Compare commits

..

50 Commits

Author SHA1 Message Date
7d45cb94e4 run 2025-08-01 11:17:10 +02:00
e1af5e13ee run 2025-08-01 11:05:23 +02:00
51beabbe21 run 2025-08-01 10:59:32 +02:00
a85e52553a run 2025-08-01 09:27:44 +02:00
2123cabc61 run 2025-08-01 09:19:08 +02:00
6d87eed427 run 2025-08-01 09:13:39 +02:00
2f98de75b1 run 2025-08-01 09:07:20 +02:00
37bd9caacf run 2025-08-01 08:47:47 +02:00
dada3a66cf run 2025-08-01 08:30:18 +02:00
1bb722f1da run 2025-08-01 07:42:34 +02:00
2d33060a77 run 2025-08-01 07:34:01 +02:00
4e2aa38625 run 2025-08-01 07:30:31 +02:00
ac1e171ae3 run 2025-08-01 06:18:55 +02:00
455ed547c5 run 2025-08-01 05:52:31 +02:00
747235e388 run 2025-08-01 05:42:43 +02:00
f02c51bcde run 2025-08-01 05:37:52 +02:00
d151d8e0d8 run 2025-08-01 05:36:04 +02:00
eee3e8dd8f check 2025-08-01 05:07:45 +02:00
5164e700ee check 2025-08-01 04:46:10 +02:00
a8ba13c0ad run 2025-07-31 19:48:05 +02:00
fdaaef0ca6 run 2025-07-31 18:52:45 +02:00
68af44cf37 run 2025-07-31 17:58:31 +02:00
98f8c3afe0 run 2025-07-31 17:44:55 +02:00
38e5e48c39 run 2025-07-31 17:35:41 +02:00
92c0dae310 run 2025-07-31 17:27:12 +02:00
2825a4fd81 run 2025-07-31 16:35:08 +02:00
7a5c318b5d run 2025-07-31 16:22:52 +02:00
89a880cd99 run 2025-07-31 15:28:59 +02:00
83ac55a315 run 2025-07-31 15:07:25 +02:00
848eec98e0 more info 2025-07-31 12:52:19 +02:00
093fa8ea46 check custom 140:280 2025-07-31 10:33:40 +02:00
b9b4db4773 check custom 2025-07-31 09:43:58 +02:00
f39feb64c3 check custom 2025-07-31 09:30:06 +02:00
19f01303f7 check custom 2025-07-31 09:23:27 +02:00
175b8633cb check custom 2025-07-31 09:17:05 +02:00
35dfd1add7 check custom 2025-07-30 21:54:18 +02:00
8fd2e8083f check custom 2025-07-30 21:46:01 +02:00
0a6da0825a check custom 2025-07-30 21:37:47 +02:00
40b23468be check 1-1-1 2025-07-30 21:06:08 +02:00
0f376bc16e check 1-1 2025-07-30 20:58:06 +02:00
2dc57da071 check 1 2025-07-30 20:51:14 +02:00
90c76fe0db check 1 2025-07-30 20:44:19 +02:00
371b5fd459 check 1 2025-07-30 20:42:24 +02:00
5cf53c48ab check 2025-07-30 18:50:41 +02:00
eb64e5e21c group 2025-07-30 16:56:24 +02:00
00634718b1 print 2025-07-30 16:43:52 +02:00
350fbae53e change runner 2025-07-30 16:10:51 +02:00
ab7262a5a1 env: to be checked 2025-07-30 16:01:06 +02:00
315cb554be remove tf stuff 2025-07-30 15:40:53 +02:00
92e404f087 py39 2025-07-30 15:33:40 +02:00
3706 changed files with 330205 additions and 204278 deletions

