mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 09:44:02 +08:00
Compare commits
86 Commits
mllama_int
...
v4.55.4
Author | SHA1 | Date | |
---|---|---|---|
d79b2d981f | |||
90792b730a | |||
a03df6acd4 | |||
170b2708cb | |||
7dbc054e2a | |||
c097a43898 | |||
663cbb0d04 | |||
c7bd5350f0 | |||
e75d67ec39 | |||
d7f67d2006 | |||
acf295aec3 | |||
aaa3169aa2 | |||
ea2eee0bc8 | |||
956be23fff | |||
79a9ffc520 | |||
99404c7098 | |||
0d6908038c | |||
b8e97fbfd2 | |||
586b6e693b | |||
95ae07d11f | |||
0d9032ae71 | |||
1d42803aac | |||
382717e543 | |||
cc98f42d22 | |||
d2f7266367 | |||
daab2db33f | |||
06f8004e5c | |||
c54203a32e | |||
7c38d8fc23 | |||
738c1a3899 | |||
d2ae766836 | |||
c430047602 | |||
dedcbd6e3d | |||
20ce210ab7 | |||
2589a52c5c | |||
6e4a9a5b43 | |||
98a3c49135 | |||
1af1071081 | |||
78ef84921b | |||
9e676e6a0e | |||
392be3b282 | |||
cc5de36454 | |||
00d47757bf | |||
8c4ea670dc | |||
0bd91cc822 | |||
801e869b67 | |||
ee7eb2d0b1 | |||
3bafa128dc | |||
192acc2d0f | |||
7dca2ff8cf | |||
3edd14610e | |||
e3505cd4dc | |||
380b2a0317 | |||
5fb5b6cfaf | |||
16d6faef9a | |||
2a9febd632 | |||
0d511f7a77 | |||
4819adbbaa | |||
166fcad3f8 | |||
6dfd561d9c | |||
b727c2b20e | |||
1ec0feccdd | |||
7b4d9843ba | |||
88ead3f518 | |||
6ea646a03a | |||
3951d4ad5d | |||
50145474b7 | |||
c962f1515e | |||
d3b8627b56 | |||
a115b67392 | |||
2c0af41ce5 | |||
4fcf455517 | |||
b937d47455 | |||
6ba8a1ff45 | |||
e1688d28d3 | |||
6c3f27ba61 | |||
cb289ad243 | |||
4f93cc9174 | |||
9b3203f47b | |||
7abb5d3992 | |||
1019b00028 | |||
ecbb5ee194 | |||
8e077a3e45 | |||
1e0665a191 | |||
b94929eb49 | |||
bb2ac66453 |
134
.github/workflows/pr_build_doc_with_comment.yml
vendored
Normal file
134
.github/workflows/pr_build_doc_with_comment.yml
vendored
Normal file
@ -0,0 +1,134 @@
|
||||
name: PR - build doc via comment
|
||||
on:
|
||||
issue_comment:
|
||||
types:
|
||||
- created
|
||||
branches-ignore:
|
||||
- main
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.issue.number }}-${{ startsWith(github.event.comment.body, 'build-doc') }}
|
||||
cancel-in-progress: true
|
||||
permissions: {}
|
||||
|
||||
|
||||
jobs:
|
||||
get-pr-number:
|
||||
name: Get PR number
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
|
||||
get-pr-info:
|
||||
name: Get PR commit SHA
|
||||
needs: get-pr-number
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
uses: ./.github/workflows/get-pr-info.yml
|
||||
with:
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
verity_pr_commit:
|
||||
name: Verity PR commit corresponds to a specific event by comparing timestamps
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-info
|
||||
env:
|
||||
COMMENT_DATE: ${{ github.event.comment.created_at }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
steps:
|
||||
- run: |
|
||||
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
|
||||
echo "COMMENT_DATE: $COMMENT_DATE"
|
||||
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
|
||||
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
|
||||
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
|
||||
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
|
||||
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
create_run:
|
||||
name: Create run
|
||||
needs: [get-pr-number, get-pr-info]
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
|
||||
permissions:
|
||||
statuses: write
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Create Run
|
||||
id: create_run
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
|
||||
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Custom doc building job" -f "context=custom-doc-build"
|
||||
|
||||
reply_to_comment:
|
||||
name: Reply to the comment
|
||||
if: ${{ needs.create_run.result == 'success' }}
|
||||
needs: [get-pr-number, create_run]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Reply to the comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
|
||||
-f "body=[Building docs for all languages...](${{ env.GITHUB_RUN_URL }})"
|
||||
|
||||
build-doc:
|
||||
name: Build doc
|
||||
needs: [get-pr-number, get-pr-info]
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
package: transformers
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
|
||||
update_run_status:
|
||||
name: Update Check Run Status
|
||||
needs: [ get-pr-info, create_run, build-doc ]
|
||||
permissions:
|
||||
statuses: write
|
||||
if: ${{ always() && needs.create_run.result == 'success' }}
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.create_run.result) }}
|
||||
steps:
|
||||
- name: Get `build-doc` job status
|
||||
run: |
|
||||
echo "${{ needs.build-doc.result }}"
|
||||
echo $STATUS_OK
|
||||
if [ "$STATUS_OK" = "true" ]; then
|
||||
echo "STATUS=success" >> $GITHUB_ENV
|
||||
else
|
||||
echo "STATUS=failure" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update PR commit statuses
|
||||
run: |
|
||||
echo "${{ needs.build-doc.result }}"
|
||||
echo "${{ env.STATUS }}"
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Custom doc building job" -f "context=custom-doc-build"
|
22
.github/workflows/pr_run_slow_ci.yml
vendored
22
.github/workflows/pr_run_slow_ci.yml
vendored
@ -16,28 +16,6 @@ jobs:
|
||||
with:
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
|
||||
verity_pr_commit:
|
||||
name: Verity PR commit corresponds to a specific event by comparing timestamps
|
||||
if: ${{ github.event.comment.created_at != '' }}
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-info
|
||||
env:
|
||||
COMMENT_DATE: ${{ github.event.comment.created_at }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
steps:
|
||||
- run: |
|
||||
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
|
||||
echo "COMMENT_DATE: $COMMENT_DATE"
|
||||
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
|
||||
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
|
||||
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
|
||||
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
|
||||
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
get-jobs:
|
||||
name: Get test files to run
|
||||
runs-on: ubuntu-22.04
|
||||
|
@ -242,7 +242,7 @@ pipeline(
|
||||
|
||||
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
|
||||
- The training API is optimized to work with PyTorch models provided by Transformers. For generic machine learning loops, you should use another library like [Accelerate](https://huggingface.co/docs/accelerate).
|
||||
- The [example scripts]((https://github.com/huggingface/transformers/tree/main/examples)) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
|
||||
- The [example scripts](https://github.com/huggingface/transformers/tree/main/examples) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
|
||||
|
||||
## 100 projects using Transformers
|
||||
|
||||
@ -280,8 +280,8 @@ Expand each modality below to see a few example models for various use cases.
|
||||
- Automatic mask generation with [SAM](https://huggingface.co/facebook/sam-vit-base)
|
||||
- Depth estimation with [DepthPro](https://huggingface.co/apple/DepthPro-hf)
|
||||
- Image classification with [DINO v2](https://huggingface.co/facebook/dinov2-base)
|
||||
- Keypoint detection with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
|
||||
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue)
|
||||
- Keypoint detection with [SuperPoint](https://huggingface.co/magic-leap-community/superpoint)
|
||||
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
|
||||
- Object detection with [RT-DETRv2](https://huggingface.co/PekingU/rtdetr_v2_r50vd)
|
||||
- Pose Estimation with [VitPose](https://huggingface.co/usyd-community/vitpose-base-simple)
|
||||
- Universal segmentation with [OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_swin_large)
|
||||
|
10
conftest.py
10
conftest.py
@ -23,13 +23,12 @@ from os.path import abspath, dirname, join
|
||||
import _pytest
|
||||
import pytest
|
||||
|
||||
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
|
||||
from transformers.testing_utils import HfDoctestModule, HfDocTestParser, is_torch_available
|
||||
|
||||
|
||||
NOT_DEVICE_TESTS = {
|
||||
"test_tokenization",
|
||||
"test_tokenization_mistral_common",
|
||||
"test_processor",
|
||||
"test_processing",
|
||||
"test_beam_constraints",
|
||||
"test_configuration_utils",
|
||||
@ -128,3 +127,10 @@ class CustomOutputChecker(OutputChecker):
|
||||
doctest.OutputChecker = CustomOutputChecker
|
||||
_pytest.doctest.DoctestModule = HfDoctestModule
|
||||
doctest.DocTestParser = HfDocTestParser
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||||
# We set it to `False` for CI. See https://github.com/pytorch/pytorch/issues/157274#issuecomment-3090791615
|
||||
torch.backends.cudnn.allow_tf32 = False
|
||||
|
@ -79,7 +79,8 @@ RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submod
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
# Requires py3.11 but our CI runs on 3.9
|
||||
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
|
||||
# Add compressed-tensors for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir compressed-tensors
|
||||
|
@ -13,11 +13,11 @@
|
||||
|
||||
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
|
||||
|
||||
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
|
||||
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization).
|
||||
|
||||
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
|
||||
|
||||
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://huggingface.co/papers/2305.13245)).
|
||||
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)](https://huggingface.co/papers/2305.13245).
|
||||
|
||||
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.
|
||||
|
||||
|
@ -89,6 +89,18 @@
|
||||
- local: chat_extras
|
||||
title: Tools and RAG
|
||||
title: Chat with models
|
||||
- sections:
|
||||
- local: serving
|
||||
title: Serving LLMs, VLMs, and other chat-based models
|
||||
- local: jan
|
||||
title: Jan
|
||||
- local: cursor
|
||||
title: Cursor
|
||||
- local: tiny_agents
|
||||
title: Tiny-Agents CLI and MCP tools
|
||||
- local: open_webui
|
||||
title: Open WebUI
|
||||
title: Serving
|
||||
- sections:
|
||||
- local: perf_torch_compile
|
||||
title: torch.compile
|
||||
@ -103,8 +115,6 @@
|
||||
title: Agents
|
||||
- local: tools
|
||||
title: Tools
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: transformers_as_backend
|
||||
title: Inference server backends
|
||||
title: Inference
|
||||
@ -501,6 +511,8 @@
|
||||
title: GPT2
|
||||
- local: model_doc/gpt_bigcode
|
||||
title: GPTBigCode
|
||||
- local: model_doc/gpt_oss
|
||||
title: GptOss
|
||||
- local: model_doc/gptsan-japanese
|
||||
title: GPTSAN Japanese
|
||||
- local: model_doc/gpt-sw3
|
||||
@ -971,6 +983,8 @@
|
||||
title: CLIPSeg
|
||||
- local: model_doc/clvp
|
||||
title: CLVP
|
||||
- local: model_doc/cohere2_vision
|
||||
title: Cohere2Vision
|
||||
- local: model_doc/colpali
|
||||
title: ColPali
|
||||
- local: model_doc/colqwen2
|
||||
@ -1049,6 +1063,8 @@
|
||||
title: Mistral3
|
||||
- local: model_doc/mllama
|
||||
title: mllama
|
||||
- local: model_doc/mm-grounding-dino
|
||||
title: MM Grounding DINO
|
||||
- local: model_doc/nougat
|
||||
title: Nougat
|
||||
- local: model_doc/omdet-turbo
|
||||
|
@ -111,6 +111,7 @@ Some vision models also support video inputs. The message format is very similar
|
||||
|
||||
- The content `"type"` should be `"video"` to indicate the content is a video.
|
||||
- For videos, it can be a link to the video (`"url"`) or it could be a file path (`"path"`). Videos loaded from a URL can only be decoded with [PyAV](https://pyav.basswood-io.com/docs/stable/) or [Decord](https://github.com/dmlc/decord).
|
||||
- In addition to loading videos from a URL or file path, you can also pass decoded video data directly. This is useful if you’ve already preprocessed or decoded video frames elsewhere in memory (e.g., using OpenCV, decord, or torchvision). You don't need to save to files or store it in an URL.
|
||||
|
||||
> [!WARNING]
|
||||
> Loading a video from `"url"` is only supported by the PyAV or Decord backends.
