|
||||
|
||||
You can find the original Mistral 3 checkpoints under the [Mistral AI](https://huggingface.co/mistralai/models?search=mistral-small-3) organization.
|
||||
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
|
||||
|
||||
It is ideal for:
|
||||
- Fast-response conversational agents.
|
||||
- Low-latency function calling.
|
||||
- Subject matter experts via fine-tuning.
|
||||
- Local inference for hobbyists and organizations handling sensitive data.
|
||||
- Programming and math reasoning.
|
||||
- Long document understanding.
|
||||
- Visual understanding.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez) and [yonigozlan](https://huggingface.co/yonigozlan).
|
||||
> Click on the Mistral3 models in the right sidebar for more examples of how to apply Mistral3 to different tasks.
|
||||
This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez) and [yonigozlan](https://huggingface.co/yonigozlan).
|
||||
|
||||
The example below demonstrates how to generate text for an image with [`Pipeline`] and the [`AutoModel`] class.
|
||||
The original code can be found [here](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/pixtral.py) and [here](https://github.com/mistralai/mistral-common).
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
## Usage example
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
### Inference with Pipeline
|
||||
|
||||
messages = [
|
||||
{"role": "user",
|
||||
"content":[
|
||||
{"type": "image",
|
||||
"image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",},
|
||||
{"type": "text", "text": "Describe this image."}
|
||||
,]
|
||||
,}
|
||||
,]
|
||||
Here is how you can use the `image-text-to-text` pipeline to perform inference with the `Mistral3` models in just a few lines of code:
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="mistralai/Mistral-Small-3.1-24B-Instruct-2503",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
outputs = pipeline(text=messages, max_new_tokens=50, return_full_text=False)
|
||||
>>> messages = [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {
|
||||
... "type": "image",
|
||||
... "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
|
||||
... },
|
||||
... {"type": "text", "text": "Describe this image."},
|
||||
... ],
|
||||
... },
|
||||
... ]
|
||||
|
||||
outputs[0]["generated_text"]
|
||||
>>> pipe = pipeline("image-text-to-text", model="mistralai/Mistral-Small-3.1-24B-Instruct-2503", torch_dtype=torch.bfloat16)
|
||||
>>> outputs = pipe(text=messages, max_new_tokens=50, return_full_text=False)
|
||||
>>> outputs[0]["generated_text"]
|
||||
'The image depicts a vibrant and lush garden scene featuring a variety of wildflowers and plants. The central focus is on a large, pinkish-purple flower, likely a Greater Celandine (Chelidonium majus), with a'
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
### Inference on a single image
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
This example demonstrates how to perform inference on a single image with the Mistral3 models using chat templates.
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_checkpoint,
|
||||
device_map=torch_device,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
>>> import torch
|
||||
|
||||
messages = [
|
||||
{"role": "user",
|
||||
"content":[
|
||||
{"type": "image",
|
||||
"image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",},
|
||||
{"type": "text", "text": "Describe this image."}
|
||||
,]
|
||||
,}
|
||||
,]
|
||||
>>> torch_device = "cuda"
|
||||
>>> model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True, return_dict=True,
|
||||
return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
>>> messages = [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||||
... {"type": "text", "text": "Describe this image"},
|
||||
... ],
|
||||
... }
|
||||
... ]
|
||||
|
||||
generate_ids = model.generate(**inputs, max_new_tokens=20)
|
||||
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
||||
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
|
||||
decoded_output
|
||||
'The image depicts a vibrant and lush garden scene featuring a variety of wildflowers and plants. The central focus is on a large, pinkish-purple flower, likely a Greater Celandine (Chelidonium majus), with a'
|
||||
>>> generate_ids = model.generate(**inputs, max_new_tokens=20)
|
||||
>>> decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
||||
|
||||
>>> decoded_output
|
||||
"The image depicts two cats lying on a pink blanket. The larger cat, which appears to be an"...
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
### Text-only generation
|
||||
This example shows how to generate text using the Mistral3 model without providing any image input.
|
||||
|
||||
- Mistral 3 supports text-only generation.
|
||||
```py
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
import torch
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = ".mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
|
||||
````python
|
||||
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
>>> import torch
|
||||
|
||||
SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
|
||||
user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."
|
||||
>>> torch_device = "cuda"
|
||||
>>> model_checkpoint = ".mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
|
||||
|
||||
messages = [
|
||||
{"role": "system", "content": SYSTEM_PROMPT},
|
||||
{"role": "user", "content": user_prompt},
|
||||
]
|
||||
>>> SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
|
||||
>>> user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."
|
||||
|
||||
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
inputs = processor(text=text, return_tensors="pt").to(0, dtype=torch.float16)
|
||||
generate_ids = model.generate(**inputs, max_new_tokens=50, do_sample=False)
|
||||
decoded_output = processor.batch_decode(generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True)[0]
|
||||
>>> messages = [
|
||||
... {"role": "system", "content": SYSTEM_PROMPT},
|
||||
... {"role": "user", "content": user_prompt},
|
||||
... ]
|
||||
|
||||
print(decoded_output)
|
||||
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
>>> inputs = processor(text=text, return_tensors="pt").to(0, dtype=torch.float16)
|
||||
>>> generate_ids = model.generate(**inputs, max_new_tokens=50, do_sample=False)
|
||||
>>> decoded_output = processor.batch_decode(generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True)[0]
|
||||
|
||||
>>> print(decoded_output)
|
||||
"1. À plus tard!
|
||||
2. Salut, à plus!
|
||||
3. À toute!
|
||||
4. À la prochaine!
|
||||
5. Je me casse, à plus!
|
||||
2. Salut, à plus!
|
||||
3. À toute!
|
||||
4. À la prochaine!
|
||||
5. Je me casse, à plus!
|
||||
|
||||
```
|
||||
/\_/\
|
||||
@ -140,93 +131,98 @@ print(decoded_output)
|
||||
```"
|
||||
````
|
||||
|
||||
- Mistral 3 accepts batched image and text inputs.
|
||||
```py
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
import torch
|
||||
### Batched image and text inputs
|
||||
Mistral3 models also support batched image and text inputs.
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
>>> import torch
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
||||
{"type": "text", "text": "Write a haiku for this image"},
|
||||
],
|
||||
},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
||||
{"type": "text", "text": "Describe this image"},
|
||||
],
|
||||
},
|
||||
],
|
||||
]
|
||||
>>> torch_device = "cuda"
|
||||
>>> model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
|
||||
|
||||
>>> messages = [
|
||||
... [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
||||
... {"type": "text", "text": "Write a haiku for this image"},
|
||||
... ],
|
||||
... },
|
||||
... ],
|
||||
... [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
||||
... {"type": "text", "text": "Describe this image"},
|
||||
... ],
|
||||
... },
|
||||
... ],
|
||||
... ]
|
||||
|
||||
|
||||
inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=25)
|
||||
>>> output = model.generate(**inputs, max_new_tokens=25)
|
||||
|
||||
decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
|
||||
decoded_outputs
|
||||
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
|
||||
>>> decoded_outputs
|
||||
["Write a haiku for this imageCalm waters reflect\nWhispers of the forest's breath\nPeace on wooden path"
|
||||
, "Describe this imageThe image depicts a vibrant street scene in what appears to be a Chinatown district. The focal point is a traditional Chinese"]
|
||||
```
|
||||
|
||||
- Mistral 3 also supported batched image and text inputs with a different number of images for each text. The example below quantizes the model with bitsandbytes.
|
||||
### Batched multi-image input and quantization with BitsAndBytes
|
||||
This implementation of the Mistral3 models supports batched text-images inputs with different number of images for each text.
|
||||
This example also how to use `BitsAndBytes` to load the model in 4bit quantization.
|
||||
|
||||
```py
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
|
||||
import torch
|
||||
```python
|
||||
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
|
||||
>>> import torch
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_checkpoint, quantization_config=quantization_config
|
||||
)
|
||||
>>> torch_device = "cuda"
|
||||
>>> model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
>>> quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
>>> model = AutoModelForImageTextToText.from_pretrained(
|
||||
... model_checkpoint, quantization_config=quantization_config
|
||||
... )
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
||||
{"type": "text", "text": "Write a haiku for this image"},
|
||||
],
|
||||
},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
|
||||
{"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
|
||||
{"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
||||
],
|
||||
},
|
||||
],
|
||||
]
|
||||
>>> messages = [
|
||||
... [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
|
||||
... {"type": "text", "text": "Write a haiku for this image"},
|
||||
... ],
|
||||
... },
|
||||
... ],
|
||||
... [
|
||||
... {
|
||||
... "role": "user",
|
||||
... "content": [
|
||||
... {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
|
||||
... {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
|
||||
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
||||
... ],
|
||||
... },
|
||||
... ],
|
||||
>>> ]
|
||||
|
||||
inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=25)
|
||||
>>> output = model.generate(**inputs, max_new_tokens=25)
|
||||
|
||||
decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
|
||||
decoded_outputs
|
||||
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
|
||||
>>> decoded_outputs
|
||||
["Write a haiku for this imageSure, here is a haiku inspired by the image:\n\nCalm lake's wooden path\nSilent forest stands guard\n", "These images depict two different landmarks. Can you identify them? Certainly! The images depict two iconic landmarks:\n\n1. The first image shows the Statue of Liberty in New York City."]
|
||||
```
|
||||
|
||||
|
||||
## Mistral3Config
|
||||
|
||||
[[autodoc]] Mistral3Config
|
||||
|
||||
@ -24,18 +24,14 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# ModernBERT Decoder
|
||||
|
||||
ModernBERT Decoder has the same architecture as [ModernBERT](https://huggingface.co/papers/2412.13663) but it is trained from scratch with a causal language modeling objective from the [Ettin paper](https://huggingface.co/papers/2507.11412). This allows for using the same architecture to compare encoders and decoders. This model is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.
|
||||
ModernBERT Decoder is the same architecture as [ModernBERT](https://huggingface.co/papers/2412.13663) but trained from scratch with a causal language modeling (CLM) objective. This allows for using the same architecture for comparing encoders and decoders. This is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.
|
||||
|
||||
ModernBERT Decoder uses sliding window attention and rotary positional embeddings for efficiency and to handle longer sequences.
|
||||
|
||||
You can find all the original ModernBERT Decoder checkpoints under the [jhu-clsp](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb) collection.
|
||||
Like the encoder version, ModernBERT Decoder incorporates modern architectural improvements such as rotary positional embeddings to support sequences of up to 8192 tokens, unpadding to avoid wasting compute on padding tokens, GeGLU layers, and alternating attention patterns. However, it uses causal (unidirectional) attention to enable autoregressive generation.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [orionw](https://huggingface.co/orionweller).
|
||||
>
|
||||
> Click on the ModernBERT Decoder models in the right sidebar for more examples of how to apply ModernBERT Decoder to different text generation tasks.
|
||||
|
||||
The example below demonstrates how to use ModernBERT Decoder for text generation with [`Pipeline`], [`AutoModel`] (with and without quantization), and from the command line.
|
||||
The example below demonstrates how to use ModernBERT Decoder for text generation with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
@ -46,7 +42,7 @@ from transformers import pipeline
|
||||
|
||||
generator = pipeline(
|
||||
task="text-generation",
|
||||
model="jhu-clsp/ettin-decoder-17m",
|
||||
model="blab-jhu/test-32m-dec",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
@ -55,7 +51,7 @@ generator("The future of artificial intelligence is", max_length=50, num_return_
|
||||
# For sequence classification
|
||||
classifier = pipeline(
|
||||
task="text-classification",
|
||||
model="jhu-clsp/ettin-decoder-17m",
|
||||
model="blab-jhu/test-32m-dec",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
@ -69,9 +65,9 @@ classifier("This movie is really great!")
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-17m")
|
||||
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-17m",
|
||||
"blab-jhu/test-32m-dec",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
@ -96,7 +92,7 @@ print(f"Generated text: {generated_text}")
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
||||
classifier_model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-17m",
|
||||
"blab-jhu/test-32m-dec",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
num_labels=2
|
||||
@ -115,53 +111,15 @@ print(f"Prediction probabilities: {predictions}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel (w/quantization)">
|
||||
|
||||
```
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_8bit=True,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-1b")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"jhu-clsp/ettin-decoder-1b",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
prompt = "The future of artificial intelligence is"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=50,
|
||||
num_return_sequences=1,
|
||||
temperature=0.7,
|
||||
do_sample=True,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
print(f"Generated text: {generated_text}")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo "The future of artificial intelligence is" | transformers run --task text-generation --model jhu-clsp/ettin-decoder-17m --device 0
|
||||
echo "The future of artificial intelligence is" | transformers run --task text-generation --model your-username/modernbert-decoder-base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
## ModernBertDecoderConfig
|
||||
|
||||
[[autodoc]] ModernBertDecoderConfig
|
||||
@ -184,5 +142,14 @@ echo "The future of artificial intelligence is" | transformers run --task text-g
|
||||
[[autodoc]] ModernBertDecoderForSequenceClassification
|
||||
- forward
|
||||
|
||||
### Usage tips
|
||||
|
||||
The ModernBertDecoder model can be fine-tuned for various text generation tasks using the HuggingFace Transformers library. It supports efficient inference with features like:
|
||||
|
||||
- **Causal attention**: Ensures autoregressive generation by masking future tokens
|
||||
- **Sliding window attention**: Alternates between local and global attention patterns for efficiency
|
||||
- **Rotary positional embeddings**: Enables handling of longer sequences up to 8000 tokens
|
||||
- **FlashAttention support**: Optimized attention computation for faster training and inference
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
@ -14,89 +14,27 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
# OLMoE
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# OLMoE
|
||||
## Overview
|
||||
|
||||
[OLMoE](https://huggingface.co/papers/2409.02060) is a sparse Mixture-of-Experts (MoE) language model with 7B parameters but only 1B parameters are used per input token. It has similar inference costs as dense models but trains ~3x faster. OLMoE uses fine-grained routing with 64 small experts in each layer and uses a dropless token-based routing algorithm.
|
||||
The OLMoE model was proposed in [OLMoE: Open Mixture-of-Experts Language Models](https://huggingface.co/papers/2409.02060) by Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, Hannaneh Hajishirzi.
|
||||
|
||||
You can find all the original OLMoE checkpoints under the [OLMoE](https://huggingface.co/collections/allenai/olmoe-november-2024-66cf678c047657a30c8cd3da) collection.
|
||||
OLMoE is a series of **O**pen **L**anguage **Mo**dels using sparse **M**ixture-**o**f-**E**xperts designed to enable the science of language models. We release all code, checkpoints, logs, and details involved in training these models.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
|
||||
>
|
||||
> Click on the OLMoE models in the right sidebar for more examples of how to apply OLMoE to different language tasks.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
*We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.*
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
|
||||
The original code can be found [here](https://github.com/allenai/OLMoE).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="allenai/OLMoE-1B-7B-0125",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
|
||||
result = pipe("Dionysus is the god of")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto").to(device)
|
||||
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
||||
|
||||
inputs = tokenizer("Bitcoin is", return_tensors="pt")
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
output = model.generate(**inputs, max_length=64)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## Quantization
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto", quantization_config=quantization_config).to(device)
|
||||
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
|
||||
|
||||
inputs = tokenizer("Bitcoin is", return_tensors="pt")
|
||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
||||
output = model.generate(**inputs, max_length=64)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## OlmoeConfig
|
||||
|
||||
|
||||
@ -38,7 +38,7 @@ This model was contributed by [Jitesh Jain](https://huggingface.co/praeclarumjj3
|
||||
|
||||
## Usage tips
|
||||
|
||||
- OneFormer requires two inputs during inference: *image* and *task token*.
|
||||
- OneFormer requires two inputs during inference: *image* and *task token*.
|
||||
- During training, OneFormer only uses panoptic annotations.
|
||||
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
|
||||
`get_num_masks` function inside in the `OneFormerLoss` class of `modeling_oneformer.py`. When training on multiple nodes, this should be
|
||||
@ -69,14 +69,7 @@ The resource should ideally demonstrate something new instead of duplicating an
|
||||
|
||||
[[autodoc]] OneFormerImageProcessor
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## OneFormerImageProcessorFast
|
||||
|
||||
[[autodoc]] OneFormerImageProcessorFast
|
||||
- preprocess
|
||||
- encode_inputs
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
@ -94,3 +87,4 @@ The resource should ideally demonstrate something new instead of duplicating an
|
||||
|
||||
[[autodoc]] OneFormerForUniversalSegmentation
|
||||
- forward
|
||||
|
||||
@ -1,101 +1,194 @@
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# OPT
|
||||
|
||||
[OPT](https://huggingface.co/papers/2205.01068) is a suite of open-source decoder-only pre-trained transformers whose parameters range from 125M to 175B. OPT models are designed for casual language modeling and aim to enable responsible and reproducible research at scale. OPT-175B is comparable in performance to GPT-3 with only 1/7th the carbon footprint.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original OPT checkpoints under the [OPT](https://huggingface.co/collections/facebook/opt-66ed00e15599f02966818844) collection.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ), [ybelkada](https://huggingface.co/ybelkada), and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
|
||||
>
|
||||
> Click on the OPT models in the right sidebar for more examples of how to apply OPT to different language tasks.
|
||||
The OPT model was proposed in [Open Pre-trained Transformer Language Models](https://huggingface.co/papers/2205.01068) by Meta AI.
|
||||
OPT is a series of open-sourced large causal language models which perform similar in performance to GPT3.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models.*
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), and [Patrick Von Platen](https://huggingface.co/patrickvonplaten).
|
||||
The original code can be found [here](https://github.com/facebookresearch/metaseq).
|
||||
|
||||
pipeline = pipeline(task="text-generation", model="facebook/opt-125m", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Once upon a time, in a land far, far away,", max_length=50, num_return_sequences=1)
|
||||
```
|
||||
Tips:
|
||||
- OPT has the same architecture as [`BartDecoder`].
|
||||
- Contrary to GPT2, OPT adds the EOS token `</s>` to the beginning of every prompt.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
device = "cuda"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16, attn_implementation="sdpa")
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
prompt = ("Once upon a time, in a land far, far away, ")
|
||||
|
||||
model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||||
model.to(device)
|
||||
|
||||
generated_ids = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
|
||||
tokenizer.batch_decode(generated_ids)[0]
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```py
|
||||
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model facebook/opt-125m --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](..quantization/bitsandbytes) to quantize the weights to 8-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
device = "cuda"
|
||||
|
||||
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16, attn_implementation="sdpa", quantization_config=bnb_config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-13b")
|
||||
|
||||
prompt = ("Once upon a time, in a land far, far away, ")
|
||||
|
||||
model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||||
model.to(device)
|
||||
|
||||
generated_ids = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
|
||||
tokenizer.batch_decode(generated_ids)[0]
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- OPT adds an `EOS` token `</s>` to the beginning of every prompt.
|
||||
|
||||
- The `head_mask` argument is ignored if the attention implementation isn't `"eager"`. Set `attn_implementation="eager"` to enable the `head_mask`.
|
||||
> [!NOTE]
|
||||
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
|
||||
## Resources
|
||||
|
||||
- Refer to this [notebook](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing) for an example of fine-tuning OPT with PEFT, bitsandbytes, and Transformers.
|
||||
- The [How 🤗 Accelerate runs very large models thanks to PyTorch](https://huggingface.co/blog/accelerate-large-models) blog post demonstrates how to run OPT for inference.
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OPT. If you're
|
||||
interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it.
|
||||
The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
<PipelineTag pipeline="text-generation" />
|
||||
|
||||
- A notebook on [fine-tuning OPT with PEFT, bitsandbytes, and Transformers](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing). 🌎
|
||||
- A blog post on [decoding strategies with OPT](https://huggingface.co/blog/introducing-csearch#62-example-two---opt).
|
||||
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
|
||||
- [`OPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFOPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxOPTForCausalLM`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling).
|
||||
|
||||
<PipelineTag pipeline="text-classification" />
|
||||
|
||||
- [Text classification task guide](sequence_classification.md)
|
||||
- [`OPTForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
|
||||
|
||||
<PipelineTag pipeline="question-answering" />
|
||||
|
||||
- [`OPTForQuestionAnswering`] is supported by this [question answering example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
|
||||
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter
|
||||
of the 🤗 Hugging Face Course.
|
||||
|
||||
⚡️ Inference
|
||||
|
||||
- A blog post on [How 🤗 Accelerate runs very large models thanks to PyTorch](https://huggingface.co/blog/accelerate-large-models) with OPT.
|
||||
|
||||
|
||||
## Combining OPT and Flash Attention 2
|
||||
|
||||
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
|
||||
|
||||
```bash
|
||||
pip install -U flash-attn --no-build-isolation
|
||||
```
|
||||
|
||||
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``)
|
||||
|
||||
To load and run a model using Flash Attention 2, refer to the snippet below:
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import OPTForCausalLM, GPT2Tokenizer
|
||||
>>> device = "cuda" # the device to load the model onto
|
||||
|
||||
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
>>> prompt = ("A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
|
||||
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
|
||||
"there?")
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||||
>>> model.to(device)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
'</s>A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived there?\nStatue: I have lived here for about a year.\nHuman: What is your favorite place to eat?\nStatue: I love'
|
||||
```
|
||||
|
||||
### Expected speedups
|
||||
|
||||
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `facebook/opt-2.7b` checkpoint and the Flash Attention 2 version of the model using two different sequence lengths.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://user-images.githubusercontent.com/49240599/281101546-d2fca6d2-ee44-48f3-9534-ba8d5bee4531.png">
|
||||
</div>
|
||||
|
||||
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `facebook/opt-350m` checkpoint and the Flash Attention 2 version of the model using two different sequence lengths.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://user-images.githubusercontent.com/49240599/281101682-d1144e90-0dbc-46f4-8fc8-c6206cb793c9.png">
|
||||
</div>
|
||||
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```python
|
||||
from transformers import OPTForCausalLM
|
||||
model = OPTForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16, attn_implementation="sdpa")
|
||||
...
|
||||
```
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
|
||||
On a local benchmark (L40S-45GB, PyTorch 2.4.0, OS Debian GNU/Linux 11) using `float16` with
|
||||
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m), we saw the
|
||||
following speedups during training and inference.
|
||||
|
||||
### Training
|
||||
|
||||
| batch_size | seq_len | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|
||||
|--------------:|-----------:|:------------------------------|-----------------------------:|:---------------|:-----------------------|----------------------:|:------------------|
|
||||
| 1 | 128 | 0.047 | 0.037 | 26.360 | 1474.611 | 1474.32 | 0.019 |
|
||||
| 1 | 256 | 0.046 | 0.037 | 24.335 | 1498.541 | 1499.49 | -0.063 |
|
||||
| 1 | 512 | 0.046 | 0.037 | 24.959 | 1973.544 | 1551.35 | 27.215 |
|
||||
| 1 | 1024 | 0.062 | 0.038 | 65.135 | 4867.113 | 1698.35 | 186.578 |
|
||||
| 1 | 2048 | 0.230 | 0.039 | 483.933 | 15662.224 | 2715.75 | 476.718 |
|
||||
| 2 | 128 | 0.045 | 0.037 | 20.455 | 1498.164 | 1499.49 | -0.089 |
|
||||
| 2 | 256 | 0.046 | 0.037 | 24.027 | 1569.367 | 1551.35 | 1.161 |
|
||||
| 2 | 512 | 0.045 | 0.037 | 20.965 | 3257.074 | 1698.35 | 91.778 |
|
||||
| 2 | 1024 | 0.122 | 0.038 | 225.958 | 9054.405 | 2715.75 | 233.403 |
|
||||
| 2 | 2048 | 0.464 | 0.067 | 593.646 | 30572.058 | 4750.55 | 543.548 |
|
||||
| 4 | 128 | 0.045 | 0.037 | 21.918 | 1549.448 | 1551.35 | -0.123 |
|
||||
| 4 | 256 | 0.044 | 0.038 | 18.084 | 2451.768 | 1698.35 | 44.361 |
|
||||
| 4 | 512 | 0.069 | 0.037 | 84.421 | 5833.180 | 2715.75 | 114.791 |
|
||||
| 4 | 1024 | 0.262 | 0.062 | 319.475 | 17427.842 | 4750.55 | 266.860 |
|
||||
| 4 | 2048 | OOM | 0.062 | Eager OOM | OOM | 4750.55 | Eager OOM |
|
||||
| 8 | 128 | 0.044 | 0.037 | 18.436 | 2049.115 | 1697.78 | 20.694 |
|
||||
| 8 | 256 | 0.048 | 0.036 | 32.887 | 4222.567 | 2715.75 | 55.484 |
|
||||
| 8 | 512 | 0.153 | 0.06 | 154.862 | 10985.391 | 4750.55 | 131.245 |
|
||||
| 8 | 1024 | 0.526 | 0.122 | 330.697 | 34175.763 | 8821.18 | 287.428 |
|
||||
| 8 | 2048 | OOM | 0.122 | Eager OOM | OOM | 8821.18 | Eager OOM |
|
||||
|
||||
### Inference
|
||||
|
||||
| batch_size | seq_len | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|
||||
|--------------:|-----------:|--------------------------------:|-------------------------------:|---------------:|------------------:|---------------:|-----------------:|
|
||||
| 1 | 128 | 11.634 | 8.647 | 34.546 | 717.676 | 717.674 | 0 |
|
||||
| 1 | 256 | 11.593 | 8.86 | 30.851 | 742.852 | 742.845 | 0.001 |
|
||||
| 1 | 512 | 11.515 | 8.816 | 30.614 | 798.232 | 799.593 | -0.17 |
|
||||
| 1 | 1024 | 11.556 | 8.915 | 29.628 | 917.265 | 895.538 | 2.426 |
|
||||
| 2 | 128 | 12.724 | 11.002 | 15.659 | 762.434 | 762.431 | 0 |
|
||||
| 2 | 256 | 12.704 | 11.063 | 14.83 | 816.809 | 816.733 | 0.009 |
|
||||
| 2 | 512 | 12.757 | 10.947 | 16.535 | 917.383 | 918.339 | -0.104 |
|
||||
| 2 | 1024 | 13.018 | 11.018 | 18.147 | 1162.65 | 1114.81 | 4.291 |
|
||||
| 4 | 128 | 12.739 | 10.959 | 16.243 | 856.335 | 856.483 | -0.017 |
|
||||
| 4 | 256 | 12.718 | 10.837 | 17.355 | 957.298 | 957.674 | -0.039 |
|
||||
| 4 | 512 | 12.813 | 10.822 | 18.393 | 1158.44 | 1158.45 | -0.001 |
|
||||
| 4 | 1024 | 13.416 | 11.06 | 21.301 | 1653.42 | 1557.19 | 6.18 |
|
||||
| 8 | 128 | 12.763 | 10.891 | 17.193 | 1036.13 | 1036.51 | -0.036 |
|
||||
| 8 | 256 | 12.89 | 11.104 | 16.085 | 1236.98 | 1236.87 | 0.01 |
|
||||
| 8 | 512 | 13.327 | 10.939 | 21.836 | 1642.29 | 1641.78 | 0.031 |
|
||||
| 8 | 1024 | 15.181 | 11.175 | 35.848 | 2634.98 | 2443.35 | 7.843 |
|
||||
|
||||
## OPTConfig
|
||||
|
||||
|
||||
@ -106,13 +106,6 @@ Usage of OWLv2 is identical to [OWL-ViT](owlvit) with a new, updated image proce
|
||||
- post_process_object_detection
|
||||
- post_process_image_guided_detection
|
||||
|
||||
## Owlv2ImageProcessorFast
|
||||
|
||||
[[autodoc]] Owlv2ImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_object_detection
|
||||
- post_process_image_guided_detection
|
||||
|
||||
## Owlv2Processor
|
||||
|
||||
[[autodoc]] Owlv2Processor
|
||||
|
||||
@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
SAM (Segment Anything Model) was proposed in [Segment Anything](https://huggingface.co/papers/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
|
||||
|
||||
The model can be used to predict segmentation masks of any object of interest given an input image.
|
||||
The model can be used to predict segmentation masks of any object of interest given an input image.
|
||||
|
||||

|
||||
|
||||
@ -37,9 +37,9 @@ Tips:
|
||||
|
||||
- The model predicts binary masks that states the presence or not of the object of interest given an image.
|
||||
- The model predicts much better results if input 2D points and/or input bounding boxes are provided
|
||||
- You can prompt multiple points for the same image, and predict a single mask.
|
||||
- You can prompt multiple points for the same image, and predict a single mask.
|
||||
- Fine-tuning the model is not supported yet
|
||||
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
|
||||
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
|
||||
|
||||
|
||||
This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
@ -149,11 +149,6 @@ alt="drawing" width="900"/>
|
||||
[[autodoc]] SamImageProcessor
|
||||
|
||||
|
||||
## SamImageProcessorFast
|
||||
|
||||
[[autodoc]] SamImageProcessorFast
|
||||
|
||||
|
||||
## SamVisionModel
|
||||
|
||||
[[autodoc]] SamVisionModel
|
||||
|
||||
@ -128,12 +128,6 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## SegformerImageProcessorFast
|
||||
|
||||
[[autodoc]] SegformerImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
@ -181,4 +175,4 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
- call
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
</frameworkcontent>
|
||||
@ -10,31 +10,40 @@ specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
-->
|
||||
|
||||
# SuperGlue
|
||||
|
||||
[SuperGlue](https://huggingface.co/papers/1911.11763) is a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs are predicted by a graph neural network. SuperGlue introduces a flexible context aggregation mechanism based on attention, enabling it to reason about the underlying 3D scene and feature assignments jointly. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original SuperGlue checkpoints under the [Magic Leap Community](https://huggingface.co/magic-leap-community) organization.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
>
|
||||
> Click on the SuperGlue models in the right sidebar for more examples of how to apply SuperGlue to different computer vision tasks.
|
||||
The SuperGlue model was proposed in [SuperGlue: Learning Feature Matching with Graph Neural Networks](https://huggingface.co/papers/1911.11763) by Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
|
||||
|
||||
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
|
||||
This model consists of matching two sets of interest points detected in an image. Paired with the
|
||||
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
|
||||
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
```py
|
||||
*This paper introduces SuperGlue, a neural network that matches two sets of local features by jointly finding correspondences
|
||||
and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs
|
||||
are predicted by a graph neural network. We introduce a flexible context aggregation mechanism based on attention, enabling
|
||||
SuperGlue to reason about the underlying 3D scene and feature assignments jointly. Compared to traditional, hand-designed heuristics,
|
||||
our technique learns priors over geometric transformations and regularities of the 3D world through end-to-end training from image
|
||||
pairs. SuperGlue outperforms other learned approaches and achieves state-of-the-art results on the task of pose estimation in
|
||||
challenging real-world indoor and outdoor environments. The proposed method performs matching in real-time on a modern GPU and
|
||||
can be readily integrated into modern SfM or SLAM systems. The code and trained weights are publicly available at this [URL](https://github.com/magicleap/SuperGluePretrainedNetwork).*
|
||||
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
|
||||
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
|
||||
matching scores.