View File

@ -16,9 +16,10 @@
import argparse
import copy
import os
import random
from dataclasses import dataclass
from typing import Any, Optional
from typing import Any, Dict, List, Optional
import glob
import yaml
@ -29,7 +30,6 @@ COMMON_ENV_VARIABLES = {
"RUN_PIPELINE_TESTS": False,
# will be adjust in `CircleCIJob.to_dict`.
"RUN_FLAKY": True,
"DISABLE_SAFETENSORS_CONVERSION": True,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "vvv": None, "rsfE":None}
@ -82,15 +82,15 @@ class EmptyJob:
@dataclass
class CircleCIJob:
name: str
additional_env: dict[str, Any] = None
docker_image: list[dict[str, str]] = None
install_steps: list[str] = None
additional_env: Dict[str, Any] = None
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 0
pytest_num_workers: int = 8
pytest_options: dict[str, Any] = None
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
tests_to_run: Optional[list[str]] = None
tests_to_run: Optional[List[str]] = None
num_test_files_per_worker: Optional[int] = 10
# This should be only used for doctest job!
command_timeout: Optional[int] = None
@ -109,9 +109,7 @@ class CircleCIJob:
self.docker_image[0]["image"] = f"{self.docker_image[0]['image']}:dev"
print(f"Using {self.docker_image} docker image")
if self.install_steps is None:
self.install_steps = ["uv pip install ."]
# Use a custom patched pytest to force exit the process at the end, to avoid `Too long with no output (exceeded 10m0s): context deadline exceeded`
self.install_steps.append("uv pip install git+https://github.com/ydshieh/pytest.git@8.4.1-ydshieh")
self.install_steps = ["uv venv && uv pip install ."]
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
@ -130,12 +128,6 @@ class CircleCIJob:
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
if self.job_name != "tests_hub":
# fmt: off
# not critical
env.update({"HF_TOKEN": "".join(["h", "f", "_", "H", "o", "d", "V", "u", "M", "q", "b", "R", "m", "t", "b", "z", "F", "Q", "O", "Q", "A", "J", "G", "D", "l", "V", "Q", "r", "R", "N", "w", "D", "M", "V", "C", "s", "d"])})
# fmt: on
# Do not run tests decorated by @is_flaky on pull requests
env['RUN_FLAKY'] = os.environ.get("CIRCLE_PULL_REQUEST", "") == ""
env.update(self.additional_env)
@ -155,7 +147,7 @@ class CircleCIJob:
# Examples special case: we need to download NLTK files in advance to avoid cuncurrency issues
timeout_cmd = f"timeout {self.command_timeout} " if self.command_timeout else ""
marker_cmd = f"-m '{self.marker}'" if self.marker is not None else ""
junit_flags = " -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
junit_flags = f" -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
joined_flaky_patterns = "|".join(FLAKY_TEST_FAILURE_PATTERNS)
repeat_on_failure_flags = f"--reruns 5 --reruns-delay 2 --only-rerun '({joined_flaky_patterns})'"
parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> '
@ -183,33 +175,14 @@ class CircleCIJob:
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
}
},
# During the CircleCI docker images build time, we might already (or not) download the data.
# If it's done already, the files are inside the directory `/test_data/`.
{"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
{"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
{"run": {"name": "fetch hub objects before pytest", "command": "python3 utils/fetch_hub_objects_for_ci.py"}},
{"run": {
"name": "Run tests",
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
},
{"run":
{
"name": "Check for test crashes",
"when": "always",
"command": """if [ ! -f tests_output.txt ]; then
echo "ERROR: tests_output.txt does not exist - tests may not have run properly"
exit 1
elif grep -q "crashed and worker restarting disabled" tests_output.txt; then
echo "ERROR: Worker crash detected in test output"
echo "Found: crashed and worker restarting disabled"
exit 1
else
echo "Tests output file exists and no worker crashes detected"
fi"""
},
},
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
{"run": {"name": "Errors", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
{"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
{"store_test_results": {"path": "test-results"}},
{"store_artifacts": {"path": "test-results/junit.xml"}},
{"store_artifacts": {"path": "reports"}},
@ -240,7 +213,7 @@ generate_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv pip install ."],
install_steps=["uv venv && uv pip install ."],
marker="generate",
parallelism=6,
)
@ -271,12 +244,13 @@ custom_tokenizers_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
)
examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
# TODO @ArthurZucker remove this once docker is easier to build
install_steps=["uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
pytest_num_workers=4,
)
@ -285,7 +259,7 @@ hub_job = CircleCIJob(
additional_env={"HUGGINGFACE_CO_STAGING": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=[
'uv pip install .',
'uv venv && uv pip install .',
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
],
@ -294,6 +268,20 @@ hub_job = CircleCIJob(
resource_class="medium",
)
onnx_job = CircleCIJob(
"onnx",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"uv venv",
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
resource_class="small",
)
exotic_models_job = CircleCIJob(
"exotic_models",
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
@ -301,6 +289,7 @@ exotic_models_job = CircleCIJob(
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
docker_image=[{"image":"huggingface/transformers-consistency"}],
@ -308,12 +297,13 @@ repo_utils_job = CircleCIJob(
resource_class="large",
)
non_model_job = CircleCIJob(
"non_model",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv pip install .[serving]"],
install_steps=["uv venv && uv pip install .[serving]"],
marker="not generate",
parallelism=6,
)
@ -331,7 +321,7 @@ doc_test_job = CircleCIJob(
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"uv pip install .",
"uv venv && pip install .",
"touch dummy.py",
command,
"cat pr_documentation_tests_temp.txt",
@ -343,7 +333,7 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_job, hub_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
REGULAR_TESTS = [torch_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job]
PIPELINE_TESTS = [pipelines_torch_job]
REPO_UTIL_TESTS = [repo_utils_job]

View File

@ -1,6 +1,5 @@
import argparse
import re
import argparse
def parse_pytest_output(file_path):
skipped_tests = {}

View File

@ -36,23 +36,19 @@ body:
Models:
- text models: @ArthurZucker @Cyrilvallez
- vision models: @yonigozlan @molbap
- audio models: @eustlb @ebezzam @vasqu
- multimodal models: @zucchini-nlp
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @eustlb
- graph models: @clefourrier
Library:
- flax: @gante and @Rocketknight1
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @zach-huggingface @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker @S1ro1
- CIs: @ydshieh
Integrations:
@ -60,8 +56,6 @@ body:
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo
Devices/Backends:
@ -75,6 +69,19 @@ body:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @Rocketknight1
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.
placeholder: "@Username ..."