|
||||
@ -137,6 +138,52 @@ messages = [
|
||||
]
|
||||
```
|
||||
|
||||
### Example: Passing decoded video objects
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
video_object1 = np.random.randint(0, 255, size=(16, 224, 224, 3), dtype=np.uint8),
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video", "video": video_object1},
|
||||
{"type": "text", "text": "What do you see in this video?"}
|
||||
],
|
||||
},
|
||||
]
|
||||
```
|
||||
You can also use existing (`"load_video()"`) function to load a video, edit the video in memory and pass it in the messages.
|
||||
```python
|
||||
|
||||
# Make sure a video backend library (pyav, decord, or torchvision) is available.
|
||||
from transformers.video_utils import load_video
|
||||
|
||||
# load a video file in memory for testing
|
||||
video_object2, _ = load_video(
|
||||
"https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video", "video": video_object2},
|
||||
{"type": "text", "text": "What do you see in this video?"}
|
||||
],
|
||||
},
|
||||
]
|
||||
```
|
||||
|
||||
Pass `messages` to [`~ProcessorMixin.apply_chat_template`] to tokenize the input content. There are a few extra parameters to include in [`~ProcessorMixin.apply_chat_template`] that controls the sampling process.
|
||||
|
||||
The `video_load_backend` parameter refers to a specific framework to load a video. It supports [PyAV](https://pyav.basswood-io.com/docs/stable/), [Decord](https://github.com/dmlc/decord), [OpenCV](https://github.com/opencv/opencv), and [torchvision](https://pytorch.org/vision/stable/index.html).
|
||||
|
@ -27,7 +27,7 @@ This guide shows you how to quickly start chatting with Transformers from the co
|
||||
|
||||
## chat CLI
|
||||
|
||||
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
|
||||
After you've [installed Transformers](./installation), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
|
||||
|
||||
```bash
|
||||
transformers chat Qwen/Qwen2.5-0.5B-Instruct
|
||||
@ -158,4 +158,4 @@ The easiest solution for improving generation speed is to either quantize a mode
|
||||
You can also try techniques like [speculative decoding](./generation_strategies#speculative-decoding), where a smaller model generates candidate tokens that are verified by the larger model. If the candidate tokens are correct, the larger model can generate more than one token per `forward` pass. This significantly alleviates the bandwidth bottleneck and improves generation speed.
|
||||
|
||||
> [!TIP]
|
||||
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe.md), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.
|
||||
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.
|
||||
|
42
docs/source/en/cursor.md
Normal file
42
docs/source/en/cursor.md
Normal file
@ -0,0 +1,42 @@
|
||||
# Using Cursor as a client of transformers serve
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. In this particular case, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
|
||||
|
||||
To launch a server with CORS enabled, run
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
|
||||
```shell
|
||||
ngrok http [port]
|
||||
```
|
||||
|
||||
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see a https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
|
||||
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
|
||||
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
|
||||
3. Add some random text to OpenAI API Key. This field won't be used, but it can’t be empty;
|
||||
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
|
||||
5. Hit "Verify".
|
||||
|
||||
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
|
||||
</h3>
|
||||
|
||||
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
|
||||
</h3>
|
||||
|
||||
|
32
docs/source/en/jan.md
Normal file
32
docs/source/en/jan.md
Normal file
@ -0,0 +1,32 @@
|
||||
# Jan: using the serving API as a local LLM provider
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
|
||||
|
||||
## Running models locally
|
||||
|
||||
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
|
||||
|
||||
```shell
|
||||
http://[host]:[port]/v1
|
||||
```
|
||||
|
||||
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
|
||||
</h3>
|
||||
|
||||
You are now ready to chat!
|
||||
|
||||
> [!TIP]
|
||||
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
|
||||
|
||||
## Running models on a separate machine
|
||||
|
||||
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
|
||||
|
||||
```
|
||||
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
|
||||
```
|
||||
|
||||
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
|
@ -148,9 +148,9 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
||||
| Option name | Type | Simplified description |
|
||||
|---|---|---|
|
||||
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
|
||||
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
|
||||
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies) for more information. |
|
||||
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
|
||||
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
|
||||
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies) for more information. |
|
||||
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
|
||||
| `eos_token_id` | `list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
|
||||
|
||||
|
@ -23,11 +23,11 @@ The crux of these challenges lies in augmenting the computational and memory cap
|
||||
|
||||
In this guide, we will go over the effective techniques for efficient LLM deployment:
|
||||
|
||||
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization.md) can achieve computational advantages without a considerable decline in model performance.
|
||||
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization) can achieve computational advantages without a considerable decline in model performance.
|
||||
|
||||
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
|
||||
|
||||
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245)).
|
||||
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245).
|
||||
|
||||
Throughout this guide, we will offer an analysis of auto-regressive generation from a tensor's perspective. We delve into the pros and cons of adopting lower precision, provide a comprehensive exploration of the latest attention algorithms, and discuss improved LLM architectures. While doing so, we run practical examples showcasing each of the feature improvements.
|
||||
|
||||
|
@ -65,6 +65,10 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
|
||||
|
||||
[[autodoc]] HqqConfig
|
||||
|
||||
## Mxfp4Config
|
||||
|
||||
[[autodoc]] Mxfp4Config
|
||||
|
||||
## FbgemmFp8Config
|
||||
|
||||
[[autodoc]] FbgemmFp8Config
|
||||
|
@ -14,49 +14,81 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BARThez
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BARThez
|
||||
|
||||
The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://huggingface.co/papers/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct,
|
||||
2020.
|
||||
[BARThez](https://huggingface.co/papers/2010.12321) is a [BART](./bart) model designed for French language tasks. Unlike existing French BERT models, BARThez includes a pretrained encoder-decoder, allowing it to generate text as well. This model is also available as a multilingual variant, mBARThez, by continuing pretraining multilingual BART on a French corpus.
|
||||
|
||||
The abstract of the paper:
|
||||
You can find all of the original BARThez checkpoints under the [BARThez](https://huggingface.co/collections/dascim/barthez-670920b569a07aa53e3b6887) collection.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [moussakam](https://huggingface.co/moussakam).
|
||||
> Refer to the [BART](./bart) docs for more usage examples.
|
||||
|
||||
|
||||
*Inductive transfer learning, enabled by self-supervised learning, have taken the entire Natural Language Processing
|
||||
(NLP) field by storm, with models such as BERT and BART setting new state of the art on countless natural language
|
||||
understanding tasks. While there are some notable exceptions, most of the available models and research have been
|
||||
conducted for the English language. In this work, we introduce BARThez, the first BART model for the French language
|
||||
(to the best of our knowledge). BARThez was pretrained on a very large monolingual French corpus from past research
|
||||
that we adapted to suit BART's perturbation schemes. Unlike already existing BERT-based French language models such as
|
||||
CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks, since not only its encoder but also
|
||||
its decoder is pretrained. In addition to discriminative tasks from the FLUE benchmark, we evaluate BARThez on a novel
|
||||
summarization dataset, OrangeSum, that we release with this paper. We also continue the pretraining of an already
|
||||
pretrained multilingual BART on BARThez's corpus, and we show that the resulting model, which we call mBARTHez,
|
||||
provides a significant boost over vanilla BARThez, and is on par with or outperforms CamemBERT and FlauBERT.*
|
||||
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
This model was contributed by [moussakam](https://huggingface.co/moussakam). The Authors' code can be found [here](https://github.com/moussaKam/BARThez).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
<Tip>
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
BARThez implementation is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on
|
||||
configuration classes and their parameters. BARThez-specific tokenizers are documented below.
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="moussaKam/barthez",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.")
|
||||
```
|
||||
|
||||
</Tip>
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
- BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check:
|
||||
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"moussaKam/barthez",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"moussaKam/barthez",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
inputs = tokenizer("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Les plantes produisent <mask> grâce à un processus appelé photosynthèse." | transformers run --task fill-mask --model moussaKam/barthez --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## BarthezTokenizer
|
||||
|
||||
|
@ -1,43 +1,115 @@
|
||||
# Cohere
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
[C4AI Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model developed by Cohere and Cohere For AI. It has advanced capabilities optimized for various use cases, including reasoning, summarization, question answering, and code. The model is trained to perform sophisticated tasks including Retrieval Augmented Generation (RAG) and tool use. The model also has powerful agentic capabilities that can use and combine multiple tools over multiple steps to accomplish more difficult tasks. It obtains top performance on enterprise-relevant code use cases. C4AI Command R7B is a multilingual model trained on 23 languages.
|
||||
|
||||
The model features three layers with sliding window attention (window size 4096) and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
|
||||
# Cohere2
|
||||
|
||||
The model has been trained on 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian.
|
||||
[Cohere Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model. It is a multilingual model trained on 23 languages and has a context window of 128k. The model features three layers with sliding window attention and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
|
||||
|
||||
## Usage tips
|
||||
The model and tokenizer can be loaded via:
|
||||
This model is optimized for speed, cost-performance, and compute resources.
|
||||
|
||||
You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
# pip install transformers
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="CohereLabs/c4ai-command-r7b-12-2024",
|
||||
torch_dtype=torch.float16,
|
||||
device_map=0
|
||||
)
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"},
|
||||
]
|
||||
pipeline(messages)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"CohereLabs/c4ai-command-r7b-12-2024",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
# Format message with the command-r chat template
|
||||
messages = [{"role": "user", "content": "Hello, how are you?"}]
|
||||
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
||||
|
||||
gen_tokens = model.generate(
|
||||
# format message with the Command-R chat template
|
||||
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
|
||||
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||
output = model.generate(
|
||||
input_ids,
|
||||
max_new_tokens=100,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
cache_implementation="static",
|
||||
)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
# pip install -U flash-attn --no-build-isolation
|
||||
transformers-cli chat CohereLabs/c4ai-command-r7b-12-2024 --torch_dtype auto --attn_implementation flash_attention_2
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview.md) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to 4-bits.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"CohereLabs/c4ai-command-r7b-12-2024",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
quantization_config=bnb_config,
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
gen_text = tokenizer.decode(gen_tokens[0])
|
||||
print(gen_text)
|
||||
# format message with the Command-R chat template
|
||||
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
|
||||
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||||
output = model.generate(
|
||||
input_ids,
|
||||
max_new_tokens=100,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
cache_implementation="static",
|
||||
)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Cohere2Config
|
||||
|
123
docs/source/en/model_doc/cohere2_vision.md
Normal file
123
docs/source/en/model_doc/cohere2_vision.md
Normal file
@ -0,0 +1,123 @@
|
||||
# Command A Vision
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
Command A Vision is a state-of-the-art multimodal model designed to seamlessly integrate visual and textual information for a wide range of applications. By combining advanced computer vision techniques with natural language processing capabilities, Command A Vision enables users to analyze, understand, and generate insights from both visual and textual data.
|
||||
|
||||
The model excels at tasks including image captioning, visual question answering, document understanding, and chart understanding. This makes it a versatile tool for AI practitioners. Its ability to process complex visual and textual inputs makes it useful in settings where text-only representations are imprecise or unavailable, like real-world image understanding and graphics-heavy document processing.
|
||||
|
||||
Command A Vision is built upon a robust architecture that leverages the latest advancements in VLMs. It's highly performant and efficient, even when dealing with large-scale datasets. The model's flexibility makes it suitable for a wide range of use cases, from content moderation and image search to medical imaging analysis and robotics.
|
||||
|
||||
## Usage tips
|
||||
|
||||
The model and image processor can be loaded as follows:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||||
|
||||
model_id = "CohereLabs/command-a-vision-07-2025"
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModelForImageTextToText.from_pretrained(
|
||||
model_id, device_map="auto", torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
# Format message with the Command-A-Vision chat template
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg",
|
||||
},
|
||||
{"type": "text", "text": "what is in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
padding=True,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
).to(model.device)
|
||||
|
||||
gen_tokens = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=300,
|
||||
do_sample=True,
|
||||
temperature=0.3,
|
||||
)
|
||||
|
||||
print(
|
||||
processor.tokenizer.decode(
|
||||
gen_tokens[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(model="CohereLabs/command-a-vision-07-2025", task="image-text-to-text", device_map="auto")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=",
|
||||
},
|
||||
{"type": "text", "text": "Where was this taken ?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
|
||||
|
||||
print(outputs)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Cohere2VisionConfig
|
||||
|
||||
[[autodoc]] Cohere2VisionConfig
|
||||
|
||||
## Cohere2VisionForConditionalGeneration
|
||||
|
||||
[[autodoc]] Cohere2VisionForConditionalGeneration
|
||||
- forward
|
||||
|
||||
## Cohere2VisionModel
|
||||
|
||||
[[autodoc]] Cohere2VisionModel
|
||||
- forward
|
||||
|
||||
## Cohere2VisionImageProcessorFast
|
||||
|
||||
[[autodoc]] Cohere2VisionImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Cohere2VisionProcessor
|
||||
|
||||
[[autodoc]] Cohere2VisionProcessor
|
@ -95,7 +95,7 @@ images = [
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
@ -99,7 +99,7 @@ images = [
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
@ -21,7 +21,7 @@ rendered properly in your Markdown viewer.