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
@ -43,7 +52,7 @@ import requests
|
||||
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
|
||||
image1 = Image.open(requests.get(url_image1, stream=True).raw)
|
||||
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
|
||||
image2 = Image.open(requests.get(url_image2, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_image2, stream=True).raw)
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
@ -53,97 +62,67 @@ model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Post-process to get keypoints and matches
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
You can use the `post_process_keypoint_matching` method from the `SuperGlueImageProcessor` to get the keypoints and matches in a more readable format:
|
||||
|
||||
## Notes
|
||||
|
||||
- SuperGlue performs feature matching between two images simultaneously, requiring pairs of images as input.
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
|
||||
|
||||
# SuperGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
matches = outputs.matches # Matching indices
|
||||
matching_scores = outputs.matching_scores # Confidence scores
|
||||
```
|
||||
|
||||
- The model outputs matching indices, keypoints, and confidence scores for each match.
|
||||
- For better visualization and analysis, use the [`SuperGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
|
||||
|
||||
```py
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- The example below demonstrates how to visualize matches between two images.
|
||||
|
||||
```py
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# Create side by side image
|
||||
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
|
||||
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
|
||||
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
|
||||
plt.imshow(merged_image)
|
||||
plt.axis("off")
|
||||
|
||||
# Retrieve the keypoints and matches
|
||||
output = processed_outputs[0]
|
||||
keypoints0 = output["keypoints0"]
|
||||
keypoints1 = output["keypoints1"]
|
||||
matching_scores = output["matching_scores"]
|
||||
|
||||
# Plot the matches
|
||||
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
|
||||
plt.plot(
|
||||
[keypoint0[0], keypoint1[0] + image1.width],
|
||||
[keypoint0[1], keypoint1[1]],
|
||||
color=plt.get_cmap("RdYlGn")(matching_score.item()),
|
||||
alpha=0.9,
|
||||
linewidth=0.5,
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
|
||||
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
|
||||
|
||||
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
|
||||
```
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/01ZYaLB1NL5XdA8u7yCo4.png">
|
||||
</div>
|
||||
From the outputs, you can visualize the matches between the two images using the following code:
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
## Resources
|
||||
# Create side by side image
|
||||
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
|
||||
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
|
||||
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
|
||||
plt.imshow(merged_image)
|
||||
plt.axis("off")
|
||||
|
||||
- Refer to the [original SuperGlue repository](https://github.com/magicleap/SuperGluePretrainedNetwork) for more examples and implementation details.
|
||||
# Retrieve the keypoints and matches
|
||||
output = outputs[0]
|
||||
keypoints0 = output["keypoints0"]
|
||||
keypoints1 = output["keypoints1"]
|
||||
matching_scores = output["matching_scores"]
|
||||
keypoints0_x, keypoints0_y = keypoints0[:, 0].numpy(), keypoints0[:, 1].numpy()
|
||||
keypoints1_x, keypoints1_y = keypoints1[:, 0].numpy(), keypoints1[:, 1].numpy()
|
||||
|
||||
# Plot the matches
|
||||
for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip(
|
||||
keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, matching_scores
|
||||
):
|
||||
plt.plot(
|
||||
[keypoint0_x, keypoint1_x + image1.width],
|
||||
[keypoint0_y, keypoint1_y],
|
||||
color=plt.get_cmap("RdYlGn")(matching_score.item()),
|
||||
alpha=0.9,
|
||||
linewidth=0.5,
|
||||
)
|
||||
plt.scatter(keypoint0_x, keypoint0_y, c="black", s=2)
|
||||
plt.scatter(keypoint1_x + image1.width, keypoint1_y, c="black", s=2)
|
||||
|
||||
# Save the plot
|
||||
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
|
||||
plt.close()
|
||||
```
|
||||
|
||||

|
||||
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/magicleap/SuperGluePretrainedNetwork).
|
||||
|
||||
## SuperGlueConfig
|
||||
|
||||
@ -154,15 +133,10 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
[[autodoc]] SuperGlueImageProcessor
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
## SuperGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] SuperGlueForKeypointMatching
|
||||
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
- post_process_keypoint_matching
|
||||
@ -130,11 +130,6 @@ processed_outputs = processor.post_process_keypoint_detection(outputs, [image_si
|
||||
|
||||
[[autodoc]] SuperPointImageProcessor
|
||||
|
||||
- preprocess
|
||||
|
||||
## SuperPointImageProcessorFast
|
||||
|
||||
[[autodoc]] SuperPointImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_keypoint_detection
|
||||
|
||||
|
||||
@ -37,7 +37,6 @@ The original code can be found [here](https://github.com/google-research/timesfm
|
||||
To use the model:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import TimesFmModelForPrediction
|
||||
|
||||
|
||||
@ -1,351 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Voxtral
|
||||
|
||||
Voxtral is an upgrade of [Ministral 3B and Mistral Small 3B](https://mistral.ai/news/ministraux), extending its language capabilities with audio input support. It is designed to handle tasks such as speech transcription, translation, and audio understanding.
|
||||
|
||||
You can read more in Mistral's [realease blog post](https://mistral.ai/news/voxtral).
|
||||
|
||||
The model is available in two checkpoints:
|
||||
- 3B: [mistralai/Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507)
|
||||
- 24B: [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507)
|
||||
|
||||
## Key Features
|
||||
|
||||
Voxtral builds on Ministral-3B by adding audio processing capabilities:
|
||||
|
||||
- **Transcription mode**: Includes a dedicated mode for speech transcription. By default, Voxtral detects the spoken language and transcribes it accordingly.
|
||||
- **Long-form context**: With a 32k token context window, Voxtral can process up to 30 minutes of audio for transcription or 40 minutes for broader audio understanding.
|
||||
- **Integrated Q&A and summarization**: Supports querying audio directly and producing structured summaries without relying on separate ASR and language models.
|
||||
- **Multilingual support**: Automatically detects language and performs well across several widely spoken languages, including English, Spanish, French, Portuguese, Hindi, German, Dutch, and Italian.
|
||||
- **Function calling via voice**: Can trigger functions or workflows directly from spoken input based on detected user intent.
|
||||
- **Text capabilities**: Maintains the strong text processing performance of its Ministral-3B foundation.
|
||||
|
||||
## Usage
|
||||
|
||||
### Audio Instruct Mode
|
||||
|
||||
The model supports audio-text instructions, including multi-turn and multi-audio interactions, all processed in batches.
|
||||
|
||||
➡️ audio + text instruction
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"url": "https://huggingface.co/datasets/eustlb/audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
{"type": "text", "text": "What can you tell me about this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ multi-audio + text instruction
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ multi-turn:
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
||||
},
|
||||
{"type": "text", "text": "Describe briefly what you can hear."},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
{"type": "text", "text": "Ok, now compare this new audio with the previous one."},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ text only:
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What if a cyber brain could possibly generate its own ghost, and create a soul all by itself?",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ audio only:
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversation)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated response:")
|
||||
print("=" * 80)
|
||||
print(decoded_outputs[0])
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
➡️ batched inference!
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
conversations = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
|
||||
},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Who's speaking in the speach and what city's weather is being discussed?",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
||||
},
|
||||
{"type": "text", "text": "What can you tell me about this audio?"},
|
||||
],
|
||||
}
|
||||
],
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(conversations)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated responses:")
|
||||
print("=" * 80)
|
||||
for decoded_output in decoded_outputs:
|
||||
print(decoded_output)
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
### Transcription Mode
|
||||
|
||||
Use the model to transcribe audio (supports English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)!
|
||||
|
||||
```python
|
||||
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
||||
import torch
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(repo_id)
|
||||
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
|
||||
|
||||
inputs = processor.apply_transcription_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3", model_id=repo_id)
|
||||
inputs = inputs.to(device, dtype=torch.bfloat16)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
|
||||
print("\nGenerated responses:")
|
||||
print("=" * 80)
|
||||
for decoded_output in decoded_outputs:
|
||||
print(decoded_output)
|
||||
print("=" * 80)
|
||||
```
|
||||
|
||||
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
|
||||
|
||||
## VoxtralConfig
|
||||
|
||||
[[autodoc]] VoxtralConfig
|
||||
|
||||
## VoxtralEncoderConfig
|
||||
|
||||
[[autodoc]] VoxtralEncoderConfig
|
||||
|
||||
## VoxtralProcessor
|
||||
|
||||
[[autodoc]] VoxtralProcessor
|
||||
|
||||
## VoxtralEncoder
|
||||
|
||||
[[autodoc]] VoxtralEncoder
|
||||
- forward
|
||||
|
||||
## VoxtralForConditionalGeneration
|
||||
|
||||
[[autodoc]] VoxtralForConditionalGeneration
|
||||
- forward
|
||||
@ -1,47 +0,0 @@
|
||||
<!--Copyright 2025 NXAI GmbH. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
|
||||
# xLSTM
|
||||
|
||||
## Overview
|
||||
|
||||
The xLSTM model was proposed in [xLSTM: Extended Long Short-Term Memory](https://openreview.net/forum?id=ARAxPPIAhq) by Maximilian Beck*, Korbinian Pöppel*, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter and Sepp Hochreiter.
|
||||
xLSTM updates the original LSTM architecture to be competitive with Transformer models by introducing exponential gating, matrix memory expansion, and parallelizable training and ingestion.
|
||||
|
||||
The [7B model](https://hf.co/NX-AI/xLSTM-7b) variant was trained by the xLSTM team Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick Blies, Sebastian Böck and Sepp Hochreiter at NXAI.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*In the 1990s, the constant error carousel and gating were introduced as the central ideas of the Long Short-Term Memory (LSTM). Since then, LSTMs have stood the test of time and contributed to numerous deep learning success stories, in particular they constituted the first Large Language Models (LLMs). However, the advent of the Transformer technology with parallelizable self-attention at its core marked the dawn of a new era, outpacing LSTMs at scale. We now raise a simple question: How far do we get in language modeling when scaling LSTMs to billions of parameters, leveraging the latest techniques from modern LLMs, but mitigating known limitations of LSTMs? Firstly, we introduce exponential gating with appropriate normalization and stabilization techniques. Secondly, we modify the LSTM memory structure, obtaining: (i) sLSTM with a scalar memory, a scalar update, and new memory mixing, (ii) mLSTM that is fully parallelizable with a matrix memory and a covariance update rule. Integrating these LSTM extensions into residual block backbones yields xLSTM blocks that are then residually stacked into xLSTM architectures. Exponential gating and modified memory structures boost xLSTM capabilities to perform favorably when compared to state-of-the-art Transformers and State Space Models, both in performance and scaling.*
|
||||
|
||||
This model was contributed by [NX-AI](https://huggingface.co/NX-AI).
|
||||
The original code can be found [here](https://github.com/NX-AI/xlstm).
|
||||
|
||||
|
||||
## xLSTMConfig
|
||||
|
||||
[[autodoc]] xLSTMConfig
|
||||
|
||||
## xLSTMModel
|
||||
|
||||
[[autodoc]] xLSTMModel
|
||||
- forward
|
||||
|
||||
## xLSTMLMHeadModel
|
||||
|
||||
[[autodoc]] xLSTMForCausalLM
|
||||
- forward
|
||||
@ -13,95 +13,76 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# YOLOS
|
||||
|
||||
[YOLOS](https://huggingface.co/papers/2106.00666) uses a [Vision Transformer (ViT)](./vit) for object detection with minimal modifications and region priors. It can achieve performance comparable to specialized object detection models and frameworks with knowledge about 2D spatial structures.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
You can find all the original YOLOS checkpoints under the [HUST Vision Lab](https://huggingface.co/hustvl/models?search=yolos) organization.
|
||||
The YOLOS model was proposed in [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://huggingface.co/papers/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
|
||||
YOLOS proposes to just leverage the plain [Vision Transformer (ViT)](vit) for object detection, inspired by DETR. It turns out that a base-sized encoder-only Transformer can also achieve 42 AP on COCO, similar to DETR and much more complex frameworks such as Faster R-CNN.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yolos_architecture.png" alt="drawing" width="600"/>
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Can Transformer perform 2D object- and region-level recognition from a pure sequence-to-sequence perspective with minimal knowledge about the 2D spatial structure? To answer this question, we present You Only Look at One Sequence (YOLOS), a series of object detection models based on the vanilla Vision Transformer with the fewest possible modifications, region priors, as well as inductive biases of the target task. We find that YOLOS pre-trained on the mid-sized ImageNet-1k dataset only can already achieve quite competitive performance on the challenging COCO object detection benchmark, e.g., YOLOS-Base directly adopted from BERT-Base architecture can obtain 42.0 box AP on COCO val. We also discuss the impacts as well as limitations of current pre-train schemes and model scaling strategies for Transformer in vision through YOLOS.*
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yolos_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> YOLOS architecture. Taken from the <a href="https://huggingface.co/papers/2106.00666">original paper</a>.</small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/hustvl/YOLOS).
|
||||
|
||||
> [!TIP]
|
||||
> This model wasa contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
> Click on the YOLOS models in the right sidebar for more examples of how to apply YOLOS to different object detection tasks.
|
||||
## Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
The example below demonstrates how to detect objects with [`Pipeline`] or the [`AutoModel`] class.
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
detector = pipeline(
|
||||
task="object-detection",
|
||||
model="hustvl/yolos-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
||||
```
|
||||
from transformers import AutoModelForObjectDetection
|
||||
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", attn_implementation="sdpa", torch_dtype=torch.float16)
|
||||
...
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Automodel">
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
||||
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `hustvl/yolos-base` model, we saw the following speedups during inference.
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base")
|
||||
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", torch_dtype=torch.float16, attn_implementation="sdpa").to("cuda")
|
||||
|
||||
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
|
||||
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
||||
inputs = processor(images=image, return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits.softmax(-1)
|
||||
scores, labels = logits[..., :-1].max(-1)
|
||||
boxes = outputs.pred_boxes
|
||||
|
||||
threshold = 0.3
|
||||
keep = scores[0] > threshold
|
||||
|
||||
filtered_scores = scores[0][keep]
|
||||
filtered_labels = labels[0][keep]
|
||||
filtered_boxes = boxes[0][keep]
|
||||
|
||||
width, height = image.size
|
||||
pixel_boxes = filtered_boxes * torch.tensor([width, height, width, height], device=boxes.device)
|
||||
|
||||
for score, label, box in zip(filtered_scores, filtered_labels, pixel_boxes):
|
||||
x0, y0, x1, y1 = box.tolist()
|
||||
print(f"Label {model.config.id2label[label.item()]}: {score:.2f} at [{x0:.0f}, {y0:.0f}, {x1:.0f}, {y1:.0f}]")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
## Notes
|
||||
- Use [`YolosImageProcessor`] for preparing images (and optional targets) for the model. Contrary to [DETR](./detr), YOLOS doesn't require a `pixel_mask`.
|
||||
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|
||||
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
|
||||
| 1 | 106 | 76 | 1.39 |
|
||||
| 2 | 154 | 90 | 1.71 |
|
||||
| 4 | 222 | 116 | 1.91 |
|
||||
| 8 | 368 | 168 | 2.19 |
|
||||
|
||||
## Resources
|
||||
|
||||
- Refer to these [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/YOLOS) for inference and fine-tuning with [`YolosForObjectDetection`] on a custom dataset.
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with YOLOS.
|
||||
|
||||
<PipelineTag pipeline="object-detection"/>
|
||||
|
||||
- All example notebooks illustrating inference + fine-tuning [`YolosForObjectDetection`] on a custom dataset can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/YOLOS).
|
||||
- Scripts for finetuning [`YolosForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
|
||||
- See also: [Object detection task guide](../tasks/object_detection)
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
<Tip>
|
||||
|
||||
Use [`YolosImageProcessor`] for preparing images (and optional targets) for the model. Contrary to [DETR](detr), YOLOS doesn't require a `pixel_mask` to be created.
|
||||
|
||||
</Tip>
|
||||
|
||||
## YolosConfig
|
||||
|
||||
|
||||
@ -28,7 +28,7 @@ To share a model to the Hub, you need a Hugging Face [account](https://hf.co/joi
|
||||
<hfoption id="huggingface-CLI">
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
@ -94,7 +94,7 @@ ValueError: You defined `RobertaEmbeddings` in the modular_roberta.py, it should
|
||||
|
||||
## Implementing a modular file
|
||||
|
||||
The easiest way to start is by browsing Transformers for a model similar to yours in order to inherit from it. Some good starting points are [Mistral](./model_doc/mistral), [Qwen2](./model_doc/qwen2), [Cohere](./model_doc/cohere) and [Cohere2](./model_doc/cohere2), and [Llama](./model_doc/llama). Refer to the table below for components your model might be using and where you can inherit from.
|
||||
The easiest way to start is by browsing Transformers for a model similar to yours in order to inherit from it. Some good starting points are [Mistral](./model_doc/mistral), [Qwen2](./model_doc/qwen2), [Cohere](./model_doc/cohere) and [Cohere](./model_doc/cohere2), and [Llama](./model_doc/llama). Refer to the table below for components your model might be using and where you can inherit from.
|
||||
|
||||
| Component | Model |
|
||||
|---|---|
|
||||
|
||||
@ -164,7 +164,7 @@ args = TrainingArguments(
|
||||
output_dir="./test-schedulefree",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
+ optim="schedule_free_radamw",
|
||||
+ optim="schedule_free_radamw,
|
||||
+ lr_scheduler_type="constant",
|
||||
gradient_checkpointing=True,
|
||||
logging_strategy="steps",
|
||||
@ -174,29 +174,3 @@ args = TrainingArguments(
|
||||
run_name="sfo",
|
||||
)
|
||||
```
|
||||
|
||||
## StableAdamW
|
||||
|
||||
```bash
|
||||
pip install torch-optimi
|
||||
```
|
||||
|
||||
[StableAdamW](https://arxiv.org/pdf/2304.13013) is a hybrid between AdamW and AdaFactor. It ports AdaFactor's update clipping into AdamW, which removes the need for gradient clipping. Otherwise, it behaves as a drop-in replacement for AdamW.
|
||||
|
||||
> [!TIP]
|
||||
> If training on large batch sizes or still observing training loss spikes, consider reducing beta_2 between [0.95, 0.99].
|
||||
|
||||
```diff
|
||||
args = TrainingArguments(
|
||||
output_dir="./test-stable-adamw",
|
||||
max_steps=1000,
|
||||
per_device_train_batch_size=4,
|
||||
+ optim="stable_adamw",
|
||||
gradient_checkpointing=True,
|
||||
logging_strategy="steps",
|
||||
logging_steps=1,
|
||||
learning_rate=2e-6,
|
||||
save_strategy="no",
|
||||
run_name="stable-adamw",
|
||||
)
|
||||
```
|
||||
@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Build your own machine
|
||||
|
||||
One of the most important considerations when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
|
||||
One of the most important consideration when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
|
||||
|
||||
This guide provides some practical tips for setting up a GPU for deep learning. For a more detailed discussion and comparison of GPUs, take a look at the [Which GPU(s) to Get for Deep Learning](https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/) blog post.
|
||||
|
||||
@ -25,11 +25,11 @@ High-end consumer GPUs may have two or three PCIe 8-pin power sockets, and you s
|
||||
|
||||
Each PCIe 8-pin power cable should be connected to a 12V rail on the power supply unit (PSU) and can deliver up to 150W. Other GPUs may use a PCIe 12-pin connector which can deliver up to 500-600W. Lower-end GPUs may only use a PCIe 6-pin connector which supplies up to 75W.
|
||||
|
||||
It is important that the PSU maintains stable voltage; otherwise, it may fail to supply the GPU with enough power during peak usage.
|
||||
It is important the PSU has stable voltage otherwise it may not be able to supply the GPU with enough power to function properly during peak usage.
|
||||
|
||||
## Cooling
|
||||
|
||||
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158–167°F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194°F, the GPU may begin to throttle performance.
|
||||
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158 - 167F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194F, the GPU may begin to throttle performance.
|
||||
|
||||
## Multi-GPU connectivity
|
||||
|
||||
|
||||
@ -177,16 +177,10 @@ There are three supported implementations available.
|
||||
|
||||
SDPA is used by default for PyTorch v2.1.1. and greater when an implementation is available. You could explicitly enable SDPA by setting `attn_implementation="sdpa"` in [`~PreTrainedModel.from_pretrained`] though. Certain attention parameters, such as `head_mask` and `output_attentions=True`, are unsupported and returns a warning that Transformers will fall back to the (slower) eager implementation.
|
||||
|
||||
Refer to the [AttentionInterface](./attention_interface) guide to learn how to change the attention implementation after loading a model.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto", attn_implementation="sdpa")
|
||||
|
||||
# Change the model's attention dynamically after loading it
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto")
|
||||
model.set_attention_implementation("sdpa")
|
||||
```
|
||||
|
||||
SDPA selects the most performant implementation available, but you can also explicitly select an implementation with [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager. The example below shows how to enable the FlashAttention2 implementation with `enable_flash=True`.
|
||||
@ -240,7 +234,7 @@ FlashAttention2 support is currently limited to Instinct MI210, Instinct MI250 a
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or by setting `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface). FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
|
||||
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`]. FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
@ -1,66 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# FP-Quant
|
||||
|
||||
[FP-Quant](https://github.com/IST-DASLab/FP-Quant) is a family of quantization algorithms tailored for the Blackwell generation of Nvidia GPUs. The goal is to allow for efficient post-training quantization (PTQ) and quantization-aware trainin (QAT) of LLMs in the [MXFP4 and NVFP4 data-types](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
|
||||
|
||||
Currently, only PTQ with MXFP4 is supported. Models can either be quantized on the fly with `quantization_config=FPQuantConfig()`:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, FPQuantConfig
|
||||
import torch
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"qwen/Qwen3-8B",
|
||||
quantization_config=FPQuantConfig(),
|
||||
device_map="cuda",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
```
|
||||
|
||||
or pre-processed with GPTQ for better quality (see [FP Format Quantization Harness](https://github.com/IST-DASLab/FP-Quant)).
|
||||
|
||||
A **Blackwell-generation GPU is required** to run the kernels. Runtime support for FP-Quant is implemented through the [QuTLASS](https://github.com/IST-DASLab/qutlass) library and a lightweight PyTorch interface lib [`fp_quant`](https://github.com/IST-DASLab/FP-Quant/tree/master/inference_lib). We recommend installing the former **from source** and the latter with `pip install fp_quant`.
|
||||
|
||||
Users **without a Blackwell-generation GPU** , can use the method with `quantization_config=FPQuantConfig(pseudoquant=True)` without having to install [QuTLASS](https://github.com/IST-DASLab/qutlass). This would provide no speedups but would fully emulate the effect of quantization.
|
||||
|
||||
> [!TIP]
|
||||
> Find models pre-quantized with FP-Quant in the official ISTA-DASLab [collection](https://huggingface.co/collections/ISTA-DASLab/fp-quant-6877c186103a21d3a02568ee).
|
||||
|
||||
## torch.compile
|
||||
|
||||
FP-Quant is fully compatible with [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html).
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, FPQuantConfig
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"qwen/Qwen3-8B",
|
||||
quantization_config=FPQuantConfig(),
|
||||
device_map="cuda",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
model.forward = torch.compile(model.forward, mode="max-autotune", fullgraph=True)
|
||||
```
|
||||
|
||||
## Speedups
|
||||
|
||||
FP-Quant currently performs best for very large batch size processing.
|
||||
|
||||
See [QuTLASS README](https://github.com/IST-DASLab/qutlass/blob/main/README.md) for speedups.
|
||||
@ -30,7 +30,6 @@ Use the Space below to help you pick a quantization method depending on your har
|
||||
| [bitsandbytes](./bitsandbytes) | 🟢 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | 🟢 | 4/8 | 🟢 | 🟢 | 🟢 | https://github.com/bitsandbytes-foundation/bitsandbytes |
|
||||
| [compressed-tensors](./compressed_tensors) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 1/8 | 🟢 | 🟢 | 🟢 | https://github.com/neuralmagic/compressed-tensors |
|
||||
| [EETQ](./eetq) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | ? | 8 | 🟢 | 🟢 | 🟢 | https://github.com/NetEase-FuXi/EETQ |
|
||||
| [FP-Quant](./fp_quant) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 4 | 🔴 | 🟢 | 🟢 | https://github.com/IST-DASLab/FP-Quant |
|
||||
| [GGUF / GGML (llama.cpp)](../gguf) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 1/8 | 🔴 | [See Notes](../gguf) | [See Notes](../gguf) | https://github.com/ggerganov/llama.cpp |
|
||||
| [GPTQModel](./gptq) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/ModelCloud/GPTQModel |
|
||||
| [AutoGPTQ](./gptq) | 🔴 | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/AutoGPTQ/AutoGPTQ |
|
||||
|
||||
@ -49,7 +49,7 @@ notebook_login()
|
||||
Make sure the [huggingface_hub[cli]](https://huggingface.co/docs/huggingface_hub/guides/cli#getting-started) package is installed and run the command below. Paste your User Access Token when prompted to log in.