View File

@ -39,23 +39,20 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker @Cyrilvallez
- vision models: @yonigozlan @molbap
- audio models: @eustlb @ebezzam @vasqu
- multimodal models: @zucchini-nlp
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @eustlb
- graph models: @clefourrier
Library:
- flax: @gante and @Rocketknight1
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @zach-huggingface @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker @S1ro1
- CIs: @ydshieh
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @zach-huggingface, @SunMarc and @qgallouedec
- chat templates: @Rocketknight1
Integrations:
@ -63,17 +60,20 @@ Integrations:
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo
Devices/Backends:
- AMD ROCm: @ivarflakstad
- Intel XPU: @IlyasMoutawwakil
- Ascend NPU: @ivarflakstad
Documentation: @stevhliu
Research projects are not maintained and should be taken as is.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @Rocketknight1
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
-->

View File

@ -1,39 +0,0 @@
# copilot-instructions.md Guide for Hugging Face Transformers
This copilot-instructions.md file provides guidance for code agents working with this codebase.
## Core Project Structure
- `/src/transformers`: This contains the core source code for the library
- `/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
- `/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
- `/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
- `/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
## Coding Conventions for Hugging Face Transformers
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
We use two mechanisms to keep this code in sync:
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
When adding new models, you should prefer `modular` style and inherit as many classes as possible from existing models.
## Testing
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -13,16 +13,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import github
import json
from github import Github
import re
from collections import Counter
from pathlib import Path
import github
from github import Github
def pattern_to_regex(pattern):
if pattern.startswith("/"):
start_anchor = True