|
||||
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
|
||||
|
||||
**Model Architecture:**
|
||||
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
|
||||
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
|
||||
|
||||
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.
|
||||
|
||||
|
@ -209,6 +209,10 @@ model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] DeepseekVLImageProcessor
|
||||
|
||||
## DeepseekVLImageProcessorFast
|
||||
|
||||
[[autodoc]] DeepseekVLImageProcessorFast
|
||||
|
||||
## DeepseekVLModel
|
||||
|
||||
[[autodoc]] DeepseekVLModel
|
||||
|
@ -208,6 +208,10 @@ model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] DeepseekVLHybridImageProcessor
|
||||
|
||||
## DeepseekVLHybridImageProcessorFast
|
||||
|
||||
[[autodoc]] DeepseekVLHybridImageProcessorFast
|
||||
|
||||
## DeepseekVLHybridModel
|
||||
|
||||
[[autodoc]] DeepseekVLHybridModel
|
||||
|
@ -14,132 +14,122 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# DETR
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# DETR
|
||||
|
||||
The DETR model was proposed in [End-to-End Object Detection with Transformers](https://huggingface.co/papers/2005.12872) by
|
||||
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
|
||||
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
|
||||
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
|
||||
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
|
||||
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
|
||||
[DETR](https://huggingface.co/papers/2005.12872) consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original DETR checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=detr) organization.
|
||||
|
||||
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
|
||||
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
|
||||
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
|
||||
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
|
||||
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
|
||||
DETR reasons about the relations of the objects and the global image context to directly output the final set of
|
||||
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
|
||||
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
|
||||
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
|
||||
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
|
||||
baselines.*
|
||||
> [!TIP]
|
||||
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
>
|
||||
> Click on the DETR models in the right sidebar for more examples of how to apply DETR to different object detection and segmentation tasks.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr).
|
||||
The example below demonstrates how to perform object detection with the [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
## How DETR works
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
import torch
|
||||
|
||||
pipeline = pipeline(
|
||||
"object-detection",
|
||||
model="facebook/detr-resnet-50",
|
||||
torch_dtype=torch.float16,
|
||||
device_map=0
|
||||
)
|
||||
|
||||
pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
||||
from PIL import Image
|
||||
import requests
|
||||
import torch
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
||||
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
||||
|
||||
# prepare image for the model
|
||||
inputs = image_processor(images=image, return_tensors="pt")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
|
||||
|
||||
for result in results:
|
||||
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
|
||||
score, label = score.item(), label_id.item()
|
||||
box = [round(i, 2) for i in box.tolist()]
|
||||
print(f"{model.config.id2label[label]}: {score:.2f} {box}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
<details>
|
||||
<summary>How DETR works</summary>
|
||||
|
||||
Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works:
|
||||
|
||||
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
|
||||
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
|
||||
tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
|
||||
outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is
|
||||
then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a
|
||||
`nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the
|
||||
feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` =
|
||||
`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
|
||||
longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
|
||||
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a `nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` = `(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
|
||||
|
||||
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider
|
||||
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
|
||||
`(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros.
|
||||
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
|
||||
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
|
||||
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
|
||||
to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads
|
||||
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
|
||||
object", and a MLP to predict bounding boxes for each query.
|
||||
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape `(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros. These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to the encoder, they are added to the input of each attention layer. Each object query will look for a particular object in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no object", and a MLP to predict bounding boxes for each query.
|
||||
|
||||
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
|
||||
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
|
||||
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
|
||||
bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find
|
||||
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
|
||||
the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the
|
||||
bounding boxes) are used to optimize the parameters of the model.
|
||||
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the bounding boxes) are used to optimize the parameters of the model.
|
||||
|
||||
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
|
||||
segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of
|
||||
[`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process,
|
||||
where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both
|
||||
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
|
||||
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
|
||||
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
|
||||
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of [`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process, where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both "things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
|
||||
|
||||
## Usage tips
|
||||
</details>
|
||||
|
||||
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
|
||||
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
|
||||
`num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the
|
||||
authors used 100, while the maximum number of objects in a COCO image is ~70).
|
||||
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
|
||||
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
|
||||
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
|
||||
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
|
||||
absolute position embeddings. By default, the parameter `position_embedding_type` of
|
||||
[`~transformers.DetrConfig`] is set to `"sine"`.
|
||||
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
|
||||
the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of
|
||||
[`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses
|
||||
are added after each decoder layer (with the FFNs sharing parameters).
|
||||
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
|
||||
_num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be
|
||||
set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
|
||||
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with
|
||||
any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models).
|
||||
Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of
|
||||
[`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that
|
||||
config.
|
||||
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
|
||||
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
|
||||
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
|
||||
[`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the
|
||||
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
|
||||
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
|
||||
Alternatively, one can also define a custom `collate_fn` in order to batch images together, using
|
||||
[`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
|
||||
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`.
|
||||
It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
|
||||
## Notes
|
||||
|
||||
There are three ways to instantiate a DETR model (depending on what you prefer):
|
||||
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum number of objects that can be detected in a single image, and is set to 100 by default (see parameter `num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the authors used 100, while the maximum number of objects in a COCO image is ~70).
|
||||
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2, which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
|
||||
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned absolute position embeddings. By default, the parameter `position_embedding_type` of [`~transformers.DetrConfig`] is set to `"sine"`.
|
||||
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of [`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters).
|
||||
- If you want to train the model in a distributed environment across multiple nodes, then one should update the _num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
|
||||
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models). Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of [`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that config.
|
||||
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use [`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding. Alternatively, one can also define a custom `collate_fn` in order to batch images together, using [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
|
||||
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`. It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
|
||||
|
||||
Option 1: Instantiate DETR with pre-trained weights for entire model
|
||||
```py
|
||||
>>> from transformers import DetrForObjectDetection
|
||||
There are three other ways to instantiate a DETR model (depending on what you prefer):
|
||||
|
||||
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
||||
- Option 1: Instantiate DETR with pre-trained weights for entire model
|
||||
```python
|
||||
from transformers import DetrForObjectDetection
|
||||
|
||||
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
||||
```
|
||||
|
||||
Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
|
||||
```py
|
||||
>>> from transformers import DetrConfig, DetrForObjectDetection
|
||||
- Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
|
||||
```python
|
||||
from transformers import DetrConfig, DetrForObjectDetection
|
||||
|
||||
>>> config = DetrConfig()
|
||||
>>> model = DetrForObjectDetection(config)
|
||||
config = DetrConfig()
|
||||
model = DetrForObjectDetection(config)
|
||||
```
|
||||
Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
|
||||
```py
|
||||
>>> config = DetrConfig(use_pretrained_backbone=False)
|
||||
>>> model = DetrForObjectDetection(config)
|
||||
|
||||
- Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
|
||||
```python
|
||||
config = DetrConfig(use_pretrained_backbone=False)
|
||||
model = DetrForObjectDetection(config)
|
||||
```
|
||||
|
||||
As a summary, consider the following table:
|
||||
@ -153,24 +143,12 @@ As a summary, consider the following table:
|
||||
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
|
||||
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |
|
||||
|
||||
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
|
||||
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
|
||||
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
|
||||
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
|
||||
be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
|
||||
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
|
||||
- In short, one should prepare the data either in COCO detection or COCO panoptic format, then use [`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional `labels`, which can then be used to train (or fine-tune) a model.
|
||||
- For evaluation, one should first convert the outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR.
|
||||
|
||||
<PipelineTag pipeline="object-detection"/>
|
||||
|
||||
- All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
|
||||
- Scripts for finetuning [`DetrForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
|
||||
- See also: [Object detection task guide](../tasks/object_detection).
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
- Refer to these [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for examples of fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset.
|
||||
|
||||
## DetrConfig
|
||||
|
||||
|
@ -26,14 +26,14 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
## Overview
|
||||
|
||||
Dia is an opensource text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
|
||||
It can generate highly realistic dialogue from transcript including nonverbal communications such as laughter and coughing.
|
||||
Dia is an open-source text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
|
||||
It can generate highly realistic dialogue from transcript including non-verbal communications such as laughter and coughing.
|
||||
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).
|
||||
|
||||
**Model Architecture:**
|
||||
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
|
||||
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
|
||||
for the audio portion (decoder), a pretrained codec model [DAC](./dac.md) is used - DAC encodes speech into discrete codebook
|
||||
for the audio portion (decoder), a pretrained codec model [DAC](./dac) is used - DAC encodes speech into discrete codebook
|
||||
tokens and decodes them back into audio.
|
||||
|
||||
## Usage Tips
|
||||
|
@ -27,7 +27,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
ERNIE (Enhanced Representation through kNowledge IntEgration) is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking.
|
||||
|
||||
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5.md), and [Ernie 4.5 MoE](./ernie4_5_moe.md).
|
||||
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5), and [Ernie 4.5 MoE](./ernie4_5_moe).
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [nghuyong](https://huggingface.co/nghuyong), and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
|
@ -29,9 +29,9 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
|
||||
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama) at its core.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe.md).
|
||||
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
|
@ -30,10 +30,10 @@ rendered properly in your Markdown viewer.
|
||||
The Ernie 4.5 Moe model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
|
||||
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
|
||||
It uses the standard [Llama](./llama) at its core combined with a specialized MoE based on [Mixtral](./mixtral) with additional shared
|
||||
experts.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
|
||||
Other models from the family can be found at [Ernie 4.5](./ernie4_5).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
|
@ -30,7 +30,7 @@ Gemma3n is a multimodal model with pretrained and instruction-tuned variants, av
|
||||
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
|
||||
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
|
||||
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
|
||||
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
|
||||
a similar attention pattern to [Gemma 3](./gemma3) with alternating 4 local sliding window self-attention layers for
|
||||
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
|
||||
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
|
||||
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.
|
||||
|
58
docs/source/en/model_doc/gpt_oss.md
Normal file
58
docs/source/en/model_doc/gpt_oss.md
Normal file
@ -0,0 +1,58 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# GptOss
|
||||
|
||||
## Overview
|
||||
|
||||
The GptOss model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
|
||||
<INSERT SHORT SUMMARY HERE>
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*<INSERT PAPER ABSTRACT HERE>*
|
||||
|
||||
Tips:
|
||||
|
||||
<INSERT TIPS ABOUT MODEL HERE>
|
||||
|
||||
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
|
||||
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
|
||||
|
||||
|
||||
## GptOssConfig
|
||||
|
||||
[[autodoc]] GptOssConfig
|
||||
|
||||
## GptOssModel
|
||||
|
||||
[[autodoc]] GptOssModel
|
||||
- forward
|
||||
|
||||
## GptOssForCausalLM
|
||||
|
||||
[[autodoc]] GptOssForCausalLM
|
||||
- forward
|
@ -169,9 +169,9 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
|
||||
|
||||
## Shrinking down Idefics2 using quantization
|
||||
|
||||
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
|
||||
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
|
||||
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization) for other quantization methods):
|
||||
|
||||
```diff
|
||||
+ from transformers import BitsAndBytesConfig
|
||||
@ -193,7 +193,7 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Idefics2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer.md) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
|
||||
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
|
||||
- A script regarding how to fine-tune Idefics2 using the TRL library can be found [here](https://gist.github.com/edbeeching/228652fc6c2b29a1641be5a5778223cb).
|
||||
- Demo notebook regarding fine-tuning Idefics2 for JSON extraction use cases can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Idefics2). 🌎
|
||||
|
||||
|
@ -44,11 +44,11 @@ Here is the example of visual understanding with a single image.