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
@ -16,22 +16,62 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Serving
|
||||
|
||||
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
|
||||
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users.
|
||||
|
||||
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
|
||||
You can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
|
||||
|
||||
## TGI
|
||||
|
||||
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
|
||||
|
||||
Serve a Transformers implementation the same way you'd serve a TGI model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
|
||||
```
|
||||
|
||||
Add `--trust-remote_code` to the command to serve a custom Transformers model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
|
||||
```
|
||||
|
||||
## vLLM
|
||||
|
||||
[vLLM](https://docs.vllm.ai/en/latest/index.html) can also serve a Transformers implementation of a model if it isn't [natively implemented](https://docs.vllm.ai/en/latest/models/supported_models.html#list-of-text-only-language-models) in vLLM.
|
||||
|
||||
Many features like quantization, LoRA adapters, and distributed inference and serving are supported for the Transformers implementation.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Transformers fallback](https://docs.vllm.ai/en/latest/models/supported_models.html#transformers-fallback) section for more details.
|
||||
|
||||
By default, vLLM serves the native implementation and if it doesn't exist, it falls back on the Transformers implementation. But you can also set `--model-impl transformers` to explicitly use the Transformers model implementation.
|
||||
|
||||
```shell
|
||||
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
|
||||
--task generate \
|
||||
--model-impl transformers
|
||||
```
|
||||
|
||||
Add the `trust-remote-code` parameter to enable loading a remote code model.
|
||||
|
||||
```shell
|
||||
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
|
||||
--task generate \
|
||||
--model-impl transformers \
|
||||
--trust-remote-code
|
||||
```
|
||||
|
||||
## Serve CLI
|
||||
|
||||
> [!WARNING]
|
||||
> This section is experimental and subject to change in future versions
|
||||
|
||||
You can serve models of diverse modalities supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers compatibility with the OpenAI SDK, which is the _de facto_ standard for LLM conversations and other related tasks. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
|
||||
|
||||
The server supports the following REST APIs:
|
||||
- `/v1/chat/completions`
|
||||
- `/v1/responses`
|
||||
- `/v1/audio/transcriptions`
|
||||
- `/v1/models`
|
||||
<!-- TODO: LLMs -> models, after we add audio/image input/output support -->
|
||||
You can serve LLMs supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers a chat Completions API compatible with the OpenAI SDK, which is the _de facto_ standard for LLM conversations. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
|
||||
|
||||
To launch a server, simply use the `transformers serve` CLI command:
|
||||
|
||||
@ -69,7 +109,7 @@ The server is also an MCP client, so it can interact with MCP tools in agentic u
|
||||
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
|
||||
|
||||
|
||||
### Usage example 1: chat with local requests (feat. Jan)
|
||||
### Usage example 1: apps with local requests (feat. Jan)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
|
||||
|
||||
@ -99,17 +139,17 @@ ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_s
|
||||
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
|
||||
|
||||
|
||||
### Usage example 2: chat with external requests (feat. Cursor)
|
||||
### Usage example 2: apps with external requests (feat. Cursor)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
|
||||
|
||||
To launch a server with CORS enabled, run
|
||||
To launch our server with CORS enabled, run
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
We'll also need to expose our server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
|
||||
```shell
|
||||
ngrok http [port]
|
||||
@ -121,7 +161,7 @@ where `port` is the port used by `transformers serve` (`8000` by default). On th
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
|
||||
We're now ready to set things up on the app side! In Cursor, while we can't set a new provider, we can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set our `transformers serve` endpoint, follow this order:
|
||||
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
|
||||
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
|
||||
3. Add some random text to OpenAI API Key. This field won't be used, but it can’t be empty;
|
||||
@ -185,26 +225,3 @@ Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/
|
||||
|
||||
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
|
||||
```
|
||||
|
||||
### Usage example 4: speech to text transcription (feat. Open WebUI)
|
||||
|
||||
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
|
||||
|
||||
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
|
||||
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
|
||||
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
|
||||
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
|
||||
|
||||
If you've done everything correctly, the audio tab should look like this
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.
|
||||
|
||||
@ -289,7 +289,7 @@ You could also create and use your own dataset if you prefer to train with the [
|
||||
}
|
||||
)
|
||||
|
||||
# step 3: push to Hub (assumes you have ran the hf auth login command in a terminal/notebook)
|
||||
# step 3: push to Hub (assumes you have ran the huggingface-cli login command in a terminal/notebook)
|
||||
dataset.push_to_hub("your-name/dataset-repo")
|
||||
|
||||
# optionally, you can push to a private repo on the Hub
|
||||
|
||||
@ -74,7 +74,7 @@ model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-bas
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> The message above is a reminder that the models pretrained head is discarded and replaced with a randomly initialized classification head. The randomly initialized head needs to be fine-tuned on your specific task to output meaningful predictions.
|
||||
> The message above is a reminder that the models pretrained head is discarded and replaced with a randomly initialized classification head. The randomly initialized head needs to be fine-tuned on your specific task to output meanginful predictions.
|
||||
|
||||
With the model loaded, set up your training hyperparameters in [`TrainingArguments`]. Hyperparameters are variables that control the training process - such as the learning rate, batch size, number of epochs - which in turn impacts model performance. Selecting the correct hyperparameters is important and you should experiment with them to find the best configuration for your task.
|
||||
|
||||
|
||||
@ -1,254 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Inference server backends
|
||||
|
||||
Transformers' models are compatible with different inference servers like vLLM and SGLang. Instead of implementing a model for each inference server, you only need one model, which can be plugged into any inference server. It simplifies maintenance and makes it easy for users to use different inference servers for different use cases.
|
||||
|
||||
With Transformers as a backend, you can also serve any model - including custom and Hub-hosted models - without waiting for native support.
|
||||
|
||||
This guide shows how to use Transformers' models as a backend to some popular inference servers and how to build a model that supports all inference servers.
|
||||
|
||||
## vLLM
|
||||
|
||||
[vLLM](https://github.com/vllm-project/vllm) is a high-performance inference engine optimized for serving LLMs at scale. It supports many Transformers' models, including all decoder-only LLMs and several vision-language models (VLMs). VLMs currently support image inputs only, with video support planned.
|
||||
|
||||
vLLM automatically selects the best backend, and if a model isn’t natively supported, it falls back to the Transformers model. To explicitly use a Transformers' model, set `model_impl="transformers"`.
|
||||
|
||||
```python
|
||||
from vllm import LLM
|
||||
llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
|
||||
```
|
||||
Add `--model-impl transformers` to `vllm serve` to launch a server with a Transformers' model.
|
||||
|
||||
```bash
|
||||
vllm serve meta-llama/Llama-3.2-1B \
|
||||
--task generate \
|
||||
--model-impl transformers
|
||||
```
|
||||
|
||||
Refer to the [vLLM docs](https://docs.vllm.ai/en/latest/models/supported_models.html#transformers) for more usage examples and tips on using a Transformers as the backend.
|
||||
|
||||
|
||||
## SGLang
|
||||
|
||||
[SGLang](https://github.com/InternLM/sglang) is a high-performance, OpenAI-compatible server and runtime designed for chat-based LLMs. It offers fast inference, role-based conversation handling, and support for custom pipelines, making it great for building real-world LLM apps.
|
||||
|
||||
SGLang automatically falls back to the Transformers backend if a model isn’t natively supported. To explicitly use a Transformers' model, set `impl="transformers"`.
|
||||
|
||||
```python
|
||||
import sglang as sgl
|
||||
|
||||
llm = sgl.Engine("meta-llama/Llama-3.2-1B-Instruct", impl="transformers")
|
||||
print(llm.generate(["The capital of France is"], {"max_new_tokens": 20})[0])
|
||||
```
|
||||
|
||||
Add `impl transformers` to `sglang.launch_server` to launch a server with a Transformers' model.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
```bash
|
||||
python3 -m sglang.launch_server \
|
||||
--model-path kyutai/helium-1-preview-2b \
|
||||
--impl transformers \
|
||||
--host 0.0.0.0 \
|
||||
--port 30000
|
||||
```
|
||||
|
||||
Refer to the [SGLang docs](https://docs.sglang.ai/supported_models/transformers_fallback.html) for more usage examples and tips on using a Transformers as the backend.
|
||||
|
||||
## TGI
|
||||
|
||||
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
|
||||
|
||||
> [!TIP]
|
||||
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
|
||||
|
||||
Serve a Transformers implementation the same way you'd serve a TGI model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
|
||||
```
|
||||
|
||||
Add `--trust-remote_code` to the command to serve a custom Transformers model.
|
||||
|
||||
```docker
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
|
||||
```
|
||||
|
||||
## Building a compatible model backend
|
||||
|
||||
To ensure a model is compatible as a backend to any inference server, make sure it is compatible with Transformers and supports the [AttentionInterface](./attention_interface) class.
|
||||
|
||||
1. A model must be Transformers-compatible following the model [contribution guidelines](./add_new_model) or the [custom model contribution guidelines](./custom_models). Make sure the model has a valid `config.json` in its directory and a valid `auto_map` field pointing to the model class in the config.
|
||||
|
||||
2. A model's attentions needs to be configurable with the [AttentionInterface](./attention_interface) to allow custom and optimized attention functions. This is important for enabling the performance features of the different inference servers.
|
||||
Use `ALL_ATTENTION_FUNCTIONS` when defining the attention layer and propagate `**kwargs**` from the base `MyModel` class to the attention layers. Set `_supports_attention_backend` to `True` in [`PreTrainedModel`]. Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>modeling_my_model.py</summary>
|
||||
|
||||
```python
|
||||
|
||||
from transformers import PreTrainedModel
|
||||
from torch import nn
|
||||
|
||||
class MyAttention(nn.Module):
|
||||
|
||||
def forward(self, hidden_states, **kwargs):
|
||||
...
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
**kwargs,
|
||||
)
|
||||
...
|
||||
|
||||
class MyModel(PreTrainedModel):
|
||||
_supports_attention_backend = True
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
3. This step is optional, but if you want to support tensor parallel and/or pipeline parallel features, add the following keys to the config.
|
||||
* `base_model_tp_plan` enables [tensor parallelism](./perf_infer_gpu_multi) by mapping fully qualified layer name patterns to tensor parallel styles. Only the `"colwise"` and `"rowwise"` partitioning strategies are currently supported.
|
||||
* `base_model_pp_plan` enables pipeline parallelism by mapping direct child layer names to tuples of lists of strings. The list in the first element of the tuple contains the names of the input arguments. The list in the last element of the tuple contains the names of the variables the layer outputs to in the modeling code.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>configuration_my_model.py</summary>
|
||||
|
||||
```python
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
class MyConfig(PretrainedConfig):
|
||||
base_model_tp_plan = {
|
||||
"layers.*.self_attn.k_proj": "colwise",
|
||||
"layers.*.self_attn.v_proj": "colwise",
|
||||
"layers.*.self_attn.o_proj": "rowwise",
|
||||
"layers.*.mlp.gate_proj": "colwise",
|
||||
"layers.*.mlp.up_proj": "colwise",
|
||||
"layers.*.mlp.down_proj": "rowwise",
|
||||
}
|
||||
base_model_pp_plan = {
|
||||
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
||||
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
||||
"norm": (["hidden_states"], ["hidden_states"]),
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
### Multimodal models
|
||||
|
||||
For multimodal models, you need to include a few more changes on top of the general recommendations. These rules ensure that your model integrates properly with multimodal data.
|
||||
|
||||
1. A multimodal model requires a base `MyMultiModalModel` class to handle multimodal fusion without a language modeling head and a separate generative class that adds a head.
|
||||
|
||||
The base model needs to implement the `get_image_features()` method to accept image pixel values and return encoded outputs. These are later merged with the language embeddings and don't require any postprocessing. The shape of the returned features must match the number of input images. If a vision encoder returns variable-length outputs (patch-based), return a list of 2D tensors of size `(image_seq_len, image_dim)` for each image.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>modeling_my_multimodal_model.py</summary>
|
||||
|
||||
```python
|
||||
from transformers.generation import GenerationMixin
|
||||
|
||||
class MyMultimodalModel(MyMultimodalPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.language_model = AutoModel.from_config(config.text_config)
|
||||
self.vision_tower = AutoModel.from_config(config.vision_config)
|
||||
self.multimodal_projection = nn.Linear(vision_dim, text_dim)
|
||||
|
||||
def get_image_features(self, pixel_values):
|
||||
return self.vision_tower(pixel_values).last_hidden_states
|
||||
|
||||
def forward(self, input_ids, pixel_values, **kwargs):
|
||||
# process your inputs
|
||||
return MyModelOutputWithPast(
|
||||
last_hidden_state=last_hidden_state,
|
||||
image_hidden_states=image_features,
|
||||
[...]
|
||||
)
|
||||
|
||||
class MyMultimodalModelForConditionalGeneration(MyMultimodalPreTrainedModel, GenerationMixin):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = MyMultimodalModel(config)
|
||||
self.lm_head = nn.Linear(hidden_dim, vocab_size)
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
2. A multimodal model config must be nested with the following fields.
|
||||
* text_config: decoder language model config
|
||||
* vision_config: vision encoder config
|
||||
* image_token_id: ID of the image placeholder token used in the input to indicate image position
|
||||
|
||||
3. A multimodal model's processing class must have the `self.image_token` and `self.image_token_ids` attributes. These are placeholder tokens used to indicate image positions in the input. The placeholder token is the same token used in the input prompt and to mask scatter image features.
|
||||
|
||||
The processing class also needs ` self._get_num_multimodal_tokens` method to compute the number of placeholder tokens needed for multimodal inputs with given sizes and to return a [`MultiModalData`] object. The placeholder for row and column tokens don't count as image placeholders. Only the tokens that are actually replaced by image features are computed.
|
||||
|
||||
Finally, when `return_mm_token_type_ids=True`, the class has to return `mm_token_type_ids` to indicate whether each position is a text token (`0`) or image placeholder token (`1`). Each image's token type IDs must be contiguous with no breaks between consecutive ones.
|
||||
|
||||
Expand the code below for an example.
|
||||
|
||||
<details>
|
||||
<summary>processing_my_multimodal_model.py</summary>
|
||||
|
||||
```python
|
||||
class MyMultimodalProcessor(ProcessorMixin):
|
||||
|
||||
def __call__(self, images=None, text=None, **kwargs):
|
||||
if return_mm_token_type_ids:
|
||||
mm_token_type_ids = np.zeros_like(input_ids)
|
||||
mm_token_type_ids[input_ids == self.image_token_id] = 1
|
||||
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
||||
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
||||
|
||||
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
||||
"""
|
||||
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
||||
Args:
|
||||
image_sizes (`list[list[int]]`, *optional*):
|
||||
The input sizes formatted as (height, width) per each image.
|
||||
Returns:
|
||||
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
||||
input modalities, along with other useful data.
|
||||
"""
|
||||
vision_data = {}
|
||||
if image_sizes is not None:
|
||||
num_image_tokens = [256] * len(image_sizes) # 256 placeholder tokens for each image always
|
||||
num_image_patches = [1] * len(image_sizes) # no patching, thus each image is processed as a single base image
|
||||
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
||||
return MultiModalData(**vision_data)
|
||||
```
|
||||
</details>
|
||||
|
||||
## Resources
|
||||
|
||||
* Read the [Transformers backend integration in vLLM](https://blog.vllm.ai/2025/04/11/transformers-backend.html) blog post for more details about the Transformers backend in vLLM.
|
||||
* Read the [Transformers backend integration in SGLang](https://huggingface.co/blog/transformers-backend-sglang) blog post for more details about the Transformers backend in SGLang.
|
||||
@ -38,8 +38,6 @@
|
||||
sections:
|
||||
- local: tasks/asr
|
||||
title: Reconocimiento automático del habla
|
||||
- local: tasks/audio_classification
|
||||
title: Clasificación de audio
|
||||
title: Audio
|
||||
- isExpanded: false
|
||||
sections:
|
||||
|
||||
@ -285,7 +285,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
Ahora, para enviar el modelo al Hub, asegúrate de haber iniciado sesión. Ejecuta en tu terminal:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
o desde un _notebook_:
|
||||
|
||||
@ -56,7 +56,7 @@ Los archivos son editados fácilmente dentro de un repositorio. Incluso puedes o
|
||||
Antes de compartir un modelo al Hub necesitarás tus credenciales de Hugging Face. Si tienes acceso a una terminal ejecuta el siguiente comando en el entorno virtual donde 🤗 Transformers esté instalado. Esto guardará tu token de acceso dentro de tu carpeta cache de Hugging Face (~/.cache/ by default):
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Si usas un notebook como Jupyter o Colaboratory, asegúrate de tener instalada la biblioteca [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). Esta biblioteca te permitirá interactuar por código con el Hub.
|
||||
|
||||
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
Todos los scripts pueden cargar tu modelo final en el [Model Hub](https://huggingface.co/models). Asegúrate de haber iniciado sesión en Hugging Face antes de comenzar:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Luego agrega el argumento `push_to_hub` al script. Este argumento creará un repositorio con tu nombre de usuario Hugging Face y el nombre de la carpeta especificado en `output_dir`.
|
||||
|
||||
@ -1,323 +0,0 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Clasificación de audio
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
<Youtube id="KWwzcmG98Ds"/>
|
||||
|
||||
Clasificación de audio - al igual que con texto — asigna una etiqueta de clase como salida desde las entradas de datos. La diferencia única es en vez de entrada de texto, tiene formas de onda de audio. Algunas aplicaciones prácticas de clasificación incluye identificar la intención del hablante, identificación del idioma, y la clasificación de animales por sus sonidos.
|
||||
|
||||
En esta guía te mostraremos como:
|
||||
|
||||
1. Hacer fine-tuning al modelo [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) en el dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) para clasificar la intención del hablante.
|
||||
2. Usar tu modelo ajustado para tareas de inferencia.
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Consulta la [página de la tarea](https://huggingface.co/tasks/audio-classification) de clasificación de audio para acceder a más información sobre los modelos, datasets, y métricas asociados.
|
||||
|
||||
</Tip>
|
||||
|
||||
Antes de comenzar, asegúrate de haber instalado todas las librerías necesarias:
|
||||
|
||||
```bash
|
||||
pip install transformers datasets evaluate
|
||||
```
|
||||
|
||||
Te aconsejamos iniciar sesión con tu cuenta de Hugging Face para que puedas subir tu modelo y compartirlo con la comunidad. Cuando se te solicite, ingresa tu token para iniciar sesión:
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import notebook_login
|
||||
|
||||
>>> notebook_login()
|
||||
```
|
||||
|
||||
## Carga el dataset MInDS-14
|
||||
|
||||
Comencemos cargando el dataset MInDS-14 con la biblioteca de 🤗 Datasets:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
```
|
||||
|
||||
Divide el conjunto de `train` (entrenamiento) en un conjunto de entrenamiento y prueba mas pequeño con el método [`~datasets.Dataset.train_test_split`]. De esta forma, tendrás la oportunidad para experimentar y asegúrate de que todo funcióne antes de invertir más tiempo entrenando con el dataset entero.
|
||||
|
||||
```py
|
||||
>>> minds = minds.train_test_split(test_size=0.2)
|
||||
```
|
||||
|
||||
Ahora échale un vistazo al dataset:
|
||||
|
||||
```py
|
||||
>>> minds
|
||||
DatasetDict({
|
||||
train: Dataset({
|
||||
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
|
||||
num_rows: 450
|
||||
})
|
||||
test: Dataset({
|
||||
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
|
||||
num_rows: 113
|
||||
})
|
||||
})
|
||||
```
|
||||
|
||||
Aunque el dataset contiene mucha información útil, como los campos `land_id` (identificador del lenguaje) y `english_transcription` (transcripción al inglés), en esta guía nos enfocaremos en los campos `audio` y `intent_class` (clase de intención). Puedes quitar las otras columnas con cel método [`~datasets.Dataset.remove_columns`]:
|
||||
|
||||
```py
|
||||
>>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
|
||||
```
|
||||
|
||||
Aquí está un ejemplo:
|
||||
|
||||
```py
|
||||
>>> minds["train"][0]
|
||||
{'audio': {'array': array([ 0. , 0. , 0. , ..., -0.00048828,
|
||||
-0.00024414, -0.00024414], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
|
||||
'sampling_rate': 8000},
|
||||
'intent_class': 2}
|
||||
```
|
||||
|
||||
Hay dos campos:
|
||||
|
||||
- `audio`: un `array` (arreglo) unidimensional de la señal de voz que se obtiene al cargar y volver a muestrear el archivo de audio.
|
||||
- `intent_class`: representa el identificador de la clase de la intención del hablante.
|
||||
|
||||
Crea un diccionario que asigne el nombre de la etiqueta a un número entero y viceversa para facilitar la obtención del nombre de la etiqueta a partir de su identificador.
|
||||
|
||||
```py
|
||||
>>> labels = minds["train"].features["intent_class"].names
|
||||
>>> label2id, id2label = dict(), dict()
|
||||
>>> for i, label in enumerate(labels):
|
||||
... label2id[label] = str(i)
|
||||
... id2label[str(i)] = label
|
||||
```
|
||||
|
||||
Ahora puedes convertir el identificador de la etiqueta a un nombre de etiqueta:
|
||||
|
||||
```py
|
||||
>>> id2label[str(2)]
|
||||
'app_error'
|
||||
```
|
||||
|
||||
## Preprocesamiento
|
||||
|
||||
Seguidamente carga el feature extractor (función de extracción de características) de Wav2Vec para procesar la señal de audio:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
||||
```
|
||||
|
||||
El dataset MInDS-14 tiene una tasa de muestreo de 8kHz (puedes encontrar esta información en su [tarjeta de dataset](https://huggingface.co/datasets/PolyAI/minds14)), lo que significa que tendrás que volver a muestrear el dataset a 16kHZ para poder usar el modelo Wav2Vec2 preentranado:
|
||||
|
||||
```py
|
||||
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
|
||||
>>> minds["train"][0]
|
||||
{'audio': {'array': array([ 2.2098757e-05, 4.6582241e-05, -2.2803260e-05, ...,
|
||||
-2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
|
||||
'sampling_rate': 16000},
|
||||
'intent_class': 2}
|
||||
```
|
||||
|
||||
Ahora vamos a crear una función de preprocesamiento:
|
||||
|
||||
1. Invoque la columna `audio` para cargar, y si es necesario, volver a muestrear al archivo de audio.
|
||||
2. Comprueba si la frecuencia de muestreo del archivo de audio coincide con la frecuencia de muestreo de los datos de audio con los que se entrenó previamente el modelo. Puedes encontrar esta información en la [tarjeta de modelo](https://huggingface.co/facebook/wav2vec2-base) de Wav2Vec2.
|
||||
3. Establece una longitud de entrada máxima para agrupar entradas más largas sin truncarlas.
|
||||
|
||||
```py
|
||||
>>> def preprocess_function(examples):
|
||||
... audio_arrays = [x["array"] for x in examples["audio"]]
|
||||
... inputs = feature_extractor(
|
||||
... audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
|
||||
... )
|
||||
... return inputs
|
||||
```
|
||||
|
||||
Para aplicar la función de preprocesamiento a todo el dataset, puedes usar la función [`~datasets.Dataset.map`] de 🤗 Datasets. Acelera la función `map` haciendo `batched=True` para procesar varios elementos del dataset a la vez. Quitas las columnas que no necesites con el método `[~datasets.Dataset.remove_columns]` y cambia el nombre de `intent_class` a `label`, como requiere el modelo.
|
||||
|
||||
```py
|
||||
>>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True)
|
||||
>>> encoded_minds = encoded_minds.rename_column("intent_class", "label")
|
||||
```
|
||||
|
||||
## Evaluación
|
||||
A menudo es útil incluir una métrica durante el entrenamiento para evaluar el rendimiento de tu modelo. Puedes cargar un método de evaluación rapidamente con la biblioteca de 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index). Para esta tarea, puedes usar la métrica de [exactitud](https://huggingface.co/spaces/evaluate-metric/accuracy) (accuracy). Puedes ver la [guía rápida](https://huggingface.co/docs/evaluate/a_quick_tour) de 🤗 Evaluate para aprender más de cómo cargar y computar una métrica:
|
||||
|
||||
```py
|
||||
>>> import evaluate
|
||||
|
||||
>>> accuracy = evaluate.load("accuracy")
|
||||
```
|
||||
|
||||
Ahora crea una función que le pase tus predicciones y etiquetas a [`~evaluate.EvaluationModule.compute`] para calcular la exactitud:
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
|
||||
|
||||
>>> def compute_metrics(eval_pred):
|
||||
... predictions = np.argmax(eval_pred.predictions, axis=1)
|
||||
... return accuracy.compute(predictions=predictions, references=eval_pred.label_ids)
|
||||
```
|
||||
|
||||
Ahora tu función `compute_metrics` (computar métricas) está lista y podrás usarla cuando estés preparando tu entrenamiento.
|
||||
|
||||
## Entrenamiento
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Tip>
|
||||
|
||||
¡Si no tienes experiencia haciéndo *fine-tuning* a un modelo con el [`Trainer`], échale un vistazo al tutorial básico [aquí](../training#train-with-pytorch-trainer)!
|
||||
|
||||
</Tip>
|
||||
|
||||
¡Ya puedes empezar a entrenar tu modelo! Carga Wav2Vec2 con [`AutoModelForAudioClassification`] junto con el especifica el número de etiquetas, y pasa al modelo los *mappings* entre el número entero de etiqueta y la clase de etiqueta.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer
|
||||
|
||||
>>> num_labels = len(id2label)
|
||||
>>> model = AutoModelForAudioClassification.from_pretrained(
|
||||
... "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label
|
||||
... )
|
||||
```
|
||||
|
||||
Al llegar a este punto, solo quedan tres pasos:
|
||||
|
||||
1. Define tus hiperparámetros de entrenamiento en [`TrainingArguments`]. El único parámetro obligatorio es `output_dir` (carpeta de salida), el cual especifica dónde guardar tu modelo. Puedes subir este modelo al Hub haciendo `push_to_hub=True` (debes haber iniciado sesión en Hugging Face para subir tu modelo). Al final de cada época, el [`Trainer`] evaluará la exactitud y guardará el punto de control del entrenamiento.
|
||||
2. Pásale los argumentos del entrenamiento al [`Trainer`] junto con el modelo, el dataset, el tokenizer, el data collator y la función `compute_metrics`.
|
||||
3. Llama el método [`~Trainer.train`] para hacerle fine-tuning a tu modelo.
|
||||
|
||||
```py
|
||||
>>> training_args = TrainingArguments(
|
||||
... output_dir="my_awesome_mind_model",
|
||||
... eval_strategy="epoch",
|
||||
... save_strategy="epoch",
|
||||
... learning_rate=3e-5,
|
||||
... per_device_train_batch_size=32,
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=32,
|
||||
... num_train_epochs=10,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
... push_to_hub=True,
|
||||
... )
|
||||
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=encoded_minds["train"],
|
||||
... eval_dataset=encoded_minds["test"],
|
||||
... processing_class=feature_extractor,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
|
||||
>>> trainer.train()
|
||||
```
|
||||
|
||||
Una vez que el entrenamiento haya sido completado, comparte tu modelo en el Hub con el método [`~transformers.Trainer.push_to_hub`] para que todo el mundo puede usar tu modelo.
|
||||
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
Para ver un ejemplo más detallado de comó hacerle fine-tuning a un modelo para clasificación, échale un vistazo al correspondiente [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
|
||||
|
||||
</Tip>
|
||||
|
||||
## Inference
|
||||
|
||||
¡Genial, ahora que le has hecho *fine-tuned* a un modelo, puedes usarlo para hacer inferencia!
|
||||
|
||||
Carga el archivo de audio para hacer inferencia. Recuerda volver a muestrear la tasa de muestreo del archivo de audio para que sea la misma del modelo si es necesario.
