Compare commits

...

86 Commits

Author SHA1 Message Date
d79b2d981f v4.55.4 2025-08-22 14:39:20 +02:00
90792b730a Revert "Fix GPT-OSS swiglu_limit not passed in for MXFP4 #40197"
The cherry-picked commit does not match the changes nor the PR
This reverts commit e75d67ec39b4f8bc03dbeea9016fff16c2375c5a.
2025-08-22 11:21:18 +02:00
a03df6acd4 Fix GPT-OSS swiglu_limit not passed in for MXFP4 (#40197)
Add swiglu_limit = 7.0
2025-08-22 11:20:23 +02:00
170b2708cb Fixes #40262 2025-08-21 11:03:16 +02:00
7dbc054e2a v4.55.3 2025-08-18 14:46:54 +02:00
c097a43898 [bugfix] fix flash-attention2 unavailable error for Ascend NPU (#40151)
* [bugfix] fix flash-attention2 unavailable error for Ascend NPU

* remove redundant apply_rotary_emb usage

* fix ruff check error

* pad_input and unpad_input use same implementation as fa2

* rollback redundant codes

* fix ruff check error

* optimize fa2 judgement logic
2025-08-18 14:45:23 +02:00
663cbb0d04 [FA2] Fix it finally - revert fa kwargs preparation (#40161)
revert
2025-08-18 14:44:58 +02:00
c7bd5350f0 Fix fsdp for generic-task models #40191 2025-08-18 14:44:16 +02:00
e75d67ec39 Fix GPT-OSS swiglu_limit not passed in for MXFP4 #40197 2025-08-18 14:43:31 +02:00
d7f67d2006 Fix mamba caches (#40203)
fix mamba models caches inheritance
2025-08-18 14:27:04 +02:00
acf295aec3 v4.55.2 2025-08-13 20:14:33 +02:00
aaa3169aa2 qfix bad cherry-pick 2025-08-13 18:13:21 +00:00
ea2eee0bc8 v4.55.1 2025-08-13 10:33:42 +02:00
956be23fff [bugfix] Fix tensor device in Idefics2, Idefics3, and SmolVLM (#39975)
* [bugfix] ensure correct tensor device in Idefics2, Idefics3, and SmolVLM models

* to cuda
2025-08-13 10:33:17 +02:00
79a9ffc520 fix merge conlicts 2025-08-13 10:25:20 +02:00
99404c7098 Default to dequantize if cpu in device_map for mxfp4 (#39993)
* default to dq if cpu

* an other check

* style

* revert some changes
2025-08-13 10:22:01 +02:00
0d6908038c [GPT Big Code] Fix attention scaling (#40041)
* fix

* update integration tests

* fmt

* add regression test
2025-08-13 10:22:01 +02:00
b8e97fbfd2 fix: resolve triton version check compatibility on windows (#39986)
* fix: resolve triton version check compatibility on windows

* style: remove trailing space

* fix: fix typo

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-08-13 10:22:01 +02:00
586b6e693b Fix missing None default values for Gemma3n model in get_placeholder_mask (#39991) (#40024)
* Fix missing None default values for Gemma3n model in get_placeholder_mask (#39991)

* Switched definition of optional from| None to Optiona[] (Issue #39991)

---------

Co-authored-by: Laurenz Ruzicka <Laurenz.Ruzicka@ait.ac.at>
2025-08-13 10:22:01 +02:00
95ae07d11f Fix broken image inference for Fuyu model (#39915)
* fix fuyu

Signed-off-by: Isotr0py <2037008807@qq.com>

* oops

Signed-off-by: Isotr0py <2037008807@qq.com>

* run test on GPU

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

* clean unused

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

* revert

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

* add fuyu multimodal test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-08-13 10:22:01 +02:00
0d9032ae71 Fix missing video inputs for PerceptionLM. (#39971)
* Fix missing video inputs for PerceptionLM.

* Minor fix for vanilla input image (only C,H,W, no tiles dim).

* Revert "Minor fix for vanilla input image (only C,H,W, no tiles dim)."

This reverts commit 181d87b964e59c4118035a9fd4f530c6e551ba9f.
2025-08-13 10:22:01 +02:00
1d42803aac [Idefics] fix device mismatch (#39981)
fix
2025-08-13 10:22:01 +02:00
382717e543 remove triton_kernels dep with kernels instead (#39926)
* remove dep

* style

* rm import

* fix

* style

* simplify

* style
2025-08-13 10:22:01 +02:00
cc98f42d22 Enable gpt-oss mxfp4 on older hardware (sm75+) (#39940)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-13 10:22:01 +02:00
d2f7266367 Fix MXFP4 quantizer validation to allow CPU inference with dequantize option (#39953)
* Fix MXFP4 quantizer validation to enable CPU dequantization

Move dequantize check before CUDA availability check to allow
CPU inference when quantization_config.dequantize is True.
This enables users to run MXFP4 models on CPU by automatically
converting them to BF16 format.

* Add tests for MXFP4 quantizer CPU dequantization validation

* fix: format mxfp4 test file with ruff
2025-08-13 10:22:01 +02:00
daab2db33f [CI] post-GptOss fixes for green CI (#39929) 2025-08-07 16:27:00 +02:00
06f8004e5c Release: v4.55.0 2025-08-05 18:09:15 +02:00
c54203a32e gpt_oss last chat template changes (#39925)
Last chat template changes
2025-08-05 18:08:08 +02:00
7c38d8fc23 Add GPT OSS model from OpenAI (#39923)
* fix

* nice

* where i am at

* Bro this works

* Update src/transformers/integrations/tensor_parallel.py

* cleanups

* yups that was breaking

* Update src/transformers/models/openai_moe/modeling_openai_moe.py

* gather on experts and not mlp

* add changes for latest convert branch

* adds options to get output_router_logits from config

* bring chat temlate + special tokens back into the script.

* initial commmit

* update

* working with shards

* add model.safetensors.index.json

* fix

* fix

* mxfp4 flag

* rm print

* Fix PAD/EOS/BOS (#18)

* fix pad/eos/bos

* base model maybe one day

* add some doc

* special tokens based on harmony.

* add in tokenizer config as well.

* prepare for rebase with main

* Fix for initialize_tensor_parallelism  now returning 4-tuple

```
[rank0]:   File "/fsx/edward/work/openai-tsm-examples/examples/generate.py", line 17, in <module>
[rank0]:     model = AutoModelForCausalLM.from_pretrained(
[rank0]:             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/models/auto/auto_factory.py", line 600, in from_pretrained
[rank0]:     return model_class.from_pretrained(
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/modeling_utils.py", line 316, in _wrapper
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/modeling_utils.py", line 4748, in from_pretrained
[rank0]:     tp_plan, device_map, device_mesh = initialize_tensor_parallelism(tp_plan, tp_size=None)
[rank0]:     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: ValueError: too many values to unpack (expected 3)
```

* mxfp4

* mxfp4 draft

* fix

* fix import

* draft

* draft impl

* finally working !

* simplify

* add import

* working version

* consider blocks and scales

* device mesh fix

* initial commit

* add working dequant + quant logic

* update

* non nan, gibberish output

* working EP + quantization finally !

* start cleaning

* remove reversing process

* style

* some cleaning

* initial commmit

* more cleaning

* more cleaning

* simplify

* more cleaning

* rm duplicated function

* changing tp_plan

* update tp plan check

* add loading attribute

* dequantizing logic

* use subfunctions

* import cleaning

* update_param_name

* adds clamped swiglu

* add clamping to training path

* simplify dequant logic

* update

* Bad merge

* more simplifications & tests

* fix !

* fix registering custom attention

* fix order

* fixes

* some test nits

* nits

* nit

* fix

* Clamp sink logits

* Clean

* Soft-max trick

* Clean up

* p

* fix deepspeed

* update both modeling and modular for cleanup

* contiguous

* update tests

* fix top_k router call

* revert renaming

* test nits

* small fixes for EP

* fix path for our local tests

* update as I should not have broken that!

* fix the loss of mixtral

* revert part of the changes related to router_scores, kernel probably no ready for that!

* deleting a small nit

* update arch

* fix post processing

* update

* running version but not expected output

* moving to cuda

* initial commit

* revert

* erroring when loading on cpu

* updates

* del blocks, scales

* fix

* style

* rm comm

* comment

* add comment

* style

* remove duplicated lines

* Fix minor issue with weight_map conversion script

* fix sampling params

* rename to final name

* upate pre-final version of template

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

* fix batched inference

* serve fixes

* swizzle !

* update final chat template by Matt.

* fix responses; pin oai

* sinplify

* Thanks Matt for his tireless efforts!

Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* fix

* Use ROCm kernels from HUB

* Make kernel modes explicit

* update final chat template by Matt. x2

* Thanks Matt for his tireless efforts!

Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>

* Fix installation

* Update setup.py

Co-authored-by: Ákos Hadnagy <akos.hadnagy@gmail.com>

* allow no content

* fix: update message handling in write_tokenizer function

* Fix template logic for user message role

* last nits for CB and flash_paged!

* there was one bad merge

* fix CB (hardcode for now, its just using kv groups instead)

* fix

* better fix for device_map

* minor device fix

* Fix flash paged

* updates

* Revert "remove dtensors, not explicit (#39840)"

This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* update

* Revert "remove dtensors, not explicit (#39840)"

This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* fix merge

* fix

* Fix line break when custom model indentity

* nits testing

* to locals first and pass sliding window to flash paged

* register modes for MegaBlocksMoeMlp

* add integration test in fixtures -> now update the tests to use it!

* update integration tests

* initial fix

* style and update tests

* fix

* chore(gpt oss): remove mlp_bias from configuration

It was just a leftover.

* stats

* Integration tests

* whoops

* Shouldn't move model

* Ensure assistant messages without thinking always go to "final" channel

* More checks to ensure expected format

* Add pad_token_id to model configuration in write_model function (#51)

* Add oai fix fast tests (#59)

* Fix some fast tests

* Force some updates

* Remove unnecessary fixes

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

* reasoning -> Reasoning

* Add additional integration tests

* fixup

* Slight fixes

* align chat template with harmony

* simplify

* Add comment

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* Revert fixup

* skip 2 test remove todo

* merge

* padding side should be left for integration tests

* fix modular wrt to changes made to modeling

* style

* isort

* fix opies for the loss

* mmmm

---------

Co-authored-by: Quentin Gallouédec <gallouedec.quentin@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: edbeeching <edbeeching@gmail.com>
Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
Co-authored-by: MekkCyber <mekk.cyber@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
Co-authored-by: Zhuohan Li <zhuohan@openai.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: joao@huggingface.co <joao@ip-10-53-88-32.ec2.internal>
Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Akos Hadnagy <akos@ahadnagy.com>
Co-authored-by: Ákos Hadnagy <akos.hadnagy@gmail.com>
Co-authored-by: Alvaro Moran <alvaro.moran@huggingface.co>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Matt <rocketknight1@gmail.com>
2025-08-05 18:02:18 +02:00
738c1a3899 🌐 [i18n-KO] Translated cache_explanation.md to Korean (#39535)
* update: _toctree.yml

* docs: ko: cache_explanation.md

* feat: nmt draft

* fix: apply yijun-lee's comments

* fix: apply 4N3MONE's comments

* docs: update cache_position

* docs: update cache-storage-implementation

* update: add h2 tag in cache-position

---------

Co-authored-by: taehyeonjeon <xogus294@gmail.com>
2025-08-05 08:20:13 -07:00
d2ae766836 Export SmolvLM (#39614)
Export SmolVLM for ExecuTorch
2025-08-05 16:20:23 +02:00
c430047602 [docs] update object detection guide (#39909)
* Update object_detection.md

* Update object_detection.md
2025-08-05 14:07:21 +00:00
dedcbd6e3d run model debugging with forward arg (#39905)
* run model debugging a lot simpler

* fixup

* Update src/transformers/utils/generic.py

* fixup

* mode syle?