|
||||
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
from transformers import JanusForConditionalGeneration, JanusProcessor
|
||||
from transformers import JanusForConditionalGeneration, JanusProcessor
|
||||
|
||||
model_id = "deepseek-community/Janus-Pro-1B"
|
||||
# Prepare Input for generation.
|
||||
@ -64,7 +64,7 @@ messages = [
|
||||
|
||||
# Set generation mode to `text` to perform text generation.
|
||||
processor = JanusProcessor.from_pretrained(model_id)
|
||||
model = JanusForConditionalGeneration.from_pretrained(model_id,
|
||||
model = JanusForConditionalGeneration.from_pretrained(model_id,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto")
|
||||
|
||||
@ -209,6 +209,10 @@ for i, image in enumerate(images['pixel_values']):
|
||||
|
||||
[[autodoc]] JanusImageProcessor
|
||||
|
||||
## JanusImageProcessorFast
|
||||
|
||||
[[autodoc]] JanusImageProcessorFast
|
||||
|
||||
## JanusVisionModel
|
||||
|
||||
[[autodoc]] JanusVisionModel
|
||||
|
@ -107,7 +107,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
|
||||
```py
|
||||
# Easy visualization using the built-in plotting method
|
||||
processor.plot_keypoint_matching(images, processed_outputs)
|
||||
processor.visualize_keypoint_matching(images, processed_outputs)
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
@ -128,7 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- plot_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
@ -33,7 +33,7 @@ alt="drawing" width="600"/>
|
||||
|
||||
<small> MGP-STR architecture. Taken from the <a href="https://huggingface.co/papers/2209.03592">original paper</a>. </small>
|
||||
|
||||
MGP-STR is trained on two synthetic datasets [MJSynth]((http://www.robots.ox.ac.uk/~vgg/data/text/)) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
|
||||
MGP-STR is trained on two synthetic datasets [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
|
||||
This model was contributed by [yuekun](https://huggingface.co/yuekun). The original code can be found [here](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
|
||||
|
||||
## Inference example
|
||||
|
@ -14,30 +14,29 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Mimi
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Mimi
|
||||
|
||||
The Mimi model was proposed in [Moshi: a speech-text foundation model for real-time dialogue](https://kyutai.org/Moshi.pdf) by Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave and Neil Zeghidour. Mimi is a high-fidelity audio codec model developed by the Kyutai team, that combines semantic and acoustic information into audio tokens running at 12Hz and a bitrate of 1.1kbps. In other words, it can be used to map audio waveforms into “audio tokens”, known as “codebooks”.
|
||||
[Mimi](huggingface.co/papers/2410.00037) is a neural audio codec model with pretrained and quantized variants, designed for efficient speech representation and compression. The model operates at 1.1 kbps with a 12 Hz frame rate and uses a convolutional encoder-decoder architecture combined with a residual vector quantizer of 16 codebooks. Mimi outputs dual token streams i.e. semantic and acoustic to balance linguistic richness with high fidelity reconstruction. Key features include a causal streaming encoder for low-latency use, dual-path tokenization for flexible downstream generation, and integration readiness with large speech models like Moshi.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find the original Mimi checkpoints under the [Kyutai](https://huggingface.co/kyutai/models?search=mimi) organization.
|
||||
|
||||
*We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning— such as emotion or non-speech sounds— is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this “Inner Monologue” method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at github.com/kyutai-labs/moshi.*
|
||||
>[!TIP]
|
||||
> This model was contributed by [ylacombe](https://huggingface.co/ylacombe).
|
||||
>
|
||||
> Click on the Mimi models in the right sidebar for more examples of how to apply Mimi.
|
||||
|
||||
Its architecture is based on [Encodec](model_doc/encodec) with several major differences:
|
||||
* it uses a much lower frame-rate.
|
||||
* it uses additional transformers for encoding and decoding for better latent contextualization
|
||||
* it uses a different quantization scheme: one codebook is dedicated to semantic projection.
|
||||
The example below demonstrates how to encode and decode audio with the [`AutoModel`] class.
|
||||
|
||||
## Usage example
|
||||
|
||||
Here is a quick example of how to encode and decode an audio using this model:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> from datasets import load_dataset, Audio
|
||||
@ -59,9 +58,8 @@ Here is a quick example of how to encode and decode an audio using this model:
|
||||
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values
|
||||
```
|
||||
|
||||
This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe).
|
||||
The original code can be found [here](https://github.com/kyutai-labs/moshi).
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## MimiConfig
|
||||
|
||||
@ -72,4 +70,4 @@ The original code can be found [here](https://github.com/kyutai-labs/moshi).
|
||||
[[autodoc]] MimiModel
|
||||
- decode
|
||||
- encode
|
||||
- forward
|
||||
- forward
|
||||
|
@ -115,9 +115,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
|
||||
|
||||
## Shrinking down MiniMax using quantization
|
||||
|
||||
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
|
||||
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
|
||||
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
|
@ -146,9 +146,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
|
||||
|
||||
## Shrinking down Mixtral using quantization
|
||||
|
||||
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
|
||||
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
|
||||
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
|
124
docs/source/en/model_doc/mm-grounding-dino.md
Normal file
124
docs/source/en/model_doc/mm-grounding-dino.md
Normal file
@ -0,0 +1,124 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# MM Grounding DINO
|
||||
|
||||
[MM Grounding DINO](https://arxiv.org/abs/2401.02361) model was proposed in [An Open and Comprehensive Pipeline for Unified Object Grounding and Detection](https://arxiv.org/abs/2401.02361) by Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, Haian Huang>.
|
||||
|
||||
MM Grounding DINO improves upon the [Grounding DINO](https://huggingface.co/docs/transformers/model_doc/grounding-dino) by improving the contrastive class head and removing the parameter sharing in the decoder, improving zero-shot detection performance on both COCO (50.6(+2.2) AP) and LVIS (31.9(+11.8) val AP and 41.4(+12.6) minival AP).
|
||||
|
||||
You can find all the original MM Grounding DINO checkpoints under the [MM Grounding DINO](https://huggingface.co/collections/openmmlab-community/mm-grounding-dino-688cbde05b814c4e2832f9df) collection. This model also supports LLMDet inference. You can find LLMDet checkpoints under the [LLMDet](https://huggingface.co/collections/iSEE-Laboratory/llmdet-688475906dc235d5f1dc678e) collection.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the MM Grounding DINO models in the right sidebar for more examples of how to apply MM Grounding DINO to different MM Grounding DINO tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with the [`AutoModelForZeroShotObjectDetection`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
||||
from transformers.image_utils import load_image
|
||||
|
||||
|
||||
# Prepare processor and model
|
||||
model_id = "openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
|
||||
|
||||
# Prepare inputs
|
||||
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = load_image(image_url)
|
||||
text_labels = [["a cat", "a remote control"]]
|
||||
inputs = processor(images=image, text=text_labels, return_tensors="pt").to(device)
|
||||
|
||||
# Run inference
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Postprocess outputs
|
||||
results = processor.post_process_grounded_object_detection(
|
||||
outputs,
|
||||
threshold=0.4,
|
||||
target_sizes=[(image.height, image.width)]
|
||||
)
|
||||
|
||||
# Retrieve the first image result
|
||||
result = results[0]
|
||||
for box, score, labels in zip(result["boxes"], result["scores"], result["labels"]):
|
||||
box = [round(x, 2) for x in box.tolist()]
|
||||
print(f"Detected {labels} with confidence {round(score.item(), 3)} at location {box}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Here's a table of models and their object detection performance results on COCO (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
|
||||
|
||||
| Model | Backbone | Pre-Train Data | Style | COCO mAP |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------ | -------- | ------------------------ | --------- | ---------- |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | Swin-T | O365,GoldG | Zero-shot | 50.4(+2.3) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | Swin-T | O365,GoldG,GRIT | Zero-shot | 50.5(+2.1) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | Swin-T | O365,GoldG,V3Det | Zero-shot | 50.6(+2.2) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | Swin-T | O365,GoldG,GRIT,V3Det | Zero-shot | 50.4(+2.0) |
|
||||
| [mm_grounding_dino_base_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_o365v1_goldg_v3det) | Swin-B | O365,GoldG,V3Det | Zero-shot | 52.5 |
|
||||
| [mm_grounding_dino_base_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_all) | Swin-B | O365,ALL | - | 59.5 |
|
||||
| [mm_grounding_dino_large_o365v2_oiv6_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_o365v2_oiv6_goldg) | Swin-L | O365V2,OpenImageV6,GoldG | Zero-shot | 53.0 |
|
||||
| [mm_grounding_dino_large_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_all) | Swin-L | O365V2,OpenImageV6,ALL | - | 60.3 |
|
||||
|
||||
- Here's a table of MM Grounding DINO tiny models and their object detection performance on LVIS (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
|
||||
|
||||
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------ | --------------------- | ----------- | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | O365,GoldG | 28.1 | 30.2 | 42.0 | 35.7(+6.9) | 17.1 | 22.4 | 36.5 | 27.0(+6.9) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | O365,GoldG,GRIT | 26.6 | 32.4 | 41.8 | 36.5(+7.7) | 17.3 | 22.6 | 36.4 | 27.1(+7.0) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | O365,GoldG,V3Det | 33.0 | 36.0 | 45.9 | 40.5(+11.7) | 21.5 | 25.5 | 40.2 | 30.6(+10.5) |
|
||||
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | O365,GoldG,GRIT,V3Det | 34.2 | 37.4 | 46.2 | 41.4(+12.6) | 23.6 | 27.6 | 40.5 | 31.9(+11.8) |
|
||||
|
||||
|
||||
- This implementation also supports inference for [LLMDet](https://github.com/iSEE-Laboratory/LLMDet). Here's a table of LLMDet models and their performance on LVIS (results from [official repo](https://github.com/iSEE-Laboratory/LLMDet)):
|
||||
|
||||
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
|
||||
| --------------------------------------------------------- | -------------------------------------------- | ------------ | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
|
||||
| [llmdet_tiny](https://huggingface.co/iSEE-Laboratory/llmdet_tiny) | (O365,GoldG,GRIT,V3Det) + GroundingCap-1M | 44.7 | 37.3 | 39.5 | 50.7 | 34.9 | 26.0 | 30.1 | 44.3 |
|
||||
| [llmdet_base](https://huggingface.co/iSEE-Laboratory/llmdet_base) | (O365,GoldG,V3Det) + GroundingCap-1M | 48.3 | 40.8 | 43.1 | 54.3 | 38.5 | 28.2 | 34.3 | 47.8 |
|
||||
| [llmdet_large](https://huggingface.co/iSEE-Laboratory/llmdet_large) | (O365V2,OpenImageV6,GoldG) + GroundingCap-1M | 51.1 | 45.1 | 46.1 | 56.6 | 42.0 | 31.6 | 38.8 | 50.2 |
|
||||
|
||||
|
||||
## MMGroundingDinoConfig
|
||||
|
||||
[[autodoc]] MMGroundingDinoConfig
|
||||
|
||||
## MMGroundingDinoModel
|
||||
|
||||
[[autodoc]] MMGroundingDinoModel
|
||||
- forward
|
||||
|
||||
## MMGroundingDinoForObjectDetection
|
||||
|
||||
[[autodoc]] MMGroundingDinoForObjectDetection
|
||||
- forward
|
@ -115,6 +115,11 @@ echo -e "Plants create [MASK] through a process known as photosynthesis." | tran
|
||||
[[autodoc]] ModernBertForTokenClassification
|
||||
- forward
|
||||
|
||||
## ModernBertForMultipleChoice
|
||||
|
||||
[[autodoc]] ModernBertForMultipleChoice
|
||||
- forward
|
||||
|
||||
## ModernBertForQuestionAnswering
|
||||
|
||||
[[autodoc]] ModernBertForQuestionAnswering
|
||||
|
@ -14,54 +14,115 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# mT5
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# mT5
|
||||
|
||||
The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://huggingface.co/papers/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
|
||||
Siddhant, Aditya Barua, Colin Raffel.
|
||||
[mT5](https://huggingface.co/papers/2010.11934) is a multilingual variant of [T5](./t5), training on 101 languages. It also incorporates a new "accidental translation" technique to prevent the model from incorrectly translating predictions into the wrong language.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original [mT5] checkpoints under the [mT5](https://huggingface.co/collections/google/mt5-release-65005f1a520f8d7b4d039509) collection.
|
||||
|
||||
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
|
||||
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
|
||||
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
|
||||
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
|
||||
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
|
||||
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
|
||||
checkpoints used in this work are publicly available.*
|
||||
> [!TIP]
|
||||
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
|
||||
>
|
||||
> Click on the mT5 models in the right sidebar for more examples of how to apply mT5 to different language tasks.
|
||||
|
||||
Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training.
|
||||
Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model.
|
||||
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
|
||||
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
|
||||
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
Google has released the following variants:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- [google/mt5-small](https://huggingface.co/google/mt5-small)
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [google/mt5-base](https://huggingface.co/google/mt5-base)
|
||||
pipeline = pipeline(
|
||||
task="text2text-generation",
|
||||
model="csebuetnlp/mT5_multilingual_XLSum",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("""Plants are remarkable organisms that produce their own food using a method called photosynthesis.
|
||||
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
|
||||
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems.""")
|
||||
```
|
||||
|
||||
- [google/mt5-large](https://huggingface.co/google/mt5-large)
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
- [google/mt5-xl](https://huggingface.co/google/mt5-xl)
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
- [google/mt5-xxl](https://huggingface.co/google/mt5-xxl).