View File

@ -7,8 +7,8 @@ docs/ @stevhliu
/docker/ @ydshieh @ArthurZucker
# More high-level globs catch cases when specific rules later don't apply
/src/transformers/models/*/processing* @molbap @yonigozlan
/src/transformers/models/*/image_processing* @yonigozlan
/src/transformers/models/*/processing* @molbap @yonigozlan @qubvel
/src/transformers/models/*/image_processing* @qubvel
/src/transformers/models/*/image_processing_*_fast* @yonigozlan
# Owners of subsections of the library
@ -186,65 +186,65 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/zamba/mod*_zamba* @ArthurZucker
# Vision models
/src/transformers/models/beit/mod*_beit* @yonigozlan @molbap
/src/transformers/models/bit/mod*_bit* @yonigozlan @molbap
/src/transformers/models/conditional_detr/mod*_conditional_detr* @yonigozlan @molbap
/src/transformers/models/convnext/mod*_convnext* @yonigozlan @molbap
/src/transformers/models/convnextv2/mod*_convnextv2* @yonigozlan @molbap
/src/transformers/models/cvt/mod*_cvt* @yonigozlan @molbap
/src/transformers/models/deformable_detr/mod*_deformable_detr* @yonigozlan @molbap
/src/transformers/models/deit/mod*_deit* @yonigozlan @molbap
/src/transformers/models/depth_anything/mod*_depth_anything* @yonigozlan @molbap
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @yonigozlan @molbap
/src/transformers/models/deta/mod*_deta* @yonigozlan @molbap
/src/transformers/models/detr/mod*_detr* @yonigozlan @molbap
/src/transformers/models/dinat/mod*_dinat* @yonigozlan @molbap
/src/transformers/models/dinov2/mod*_dinov2* @yonigozlan @molbap
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @yonigozlan @molbap
/src/transformers/models/dit/mod*_dit* @yonigozlan @molbap
/src/transformers/models/dpt/mod*_dpt* @yonigozlan @molbap
/src/transformers/models/efficientformer/mod*_efficientformer* @yonigozlan @molbap
/src/transformers/models/efficientnet/mod*_efficientnet* @yonigozlan @molbap
/src/transformers/models/focalnet/mod*_focalnet* @yonigozlan @molbap
/src/transformers/models/glpn/mod*_glpn* @yonigozlan @molbap
/src/transformers/models/hiera/mod*_hiera* @yonigozlan @molbap
/src/transformers/models/ijepa/mod*_ijepa* @yonigozlan @molbap
/src/transformers/models/imagegpt/mod*_imagegpt* @yonigozlan @molbap
/src/transformers/models/levit/mod*_levit* @yonigozlan @molbap
/src/transformers/models/mask2former/mod*_mask2former* @yonigozlan @molbap
/src/transformers/models/maskformer/mod*_maskformer* @yonigozlan @molbap
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @yonigozlan @molbap
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @yonigozlan @molbap
/src/transformers/models/mobilevit/mod*_mobilevit* @yonigozlan @molbap
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @yonigozlan @molbap
/src/transformers/models/nat/mod*_nat* @yonigozlan @molbap
/src/transformers/models/poolformer/mod*_poolformer* @yonigozlan @molbap
/src/transformers/models/pvt/mod*_pvt* @yonigozlan @molbap
/src/transformers/models/pvt_v2/mod*_pvt_v2* @yonigozlan @molbap
/src/transformers/models/regnet/mod*_regnet* @yonigozlan @molbap
/src/transformers/models/resnet/mod*_resnet* @yonigozlan @molbap
/src/transformers/models/rt_detr/mod*_rt_detr* @yonigozlan @molbap
/src/transformers/models/segformer/mod*_segformer* @yonigozlan @molbap
/src/transformers/models/seggpt/mod*_seggpt* @yonigozlan @molbap
/src/transformers/models/superpoint/mod*_superpoint* @yonigozlan @molbap
/src/transformers/models/swiftformer/mod*_swiftformer* @yonigozlan @molbap
/src/transformers/models/swin/mod*_swin* @yonigozlan @molbap
/src/transformers/models/swinv2/mod*_swinv2* @yonigozlan @molbap
/src/transformers/models/swin2sr/mod*_swin2sr* @yonigozlan @molbap
/src/transformers/models/table_transformer/mod*_table_transformer* @yonigozlan @molbap
/src/transformers/models/textnet/mod*_textnet* @yonigozlan @molbap
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @yonigozlan @molbap
/src/transformers/models/upernet/mod*_upernet* @yonigozlan @molbap
/src/transformers/models/van/mod*_van* @yonigozlan @molbap
/src/transformers/models/vit/mod*_vit* @yonigozlan @molbap
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @yonigozlan @molbap
/src/transformers/models/vitdet/mod*_vitdet* @yonigozlan @molbap
/src/transformers/models/vit_mae/mod*_vit_mae* @yonigozlan @molbap
/src/transformers/models/vitmatte/mod*_vitmatte* @yonigozlan @molbap
/src/transformers/models/vit_msn/mod*_vit_msn* @yonigozlan @molbap
/src/transformers/models/vitpose/mod*_vitpose* @yonigozlan @molbap
/src/transformers/models/yolos/mod*_yolos* @yonigozlan @molbap
/src/transformers/models/zoedepth/mod*_zoedepth* @yonigozlan @molbap
/src/transformers/models/beit/mod*_beit* @amyeroberts @qubvel
/src/transformers/models/bit/mod*_bit* @amyeroberts @qubvel
/src/transformers/models/conditional_detr/mod*_conditional_detr* @amyeroberts @qubvel
/src/transformers/models/convnext/mod*_convnext* @amyeroberts @qubvel
/src/transformers/models/convnextv2/mod*_convnextv2* @amyeroberts @qubvel
/src/transformers/models/cvt/mod*_cvt* @amyeroberts @qubvel
/src/transformers/models/deformable_detr/mod*_deformable_detr* @amyeroberts @qubvel
/src/transformers/models/deit/mod*_deit* @amyeroberts @qubvel
/src/transformers/models/depth_anything/mod*_depth_anything* @amyeroberts @qubvel
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @amyeroberts @qubvel
/src/transformers/models/deta/mod*_deta* @amyeroberts @qubvel
/src/transformers/models/detr/mod*_detr* @amyeroberts @qubvel
/src/transformers/models/dinat/mod*_dinat* @amyeroberts @qubvel
/src/transformers/models/dinov2/mod*_dinov2* @amyeroberts @qubvel
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @amyeroberts @qubvel
/src/transformers/models/dit/mod*_dit* @amyeroberts @qubvel
/src/transformers/models/dpt/mod*_dpt* @amyeroberts @qubvel
/src/transformers/models/efficientformer/mod*_efficientformer* @amyeroberts @qubvel
/src/transformers/models/efficientnet/mod*_efficientnet* @amyeroberts @qubvel
/src/transformers/models/focalnet/mod*_focalnet* @amyeroberts @qubvel
/src/transformers/models/glpn/mod*_glpn* @amyeroberts @qubvel
/src/transformers/models/hiera/mod*_hiera* @amyeroberts @qubvel
/src/transformers/models/ijepa/mod*_ijepa* @amyeroberts @qubvel
/src/transformers/models/imagegpt/mod*_imagegpt* @amyeroberts @qubvel
/src/transformers/models/levit/mod*_levit* @amyeroberts @qubvel
/src/transformers/models/mask2former/mod*_mask2former* @amyeroberts @qubvel
/src/transformers/models/maskformer/mod*_maskformer* @amyeroberts @qubvel
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @amyeroberts @qubvel
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @amyeroberts @qubvel
/src/transformers/models/mobilevit/mod*_mobilevit* @amyeroberts @qubvel
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @amyeroberts @qubvel
/src/transformers/models/nat/mod*_nat* @amyeroberts @qubvel
/src/transformers/models/poolformer/mod*_poolformer* @amyeroberts @qubvel
/src/transformers/models/pvt/mod*_pvt* @amyeroberts @qubvel
/src/transformers/models/pvt_v2/mod*_pvt_v2* @amyeroberts @qubvel
/src/transformers/models/regnet/mod*_regnet* @amyeroberts @qubvel
/src/transformers/models/resnet/mod*_resnet* @amyeroberts @qubvel
/src/transformers/models/rt_detr/mod*_rt_detr* @amyeroberts @qubvel
/src/transformers/models/segformer/mod*_segformer* @amyeroberts @qubvel
/src/transformers/models/seggpt/mod*_seggpt* @amyeroberts @qubvel
/src/transformers/models/superpoint/mod*_superpoint* @amyeroberts @qubvel
/src/transformers/models/swiftformer/mod*_swiftformer* @amyeroberts @qubvel
/src/transformers/models/swin/mod*_swin* @amyeroberts @qubvel
/src/transformers/models/swinv2/mod*_swinv2* @amyeroberts @qubvel
/src/transformers/models/swin2sr/mod*_swin2sr* @amyeroberts @qubvel
/src/transformers/models/table_transformer/mod*_table_transformer* @amyeroberts @qubvel
/src/transformers/models/textnet/mod*_textnet* @amyeroberts @qubvel
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @amyeroberts @qubvel
/src/transformers/models/upernet/mod*_upernet* @amyeroberts @qubvel
/src/transformers/models/van/mod*_van* @amyeroberts @qubvel
/src/transformers/models/vit/mod*_vit* @amyeroberts @qubvel
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @amyeroberts @qubvel
/src/transformers/models/vitdet/mod*_vitdet* @amyeroberts @qubvel
/src/transformers/models/vit_mae/mod*_vit_mae* @amyeroberts @qubvel
/src/transformers/models/vitmatte/mod*_vitmatte* @amyeroberts @qubvel
/src/transformers/models/vit_msn/mod*_vit_msn* @amyeroberts @qubvel
/src/transformers/models/vitpose/mod*_vitpose* @amyeroberts @qubvel
/src/transformers/models/yolos/mod*_yolos* @amyeroberts @qubvel
/src/transformers/models/zoedepth/mod*_zoedepth* @amyeroberts @qubvel
# Audio models
/src/transformers/models/audio_spectrogram_transformer/mod*_audio_spectrogram_transformer* @eustlb
@ -304,7 +304,7 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/donut/mod*_donut* @zucchini-nlp
/src/transformers/models/flava/mod*_flava* @zucchini-nlp
/src/transformers/models/git/mod*_git* @zucchini-nlp
/src/transformers/models/grounding_dino/mod*_grounding_dino* @yonigozlan
/src/transformers/models/grounding_dino/mod*_grounding_dino* @qubvel
/src/transformers/models/groupvit/mod*_groupvit* @zucchini-nlp
/src/transformers/models/idefics/mod*_idefics* @zucchini-nlp
/src/transformers/models/idefics2/mod*_idefics2* @zucchini-nlp
@ -326,10 +326,10 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/mgp_str/mod*_mgp_str* @zucchini-nlp
/src/transformers/models/mllama/mod*_mllama* @zucchini-nlp
/src/transformers/models/nougat/mod*_nougat* @NielsRogge
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @yonigozlan
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @qubvel @yonigozlan
/src/transformers/models/oneformer/mod*_oneformer* @zucchini-nlp
/src/transformers/models/owlvit/mod*_owlvit* @yonigozlan
/src/transformers/models/owlv2/mod*_owlv2* @yonigozlan
/src/transformers/models/owlvit/mod*_owlvit* @qubvel
/src/transformers/models/owlv2/mod*_owlv2* @qubvel
/src/transformers/models/paligemma/mod*_paligemma* @zucchini-nlp @molbap
/src/transformers/models/perceiver/mod*_perceiver* @zucchini-nlp
/src/transformers/models/pix2struct/mod*_pix2struct* @zucchini-nlp