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
||||
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
||||
>>> audio_file = dataset[0]["audio"]["path"]
|
||||
```
|
||||
|
||||
La manera más simple de probar tu modelo para hacer inferencia es usarlo en un [`pipeline`]. Puedes instanciar un `pipeline` para clasificación de audio con tu modelo y pasarle tu archivo de audio:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model")
|
||||
>>> classifier(audio_file)
|
||||
[
|
||||
{'score': 0.09766869246959686, 'label': 'cash_deposit'},
|
||||
{'score': 0.07998877018690109, 'label': 'app_error'},
|
||||
{'score': 0.0781070664525032, 'label': 'joint_account'},
|
||||
{'score': 0.07667109370231628, 'label': 'pay_bill'},
|
||||
{'score': 0.0755252093076706, 'label': 'balance'}
|
||||
]
|
||||
```
|
||||
|
||||
También puedes replicar de forma manual los resultados del `pipeline` si lo deseas:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Carga el feature extractor para preprocesar el archivo de audio y devuelve el `input` como un tensor de PyTorch:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model")
|
||||
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
||||
```
|
||||
|
||||
Pásale tus entradas al modelo y devuelve los logits:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForAudioClassification
|
||||
|
||||
>>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model")
|
||||
>>> with torch.no_grad():
|
||||
... logits = model(**inputs).logits
|
||||
```
|
||||
|
||||
Obtén los identificadores de los clases con mayor probabilidad y usa el *mapping* `id2label` del modelo para convertirle a una etiqueta:
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
|
||||
>>> predicted_class_ids = torch.argmax(logits).item()
|
||||
>>> predicted_label = model.config.id2label[predicted_class_ids]
|
||||
>>> predicted_label
|
||||
'cash_deposit'
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
@ -327,7 +327,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
Tous les scripts peuvent télécharger votre modèle final sur le Model Hub. Assurez-vous que vous êtes connecté à Hugging Face avant de commencer :
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Ensuite, ajoutez l'argument `push_to_hub` au script. Cet argument créera un dépôt avec votre nom d'utilisateur Hugging Face et le nom du dossier spécifié dans `output_dir`.
|
||||
|
||||
@ -285,7 +285,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
Adesso, per inviare il modello all'Hub, assicurati di aver effettuato l'accesso. Lancia dal tuo terminale:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
O da un notebook:
|
||||
|
||||
@ -56,7 +56,7 @@ Anche i file possono essere modificati facilmente in un repository ed è possibi
|
||||
Prima di condividere un modello nell'Hub, hai bisogno delle tue credenziali di Hugging Face. Se hai accesso ad un terminale, esegui il seguente comando nell'ambiente virtuale in cui è installata la libreria 🤗 Transformers. Questo memorizzerà il tuo token di accesso nella cartella cache di Hugging Face (di default `~/.cache/`):
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Se stai usando un notebook come Jupyter o Colaboratory, assicurati di avere la libreria [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) installata. Questa libreria ti permette di interagire in maniera programmatica con l'Hub.
|
||||
|
||||
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
Tutti gli script possono caricare il tuo modello finale al [Model Hub](https://huggingface.co/models). Prima di iniziare, assicurati di aver effettuato l'accesso su Hugging Face:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Poi, aggiungi l'argomento `push_to_hub` allo script. Questo argomento consentirà di creare un repository con il tuo username Hugging Face e la cartella specificata in `output_dir`.
|
||||
|
||||
@ -270,7 +270,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
モデルをHubに送信するには、ログインしていることを確認してください。ターミナルで次のコマンドを実行します:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
またはノートブックから:
|
||||
|
||||
@ -56,7 +56,7 @@ Model Hubの組み込みバージョニングはgitおよび[git-lfs](https://gi
|
||||
モデルをHubに共有する前に、Hugging Faceの認証情報が必要です。ターミナルへのアクセス権がある場合、🤗 Transformersがインストールされている仮想環境で以下のコマンドを実行します。これにより、アクセストークンがHugging Faceのキャッシュフォルダに保存されます(デフォルトでは `~/.cache/` に保存されます):
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
JupyterやColaboratoryのようなノートブックを使用している場合、[`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library)ライブラリがインストールされていることを確認してください。
|
||||
|
||||
@ -337,7 +337,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
すべてのスクリプトは、最終的なモデルを [Model Hub](https://huggingface.co/models) にアップロードできます。開始する前に Hugging Face にログインしていることを確認してください。
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
次に、スクリプトに `push_to_hub` 引数を追加します。この引数は、Hugging Face のユーザー名と `output_dir` で指定したフォルダ名でリポジトリを作成します。
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
54
docs/source/ko/attention.md
Normal file
54
docs/source/ko/attention.md
Normal file
@ -0,0 +1,54 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 어텐션 메커니즘[[attention_mechanisms]]
|
||||
|
||||
대부분의 트랜스포머 모델은 정방행렬인 전체 어텐션을 사용합니다.
|
||||
하지만 이는 긴 텍스트를 다룰 때는 큰 계산 병목 현상을 유발할 수 있습니다.
|
||||
`Longformer`와 `Reformer`는 훈련 속도를 높이기 위해 어텐션 행렬의 희소 버전을 사용하여 효율을 높이려는 모델입니다.
|
||||
|
||||
## LSH 어텐션[[lsh_attention]]
|
||||
|
||||
|
||||
[Reformer](model_doc/reformer)는 LSH(Locality Sensitive Hashing) 어텐션을 사용합니다. softmax(QK^t)에서는 행렬 QK^t의 (softmax 차원에서) 가장 큰 요소들만 유용한 기여를 할 것입니다.
|
||||
따라서 각각의 쿼리 q에 대해, q와 가까운 키 k만 고려할 수 있습니다. 해시 함수는 q와 k가 가까운지 여부를 결정하는 데 사용됩니다.
|
||||
어텐션 마스크는 현재 토큰을 마스킹하여 변경됩니다. 이 때 첫 번째 위치의 토큰은 제외합니다. 왜냐하면 쿼리와 키가 동일한 값을 갖게 되기 때문입니다(서로 매우 유사함).
|
||||
해시는 약간의 무작위성을 가질 수 있으므로, 실제로는 여러 개의 해시 함수가 사용되고 (`n_rounds` 매개변수에 의해 결정됨) 그 후에 평균값을 취하게 됩니다.
|
||||
|
||||
## 지역 어텐션[[local_attention]]
|
||||
|
||||
[Longformer](model_doc/longformer)는 지역 어텐션을 사용합니다. 종종 특정 토큰에 대해 지역 컨텍스트(예: 왼쪽과 오른쪽에 있는 두 개의 토큰은 무엇인가요?)만으로도 작업을 수행하는데 충분합니다.
|
||||
또한 작은 창(window)을 가진 어텐션 레이어를 쌓음으로써 마지막 레이어는 창 내의 토큰뿐만 아니라 더 많은 수의 토큰에 대한 수용 영역(receptive field)을 갖게 되어 전체 문장의 표현을 구축할 수 있습니다.
|
||||
|
||||
사전에 선택된 일부 입력 토큰들은 전역 어텐션을 받습니다. 이 몇 개의 토큰에 대해서는 어텐션 행렬이 모든 토큰에 접근할 수 있으며, 이 과정은 대칭적으로 이루어집니다.
|
||||
다른 모든 토큰들은 로컬 창 내의 토큰들에 더해 해당 특정 토큰들에도 접근할 수 있습니다. 이는 논문의 Figure 2d에서 나타나며, 아래에 샘플 어텐션 마스크가 제시되어 있습니다:
|
||||
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
적은 파라미터의 어텐션 행렬을 사용하면 모델이 더 큰 시퀀스 입력 길이를 가질 수 있습니다.
|
||||
|
||||
## 다른 방법들[[other_tricks]]
|
||||
|
||||
### 축별 위치 인코딩[[axial_positional_encodings]]
|
||||
|
||||
[Reformer](model_doc/reformer)는 축별 위치 인코딩(axial positional encodings)을 사용합니다. 기존의 트랜스포머 모델에서는 위치 인코딩 행렬 E는 크기가 \\(l \times d\\)인 행렬이며,
|
||||
여기서 \\(l\\)은 시퀀스 길이(sequence length)이고 \\(d\\)는 숨겨진 상태(hidden state)의 차원입니다. 매우 긴 텍스트의 경우, 이 행렬은 매우 크며 GPU 상에서 공간을 많이 차지할 수 있습니다.
|
||||
이를 완화하기 위해, 축별 위치 인코딩은 큰 행렬 E를 두 개의 작은 행렬 E1과 E2로 분해합니다. 이때 E1의 크기는 \\(l_{1} \times d_{1}\\)이고, E2의 크기는 \\(l_{2} \times d_{2}\\)입니다.
|
||||
이때 \\(l_{1} \times l_{2} = l\\)이고 \\(d_{1} + d_{2} = d\\)(길이에 대한 곱셈 연산을 사용하면 훨씬 작아집니다). E의 시간 단계 j에 대한 임베딩은 E1에서 시간 단계 \\(j \% l1\\)의 임베딩과 E2에서 시간 단계 \\(j // l1\\)의 임베딩을 연결하여 얻습니다.
|
||||
144
docs/source/ko/autoclass_tutorial.md
Normal file
144
docs/source/ko/autoclass_tutorial.md
Normal file
@ -0,0 +1,144 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# AutoClass로 사전 학습된 인스턴스 로드[[load-pretrained-instances-with-an-autoclass]]
|
||||
|
||||
트랜스포머 아키텍처가 매우 다양하기 때문에 체크포인트에 맞는 아키텍처를 생성하는 것이 어려울 수 있습니다. 라이브러리를 쉽고 간단하며 유연하게 사용하기 위한 Transformer 핵심 철학의 일환으로, `AutoClass`는 주어진 체크포인트에서 올바른 아키텍처를 자동으로 추론하여 로드합니다. `from_pretrained()` 메서드를 사용하면 모든 아키텍처에 대해 사전 학습된 모델을 빠르게 로드할 수 있으므로 모델을 처음부터 학습하는 데 시간과 리소스를 투입할 필요가 없습니다.
|
||||
체크포인트에 구애받지 않는 코드를 생성한다는 것은 코드가 한 체크포인트에서 작동하면 아키텍처가 다르더라도 다른 체크포인트(유사한 작업에 대해 학습된 경우)에서도 작동한다는 것을 의미합니다.
|
||||
|
||||
<Tip>
|
||||
|
||||
아키텍처는 모델의 골격을 의미하며 체크포인트는 주어진 아키텍처에 대한 가중치입니다. 예를 들어, [BERT](https://huggingface.co/google-bert/bert-base-uncased)는 아키텍처이고, `google-bert/bert-base-uncased`는 체크포인트입니다. 모델은 아키텍처 또는 체크포인트를 의미할 수 있는 일반적인 용어입니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
이 튜토리얼에서는 다음을 학습합니다:
|
||||
|
||||
* 사전 학습된 토크나이저 로드하기.
|
||||
* 사전 학습된 이미지 프로세서 로드하기.
|
||||
* 사전 학습된 특징 추출기 로드하기.
|
||||
* 사전 훈련된 프로세서 로드하기.
|
||||
* 사전 학습된 모델 로드하기.
|
||||
|
||||
## AutoTokenizer[[autotokenizer]]
|
||||
|
||||
거의 모든 NLP 작업은 토크나이저로 시작됩니다. 토크나이저는 사용자의 입력을 모델에서 처리할 수 있는 형식으로 변환합니다.
|
||||
[`AutoTokenizer.from_pretrained`]로 토크나이저를 로드합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
```
|
||||
|
||||
그리고 아래와 같이 입력을 토큰화합니다:
|
||||
|
||||
```py
|
||||
>>> sequence = "In a hole in the ground there lived a hobbit."
|
||||
>>> print(tokenizer(sequence))
|
||||
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
## AutoImageProcessor[[autoimageprocessor]]
|
||||
|
||||
비전 작업의 경우 이미지 프로세서가 이미지를 올바른 입력 형식으로 처리합니다.
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
||||
```
|
||||
|
||||
|
||||
## AutoFeatureExtractor[[autofeatureextractor]]
|
||||
|
||||
오디오 작업의 경우 특징 추출기가 오디오 신호를 올바른 입력 형식으로 처리합니다.
|
||||
|
||||
[`AutoFeatureExtractor.from_pretrained`]로 특징 추출기를 로드합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
||||
... )
|
||||
```
|
||||
|
||||
## AutoProcessor[[autoprocessor]]
|
||||
|
||||
멀티모달 작업에는 두 가지 유형의 전처리 도구를 결합한 프로세서가 필요합니다. 예를 들어 LayoutLMV2 모델에는 이미지를 처리하는 이미지 프로세서와 텍스트를 처리하는 토크나이저가 필요하며, 프로세서는 이 두 가지를 결합합니다.
|
||||
|
||||
[`AutoProcessor.from_pretrained()`]로 프로세서를 로드합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
||||
```
|
||||
|
||||
## AutoModel[[automodel]]
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
마지막으로 AutoModelFor클래스를 사용하면 주어진 작업에 대해 미리 학습된 모델을 로드할 수 있습니다 (사용 가능한 작업의 전체 목록은 [여기](model_doc/auto)를 참조하세요). 예를 들어, [`AutoModelForSequenceClassification.from_pretrained`]를 사용하여 시퀀스 분류용 모델을 로드할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
동일한 체크포인트를 쉽게 재사용하여 다른 작업에 아키텍처를 로드할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForTokenClassification
|
||||
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
PyTorch모델의 경우 `from_pretrained()` 메서드는 내부적으로 피클을 사용하여 안전하지 않은 것으로 알려진 `torch.load()`를 사용합니다.
|
||||
일반적으로 신뢰할 수 없는 소스에서 가져왔거나 변조되었을 수 있는 모델은 로드하지 마세요. 허깅 페이스 허브에서 호스팅되는 공개 모델의 경우 이러한 보안 위험이 부분적으로 완화되며, 각 커밋 시 멀웨어를 [검사합니다](https://huggingface.co/docs/hub/security-malware). GPG를 사용해 서명된 [커밋 검증](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg)과 같은 모범사례는 [문서](https://huggingface.co/docs/hub/security)를 참조하세요.
|
||||
|
||||
텐서플로우와 Flax 체크포인트는 영향을 받지 않으며, `from_pretrained`메서드에 `from_tf` 와 `from_flax` 키워드 가변 인자를 사용하여 이 문제를 우회할 수 있습니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
일반적으로 AutoTokenizer 클래스와 AutoModelFor 클래스를 사용하여 미리 학습된 모델 인스턴스를 로드하는 것이 좋습니다. 이렇게 하면 매번 올바른 아키텍처를 로드할 수 있습니다. 다음 [튜토리얼](preprocessing)에서는 새롭게 로드한 토크나이저, 이미지 프로세서, 특징 추출기를 사용하여 미세 튜닝용 데이터 세트를 전처리하는 방법에 대해 알아봅니다.
|
||||
</pt>
|
||||
<tf>
|
||||
마지막으로 `TFAutoModelFor` 클래스를 사용하면 주어진 작업에 대해 사전 훈련된 모델을 로드할 수 있습니다. (사용 가능한 작업의 전체 목록은 [여기](model_doc/auto)를 참조하세요. 예를 들어, [`TFAutoModelForSequenceClassification.from_pretrained`]로 시퀀스 분류를 위한 모델을 로드합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
쉽게 동일한 체크포인트를 재사용하여 다른 작업에 아키텍처를 로드할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
일반적으로, `AutoTokenizer`클래스와 `TFAutoModelFor` 클래스를 사용하여 미리 학습된 모델 인스턴스를 로드하는 것이 좋습니다. 이렇게 하면 매번 올바른 아키텍처를 로드할 수 있습니다. 다음 [튜토리얼](preprocessing)에서는 새롭게 로드한 토크나이저, 이미지 프로세서, 특징 추출기를 사용하여 미세 튜닝용 데이터 세트를 전처리하는 방법에 대해 알아봅니다.
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
41
docs/source/ko/bertology.md
Normal file
41
docs/source/ko/bertology.md
Normal file
@ -0,0 +1,41 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BERTology
|
||||
|
||||
BERT와 같은 대규모 트랜스포머의 내부 동작을 조사하는 연구 분야가 점점 더 중요해지고 있습니다.
|
||||
혹자는 "BERTology"라 칭하기도 합니다. 이 분야의 좋은 예시는 다음과 같습니다:
|
||||
|
||||
|
||||
- BERT는 고전적인 NLP 파이프라인의 재발견 - Ian Tenney, Dipanjan Das, Ellie Pavlick:
|
||||
https://huggingface.co/papers/1905.05950
|
||||
- 16개의 헤드가 정말로 1개보다 나은가? - Paul Michel, Omer Levy, Graham Neubig:
|
||||
https://huggingface.co/papers/1905.10650
|
||||
- BERT는 무엇을 보는가? BERT의 어텐션 분석 - Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning:
|
||||
https://huggingface.co/papers/1906.04341
|
||||
- CAT-probing: 프로그래밍 언어에 대해 사전훈련된 모델이 어떻게 코드 구조를 보는지 알아보기 위한 메트릭 기반 접근 방법:
|
||||
https://huggingface.co/papers/2210.04633
|
||||
|
||||
우리는 이 새로운 연구 분야의 발전을 돕기 위해, BERT/GPT/GPT-2 모델에 내부 표현을 살펴볼 수 있는 몇 가지 기능을 추가했습니다.
|
||||
이 기능들은 주로 Paul Michel의 훌륭한 작업을 참고하여 개발되었습니다
|
||||
(https://huggingface.co/papers/1905.10650):
|
||||
|
||||
|
||||
- BERT/GPT/GPT-2의 모든 은닉 상태에 접근하기,
|
||||
- BERT/GPT/GPT-2의 각 헤드의 모든 어텐션 가중치에 접근하기,
|
||||
- 헤드의 출력 값과 그래디언트를 검색하여 헤드 중요도 점수를 계산하고 https://huggingface.co/papers/1905.10650에서 설명된 대로 헤드를 제거하는 기능을 제공합니다.
|
||||
|
||||
이러한 기능들을 이해하고 직접 사용해볼 수 있도록 [bertology.py](https://github.com/huggingface/transformers-research-projects/tree/main/bertology/run_bertology.py) 예제 스크립트를 추가했습니다. 이 예제 스크립트에서는 GLUE에 대해 사전훈련된 모델에서 정보를 추출하고 모델을 가지치기(prune)해봅니다.
|
||||
122
docs/source/ko/big_models.md
Normal file
122
docs/source/ko/big_models.md
Normal file
@ -0,0 +1,122 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 큰 모델 인스턴스화 [[instantiating-a-big-model]]
|
||||
|
||||
매우 큰 사전훈련된 모델을 사용하려면, RAM 사용을 최소화해야 하는 과제가 있습니다. 일반적인 PyTorch 워크플로우는 다음과 같습니다:
|
||||
|
||||
1. 무작위 가중치로 모델을 생성합니다.
|
||||
2. 사전훈련된 가중치를 불러옵니다.
|
||||
3. 사전훈련된 가중치를 무작위 모델에 적용합니다.
|
||||
|
||||
1단계와 2단계 모두 모델의 전체 버전을 메모리에 적재해야 하며, 대부분 문제가 없지만 모델이 기가바이트급의 용량을 차지하기 시작하면 복사본 2개가 RAM을 초과하여 메모리 부족 이슈를 야기할 수 있습니다. 더 심각한 문제는 분산 학습을 위해 `torch.distributed`를 사용하는 경우, 프로세스마다 사전훈련된 모델을 로드하고 복사본을 2개씩 RAM에 저장한다는 것입니다.
|
||||
|
||||
<Tip>
|
||||
|
||||
무작위로 생성된 모델은 "비어 있는" (즉 그때 메모리에 있던 것으로 이뤄진) 텐서로 초기화되며 메모리 공간을 차지합니다. 초기화된 모델/파라미터의 종류에 적합한 분포(예: 정규 분포)에 따른 무작위 초기화는 가능한 한 빠르게 하기 위해 초기화되지 않은 가중치에 대해 3단계 이후에만 수행됩니다!
|
||||
|
||||
</Tip>
|
||||
|
||||
이 안내서에서는 Transformers가 이 문제를 해결하기 위해 제공하는 솔루션을 살펴봅니다. 주의할 점은 아직 활발히 개발 중인 분야이므로 여기서 설명하는 API가 앞으로 약간 변경될 수 있다는 것입니다.
|
||||
|
||||
## 샤딩된 체크포인트 [[sharded-checkpoints]]
|
||||
|
||||
4.18.0 버전 이후, 10GB 이상의 공간을 차지하는 모델 체크포인트는 자동으로 작은 조각들로 샤딩됩니다. `model.save_pretrained(save_dir)`를 실행할 때 하나의 단일 체크포인트를 가지게 될 대신, 여러 부분 체크포인트(각각의 크기는 10GB 미만)와 매개변수 이름을 해당 파일에 매핑하는 인덱스가 생성됩니다.
|
||||
|
||||
`max_shard_size` 매개변수로 샤딩 전 최대 크기를 제어할 수 있으므로, 이 예제를 위해 샤드 크기가 작은 일반 크기의 모델을 사용하겠습니다: 전통적인 BERT 모델을 사용해 봅시다.
|
||||
|
||||
```py
|
||||
from transformers import AutoModel
|
||||
|
||||
model = AutoModel.from_pretrained("google-bert/bert-base-cased")
|
||||
```
|
||||
|
||||
[`~PreTrainedModel.save_pretrained`]을 사용하여 모델을 저장하면, 모델의 구성과 가중치가 들어있는 두 개의 파일이 있는 새 폴더가 생성됩니다:
|
||||
|
||||
```py
|
||||
>>> import os
|
||||
>>> import tempfile
|
||||
|
||||
>>> with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
... model.save_pretrained(tmp_dir)
|
||||
... print(sorted(os.listdir(tmp_dir)))
|
||||
['config.json', 'pytorch_model.bin']
|
||||
```
|
||||
|
||||
이제 최대 샤드 크기를 200MB로 사용해 봅시다:
|
||||
|
||||
```py
|
||||
>>> with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
|
||||
... print(sorted(os.listdir(tmp_dir)))
|
||||
['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json']
|
||||
```
|
||||
|
||||
모델의 구성에 더해, 세 개의 다른 가중치 파일과 파라미터 이름과 해당 파일의 매핑이 포함된 `index.json` 파일을 볼 수 있습니다. 이러한 체크포인트는 [`~PreTrainedModel.from_pretrained`] 메서드를 사용하여 완전히 다시 로드할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
|
||||
... new_model = AutoModel.from_pretrained(tmp_dir)
|
||||
```
|
||||
|
||||
큰 모델의 경우 이러한 방식으로 처리하는 주된 장점은 위에서 보여준 흐름의 2단계에서, 각 샤드가 이전 샤드 다음에 로드되므로 메모리 사용량이 모델 크기와 가장 큰 샤드의 크기를 초과하지 않는다는 점입니다.
|
||||
|
||||
이 인덱스 파일은 키가 체크포인트에 있는지, 그리고 해당 가중치가 어디에 저장되어 있는지를 결정하는 데 사용됩니다. 이 인덱스를 json과 같이 로드하고 딕셔너리를 얻을 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> import json
|
||||
|
||||
>>> with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
|
||||
... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f:
|
||||
... index = json.load(f)
|
||||
|
||||
>>> print(index.keys())
|
||||
dict_keys(['metadata', 'weight_map'])
|
||||
```
|
||||
|
||||
메타데이터는 현재 모델의 총 크기만 포함됩니다. 앞으로 다른 정보를 추가할 계획입니다:
|
||||
|
||||
```py
|
||||
>>> index["metadata"]
|
||||
{'total_size': 433245184}
|
||||
```
|
||||
|
||||
가중치 맵은 이 인덱스의 주요 부분으로, 각 매개변수 이름(PyTorch 모델 `state_dict`에서 보통 찾을 수 있는)을 해당 파일에 매핑합니다:
|
||||
|
||||
```py
|
||||
>>> index["weight_map"]
|
||||
{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin',
|
||||
'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin',
|
||||
...
|
||||
```
|
||||
|
||||
만약 [`~PreTrainedModel.from_pretrained`]를 사용하지 않고 모델 내에서 이러한 샤딩된 체크포인트를 직접 가져오려면 (전체 체크포인트를 위해 `model.load_state_dict()`를 수행하는 것처럼), [`~modeling_utils.load_sharded_checkpoint`]를 사용해야 합니다.
|
||||
|
||||
```py
|
||||
>>> from transformers.modeling_utils import load_sharded_checkpoint
|
||||
|
||||
>>> with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
|
||||
... load_sharded_checkpoint(model, tmp_dir)
|
||||
```
|
||||
|
||||
## 저(低)메모리 로딩 [[low-memory-loading]]
|
||||
|
||||
샤딩된 체크포인트는 위에서 언급한 작업 흐름의 2단계에서 메모리 사용량을 줄이지만, 저(低)메모리 설정에서 모델을 사용하기 위해 우리의 Accelerate 라이브러리를 기반으로 한 도구를 활용하는 것이 좋습니다.
|
||||
|
||||
자세한 사항은 다음 가이드를 참조해주세요: [Accelerate로 대규모 모델 가져오기 (영문)](../en/main_classes/model#large-model-loading)
|
||||
388
docs/source/ko/create_a_model.md
Normal file
388
docs/source/ko/create_a_model.md
Normal file
@ -0,0 +1,388 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 맞춤형 아키텍처 만들기[[create-a-custom-architecture]]
|
||||
|
||||
[`AutoClass`](model_doc/auto)는 모델 아키텍처를 자동으로 추론하고 미리 학습된 configuration과 가중치를 다운로드합니다. 일반적으로 체크포인트에 구애받지 않는 코드를 생성하려면 `AutoClass`를 사용하는 것이 좋습니다. 하지만 특정 모델 파라미터를 보다 세밀하게 제어하고자 하는 사용자는 몇 가지 기본 클래스만으로 커스텀 🤗 Transformers 모델을 생성할 수 있습니다. 이는 🤗 Transformers 모델을 연구, 교육 또는 실험하는 데 관심이 있는 모든 사용자에게 특히 유용할 수 있습니다. 이 가이드에서는 'AutoClass'를 사용하지 않고 커스텀 모델을 만드는 방법에 대해 알아보겠습니다:
|
||||
|
||||
- 모델 configuration을 가져오고 사용자 지정합니다.
|
||||
- 모델 아키텍처를 생성합니다.
|
||||
- 텍스트에 사용할 느리거나 빠른 토큰화기를 만듭니다.
|
||||
- 비전 작업을 위한 이미지 프로세서를 생성합니다.
|
||||
- 오디오 작업을 위한 특성 추출기를 생성합니다.
|
||||
- 멀티모달 작업용 프로세서를 생성합니다.
|
||||
|
||||
## Configuration[[configuration]]
|
||||
|
||||
[configuration](main_classes/configuration)은 모델의 특정 속성을 나타냅니다. 각 모델 구성에는 서로 다른 속성이 있습니다. 예를 들어, 모든 NLP 모델에는 `hidden_size`, `num_attention_heads`, `num_hidden_layers` 및 `vocab_size` 속성이 공통으로 있습니다. 이러한 속성은 모델을 구성할 attention heads 또는 hidden layers의 수를 지정합니다.
|
||||
|
||||
[DistilBERT](model_doc/distilbert) 속성을 검사하기 위해 [`DistilBertConfig`]에 접근하여 자세히 살펴봅니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> print(config)
|
||||
DistilBertConfig {
|
||||
"activation": "gelu",
|
||||
"attention_dropout": 0.1,
|
||||
"dim": 768,
|
||||
"dropout": 0.1,
|
||||
"hidden_dim": 3072,
|
||||
"initializer_range": 0.02,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "distilbert",
|
||||
"n_heads": 12,
|
||||
"n_layers": 6,
|
||||
"pad_token_id": 0,
|
||||
"qa_dropout": 0.1,
|
||||
"seq_classif_dropout": 0.2,
|
||||
"sinusoidal_pos_embds": false,
|
||||
"transformers_version": "4.16.2",
|
||||
"vocab_size": 30522
|
||||
}
|
||||
```
|
||||
|
||||
[`DistilBertConfig`]는 기본 [`DistilBertModel`]을 빌드하는 데 사용되는 모든 기본 속성을 표시합니다. 모든 속성은 커스터마이징이 가능하므로 실험을 위한 공간을 만들 수 있습니다. 예를 들어 기본 모델을 다음과 같이 커스터마이즈할 수 있습니다:
|
||||
|
||||
- `activation` 파라미터로 다른 활성화 함수를 사용해 보세요.
|
||||
- `attention_dropout` 파라미터를 사용하여 어텐션 확률에 더 높은 드롭아웃 비율을 사용하세요.