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"csebuetnlp/mT5_multilingual_XLSum"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"csebuetnlp/mT5_multilingual_XLSum",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
|
||||
found [here](https://github.com/google-research/multilingual-t5).
|
||||
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
|
||||
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
|
||||
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
## Resources
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants are remarkable organisms that produce their own food using a method called photosynthesis." | transformers run --task text2text-generation --model csebuetnlp/mT5_multilingual_XLSum --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"csebuetnlp/mT5_multilingual_XLSum",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"csebuetnlp/mT5_multilingual_XLSum"
|
||||
)
|
||||
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
|
||||
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
|
||||
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- mT5 must be fine-tuned for downstream tasks because it was only pretrained on the [mc4](https://huggingface.co/datasets/mc4) dataset.
|
||||
|
||||
## MT5Config
|
||||
|
||||
|
@ -38,7 +38,7 @@ This model was contributed by [ajati](https://huggingface.co/ajati), [vijaye12](
|
||||
|
||||
## Usage example
|
||||
|
||||
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer.md).
|
||||
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer).
|
||||
|
||||
```python
|
||||
|
||||
|
@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
|
||||
# Qwen2MoE
|
||||
|
||||
|
||||
[Qwen2MoE]((https://huggingface.co/papers/2407.10671) ) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
|
||||
[Qwen2MoE](https://huggingface.co/papers/2407.10671) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
|
||||
|
||||
The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.
|
||||
|
||||
|
@ -103,38 +103,11 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
|
||||
```
|
||||
|
||||
- The example below demonstrates how to visualize matches between two images.
|
||||
- Visualize the matches between the images using the built-in plotting functionality.
|
||||
|
||||
```py
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# Create side by side image
|
||||
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
|
||||
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
|
||||
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
|
||||
plt.imshow(merged_image)
|
||||
plt.axis("off")
|
||||
|
||||
# Retrieve the keypoints and matches
|
||||
output = processed_outputs[0]
|
||||
keypoints0 = output["keypoints0"]
|
||||
keypoints1 = output["keypoints1"]
|
||||
matching_scores = output["matching_scores"]
|
||||
|
||||
# Plot the matches
|
||||
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
|
||||
plt.plot(
|
||||
[keypoint0[0], keypoint1[0] + image1.width],
|
||||
[keypoint0[1], keypoint1[1]],
|
||||
color=plt.get_cmap("RdYlGn")(matching_score.item()),
|
||||
alpha=0.9,
|
||||
linewidth=0.5,
|
||||
)
|
||||
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
|
||||
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
|
||||
|
||||
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
|
||||
# Easy visualization using the built-in plotting method
|
||||
processor.visualize_keypoint_matching(images, processed_outputs)
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
@ -155,6 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
@ -69,11 +69,11 @@ print(tokenizer.decode(outputs[0]))
|
||||
## Model card
|
||||
|
||||
The model cards can be found at:
|
||||
* [Zamba-7B](MODEL_CARD_ZAMBA-7B-v1.md)
|
||||
* [Zamba-7B](https://huggingface.co/Zyphra/Zamba-7B-v1)
|
||||
|
||||
|
||||
## Issues
|
||||
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/zyphra/zamba-7b)
|
||||
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/Zyphra/Zamba-7B-v1/discussions)
|
||||
|
||||
|
||||
## License
|
||||
|
22
docs/source/en/open_webui.md
Normal file
22
docs/source/en/open_webui.md
Normal file
@ -0,0 +1,22 @@
|
||||
# Audio transcriptions with WebUI and `transformers serve`
|
||||
|
||||
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
|
||||
|
||||
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
|
||||
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
|
||||
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
|
||||
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
|
||||
|
||||
If you've done everything correctly, the audio tab should look like this
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.
|
@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# SpQR
|
||||
|
||||
The [SpQR]((https://hf.co/papers/2306.03078)) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
|
||||
The [SpQR](https://hf.co/papers/2306.03078) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/spqr-diagram.png">
|
||||
|
@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
[ONNX](http://onnx.ai) is an open standard that defines a common set of operators and a file format to represent deep learning models in different frameworks, including PyTorch and TensorFlow. When a model is exported to ONNX, the operators construct a computational graph (or *intermediate representation*) which represents the flow of data through the model. Standardized operators and data types makes it easy to switch between frameworks.
|
||||
|
||||
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
|
||||
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
|
||||
|
||||
The benefits of exporting to ONNX include the following.
|
||||
|
||||
|
@ -18,8 +18,17 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
|
||||
|
||||
> [!TIP]
|
||||
> Responses API is now supported as an experimental API! Read more about it [here](#responses-api).
|
||||
|
||||
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
|
||||
|
||||
In this document, we dive into the different supported endpoints and modalities; we also cover the setup of several user interfaces that can be used on top of `transformers serve` in the following guides:
|
||||
- [Jan (text and MCP user interface)](./jan.md)
|
||||
- [Cursor (IDE)](./cursor.md)
|
||||
- [Open WebUI (text, image, speech user interface)](./open_webui.md)
|
||||
- [Tiny-Agents (text and MCP CLI tool)](./tiny_agents.md)
|
||||
|
||||
## Serve CLI
|
||||
|
||||
> [!WARNING]
|
||||
@ -45,7 +54,14 @@ The simplest way to interact with the server is through our `transformers chat`
|
||||
transformers chat localhost:8000 --model-name-or-path Qwen/Qwen3-4B
|
||||
```
|
||||
|
||||
or by sending an HTTP request with `cURL`, e.g.
|
||||
or by sending an HTTP request, like we'll see below.
|
||||
|
||||
## Chat Completions - text-based
|
||||
|
||||
See below for examples for text-based requests. Both LLMs and VLMs should handle
|
||||
|
||||
<hfoptions id="chat-completion-http">
|
||||
<hfoption id="curl">
|
||||
|
||||
```shell
|
||||
curl -X POST http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-Instruct"}'
|
||||
@ -61,7 +77,289 @@ data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863,
|
||||
(...)
|
||||
```
|
||||
|
||||
The server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
|
||||
</hfoption>
|
||||
<hfoption id="python - huggingface_hub">
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from huggingface_hub import AsyncInferenceClient
|
||||
|
||||
messages = [{"role": "user", "content": "What is the Transformers library known for?"}]
|
||||
client = AsyncInferenceClient("http://localhost:8000")
|
||||
|
||||
async def responses_api_test_async():
|
||||
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-0.5B-Instruct", max_tokens=256, stream=True)):
|
||||
token = chunk.choices[0].delta.content
|
||||
if token:
|
||||
print(token, end='')
|
||||
|
||||
asyncio.run(responses_api_test_async())
|
||||
asyncio.run(client.close())
|
||||
```
|
||||
|
||||
From which you should get an iterative string printed:
|
||||
|
||||
```shell
|
||||
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="python - openai">
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-0.5B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the Transformers library known for?"
|
||||
}
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
for chunk in completion:
|
||||
token = chunk.choices[0].delta.content
|
||||
if token:
|
||||
print(token, end='')
|
||||
```
|
||||
|
||||
From which you should get an iterative string printed:
|
||||
|
||||
```shell
|
||||
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Chat Completions - VLMs
|
||||
|
||||
The Chat Completion API also supports images; see below for examples for text-and-image-based requests.
|
||||
|
||||
<hfoptions id="chat-completion-http-images">
|
||||
<hfoption id="curl">
|
||||
|
||||
```shell
|
||||
curl http://localhost:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
"stream": true,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What is in this image?"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"max_tokens": 300
|
||||
}'
|
||||
|
||||
```
|
||||
|
||||
from which you'll receive multiple chunks in the Completions API format
|
||||
|
||||
```shell
|
||||
data: {"id":"req_0","choices":[{"delta":{"role":"assistant"},"index":0}],"created":1753366665,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
|
||||
|
||||
data: {"id":"req_0","choices":[{"delta":{"content":"The "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
|
||||
|
||||
data: {"id":"req_0","choices":[{"delta":{"content":"image "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="python - huggingface_hub">
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from huggingface_hub import AsyncInferenceClient
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
|
||||
}
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
client = AsyncInferenceClient("http://localhost:8000")
|
||||
|
||||
async def responses_api_test_async():
|
||||
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-VL-7B-Instruct", max_tokens=256, stream=True)):
|
||||
token = chunk.choices[0].delta.content
|
||||
if token:
|
||||
print(token, end='')
|
||||
|
||||
asyncio.run(responses_api_test_async())
|
||||
asyncio.run(client.close())
|
||||
```
|
||||
|
||||
From which you should get an iterative string printed:
|
||||
|
||||
```xmp
|
||||
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="python - openai">
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
|
||||
}
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
for chunk in completion:
|
||||
token = chunk.choices[0].delta.content
|
||||
if token:
|
||||
print(token, end='')
|
||||
```
|
||||
|
||||
From which you should get an iterative string printed:
|
||||
|
||||
```xmp
|
||||
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Responses API
|
||||
|
||||
The Responses API is the newest addition to the supported APIs of `transformers serve`.
|
||||
|
||||
> [!TIP]
|
||||
> This API is still experimental: expect bug patches and additition of new features in the coming weeks.
|
||||
> If you run into any issues, please let us know and we'll work on fixing them ASAP.
|
||||
|
||||
Instead of the previous `/v1/chat/completions` path, the Responses API lies behind the `/v1/responses` path.
|
||||
See below for examples interacting with our Responses endpoint with `curl`, as well as the Python OpenAI client.
|
||||
|
||||
So far, this endpoint only supports text and therefore only LLMs. VLMs to come!
|
||||
|
||||
<hfoptions id="responses">
|
||||
<hfoption id="curl">
|
||||
|
||||
```shell
|
||||
curl http://localhost:8000/v1/responses \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "Qwen/Qwen2.5-0.5B-Instruct",
|
||||
"stream": true,
|
||||
"input": "Tell me a three sentence bedtime story about a unicorn."
|
||||
}'
|
||||
```
|
||||
|
||||
from which you'll receive multiple chunks in the Responses API format
|
||||
|
||||
```shell
|
||||
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"queued","text":{"format":{"type":"text"}}},"sequence_number":0,"type":"response.created"}
|
||||
|
||||
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"in_progress","text":{"format":{"type":"text"}}},"sequence_number":1,"type":"response.in_progress"}
|
||||
|
||||
data: {"item":{"id":"msg_req_0","content":[],"role":"assistant","status":"in_progress","type":"message"},"output_index":0,"sequence_number":2,"type":"response.output_item.added"}
|
||||
|
||||
data: {"content_index":0,"item_id":"msg_req_0","output_index":0,"part":{"annotations":[],"text":"","type":"output_text"},"sequence_number":3,"type":"response.content_part.added"}
|
||||
|
||||
data: {"content_index":0,"delta":"","item_id":"msg_req_0","output_index":0,"sequence_number":4,"type":"response.output_text.delta"}
|
||||
|
||||
data: {"content_index":0,"delta":"Once ","item_id":"msg_req_0","output_index":0,"sequence_number":5,"type":"response.output_text.delta"}
|
||||
|
||||
data: {"content_index":0,"delta":"upon ","item_id":"msg_req_0","output_index":0,"sequence_number":6,"type":"response.output_text.delta"}
|
||||
|
||||
data: {"content_index":0,"delta":"a ","item_id":"msg_req_0","output_index":0,"sequence_number":7,"type":"response.output_text.delta"}
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="python - openai">
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<KEY>")
|
||||
|
||||
response = client.responses.create(
|
||||
model="Qwen/Qwen2.5-0.5B-Instruct",
|
||||
instructions="You are a helpful assistant.",
|
||||
input="Hello!",
|
||||
stream=True,
|
||||
metadata={"foo": "bar"},
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
From which you should get events printed out successively.