* guard a bit
2025-08-05 15:46:19 +02:00
20ce210ab7 Revert "remove dtensors, not explicit (#39840)" (#39912)
* Revert "remove dtensors, not explicit (#39840)"
This did not work with generation (lm_head needs extra care!)
This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* update

* style?
2025-08-05 15:12:14 +02:00
2589a52c5c Fix aria tests (#39879)
* fix aria tests

* awful bug

* fix copies

* fix tests

* fix style

* revert this
2025-08-05 13:48:47 +02:00
6e4a9a5b43 Fix eval thread fork bomb (#39717) 2025-08-05 10:50:32 +00:00
98a3c49135 Replace video_fps with fps in tests (#39898)
Signed-off-by: cyy <cyyever@outlook.com>
2025-08-05 10:39:55 +00:00
1af1071081 Fix misleading WandB error when WANDB_DISABLED is set (#39891)
When users set `report_to="wandb"` but also have `WANDB_DISABLED=true` in their environment,
the previous error message was misleading: "WandbCallback requires wandb to be installed. Run pip install wandb."

This was confusing because wandb was actually installed, just disabled via the environment variable.

The fix detects this specific case and provides a clear, actionable error message explaining
the conflict and how to resolve it.
2025-08-05 10:18:18 +00:00
78ef84921b Avoid aliasing in cond's branches for torch 2.8 (#39488)
Avoid alaising in cond's branches

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-05 11:18:11 +02:00
9e676e6a0e [qwen] remove unnecessary CUDA sync in qwen2_5_vl (#39870)
Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-08-05 08:54:16 +00:00
392be3b282 fix test_working_of_tp failure of accelerate ut (#39828)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-05 08:52:57 +00:00
cc5de36454 [Exaone4] Fixes the attn implementation! (#39906)
* fix

* fix config
2025-08-05 09:29:16 +02:00
00d47757bf Reorder serving docs (#39634)
* Slight reorg

* LLMs + draft VLMs

* Actual VLM examples

* Initial responses

* Reorder

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tiny_agents.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/open_webui.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/cursor.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Responses API

* Address Pedro's comments

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-08-05 08:43:06 +02:00
8c4ea670dc chore: update DETR model card (#39822)
* Update model card for DETR

* fix: applied suggested changes

* fix: simplified pipeline and modified notes and resources

* Update detr.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-04 12:25:53 -07:00
0bd91cc822 Add support for ModernBertForMultipleChoice (#39232)
* implement ModernBertForMultipleChoice

* fixup, style, repo consistency

* generate modeling_modernbert

* add tests + docs

* fix test
2025-08-04 20:45:43 +02:00
801e869b67 send some feedback when manually building doc via comment (#39889)
* fix

* fix

* fix

* Update .github/workflows/pr_build_doc_with_comment.yml

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-08-04 18:20:48 +00:00
ee7eb2d0b1 Update cohere2 vision test (#39888)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 20:08:18 +02:00
3bafa128dc [DOCS] : Improved mimi model card (#39824)
* [DOCS] : Improved mimi model card

* Removed additional header

* Review: addressed feedback

* Update mimi.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-04 10:07:06 -07:00
192acc2d0f Fix link to models in README (#39880)
Update README.md
2025-08-04 09:34:41 -07:00
7dca2ff8cf [typing] better return type hint for AutoModelForCausalLM and AutoModelForImageTextToText (#39881)
* Better return type hint for  AutoModelForCausalLM and AutoModelForImageTextToText

* fix imports

* fix
2025-08-04 15:03:53 +00:00
3edd14610e Set torch.backends.cudnn.allow_tf32 = False for CI (#39885)
* fix

* fix

* [test all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 16:55:16 +02:00
e3505cd4dc Replace Tokenizer with PreTrainedTokenizerFast in ContinuousBatchProcessor (#39858)
Replace Tokenizer with PreTrainedTokenizerFast in ContinuousBatchProcessor
2025-08-04 16:39:19 +02:00
380b2a0317 Rework add-new-model-like with modular and make test filenames coherent (#39612)
* remove tf/flax

* fix

* style

* Update add_new_model_like.py

* work in progress

* continue

* more cleanup

* simplify and first final version

* fixes -> it works

* add linter checks

* Update add_new_model_like.py

* fix

* add modular conversion at the end

* Update add_new_model_like.py

* add video processor

* Update add_new_model_like.py

* Update add_new_model_like.py

* Update add_new_model_like.py

* fix

* Update image_processing_auto.py

* Update image_processing_auto.py

* fix post rebase

* start test filenames replacement

* rename all test_processor -> test_processing

* fix copied from

* add docstrings

* Update add_new_model_like.py

* fix regex

* improve wording

* Update add_new_model_like.py

* Update add_new_model_like.py

* Update add_new_model_like.py

* start adding test

* fix

* fix

* proper first test

* tests

* fix

* fix

* fix

* fix

* modular can be used from anywhere

* protect import

* fix

* Update add_new_model_like.py

* fix
2025-08-04 14:41:09 +02:00
5fb5b6cfaf Fix quant docker for fp-quant (#39641)
* fix quant docker

* Apply style fixes

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-04 11:57:08 +00:00
16d6faef9a [core] Fix attn_implementation setter with missing sub_configs (#39855)
* fix

* add sub_configs

* remove case for attention setter

* fix None

* Add test

* Fix sub-configs

* fix tests_config

* fix consistency

* fix fsmt

* fix
2025-08-04 11:35:09 +01:00
2a9febd632 Add support for including in-memory videos (not just files/urls) in apply_chat_template (#39494)
* added code for handling video object ,as dictionary of frames and metadata, in chat template

* added new test where videos are passed as objects (dict of frames, metadata) in the chat template

* modified hardcoded video_len check that does not match with increased number of tests cases.

* Modify hardcoded video_len check that fails with increased number of tests

* update documentation of multi-modal chat templating with extra information about including video object in chat template.

* add array handling in load_video()

* temporary test video inlcuded

* skip testing smolvlm with videos that are list of frames

* update documentation & make fixup

* Address review comments
2025-08-04 11:49:42 +02:00
0d511f7a77 Use comment to build doc on PRs (#39846)
* try

* try

* try

* try

* try

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 10:24:45 +02:00
4819adbbaa Refactor label name handling for PEFT models in Trainer class (#39265)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-04 06:29:57 +00:00
166fcad3f8 Improve is_wandb_available function to verify WandB installation (#39875)
Improve `is_wandb_available` function to verify WandB installation by checking for a key attribute
2025-08-04 08:22:52 +02:00
6dfd561d9c remove dtensors, not explicit (#39840)
* remove dtensors, not explicit

Co-authored-by: 3outeille <3outeille@users.noreply.github.com>

* style

* fix test

* update

* as we broke saving try to fix

* output layouts should exit

* nit

* devicemesh exists if it was distributed

* use _device_mesh of self

* update

* lol

* fix

* nit

* update

* fix!

* this???

* grumble grumble

* ?

* fuck me

---------

Co-authored-by: 3outeille <3outeille@users.noreply.github.com>
2025-08-01 22:02:47 +02:00
b727c2b20e Allow TrackioCallback to work when pynvml is not installed (#39851)
Allow TrackioCallback to work when pynvml is not installed
2025-08-01 18:57:25 +02:00
1ec0feccdd [image-processing] deprecate plot_keypoint_matching, make visualize_keypoint_matching as a standard (#39830)
* fix: deprecate plot_keypoint_matching and make visualize_keypoint_matching for all Keypoint Matching models

* refactor: added copied from

* fix: make style

* fix: repo consistency

* fix: make style

* docs: added missing method in SuperGlue docs
2025-08-01 16:29:57 +00:00
7b4d9843ba Add fast image processor Janus, Deepseek VL, Deepseek VL hybrid (#39739)
* add fast image processor Janus, deepseek_vl, deepseek_vl_hybrid

* fix after review
2025-08-01 12:20:08 -04:00
88ead3f518 Fix responses add tests (#39848)
* Quick responses fix

* [serve] Fix responses API and add tests

* Remove typo

* Remove typo

* Tests
2025-08-01 18:06:08 +02:00
6ea646a03a Update ux cb (#39845)
* clenaup

* nits

* updates

* fix logging

* push updates?

* just passexception

* update

* nits

* fix

* add tokencount

* style
2025-08-01 16:50:28 +02:00
3951d4ad5d Add MM Grounding DINO (#37925)
* first commit

Added modular implementation for MM Grounding DINO from starting point created by add-new-model-like. Added conversion script from mmdetection to huggingface.

TODO: Some tests are failing so that needs to be fixed.

* fixed a bug with modular definition of MMGroundingDinoForObjectDetection where box and class heads were not correctly assigned to inner model

* cleaned up a hack in the conversion script

* Fixed the expected values in integration tests

Cross att masking and cpu-gpu consistency tests are still failing however.

* changes for make style and quality

* add documentation

* clean up contrastive embedding

* add mm grounding dino to loss mapping

* add model link to config docstring

* hack fix for mm grounding dino consistency tests

* add special cases for unused config attr check

* add all models and update docs

* update model doc to the new style

* Use super_kwargs for modular config

* Move init to the _init_weights function

* Add copied from for tests

* fixup

* update typehints

* Fix-copies for tests

* fix-copies

* Fix init test

* fix snippets in docs

* fix consistency

* fix consistency

* update conversion script

* fix nits in readme and remove old comments from conversion script

* add license

* remove unused config args

* remove unnecessary if/else in model init

* fix quality

* Update references

* fix test

* fixup

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-08-01 15:43:23 +01:00
50145474b7 [typecheck] proper export of private symbols (#39729)
* Export private symbols

Signed-off-by: cyy <cyyever@outlook.com>

* Update src/transformers/__init__.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/__init__.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Fix format

Signed-off-by: cyy <cyyever@outlook.com>

* Add a comment for exported symbols

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-08-01 13:36:47 +01:00
c962f1515e [attn_implementation] remove recursive, allows custom kernels with wrappers (#39823)
* fix?

* fixme and style

* Update src/transformers/modeling_utils.py

* update

* update

* fix

* small fixees

* nit

* nits

* fix init check?

* fix

* fix default

* or fucks me

* nits

* include a small nit

* does this make it hapy?

* fixup

* fix the remaining ones
2025-08-01 12:18:28 +02:00
d3b8627b56 [VLMs] split out "get placeholder mask" to helper (#39777)
* batch upidate all models

* update

* forgot about llava onevision

* update

* fix tests

* delete file

* typo

* fix emu3 once and forever

* update cohere2 vision as well
2025-08-01 08:01:06 +00:00
a115b67392 Fix tp cb (#39838)
* fixes

* one more
2025-08-01 09:59:04 +02:00
2c0af41ce5 Fix bad markdown links (#39819)
Fix bad markdown links.
2025-07-31 09:14:14 -07:00
4fcf455517 Fix broken links (#39809)
Replace links in the form of `[text]((url))` to `[text](url)`. This is
the correct format of a url in the markdown.
2025-07-31 13:23:04 +00:00
b937d47455 [cohere2 vision] move doc to multimodal section (#39820)
move doc to multimodal section
2025-07-31 15:13:02 +02:00
6ba8a1ff45 Update documentation for Cohere2Vision models (#39817)
* Update docs with pipeline example

* Add Cohere2Vision to list of vision models

* Sort models
2025-07-31 11:58:45 +00:00
e1688d28d3 [Model] Cohere2 Vision (#39810)
* Add cohere2_vision to support CohereLabs/command-a-vision-07-2025

* update and add modualr file

* update processors and check with orig impl later

* delete unused files

* image processor reduce LOC and re-use GotOCR2

* update the config to use modular

* model tests pass

* processor fixes

* check model outputs decorator

* address one more comment

* Update tokens. Temp - need to read from tokenizer'

* fix for multi-gpu

* Fix image token handling

* upadte image token expansion logic

* fix a few issues with remote code loading

* not related but modular forces us to change all files now

* Add overview and code sample to cohere vision docs

* add scripts. TMP.

* Update inference script

* Create script

* set dtype in export script

* TO revert: modular export fix

* Fix scripts

* Revert "TO revert: modular export fix"

This reverts commit bdb2f305b61027a05f0032ce70d6ca698879191c.

* Use modular weights

* Upload to hub

Removed OOD weights ad script

* Updated docs

* fix import error

Update docs

Added pipeline test

* Updated docs

* Run modular script

remove modular for config

Added patch_size

Added docstrings in modular

Fix OOM

Add docs, fixup integration tests. 8-gpu passing

* tiny updates

* address comments + fixup

* add test for chat template

* check model outputs workaround

* aya vision fix check model inputs

* Revert "add test for chat template"

This reverts commit 42c756e397f588d76b449ff1f93292d8ee0202d8.