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
|
||||
>>> print(my_config)
|
||||
DistilBertConfig {
|
||||
"activation": "relu",
|
||||
"attention_dropout": 0.4,
|
||||
"dim": 768,
|
||||
"dropout": 0.1,
|
||||
"hidden_dim": 3072,
|
||||
"initializer_range": 0.02,
|
||||
"max_position_embeddings": 512,
|
||||
"model_type": "distilbert",
|
||||
"n_heads": 12,
|
||||
"n_layers": 6,
|
||||
"pad_token_id": 0,
|
||||
"qa_dropout": 0.1,
|
||||
"seq_classif_dropout": 0.2,
|
||||
"sinusoidal_pos_embds": false,
|
||||
"transformers_version": "4.16.2",
|
||||
"vocab_size": 30522
|
||||
}
|
||||
```
|
||||
|
||||
사전 학습된 모델 속성은 [`~PretrainedConfig.from_pretrained`] 함수에서 수정할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
|
||||
```
|
||||
|
||||
모델 구성이 만족스러우면 [`~PretrainedConfig.save_pretrained`]로 저장할 수 있습니다. 설정 파일은 지정된 작업 경로에 JSON 파일로 저장됩니다:
|
||||
|
||||
```py
|
||||
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
|
||||
```
|
||||
|
||||
configuration 파일을 재사용하려면 [`~PretrainedConfig.from_pretrained`]를 사용하여 가져오세요:
|
||||
|
||||
```py
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
configuration 파일을 딕셔너리로 저장하거나 사용자 정의 configuration 속성과 기본 configuration 속성의 차이점만 저장할 수도 있습니다! 자세한 내용은 [configuration](main_classes/configuration) 문서를 참조하세요.
|
||||
|
||||
</Tip>
|
||||
|
||||
## 모델[[model]]
|
||||
|
||||
다음 단계는 [모델(model)](main_classes/models)을 만드는 것입니다. 느슨하게 아키텍처라고도 불리는 모델은 각 계층이 수행하는 동작과 발생하는 작업을 정의합니다. configuration의 `num_hidden_layers`와 같은 속성은 아키텍처를 정의하는 데 사용됩니다. 모든 모델은 기본 클래스 [`PreTrainedModel`]과 입력 임베딩 크기 조정 및 셀프 어텐션 헤드 가지 치기와 같은 몇 가지 일반적인 메소드를 공유합니다. 또한 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 또는 [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)의 서브클래스이기도 합니다. 즉, 모델은 각 프레임워크의 사용법과 호환됩니다.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
사용자 지정 configuration 속성을 모델에 가져옵니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertModel
|
||||
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
|
||||
>>> model = DistilBertModel(my_config)
|
||||
```
|
||||
|
||||
이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다.
|
||||
|
||||
사전 학습된 모델을 [`~PreTrainedModel.from_pretrained`]로 생성합니다:
|
||||
|
||||
```py
|
||||
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
사용자 지정 configuration 속성을 모델에 불러옵니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertModel
|
||||
|
||||
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
|
||||
>>> tf_model = TFDistilBertModel(my_config)
|
||||
```
|
||||
|
||||
이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다.
|
||||
|
||||
사전 학습된 모델을 [`~TFPreTrainedModel.from_pretrained`]로 생성합니다:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
### 모델 헤드[[model-heads]]
|
||||
|
||||
이 시점에서 *은닉 상태(hidden state)*를 출력하는 기본 DistilBERT 모델을 갖게 됩니다. 은닉 상태는 최종 출력을 생성하기 위해 모델 헤드에 입력으로 전달됩니다. 🤗 Transformers는 모델이 해당 작업을 지원하는 한 각 작업마다 다른 모델 헤드를 제공합니다(즉, 번역과 같은 시퀀스 간 작업에는 DistilBERT를 사용할 수 없음).
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
예를 들어, [`DistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다.
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertForSequenceClassification
|
||||
|
||||
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`DistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다.
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertForQuestionAnswering
|
||||
|
||||
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
예를 들어, [`TFDistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForSequenceClassification
|
||||
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`TFDistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다.
|
||||
|
||||
```py
|
||||
>>> from transformers import TFDistilBertForQuestionAnswering
|
||||
|
||||
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## 토크나이저[[tokenizer]]
|
||||
|
||||
텍스트 데이터에 모델을 사용하기 전에 마지막으로 필요한 기본 클래스는 원시 텍스트를 텐서로 변환하는 [토크나이저](main_classes/tokenizer)입니다. 🤗 Transformers에 사용할 수 있는 토크나이저는 두 가지 유형이 있습니다:
|
||||
|
||||
- [`PreTrainedTokenizer`]: 파이썬으로 구현된 토크나이저입니다.
|
||||
- [`PreTrainedTokenizerFast`]: Rust 기반 [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) 라이브러리로 만들어진 토크나이저입니다. 이 토크나이저는 Rust로 구현되어 배치 토큰화에서 특히 빠릅니다. 빠른 토크나이저는 토큰을 원래 단어나 문자에 매핑하는 *오프셋 매핑*과 같은 추가 메소드도 제공합니다.
|
||||
두 토크나이저 모두 인코딩 및 디코딩, 새 토큰 추가, 특수 토큰 관리와 같은 일반적인 방법을 지원합니다.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
모든 모델이 빠른 토크나이저를 지원하는 것은 아닙니다. 이 [표](index#supported-frameworks)에서 모델의 빠른 토크나이저 지원 여부를 확인하세요.
|
||||
|
||||
</Tip>
|
||||
|
||||
토크나이저를 직접 학습한 경우, *어휘(vocabulary)* 파일에서 토크나이저를 만들 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizer
|
||||
|
||||
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
|
||||
```
|
||||
|
||||
사용자 지정 토크나이저의 어휘는 사전 학습된 모델의 토크나이저에서 생성된 어휘와 다를 수 있다는 점을 기억하는 것이 중요합니다. 사전 학습된 모델을 사용하는 경우 사전 학습된 모델의 어휘를 사용해야 하며, 그렇지 않으면 입력이 의미를 갖지 못합니다. [`DistilBertTokenizer`] 클래스를 사용하여 사전 학습된 모델의 어휘로 토크나이저를 생성합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizer
|
||||
|
||||
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
[`DistilBertTokenizerFast`] 클래스로 빠른 토크나이저를 생성합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import DistilBertTokenizerFast
|
||||
|
||||
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
[`AutoTokenizer`]는 기본적으로 빠른 토크나이저를 가져오려고 합니다. 이 동작을 비활성화하려면 `from_pretrained`에서 `use_fast=False`를 설정하면 됩니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
## 이미지 프로세서[[image-processor]]
|
||||
|
||||
이미지 프로세서(image processor)는 비전 입력을 처리합니다. 기본 [`~image_processing_utils.ImageProcessingMixin`] 클래스에서 상속합니다.
|
||||
|
||||
사용하려면 사용 중인 모델과 연결된 이미지 프로세서를 생성합니다. 예를 들어, 이미지 분류에 [ViT](model_doc/vit)를 사용하는 경우 기본 [`ViTImageProcessor`]를 생성합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import ViTImageProcessor
|
||||
|
||||
>>> vit_extractor = ViTImageProcessor()
|
||||
>>> print(vit_extractor)
|
||||
ViTImageProcessor {
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "ViTImageProcessor",
|
||||
"image_mean": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"image_std": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"resample": 2,
|
||||
"size": 224
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
사용자 지정을 원하지 않는 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 이미지 프로세서 매개변수를 불러오면 됩니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
사용자 지정 이미지 프로세서를 생성하려면 [`ViTImageProcessor`] 파라미터를 수정합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import ViTImageProcessor
|
||||
|
||||
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
|
||||
>>> print(my_vit_extractor)
|
||||
ViTImageProcessor {
|
||||
"do_normalize": false,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "ViTImageProcessor",
|
||||
"image_mean": [
|
||||
0.3,
|
||||
0.3,
|
||||
0.3
|
||||
],
|
||||
"image_std": [
|
||||
0.5,
|
||||
0.5,
|
||||
0.5
|
||||
],
|
||||
"resample": "PIL.Image.BOX",
|
||||
"size": 224
|
||||
}
|
||||
```
|
||||
|
||||
## 특성 추출기[[feature-extractor]]
|
||||
|
||||
특성 추출기(feature extractor)는 오디오 입력을 처리합니다. 기본 [`~feature_extraction_utils.FeatureExtractionMixin`] 클래스에서 상속되며, 오디오 입력을 처리하기 위해 [`SequenceFeatureExtractor`] 클래스에서 상속할 수도 있습니다.
|
||||
|
||||
사용하려면 사용 중인 모델과 연결된 특성 추출기를 생성합니다. 예를 들어, 오디오 분류에 [Wav2Vec2](model_doc/wav2vec2)를 사용하는 경우 기본 [`Wav2Vec2FeatureExtractor`]를 생성합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
|
||||
>>> print(w2v2_extractor)
|
||||
Wav2Vec2FeatureExtractor {
|
||||
"do_normalize": true,
|
||||
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
||||
"feature_size": 1,
|
||||
"padding_side": "right",
|
||||
"padding_value": 0.0,
|
||||
"return_attention_mask": false,
|
||||
"sampling_rate": 16000
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
사용자 지정이 필요하지 않은 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 특성 추출기 ㅁ개변수를 불러 오면 됩니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
사용자 지정 특성 추출기를 만들려면 [`Wav2Vec2FeatureExtractor`] 매개변수를 수정합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False)
|
||||
>>> print(w2v2_extractor)
|
||||
Wav2Vec2FeatureExtractor {
|
||||
"do_normalize": false,
|
||||
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
||||
"feature_size": 1,
|
||||
"padding_side": "right",
|
||||
"padding_value": 0.0,
|
||||
"return_attention_mask": false,
|
||||
"sampling_rate": 8000
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## 프로세서[[processor]]
|
||||
|
||||
멀티모달 작업을 지원하는 모델의 경우, 🤗 Transformers는 특성 추출기 및 토크나이저와 같은 처리 클래스를 단일 객체로 편리하게 래핑하는 프로세서 클래스를 제공합니다. 예를 들어, 자동 음성 인식 작업(Automatic Speech Recognition task (ASR))에 [`Wav2Vec2Processor`]를 사용한다고 가정해 보겠습니다. 자동 음성 인식 작업은 오디오를 텍스트로 변환하므로 특성 추출기와 토크나이저가 필요합니다.
|
||||
|
||||
오디오 입력을 처리할 특성 추출기를 만듭니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2FeatureExtractor
|
||||
|
||||
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
|
||||
```
|
||||
|
||||
텍스트 입력을 처리할 토크나이저를 만듭니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2CTCTokenizer
|
||||
|
||||
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
|
||||
```
|
||||
|
||||
[`Wav2Vec2Processor`]에서 특성 추출기와 토크나이저를 결합합니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import Wav2Vec2Processor
|
||||
|
||||
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
configuration과 모델이라는 두 가지 기본 클래스와 추가 전처리 클래스(토크나이저, 이미지 프로세서, 특성 추출기 또는 프로세서)를 사용하면 🤗 Transformers에서 지원하는 모든 모델을 만들 수 있습니다. 이러한 각 기본 클래스는 구성이 가능하므로 원하는 특정 속성을 사용할 수 있습니다. 학습을 위해 모델을 쉽게 설정하거나 기존의 사전 학습된 모델을 수정하여 미세 조정할 수 있습니다.
|
||||
@ -277,7 +277,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
터미널에서 다음 코드를 실행해 확인할 수 있습니다:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
주피터 노트북의 경우에는 다음과 같습니다:
|
||||
|
||||
@ -14,8 +14,6 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<!-- TODO: this was copied from the korean version of `gpu_selection.md`, and is not up to date with the english version of `accelerator_selection.md` -->
|
||||
|
||||
# GPU 선택하기 [[gpu-selection]]
|
||||
|
||||
분산 학습 과정에서 사용할 GPU의 개수와 순서를 정할 수 있습니다. 이 방법은 서로 다른 연산 성능을 가진 GPU가 있을 때 더 빠른 GPU를 우선적으로 사용하거나, 사용 가능한 GPU 중 일부만 선택하여 활용하고자 할 때 유용합니다. 이 선택 과정은 [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html)과 [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html)에서 모두 작동합니다. Accelerate나 [DeepSpeed 통합](./main_classes/deepspeed)은 필요하지 않습니다.
|
||||
@ -95,4 +93,4 @@ export CUDA_DEVICE_ORDER=FASTEST_FIRST
|
||||
|
||||
The `CUDA_DEVICE_ORDER` is especially useful if your training setup consists of an older and newer GPU, where the older GPU appears first, but you cannot physically swap the cards to make the newer GPU appear first. In this case, set `CUDA_DEVICE_ORDER=FASTEST_FIRST` to always use the newer and faster GPU first (`nvidia-smi` or `rocm-smi` still reports the GPUs in their PCIe order). Or you could also set `export CUDA_VISIBLE_DEVICES=1,0`.
|
||||
|
||||
`CUDA_DEVICE_ORDER`는 구형 GPU와 신형 GPU가 혼합된 환경에서 특히 유용합니다. 예를 들어, 구형 GPU가 먼저 표시되지만 물리적으로 교체할 수 없는 경우, `CUDA_DEVICE_ORDER=FASTEST_FIRST`를 설정하면 항상 신형 및 더 빠른 GPU를 우선적으로 사용(nvidia-smi 또는 rocm-smi는 PCIe 순서대로 GPU를 표시함)할 수 있습니다. 또는, `export CUDA_VISIBLE_DEVICES=1,0`을 설정하여 GPU 사용 순서를 직접 지정할 수도 있습니다.
|
||||
`CUDA_DEVICE_ORDER`는 구형 GPU와 신형 GPU가 혼합된 환경에서 특히 유용합니다. 예를 들어, 구형 GPU가 먼저 표시되지만 물리적으로 교체할 수 없는 경우, `CUDA_DEVICE_ORDER=FASTEST_FIRST`를 설정하면 항상 신형 및 더 빠른 GPU를 우선적으로 사용(nvidia-smi 또는 rocm-smi는 PCIe 순서대로 GPU를 표시함)할 수 있습니다. 또는, `export CUDA_VISIBLE_DEVICES=1,0`을 설정하여 GPU 사용 순서를 직접 지정할 수도 있습니다.
|
||||
@ -1,152 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 모델 구성 요소 맞춤 설정하기[[customizing-model-components]]
|
||||
|
||||
모델을 완전히 새로 작성하는 대신 구성 요소를 수정하여 모델을 맞춤 설정하는 방법이 있습니다. 이 방법으로 모델을 특정 사용 사례에 맞게 모델을 조정할 수 있습니다. 예를 들어, 새로운 레이어를 추가하거나 아키텍처의 어텐션 메커니즘을 최적화할 수 있습니다. 이러한 맞춤 설정은 트랜스포머 모델에 직접 적용되므로, [`Trainer`], [`PreTrainedModel`] 및 [PEFT](https://huggingface.co/docs/peft/en/index) 라이브러리와 같은 기능을 계속 사용할 수 있습니다.
|
||||
|
||||
이 가이드에서는 모델의 어텐션 메커니즘을 맞춤 설정하여 [Low-Rank Adaptation (LoRA)](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora)를 적용하는 방법을 설명합니다.
|
||||
|
||||
> [!TIP]
|
||||
> 모델 코드를 반복적으로 수정하고 개발할 때 [clear_import_cache](https://github.com/huggingface/transformers/blob/9985d06add07a4cc691dc54a7e34f54205c04d40/src/transformers/utils/import_utils.py#L2286) 유틸리티가 매우 유용합니다. 이 기능은 캐시된 모든 트랜스포머 모듈을 제거하여 Python이 환경을 재시작하지 않고도 수정된 코드를 다시 가져올 수 있도록 합니다.
|
||||
>
|
||||
> ```py
|
||||
> from transformers import AutoModel
|
||||
> from transformers.utils.import_utils import clear_import_cache
|
||||
>
|
||||
> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
> # 모델 코드 수정
|
||||
> # 캐시를 지워 수정된 코드를 다시 가져오기
|
||||
> clear_import_cache()
|
||||
> # 업데이트된 코드를 사용하기 위해 다시 가져오기
|
||||
> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
> ```
|
||||
|
||||
## 어텐션 클래스[[attention-class]]
|
||||
|
||||
[Segment Anything](./model_doc/sam)은 이미지 분할 모델로, 어텐션 메커니즘에서 query-key-value(`qkv`) 프로젝션을 결합합니다. 학습 가능한 파라미터 수와 연산 부담을 줄이기 위해 `qkv` 프로젝션에 LoRA를 적용할 수 있습니다. 이를 위해서는 `qkv` 프로젝션을 분리하여 `q`와 `v`에 LoRA를 개별적으로 적용해야 합니다.
|
||||
|
||||
1. 원래의 `SamVisionAttention` 클래스를 상속하여 `SamVisionAttentionSplit`이라는 사용자 정의 어텐션 클래스를 만듭니다. `__init__`에서 결합된 `qkv`를 삭제하고, `q`, `k`, `v`를 위한 개별 선형 레이어를 생성합니다.
|
||||
|
||||
```py
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.models.sam.modeling_sam import SamVisionAttention
|
||||
|
||||
class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
|
||||
def __init__(self, config, window_size):
|
||||
super().__init__(config, window_size)
|
||||
# 결합된 qkv 제거
|
||||
del self.qkv
|
||||
# q, k, v 개별 프로젝션 생성
|
||||
self.q = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
|
||||
self.k = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
|
||||
self.v = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
|
||||
self._register_load_state_dict_pre_hook(self.split_q_k_v_load_hook)
|
||||
```
|
||||
|
||||
2. `_split_qkv_load_hook` 함수는 모델을 가져올 때, 사전 훈련된 `qkv` 가중치를 `q`, `k`, `v`로 분리하여 사전 훈련된 모델과의 호환성을 보장합니다.
|
||||
|
||||
```py
|
||||
def split_q_k_v_load_hook(self, state_dict, prefix, *args):
|
||||
keys_to_delete = []
|
||||
for key in list(state_dict.keys()):
|
||||
if "qkv." in key:
|
||||
# 결합된 프로젝션에서 q, k, v 분리
|
||||
q, k, v = state_dict[key].chunk(3, dim=0)
|
||||
# 개별 q, k, v 프로젝션으로 대체
|
||||
state_dict[key.replace("qkv.", "q.")] = q
|
||||
state_dict[key.replace("qkv.", "k.")] = k
|
||||
state_dict[key.replace("qkv.", "v.")] = v
|
||||
# 기존 qkv 키를 삭제 대상으로 표시
|
||||
keys_to_delete.append(key)
|
||||
|
||||
# 기존 qkv 키 제거
|
||||
for key in keys_to_delete:
|
||||
del state_dict[key]
|
||||
```
|
||||
|
||||
3. `forward` 단계에서 `q`, `k`, `v`는 개별적으로 계산되며, 어텐션 메커니즘의 나머지 부분은 동일하게 유지됩니다.
|
||||
|
||||
```py
|
||||
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
|
||||
batch_size, height, width, _ = hidden_states.shape
|
||||
qkv_shapes = (batch_size * self.num_attention_heads, height * width, -1)
|
||||
query = self.q(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
|
||||
key = self.k(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
|
||||
value = self.v(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
|
||||
|
||||
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
||||
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
||||
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
||||
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
|
||||
attn_output = self.proj(attn_output)
|
||||
|
||||
if output_attentions:
|
||||
outputs = (attn_output, attn_weights)
|
||||
else:
|
||||
outputs = (attn_output, None)
|
||||
return outputs
|
||||
```
|
||||
|
||||
사용자 정의 `SamVisionAttentionSplit` 클래스를 원본 모델의 `SamVisionAttention` 모듈에 할당하여 교체합니다. 모델 내 모든 `SamVisionAttention` 인스턴스는 분리된 어텐션 버전으로 대체됩니다.
|
||||
|
||||
[`~PreTrainedModel.from_pretrained`]로 모델을 가져오세요.
|
||||
|
||||
```py
|
||||
from transformers import SamModel
|
||||
|
||||
# 사전 훈련된 SAM 모델 가져오기
|
||||
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
||||
|
||||
# 비전-인코더 모듈에서 어텐션 클래스 교체
|
||||
for layer in model.vision_encoder.layers:
|
||||
if hasattr(layer, "attn"):
|
||||
layer.attn = SamVisionAttentionSplit(model.config.vision_config, model.config.vision_config.window_size)
|
||||
```
|
||||
|
||||
## LoRA[[lora]]
|
||||
|
||||
분리된 `q`, `k`, `v` 프로젝션을 사용할 때 , `q`와 `v`에 LoRA를 적용합니다.
|
||||
|
||||
[LoraConfig](https://huggingface.co/docs/peft/package_reference/config#peft.PeftConfig)를 생성하고, 랭크 `r`, `lora_alpha`, `lora_dropout`, `task_type`, 그리고 가장 중요한 적용될 모듈을 지정합니다.
|
||||
|
||||
```py
|
||||
from peft import LoraConfig, get_peft_model
|
||||
|
||||
config = LoraConfig(
|
||||
r=16,
|
||||
lora_alpha=32,
|
||||
# q와 v에 LoRA 적용
|
||||
target_modules=["q", "v"],
|
||||
lora_dropout=0.1,
|
||||
task_type="FEATURE_EXTRACTION"
|
||||
)
|
||||
```
|
||||
|
||||
모델과 [LoraConfig](https://huggingface.co/docs/peft/package_reference/config#peft.PeftConfig)를 [get\_peft\_model](https://huggingface.co/docs/peft/package_reference/peft_model#peft.get_peft_model)에 전달하여 모델에 LoRA를 적용합니다.
|
||||
|
||||
```py
|
||||
model = get_peft_model(model, config)
|
||||
```
|
||||
|
||||
[print_trainable_parameters](https://huggingface.co/docs/peft/package_reference/peft_model#peft.PeftMixedModel.print_trainable_parameters)를 호출하여 전체 파라미터 수 대비 훈련되는 파라미터 수를 확인하세요.
|
||||
|
||||
```py
|
||||
model.print_trainable_parameters()
|
||||
"trainable params: 589,824 || all params: 94,274,096 || trainable%: 0.6256"
|
||||
```
|
||||
@ -342,92 +342,60 @@ generation_output[:2]
|
||||
|
||||
## 캐시 (Caches) [[transformers.Cache]]
|
||||
|
||||
[[autodoc]] CacheLayerMixin
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] DynamicLayer
|
||||
- update
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] StaticLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] SlidingWindowLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] CacheProcessor
|
||||
- pre_update
|
||||
- post_update
|
||||
|
||||
[[autodoc]] OffloadedCacheProcessor
|
||||
- pre_update
|
||||
|
||||
[[autodoc]] QuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] Cache
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] DynamicCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reorder_cache
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
|
||||
[[autodoc]] QuantizedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
|
||||
[[autodoc]] QuantoQuantizedCache
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] HQQQuantizedCache
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] OffloadedCache
|
||||
- update
|
||||
- prefetch_layer
|
||||
- evict_previous_layer
|
||||
|
||||
[[autodoc]] StaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] OffloadedStaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] HybridCache
|
||||
|
||||
[[autodoc]] HybridChunkedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] SlidingWindowCache
|
||||
- update
|
||||
- reset
|
||||
|
||||
[[autodoc]] EncoderDecoderCache
|
||||
- get_seq_length
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] MambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
|
||||
## 워터마크 유틸리티 (Watermark Utils) [[transformers.WatermarkDetector]]
|
||||
|
||||
[[autodoc]] WatermarkDetector
|
||||
|
||||
@ -1,23 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# PEFT[[transformers.integrations.PeftAdapterMixin]]
|
||||
|
||||
[`~integrations.PeftAdapterMixin`]은 Transformers 라이브러리와 함께 어댑터를 관리할 수 있도록 [PEFT](https://huggingface.co/docs/peft/index) 라이브러리의 함수들을 제공합니다. 이 믹스인은 현재 LoRA, IA3, AdaLora를 지원합니다. 프리픽스 튜닝 방법들(프롬프트 튜닝, 프롬프트 학습)은 torch 모듈에 삽입할 수 없는 구조이므로 지원되지 않습니다.
|
||||
|
||||
[[autodoc]] integrations.PeftAdapterMixin
|
||||
- load_adapter
|
||||
- add_adapter
|
||||
- set_adapter
|
||||
- disable_adapters
|
||||
- enable_adapters
|
||||
- active_adapters
|
||||
- get_adapter_state_dict
|
||||
@ -1,82 +0,0 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 토크나이저[[tokenizer]]
|
||||
|
||||
토크나이저는 모델의 입력을 준비하는 역할을 담당합니다. 이 라이브러리에는 모든 모델을 위한 토크나이저가 포함되어 있습니다. 대부분의 토크나이저는 두 가지 버전으로 제공됩니다. 완전한 파이썬 구현과 Rust 라이브러리 [🤗 Tokenizers](https://github.com/huggingface/tokenizers)에 기반한 "Fast" 구현입니다. "Fast" 구현은 다음을 가능하게 합니다:
|
||||
|
||||
1. 특히 배치 토큰화를 수행할 때 속도가 크게 향상됩니다.
|
||||
2. 원본 문자열(문자 및 단어)과 토큰 공간 사이를 매핑하는 추가적인 메소드를 제공합니다. (예: 특정 문자를 포함하는 토큰의 인덱스를 얻거나, 특정 토큰에 해당하는 문자 범위를 가져오는 등).
|
||||
|
||||
기본 클래스인 [`PreTrainedTokenizer`]와 [`PreTrainedTokenizerFast`]는 문자열 입력을 인코딩하는 메소드를 구현하며(아래 참조), 로컬 파일이나 디렉토리, 또는 라이브러리에서 제공하는 사전 훈련된 토크나이저(HuggingFace의 AWS S3 저장소에서 다운로드된)로부터 파이썬 및 "Fast" 토크나이저를 인스턴스화하거나 저장하는 기능을 제공합니다. 이 두 클래스는 공통 메소드를 포함하는 [`~tokenization_utils_base.PreTrainedTokenizerBase`]와 [`~tokenization_utils_base.SpecialTokensMixin`]에 의존합니다.
|
||||
|
||||
[`PreTrainedTokenizer`]와 [`PreTrainedTokenizerFast`]는 모든 토크나이저에서 사용되는 주요 메소드들을 구현합니다:
|
||||
|
||||
- 토큰화(문자열을 하위 단어 토큰 문자열로 분할), 토큰 문자열을 ID로 변환 및 그 반대 과정, 그리고 인코딩/디코딩(즉, 토큰화 및 정수로 변환)을 수행합니다.