|
||||
|
||||
```shell
|
||||
ResponseCreatedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='queued', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=0, type='response.created')
|
||||
ResponseInProgressEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='in_progress', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=1, type='response.in_progress')
|
||||
ResponseOutputItemAddedEvent(item=ResponseOutputMessage(id='msg_req_0', content=[], role='assistant', status='in_progress', type='message'), output_index=0, sequence_number=2, type='response.output_item.added')
|
||||
ResponseContentPartAddedEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='', type='output_text', logprobs=None), sequence_number=3, type='response.content_part.added')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=4, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=5, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='Hello! ', item_id='msg_req_0', output_index=0, sequence_number=6, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='How ', item_id='msg_req_0', output_index=0, sequence_number=7, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='can ', item_id='msg_req_0', output_index=0, sequence_number=8, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='I ', item_id='msg_req_0', output_index=0, sequence_number=9, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='assist ', item_id='msg_req_0', output_index=0, sequence_number=10, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='you ', item_id='msg_req_0', output_index=0, sequence_number=11, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=12, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=13, type='response.output_text.delta')
|
||||
ResponseTextDeltaEvent(content_index=0, delta='today?', item_id='msg_req_0', output_index=0, sequence_number=14, type='response.output_text.delta')
|
||||
ResponseTextDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, sequence_number=15, text='Hello! How can I assist you today?', type='response.output_text.done')
|
||||
ResponseContentPartDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None), sequence_number=16, type='response.content_part.done')
|
||||
ResponseOutputItemDoneEvent(item=ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[]), output_index=0, sequence_number=17, type='response.output_item.done')
|
||||
ResponseCompletedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[])], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=18, type='response.completed')
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
## MCP integration
|
||||
|
||||
The `transformers serve` server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
|
||||
|
||||
> [!TIP]
|
||||
> At the moment, MCP tool usage in `transformers` is limited to the `qwen` family of models.
|
||||
@ -69,142 +367,5 @@ The server is also an MCP client, so it can interact with MCP tools in agentic u
|
||||
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
|
||||
|
||||
|
||||
### Usage example 1: chat with local requests (feat. Jan)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
|
||||
|
||||
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
|
||||
|
||||
```shell
|
||||
http://[host]:[port]/v1
|
||||
```
|
||||
|
||||
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
|
||||
</h3>
|
||||
|
||||
You are now ready to chat!
|
||||
|
||||
> [!TIP]
|
||||
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
|
||||
|
||||
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
|
||||
|
||||
```
|
||||
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
|
||||
```
|
||||
|
||||
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
|
||||
|
||||
|
||||
### Usage example 2: chat with external requests (feat. Cursor)
|
||||
|
||||
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
|
||||
|
||||
To launch a server with CORS enabled, run
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
|
||||
|
||||
```shell
|
||||
ngrok http [port]
|
||||
```
|
||||
|
||||
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see an https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
|
||||
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
|
||||
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
|
||||
3. Add some random text to OpenAI API Key. This field won't be used, but it can’t be empty;
|
||||
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
|
||||
5. Hit "Verify".
|
||||
|
||||
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
|
||||
</h3>
|
||||
|
||||
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
|
||||
</h3>
|
||||
|
||||
|
||||
### Usage example 3: `tiny-agents` CLI and MCP Tools
|
||||
|
||||
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
|
||||
|
||||
> [!TIP]
|
||||
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
|
||||
|
||||
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "Menlo/Jan-nano",
|
||||
"endpointUrl": "http://localhost:8000",
|
||||
"servers": [
|
||||
{
|
||||
"type": "sse",
|
||||
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
You can then launch your `tiny-agents` chat interface with the following command.
|
||||
|
||||
```bash
|
||||
tiny-agents run path/to/your/config.json
|
||||
```
|
||||
|
||||
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
|
||||
|
||||
```bash
|
||||
Agent loaded with 1 tools:
|
||||
• flux1_schnell_infer
|
||||
» Generate an image of a cat on the moon
|
||||
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
|
||||
|
||||
Tool req_0_tool_call
|
||||
[Binary Content: Image image/webp, 57732 bytes]
|
||||
The task is complete and the content accessible to the User
|
||||
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
|
||||
380576952
|
||||
|
||||
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
|
||||
```
|
||||
|
||||
### Usage example 4: speech to text transcription (feat. Open WebUI)
|
||||
|
||||
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
|
||||
|
||||
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
|
||||
|
||||
```shell
|
||||
transformers serve --enable-cors
|
||||
```
|
||||
|
||||
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
|
||||
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
|
||||
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
|
||||
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
|
||||
|
||||
If you've done everything correctly, the audio tab should look like this
|
||||
|
||||
<h3 align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
|
||||
</h3>
|
||||
|
||||
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.
|
||||
|
@ -25,7 +25,7 @@ Keypoint detection identifies and locates specific points of interest within an
|
||||
|
||||
In this guide, we will show how to extract keypoints from images.
|
||||
|
||||
For this tutorial, we will use [SuperPoint](./model_doc/superpoint.md), a foundation model for keypoint detection.
|
||||
For this tutorial, we will use [SuperPoint](./model_doc/superpoint), a foundation model for keypoint detection.
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, SuperPointForKeypointDetection
|
||||
|
@ -146,7 +146,7 @@ To get an even better understanding of the data, visualize an example in the dat
|
||||
>>> annotations = cppe5["train"][2]["objects"]
|
||||
>>> draw = ImageDraw.Draw(image)
|
||||
|
||||
>>> categories = cppe5["train"].features["objects"].feature["category"].names
|
||||
>>> categories = cppe5["train"].features["objects"]["category"].feature.names
|
||||
|
||||
>>> id2label = {index: x for index, x in enumerate(categories, start=0)}
|
||||
>>> label2id = {v: k for k, v in id2label.items()}
|
||||
|
@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Video-text-to-text models, also known as video language models or vision language models with video input, are language models that take a video input. These models can tackle various tasks, from video question answering to video captioning.
|
||||
|
||||
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text.md) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
|
||||
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
|
||||
|
||||
In this guide, we provide a brief overview of video LMs and show how to use them with Transformers for inference.
|
||||
|
||||
|
@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
[LiteRT](https://ai.google.dev/edge/litert) (previously known as TensorFlow Lite) is a high-performance runtime designed for on-device machine learning.
|
||||
|
||||
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)).
|
||||
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview).
|
||||
|
||||
The benefits of exporting to LiteRT include the following.
|
||||
|
||||
|
45
docs/source/en/tiny_agents.md
Normal file
45
docs/source/en/tiny_agents.md
Normal file
@ -0,0 +1,45 @@
|
||||
### `tiny-agents` CLI and MCP Tools
|
||||
|
||||
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
|
||||
|
||||
> [!TIP]
|
||||
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
|
||||
|
||||
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "Menlo/Jan-nano",
|
||||
"endpointUrl": "http://localhost:8000",
|
||||
"servers": [
|
||||
{
|
||||
"type": "sse",
|
||||
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
You can then launch your `tiny-agents` chat interface with the following command.
|
||||
|
||||
```bash
|
||||
tiny-agents run path/to/your/config.json
|
||||
```
|
||||
|
||||
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
|
||||
|
||||
```bash
|
||||
Agent loaded with 1 tools:
|
||||
• flux1_schnell_infer
|
||||
» Generate an image of a cat on the moon
|
||||
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
|
||||
|
||||
Tool req_0_tool_call
|
||||
[Binary Content: Image image/webp, 57732 bytes]
|
||||
The task is complete and the content accessible to the User
|
||||
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
|
||||
380576952
|
||||
|
||||
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
|
||||
```
|
||||
|
@ -307,7 +307,7 @@ culture, and they allow us to design the'
|
||||
|
||||
アシストデコーディングを有効にするには、`assistant_model` 引数をモデルで設定します。
|
||||
|
||||
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation.md) を参照してください。
|
||||
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation) を参照してください。
|
||||
|
||||
|
||||
```python
|
||||
|
@ -111,7 +111,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
|
||||
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)。
|
||||
- [`FlaxBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization) でサポートされています。
|
||||
- [要約](https://huggingface.co/course/chapter7/5?fw=pt#summarization) 🤗 ハグフェイスコースの章。
|
||||
- [要約タスクガイド](../tasks/summarization.md)
|
||||
- [要約タスクガイド](../tasks/summarization)
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
|
@ -295,6 +295,94 @@
|
||||
title: 커뮤니티 리소스
|
||||
- local: troubleshooting
|
||||
title: 문제 해결
|
||||
- local: gguf
|
||||
title: GGUF 파일들과의 상호 운용성
|
||||
- local: modular_transformers
|
||||
title: transformers에서의 모듈성
|
||||
title: (번역중) 개발자 가이드
|
||||
- sections:
|
||||
- local: in_translation
|
||||
title: (번역중) Getting started
|
||||
- local: quantization/bitsandbytes
|
||||
title: bitsandbytes
|
||||
- local: quantization/gptq
|
||||
title: GPTQ
|
||||
- local: quantization/awq
|
||||
title: AWQ
|
||||
- local: in_translation
|
||||
title: (번역중) AQLM
|
||||
- local: in_translation
|
||||
title: (번역중) VPTQ
|
||||
- local: quantization/quanto
|
||||
title: Quanto
|
||||
- local: quantization/quark
|
||||
title: Quark
|
||||
- local: quantization/eetq
|
||||
title: EETQ
|
||||
- local: in_translation
|
||||
title: (번역중) HQQ
|
||||
- local: in_translation
|
||||
title: (번역중) Optimum
|
||||
- local: in_translation
|
||||
title: (번역중) Contribute new quantization method
|
||||
title: (번역중) 경량화 메소드
|
||||
- sections:
|
||||
- local: performance
|
||||
title: 성능 및 확장성
|
||||
- local: in_translation
|
||||
title: (번역중) Quantization
|
||||
- local: llm_optims
|
||||
title: LLM 추론 최적화
|
||||
- local: cache_explanation
|
||||
title: 어텐션 행렬 캐싱
|
||||
- sections:
|
||||
- local: in_translation
|
||||
title: (번역중) Methods and tools for efficient training on a single GPU
|
||||
- local: perf_train_gpu_many
|
||||
title: 다중 GPU에서 훈련 진행하기
|
||||
- local: deepspeed
|
||||
title: DeepSpeed
|
||||
- local: fsdp
|
||||
title: 완전 분할 데이터 병렬 처리
|
||||
- local: perf_train_cpu
|
||||
title: CPU에서 훈련
|
||||
- local: perf_train_cpu_many
|
||||
title: 다중 CPU에서 훈련하기
|
||||
- local: perf_train_tpu_tf
|
||||
title: TensorFlow로 TPU에서 훈련하기
|
||||
- local: perf_train_special
|
||||
title: Apple 실리콘에서 PyTorch 학습
|
||||
- local: perf_hardware
|
||||
title: 훈련용 사용자 맞춤형 하드웨어
|
||||
- local: hpo_train
|
||||
title: Trainer API를 사용한 하이퍼파라미터 탐색
|
||||
title: (번역중) 효율적인 학습 기술들
|
||||
- sections:
|
||||
- local: perf_infer_cpu
|
||||
title: CPU로 추론하기
|
||||
- local: perf_infer_gpu_one
|
||||
title: 하나의 GPU를 활용한 추론
|
||||
title: 추론 최적화하기
|
||||
- local: big_models
|
||||
title: 대형 모델을 인스턴스화
|
||||
- local: debugging
|
||||
title: 디버깅
|
||||
- local: tf_xla
|
||||
title: TensorFlow 모델을 위한 XLA 통합
|
||||
- local: in_translation
|
||||
title: (번역중) Optimize inference using `torch.compile()`
|
||||
title: (번역중) 성능 및 확장성
|
||||
- sections:
|
||||
- local: contributing
|
||||
title: 🤗 Transformers에 기여하는 방법
|
||||
- local: add_new_model
|
||||
title: 🤗 Transformers에 새로운 모델을 추가하는 방법
|
||||
- local: add_new_pipeline
|
||||
title: 어떻게 🤗 Transformers에 파이프라인을 추가하나요?