* reveert more changes

* last revert

* skip and merge

* faulty copy from

---------

Co-authored-by: Julian Mack <julian.mack@cohere.com>
Co-authored-by: kyle-cohere <kyle@cohere.com>
2025-07-31 10:57:34 +00:00
6c3f27ba61 [docs] fix korean docs yet again (#39813)
fix korean docs yet again
2025-07-31 09:13:25 +00:00
cb289ad243 feat(tokenization): add encode_message to tokenize messages one by one (#39507)
* feat(tokenization): add encode_message to tokenize messages one by one

* Fix the `encode_message` method, remove the `add_generation_prompt` parameter and add the corresponding error handling. Update the document to reflect this change and verify the error handling in the test.

* Optimize the `encode_message` method, improve the processing logic of the empty dialogue history, and ensure that the chat template can be applied correctly when the dialogue history is empty. Update the document to reflect these changes.

* The `_encode_message` method is deleted, the message coding logic is simplified, and the functional integrity of the `encode_message` method is ensured. Update the document to reflect these changes.

* Docs fix

* Revert changes in docstring of pad()

* Revert changes in docstring

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Repair the call of the `encode_message` method, update it to `encode_message_with_chat_template` to support the chat template, and adjust the relevant test cases to reflect this change.

* Optimize the call format of the `apply_chat_template` method, and merge multi-line calls into a single line to improve code readability.

---------

Co-authored-by: pco111 <15262555+pco111@user.noreply.gitee.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-31 10:55:45 +02:00
4f93cc9174 fix: providing a tensor to cache_position in model.generate kwargs always crashes because of boolean test (#39300)
* fix: cache_position: RuntimeError: Boolean value of Tensor with more than one value is ambiguous

* test cache_position

* move test

* propagate changes

---------

Co-authored-by: Masataro Asai <guicho2.71828@gmail.com>
2025-07-30 17:30:28 +00:00
9b3203f47b Add callback to monitor progress in whisper transcription (#37483)
* Add callback to monitor progress in whisper transcription

* Added `` around variables, rewording

* Add example of `monitor_progress`.

---------

Co-authored-by: Eric B <ebezzam@gmail.com>
2025-07-30 17:40:53 +02:00
7abb5d3992 Update mT5 model card (#39702)
* Update mt5 model card

* Fix casing of model title

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-30 08:35:04 -07:00
1019b00028 Update model card for Cohere2 (Command R7B) (#39604)
* Update model card for Cohere2 (Command R7B)

* fix: applied suggested changes
2025-07-30 08:34:26 -07:00
ecbb5ee194 standardized BARThez model card (#39701)
* standardized barthez model card according to template

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* suggested changes to barthez model card

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-30 08:33:13 -07:00
8e077a3e45 Fix re-compilations for cross attention cache (#39788)
fix recompilations for cross attn cache
2025-07-30 14:52:03 +02:00
1e0665a191 Simplify conditional code (#39781)
* Use !=

Signed-off-by: cyy <cyyever@outlook.com>

* Use get

Signed-off-by: cyy <cyyever@outlook.com>

* Format

* Simplify bool operations

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-30 12:32:10 +00:00
b94929eb49 Fix an invalid condition (#39762)
Fix an invalid judgement

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-30 12:19:17 +00:00
bb2ac66453 fix chameleonvision UT failure (#39646)
* fix chameleonvision UT failure

Signed-off-by: matrix.yao@intel.com <Yao Matrix>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: matrix.yao@intel.com <Yao Matrix>
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: root <Yao Matrix>
2025-07-30 12:09:26 +00:00
861 changed files with 19504 additions and 82560 deletions

View File

@ -0,0 +1,134 @@
name: PR - build doc via comment
on:
issue_comment:
types:
- created
branches-ignore:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.event.issue.number }}-${{ startsWith(github.event.comment.body, 'build-doc') }}
cancel-in-progress: true
permissions: {}
jobs:
get-pr-number:
name: Get PR number
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
name: Get PR commit SHA
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
create_run:
name: Create run
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
permissions:
statuses: write
runs-on: ubuntu-22.04
steps:
- name: Create Run
id: create_run
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Custom doc building job" -f "context=custom-doc-build"
reply_to_comment:
name: Reply to the comment
if: ${{ needs.create_run.result == 'success' }}
needs: [get-pr-number, create_run]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f "body=[Building docs for all languages...](${{ env.GITHUB_RUN_URL }})"
build-doc:
name: Build doc
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
update_run_status:
name: Update Check Run Status
needs: [ get-pr-info, create_run, build-doc ]
permissions:
statuses: write
if: ${{ always() && needs.create_run.result == 'success' }}
runs-on: ubuntu-22.04
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.create_run.result) }}
steps:
- name: Get `build-doc` job status
run: |
echo "${{ needs.build-doc.result }}"
echo $STATUS_OK
if [ "$STATUS_OK" = "true" ]; then
echo "STATUS=success" >> $GITHUB_ENV
else
echo "STATUS=failure" >> $GITHUB_ENV
fi
- name: Update PR commit statuses
run: |
echo "${{ needs.build-doc.result }}"
echo "${{ env.STATUS }}"
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Custom doc building job" -f "context=custom-doc-build"

View File

@ -16,28 +16,6 @@ jobs:
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ github.event.comment.created_at != '' }}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
get-jobs:
name: Get test files to run
runs-on: ubuntu-22.04

View File

@ -242,7 +242,7 @@ pipeline(
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is optimized to work with PyTorch models provided by Transformers. For generic machine learning loops, you should use another library like [Accelerate](https://huggingface.co/docs/accelerate).
- The [example scripts]((https://github.com/huggingface/transformers/tree/main/examples)) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
- The [example scripts](https://github.com/huggingface/transformers/tree/main/examples) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
## 100 projects using Transformers
@ -280,8 +280,8 @@ Expand each modality below to see a few example models for various use cases.
- Automatic mask generation with [SAM](https://huggingface.co/facebook/sam-vit-base)
- Depth estimation with [DepthPro](https://huggingface.co/apple/DepthPro-hf)
- Image classification with [DINO v2](https://huggingface.co/facebook/dinov2-base)
- Keypoint detection with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue)
- Keypoint detection with [SuperPoint](https://huggingface.co/magic-leap-community/superpoint)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Object detection with [RT-DETRv2](https://huggingface.co/PekingU/rtdetr_v2_r50vd)
- Pose Estimation with [VitPose](https://huggingface.co/usyd-community/vitpose-base-simple)
- Universal segmentation with [OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_swin_large)

View File

@ -23,13 +23,12 @@ from os.path import abspath, dirname, join
import _pytest
import pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
from transformers.testing_utils import HfDoctestModule, HfDocTestParser, is_torch_available
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_tokenization_mistral_common",
"test_processor",
"test_processing",
"test_beam_constraints",
"test_configuration_utils",
@ -128,3 +127,10 @@ class CustomOutputChecker(OutputChecker):
doctest.OutputChecker = CustomOutputChecker
_pytest.doctest.DoctestModule = HfDoctestModule
doctest.DocTestParser = HfDocTestParser
if is_torch_available():
import torch
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# We set it to `False` for CI. See https://github.com/pytorch/pytorch/issues/157274#issuecomment-3090791615
torch.backends.cudnn.allow_tf32 = False

View File

@ -79,7 +79,8 @@ RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submod
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
# Add fp-quant for quantization testing
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Requires py3.11 but our CI runs on 3.9
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Add compressed-tensors for quantization testing
RUN python3 -m pip install --no-cache-dir compressed-tensors

View File

@ -13,11 +13,11 @@
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization).
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://huggingface.co/papers/2305.13245)).
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)](https://huggingface.co/papers/2305.13245).
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.

View File

@ -89,6 +89,18 @@
- local: chat_extras
title: Tools and RAG
title: Chat with models
- sections:
- local: serving
title: Serving LLMs, VLMs, and other chat-based models
- local: jan
title: Jan
- local: cursor
title: Cursor
- local: tiny_agents
title: Tiny-Agents CLI and MCP tools
- local: open_webui
title: Open WebUI
title: Serving
- sections:
- local: perf_torch_compile
title: torch.compile
@ -103,8 +115,6 @@
title: Agents
- local: tools
title: Tools
- local: serving
title: Serving
- local: transformers_as_backend
title: Inference server backends
title: Inference
@ -501,6 +511,8 @@
title: GPT2
- local: model_doc/gpt_bigcode
title: GPTBigCode
- local: model_doc/gpt_oss
title: GptOss
- local: model_doc/gptsan-japanese
title: GPTSAN Japanese
- local: model_doc/gpt-sw3
@ -971,6 +983,8 @@
title: CLIPSeg
- local: model_doc/clvp
title: CLVP
- local: model_doc/cohere2_vision
title: Cohere2Vision
- local: model_doc/colpali
title: ColPali
- local: model_doc/colqwen2
@ -1049,6 +1063,8 @@
title: Mistral3
- local: model_doc/mllama
title: mllama
- local: model_doc/mm-grounding-dino
title: MM Grounding DINO
- local: model_doc/nougat
title: Nougat
- local: model_doc/omdet-turbo

View File

@ -111,6 +111,7 @@ Some vision models also support video inputs. The message format is very similar
- The content `"type"` should be `"video"` to indicate the content is a video.
- For videos, it can be a link to the video (`"url"`) or it could be a file path (`"path"`). Videos loaded from a URL can only be decoded with [PyAV](https://pyav.basswood-io.com/docs/stable/) or [Decord](https://github.com/dmlc/decord).
- In addition to loading videos from a URL or file path, you can also pass decoded video data directly. This is useful if youve already preprocessed or decoded video frames elsewhere in memory (e.g., using OpenCV, decord, or torchvision). You don't need to save to files or store it in an URL.
> [!WARNING]
> Loading a video from `"url"` is only supported by the PyAV or Decord backends.
@ -137,6 +138,52 @@ messages = [
]
```
### Example: Passing decoded video objects
```python
import numpy as np
video_object1 = np.random.randint(0, 255, size=(16, 224, 224, 3), dtype=np.uint8),
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
},
{
"role": "user",
"content": [
{"type": "video", "video": video_object1},
{"type": "text", "text": "What do you see in this video?"}
],
},
]
```
You can also use existing (`"load_video()"`) function to load a video, edit the video in memory and pass it in the messages.
```python
# Make sure a video backend library (pyav, decord, or torchvision) is available.
from transformers.video_utils import load_video
# load a video file in memory for testing
video_object2, _ = load_video(
"https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4"
)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
},
{
"role": "user",
"content": [
{"type": "video", "video": video_object2},
{"type": "text", "text": "What do you see in this video?"}
],
},
]
```
Pass `messages` to [`~ProcessorMixin.apply_chat_template`] to tokenize the input content. There are a few extra parameters to include in [`~ProcessorMixin.apply_chat_template`] that controls the sampling process.
The `video_load_backend` parameter refers to a specific framework to load a video. It supports [PyAV](https://pyav.basswood-io.com/docs/stable/), [Decord](https://github.com/dmlc/decord), [OpenCV](https://github.com/opencv/opencv), and [torchvision](https://pytorch.org/vision/stable/index.html).

View File

@ -27,7 +27,7 @@ This guide shows you how to quickly start chatting with Transformers from the co
## chat CLI
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
After you've [installed Transformers](./installation), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
```bash
transformers chat Qwen/Qwen2.5-0.5B-Instruct
@ -158,4 +158,4 @@ The easiest solution for improving generation speed is to either quantize a mode
You can also try techniques like [speculative decoding](./generation_strategies#speculative-decoding), where a smaller model generates candidate tokens that are verified by the larger model. If the candidate tokens are correct, the larger model can generate more than one token per `forward` pass. This significantly alleviates the bandwidth bottleneck and improves generation speed.
> [!TIP]
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe.md), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.

42
docs/source/en/cursor.md Normal file
View File

@ -0,0 +1,42 @@
# Using Cursor as a client of transformers serve
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. In this particular case, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch a server with CORS enabled, run
```shell
transformers serve --enable-cors
```
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see a https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>

32
docs/source/en/jan.md Normal file
View File

@ -0,0 +1,32 @@
# Jan: using the serving API as a local LLM provider
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
## Running models locally
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
## Running models on a separate machine
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.

View File

@ -148,9 +148,9 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
| Option name | Type | Simplified description |
|---|---|---|
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies) for more information. |
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |

View File

@ -23,11 +23,11 @@ The crux of these challenges lies in augmenting the computational and memory cap
In this guide, we will go over the effective techniques for efficient LLM deployment:
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization.md) can achieve computational advantages without a considerable decline in model performance.
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization) can achieve computational advantages without a considerable decline in model performance.
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245)).
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245).
Throughout this guide, we will offer an analysis of auto-regressive generation from a tensor's perspective. We delve into the pros and cons of adopting lower precision, provide a comprehensive exploration of the latest attention algorithms, and discuss improved LLM architectures. While doing so, we run practical examples showcasing each of the feature improvements.