View File

@ -48,7 +48,7 @@ jobs:
- name: Run database init script
run: |
psql -f benchmark/utils/init_db.sql
psql -f benchmark/init_db.sql
env:
PGDATABASE: metrics
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}

View File

@ -1,85 +0,0 @@
name: Benchmark v2 Framework
on:
workflow_call:
inputs:
runner:
description: 'GH Actions runner group to use'
required: true
type: string
container_image:
description: 'Docker image to use'
required: true
type: string
container_options:
description: 'Container options to use'
required: true
type: string
commit_sha:
description: 'Commit SHA to benchmark'
required: false
type: string
default: ''
run_id:
description: 'Custom run ID for organizing results (auto-generated if not provided)'
required: false
type: string
default: ''
benchmark_repo_id:
description: 'HuggingFace Dataset to upload results to (e.g., "org/benchmark-results")'
required: false
type: string
default: ''
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
benchmark-v2:
name: Benchmark v2
runs-on: ${{ inputs.runner }}
if: |
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark')) ||
(github.event_name == 'schedule')
container:
image: ${{ inputs.container_image }}
options: ${{ inputs.container_options }}
steps:
- name: Get repo
uses: actions/checkout@v4
with:
ref: ${{ inputs.commit_sha || github.sha }}
- name: Install benchmark dependencies
run: |
python3 -m pip install -r benchmark_v2/requirements.txt
- name: Reinstall transformers in edit mode
run: |
python3 -m pip uninstall -y transformers
python3 -m pip install -e ".[torch]"
- name: Show installed libraries and their versions
run: |
python3 -m pip list
python3 -c "import torch; print(f'PyTorch version: {torch.__version__}')"
python3 -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
python3 -c "import torch; print(f'CUDA device count: {torch.cuda.device_count()}')" || true
nvidia-smi || true
- name: Run benchmark v2
working-directory: benchmark_v2
run: |
echo "Running benchmarks"
python3 run_benchmarks.py \
--commit-id '${{ inputs.commit_sha || github.sha }}' \
--run-id '${{ inputs.run_id }}' \
--push-to-hub '${{ inputs.benchmark_repo_id}}' \
--token '${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}' \
--log-level INFO
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}