|
||||
- 구조(BPE, SentencePiece 등)에 구애받지 않고 어휘에 새로운 토큰을 추가합니다.
|
||||
- 특수 토큰(마스크, 문장 시작 등) 관리: 토큰을 추가하고, 쉽게 접근할 수 있도록 토크나이저의 속성에 할당하며, 토큰화 과정에서 분리되지 않도록 보장합니다.
|
||||
|
||||
[`BatchEncoding`]은 [`~tokenization_utils_base.PreTrainedTokenizerBase`]의 인코딩 메소드(`__call__`, `encode_plus`, `batch_encode_plus`)의 출력을 담고 있으며, 파이썬 딕셔너리를 상속받습니다. 토크나이저가 순수 파이썬 토크나이저인 경우 이 클래스는 표준 파이썬 딕셔너리처럼 동작하며, 이러한 메소드들로 계산된 다양한 모델 입력(`input_ids`, `attention_mask` 등)을 갖습니다. 토크나이저가 "Fast" 토크나이저일 경우(즉, HuggingFace [tokenizers 라이브러리](https://github.com/huggingface/tokenizers) 기반일 경우), 이 클래스는 추가적으로 원본 문자열(문자 및 단어)과 토큰 공간 사이를 매핑하는 데 사용할 수 있는 여러 고급 정렬 메소드를 제공합니다 (예: 특정 문자를 포함하는 토큰의 인덱스를 얻거나, 특정 토큰에 해당하는 문자 범위를 얻는 등).
|
||||
|
||||
|
||||
# 멀티모달 토크나이저[[multimodal-tokenizer]]
|
||||
|
||||
그 외에도 각 토크나이저는 "멀티모달" 토크나이저가 될 수 있으며, 이는 토크나이저가 모든 관련 특수 토큰을 토크나이저 속성의 일부로 저장하여 더 쉽게 접근할 수 있도록 한다는 것을 의미합니다. 예를 들어, LLaVA와 같은 비전-언어 모델에서 토크나이저를 가져오면, `tokenizer.image_token_id`에 접근하여 플레이스홀더로 사용되는 특수 이미지 토큰을 얻을 수 있습니다.
|
||||
|
||||
모든 유형의 토크나이저에 추가 특수 토큰을 활성화하려면, 다음 코드를 추가하고 토크나이저를 저장해야 합니다. 추가 특수 토큰은 반드시 특정 모달리티와 관련될 필요는 없으며, 모델이 자주 접근해야 하는 어떤 것이든 될 수 있습니다. 아래 코드에서 `output_dir`에 저장된 토크나이저는 세 개의 추가 특수 토큰에 직접 접근할 수 있게 됩니다.
|
||||
|
||||
```python
|
||||
vision_tokenizer = AutoTokenizer.from_pretrained(
|
||||
"llava-hf/llava-1.5-7b-hf",
|
||||
extra_special_tokens={"image_token": "<image>", "boi_token": "<image_start>", "eoi_token": "<image_end>"}
|
||||
)
|
||||
print(vision_tokenizer.image_token, vision_tokenizer.image_token_id)
|
||||
("<image>", 32000)
|
||||
```
|
||||
|
||||
## PreTrainedTokenizer[[transformers.PreTrainedTokenizer]]
|
||||
|
||||
[[autodoc]] PreTrainedTokenizer
|
||||
- __call__
|
||||
- add_tokens
|
||||
- add_special_tokens
|
||||
- apply_chat_template
|
||||
- batch_decode
|
||||
- decode
|
||||
- encode
|
||||
- push_to_hub
|
||||
- all
|
||||
|
||||
|
||||
## PreTrainedTokenizerFast[[transformers.PreTrainedTokenizerFast]]
|
||||
|
||||
[`PreTrainedTokenizerFast`]는 [tokenizers](https://huggingface.co/docs/tokenizers) 라이브러리에 의존합니다. 🤗 tokenizers 라이브러리에서 얻은 토크나이저는
|
||||
🤗 transformers로 매우 간단하게 가져올 수 있습니다. 어떻게 하는지 알아보려면 [Using tokenizers from 🤗 tokenizers](../fast_tokenizers) 페이지를 참고하세요.
|
||||
|
||||
[[autodoc]] PreTrainedTokenizerFast
|
||||
- __call__
|
||||
- add_tokens
|
||||
- add_special_tokens
|
||||
- apply_chat_template
|
||||
- batch_decode
|
||||
- decode
|
||||
- encode
|
||||
- push_to_hub
|
||||
- all
|
||||
|
||||
## BatchEncoding[[transformers.BatchEncoding]]
|
||||
|
||||
[[autodoc]] BatchEncoding
|
||||
@ -1,263 +0,0 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt= "TensorFlow" src= "https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white" >
|
||||
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style…Nu+W0m6K/I9gGPd/dfx/EN/wN62AhsBWuAAAAAElFTkSuQmCC">
|
||||
<img alt="SDPA" src= "https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ALBERT[[albert]]
|
||||
|
||||
[ALBERT](https://huggingface.co/papers/1909.11942)는 [BERT](./bert)의 확장성과 학습 시 메모리 한계를 해결하기 위해 설계된 모델입니다. 이 모델은 두 가지 파라미터 감소 기법을 도입합니다. 첫 번째는 임베딩 행렬 분해(factorized embedding parametrization)로, 큰 어휘 임베딩 행렬을 두 개의 작은 행렬로 분해하여 히든 사이즈를 늘려도 파라미터 수가 크게 증가하지 않도록 합니다. 두 번째는 계층 간 파라미터 공유(cross-layer parameter sharing)로, 여러 계층이 파라미터를 공유하여 학습해야 할 파라미터 수를 줄입니다.
|
||||
|
||||
ALBERT는 BERT에서 발생하는 GPU/TPU 메모리 한계, 긴 학습 시간, 갑작스런 성능 저하 문제를 해결하기 위해 만들어졌습니다. ALBERT는 파라미터를 줄이기 위해 두 가지 기법을 사용하여 메모리 사용량을 줄이고 BERT의 학습 속도를 높입니다:
|
||||
|
||||
- **임베딩 행렬 분해:** 큰 어휘 임베딩 행렬을 두 개의 더 작은 행렬로 분해하여 메모리 사용량을 줄입니다.
|
||||
- **계층 간 파라미터 공유:** 각 트랜스포머 계층마다 별도의 파라미터를 학습하는 대신, 여러 계층이 파라미터를 공유하여 학습해야 할 가중치 수를 더욱 줄입니다.
|
||||
|
||||
ALBERT는 BERT와 마찬가지로 절대 위치 임베딩(absolute position embeddings)을 사용하므로, 입력 패딩은 오른쪽에 적용해야 합니다. 임베딩 크기는 128이며, BERT의 768보다 작습니다. ALBERT는 한 번에 최대 512개의 토큰을 처리할 수 있습니다.
|
||||
|
||||
모든 공식 ALBERT 체크포인트는 [ALBERT 커뮤니티](https://huggingface.co/albert) 조직에서 확인하실 수 있습니다.
|
||||
|
||||
> [!TIP]
|
||||
> 오른쪽 사이드바의 ALBERT 모델을 클릭하시면 다양한 언어 작업에 ALBERT를 적용하는 예시를 더 확인하실 수 있습니다.
|
||||
|
||||
아래 예시는 [`Pipeline`], [`AutoModel`] 그리고 커맨드라인에서 `[MASK]` 토큰을 예측하는 방법을 보여줍니다.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="albert-base-v2",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("식물은 광합성이라고 알려진 과정을 통해 [MASK]를 생성합니다.", top_k=5)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"albert/albert-base-v2",
|
||||
torch_dtype=torch.float16,
|
||||
attn_implementation="sdpa",
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
prompt = "식물은 [MASK]이라고 알려진 과정을 통해 에너지를 생성합니다."
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
||||
predictions = outputs.logits[0, mask_token_index]
|
||||
|
||||
top_k = torch.topk(predictions, k=5).indices.tolist()
|
||||
for token_id in top_k[0]:
|
||||
print(f"예측: {tokenizer.decode([token_id])}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model albert-base-v2 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
</hfoptions>
|
||||
|
||||
## 참고 사항[[notes]]
|
||||
|
||||
- BERT는 절대 위치 임베딩을 사용하므로, 오른쪽에 입력이 패딩돼야 합니다.
|
||||
- 임베딩 크기 `E`는 히든 크기 `H`와 다릅니다. 임베딩은 문맥에 독립적(각 토큰마다 하나의 임베딩 벡터)이고, 은닉 상태는 문맥에 의존적(토큰 시퀀스마다 하나의 은닉 상태)입니다. 임베딩 행렬은 `V x E`(V: 어휘 크기)이므로, 일반적으로 `H >> E`가 더 논리적입니다. `E < H`일 때 모델 파라미터가 더 적어집니다.
|
||||
|
||||
## 참고 자료[[resources]]
|
||||
|
||||
아래 섹션의 자료들은 공식 Hugging Face 및 커뮤니티(🌎 표시) 자료로, AlBERT를 시작하는 데 도움이 됩니다. 여기에 추가할 자료가 있다면 Pull Request를 보내주세요! 기존 자료와 중복되지 않고 새로운 내용을 담고 있으면 좋습니다.
|
||||
|
||||
<PipelineTag pipeline="text-classification"/>
|
||||
|
||||
- [`AlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification)에서 지원됩니다.
|
||||
|
||||
- [`TFAlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification)에서 지원됩니다.
|
||||
|
||||
- [`FlaxAlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)에서 지원됩니다.
|
||||
- [텍스트 분류 작업 가이드](../tasks/sequence_classification)에서 모델 사용법을 확인하세요.
|
||||
|
||||
<PipelineTag pipeline="token-classification"/>
|
||||
|
||||
- [`AlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification)에서 지원됩니다.
|
||||
|
||||
- [`TFAlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)에서 지원됩니다.
|
||||
|
||||
- [`FlaxAlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification)에서 지원됩니다.
|
||||
- 🤗 Hugging Face의 [토큰 분류](https://huggingface.co/course/chapter7/2?fw=pt) 강좌
|
||||
- [토큰 분류 작업 가이드](../tasks/token_classification)에서 모델 사용법을 확인하세요.
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
- [`AlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)에서 지원됩니다.
|
||||
- [`TFAlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)에서 지원됩니다.
|
||||
- [`FlaxAlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)에서 지원됩니다.
|
||||
- 🤗 Hugging Face의 [마스킹 언어 모델링](https://huggingface.co/course/chapter7/3?fw=pt) 강좌
|
||||
- [마스킹 언어 모델링 작업 가이드](../tasks/masked_language_modeling)에서 모델 사용법을 확인하세요.
|
||||
|
||||
<PipelineTag pipeline="question-answering"/>
|
||||
|
||||
- [`AlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)에서 지원됩니다.
|
||||
- [`TFAlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)에서 지원됩니다.
|
||||
- [`FlaxAlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering)에서 지원됩니다.
|
||||
- [질의응답](https://huggingface.co/course/chapter7/7?fw=pt) 🤗 Hugging Face 강좌의 챕터.
|
||||
- [질의응답 작업 가이드](../tasks/question_answering)에서 모델 사용법을 확인하세요.
|
||||
|
||||
**다중 선택(Multiple choice)**
|
||||
|
||||
- [`AlbertForMultipleChoice`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)에서 지원됩니다.
|
||||
- [`TFAlbertForMultipleChoice`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)에서 지원됩니다.
|
||||
|
||||
- [다중 선택 작업 가이드](../tasks/multiple_choice)에서 모델 사용법을 확인하세요.
|
||||
|
||||
## AlbertConfig[[albertconfig]]
|
||||
|
||||
[[autodoc]] AlbertConfig
|
||||
|
||||
## AlbertTokenizer[[alberttokenizer]]
|
||||
|
||||
[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
|
||||
|
||||
## AlbertTokenizerFast[[alberttokenizerfast]]
|
||||
|
||||
[[autodoc]] AlbertTokenizerFast
|
||||
|
||||
## Albert 특화 출력[[albert-specific-outputs]]
|
||||
|
||||
[[autodoc]] models.albert.modeling_albert.AlbertForPreTrainingOutput
|
||||
|
||||
[[autodoc]] models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
## AlbertModel[[albertmodel]]
|
||||
|
||||
[[autodoc]] AlbertModel - forward
|
||||
|
||||
## AlbertForPreTraining[[albertforpretraining]]
|
||||
|
||||
[[autodoc]] AlbertForPreTraining - forward
|
||||
|
||||
## AlbertForMaskedLM[[albertformaskedlm]]
|
||||
|
||||
[[autodoc]] AlbertForMaskedLM - forward
|
||||
|
||||
## AlbertForSequenceClassification[[albertforsequenceclassification]]
|
||||
|
||||
[[autodoc]] AlbertForSequenceClassification - forward
|
||||
|
||||
## AlbertForMultipleChoice[[albertformultiplechoice]]
|
||||
|
||||
[[autodoc]] AlbertForMultipleChoice
|
||||
|
||||
## AlbertForTokenClassification[[albertfortokenclassification]]
|
||||
|
||||
[[autodoc]] AlbertForTokenClassification - forward
|
||||
|
||||
## AlbertForQuestionAnswering[[albertforquestionanswering]]
|
||||
|
||||
[[autodoc]] AlbertForQuestionAnswering - forward
|
||||
|
||||
</pt>
|
||||
|
||||
<tf>
|
||||
|
||||
## TFAlbertModel[[tfalbertmodel]]
|
||||
|
||||
[[autodoc]] TFAlbertModel - call
|
||||
|
||||
## TFAlbertForPreTraining[[tfalbertforpretraining]]
|
||||
|
||||
[[autodoc]] TFAlbertForPreTraining - call
|
||||
|
||||
## TFAlbertForMaskedLM[[tfalbertformaskedlm]]
|
||||
|
||||
[[autodoc]] TFAlbertForMaskedLM - call
|
||||
|
||||
## TFAlbertForSequenceClassification[[tfalbertforsequenceclassification]]
|
||||
|
||||
[[autodoc]] TFAlbertForSequenceClassification - call
|
||||
|
||||
## TFAlbertForMultipleChoice[[tfalbertformultiplechoice]]
|
||||
|
||||
[[autodoc]] TFAlbertForMultipleChoice - call
|
||||
|
||||
## TFAlbertForTokenClassification[[tfalbertfortokenclassification]]
|
||||
|
||||
[[autodoc]] TFAlbertForTokenClassification - call
|
||||
|
||||
## TFAlbertForQuestionAnswering[[tfalbertforquestionanswering]]
|
||||
|
||||
[[autodoc]] TFAlbertForQuestionAnswering - call
|
||||
|
||||
</tf>
|
||||
<jax>
|
||||
|
||||
## FlaxAlbertModel[[flaxalbertmodel]]
|
||||
|
||||
[[autodoc]] FlaxAlbertModel - **call**
|
||||
|
||||
## FlaxAlbertForPreTraining[[flaxalbertforpretraining]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForPreTraining - **call**
|
||||
|
||||
## FlaxAlbertForMaskedLM[[flaxalbertformaskedlm]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForMaskedLM - **call**
|
||||
|
||||
## FlaxAlbertForSequenceClassification[[flaxalbertforsequenceclassification]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForSequenceClassification - **call**
|
||||
|
||||
## FlaxAlbertForMultipleChoice[[flaxalbertformultiplechoice]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForMultipleChoice - **call**
|
||||
|
||||
## FlaxAlbertForTokenClassification[[flaxalbertfortokenclassification]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForTokenClassification - **call**
|
||||
|
||||
## FlaxAlbertForQuestionAnswering[[flaxalbertforquestionanswering]]
|
||||
|
||||
[[autodoc]] FlaxAlbertForQuestionAnswering - **call**
|
||||
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
@ -1,207 +0,0 @@
|
||||
<!--Copyright 2025 The LG AI Research and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# EXAONE 4
|
||||
|
||||
## 개요
|
||||
|
||||
**[EXAONE 4.0](https://github.com/LG-AI-EXAONE/EXAONE-4.0)** 모델군은 [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) 모델군의 높은 실용성과 [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep) 모델군의 향상된 사고 추론 능력을 각각 Non-reasoning mode와 Reasoning mode로 통합한 자연어 모델(language model)입니다. 에이전틱(agentic) AI 시대에 발맞춰 EXAONE 4.0은 에이전틱 도구 사용 능력과 같은 핵심 기능을 통합했고, 기존의 다국어 능력을 영어, 한국어와 더불어 스페인어까지 확장했습니다.
|
||||
|
||||
EXAONE 4.0 모델군은 두 개의 모델: 높은 성능을 위해 최적화된 32B 중형 모델, 그리고 온-디바이스 활용을 위해 디자인된 1.2B 소형 모델으로 구성되어 있습니다.
|
||||
|
||||
EXAONE 4.0의 모델 구조는 이전 EXAONE 모델들과 다른 아키텍처 디자인을 채택했습니다.
|
||||
|
||||
1. **Hybrid Attention**: 32B 모델은 *Local attention (sliding window attention)*과 *Global attention (full attention)*을 3:1 비율로 연결한 hybrid attention 구조를 채택했습니다. 또한 전체 문맥을 더 잘 이해할 수 있도록 global attention에서 RoPE를 사용하지 않았습니다.
|
||||
2. **QK-Reorder-Norm**: 더 나은 downstream tasks 성능을 위해 연산량의 증가를 감수하며 전통적으로 사용되고 있던 Pre-LN 방식을 변경했습니다. LayerNorm의 위치를 attention과 MLP의 출력에 적용되도록 재배치했고, Q와 K projection 직후에도 RMS normalization을 추가했습니다.
|
||||
|
||||
더 자세한 정보는 [기술 보고서](https://arxiv.org/abs/2507.11407), [HuggingFace 논문](https://huggingface.co/papers/2507.11407), [블로그](https://www.lgresearch.ai/blog/view?seq=576), [공식 GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0) 페이지를 참고해주시길 바랍니다.
|
||||
|
||||
공개된 모든 모델 체크포인트는 [HuggingFace 콜렉션](https://huggingface.co/collections/LGAI-EXAONE/exaone-40-686b2e0069800c835ed48375)에서 확인할 수 있습니다.
|
||||
|
||||
|
||||
## 모델 세부 정보
|
||||
|
||||
| Model Configuration | 32B | 1.2B |
|
||||
|:-------------------|:-----:|:------:|
|
||||
| d_model | 5,120 | 2,048 |
|
||||
| Number of layers | 64 | 30 |
|
||||
| Normalization | QK-Reorder-LN | QK-Reorder-LN |
|
||||
| Non-linearity | SwiGLU | SwiGLU |
|
||||
| Feedforward dimension | 27,392 | 4,096 |
|
||||
| Attention type | Hybrid (3:1 Local-Global) | Global |
|
||||
| Head type | GQA | GQA |
|
||||
| Number of heads | 40 | 32 |
|
||||
| Number of KV heads | 8 | 8 |
|
||||
| Head size | 128 | 64 |
|
||||
| Max sequence length | 131,072 | 65,536 |
|
||||
| RoPE theta | 1,000,000 | 1,000,000 |
|
||||
| Tokenizer | BBPE | BBPE |
|
||||
| Vocab size | 102,400 | 102,400 |
|
||||
| Tied word embedding | False | True |
|
||||
| Knowledge cut-off | Nov. 2024 | Nov. 2024 |
|
||||
|
||||
|
||||
## 사용 팁
|
||||
|
||||
### Non-reasoning mode
|
||||
|
||||
일반적인 대화의 경우 아래 예제와 같이 EXAONE 4.0을 사용할 수 있습니다.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "LGAI-EXAONE/EXAONE-4.0-32B"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="bfloat16",
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
# 원하는 입력을 선택하세요
|
||||
prompt = "Explain how wonderful you are"
|
||||
prompt = "Explica lo increíble que eres"
|
||||
prompt = "너가 얼마나 대단한지 설명해 봐"
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=False,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
### Reasoning mode
|
||||
|
||||
The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.
|
||||
|
||||
EXAONE 4.0 모델군은 복잡한 문제를 해결하기 위한 사고 추론 능력을 갖추고 있습니다. 토크나이저에서 `enable_thinking=True` 인자를 사용해서 reasoning mode로 모델을 사용할 수 있습니다. 이 경우 `<think>` 토큰으로 추론 블록을 연 뒤, 닫지 않고 추론을 시작합니다.
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
enable_thinking=True,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> 모델을 reasoning mode로 사용할 경우, 생성되는 답변이 sampling parameters에 굉장히 민감합니다. 따라서 더 나은 생성 품질을 위해 공식 [Usage Guideline](https://github.com/LG-AI-EXAONE/EXAONE-4.0#usage-guideline)를 참조해 주시길 바랍니다.
|
||||
|
||||
### Agentic tool use
|
||||
|
||||
EXAONE 4.0 모델은 도구 사용 능력을 갖춘 덕분에 Agent로 사용할 수 있습니다. 이를 위해서는 아래 예제와 같이 도구 명세를 모델에게 제공해 주어야 합니다.
|
||||
|
||||
```python
|
||||
import random
|
||||
|
||||
def roll_dice(max_num: int):
|
||||
return random.randint(1, max_num)
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "roll_dice",
|
||||
"description": "Roll a dice with the number 1 to N. User can select the number N.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["max_num"],
|
||||
"properties": {
|
||||
"max_num": {
|
||||
"type": "int",
|
||||
"description": "Max number of the dice"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "Roll D6 dice twice!"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=1024,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## Exaone4Config
|
||||
|
||||
[[autodoc]] Exaone4Config
|
||||
|
||||
## Exaone4Model
|
||||
|
||||
[[autodoc]] Exaone4Model
|
||||
- forward
|
||||
|
||||
## Exaone4ForCausalLM
|
||||
|
||||
[[autodoc]] Exaone4ForCausalLM
|
||||
- forward
|
||||
|
||||
## Exaone4ForSequenceClassification
|
||||
|
||||
[[autodoc]] Exaone4ForSequenceClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForTokenClassification
|
||||
|
||||
[[autodoc]] Exaone4ForTokenClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForQuestionAnswering
|
||||
|
||||
[[autodoc]] Exaone4ForQuestionAnswering
|
||||
- forward
|
||||
@ -1,189 +0,0 @@
|
||||
<!--Copyright 2023 The Intel Team Authors and HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# TVP [[tvp]]
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## 개요 [[overview]]
|
||||
|
||||
Text-Visual Prompting(TVP) 프레임워크는 Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding이 발표한 논문 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://huggingface.co/papers/2303.04995)에서 제안되었습니다.
|
||||
|
||||
논문의 초록은 다음과 같습니다:
|
||||
|
||||
*본 논문에서는 길고, 편집되지 않은 비디오에서 문장으로 설명된 순간의 시작/종료 시점을 예측하는 것을 목표로 하는 Temporal Video Grounding(TVG) 문제를 다룹니다. 세밀한 3D 시각적 특징 덕분에 TVG 기술은 최근 몇 년 동안 놀라운 발전을 이뤘습니다. 하지만 3D 합성곱 신경망(CNN)의 높은 복잡성으로 인해 밀도 높은 3D 시각적 특징을 추출하는 데 시간이 오래 걸리고 그만큼 많은 메모리와 연산 자원을 필요로 합니다. 효율적인 TVG를 위해, 본 논문에서는 TVG 모델의 시각적 입력과 텍스트 특징 모두에 최적화된 교란 패턴('프롬프트'라고 부름)을 통합하는 새로운 Text-Visual Prompting(TVP) 프레임워크를 제안합니다. 3D CNN과 뚜렷이 대비되게 TVP가 2D TVG 모델에서 비전 인코더와 언어 인코더를 효과적으로 공동 학습할 수 있게 하고, 낮은 복잡도의 희소한 2D 시각적 특징만을 사용하여 크로스 모달 특징 융합의 성능을 향상시킵니다. 더 나아가, TVG의 효율적인 학습을 위해 Temporal-Distance IoU(TDIoU) 손실 함수를 제안합니다. 두 개의 벤치마크 데이터 세트인 Charades-STA와 ActivityNet Captions 데이터셋에 대한 실험을 통해, 제안된 TVP가 2D TVG의 성능을 크게 향상시키고(예: Charades-STA에서 9.79% 향상, ActivityNet Captions에서 30.77% 향상) 3D 시각적 특징을 사용하는 TVG에 비해 5배의 추론 가속을 달성함을 실험적으로 입증합니다.*
|
||||
|
||||
이 연구는 Temporal Video Grounding(TVG)을 다룹니다. TVG는 문장으로 설명된 특정 이벤트의 시작 및 종료 시점을 긴 비디오에서 정확히 찾아내는 과정입니다. TVG 성능을 향상시키기 위해 Text-Visual Prompting(TVP)이 제안되었습니다. TVP는 '프롬프트'라고 알려진 특별히 설계된 패턴을 TVG 모델의 시각적(이미지 기반) 및 텍스트(단어 기반) 입력 구성 요소 모두에 통합하는 것을 방식입니다. 이 프롬프트는 추가적인 시공간적 컨텍스트를 제공함으로써 모델이 비디오 내 이벤트 시점의 예측 정확도를 높입니다. 이 접근 방식은 3D 시각적 입력 대신 2D 입력을 사용합니다. 3D 입력은 보다 풍부한 시공간적 세부 정보를 제공하지만 처리하는 데 시간이 더 많이 걸립니다. 따라서 프롬프팅 메소드와 함께 2D 입력을 사용하여 이와 유사한 수준의 컨텍스트와 정확도를 더 효율적으로 제공하는 것을 목표로 합니다.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/tvp_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> TVP 아키텍처. <a href="https://huggingface.co/papers/2303.04995">원본 논문에서 발췌.</a> </small>
|
||||
|
||||
이 모델은 [Jiqing Feng](https://huggingface.co/Jiqing)님이 기여했습니다. 원본 코드는 [이 곳](https://github.com/intel/TVP)에서 찾을 수 있습니다.
|
||||
|
||||
## 사용 팁 및 예시 [[usage-tips-and-examples]]
|
||||
|
||||
프롬프트는 최적화된 교란 패턴으로 입력 비디오 프레임이나 텍스트 특징에 추가되는 패턴입니다. 범용 세트란 모든 입력에 대해 동일한 프롬프트 세트를 사용하는 것을 말합니다. 즉, 입력 내용과 관계없이 모든 비디오 프레임과 텍스트 특징에 이 프롬프트들을 일관적으로 추가합니다.
|
||||
|
||||
TVP는 시각 인코더와 크로스 모달 인코더로 구성됩니다. 범용 시각 프롬프트와 텍스트 프롬프트 세트가 각각 샘플링된 비디오 프레임과 텍스트 특징에 통합됩니다. 특히, 서로 다른 시각 프롬프트 세트가 편집되지 않은 한 비디오에서 균일하게 샘플링된 프레임에 순서대로 적용됩니다.
|
||||
|
||||
이 모델의 목표는 학습 가능한 프롬프트를 시각적 입력과 텍스트 특징 모두에 통합하여 Temporal Video Grounding(TVG) 문제를 해결하는 것입니다.
|
||||
|
||||
원칙적으로, 제안된 아키텍처에는 어떤 시각 인코더나 크로스 모달 인코더라도 적용할 수 있습니다.
|
||||
|
||||
[TvpProcessor]는 [BertTokenizer]와 [TvpImageProcessor]를 단일 인스턴스로 래핑하여 텍스트를 인코딩하고 이미지를 각각 준비합니다.
|
||||
|
||||
다음 예시는 [TvpProcessor]와 [TvpForVideoGrounding]을 사용하여 TVG를 실행하는 방법을 보여줍니다.