View File

@ -65,6 +65,10 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
[[autodoc]] HqqConfig
## Mxfp4Config
[[autodoc]] Mxfp4Config
## FbgemmFp8Config
[[autodoc]] FbgemmFp8Config

View File

@ -14,49 +14,81 @@ rendered properly in your Markdown viewer.
-->
# BARThez
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# BARThez
The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://huggingface.co/papers/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct,
2020.
[BARThez](https://huggingface.co/papers/2010.12321) is a [BART](./bart) model designed for French language tasks. Unlike existing French BERT models, BARThez includes a pretrained encoder-decoder, allowing it to generate text as well. This model is also available as a multilingual variant, mBARThez, by continuing pretraining multilingual BART on a French corpus.
The abstract of the paper:
You can find all of the original BARThez checkpoints under the [BARThez](https://huggingface.co/collections/dascim/barthez-670920b569a07aa53e3b6887) collection.
> [!TIP]
> This model was contributed by [moussakam](https://huggingface.co/moussakam).
> Refer to the [BART](./bart) docs for more usage examples.
*Inductive transfer learning, enabled by self-supervised learning, have taken the entire Natural Language Processing
(NLP) field by storm, with models such as BERT and BART setting new state of the art on countless natural language
understanding tasks. While there are some notable exceptions, most of the available models and research have been
conducted for the English language. In this work, we introduce BARThez, the first BART model for the French language
(to the best of our knowledge). BARThez was pretrained on a very large monolingual French corpus from past research
that we adapted to suit BART's perturbation schemes. Unlike already existing BERT-based French language models such as
CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks, since not only its encoder but also
its decoder is pretrained. In addition to discriminative tasks from the FLUE benchmark, we evaluate BARThez on a novel
summarization dataset, OrangeSum, that we release with this paper. We also continue the pretraining of an already
pretrained multilingual BART on BARThez's corpus, and we show that the resulting model, which we call mBARTHez,
provides a significant boost over vanilla BARThez, and is on par with or outperforms CamemBERT and FlauBERT.*
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
This model was contributed by [moussakam](https://huggingface.co/moussakam). The Authors' code can be found [here](https://github.com/moussaKam/BARThez).
<hfoptions id="usage">
<hfoption id="Pipeline">
<Tip>
```py
import torch
from transformers import pipeline
BARThez implementation is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on
configuration classes and their parameters. BARThez-specific tokenizers are documented below.
pipeline = pipeline(
task="fill-mask",
model="moussaKam/barthez",
torch_dtype=torch.float16,
device=0
)
pipeline("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.")
```
</Tip>
</hfoption>
<hfoption id="AutoModel">
## Resources
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
- BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check:
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
tokenizer = AutoTokenizer.from_pretrained(
"moussaKam/barthez",
)
model = AutoModelForMaskedLM.from_pretrained(
"moussaKam/barthez",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Les plantes produisent <mask> grâce à un processus appelé photosynthèse." | transformers run --task fill-mask --model moussaKam/barthez --device 0
```
</hfoption>
</hfoptions>
## BarthezTokenizer

View File

@ -1,43 +1,115 @@
# Cohere
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
</div>
## Overview
[C4AI Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model developed by Cohere and Cohere For AI. It has advanced capabilities optimized for various use cases, including reasoning, summarization, question answering, and code. The model is trained to perform sophisticated tasks including Retrieval Augmented Generation (RAG) and tool use. The model also has powerful agentic capabilities that can use and combine multiple tools over multiple steps to accomplish more difficult tasks. It obtains top performance on enterprise-relevant code use cases. C4AI Command R7B is a multilingual model trained on 23 languages.
The model features three layers with sliding window attention (window size 4096) and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
# Cohere2
The model has been trained on 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian.
[Cohere Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model. It is a multilingual model trained on 23 languages and has a context window of 128k. The model features three layers with sliding window attention and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
## Usage tips
The model and tokenizer can be loaded via:
This model is optimized for speed, cost-performance, and compute resources.
You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.
> [!TIP]
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
# pip install transformers
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map=0
)
messages = [
{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"},
]
pipeline(messages)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
"CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
gen_tokens = model.generate(
# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat CohereLabs/c4ai-command-r7b-12-2024 --torch_dtype auto --attn_implementation flash_attention_2
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview.md) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to 4-bits.
```python
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
"CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map="auto",
quantization_config=bnb_config,
attn_implementation="sdpa"
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Cohere2Config

View File

@ -0,0 +1,123 @@
# Command A Vision
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
## Overview
Command A Vision is a state-of-the-art multimodal model designed to seamlessly integrate visual and textual information for a wide range of applications. By combining advanced computer vision techniques with natural language processing capabilities, Command A Vision enables users to analyze, understand, and generate insights from both visual and textual data.
The model excels at tasks including image captioning, visual question answering, document understanding, and chart understanding. This makes it a versatile tool for AI practitioners. Its ability to process complex visual and textual inputs makes it useful in settings where text-only representations are imprecise or unavailable, like real-world image understanding and graphics-heavy document processing.
Command A Vision is built upon a robust architecture that leverages the latest advancements in VLMs. It's highly performant and efficient, even when dealing with large-scale datasets. The model's flexibility makes it suitable for a wide range of use cases, from content moderation and image search to medical imaging analysis and robotics.
## Usage tips
The model and image processor can be loaded as follows:
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
model_id = "CohereLabs/command-a-vision-07-2025"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.float16
)
# Format message with the Command-A-Vision chat template
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg",
},
{"type": "text", "text": "what is in this image?"},
],
},
]
inputs = processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(
processor.tokenizer.decode(
gen_tokens[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
)
)
```
</hfoption>
<hfoption id="Pipeline">
```python
from transformers import pipeline
pipe = pipeline(model="CohereLabs/command-a-vision-07-2025", task="image-text-to-text", device_map="auto")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=",
},
{"type": "text", "text": "Where was this taken ?"},
],
},
]
outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
print(outputs)
```
</hfoption>
</hfoptions>
## Cohere2VisionConfig
[[autodoc]] Cohere2VisionConfig
## Cohere2VisionForConditionalGeneration
[[autodoc]] Cohere2VisionForConditionalGeneration
- forward
## Cohere2VisionModel
[[autodoc]] Cohere2VisionModel
- forward
## Cohere2VisionImageProcessorFast
[[autodoc]] Cohere2VisionImageProcessorFast
- preprocess
## Cohere2VisionProcessor
[[autodoc]] Cohere2VisionProcessor

View File

@ -95,7 +95,7 @@ images = [
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
```python
import requests

View File

@ -99,7 +99,7 @@ images = [
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
```python
import requests

View File

@ -21,7 +21,7 @@ rendered properly in your Markdown viewer.
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
**Model Architecture:**
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.

View File

@ -209,6 +209,10 @@ model = DeepseekVLForConditionalGeneration.from_pretrained(
[[autodoc]] DeepseekVLImageProcessor
## DeepseekVLImageProcessorFast
[[autodoc]] DeepseekVLImageProcessorFast
## DeepseekVLModel
[[autodoc]] DeepseekVLModel

View File

@ -208,6 +208,10 @@ model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
[[autodoc]] DeepseekVLHybridImageProcessor
## DeepseekVLHybridImageProcessorFast
[[autodoc]] DeepseekVLHybridImageProcessorFast
## DeepseekVLHybridModel
[[autodoc]] DeepseekVLHybridModel

View File

@ -14,132 +14,122 @@ rendered properly in your Markdown viewer.
-->
# DETR
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# DETR
The DETR model was proposed in [End-to-End Object Detection with Transformers](https://huggingface.co/papers/2005.12872) by
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
[DETR](https://huggingface.co/papers/2005.12872) consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
The abstract from the paper is the following:
You can find all the original DETR checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=detr) organization.
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
DETR reasons about the relations of the objects and the global image context to directly output the final set of
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
baselines.*
> [!TIP]
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
>
> Click on the DETR models in the right sidebar for more examples of how to apply DETR to different object detection and segmentation tasks.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr).
The example below demonstrates how to perform object detection with the [`Pipeline`] or the [`AutoModel`] class.
## How DETR works
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
from transformers import pipeline
import torch
pipeline = pipeline(
"object-detection",
model="facebook/detr-resnet-50",
torch_dtype=torch.float16,
device_map=0
)
pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")
```
</hfoption>
<hfoption id="AutoModel">
```python
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image
import requests
import torch
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
for result in results:
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
score, label = score.item(), label_id.item()
box = [round(i, 2) for i in box.tolist()]
print(f"{model.config.id2label[label]}: {score:.2f} {box}")
```
</hfoption>
</hfoptions>
<details>
<summary>How DETR works</summary>
Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works:
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is
then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a
`nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the
feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` =
`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a `nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` = `(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
`(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros.
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
object", and a MLP to predict bounding boxes for each query.
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape `(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros. These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to the encoder, they are added to the input of each attention layer. Each object query will look for a particular object in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no object", and a MLP to predict bounding boxes for each query.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the
bounding boxes) are used to optimize the parameters of the model.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the bounding boxes) are used to optimize the parameters of the model.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of
[`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process,
where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of [`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process, where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both "things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
## Usage tips
</details>
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
`num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the
authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
absolute position embeddings. By default, the parameter `position_embedding_type` of
[`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of
[`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses
are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
_num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be
set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with
any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models).
Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of
[`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that
config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
[`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
Alternatively, one can also define a custom `collate_fn` in order to batch images together, using
[`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`.
It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
## Notes
There are three ways to instantiate a DETR model (depending on what you prefer):
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum number of objects that can be detected in a single image, and is set to 100 by default (see parameter `num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2, which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned absolute position embeddings. By default, the parameter `position_embedding_type` of [`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of [`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the _num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models). Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of [`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use [`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding. Alternatively, one can also define a custom `collate_fn` in order to batch images together, using [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`. It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
Option 1: Instantiate DETR with pre-trained weights for entire model
```py
>>> from transformers import DetrForObjectDetection
There are three other ways to instantiate a DETR model (depending on what you prefer):
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
- Option 1: Instantiate DETR with pre-trained weights for entire model
```python
from transformers import DetrForObjectDetection
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
```
Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```py
>>> from transformers import DetrConfig, DetrForObjectDetection
- Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```python
from transformers import DetrConfig, DetrForObjectDetection
>>> config = DetrConfig()
>>> model = DetrForObjectDetection(config)
config = DetrConfig()
model = DetrForObjectDetection(config)
```
Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```py
>>> config = DetrConfig(use_pretrained_backbone=False)
>>> model = DetrForObjectDetection(config)
- Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```python
config = DetrConfig(use_pretrained_backbone=False)
model = DetrForObjectDetection(config)
```
As a summary, consider the following table:
@ -153,24 +143,12 @@ As a summary, consider the following table:
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
- In short, one should prepare the data either in COCO detection or COCO panoptic format, then use [`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional `labels`, which can then be used to train (or fine-tune) a model.
- For evaluation, one should first convert the outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR.
<PipelineTag pipeline="object-detection"/>
- All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
- Scripts for finetuning [`DetrForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
- See also: [Object detection task guide](../tasks/object_detection).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Refer to these [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for examples of fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset.
## DetrConfig

View File

@ -26,14 +26,14 @@ rendered properly in your Markdown viewer.
## Overview
Dia is an opensource text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
It can generate highly realistic dialogue from transcript including nonverbal communications such as laughter and coughing.
Dia is an open-source text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
It can generate highly realistic dialogue from transcript including non-verbal communications such as laughter and coughing.
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).
**Model Architecture:**
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
for the audio portion (decoder), a pretrained codec model [DAC](./dac.md) is used - DAC encodes speech into discrete codebook
for the audio portion (decoder), a pretrained codec model [DAC](./dac) is used - DAC encodes speech into discrete codebook
tokens and decodes them back into audio.
## Usage Tips

View File

@ -27,7 +27,7 @@ rendered properly in your Markdown viewer.
ERNIE (Enhanced Representation through kNowledge IntEgration) is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking.
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5.md), and [Ernie 4.5 MoE](./ernie4_5_moe.md).
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5), and [Ernie 4.5 MoE](./ernie4_5_moe).
> [!TIP]
> This model was contributed by [nghuyong](https://huggingface.co/nghuyong), and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).

View File

@ -29,9 +29,9 @@ rendered properly in your Markdown viewer.
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama) at its core.
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe.md).
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>

View File

@ -30,10 +30,10 @@ rendered properly in your Markdown viewer.
The Ernie 4.5 Moe model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
It uses the standard [Llama](./llama) at its core combined with a specialized MoE based on [Mixtral](./mixtral) with additional shared
experts.
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
Other models from the family can be found at [Ernie 4.5](./ernie4_5).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>

View File

@ -30,7 +30,7 @@ Gemma3n is a multimodal model with pretrained and instruction-tuned variants, av
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
a similar attention pattern to [Gemma 3](./gemma3) with alternating 4 local sliding window self-attention layers for
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.

View File

@ -0,0 +1,58 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# GptOss
## Overview
The GptOss model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
<INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
## GptOssConfig
[[autodoc]] GptOssConfig
## GptOssModel
[[autodoc]] GptOssModel
- forward
## GptOssForCausalLM
[[autodoc]] GptOssForCausalLM
- forward

View File

@ -169,9 +169,9 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
## Shrinking down Idefics2 using quantization
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization) for other quantization methods):
```diff
+ from transformers import BitsAndBytesConfig
@ -193,7 +193,7 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Idefics2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer.md) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
- A script regarding how to fine-tune Idefics2 using the TRL library can be found [here](https://gist.github.com/edbeeching/228652fc6c2b29a1641be5a5778223cb).
- Demo notebook regarding fine-tuning Idefics2 for JSON extraction use cases can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Idefics2). 🌎