View File

@ -1,21 +0,0 @@
name: Benchmark v2 Scheduled Runner - A10 Single-GPU
on:
schedule:
# Run daily at 16:30 UTC
- cron: "30 16 * * *"
pull_request:
types: [ opened, labeled, reopened, synchronize ]
jobs:
benchmark-v2-default:
name: Benchmark v2 - Default Models
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: aws-g5-4xlarge-cache-use1-public-80
container_image: huggingface/transformers-pytorch-gpu
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit

View File

@ -1,21 +0,0 @@
name: Benchmark v2 Scheduled Runner - MI325 Single-GPU
on:
schedule:
# Run daily at 16:30 UTC
- cron: "30 16 * * *"
pull_request:
types: [ opened, labeled, reopened, synchronize ]
jobs:
benchmark-v2-default:
name: Benchmark v2 - Default Models
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: amd-mi325-ci-1gpu
container_image: huggingface/transformers-pytorch-amd-gpu
container_options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit

View File

@ -26,7 +26,7 @@ jobs:
strategy:
matrix:
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "exotic-models", "examples-torch"]
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "jax-light", "examples-torch", "examples-tf"]
continue-on-error: true
steps:

View File

@ -5,7 +5,6 @@ on:
branches:
- build_ci_docker_image*
repository_dispatch:
workflow_dispatch:
workflow_call:
inputs:
image_postfix:
@ -222,7 +221,7 @@ jobs:
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on:
group: aws-highcpu-32-priv
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx

View File

@ -2,10 +2,6 @@ name: Build docker images (Nightly CI)
on:
workflow_call:
inputs:
job:
required: true
type: string
push:
branches:
- build_nightly_ci_docker_image*
@ -16,8 +12,7 @@ concurrency:
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch"
if: inputs.job == 'latest-with-torch-nightly-docker' || inputs.job == ''
name: "Nightly PyTorch + Stable TensorFlow"
runs-on:
group: aws-general-8-plus
steps:
@ -46,7 +41,6 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
if: inputs.job == 'nightly-torch-deepspeed-docker' || inputs.job == ''
runs-on:
group: aws-g4dn-2xlarge-cache
steps:

View File

@ -16,20 +16,8 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: en
languages: ar de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
build_other_lang:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: ar de es fr hi it ja ko pt zh
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -21,9 +21,6 @@ on:
report_repo_id:
required: true
type: string
commit_sha:
required: false
type: string
env:
@ -90,7 +87,7 @@ jobs:
- name: Update clone
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Get target commit
working-directory: /transformers/utils

View File

@ -3,80 +3,90 @@ name: Check Tiny Models
on:
push:
branches:
- check_tiny_models*
- debug_tiny_model_creation
repository_dispatch:
schedule:
- cron: "0 2 * * *"
env:
TOKEN: ${{ secrets.TRANSFORMERS_HUB_BOT_HF_TOKEN }}
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
TRANSFORMERS_IS_CI: yes
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
check_tiny_models:
name: Check tiny models
runs-on: ubuntu-22.04
runs-on:
group: aws-general-8-plus
container:
image: huggingface/transformers-quantization-latest-gpu
options: --shm-size "16gb" --ipc host
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
# - name: Check cache
# working-directory: /transformers
# run: ls -la /mnt/cache/
- uses: actions/checkout@v4
- name: Set up Python 3.8
uses: actions/setup-python@v5
with:
# Semantic version range syntax or exact version of a Python version
python-version: '3.8'
# Optional - x64 or x86 architecture, defaults to x64
architecture: 'x64'
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Install
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: |
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake
pip install --upgrade pip
python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu]
pip install tensorflow_probability
python -m pip install -U 'natten<0.15.0'
python3 -m pip uninstall -y transformers && python3 -m pip install -e .
python3 -m pip install -U essentia librosa pretty_midi
python3 -m pip uninstall -y natten
- name: Create all tiny models (locally)
run: |
python utils/create_dummy_models.py tiny_local_models --all --num_workers 2
free -g
- name: Create all tiny models (locally)
working-directory: /transformers
run: |
CUDA_VISIBLE_DEVICES="" python3 utils/create_dummy_models.py tiny_local_models --all --num_workers 7
- name: Create all tiny models (locally)
working-directory: /transformers
run: |
python3 utils/check_tiny.py
- name: Local tiny model reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: tiny_local_models/reports
# GitHub-hosted runners have 2-core CPUs
- name: Run pipeline tests against all new (local) tiny models
run: |
OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: reports/tests_pipelines
- name: Create + Upload tiny models for new model architecture(s)
run: |
python utils/update_tiny_models.py --num_workers 2
- name: Full report
run: cat tiny_models/reports/tiny_model_creation_report.json
- name: Failure report
run: cat tiny_models/reports/simple_failed_report.txt
- name: Summary report
run: cat tiny_models/reports/tiny_model_summary.json
- name: New tiny model creation reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tiny_model_creation_reports
path: tiny_models/reports
path: /transformers/tiny_local_models/reports
#
# # GitHub-hosted runners have 2-core CPUs
# - name: Run pipeline tests against all new (local) tiny models
# run: |
# OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: tiny_local_model_creation_reports
# path: reports/tests_pipelines
#
# - name: Create + Upload tiny models for new model architecture(s)
# run: |
# python utils/update_tiny_models.py --num_workers 2
#
# - name: Full report
# run: cat tiny_models/reports/tiny_model_creation_report.json
#
# - name: Failure report
# run: cat tiny_models/reports/simple_failed_report.txt
#
# - name: Summary report
# run: cat tiny_models/reports/tiny_model_summary.json
#
# - name: New tiny model creation reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: tiny_model_creation_reports
# path: tiny_models/reports