|
||||
- local: testing
|
||||
title: 테스트
|
||||
- local: pr_checks
|
||||
title: Pull Request에 대한 검사
|
||||
title: 리소스
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -357,7 +445,7 @@
|
||||
title: 메인 클래스
|
||||
- sections:
|
||||
- sections:
|
||||
- local: in_translation
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: in_translation
|
||||
title: Arcee
|
||||
@ -1081,7 +1169,7 @@
|
||||
title: TrOCR
|
||||
- local: in_translation
|
||||
title: TVLT
|
||||
- local: in_translation
|
||||
- local: model_doc/tvp
|
||||
title: TVP
|
||||
- local: in_translation
|
||||
title: UDOP
|
||||
@ -1155,4 +1243,4 @@
|
||||
- local: in_translation
|
||||
title: (번역중)Environment Variables
|
||||
title: Reference
|
||||
title: API
|
||||
title: API
|
||||
|
184
docs/source/ko/cache_explanation.md
Normal file
184
docs/source/ko/cache_explanation.md
Normal file
@ -0,0 +1,184 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 캐싱[[caching]]
|
||||
누군가와 대화를 나누고 있는데, 상대방이 이전에 했던 말을 기억하지 못하고 당신이 대답할 때마다 처음부터 다시 시작해야 한다고 상상해 보세요. 이는 느리고 비효율적이겠죠?
|
||||
|
||||
이 비유를 트랜스포머 모델에도 적용할 수 있습니다. 자기회귀 모델의 생성은 한 번에 하나의 토큰씩 예측하기 때문에 느릴 수 있습니다. 각각의 새로운 예측은 이전의 모든 문맥에 의존합니다.
|
||||
|
||||
1000번째 토큰을 예측하려면, 모델은 이전 999개 토큰의 정보가 필요합니다. 이 정보는 각 토큰 표현들 사이의 행렬 곱을 통해 표현됩니다.
|
||||
|
||||
1001번째 토큰을 예측하려면, 이전 999개 토큰의 동일한 정보에 더하여 1000번째 토큰의 정보도 필요합니다. 이렇게 되면 토큰마다 모델은 반복적으로 많은 행렬 연산을 수행해야 합니다!
|
||||
|
||||
이러한 비효율성을 제거하기 위해 KV 캐시(Key-Value Cache)를 사용합니다. 어텐션 레이어에서 이전에 처리한 토큰으로부터 얻은 키와 값 쌍을 저장해두고, 이후 토큰 예측 시 이를 재사용하여 연산을 줄이는 방식입니다.
|
||||
|
||||
> [!WARNING]
|
||||
> 캐싱은 **추론**에만 사용해야 합니다. 학습 중에 활성화되면 예상치 못한 오류가 발생할 수 있습니다.
|
||||
|
||||
캐싱이 어떻게 그리고 왜 작동하는지 더 잘 이해하기 위해, 어텐션 행렬의 구조를 자세히 살펴보겠습니다.
|
||||
|
||||
## 어텐션 행렬[[attention-matrices]]
|
||||
|
||||
**스케일드 닷-프로덕트 어텐션**은 배치 크기 `b`, 어텐션 헤드 수 `h`, 현재까지의 시퀀스 길이 `T`, 어텐션 헤드당 차원 `d_head`에 대해 아래와 같이 계산됩니다.
|
||||
|
||||
$$
|
||||
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
|
||||
$$
|
||||
|
||||
쿼리(`Q`), 키(`K`), 값(`V`) 행렬은 `(b, h, T, d_head)` 형태의 입력 임베딩에서의 투영입니다.
|
||||
|
||||
인과적 어텐션의 경우, 마스크는 모델이 미래 토큰에 어텐션 하는 것을 방지합니다. 토큰이 한 번 처리되면, 그 표현은 미래 토큰과 관련하여 절대 변하지 않습니다. 이는 \\( K_{\text{past}} \\)와 \\( V_{\text{past}} \\)를 캐시하여 마지막 토큰의 표현을 계산하는 데 재사용할 수 있음을 의미합니다.
|
||||
|
||||
$$
|
||||
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
|
||||
$$
|
||||
|
||||
추론 시에는 다음 토큰 \\( t+1 \\)을 예측하는 표현 \\( x_t \\)를 계산하기 위해 마지막 토큰의 쿼리만 필요합니다. 단계에서 새로운 키와 값 벡터가 캐시에 **저장**되고 과거 키와 값에 **추가**됩니다.
|
||||
|
||||
$$
|
||||
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
|
||||
$$
|
||||
|
||||
어텐션은 모델의 각 레이어에서 독립적으로 계산되며, 캐싱은 레이어별로 수행됩니다.
|
||||
|
||||
캐싱이 효율성을 어떻게 개선하는지 비교한 아래 표를 참조하세요.
|
||||
|
||||
| 캐싱 없음 | 캐싱 사용 |
|
||||
|---|---|
|
||||
| 단계마다 이전의 모든 `K`와 `V`를 재계산 | 단계마다 현재의 `K`와 `V`만 계산 |
|
||||
| 단계당 어텐션 비용이 시퀀스 길이에 대해 **제곱** | 단계당 어텐션 비용이 시퀀스 길이에 대해 **선형** (메모리는 선형적으로 증가하지만, 토큰당 계산은 낮게 유지됨) |
|
||||
|
||||
|
||||
|
||||
## 캐시 클래스[[cache-class]]
|
||||
|
||||
기본 KV 캐시 인터페이스는 현재 토큰의 키와 값 텐서를 받아서 업데이트된 `K`와 `V` 텐서를 반환합니다. 이는 모델의 `forward` 메소드에 의해 내부적으로 관리됩니다.
|
||||
|
||||
```py
|
||||
new_K, new_V = cache.update(k_t, v_t, layer_idx)
|
||||
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
|
||||
```
|
||||
|
||||
Transformers의 [`Cache`] 클래스를 사용할 때, 셀프 어텐션 모듈은 과거와 현재 정보를 통합하기 위해 몇 가지 중요한 단계를 수행합니다.
|
||||
|
||||
1. 어텐션 모듈은 현재 kv 쌍을 캐시에 저장된 과거 kv 쌍과 연결합니다. 이는 `(new_tokens_length, past_kv_length + new_tokens_length)` 형태의 어텐션 가중치를 생성합니다. 현재와 과거 kv 쌍이 본질적으로 결합해 어텐션 점수를 계산하며, 모델이 이전 문맥과 현재 입력을 인식하도록 보장합니다.
|
||||
|
||||
2. `forward` 메소드가 반복적으로 호출될 때, 어텐션 마스크 형태가 과거와 현재 kv 쌍의 결합된 길이와 일치하는 것이 중요합니다. 어텐션 마스크는 `(batch_size, past_kv_length + new_tokens_length)` 형태여야 합니다. 이는 일반적으로 [`~GenerationMixin.generate`]에서 내부적으로 처리되지만, [`Cache`]로 자체 생성 루프를 구현하고 싶다면 이를 염두에 두세요! 어텐션 마스크는 과거와 현재 토큰값을 보유해야 합니다.
|
||||
|
||||
3. `cache_position`을 인식하는 것도 중요합니다. 이는 유효한 `cache_position` 값을 전달해야 하므로 `forward` 메소드로 미리 채워진 [`Cache`]를 재사용하고 싶을 때 중요합니다. 이는 시퀀스에서의 입력 위치를 나타냅니다. `cache_position`은 패딩에 영향받지 않으며, 각 토큰에 대해 항상 하나씩 더 많은 위치를 추가합니다. 예를 들어, kv 캐시가 10개의 토큰을 포함하면 - 패드 토큰과 관계없이 - 다음 토큰의 캐시 위치는 `torch.tensor([10])`이어야 합니다.
|
||||
|
||||
## 캐시 저장소 구현[[cache-storage-implementation]]
|
||||
|
||||
캐시는 각 레이어가 key와 value 캐시를 포함하는 레이어 목록 형태로 구성되어 있습니다. key 및 value 캐시는 `[batch_size, num_heads, seq_len, head_dim]` 형태의 텐서입니다.
|
||||
|
||||
레이어는 서로 다른 타입일 수 있으며(예: `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), 이는 주로 시퀀스 길이를 어떻게 처리하고 캐시를 어떻게 갱신하는지에 따라 달라집니다.
|
||||
|
||||
가장 단순한 형태는 `DynamicLayer`로, 더 많은 토큰이 처리됨에 따라 점진적으로 확장됩니다. 시퀀스 길이 차원(`seq_len`)은 새로운 토큰이 추가될 때마다 증가합니다:
|
||||
|
||||
```py
|
||||
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
|
||||
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
|
||||
```
|
||||
|
||||
`StaticLayer`나 `SlidingWindowLayer`와 같은 다른 레이어 타입은 캐시가 생성될 때 고정된 시퀀스 길이를 가지며, 이는 `torch.compile`과 호환되도록 만듭니다. `SlidingWindowLayer`의 경우, 새로운 토큰이 추가되면 기존 토큰은 캐시에서 제거됩니다.
|
||||
|
||||
아래 예제는 [`DynamicCache`]로 생성 루프를 만드는 방법을 보여줍니다. 논의된 바와 같이, 어텐션 마스크는 과거와 현재 토큰값의 연결이며 다음 토큰을 위해 캐시 위치에 `1`이 추가됩니다.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
past_key_values = DynamicCache()
|
||||
messages = [{"role": "user", "content": "Hello, what's your name."}]
|
||||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
|
||||
|
||||
generated_ids = inputs.input_ids
|
||||
cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0")
|
||||
max_new_tokens = 10
|
||||
|
||||
for _ in range(max_new_tokens):
|
||||
outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
|
||||
# 탐욕적 기법으로 다음 토큰 하나를 샘플링
|
||||
next_token_ids = outputs.logits[:, -1:].argmax(-1)
|
||||
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
|
||||
# 처리되지 않은 토큰을 남겨두어 다음 생성 단계를 위한 입력을 준비합니다. 우리의 경우 새로운 토큰 하나만 존재합니다.
|
||||
# 위에서 설명한 대로 새로운 토큰을 위해 어텐션 마스크를 확장합니다
|
||||
attention_mask = inputs["attention_mask"]
|
||||
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
||||
inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
|
||||
cache_position = cache_position[-1:] + 1 # 다음 토큰을 위해 하나 더 위치 추가
|
||||
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## 캐시 위치[[cache-position]]
|
||||
|
||||
캐시 위치는 어텐션 캐시에서 새로운 토큰을 삽입할 위치를 추적합니다. 이는 패딩이나 배치 구조와 무관하게 컨텍스트 내에서 각 토큰의 절대적 위치를 나타냅니다. 이미 `N`개의 토큰을 캐시했고 현재 `K`개의 새로운 토큰을 처리하고 있다고 가정하겠습니다. 새로운 토큰에 대한 캐시 위치는 `N`부터 `N + K - 1`까지의 범위가 됩니다. 즉, `[N, N + 1, N + 2, ..., N + K - 1]` 위치의 토큰들을 처리하는 것입니다.
|
||||
|
||||
캐시 위치는 내부적으로 두 가지 목적으로 사용됩니다:
|
||||
|
||||
1. 입력 시퀀스에서 처리할 새로운 토큰을 선택하고, 아직 캐시되지 않은 토큰만 모델의 `forward`에 전달되도록 보장합니다.
|
||||
2. 키/값 쌍을 캐시의 올바른 위치에 저장합니다. 이는 특정 캐시 길이를 미리 할당하는 [`StaticCache`]와 같은 고정 크기 캐시에서 특히 중요합니다.
|
||||
|
||||
생성 루프는 일반적으로 캐시 위치를 관리하지만, 사용자 정의 생성 메소드를 작성할 때는 캐시 위치가 정확해야 합니다. 캐시 위치는 고정된 슬롯에 키/값 상태를 읽고 쓰는 데 사용되기 때문입니다.