View File

@ -44,11 +44,11 @@ Here is the example of visual understanding with a single image.
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
```python
import torch
from PIL import Image
import requests
import torch
from PIL import Image
import requests
from transformers import JanusForConditionalGeneration, JanusProcessor
from transformers import JanusForConditionalGeneration, JanusProcessor
model_id = "deepseek-community/Janus-Pro-1B"
# Prepare Input for generation.
@ -64,7 +64,7 @@ messages = [
# Set generation mode to `text` to perform text generation.
processor = JanusProcessor.from_pretrained(model_id)
model = JanusForConditionalGeneration.from_pretrained(model_id,
model = JanusForConditionalGeneration.from_pretrained(model_id,
torch_dtype=torch.bfloat16,
device_map="auto")
@ -209,6 +209,10 @@ for i, image in enumerate(images['pixel_values']):
[[autodoc]] JanusImageProcessor
## JanusImageProcessorFast
[[autodoc]] JanusImageProcessorFast
## JanusVisionModel
[[autodoc]] JanusVisionModel

View File

@ -107,7 +107,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
```py
# Easy visualization using the built-in plotting method
processor.plot_keypoint_matching(images, processed_outputs)
processor.visualize_keypoint_matching(images, processed_outputs)
```
<div class="flex justify-center">
@ -128,7 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- preprocess
- post_process_keypoint_matching
- plot_keypoint_matching
- visualize_keypoint_matching
<frameworkcontent>
<pt>

View File

@ -33,7 +33,7 @@ alt="drawing" width="600"/>
<small> MGP-STR architecture. Taken from the <a href="https://huggingface.co/papers/2209.03592">original paper</a>. </small>
MGP-STR is trained on two synthetic datasets [MJSynth]((http://www.robots.ox.ac.uk/~vgg/data/text/)) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
MGP-STR is trained on two synthetic datasets [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
This model was contributed by [yuekun](https://huggingface.co/yuekun). The original code can be found [here](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
## Inference example

View File

@ -14,30 +14,29 @@ rendered properly in your Markdown viewer.
-->
# Mimi
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Mimi
The Mimi model was proposed in [Moshi: a speech-text foundation model for real-time dialogue](https://kyutai.org/Moshi.pdf) by Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave and Neil Zeghidour. Mimi is a high-fidelity audio codec model developed by the Kyutai team, that combines semantic and acoustic information into audio tokens running at 12Hz and a bitrate of 1.1kbps. In other words, it can be used to map audio waveforms into “audio tokens”, known as “codebooks”.
[Mimi](huggingface.co/papers/2410.00037) is a neural audio codec model with pretrained and quantized variants, designed for efficient speech representation and compression. The model operates at 1.1 kbps with a 12 Hz frame rate and uses a convolutional encoder-decoder architecture combined with a residual vector quantizer of 16 codebooks. Mimi outputs dual token streams i.e. semantic and acoustic to balance linguistic richness with high fidelity reconstruction. Key features include a causal streaming encoder for low-latency use, dual-path tokenization for flexible downstream generation, and integration readiness with large speech models like Moshi.
The abstract from the paper is the following:
You can find the original Mimi checkpoints under the [Kyutai](https://huggingface.co/kyutai/models?search=mimi) organization.
*We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning— such as emotion or non-speech sounds— is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this “Inner Monologue” method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at github.com/kyutai-labs/moshi.*
>[!TIP]
> This model was contributed by [ylacombe](https://huggingface.co/ylacombe).
>
> Click on the Mimi models in the right sidebar for more examples of how to apply Mimi.
Its architecture is based on [Encodec](model_doc/encodec) with several major differences:
* it uses a much lower frame-rate.
* it uses additional transformers for encoding and decoding for better latent contextualization
* it uses a different quantization scheme: one codebook is dedicated to semantic projection.
The example below demonstrates how to encode and decode audio with the [`AutoModel`] class.
## Usage example
Here is a quick example of how to encode and decode an audio using this model:
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
>>> from datasets import load_dataset, Audio
@ -59,9 +58,8 @@ Here is a quick example of how to encode and decode an audio using this model:
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values
```
This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe).
The original code can be found [here](https://github.com/kyutai-labs/moshi).
</hfoption>
</hfoptions>
## MimiConfig
@ -72,4 +70,4 @@ The original code can be found [here](https://github.com/kyutai-labs/moshi).
[[autodoc]] MimiModel
- decode
- encode
- forward
- forward

View File

@ -115,9 +115,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
## Shrinking down MiniMax using quantization
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
```python
>>> import torch

View File

@ -146,9 +146,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
## Shrinking down Mixtral using quantization
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
```python
>>> import torch

View File

@ -0,0 +1,124 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# MM Grounding DINO
[MM Grounding DINO](https://arxiv.org/abs/2401.02361) model was proposed in [An Open and Comprehensive Pipeline for Unified Object Grounding and Detection](https://arxiv.org/abs/2401.02361) by Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, Haian Huang>.
MM Grounding DINO improves upon the [Grounding DINO](https://huggingface.co/docs/transformers/model_doc/grounding-dino) by improving the contrastive class head and removing the parameter sharing in the decoder, improving zero-shot detection performance on both COCO (50.6(+2.2) AP) and LVIS (31.9(+11.8) val AP and 41.4(+12.6) minival AP).
You can find all the original MM Grounding DINO checkpoints under the [MM Grounding DINO](https://huggingface.co/collections/openmmlab-community/mm-grounding-dino-688cbde05b814c4e2832f9df) collection. This model also supports LLMDet inference. You can find LLMDet checkpoints under the [LLMDet](https://huggingface.co/collections/iSEE-Laboratory/llmdet-688475906dc235d5f1dc678e) collection.
> [!TIP]
> Click on the MM Grounding DINO models in the right sidebar for more examples of how to apply MM Grounding DINO to different MM Grounding DINO tasks.
The example below demonstrates how to generate text based on an image with the [`AutoModelForZeroShotObjectDetection`] class.
<hfoptions id="usage">
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
from transformers.image_utils import load_image
# Prepare processor and model
model_id = "openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# Prepare inputs
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(image_url)
text_labels = [["a cat", "a remote control"]]
inputs = processor(images=image, text=text_labels, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Postprocess outputs
results = processor.post_process_grounded_object_detection(
outputs,
threshold=0.4,
target_sizes=[(image.height, image.width)]
)
# Retrieve the first image result
result = results[0]
for box, score, labels in zip(result["boxes"], result["scores"], result["labels"]):
box = [round(x, 2) for x in box.tolist()]
print(f"Detected {labels} with confidence {round(score.item(), 3)} at location {box}")
```
</hfoption>
</hfoptions>
## Notes
- Here's a table of models and their object detection performance results on COCO (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
| Model | Backbone | Pre-Train Data | Style | COCO mAP |
| ------------------------------------------------------------------------------------------------------------------------------ | -------- | ------------------------ | --------- | ---------- |
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | Swin-T | O365,GoldG | Zero-shot | 50.4(+2.3) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | Swin-T | O365,GoldG,GRIT | Zero-shot | 50.5(+2.1) |
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | Swin-T | O365,GoldG,V3Det | Zero-shot | 50.6(+2.2) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | Swin-T | O365,GoldG,GRIT,V3Det | Zero-shot | 50.4(+2.0) |
| [mm_grounding_dino_base_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_o365v1_goldg_v3det) | Swin-B | O365,GoldG,V3Det | Zero-shot | 52.5 |
| [mm_grounding_dino_base_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_all) | Swin-B | O365,ALL | - | 59.5 |
| [mm_grounding_dino_large_o365v2_oiv6_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_o365v2_oiv6_goldg) | Swin-L | O365V2,OpenImageV6,GoldG | Zero-shot | 53.0 |
| [mm_grounding_dino_large_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_all) | Swin-L | O365V2,OpenImageV6,ALL | - | 60.3 |
- Here's a table of MM Grounding DINO tiny models and their object detection performance on LVIS (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
| ------------------------------------------------------------------------------------------------------------------------------ | --------------------- | ----------- | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | O365,GoldG | 28.1 | 30.2 | 42.0 | 35.7(+6.9) | 17.1 | 22.4 | 36.5 | 27.0(+6.9) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | O365,GoldG,GRIT | 26.6 | 32.4 | 41.8 | 36.5(+7.7) | 17.3 | 22.6 | 36.4 | 27.1(+7.0) |
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | O365,GoldG,V3Det | 33.0 | 36.0 | 45.9 | 40.5(+11.7) | 21.5 | 25.5 | 40.2 | 30.6(+10.5) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | O365,GoldG,GRIT,V3Det | 34.2 | 37.4 | 46.2 | 41.4(+12.6) | 23.6 | 27.6 | 40.5 | 31.9(+11.8) |
- This implementation also supports inference for [LLMDet](https://github.com/iSEE-Laboratory/LLMDet). Here's a table of LLMDet models and their performance on LVIS (results from [official repo](https://github.com/iSEE-Laboratory/LLMDet)):
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
| --------------------------------------------------------- | -------------------------------------------- | ------------ | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
| [llmdet_tiny](https://huggingface.co/iSEE-Laboratory/llmdet_tiny) | (O365,GoldG,GRIT,V3Det) + GroundingCap-1M | 44.7 | 37.3 | 39.5 | 50.7 | 34.9 | 26.0 | 30.1 | 44.3 |
| [llmdet_base](https://huggingface.co/iSEE-Laboratory/llmdet_base) | (O365,GoldG,V3Det) + GroundingCap-1M | 48.3 | 40.8 | 43.1 | 54.3 | 38.5 | 28.2 | 34.3 | 47.8 |
| [llmdet_large](https://huggingface.co/iSEE-Laboratory/llmdet_large) | (O365V2,OpenImageV6,GoldG) + GroundingCap-1M | 51.1 | 45.1 | 46.1 | 56.6 | 42.0 | 31.6 | 38.8 | 50.2 |
## MMGroundingDinoConfig
[[autodoc]] MMGroundingDinoConfig
## MMGroundingDinoModel
[[autodoc]] MMGroundingDinoModel
- forward
## MMGroundingDinoForObjectDetection
[[autodoc]] MMGroundingDinoForObjectDetection
- forward

View File

@ -115,6 +115,11 @@ echo -e "Plants create [MASK] through a process known as photosynthesis." | tran
[[autodoc]] ModernBertForTokenClassification
- forward
## ModernBertForMultipleChoice
[[autodoc]] ModernBertForMultipleChoice
- forward
## ModernBertForQuestionAnswering
[[autodoc]] ModernBertForQuestionAnswering

View File

@ -14,54 +14,115 @@ rendered properly in your Markdown viewer.
-->
# mT5
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
</div>
</div>
## Overview
# mT5
The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://huggingface.co/papers/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
[mT5](https://huggingface.co/papers/2010.11934) is a multilingual variant of [T5](./t5), training on 101 languages. It also incorporates a new "accidental translation" technique to prevent the model from incorrectly translating predictions into the wrong language.
The abstract from the paper is the following:
You can find all the original [mT5] checkpoints under the [mT5](https://huggingface.co/collections/google/mt5-release-65005f1a520f8d7b4d039509) collection.
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
checkpoints used in this work are publicly available.*
> [!TIP]
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
>
> Click on the mT5 models in the right sidebar for more examples of how to apply mT5 to different language tasks.
Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training.
Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
Google has released the following variants:
<hfoptions id="usage">
<hfoption id="Pipeline">
- [google/mt5-small](https://huggingface.co/google/mt5-small)
```python
import torch
from transformers import pipeline
- [google/mt5-base](https://huggingface.co/google/mt5-base)
pipeline = pipeline(
task="text2text-generation",
model="csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.float16,
device=0
)
pipeline("""Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems.""")
```
- [google/mt5-large](https://huggingface.co/google/mt5-large)
</hfoption>
<hfoption id="AutoModel">
- [google/mt5-xl](https://huggingface.co/google/mt5-xl)
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
- [google/mt5-xxl](https://huggingface.co/google/mt5-xxl).
tokenizer = AutoTokenizer.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.float16,
device_map="auto",
)
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/multilingual-t5).
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
## Resources
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants are remarkable organisms that produce their own food using a method called photosynthesis." | transformers run --task text2text-generation --model csebuetnlp/mT5_multilingual_XLSum --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum"
)
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- mT5 must be fine-tuned for downstream tasks because it was only pretrained on the [mc4](https://huggingface.co/datasets/mc4) dataset.
## MT5Config

View File

@ -38,7 +38,7 @@ This model was contributed by [ajati](https://huggingface.co/ajati), [vijaye12](
## Usage example
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer.md).
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer).
```python