View File

@ -1,43 +0,0 @@
name: CI collated reports
on:
workflow_call:
inputs:
job:
required: true
type: string
report_repo_id:
required: true
type: string
machine_type:
required: true
type: string
gpu_name:
description: Name of the GPU used for the job. Its enough that the value contains the name of the GPU, e.g. "noise-h100-more-noise". Case insensitive.
required: true
type: string
jobs:
collated_reports:
name: Collated reports
runs-on: ubuntu-22.04
if: always()
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Collated reports
shell: bash
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_SHA: ${{ github.sha }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
pip install huggingface_hub
python3 utils/collated_reports.py \
--path . \
--machine-type ${{ inputs.machine_type }} \
--commit-hash ${{ env.CI_SHA }} \
--job ${{ inputs.job }} \
--report-repo-id ${{ inputs.report_repo_id }} \
--gpu-name ${{ inputs.gpu_name }}

View File

@ -12,22 +12,16 @@ on:
slice_id:
required: true
type: number
runner_map:
required: false
type: string
docker:
required: true
type: string
commit_sha:
required: false
type: string
report_name_prefix:
required: false
default: run_models_gpu
type: string
runner_type:
required: false
type: string
report_repo_id:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -51,12 +45,10 @@ jobs:
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on:
group: '${{ inputs.machine_type }}'
group: ${{ fromJson(inputs.runner_map)[matrix.folders][inputs.machine_type] }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
machine_type: ${{ steps.set_machine_type.outputs.machine_type }}
steps:
- name: Echo input and matrix info
shell: bash
@ -78,7 +70,7 @@ jobs:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -110,7 +102,6 @@ jobs:
run: pip freeze
- name: Set `machine_type` for report and artifact names
id: set_machine_type
working-directory: /transformers
shell: bash
run: |
@ -126,58 +117,26 @@ jobs:
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
echo "machine_type=$machine_type" >> $GITHUB_OUTPUT
- name: Create report directory if it doesn't exist
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
echo "dummy" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/dummy.txt
ls -la /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
- name: Run all tests on GPU
working-directory: /transformers
run: |
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
ls -la
# Extract the exit code from the output file
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
exit ${EXIT_CODE:-1}
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
# This step is only to show information on Github Actions log.
# Always mark this step as successful, even if the report directory or the file `failures_short.txt` in it doesn't exist
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Captured information
if: ${{ failure() }}
continue-on-error: true
- name: Run test
shell: bash
run: |
cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/captured_info.txt
- name: Copy test_outputs.txt
if: ${{ always() }}
continue-on-error: true
run: |
cp /transformers/test_outputs.txt /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
collated_reports:
name: Collated Reports
if: ${{ always() }}
needs: run_models_gpu
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
with:
job: run_models_gpu
report_repo_id: ${{ inputs.report_repo_id }}
gpu_name: ${{ inputs.runner_type }}
machine_type: ${{ needs.run_models_gpu.outputs.machine_type }}
secrets: inherit
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports

View File

@ -1,134 +0,0 @@
name: PR - build doc via comment
on:
issue_comment:
types:
- created
branches-ignore:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.event.issue.number }}-${{ startsWith(github.event.comment.body, 'build-doc') }}
cancel-in-progress: true
permissions: {}
jobs:
get-pr-number:
name: Get PR number
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
name: Get PR commit SHA
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
create_run:
name: Create run
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
permissions:
statuses: write
runs-on: ubuntu-22.04
steps:
- name: Create Run
id: create_run
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Custom doc building job" -f "context=custom-doc-build"
reply_to_comment:
name: Reply to the comment
if: ${{ needs.create_run.result == 'success' }}
needs: [get-pr-number, create_run]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f "body=[Building docs for all languages...](${{ env.GITHUB_RUN_URL }})"
build-doc:
name: Build doc
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
update_run_status:
name: Update Check Run Status
needs: [ get-pr-info, create_run, build-doc ]
permissions:
statuses: write
if: ${{ always() && needs.create_run.result == 'success' }}
runs-on: ubuntu-22.04
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.create_run.result) }}
steps:
- name: Get `build-doc` job status
run: |
echo "${{ needs.build-doc.result }}"
echo $STATUS_OK
if [ "$STATUS_OK" = "true" ]; then
echo "STATUS=success" >> $GITHUB_ENV
else
echo "STATUS=failure" >> $GITHUB_ENV
fi
- name: Update PR commit statuses
run: |
echo "${{ needs.build-doc.result }}"
echo "${{ env.STATUS }}"
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Custom doc building job" -f "context=custom-doc-build"