|
||||
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
messages = [{"role": "user", "content": "You are a helpful assistant."}]
|
||||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
|
||||
|
||||
```
|
||||
|
||||
|
||||
## 레거시 캐시 형식[[legacy-cache-format]]
|
||||
|
||||
[`Cache`] 클래스 이전에는 캐시가 텐서의 튜플의 튜플로 저장되었습니다. 이 형식은 텍스트가 생성됨에 따라 증가하기 때문에 동적이며, [`DynamicCache`]와 유사합니다.
|
||||
|
||||
레거시 형식은 본질적으로 동일한 데이터 구조이지만 다르게 조직화되었습니다.
|
||||
- 각 내부 튜플은 레이어의 키와 값 텐서를 포함하는 튜플의 튜플입니다.
|
||||
- 텐서는 동일한 형태 `[batch_size, num_heads, seq_len, head_dim]`를 갖습니다.
|
||||
- 이 형식은 덜 유연하며 양자화나 오프로딩과 같은 기능을 지원하지 않습니다.
|
||||
|
||||
프로젝트가 이 레거시 형식에 의존한다면, [`~DynamicCache.from_legacy_cache`]를 사용하여 [`DynamicCache`]로 변환하는 것을 권장합니다. 레거시 캐시 형식은 사용이 중단되었으며 `Transformers`에서 더 이상 사용되지 않습니다. 특정 형식에서 캐시를 조작하는 커스텀 로직이 있는 경우 도움이 되는 [`DynamicCache.to_legacy_cache`] 함수를 사용하여 튜플 형식으로 다시 변환할 수 있습니다.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
|
||||
|
||||
# 캐시를 반환하려면 `return_dict_in_generate=True`가 필요하고 `return_legacy_cache`는 반환된 캐시를
|
||||
# 레거시 형식으로 강제합니다
|
||||
generation_outputs = model.generate(**inputs, return_dict_in_generate=True, return_legacy_cache=True, max_new_tokens=5)
|
||||
|
||||
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
|
||||
legacy_format_cache = cache.to_legacy_cache()
|
||||
```
|
@ -289,7 +289,7 @@ time."\n\nHe added: "I am very proud of the work I have been able to do in the l
|
||||
culture, and they allow us to design the'
|
||||
```
|
||||
|
||||
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation.md)를 참조하세요.
|
||||
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation)를 참조하세요.
|
||||
|
||||
### 추론 디코딩(Speculative Decoding)[[speculative-decoding]]
|
||||
|
||||
|
@ -21,11 +21,11 @@ GPT3/4, [Falcon](https://huggingface.co/tiiuae/falcon-40b), [Llama](https://hugg
|
||||
|
||||
이 가이드에서는 효율적인 대규모 언어 모델 배포를 위한 효과적인 기법들을 살펴보겠습니다.
|
||||
|
||||
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization.md)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
|
||||
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
|
||||
|
||||
2. **플래시 어텐션:** 플래시 어텐션은 메모리 효율성을 높일 뿐만 아니라 최적화된 GPU 메모리 활용을 통해 효율성을 향상시키는 어텐션 알고리즘의 변형입니다.
|
||||
|
||||
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245))이 있습니다.
|
||||
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245)이 있습니다.
|
||||
|
||||
이 가이드에서는 텐서의 관점에서 자기회귀 생성에 대한 분석을 제공합니다. 낮은 정밀도를 채택하는 것의 장단점을 논의하고, 최신 어텐션 알고리즘을 포괄적으로 탐구하며, 향상된 대규모 언어 모델 아키텍처에 대해 논합니다. 이 과정에서 각 기능의 개선 사항을 보여주는 실용적인 예제를 확인합니다.
|
||||
|
||||
@ -756,4 +756,4 @@ GQA의 가장 주목할 만한 적용 사례는 [Llama-v2](https://huggingface.c
|
||||
|
||||
연구 커뮤니티는 점점 더 큰 대규모 언어 모델의 추론 시간을 가속화하기 위한 새로운 기발한 방법들을 끊임없이 찾아내고 있습니다. 예를 들어, [추측 디코딩](https://huggingface.co/papers/2211.17192)이라는 유망한 연구 방향이 있습니다. 여기서 "쉬운 토큰"은 더 작고 빠른 언어 모델에 의해 생성되고, "어려운 토큰"만 대규모 언어 모델 자체에 의해 생성됩니다. 자세한 내용은 이 노트북의 범위를 벗어나지만, [멋진 블로그 포스트](https://huggingface.co/blog/assisted-generation)에서 읽어볼 수 있습니다.
|
||||
|
||||
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗
|
||||
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗
|
||||
|
@ -136,9 +136,9 @@ pip install -U flash-attn --no-build-isolation
|
||||
|
||||
## 양자화로 미스트랄 크기 줄이기[[shrinking-down-mistral-using-quantization]]
|
||||
|
||||
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization.md)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
|
||||
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
|
||||
|
||||
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization.md)를 참고하세요:
|
||||
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization)를 참고하세요:
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
|
@ -35,7 +35,7 @@ PatchTSMixer는 MLP-Mixer 아키텍처를 기반으로 한 경량 시계열 모
|
||||
## 사용 예[[usage-example]]
|
||||
|
||||
아래의 코드 스니펫은 PatchTSMixer 모델을 무작위로 초기화하는 방법을 보여줍니다.
|
||||
PatchTSMixer 모델은 [Trainer API](../trainer.md)와 호환됩니다.
|
||||
PatchTSMixer 모델은 [Trainer API](../trainer)와 호환됩니다.
|
||||
|
||||
```python
|
||||
|
||||
|
@ -57,8 +57,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
| 模型 | PyTorch 支持 | TensorFlow 支持 | Flax 支持 |
|
||||
|:------------------------------------------------------------------------:|:---------------:|:------------------:|:------------:|
|
||||
| [ALBERT](../en/model_doc/albert.md) | ✅ | ✅ | ✅ |
|
||||
| [ALIGN](../en/model_doc/align.md) | ✅ | ❌ | ❌ |
|
||||
| [ALBERT](../en/model_doc/albert) | ✅ | ✅ | ✅ |
|
||||
| [ALIGN](../en/model_doc/align) | ✅ | ❌ | ❌ |
|
||||
| [AltCLIP](../en/model_doc/altclip) | ✅ | ❌ | ❌ |
|
||||
| [Audio Spectrogram Transformer](../en/model_doc/audio-spectrogram-transformer) | ✅ | ❌ | ❌ |
|
||||
| [Autoformer](../en/model_doc/autoformer) | ✅ | ❌ | ❌ |
|
||||
|
@ -60,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
||||
|
@ -202,7 +202,7 @@ def replace_batch_norm(model):
|
||||
if isinstance(module, nn.BatchNorm2d):
|
||||
new_module = TestDetrFrozenBatchNorm2d(module.num_features)
|
||||
|
||||
if not module.weight.device == torch.device("meta"):
|
||||
if module.weight.device != torch.device("meta"):
|
||||
new_module.weight.data.copy_(module.weight)
|
||||
new_module.bias.data.copy_(module.bias)
|
||||
new_module.running_mean.data.copy_(module.running_mean)
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets[audio]>=1.14.0",
|
||||
# "evaluate",
|
||||
# "librosa",
|
||||
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
||||
|
||||
|
@ -10,26 +10,27 @@ from transformers.generation import GenerationConfig
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-3b-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
|
||||
).eval()
|
||||
model = (
|
||||
AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
attn_implementation="paged_attention|kernels-community/flash-attn",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
.eval()
|
||||
.cuda()
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=512,
|
||||
# use_cuda_graph=False,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
use_cache=False,
|
||||
num_blocks=2048,
|
||||
block_size=128,
|
||||
do_sample=True,
|
||||
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
|
||||
scheduler="prefill_first",
|
||||
do_sample=False,
|
||||
)
|
||||
|
||||
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
|
||||
# --- Example 1: Simple Version using generate_batch ---
|
||||
train_dataset = train_dataset.select(range(500)) # Use only 5 examples for the simple version
|
||||
print("--- Running CB Generation Example ---")
|
||||
|
||||
|
||||
@ -41,19 +42,21 @@ tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
start_time_simple = time.time()
|
||||
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
|
||||
model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs")
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
)
|
||||
end_time_simple = time.time()
|
||||
|
||||
token_count = 0
|
||||
for request in batch_outputs:
|
||||
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
|
||||
try:
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
|
||||
token_count += len(batch_outputs[request].generated_tokens[1:])
|
||||
except Exception as e:
|
||||
print(f"Decoding failed for request {request}: {e}")
|
||||
token_count += len(batch_outputs[request].generated_tokens[1:])
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
|
||||
if len(output_text) > 0:
|
||||
print("-" * 20)
|
||||
@ -65,7 +68,9 @@ print("-" * 20)
|
||||
print("--- Finished CB Generation Example ---\n\n")
|
||||
|
||||
|
||||
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
|
||||
print(
|
||||
f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds for {token_count} tokens. {token_count / (end_time_simple - start_time_simple)}tok/s"
|
||||
)
|
||||
|
||||
|
||||
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
# "datasets>=1.8.0",
|
||||
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "accelerate>=0.12.0",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
@ -68,7 +68,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "accelerate>=0.12.0",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
# "datasets>=1.8.0",
|
||||
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
# "datasets>=1.8.0",
|
||||
@ -56,7 +56,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "torch>=1.5.0",
|
||||
# "torchvision>=0.6.0",
|
||||
# "datasets>=1.8.0",
|
||||
@ -61,7 +61,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "timm",
|
||||
# "datasets",
|
||||
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "timm",
|
||||
# "datasets",
|
||||
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -69,7 +69,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -71,7 +71,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -72,7 +72,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -74,7 +74,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -68,7 +68,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -71,7 +71,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "torch >= 1.3",
|
||||
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "sentencepiece != 0.1.92",
|
||||
# "protobuf",
|
||||
@ -57,7 +57,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "sentencepiece != 0.1.92",
|
||||
# "protobuf",
|
||||
@ -65,7 +65,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
# You should update this to your particular problem to have better documentation of `model_type`
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "timm",
|
||||
# "datasets>=4.0",
|
||||
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "albumentations >= 1.4.16",
|
||||
# "timm",
|
||||
# "datasets>=4.0",
|
||||
@ -63,7 +63,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = get_logger(__name__)
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -155,7 +155,7 @@ accelerate launch run_semantic_segmentation_no_trainer.py --output_dir segformer
|
||||
|
||||
and boom, you're training, possibly on multiple GPUs, logging everything to all trackers found in your environment (like Weights and Biases, Tensorboard) and regularly pushing your model to the hub (with the repo name being equal to `args.output_dir` at your HF username) 🤗
|
||||
|
||||
With the default settings, the script fine-tunes a [SegFormer]((https://huggingface.co/docs/transformers/main/en/model_doc/segformer)) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset.
|
||||
With the default settings, the script fine-tunes a [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset.
|
||||
|
||||
The resulting model can be seen here: https://huggingface.co/nielsr/segformer-finetuned-sidewalk. Note that the script usually requires quite a few epochs to achieve great results, e.g. the SegFormer authors fine-tuned their model for 160k steps (batches) on [`scene_parse_150`](https://huggingface.co/datasets/scene_parse_150).
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets >= 2.0.0",
|
||||
# "torch >= 1.3",
|
||||
# "accelerate",
|
||||
@ -62,7 +62,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets >= 2.0.0",
|
||||
# "torch >= 1.3",
|
||||
# "accelerate",
|
||||
@ -62,7 +62,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets[audio] >= 1.12.0",
|
||||
# "torch >= 1.5",
|
||||
# "torchaudio",
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets[audio] >= 1.18.0",
|
||||
# "torch >= 1.5",
|
||||
# "torchaudio",
|
||||
@ -61,7 +61,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets[audio] >= 1.18.0",
|
||||
# "torch >= 1.5",
|
||||
# "torchaudio",
|
||||
@ -64,7 +64,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "datasets[audio] >= 1.18.0",
|
||||
# "torch >= 1.5",
|
||||
# "torchaudio",
|
||||
@ -60,7 +60,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "transformers @ git+https://github.com/huggingface/transformers.git",
|
||||
# "transformers==4.55.4",
|
||||
# "accelerate >= 0.12.0",
|
||||
# "datasets >= 1.8.0",
|
||||
# "sentencepiece != 0.1.92",
|
||||
@ -67,7 +67,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.55.0.dev0")
|
||||
check_min_version("4.55.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user