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
# Qwen2MoE
[Qwen2MoE]((https://huggingface.co/papers/2407.10671) ) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
[Qwen2MoE](https://huggingface.co/papers/2407.10671) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.

View File

@ -103,38 +103,11 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
```
- The example below demonstrates how to visualize matches between two images.
- Visualize the matches between the images using the built-in plotting functionality.
```py
import matplotlib.pyplot as plt
import numpy as np
# Create side by side image
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
plt.imshow(merged_image)
plt.axis("off")
# Retrieve the keypoints and matches
output = processed_outputs[0]
keypoints0 = output["keypoints0"]
keypoints1 = output["keypoints1"]
matching_scores = output["matching_scores"]
# Plot the matches
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
plt.plot(
[keypoint0[0], keypoint1[0] + image1.width],
[keypoint0[1], keypoint1[1]],
color=plt.get_cmap("RdYlGn")(matching_score.item()),
alpha=0.9,
linewidth=0.5,
)
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
# Easy visualization using the built-in plotting method
processor.visualize_keypoint_matching(images, processed_outputs)
```
<div class="flex justify-center">
@ -155,6 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
<frameworkcontent>
<pt>

View File

@ -69,11 +69,11 @@ print(tokenizer.decode(outputs[0]))
## Model card
The model cards can be found at:
* [Zamba-7B](MODEL_CARD_ZAMBA-7B-v1.md)
* [Zamba-7B](https://huggingface.co/Zyphra/Zamba-7B-v1)
## Issues
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/zyphra/zamba-7b)
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/Zyphra/Zamba-7B-v1/discussions)
## License

View File

@ -0,0 +1,22 @@
# Audio transcriptions with WebUI and `transformers serve`
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
```shell
transformers serve --enable-cors
```
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
If you've done everything correctly, the audio tab should look like this
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
</h3>
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# SpQR
The [SpQR]((https://hf.co/papers/2306.03078)) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
The [SpQR](https://hf.co/papers/2306.03078) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/spqr-diagram.png">

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[ONNX](http://onnx.ai) is an open standard that defines a common set of operators and a file format to represent deep learning models in different frameworks, including PyTorch and TensorFlow. When a model is exported to ONNX, the operators construct a computational graph (or *intermediate representation*) which represents the flow of data through the model. Standardized operators and data types makes it easy to switch between frameworks.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
The benefits of exporting to ONNX include the following.

View File

@ -18,8 +18,17 @@ rendered properly in your Markdown viewer.
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
> [!TIP]
> Responses API is now supported as an experimental API! Read more about it [here](#responses-api).
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
In this document, we dive into the different supported endpoints and modalities; we also cover the setup of several user interfaces that can be used on top of `transformers serve` in the following guides:
- [Jan (text and MCP user interface)](./jan.md)
- [Cursor (IDE)](./cursor.md)
- [Open WebUI (text, image, speech user interface)](./open_webui.md)
- [Tiny-Agents (text and MCP CLI tool)](./tiny_agents.md)
## Serve CLI
> [!WARNING]
@ -45,7 +54,14 @@ The simplest way to interact with the server is through our `transformers chat`
transformers chat localhost:8000 --model-name-or-path Qwen/Qwen3-4B
```
or by sending an HTTP request with `cURL`, e.g.
or by sending an HTTP request, like we'll see below.
## Chat Completions - text-based
See below for examples for text-based requests. Both LLMs and VLMs should handle
<hfoptions id="chat-completion-http">
<hfoption id="curl">
```shell
curl -X POST http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-Instruct"}'
@ -61,7 +77,289 @@ data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863,
(...)
```
The server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
</hfoption>
<hfoption id="python - huggingface_hub">
```python
import asyncio
from huggingface_hub import AsyncInferenceClient
messages = [{"role": "user", "content": "What is the Transformers library known for?"}]
client = AsyncInferenceClient("http://localhost:8000")
async def responses_api_test_async():
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-0.5B-Instruct", max_tokens=256, stream=True)):
token = chunk.choices[0].delta.content
if token:
print(token, end='')
asyncio.run(responses_api_test_async())
asyncio.run(client.close())
```
From which you should get an iterative string printed:
```shell
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-0.5B-Instruct",
messages=[
{
"role": "user",
"content": "What is the Transformers library known for?"
}
],
stream=True
)
for chunk in completion:
token = chunk.choices[0].delta.content
if token:
print(token, end='')
```
From which you should get an iterative string printed:
```shell
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
```
</hfoption>
</hfoptions>
## Chat Completions - VLMs
The Chat Completion API also supports images; see below for examples for text-and-image-based requests.
<hfoptions id="chat-completion-http-images">
<hfoption id="curl">
```shell
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-VL-7B-Instruct",
"stream": true,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
"max_tokens": 300
}'
```
from which you'll receive multiple chunks in the Completions API format
```shell
data: {"id":"req_0","choices":[{"delta":{"role":"assistant"},"index":0}],"created":1753366665,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
data: {"id":"req_0","choices":[{"delta":{"content":"The "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
data: {"id":"req_0","choices":[{"delta":{"content":"image "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
```
</hfoption>
<hfoption id="python - huggingface_hub">
```python
import asyncio
from huggingface_hub import AsyncInferenceClient
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
}
},
],
}
]
client = AsyncInferenceClient("http://localhost:8000")
async def responses_api_test_async():
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-VL-7B-Instruct", max_tokens=256, stream=True)):
token = chunk.choices[0].delta.content
if token:
print(token, end='')
asyncio.run(responses_api_test_async())
asyncio.run(client.close())
```
From which you should get an iterative string printed:
```xmp
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-7B-Instruct",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
}
},
],
}
],
stream=True
)
for chunk in completion:
token = chunk.choices[0].delta.content
if token:
print(token, end='')
```
From which you should get an iterative string printed:
```xmp
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
```
</hfoption>
</hfoptions>
## Responses API
The Responses API is the newest addition to the supported APIs of `transformers serve`.
> [!TIP]
> This API is still experimental: expect bug patches and additition of new features in the coming weeks.
> If you run into any issues, please let us know and we'll work on fixing them ASAP.
Instead of the previous `/v1/chat/completions` path, the Responses API lies behind the `/v1/responses` path.
See below for examples interacting with our Responses endpoint with `curl`, as well as the Python OpenAI client.
So far, this endpoint only supports text and therefore only LLMs. VLMs to come!
<hfoptions id="responses">
<hfoption id="curl">
```shell
curl http://localhost:8000/v1/responses \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-0.5B-Instruct",
"stream": true,
"input": "Tell me a three sentence bedtime story about a unicorn."
}'
```
from which you'll receive multiple chunks in the Responses API format
```shell
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"queued","text":{"format":{"type":"text"}}},"sequence_number":0,"type":"response.created"}
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"in_progress","text":{"format":{"type":"text"}}},"sequence_number":1,"type":"response.in_progress"}
data: {"item":{"id":"msg_req_0","content":[],"role":"assistant","status":"in_progress","type":"message"},"output_index":0,"sequence_number":2,"type":"response.output_item.added"}
data: {"content_index":0,"item_id":"msg_req_0","output_index":0,"part":{"annotations":[],"text":"","type":"output_text"},"sequence_number":3,"type":"response.content_part.added"}
data: {"content_index":0,"delta":"","item_id":"msg_req_0","output_index":0,"sequence_number":4,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"Once ","item_id":"msg_req_0","output_index":0,"sequence_number":5,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"upon ","item_id":"msg_req_0","output_index":0,"sequence_number":6,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"a ","item_id":"msg_req_0","output_index":0,"sequence_number":7,"type":"response.output_text.delta"}
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<KEY>")
response = client.responses.create(
model="Qwen/Qwen2.5-0.5B-Instruct",
instructions="You are a helpful assistant.",
input="Hello!",
stream=True,
metadata={"foo": "bar"},
)
for event in response:
print(event)
```
From which you should get events printed out successively.
```shell
ResponseCreatedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='queued', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=0, type='response.created')
ResponseInProgressEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='in_progress', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=1, type='response.in_progress')
ResponseOutputItemAddedEvent(item=ResponseOutputMessage(id='msg_req_0', content=[], role='assistant', status='in_progress', type='message'), output_index=0, sequence_number=2, type='response.output_item.added')
ResponseContentPartAddedEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='', type='output_text', logprobs=None), sequence_number=3, type='response.content_part.added')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=4, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=5, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='Hello! ', item_id='msg_req_0', output_index=0, sequence_number=6, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='How ', item_id='msg_req_0', output_index=0, sequence_number=7, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='can ', item_id='msg_req_0', output_index=0, sequence_number=8, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='I ', item_id='msg_req_0', output_index=0, sequence_number=9, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='assist ', item_id='msg_req_0', output_index=0, sequence_number=10, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='you ', item_id='msg_req_0', output_index=0, sequence_number=11, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=12, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=13, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='today?', item_id='msg_req_0', output_index=0, sequence_number=14, type='response.output_text.delta')
ResponseTextDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, sequence_number=15, text='Hello! How can I assist you today?', type='response.output_text.done')
ResponseContentPartDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None), sequence_number=16, type='response.content_part.done')
ResponseOutputItemDoneEvent(item=ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[]), output_index=0, sequence_number=17, type='response.output_item.done')
ResponseCompletedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[])], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=18, type='response.completed')
```
</hfoption>
</hfoptions>
## MCP integration
The `transformers serve` server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
> [!TIP]
> At the moment, MCP tool usage in `transformers` is limited to the `qwen` family of models.
@ -69,142 +367,5 @@ The server is also an MCP client, so it can interact with MCP tools in agentic u
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
### Usage example 1: chat with local requests (feat. Jan)
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
### Usage example 2: chat with external requests (feat. Cursor)
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch a server with CORS enabled, run
```shell
transformers serve --enable-cors
```
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see an https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>
### Usage example 3: `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```
### Usage example 4: speech to text transcription (feat. Open WebUI)
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
```shell
transformers serve --enable-cors
```
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
If you've done everything correctly, the audio tab should look like this
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
</h3>
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.