|
||||
|
||||
```python
|
||||
import av
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoProcessor, TvpForVideoGrounding
|
||||
|
||||
|
||||
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
||||
'''
|
||||
원본 fps의 비디오를 지정한 fps(target_fps)로 변환하고 PyAV 디코더로 비디오를 디코딩합니다.
|
||||
Args:
|
||||
container (container): pyav 컨테이너 객체입니다.
|
||||
sampling_rate (int): 프레임 샘플링 속도입니다.(샘플링된 두개의 프레임 사이의 간격을 말합니다)
|
||||
num_frames (int): 샘플링할 프레임 수입니다.
|
||||
clip_idx (int): clip_idx가 -1이면 시간 축에서 무작위 샘플링을 수행합니다.
|
||||
clip_idx가 -1보다 크면 비디오를 num_clips 개로 균등 분할한 후
|
||||
clip_idx번째 비디오 클립을 선택합니다.
|
||||
num_clips (int): 주어진 비디오에서 균일하게 샘플링할 전체 클립 수입니다.
|
||||
target_fps (int): 입력 비디오의 fps가 다를 수 있으므로, 샘플링 전에
|
||||
지정한 fps로 변환합니다
|
||||
Returns:
|
||||
frames (tensor): 비디오에서 디코딩된 프레임입니다. 비디오 스트림을 찾을 수 없는 경우
|
||||
None을 반환합니다.
|
||||
fps (float): 비디오의 초당 프레임 수입니다.
|
||||
'''
|
||||
video = container.streams.video[0]
|
||||
fps = float(video.average_rate)
|
||||
clip_size = sampling_rate * num_frames / target_fps * fps
|
||||
delta = max(num_frames - clip_size, 0)
|
||||
start_idx = delta * clip_idx / num_clips
|
||||
end_idx = start_idx + clip_size - 1
|
||||
timebase = video.duration / num_frames
|
||||
video_start_pts = int(start_idx * timebase)
|
||||
video_end_pts = int(end_idx * timebase)
|
||||
seek_offset = max(video_start_pts - 1024, 0)
|
||||
container.seek(seek_offset, any_frame=False, backward=True, stream=video)
|
||||
frames = {}
|
||||
for frame in container.decode(video=0):
|
||||
if frame.pts < video_start_pts:
|
||||
continue
|
||||
frames[frame.pts] = frame
|
||||
if frame.pts > video_end_pts:
|
||||
break
|
||||
frames = [frames[pts] for pts in sorted(frames)]
|
||||
return frames, fps
|
||||
|
||||
|
||||
def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
|
||||
'''
|
||||
비디오를 디코딩하고 시간 축 샘플링을 수행합니다.
|
||||
Args:
|
||||
container (container): pyav 컨테이너 객체입니다.
|
||||
sampling_rate (int): 프레임 샘플링 속도입니다.(샘플링된 두개의 프레임 사이의 간격을 말합니다)
|
||||
num_frames (int): 샘플링할 프레임 수입니다.
|
||||
clip_idx (int): clip_idx가 -1이면 시간 축에서 무작위 샘플링을 수행합니다.
|
||||
clip_idx가 -1보다 크면 비디오를 num_clips 개로 균등 분할한 후
|
||||
clip_idx번째 비디오 클립을 선택합니다.
|
||||
num_clips (int): 주어진 비디오에서 균일하게 샘플링할 전체 클립 수입니다.
|
||||
target_fps (int): 입력 비디오의 fps가 다를 수 있으므로, 샘플링 전에
|
||||
지정한 fps로 변환합니다
|
||||
Returns:
|
||||
frames (tensor): 비디오에서 디코딩된 프레임입니다.
|
||||
'''
|
||||
assert clip_idx >= -2, "Not a valid clip_idx {}".format(clip_idx)
|
||||
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
|
||||
clip_size = sampling_rate * num_frames / target_fps * fps
|
||||
index = np.linspace(0, clip_size - 1, num_frames)
|
||||
index = np.clip(index, 0, len(frames) - 1).astype(np.int64)
|
||||
frames = np.array([frames[idx].to_rgb().to_ndarray() for idx in index])
|
||||
frames = frames.transpose(0, 3, 1, 2)
|
||||
return frames
|
||||
|
||||
|
||||
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="AK2KG.mp4", repo_type="dataset")
|
||||
model = TvpForVideoGrounding.from_pretrained("Intel/tvp-base")
|
||||
|
||||
decoder_kwargs = dict(
|
||||
container=av.open(file, metadata_errors="ignore"),
|
||||
sampling_rate=1,
|
||||
num_frames=model.config.num_frames,
|
||||
clip_idx=0,
|
||||
num_clips=1,
|
||||
target_fps=3,
|
||||
)
|
||||
raw_sampled_frms = decode(**decoder_kwargs)
|
||||
|
||||
text = "a person is sitting on a bed."
|
||||
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
|
||||
model_inputs = processor(
|
||||
text=[text], videos=list(raw_sampled_frms), return_tensors="pt", max_text_length=100#, size=size
|
||||
)
|
||||
|
||||
model_inputs["pixel_values"] = model_inputs["pixel_values"].to(model.dtype)
|
||||
output = model(**model_inputs)
|
||||
|
||||
def get_video_duration(filename):
|
||||
cap = cv2.VideoCapture(filename)
|
||||
if cap.isOpened():
|
||||
rate = cap.get(5)
|
||||
frame_num = cap.get(7)
|
||||
duration = frame_num/rate
|
||||
return duration
|
||||
return -1
|
||||
|
||||
duration = get_video_duration(file)
|
||||
start, end = processor.post_process_video_grounding(output.logits, duration)
|
||||
|
||||
print(f"The time slot of the video corresponding to the text \"{text}\" is from {start}s to {end}s")
|
||||
```
|
||||
|
||||
팁:
|
||||
- 이 TVP 구현은 텍스트 임베딩을 생성하기 위해 [BertTokenizer]를 사용하고, 시각적 임베딩을 계산하기 위해 Resnet-50 모델을 사용합니다.
|
||||
- 사전 학습된 [tvp-base](https://huggingface.co/Intel/tvp-base)의 체크포인트가 공개되어 있습니다.
|
||||
- 시간적 비디오 그라운딩 작업에 대한 TVP의 성능은 [표 2](https://huggingface.co/papers/2303.04995)를 참고하세요.
|
||||
|
||||
## TvpConfig [[transformers.TvpConfig]]
|
||||
|
||||
[[autodoc]] TvpConfig
|
||||
|
||||
## TvpImageProcessor [[transformers.TvpImageProcessor]]
|
||||
|
||||
[[autodoc]] TvpImageProcessor
|
||||
- preprocess
|
||||
|
||||
## TvpProcessor [[transformers.TvpProcessor]]
|
||||
|
||||
[[autodoc]] TvpProcessor
|
||||
- __call__
|
||||
|
||||
## TvpModel [[transformers.TvpModel]]
|
||||
|
||||
[[autodoc]] TvpModel
|
||||
- forward
|
||||
|
||||
## TvpForVideoGrounding [[transformers.TvpForVideoGrounding]]
|
||||
|
||||
[[autodoc]] TvpForVideoGrounding
|
||||
- forward
|
||||
@ -56,7 +56,7 @@ picture-in-picture" allowfullscreen></iframe>
|
||||
모델을 허브에 공유하기 전에 Hugging Face 자격 증명이 필요합니다. 터미널에 액세스할 수 있는 경우, 🤗 Transformers가 설치된 가상 환경에서 다음 명령을 실행합니다. 그러면 Hugging Face 캐시 폴더(기본적으로 `~/.cache/`)에 액세스 토큰을 저장합니다:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Jupyter 또는 Colaboratory와 같은 노트북을 사용 중인 경우, [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) 라이브러리가 설치되었는지 확인하세요. 이 라이브러리를 사용하면 API로 허브와 상호 작용할 수 있습니다.
|
||||
|
||||
107
docs/source/ko/model_summary.md
Normal file
107
docs/source/ko/model_summary.md
Normal file
@ -0,0 +1,107 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Transformer 모델군[[the-transformer-model-family]]
|
||||
|
||||
2017년에 소개된 [기본 Transformer](https://huggingface.co/papers/1706.03762) 모델은 자연어 처리(NLP) 작업을 넘어 새롭고 흥미로운 모델들에 영감을 주었습니다. [단백질 접힘 구조 예측](https://huggingface.co/blog/deep-learning-with-proteins), [치타의 달리기 훈련](https://huggingface.co/blog/train-decision-transformers), [시계열 예측](https://huggingface.co/blog/time-series-transformers) 등을 위한 다양한 모델이 생겨났습니다. Transformer의 변형이 너무 많아서, 큰 그림을 놓치기 쉽습니다. 하지만 여기 있는 모든 모델의 공통점은 기본 Trasnformer 아키텍처를 기반으로 한다는 점입니다. 일부 모델은 인코더 또는 디코더만 사용하고, 다른 모델들은 인코더와 디코더를 모두 사용하기도 합니다. 이렇게 Transformer 모델군 내 상위 레벨에서의 차이점을 분류하고 검토하면 유용한 분류 체계를 얻을 수 있으며, 이전에 접해보지 못한 Transformer 모델들 또한 이해하는 데 도움이 될 것입니다.
|
||||
|
||||
기본 Transformer 모델에 익숙하지 않거나 복습이 필요한 경우, Hugging Face 강의의 [트랜스포머는 어떻게 동작하나요?](https://huggingface.co/course/chapter1/4?fw=pt) 챕터를 확인하세요.
|
||||
|
||||
<div align="center">
|
||||
<iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTube video player"
|
||||
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
|
||||
picture-in-picture" allowfullscreen></iframe>
|
||||
</div>
|
||||
|
||||
## 컴퓨터 비전[[computer-vision]]
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe>
|
||||
|
||||
### 합성곱 네트워크[[convolutional-network]]
|
||||
|
||||
[Vision Transformer](https://huggingface.co/papers/2010.11929)가 확장성과 효율성을 입증하기 전까지 오랫동안 합성곱 네트워크(CNN)가 컴퓨터 비전 작업의 지배적인 패러다임이었습니다. 그럼에도 불구하고, 이동 불변성(translation invariance)과 같은 CNN의 우수한 부분이 도드라지기 때문에 몇몇 (특히 특정 과업에서의) Transformer 모델은 아키텍처에 합성곱을 통합하기도 했습니다. [ConvNeXt](model_doc/convnext)는 이런 관례를 뒤집어 CNN을 현대화하기 위해 Transformer의 디자인을 차용합니다. 예를 들면 ConvNeXt는 겹치지 않는 슬라이딩 창(sliding window)을 사용하여 이미지를 패치화하고, 더 큰 커널로 전역 수용 필드(global receptive field)를 확장시킵니다. ConvNeXt는 또한 메모리 효율을 높이고 성능을 향상시키기 위해 여러 레이어 설계를 선택하기 때문에 Transformer와 견줄만합니다!
|
||||
|
||||
### 인코더[[cv-encoder]]
|
||||
|
||||
[Vision Transformer(ViT)](model_doc/vit)는 합성곱 없는 컴퓨터 비전 작업의 막을 열었습니다. ViT는 표준 Transformer 인코더를 사용하지만, 가장 큰 혁신은 이미지를 처리하는 방식이었습니다. 문장을 토큰으로 분할하는 것처럼 이미지를 고정된 크기의 패치로 분할하고, 이를 사용하여 임베딩을 생성합니다. ViT는 Transformer의 효율적인 아키텍처를 활용하여 훈련에 더 적은 자원을 사용하면서도 당시 CNN에 비견하는 결과를 입증했습니다. 그리고 ViT를 뒤이어 분할(segmentation)과 같은 고밀도 비전 작업과 탐지 작업도 다룰 수 있는 다른 비전 모델이 등장했습니다.
|
||||
|
||||
이러한 모델 중 하나가 [Swin](model_doc/swin) Transformer입니다. 이 모델은 작은 크기의 패치에서 계층적 특징 맵(CNN 👀과 같지만 ViT와는 다름)을 만들고 더 깊은 레이어의 인접 패치와 병합합니다. 어텐션(Attention)은 지역 윈도우 내에서만 계산되며, 모델이 더 잘 학습할 수 있도록 어텐션 레이어 간에 윈도우를 이동하며 연결을 생성합니다. Swin Transformer는 계층적 특징 맵을 생성할 수 있으므로, 분할(segmentation)과 탐지와 같은 고밀도 예측 작업에 적합합니다. [SegFormer](model_doc/segformer) 역시 Transformer 인코더를 사용하여 계층적 특징 맵을 구축하지만, 상단에 간단한 다층 퍼셉트론(MLP) 디코더를 추가하여 모든 특징 맵을 결합하고 예측을 수행합니다.
|
||||
|
||||
BeIT와 ViTMAE와 같은 다른 비전 모델은 BERT의 사전훈련 목표(objective)에서 영감을 얻었습니다. [BeIT](model_doc/beit)는 *마스크드 이미지 모델링(MIM)*으로 사전훈련되며, 이미지 패치는 임의로 마스킹되고 이미지도 시각적 토큰으로 토큰화됩니다. BeIT는 마스킹된 패치에 해당하는 시각적 토큰을 예측하도록 학습됩니다. [ViTMAE](model_doc/vitmae)도 비슷한 사전훈련 목표가 있지만, 시각적 토큰 대신 픽셀을 예측해야 한다는 점이 다릅니다. 특이한 점은 이미지 패치의 75%가 마스킹되어 있다는 것입니다! 디코더는 마스킹된 토큰과 인코딩된 패치에서 픽셀을 재구성합니다. 사전훈련이 끝나면 디코더는 폐기되고 인코더는 다운스트림 작업에 사용할 준비가 됩니다.
|
||||
|
||||
### 디코더[[cv-decoder]]
|
||||
|
||||
대부분의 비전 모델은 인코더에 의존하여 이미지 표현을 학습하기 때문에 디코더 전용 비전 모델은 드뭅니다. 하지만 이미지 생성 등의 사례의 경우, GPT-2와 같은 텍스트 생성 모델에서 보았듯이 디코더가 가장 적합합니다. [ImageGPT](model_doc/imagegpt)는 GPT-2와 동일한 아키텍처를 사용하지만, 시퀀스의 다음 토큰을 예측하는 대신 이미지의 다음 픽셀을 예측합니다. ImageGPT는 이미지 생성 뿐만 아니라 이미지 분류를 위해 미세 조정할 수도 있습니다.
|
||||
|
||||
### 인코더-디코더[[cv-encoder-decoder]]
|
||||
|
||||
비전 모델은 일반적으로 인코더(백본으로도 알려짐)를 사용하여 중요한 이미지 특징을 추출한 후, 이를 Transformer 디코더로 전달합니다. [DETR](model_doc/detr)에 사전훈련된 백본이 있지만, 객체 탐지를 위해 완전한 Transformer 인코더-디코더 아키텍처도 사용합니다. 인코더는 이미지 표현을 학습하고 이를 디코더에서 객체 쿼리(각 객체 쿼리는 이미지의 영역 또는 객체에 중점을 두고 학습된 임베딩)와 결합합니다. DETR은 각 객체 쿼리에 대한 바운딩 박스 좌표와 클래스 레이블을 예측합니다.
|
||||
|
||||
## 자연어처리[[natural-language-processing]]
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe>
|
||||
|
||||
### 인코더[[nlp-encoder]]
|
||||
|
||||
[BERT](model_doc/bert)는 인코더 전용 Transformer로, 다른 토큰을 보고 소위 "부정 행위"를 저지르는 걸 막기 위해 입력에서 특정 토큰을 임의로 마스킹합니다. 사전훈련의 목표는 컨텍스트를 기반으로 마스킹된 토큰을 예측하는 것입니다. 이를 통해 BERT는 왼쪽과 오른쪽 컨텍스트를 충분히 활용하여 입력에 대해 더 깊고 풍부한 표현을 학습할 수 있습니다. 그러나 BERT의 사전훈련 전략에는 여전히 개선의 여지가 남아 있었습니다. [RoBERTa](model_doc/roberta)는 더 긴 시간 동안 더 큰 배치에 대한 훈련을 포함하고, 전처리 중에 한 번만 마스킹하는 것이 아니라 각 에폭에서 토큰을 임의로 마스킹하고, 다음 문장 예측 목표를 제거하는 새로운 사전훈련 방식을 도입함으로써 이를 개선했습니다.
|
||||
|
||||
성능 개선을 위한 전략으로 모델 크기를 키우는 것이 지배적입니다. 하지만 큰 모델을 훈련하려면 계산 비용이 많이 듭니다. 계산 비용을 줄이는 한 가지 방법은 [DistilBERT](model_doc/distilbert)와 같이 작은 모델을 사용하는 것입니다. DistilBERT는 압축 기법인 [지식 증류(knowledge distillation)](https://huggingface.co/papers/1503.02531)를 사용하여, 거의 모든 언어 이해 능력을 유지하면서 더 작은 버전의 BERT를 만듭니다.
|
||||
|
||||
그러나 대부분의 Transformer 모델에 더 많은 매개변수를 사용하는 경향이 이어졌고, 이에 따라 훈련 효율성을 개선하는 것에 중점을 둔 새로운 모델이 등장했습니다. [ALBERT](model_doc/albert)는 두 가지 방법으로 매개변수 수를 줄여 메모리 사용량을 줄였습니다. 바로 큰 어휘를 두 개의 작은 행렬로 분리하는 것과 레이어가 매개변수를 공유하도록 하는 것입니다. [DeBERTa](model_doc/deberta)는 단어와 그 위치를 두 개의 벡터로 개별적으로 인코딩하는 분리된(disentangled) 어텐션 메커니즘을 추가했습니다. 어텐션은 단어와 위치 임베딩을 포함하는 단일 벡터 대신 이 별도의 벡터에서 계산됩니다. [Longformer](model_doc/longformer)는 특히 시퀀스 길이가 긴 문서를 처리할 때, 어텐션을 더 효율적으로 만드는 것에 중점을 두었습니다. 지역(local) 윈도우 어텐션(각 토큰 주변의 고정된 윈도우 크기에서만 계산되는 어텐션)과 전역(global) 어텐션(분류를 위해 `[CLS]`와 같은 특정 작업 토큰에만 해당)의 조합을 사용하여 전체(full) 어텐션 행렬 대신 희소(sparse) 어텐션 행렬을 생성합니다.
|
||||
|
||||
### 디코더[[nlp-decoder]]
|
||||
|
||||
[GPT-2](model_doc/gpt2)는 시퀀스에서 다음 단어를 예측하는 디코더 전용 Transformer입니다. 토큰을 오른쪽으로 마스킹하여 모델이 이전 토큰을 보고 "부정 행위"를 하지 못하도록 합니다. GPT-2는 방대한 텍스트에 대해 사전훈련하여 텍스트가 일부만 정확하거나 사실인 경우에도 상당히 능숙하게 텍스트를 생성할 수 있게 되었습니다. 하지만 GPT-2는 BERT가 사전훈련에서 갖는 양방향 컨텍스트가 부족하기 때문에 특정 작업에 적합하지 않았습니다. [XLNET](model_doc/xlnet)은 양방향 훈련이 가능한 permutation language modeling objective(PLM)를 사용하여 BERT와 GPT-2의 사전훈련 목표에 대한 장점을 함께 가지고 있습니다.
|
||||
|
||||
GPT-2 이후, 언어 모델은 더욱 거대해졌고 현재는 *대규모 언어 모델(LLM)*로 알려져 있습니다. 충분히 큰 데이터 세트로 사전훈련된 LLM은 퓨샷(few-shot) 또는 제로샷(zero-shot) 학습을 수행합니다. [GPT-J](model_doc/gptj)는 6B 크기의 매개변수가 있고 400B 크기의 토큰으로 훈련된 LLM입니다. GPT-J에 이어 디코더 전용 모델군인 [OPT](model_doc/opt)가 등장했으며, 이 중 가장 큰 모델은 175B 크기이고 180B 크기의 토큰으로 훈련되었습니다. [BLOOM](model_doc/bloom)은 비슷한 시기에 출시되었으며, 이 중 가장 큰 모델은 176B 크기의 매개변수가 있고 46개의 언어와 13개의 프로그래밍 언어로 된 366B 크기의 토큰으로 훈련되었습니다.
|
||||
|
||||
### 인코더-디코더[[nlp-encoder-decoder]]
|
||||
|
||||
[BART](model_doc/bart)는 기본 Transformer 아키텍처를 유지하지만, 일부 텍스트 스팬(span)이 단일 `마스크` 토큰으로 대체되는 *text infilling* 변형으로 사전훈련 목표를 수정합니다. 디코더는 변형되지 않은 토큰(향후 토큰은 마스킹됨)을 예측하고 인코더의 은닉 상태를 사용하여 이 작업을 돕습니다. [Pegasus](model_doc/pegasus)는 BART와 유사하지만, Pegasus는 텍스트 스팬 대신 전체 문장을 마스킹합니다. Pegasus는 마스크드 언어 모델링 외에도 gap sentence generation(GSG)로 사전훈련됩니다. GSG는 문서에 중요한 문장 전체를 마스킹하여 `마스크` 토큰으로 대체하는 것을 목표로 합니다. 디코더는 남은 문장에서 출력을 생성해야 합니다. [T5](model_doc/t5)는 특정 접두사를 사용하여 모든 NLP 작업을 텍스트 투 텍스트 문제로 변환하는 더 특수한 모델입니다. 예를 들어, 접두사 `Summarize:`은 요약 작업을 나타냅니다. T5는 지도(GLUE 및 SuperGLUE) 훈련과 자기지도 훈련(토큰의 15%를 임의로 샘플링하여 제거)으로 사전훈련됩니다.
|
||||
|
||||
## 오디오[[audio]]
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe>
|
||||
|
||||
### 인코더[[audio-encoder]]
|
||||
|
||||
[Wav2Vec2](model_doc/wav2vec2)는 Transformer 인코더를 사용하여 원본 오디오 파형(raw audio waveform)에서 직접 음성 표현을 학습합니다. 허위 음성 표현 세트에서 실제 음성 표현을 판별하는 대조 작업으로 사전훈련됩니다. [HuBERT](model_doc/hubert)는 Wav2Vec2와 유사하지만 훈련 과정이 다릅니다. 타겟 레이블이 유사한 오디오 세그먼트가 클러스터에 할당되어 은닉 단위(unit)가 되는 군집화(clustering) 단계에서 생성됩니다. 은닉 단위는 예측을 위한 임베딩에 매핑됩니다.
|
||||
|
||||
### 인코더-디코더[[audio-encoder-decoder]]
|
||||
|
||||
[Speech2Text](model_doc/speech_to_text)는 자동 음성 인식(ASR) 및 음성 번역을 위해 고안된 음성 모델입니다. 이 모델은 오디오 파형에서 추출한 log mel-filter bank 특징을 채택하고 자기회귀 방식으로 사전훈련하여, 전사본 또는 번역을 만듭니다. [Whisper](model_doc/whisper)은 ASR 모델이지만, 다른 많은 음성 모델과 달리 제로샷 성능을 위해 대량의 ✨ 레이블이 지정된 ✨ 오디오 전사 데이터에 대해 사전훈련됩니다. 데이터 세트의 큰 묶음에는 영어가 아닌 언어도 포함되어 있어서 자원이 적은 언어에도 Whisper를 사용할 수 있습니다. 구조적으로, Whisper는 Speech2Text와 유사합니다. 오디오 신호는 인코더에 의해 인코딩된 log-mel spectrogram으로 변환됩니다. 디코더는 인코더의 은닉 상태와 이전 토큰으로부터 자기회귀 방식으로 전사를 생성합니다.
|
||||
|
||||
## 멀티모달[[multimodal]]
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
|
||||
|
||||
### 인코더[[mm-encoder]]
|
||||
|
||||
[VisualBERT](model_doc/visual_bert)는 BERT 이후에 출시된 비전 언어 작업을 위한 멀티모달 모델입니다. 이 모델은 BERT와 사전훈련된 객체 탐지 시스템을 결합하여 이미지 특징을 시각 임베딩으로 추출하고, 텍스트 임베딩과 함께 BERT로 전달합니다. VisualBERT는 마스킹되지 않은 텍스트와 시각 임베딩을 기반으로 마스킹된 텍스트를 예측하고, 텍스트가 이미지와 일치하는지 예측해야 합니다. ViT가 이미지 임베딩을 구하는 방식이 더 쉬웠기 때문에, ViT가 출시된 후 [ViLT](model_doc/vilt)는 아키텍처에 ViT를 채택했습니다. 이미지 임베딩은 텍스트 임베딩과 함께 처리됩니다. 여기에서, ViLT는 이미지 텍스트 매칭, 마스크드 언어 모델링, 전체 단어 마스킹을 통해 사전훈련됩니다.
|
||||
|
||||
[CLIP](model_doc/clip)은 다른 접근 방식을 사용하여 (`이미지`, `텍스트`)의 쌍 예측을 수행합니다. (`이미지`, `텍스트`) 쌍에서의 이미지와 텍스트 임베딩 간의 유사도를 최대화하기 위해 4억 개의 (`이미지`, `텍스트`) 쌍 데이터 세트에 대해 이미지 인코더(ViT)와 텍스트 인코더(Transformer)를 함께 훈련합니다. 사전훈련 후, 자연어를 사용하여 이미지가 주어진 텍스트를 예측하거나 그 반대로 예측하도록 CLIP에 지시할 수 있습니다. [OWL-ViT](model_doc/owlvit)는 CLIP을 제로샷 객체 탐지를 위한 백본(backbone)으로 사용하여 CLIP 상에 구축됩니다. 사전훈련 후, 객체 탐지 헤드가 추가되어 (`클래스`, `바운딩 박스`) 쌍에 대한 집합(set) 예측을 수행합니다.
|
||||
|
||||
### 인코더-디코더[[mm-encoder-decoder]]
|
||||
|
||||
광학 문자 인식(OCR)은 이미지를 이해하고 텍스트를 생성하기 위해 다양한 구성 요소를 필요로 하는 전통적인 텍스트 인식 작업입니다. [TrOCR](model_doc/trocr)은 종단간(end-to-end) Transformer를 사용하여 이 프로세스를 간소화합니다. 인코더는 이미지 이해를 위한 ViT 방식의 모델이며 이미지를 고정된 크기의 패치로 처리합니다. 디코더는 인코더의 은닉 상태를 받아서 자기회귀 방식으로 텍스트를 생성합니다. [Donut](model_doc/donut)은 OCR 기반 접근 방식에 의존하지 않는 더 일반적인 시각 문서 이해 모델입니다. 이 모델은 Swin Transformer를 인코더로, 다국어 BART를 디코더로 사용합니다. Donut은 이미지와 텍스트 주석을 기반으로 다음 단어를 예측하여 텍스트를 읽도록 사전훈련됩니다. 디코더는 프롬프트가 주어지면 토큰 시퀀스를 생성합니다. 프롬프트는 각 다운스트림 작업에 대한 특수 토큰으로 표현됩니다. 예를 들어, 문서 파싱(parsing)에는 인코더의 은닉 상태와 결합되어 문서를 정형 출력 형식(JSON)으로 파싱하는 특수 `파싱` 토큰이 있습니다.
|
||||
|
||||
## 강화 학습[[reinforcement-learning]]
|
||||
|
||||
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
|
||||
|
||||
### 디코더[[rl-decoder]]
|
||||
|
||||
Decision 및 Trajectory Transformer는 상태(state), 행동(action), 보상(reward)을 시퀀스 모델링 문제로 표현합니다. [Decision Transformer](model_doc/decision_transformer)는 기대 보상(returns-to-go), 과거 상태 및 행동을 기반으로 미래의 원하는 수익(return)으로 이어지는 일련의 행동을 생성합니다. 마지막 *K* 시간 스텝(timestep)에 대해, 세 가지 모달리티는 각각 토큰 임베딩으로 변환되고 GPT와 같은 모델에 의해 처리되어 미래의 액션 토큰을 예측합니다. [Trajectory Transformer](model_doc/trajectory_transformer)도 상태, 행동, 보상을 토큰화하여 GPT 아키텍처로 처리합니다. 보상 조건에 중점을 둔 Decision Transformer와 달리 Trajectory Transformer는 빔 서치(beam search)로 미래 행동을 생성합니다.