View File

@ -25,7 +25,7 @@ Keypoint detection identifies and locates specific points of interest within an
In this guide, we will show how to extract keypoints from images.
For this tutorial, we will use [SuperPoint](./model_doc/superpoint.md), a foundation model for keypoint detection.
For this tutorial, we will use [SuperPoint](./model_doc/superpoint), a foundation model for keypoint detection.
```python
from transformers import AutoImageProcessor, SuperPointForKeypointDetection

View File

@ -146,7 +146,7 @@ To get an even better understanding of the data, visualize an example in the dat
>>> annotations = cppe5["train"][2]["objects"]
>>> draw = ImageDraw.Draw(image)
>>> categories = cppe5["train"].features["objects"].feature["category"].names
>>> categories = cppe5["train"].features["objects"]["category"].feature.names
>>> id2label = {index: x for index, x in enumerate(categories, start=0)}
>>> label2id = {v: k for k, v in id2label.items()}

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
Video-text-to-text models, also known as video language models or vision language models with video input, are language models that take a video input. These models can tackle various tasks, from video question answering to video captioning.
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text.md) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
In this guide, we provide a brief overview of video LMs and show how to use them with Transformers for inference.

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[LiteRT](https://ai.google.dev/edge/litert) (previously known as TensorFlow Lite) is a high-performance runtime designed for on-device machine learning.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)).
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview).
The benefits of exporting to LiteRT include the following.

View File

@ -0,0 +1,45 @@
### `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```

View File

@ -307,7 +307,7 @@ culture, and they allow us to design the'
アシストデコーディングを有効にするには、`assistant_model` 引数をモデルで設定します。
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation.md) を参照してください。
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation) を参照してください。
```python

View File

@ -111,7 +111,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)。
- [`FlaxBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization) でサポートされています。
- [要約](https://huggingface.co/course/chapter7/5?fw=pt#summarization) 🤗 ハグフェイスコースの章。
- [要約タスクガイド](../tasks/summarization.md)
- [要約タスクガイド](../tasks/summarization)
<PipelineTag pipeline="fill-mask"/>

View File

@ -295,6 +295,94 @@
title: 커뮤니티 리소스
- local: troubleshooting
title: 문제 해결
- local: gguf
title: GGUF 파일들과의 상호 운용성
- local: modular_transformers
title: transformers에서의 모듈성
title: (번역중) 개발자 가이드
- sections:
- local: in_translation
title: (번역중) Getting started
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/gptq
title: GPTQ
- local: quantization/awq
title: AWQ
- local: in_translation
title: (번역중) AQLM
- local: in_translation
title: (번역중) VPTQ
- local: quantization/quanto
title: Quanto
- local: quantization/quark
title: Quark
- local: quantization/eetq
title: EETQ
- local: in_translation
title: (번역중) HQQ
- local: in_translation
title: (번역중) Optimum
- local: in_translation
title: (번역중) Contribute new quantization method
title: (번역중) 경량화 메소드
- sections:
- local: performance
title: 성능 및 확장성
- local: in_translation
title: (번역중) Quantization
- local: llm_optims
title: LLM 추론 최적화
- local: cache_explanation
title: 어텐션 행렬 캐싱
- sections:
- local: in_translation
title: (번역중) Methods and tools for efficient training on a single GPU
- local: perf_train_gpu_many
title: 다중 GPU에서 훈련 진행하기
- local: deepspeed
title: DeepSpeed
- local: fsdp
title: 완전 분할 데이터 병렬 처리
- local: perf_train_cpu
title: CPU에서 훈련
- local: perf_train_cpu_many
title: 다중 CPU에서 훈련하기
- local: perf_train_tpu_tf
title: TensorFlow로 TPU에서 훈련하기
- local: perf_train_special
title: Apple 실리콘에서 PyTorch 학습
- local: perf_hardware
title: 훈련용 사용자 맞춤형 하드웨어
- local: hpo_train
title: Trainer API를 사용한 하이퍼파라미터 탐색
title: (번역중) 효율적인 학습 기술들
- sections:
- local: perf_infer_cpu
title: CPU로 추론하기
- local: perf_infer_gpu_one
title: 하나의 GPU를 활용한 추론
title: 추론 최적화하기
- local: big_models
title: 대형 모델을 인스턴스화
- local: debugging
title: 디버깅
- local: tf_xla
title: TensorFlow 모델을 위한 XLA 통합
- local: in_translation
title: (번역중) Optimize inference using `torch.compile()`
title: (번역중) 성능 및 확장성
- sections:
- local: contributing
title: 🤗 Transformers에 기여하는 방법
- local: add_new_model
title: 🤗 Transformers에 새로운 모델을 추가하는 방법
- local: add_new_pipeline
title: 어떻게 🤗 Transformers에 파이프라인을 추가하나요?
- local: testing
title: 테스트
- local: pr_checks
title: Pull Request에 대한 검사
title: 리소스
- isExpanded: false
sections:
@ -357,7 +445,7 @@
title: 메인 클래스
- sections:
- sections:
- local: in_translation
- local: model_doc/albert
title: ALBERT
- local: in_translation
title: Arcee
@ -1081,7 +1169,7 @@
title: TrOCR
- local: in_translation
title: TVLT
- local: in_translation
- local: model_doc/tvp
title: TVP
- local: in_translation
title: UDOP
@ -1155,4 +1243,4 @@
- local: in_translation
title: (번역중)Environment Variables
title: Reference
title: API
title: API

View File

@ -0,0 +1,184 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 캐싱[[caching]]
누군가와 대화를 나누고 있는데, 상대방이 이전에 했던 말을 기억하지 못하고 당신이 대답할 때마다 처음부터 다시 시작해야 한다고 상상해 보세요. 이는 느리고 비효율적이겠죠?
이 비유를 트랜스포머 모델에도 적용할 수 있습니다. 자기회귀 모델의 생성은 한 번에 하나의 토큰씩 예측하기 때문에 느릴 수 있습니다. 각각의 새로운 예측은 이전의 모든 문맥에 의존합니다.
1000번째 토큰을 예측하려면, 모델은 이전 999개 토큰의 정보가 필요합니다. 이 정보는 각 토큰 표현들 사이의 행렬 곱을 통해 표현됩니다.
1001번째 토큰을 예측하려면, 이전 999개 토큰의 동일한 정보에 더하여 1000번째 토큰의 정보도 필요합니다. 이렇게 되면 토큰마다 모델은 반복적으로 많은 행렬 연산을 수행해야 합니다!
이러한 비효율성을 제거하기 위해 KV 캐시(Key-Value Cache)를 사용합니다. 어텐션 레이어에서 이전에 처리한 토큰으로부터 얻은 키와 값 쌍을 저장해두고, 이후 토큰 예측 시 이를 재사용하여 연산을 줄이는 방식입니다.
> [!WARNING]
> 캐싱은 **추론**에만 사용해야 합니다. 학습 중에 활성화되면 예상치 못한 오류가 발생할 수 있습니다.
캐싱이 어떻게 그리고 왜 작동하는지 더 잘 이해하기 위해, 어텐션 행렬의 구조를 자세히 살펴보겠습니다.
## 어텐션 행렬[[attention-matrices]]
**스케일드 닷-프로덕트 어텐션**은 배치 크기 `b`, 어텐션 헤드 수 `h`, 현재까지의 시퀀스 길이 `T`, 어텐션 헤드당 차원 `d_head`에 대해 아래와 같이 계산됩니다.
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
$$
쿼리(`Q`), 키(`K`), 값(`V`) 행렬은 `(b, h, T, d_head)` 형태의 입력 임베딩에서의 투영입니다.
인과적 어텐션의 경우, 마스크는 모델이 미래 토큰에 어텐션 하는 것을 방지합니다. 토큰이 한 번 처리되면, 그 표현은 미래 토큰과 관련하여 절대 변하지 않습니다. 이는 \\( K_{\text{past}} \\)와 \\( V_{\text{past}} \\)를 캐시하여 마지막 토큰의 표현을 계산하는 데 재사용할 수 있음을 의미합니다.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
추론 시에는 다음 토큰 \\( t+1 \\)을 예측하는 표현 \\( x_t \\)를 계산하기 위해 마지막 토큰의 쿼리만 필요합니다. 단계에서 새로운 키와 값 벡터가 캐시에 **저장**되고 과거 키와 값에 **추가**됩니다.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
$$
어텐션은 모델의 각 레이어에서 독립적으로 계산되며, 캐싱은 레이어별로 수행됩니다.
캐싱이 효율성을 어떻게 개선하는지 비교한 아래 표를 참조하세요.
| 캐싱 없음 | 캐싱 사용 |
|---|---|
| 단계마다 이전의 모든 `K``V`를 재계산 | 단계마다 현재의 `K``V`만 계산 |
| 단계당 어텐션 비용이 시퀀스 길이에 대해 **제곱** | 단계당 어텐션 비용이 시퀀스 길이에 대해 **선형** (메모리는 선형적으로 증가하지만, 토큰당 계산은 낮게 유지됨) |
## 캐시 클래스[[cache-class]]
기본 KV 캐시 인터페이스는 현재 토큰의 키와 값 텐서를 받아서 업데이트된 `K``V` 텐서를 반환합니다. 이는 모델의 `forward` 메소드에 의해 내부적으로 관리됩니다.
```py
new_K, new_V = cache.update(k_t, v_t, layer_idx)
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
```
Transformers의 [`Cache`] 클래스를 사용할 때, 셀프 어텐션 모듈은 과거와 현재 정보를 통합하기 위해 몇 가지 중요한 단계를 수행합니다.
1. 어텐션 모듈은 현재 kv 쌍을 캐시에 저장된 과거 kv 쌍과 연결합니다. 이는 `(new_tokens_length, past_kv_length + new_tokens_length)` 형태의 어텐션 가중치를 생성합니다. 현재와 과거 kv 쌍이 본질적으로 결합해 어텐션 점수를 계산하며, 모델이 이전 문맥과 현재 입력을 인식하도록 보장합니다.
2. `forward` 메소드가 반복적으로 호출될 때, 어텐션 마스크 형태가 과거와 현재 kv 쌍의 결합된 길이와 일치하는 것이 중요합니다. 어텐션 마스크는 `(batch_size, past_kv_length + new_tokens_length)` 형태여야 합니다. 이는 일반적으로 [`~GenerationMixin.generate`]에서 내부적으로 처리되지만, [`Cache`]로 자체 생성 루프를 구현하고 싶다면 이를 염두에 두세요! 어텐션 마스크는 과거와 현재 토큰값을 보유해야 합니다.
3. `cache_position`을 인식하는 것도 중요합니다. 이는 유효한 `cache_position` 값을 전달해야 하므로 `forward` 메소드로 미리 채워진 [`Cache`]를 재사용하고 싶을 때 중요합니다. 이는 시퀀스에서의 입력 위치를 나타냅니다. `cache_position`은 패딩에 영향받지 않으며, 각 토큰에 대해 항상 하나씩 더 많은 위치를 추가합니다. 예를 들어, kv 캐시가 10개의 토큰을 포함하면 - 패드 토큰과 관계없이 - 다음 토큰의 캐시 위치는 `torch.tensor([10])`이어야 합니다.
## 캐시 저장소 구현[[cache-storage-implementation]]
캐시는 각 레이어가 key와 value 캐시를 포함하는 레이어 목록 형태로 구성되어 있습니다. key 및 value 캐시는 `[batch_size, num_heads, seq_len, head_dim]` 형태의 텐서입니다.
레이어는 서로 다른 타입일 수 있으며(예: `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), 이는 주로 시퀀스 길이를 어떻게 처리하고 캐시를 어떻게 갱신하는지에 따라 달라집니다.
가장 단순한 형태는 `DynamicLayer`로, 더 많은 토큰이 처리됨에 따라 점진적으로 확장됩니다. 시퀀스 길이 차원(`seq_len`)은 새로운 토큰이 추가될 때마다 증가합니다:
```py
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
```
`StaticLayer``SlidingWindowLayer`와 같은 다른 레이어 타입은 캐시가 생성될 때 고정된 시퀀스 길이를 가지며, 이는 `torch.compile`과 호환되도록 만듭니다. `SlidingWindowLayer`의 경우, 새로운 토큰이 추가되면 기존 토큰은 캐시에서 제거됩니다.
아래 예제는 [`DynamicCache`]로 생성 루프를 만드는 방법을 보여줍니다. 논의된 바와 같이, 어텐션 마스크는 과거와 현재 토큰값의 연결이며 다음 토큰을 위해 캐시 위치에 `1`이 추가됩니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_id)
past_key_values = DynamicCache()
messages = [{"role": "user", "content": "Hello, what's your name."}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
generated_ids = inputs.input_ids
cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0")
max_new_tokens = 10
for _ in range(max_new_tokens):
outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
# 탐욕적 기법으로 다음 토큰 하나를 샘플링
next_token_ids = outputs.logits[:, -1:].argmax(-1)
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
# 처리되지 않은 토큰을 남겨두어 다음 생성 단계를 위한 입력을 준비합니다. 우리의 경우 새로운 토큰 하나만 존재합니다.
# 위에서 설명한 대로 새로운 토큰을 위해 어텐션 마스크를 확장합니다
attention_mask = inputs["attention_mask"]
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
cache_position = cache_position[-1:] + 1 # 다음 토큰을 위해 하나 더 위치 추가
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## 캐시 위치[[cache-position]]
캐시 위치는 어텐션 캐시에서 새로운 토큰을 삽입할 위치를 추적합니다. 이는 패딩이나 배치 구조와 무관하게 컨텍스트 내에서 각 토큰의 절대적 위치를 나타냅니다. 이미 `N`개의 토큰을 캐시했고 현재 `K`개의 새로운 토큰을 처리하고 있다고 가정하겠습니다. 새로운 토큰에 대한 캐시 위치는 `N`부터 `N + K - 1`까지의 범위가 됩니다. 즉, `[N, N + 1, N + 2, ..., N + K - 1]` 위치의 토큰들을 처리하는 것입니다.
캐시 위치는 내부적으로 두 가지 목적으로 사용됩니다:
1. 입력 시퀀스에서 처리할 새로운 토큰을 선택하고, 아직 캐시되지 않은 토큰만 모델의 `forward`에 전달되도록 보장합니다.
2. 키/값 쌍을 캐시의 올바른 위치에 저장합니다. 이는 특정 캐시 길이를 미리 할당하는 [`StaticCache`]와 같은 고정 크기 캐시에서 특히 중요합니다.
생성 루프는 일반적으로 캐시 위치를 관리하지만, 사용자 정의 생성 메소드를 작성할 때는 캐시 위치가 정확해야 합니다. 캐시 위치는 고정된 슬롯에 키/값 상태를 읽고 쓰는 데 사용되기 때문입니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "You are a helpful assistant."}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
```
## 레거시 캐시 형식[[legacy-cache-format]]
[`Cache`] 클래스 이전에는 캐시가 텐서의 튜플의 튜플로 저장되었습니다. 이 형식은 텍스트가 생성됨에 따라 증가하기 때문에 동적이며, [`DynamicCache`]와 유사합니다.
레거시 형식은 본질적으로 동일한 데이터 구조이지만 다르게 조직화되었습니다.
- 각 내부 튜플은 레이어의 키와 값 텐서를 포함하는 튜플의 튜플입니다.
- 텐서는 동일한 형태 `[batch_size, num_heads, seq_len, head_dim]`를 갖습니다.
- 이 형식은 덜 유연하며 양자화나 오프로딩과 같은 기능을 지원하지 않습니다.
프로젝트가 이 레거시 형식에 의존한다면, [`~DynamicCache.from_legacy_cache`]를 사용하여 [`DynamicCache`]로 변환하는 것을 권장합니다. 레거시 캐시 형식은 사용이 중단되었으며 `Transformers`에서 더 이상 사용되지 않습니다. 특정 형식에서 캐시를 조작하는 커스텀 로직이 있는 경우 도움이 되는 [`DynamicCache.to_legacy_cache`] 함수를 사용하여 튜플 형식으로 다시 변환할 수 있습니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
# 캐시를 반환하려면 `return_dict_in_generate=True`가 필요하고 `return_legacy_cache`는 반환된 캐시를
# 레거시 형식으로 강제합니다
generation_outputs = model.generate(**inputs, return_dict_in_generate=True, return_legacy_cache=True, max_new_tokens=5)
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
legacy_format_cache = cache.to_legacy_cache()
```

View File

@ -289,7 +289,7 @@ time."\n\nHe added: "I am very proud of the work I have been able to do in the l
culture, and they allow us to design the'
```
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation.md)를 참조하세요.
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation)를 참조하세요.
### 추론 디코딩(Speculative Decoding)[[speculative-decoding]]

View File

@ -21,11 +21,11 @@ GPT3/4, [Falcon](https://huggingface.co/tiiuae/falcon-40b), [Llama](https://hugg
이 가이드에서는 효율적인 대규모 언어 모델 배포를 위한 효과적인 기법들을 살펴보겠습니다.
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization.md)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
2. **플래시 어텐션:** 플래시 어텐션은 메모리 효율성을 높일 뿐만 아니라 최적화된 GPU 메모리 활용을 통해 효율성을 향상시키는 어텐션 알고리즘의 변형입니다.
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245))이 있습니다.
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245)이 있습니다.
이 가이드에서는 텐서의 관점에서 자기회귀 생성에 대한 분석을 제공합니다. 낮은 정밀도를 채택하는 것의 장단점을 논의하고, 최신 어텐션 알고리즘을 포괄적으로 탐구하며, 향상된 대규모 언어 모델 아키텍처에 대해 논합니다. 이 과정에서 각 기능의 개선 사항을 보여주는 실용적인 예제를 확인합니다.
@ -756,4 +756,4 @@ GQA의 가장 주목할 만한 적용 사례는 [Llama-v2](https://huggingface.c
연구 커뮤니티는 점점 더 큰 대규모 언어 모델의 추론 시간을 가속화하기 위한 새로운 기발한 방법들을 끊임없이 찾아내고 있습니다. 예를 들어, [추측 디코딩](https://huggingface.co/papers/2211.17192)이라는 유망한 연구 방향이 있습니다. 여기서 "쉬운 토큰"은 더 작고 빠른 언어 모델에 의해 생성되고, "어려운 토큰"만 대규모 언어 모델 자체에 의해 생성됩니다. 자세한 내용은 이 노트북의 범위를 벗어나지만, [멋진 블로그 포스트](https://huggingface.co/blog/assisted-generation)에서 읽어볼 수 있습니다.
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗

View File

@ -136,9 +136,9 @@ pip install -U flash-attn --no-build-isolation
## 양자화로 미스트랄 크기 줄이기[[shrinking-down-mistral-using-quantization]]
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization.md)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization.md)를 참고하세요:
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization)를 참고하세요:
```python
>>> import torch

View File

@ -35,7 +35,7 @@ PatchTSMixer는 MLP-Mixer 아키텍처를 기반으로 한 경량 시계열 모
## 사용 예[[usage-example]]
아래의 코드 스니펫은 PatchTSMixer 모델을 무작위로 초기화하는 방법을 보여줍니다.
PatchTSMixer 모델은 [Trainer API](../trainer.md)와 호환됩니다.
PatchTSMixer 모델은 [Trainer API](../trainer)와 호환됩니다.
```python

View File

@ -57,8 +57,8 @@ rendered properly in your Markdown viewer.
| 模型 | PyTorch 支持 | TensorFlow 支持 | Flax 支持 |
|:------------------------------------------------------------------------:|:---------------:|:------------------:|:------------:|
| [ALBERT](../en/model_doc/albert.md) | ✅ | ✅ | ✅ |
| [ALIGN](../en/model_doc/align.md) | ✅ | ❌ | ❌ |
| [ALBERT](../en/model_doc/albert) | ✅ | ✅ | ✅ |
| [ALIGN](../en/model_doc/align) | ✅ | ❌ | ❌ |
| [AltCLIP](../en/model_doc/altclip) | ✅ | ❌ | ❌ |
| [Audio Spectrogram Transformer](../en/model_doc/audio-spectrogram-transformer) | ✅ | ❌ | ❌ |
| [Autoformer](../en/model_doc/autoformer) | ✅ | ❌ | ❌ |

View File

@ -60,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -202,7 +202,7 @@ def replace_batch_norm(model):
if isinstance(module, nn.BatchNorm2d):
new_module = TestDetrFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device("meta"):
if module.weight.device != torch.device("meta"):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets[audio]>=1.14.0",
# "evaluate",
# "librosa",
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")

View File

@ -10,26 +10,27 @@ from transformers.generation import GenerationConfig
torch.set_float32_matmul_precision("high")
model_id = "meta-llama/Llama-3.2-3b-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
model = (
AutoModelForCausalLM.from_pretrained(
model_id,
attn_implementation="paged_attention|kernels-community/flash-attn",
torch_dtype=torch.bfloat16,
)
.eval()
.cuda()
)
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
generation_config = GenerationConfig(
max_new_tokens=512,
# use_cuda_graph=False,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=False,
num_blocks=2048,
block_size=128,
do_sample=True,
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
scheduler="prefill_first",
do_sample=False,
)
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
# --- Example 1: Simple Version using generate_batch ---
train_dataset = train_dataset.select(range(500)) # Use only 5 examples for the simple version
print("--- Running CB Generation Example ---")
@ -41,19 +42,21 @@ tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
start_time_simple = time.time()
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs")
batch_outputs = model.generate_batch(
inputs=simple_batch_inputs,
generation_config=generation_config,
)
end_time_simple = time.time()
token_count = 0
for request in batch_outputs:
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
try:
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
token_count += len(batch_outputs[request].generated_tokens[1:])
except Exception as e:
print(f"Decoding failed for request {request}: {e}")
token_count += len(batch_outputs[request].generated_tokens[1:])
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
if len(output_text) > 0:
print("-" * 20)
@ -65,7 +68,9 @@ print("-" * 20)
print("--- Finished CB Generation Example ---\n\n")
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
print(
f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds for {token_count} tokens. {token_count / (end_time_simple - start_time_simple)}tok/s"
)
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
# "datasets>=1.8.0",
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "accelerate>=0.12.0",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
@ -68,7 +68,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "accelerate>=0.12.0",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
# "datasets>=1.8.0",
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
# "datasets>=1.8.0",
@ -56,7 +56,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "torch>=1.5.0",
# "torchvision>=0.6.0",
# "datasets>=1.8.0",
@ -61,7 +61,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "timm",
# "datasets",
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "timm",
# "datasets",
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -69,7 +69,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -71,7 +71,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -72,7 +72,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -74,7 +74,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -68,7 +68,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -71,7 +71,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "accelerate >= 0.12.0",
# "torch >= 1.3",
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "accelerate >= 0.12.0",
# "sentencepiece != 0.1.92",
# "protobuf",
@ -57,7 +57,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = logging.getLogger(__name__)

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "accelerate >= 0.12.0",
# "sentencepiece != 0.1.92",
# "protobuf",
@ -65,7 +65,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)
# You should update this to your particular problem to have better documentation of `model_type`

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "timm",
# "datasets>=4.0",
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "albumentations >= 1.4.16",
# "timm",
# "datasets>=4.0",
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -155,7 +155,7 @@ accelerate launch run_semantic_segmentation_no_trainer.py --output_dir segformer
and boom, you're training, possibly on multiple GPUs, logging everything to all trackers found in your environment (like Weights and Biases, Tensorboard) and regularly pushing your model to the hub (with the repo name being equal to `args.output_dir` at your HF username) 🤗
With the default settings, the script fine-tunes a [SegFormer]((https://huggingface.co/docs/transformers/main/en/model_doc/segformer)) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset.
With the default settings, the script fine-tunes a [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset.
The resulting model can be seen here: https://huggingface.co/nielsr/segformer-finetuned-sidewalk. Note that the script usually requires quite a few epochs to achieve great results, e.g. the SegFormer authors fine-tuned their model for 160k steps (batches) on [`scene_parse_150`](https://huggingface.co/datasets/scene_parse_150).

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets >= 2.0.0",
# "torch >= 1.3",
# "accelerate",
@ -62,7 +62,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets >= 2.0.0",
# "torch >= 1.3",
# "accelerate",
@ -62,7 +62,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
logger = get_logger(__name__)

View File

@ -14,7 +14,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets[audio] >= 1.12.0",
# "torch >= 1.5",
# "torchaudio",

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets[audio] >= 1.18.0",
# "torch >= 1.5",
# "torchaudio",
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets[audio] >= 1.18.0",
# "torch >= 1.5",
# "torchaudio",
@ -64,7 +64,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "datasets[audio] >= 1.18.0",
# "torch >= 1.5",
# "torchaudio",
@ -60,7 +60,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -15,7 +15,7 @@
# /// script
# dependencies = [
# "transformers @ git+https://github.com/huggingface/transformers.git",
# "transformers==4.55.4",
# "accelerate >= 0.12.0",
# "datasets >= 1.8.0",
# "sentencepiece != 0.1.92",
@ -67,7 +67,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.55.0.dev0")
check_min_version("4.55.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

Some files were not shown because too many files have changed in this diff Show More