|
||||
192
docs/source/ko/multilingual.md
Normal file
192
docs/source/ko/multilingual.md
Normal file
@ -0,0 +1,192 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 다국어 모델 추론하기[[multilingual-models-for-inference]]
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
🤗 Transformers에는 여러 종류의 다국어(multilingual) 모델이 있으며, 단일 언어(monolingual) 모델과 추론 시 사용법이 다릅니다.
|
||||
그렇다고 해서 *모든* 다국어 모델의 사용법이 다른 것은 아닙니다.
|
||||
|
||||
[google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)와 같은 몇몇 모델은 단일 언어 모델처럼 사용할 수 있습니다.
|
||||
이번 가이드에서 다국어 모델의 추론 시 사용 방법을 알아볼 것입니다.
|
||||
|
||||
## XLM[[xlm]]
|
||||
|
||||
XLM에는 10가지 체크포인트(checkpoint)가 있는데, 이 중 하나만 단일 언어입니다.
|
||||
나머지 체크포인트 9개는 언어 임베딩을 사용하는 체크포인트와 그렇지 않은 체크포인트의 두 가지 범주로 나눌 수 있습니다.
|
||||
|
||||
### 언어 임베딩을 사용하는 XLM[[xlm-with-language-embeddings]]
|
||||
|
||||
다음 XLM 모델은 추론 시에 언어 임베딩을 사용합니다:
|
||||
|
||||
- `FacebookAI/xlm-mlm-ende-1024` (마스킹된 언어 모델링, 영어-독일어)
|
||||
- `FacebookAI/xlm-mlm-enfr-1024` (마스킹된 언어 모델링, 영어-프랑스어)
|
||||
- `FacebookAI/xlm-mlm-enro-1024` (마스킹된 언어 모델링, 영어-루마니아어)
|
||||
- `FacebookAI/xlm-mlm-xnli15-1024` (마스킹된 언어 모델링, XNLI 데이터 세트에서 제공하는 15개 국어)
|
||||
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (마스킹된 언어 모델링 + 번역, XNLI 데이터 세트에서 제공하는 15개 국어)
|
||||
- `FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, 영어-프랑스어)
|
||||
- `FacebookAI/xlm-clm-ende-1024` (Causal language modeling, 영어-독일어)
|
||||
|
||||
언어 임베딩은 모델에 전달된 `input_ids`와 동일한 shape의 텐서로 표현됩니다.
|
||||
이러한 텐서의 값은 사용된 언어에 따라 다르며 토크나이저의 `lang2id` 및 `id2lang` 속성에 의해 식별됩니다.
|
||||
|
||||
다음 예제에서는 `FacebookAI/xlm-clm-enfr-1024` 체크포인트(코잘 언어 모델링(causal language modeling), 영어-프랑스어)를 가져옵니다:
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
|
||||
|
||||
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
|
||||
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
|
||||
```
|
||||
|
||||
토크나이저의 `lang2id` 속성은 모델의 언어와 해당 ID를 표시합니다:
|
||||
|
||||
```py
|
||||
>>> print(tokenizer.lang2id)
|
||||
{'en': 0, 'fr': 1}
|
||||
```
|
||||
|
||||
다음으로, 예제 입력을 만듭니다:
|
||||
|
||||
```py
|
||||
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # 배치 크기는 1입니다
|
||||
```
|
||||
|
||||
언어 ID를 `"en"`으로 설정해 언어 임베딩을 정의합니다.
|
||||
언어 임베딩은 영어의 언어 ID인 `0`으로 채워진 텐서입니다.
|
||||
이 텐서는 `input_ids`와 같은 크기여야 합니다.
|
||||
|
||||
```py
|
||||
>>> language_id = tokenizer.lang2id["en"] # 0
|
||||
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
|
||||
|
||||
>>> # (batch_size, sequence_length) shape의 텐서가 되도록 만듭니다.
|
||||
>>> langs = langs.view(1, -1) # 이제 [1, sequence_length] shape이 되었습니다(배치 크기는 1입니다)
|
||||
```
|
||||
|
||||
이제 `input_ids`와 언어 임베딩을 모델로 전달합니다:
|
||||
|
||||
```py
|
||||
>>> outputs = model(input_ids, langs=langs)
|
||||
```
|
||||
|
||||
[run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) 스크립트로 `xlm-clm` 체크포인트를 사용해 텍스트와 언어 임베딩을 생성할 수 있습니다.
|
||||
|
||||
### 언어 임베딩을 사용하지 않는 XLM[[xlm-without-language-embeddings]]
|
||||
|
||||
다음 XLM 모델은 추론 시에 언어 임베딩이 필요하지 않습니다:
|
||||
|
||||
- `FacebookAI/xlm-mlm-17-1280` (마스킹된 언어 모델링, 17개 국어)
|
||||
- `FacebookAI/xlm-mlm-100-1280` (마스킹된 언어 모델링, 100개 국어)
|
||||
|
||||
이전의 XLM 체크포인트와 달리 이 모델은 일반 문장 표현에 사용됩니다.
|
||||
|
||||
## BERT[[bert]]
|
||||
|
||||
다음 BERT 모델은 다국어 태스크에 사용할 수 있습니다:
|
||||
|
||||
- `google-bert/bert-base-multilingual-uncased` (마스킹된 언어 모델링 + 다음 문장 예측, 102개 국어)
|
||||
- `google-bert/bert-base-multilingual-cased` (마스킹된 언어 모델링 + 다음 문장 예측, 104개 국어)
|
||||
|
||||
이러한 모델은 추론 시에 언어 임베딩이 필요하지 않습니다.
|
||||
문맥에서 언어를 식별하고, 식별된 언어로 추론합니다.
|
||||
|
||||
## XLM-RoBERTa[[xlmroberta]]
|
||||
|
||||
다음 XLM-RoBERTa 또한 다국어 다국어 태스크에 사용할 수 있습니다:
|
||||
|
||||
- `FacebookAI/xlm-roberta-base` (마스킹된 언어 모델링, 100개 국어)
|
||||
- `FacebookAI/xlm-roberta-large` (마스킹된 언어 모델링, 100개 국어)
|
||||
|
||||
XLM-RoBERTa는 100개 국어에 대해 새로 생성되고 정제된 2.5TB 규모의 CommonCrawl 데이터로 학습되었습니다.
|
||||
이전에 공개된 mBERT나 XLM과 같은 다국어 모델에 비해 분류, 시퀀스 라벨링, 질의 응답과 같은 다운스트림(downstream) 작업에서 이점이 있습니다.
|
||||
|
||||
## M2M100[[m2m100]]
|
||||
|
||||
다음 M2M100 모델 또한 다국어 다국어 태스크에 사용할 수 있습니다:
|
||||
|
||||
- `facebook/m2m100_418M` (번역)
|
||||
- `facebook/m2m100_1.2B` (번역)
|
||||
|
||||
이 예제에서는 `facebook/m2m100_418M` 체크포인트를 가져와서 중국어를 영어로 번역합니다.
|
||||
토크나이저에서 번역 대상 언어(source language)를 설정할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
||||
|
||||
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
|
||||
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."
|
||||
|
||||
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
|
||||
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
||||
```
|
||||
|
||||
문장을 토큰화합니다:
|
||||
|
||||
```py
|
||||
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
|
||||
```
|
||||
|
||||
M2M100은 번역을 진행하기 위해 첫 번째로 생성되는 토큰은 번역할 언어(target language) ID로 강제 지정합니다.
|
||||
영어로 번역하기 위해 `generate` 메소드에서 `forced_bos_token_id`를 `en`으로 설정합니다:
|
||||
|
||||
```py
|
||||
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
|
||||
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
|
||||
```
|
||||
|
||||
## MBart[[mbart]]
|
||||
|
||||
다음 MBart 모델 또한 다국어 태스크에 사용할 수 있습니다:
|
||||
|
||||
- `facebook/mbart-large-50-one-to-many-mmt` (일대다 다국어 번역, 50개 국어)
|
||||
- `facebook/mbart-large-50-many-to-many-mmt` (다대다 다국어 번역, 50개 국어)
|
||||
- `facebook/mbart-large-50-many-to-one-mmt` (다대일 다국어 번역, 50개 국어)
|
||||
- `facebook/mbart-large-50` (다국어 번역, 50개 국어)
|
||||
- `facebook/mbart-large-cc25`
|
||||
|
||||
이 예제에서는 핀란드어를 영어로 번역하기 위해 `facebook/mbart-large-50-many-to-many-mmt` 체크포인트를 가져옵니다.
|
||||
토크나이저에서 번역 대상 언어(source language)를 설정할 수 있습니다:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
|
||||
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
|
||||
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
||||
```
|
||||
|
||||
문장을 토큰화합니다:
|
||||
|
||||
```py
|
||||
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
|
||||
```
|
||||
|
||||
MBart는 번역을 진행하기 위해 첫 번째로 생성되는 토큰은 번역할 언어(target language) ID로 강제 지정합니다.
|
||||
영어로 번역하기 위해 `generate` 메소드에서 `forced_bos_token_id`를 `en`으로 설정합니다:
|
||||
|
||||
```py
|
||||
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX"))
|
||||
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
|
||||
```
|
||||
|
||||
`facebook/mbart-large-50-many-to-one-mmt` 체크포인트를 사용하고 있다면, 첫 번째로 생성되는 토큰을 번역할 언어(target language) ID로 강제 지정할 필요는 없습니다.
|
||||
@ -1,311 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 분산 추론[[distributed-inference]]
|
||||
|
||||
모델이 단일 GPU에 올라가지 않는 경우, [텐서 병렬 처리](./perf_train_gpu_many#tensor-parallelism)를 사용한 분산 추론이 도움이 될 수 있습니다. 텐서 병렬화는 모델을 여러 가속기(CUDA GPU, Intel XPU 등)에 분할하여 행렬 곱셈과 같은 계산을 병렬화합니다. 이를 통해 더 큰 모델을 메모리에 올릴 수 있으며, 각 가속기가 텐서의 일부를 처리하므로 추론 속도가 향상됩니다.
|
||||
|
||||
그러나 텐서 병렬화는 통신 오버헤드를 발생시키므로, 빠른 노드 내 통신을 활용할 수 있는 다중 가속기 환경에서 사용하는 것이 가장 효과적입니다. 다중 노드 학습 환경에서는 사용 사례에 따라 파이프라인 병렬화나 데이터 병렬화를 사용하는 것이 더 효율적일 수 있습니다.
|
||||
|
||||
> [!TIP]
|
||||
> 텐서 병렬화에 대해 더 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)의 텐서 병렬화 섹션을 참조하세요.
|
||||
|
||||
아래 목록에서 텐서 병렬 처리를 기본적으로 지원하는 모델을 확인할 수 있습니다. 새로운 모델에 대한 지원을 추가하려면 GitHub 이슈나 풀 리퀘스트를 열어주세요.
|
||||
|
||||
<details>
|
||||
<summary>지원되는 모델 보기</summary>
|
||||
|
||||
* [Cohere](./model_doc/cohere) 및 [Cohere 2](./model_doc/cohere2)
|
||||
* [Gemma](./model_doc/gemma) 및 [Gemma 2](./model_doc/gemma2)
|
||||
* [GLM](./model_doc/glm)
|
||||
* [Granite](./model_doc/granite)
|
||||
* [Llama](./model_doc/llama)
|
||||
* [Mistral](./model_doc/mistral)
|
||||
* [Mixtral](./model_doc/mixtral)
|
||||
* [OLMo](./model_doc/olmo) 및 [OLMo2](./model_doc/olmo2)
|
||||
* [Phi](./model_doc/phi) 및 [Phi-3](./model_doc/phi3)
|
||||
* [Qwen2](./model_doc/qwen2), [Qwen2Moe](./model_doc/qwen2_moe), 및 [Qwen2-VL](./model_doc/qwen2_5_vl)
|
||||
* [Starcoder2](./model_doc/starcoder2)
|
||||
|
||||
</details>
|
||||
|
||||
이 가이드는 Transformers에서 다양한 분할 전략을 사용하여 텐서 병렬화를 활성화하는 방법을 설명합니다.
|
||||
|
||||
## 모델 분할[[partitioning-a-model]]
|
||||
|
||||
Transformers는 `tp_plan`매개변수를 활용할 수 있는 모델에 대해 텐서 병렬 처리를 지원합니다. 모델 분할 방식은 두 가지가 있습니다.
|
||||
|
||||
- `auto` 텐서 병렬화 계획은 사전 정의된 구성을 기반으로 모델(위에 언급된 지원 모델)을 자동으로 분할합니다.
|
||||
- 사용자 지정 분할 계획을 직접 정의하여 [~PreTrainedModel.from_pretrained] 메소드의 `tp_plan` 매개변수로 전달할 수 있습니다.
|
||||
|
||||
<hfoptions id="sharding">
|
||||
<hfoption id="auto plan">
|
||||
|
||||
```py
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # 모든 가능한 전략을 시각화하기에 더 좋음
|
||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # 적은 수의 GPU에 더 좋음
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
|
||||
print(model._tp_plan)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
prompt = "Can I help"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
|
||||
# 분산 실행
|
||||
outputs = model(inputs)
|
||||
```
|
||||
|
||||
위의 추론 스크립트를 GPU당 4개 프로세스로 [torchrun](https://pytorch.org/docs/stable/elastic/run.html)에서 실행하세요.
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="manual plan">
|
||||
|
||||
각 레이어에 대한 텐서 병렬 계획을 `tp_plan`에 정의한 후 [`~PreTrainedModel.from_pretrained`]에 전달하세요. 아래 예시는 열 및 행 분할을 조합하여 사용합니다. 지원되는 다른 분할 전략은 [분할 전략](#partitioning-strategies) 섹션을 참고하세요.
|
||||
|
||||
> [!WARNING]
|
||||
> 사용자 지정 분할 계획을 수동으로 지정하려면 모델 아키텍처와 분할 전략이 함께 상호 작용하는 방식에 대한 충분한 이해가 필요합니다. 분할 전략을 잘못 설정하면 모델이 매우 느려지거나, 오류가 발생하거나, 부정확한 결과를 낼 수 있습니다. 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)을 참고하세요.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise",
|
||||
"model.layers.*.self_attn.k_proj": "colwise",
|
||||
"model.layers.*.self_attn.v_proj": "colwise",
|
||||
"model.layers.*.self_attn.o_proj": "rowwise",
|
||||
...
|
||||
}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
print(model._tp_plan)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## 분할 전략[[partitioning-strategies]]
|
||||
|
||||
모든 분할 전략은 문자열을 전략 구현에 매핑하는 [`ParallelInterface`] 클래스에서 정의됩니다. 모든 전략은 [`~PreTrainedModel.from_pretrained`]의 `tp_plan`을 통해 설정되므로 이 클래스와 직접 상호 작용할 필요는 없지만, 어떤 전략을 사용할 수 있는지 확인할 때 유용합니다.
|
||||
|
||||
```py
|
||||
class ParallelInterface(MutableMapping):
|
||||
"""
|
||||
허용된 어텐션 함수를 추적하는 딕셔너리 같은 객체입니다. `register()` 호출로 새로운 어텐션 함수를 쉽게 추가할 수 있습니다.
|
||||
모델이 기존 어텐션 함수(예: `sdpa`)를 로컬에서 덮어쓰려면 `modeling_<model>.py` 내부에서 이 클래스의 새 인스턴스를 선언하고
|
||||
해당 인스턴스에서 선언해야 합니다.
|
||||
"""
|
||||
_global_mapping = {
|
||||
"colwise": ColwiseParallel(),
|
||||
"rowwise": RowwiseParallel(),
|
||||
"colwise_rep": ColwiseParallel(output_layouts=Replicate()),
|
||||
"rowwise_rep": RowwiseParallel(input_layouts=Replicate()),
|
||||
"local_colwise": ColwiseParallel(use_dtensor=False),
|
||||
"local_rowwise": RowwiseParallel(use_dtensor=False),
|
||||
"local": IsolatedParallel(),
|
||||
"gather": GatherParallel(),
|
||||
"local_packed_rowwise": PackedRowwiseParallel(use_dtensor=False),
|
||||
"sequence_parallel": SequenceParallel(),
|
||||
"replicate": ReplicateParallel(),
|
||||
}
|
||||
```
|
||||
|
||||
각 전략에 대해 자세히 알아보려면 아래 표를 참고하세요.
|
||||
|
||||
| 전략 | 설명 |
|
||||
|---|---|
|
||||
| `ColwiseParallel` | 가중치와 편향의 열 방향 분할. |
|
||||
| `RowwiseParallel` | 가중치와 편향의 행 방향 분할. `nn.Embedding` 모듈 분할도 지원. |
|
||||
| `SequenceParallel` | `LayerNorm`과 `Dropout` 레이어를 지원하는 시퀀스 병렬 구현. [RMSNorm](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34)의 Python 구현도 지원. |
|
||||
| `PackedColwiseParallel` | 패킹된 가중치를 지원하는 `ColwiseParallel`의 변형(예: `up_proj`와 `gate_proj`를 함께 패킹). 자세한 내용은 [코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)를 참조하세요. |
|
||||
| `PackedRowwiseParallel` | 패킹된 가중치를 지원하는 `RowwiseParallel`의 변형([코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) 참조). |
|
||||
| `GatherParallel` | 기기 간 모듈의 출력을 수집. |
|
||||
| `IsolatedParallel` | Mixture-of-Experts(MoE) 레이어의 전문가에 사용되어 다른 기기로부터 모듈을 격리. |
|
||||
| `ReplicateParallel` | 부분적으로 분할된 모델로 인해 `torch.distributed` API가 중단되는 것을 방지하기 위해 모든 기기에 모듈을 복제. |
|
||||
|
||||
### 패킹된 전략[[packed-strategies]]
|
||||
|
||||
가중치 패킹은 여러 선형 레이어를 하나의 더 큰 레이어로 합치는 기법입니다. 패킹된 전략인 `PackedColwiseParallel`과 `PackedRowwiseParallel`은 패킹된 가중치를 분할하는 데 사용됩니다. 기본적인 `ColwiseParallel`이나 `RowwiseParallel`은 패킹된 가중치를 올바르게 분할하지 못합니다.
|
||||
|
||||
아래 예시는 `up_proj`와 `gate_proj`를 단일 `gate_up_proj` 모듈로 패킹하고 `gate_up_proj`를 분할하기 위해 `PackedRowwiseParallel` 전략이 필요합니다.
|
||||
|
||||
```python
|
||||
class Llama4TextExperts(nn.Module):
|
||||
...
|
||||
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
|
||||
```
|
||||
|
||||
배치 행렬 곱셈을 `forward` 패스에서 사용하여 `gate_up_proj` 모듈의 출력을 계산할 수 있습니다.
|
||||
|
||||
```python
|
||||
def forward(self, hidden_states):
|
||||
...
|
||||
gate_up = torch.bmm(hidden_states, self.gate_up_proj) # gate_up_proj 모듈의 출력 계산
|
||||
gate, up = gate_up.chunk(2, dim=-1) # 출력을 gate와 up으로 분할
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> `Packed*`를 사용해야 하는 이유에 대한 시각적 표현은 [이 주석](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)을 참고하세요.
|
||||
|
||||
### 로컬 전략[[local-strategies]]
|
||||
|
||||
로컬 전략(`local_colwise`, `local_rowwise`, `local_packed_rowwise`)은 [torch.chunk](https://docs.pytorch.org/docs/stable/generated/torch.chunk.html)와 같은 일부 연산에서 지원되지 않기 때문에 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)를 사용하지 않습니다. 대신 로컬 전략은 기본 [torch.Tensor](https://docs.pytorch.org/docs/stable/tensors.html)를 사용하고 일부 분산 로직을 수동으로 수행합니다.
|
||||
|
||||
<!--
|
||||
Readd this when I get the exact error message
|
||||
> [!TIP]
|
||||
> 사용자 정의 분할 전략을 사용하는데 `... is not supported` 오류로 작동하지 않는 경우, `local*` 전략을 사용해서 더 잘 작동하는지 시도해보세요.
|
||||
-->
|
||||
|
||||
## 사용자 정의 분할 전략[[custom-partitioning-strategies]]
|
||||
|
||||
사용자 정의 분할 전략은 [`TensorParallelLayer`](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py)를 상속하고 `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn`을 구현해야 합니다.
|
||||
|
||||
그런 다음 `tp_plan`에서 해당 전략을 지정했을 때 디스패칭 로직이 찾을 수 있도록 `ParallelInterface` 매핑에 등록해야 합니다.
|
||||
|
||||
아래 예시는 이 워크플로우로 `ColwiseParallel`을 구현하는 방법을 보여줍니다.
|
||||
|
||||
1. `TensorParallelLayer`를 상속합니다. `__init__` 메소드에서 입력 및 출력 텐서가 기기에 어떻게 배치되어야 하는지 설명하는 `input_layouts`과 `output_layouts`을 정의합니다. `desired_input_layouts` 속성은 입력이 기기에 어떻게 배치*되어야만* 하는지를 명시하는 데 사용됩니다.
|
||||
|
||||
```python
|
||||
class ColwiseParallel(TensorParallelLayer):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
input_layouts: Optional[Placement] = None, # 이전 레이어에서 오는 입력 레이아웃
|
||||
output_layouts: Optional[Placement] = None, # 달성하고자 하는 출력 레이아웃
|
||||
use_local_output: bool = True, # 로컬 출력 사용 여부
|
||||
use_dtensor=True, # DTensor 사용 여부
|
||||
):
|
||||
self.input_layouts = (input_layouts or Replicate(),) # 이전 레이어에서 오는 입력 분할
|
||||
self.output_layouts = (output_layouts or Shard(-1),) # 원하는 출력 분할
|
||||
self.desired_input_layouts = (Replicate(),) # 원하는 입력 분할, 입력은 GPU 간에 복제되어야 함
|
||||
self.use_local_output = use_local_output
|
||||
self.use_dtensor = use_dtensor
|
||||
```
|
||||
|
||||
2. `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn` 메서드를 구현합니다.
|
||||
|
||||
`partition_tensor` 메소드는 텐서를 분할하고 분할된 텐서로 `empty_param`을 채웁니다. 유틸리티 함수 `get_tensor_shard`를 사용하여 주어진 랭크에 대한 원본 매개변수의 올바른 분할을 얻고, 패킹된 가중치에 대해서는 `get_packed_weights`를 사용하세요.
|
||||
|
||||
```python
|
||||
def partition_tensor(
|
||||
self,
|
||||
param, # 매개변수의 전체 텐서
|
||||
empty_param, # 매개변수의 빈 텐서, 분할된 텐서로 채워짐
|
||||
param_type, # 매개변수 유형, `bias` 또는 `weight`
|
||||
param_casting_dtype, # 매개변수를 캐스팅할 유형
|
||||
to_contiguous, # 텐서를 연속적인 메모리 레이아웃으로 변환할지 여부
|
||||
rank, # 현재 기기의 랭크
|
||||
device_mesh, # 기기 메시
|
||||
) -> nn.Parameter: # 분할된 매개변수 반환
|
||||
...
|
||||
```
|
||||
|
||||
`_prepare_input_fn`과 `_prepare_output_fn` 메소드는 [사전 포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) 및 [포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) 훅에서 사용됩니다. `__init__`에서 지정된 대로 입력과 출력을 원하는 레이아웃으로 재분배합니다.
|
||||
|
||||
```python
|
||||
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
||||
...
|
||||
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
|
||||
...
|
||||
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
|
||||
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
|
||||
...
|
||||
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
|
||||
...
|
||||
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
|
||||
```
|
||||
|
||||
3. `tp_plan`과 함께 사용할 수 있도록 전략을 [`ParallelInterface`]에 등록합니다.
|
||||
|
||||
```python
|
||||
from transformers.integrations.tensor_parallel import ParallelInterface
|
||||
|
||||
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
|
||||
tp_plan = {
|
||||
"model.layers.*.self_attn.q_proj": "colwise_custom",
|
||||
...
|
||||
}
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
|
||||
```
|
||||
|
||||
## 벤치마크[[benchmarks]]
|
||||
|
||||
텐서 병렬화는 특히 큰 배치 크기나 긴 시퀀스를 가진 입력에 대한 추론 속도를 크게 향상시킬 수 있습니다.
|
||||
|
||||
시퀀스 길이가 512인 [Llama](./model_doc/llama)에서 단일 포워드 패스에 대한 예상 속도 향상 수치는 아래 차트를 참조하세요.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
|
||||
</div>
|
||||
|
||||
## 설계 구현[[design-implementation]]
|
||||
|
||||
Transformers 텐서 병렬화 구현은 프레임워크에 구애받지 않지만, 구체적인 구현을 위해서는 [DeviceMesh](https://docs.pytorch.org/tutorials/recipes/distributed_device_mesh.html)와 [torch.distributed](https://docs.pytorch.org/tutorials/beginner/dist_overview.html)의 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)에 의존하여 간단하고 확장 가능한 인터페이스를 제공합니다.
|
||||
|
||||
### DeviceMesh[[devicemesh]]
|
||||
|
||||
`DeviceMesh`를 함께 통신하는 기기들의 다차원 그리드로 상상해보세요. 병렬 처리 전략마다 각기 다른 통신 패턴이 필요하므로, 여러 하위 메시를 가진 `DeviceMesh`를 만들 수 있습니다.
|
||||
|
||||
```python
|
||||
from torch.distributed.device_mesh import init_device_mesh
|
||||
|
||||
# 4개 GPU의 1D 메시 생성
|
||||
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
|
||||
```
|
||||
|
||||
`torch.distributed`에서 정의된 대부분의 병렬화 전략은 메시 자체나 하위 메시에 적용할 수 있으며, 자동으로 통신 패턴을 처리합니다.
|
||||
|
||||
### DTensor[[dtensor]]
|
||||
|
||||
`DTensor`(분산 텐서)는 일반적인 텐서 연산 위에 분산 로직을 처리하는 텐서 하위 클래스입니다. 텐서 병렬화의 대부분의 모델 가중치는 `DTensor` 형태로 저장됩니다.
|
||||
|
||||
DTensor의 가장 중요한 부분은 `placement` 속성입니다. 이는 PyTorch에게 텐서가 `DeviceMesh`의 기기에 어떻게 배치되는지 알려주기 때문입니다. `placement` 속성은 다음 값을 가질 수 있습니다.
|
||||
|
||||
- `Shard(dimension)` - `DTensor`가 구성된 `DeviceMesh`에서 주어진 차원에 걸쳐 어떻게 분할되는지 나타냅니다. 아래 예시는 열 방향 분할을 위해 다양한 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
|
||||
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # 첫 번째(열 방향) 차원에 걸쳐 분할
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # 유일한 차원에 걸쳐 분할
|
||||
```
|
||||
|
||||
이 예시는 행 방향 분할을 위해 여러 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
|
||||
|
||||
```python
|
||||
weight = ...
|
||||
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # 두 번째(행 방향) 차원에 걸쳐 분할
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
|
||||
```
|
||||
|
||||
- `Replicate()` - `DTensor`가 `DeviceMesh`에 걸쳐 복제됨을 나타냅니다. 각 기기에 텐서의 전체 사본만 생성합니다.
|
||||
|
||||
```py
|
||||
bias = ...
|
||||
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
|
||||
```
|
||||
|
||||
- `Partial()` - 텐서가 감소 연산을 기다리고 있는 상태임을 나타냅니다 (일반적으로 Transformers에서의 사용 사례와는 직접적인 관련이 적습니다).
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user