View File

@ -16,6 +16,28 @@ jobs:
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ github.event.comment.created_at != '' }}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
get-jobs:
name: Get test files to run
runs-on: ubuntu-22.04

View File

@ -4,6 +4,17 @@ on:
push:
branches: [ main ]
env:
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
get_modified_models:
name: "Get all modified files"
@ -14,144 +25,111 @@ jobs:
- name: Check out code
uses: actions/checkout@v4
- name: Get changed files using `actions/github-script`
id: get-changed-files
uses: actions/github-script@v7
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
with:
script: |
let files = [];
// Only handle push events
if (context.eventName === 'push') {
const afterSha = context.payload.after;
const branchName = context.payload.ref.replace('refs/heads/', '');
let baseSha;
if (branchName === 'main') {
console.log('Push to main branch, comparing to parent commit');
// Get the parent commit of the pushed commit
const { data: commit } = await github.rest.repos.getCommit({
owner: context.repo.owner,
repo: context.repo.repo,
ref: afterSha
});
baseSha = commit.parents[0]?.sha;
if (!baseSha) {
throw new Error('No parent commit found for the pushed commit');
}
} else {
console.log(`Push to branch ${branchName}, comparing to main`);
baseSha = 'main';
}
const { data: comparison } = await github.rest.repos.compareCommits({
owner: context.repo.owner,
repo: context.repo.repo,
base: baseSha,
head: afterSha
});
// Include added, modified, and renamed files
files = comparison.files
.filter(file => file.status === 'added' || file.status === 'modified' || file.status === 'renamed')
.map(file => file.filename);
}
// Include all files under src/transformers/ (not just models subdirectory)
const filteredFiles = files.filter(file =>
file.startsWith('src/transformers/')
);
core.setOutput('changed_files', filteredFiles.join(' '));
core.setOutput('any_changed', filteredFiles.length > 0 ? 'true' : 'false');
files: src/transformers/models/**
- name: Parse changed files with Python
if: steps.get-changed-files.outputs.any_changed == 'true'
env:
CHANGED_FILES: ${{ steps.get-changed-files.outputs.changed_files }}
- name: Run step if only the files listed above change
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
env:
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
run: |
python3 - << 'EOF'
import os
import sys
import json
# Add the utils directory to Python path
sys.path.insert(0, 'utils')
# Import the important models list
from important_files import IMPORTANT_MODELS
print(f"Important models: {IMPORTANT_MODELS}")
# Get the changed files from the previous step
changed_files_str = os.environ.get('CHANGED_FILES', '')
changed_files = changed_files_str.split() if changed_files_str else []
# Filter to only Python files
python_files = [f for f in changed_files if f.endswith('.py')]
print(f"Python files changed: {python_files}")
result_models = set()
# Specific files that trigger all models
transformers_utils_files = [
'modeling_utils.py',
'modeling_rope_utils.py',
'modeling_flash_attention_utils.py',
'modeling_attn_mask_utils.py',
'cache_utils.py',
'masking_utils.py',
'pytorch_utils.py'
]
# Single loop through all Python files
for file in python_files:
# Check for files under src/transformers/models/
if file.startswith('src/transformers/models/'):
remaining_path = file[len('src/transformers/models/'):]
if '/' in remaining_path:
model_dir = remaining_path.split('/')[0]
if model_dir in IMPORTANT_MODELS:
result_models.add(model_dir)
print(f"Added model directory: {model_dir}")
# Check for specific files under src/transformers/ or src/transformers/generation/ files
elif file.startswith('src/transformers/generation/') or \
(file.startswith('src/transformers/') and os.path.basename(file) in transformers_utils_files):
print(f"Found core file: {file} - including all important models")
result_models.update(IMPORTANT_MODELS)
break # No need to continue once we include all models
# Convert to sorted list and create matrix
result_list = sorted(list(result_models))
print(f"Final model list: {result_list}")
if result_list:
matrix_json = json.dumps(result_list)
print(f"matrix={matrix_json}")
# Write to GITHUB_OUTPUT
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
f.write(f"matrix={matrix_json}\n")
else:
print("matrix=[]")
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
f.write("matrix=[]\n")
EOF
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
model_arrays=()
for file in $ALL_CHANGED_FILES; do
model_path="${file#*models/}"
model_path="models/${model_path%%/*}"
if grep -qFx "$model_path" utils/important_models.txt; then
# Append the file to the matrix string
model_arrays+=("$model_path")
fi
done
matrix_string=$(printf '"%s", ' "${model_arrays[@]}" | sed 's/, $//')
echo "matrix=[$matrix_string]" >> $GITHUB_OUTPUT
test_modified_files:
needs: get_modified_models
if: needs.get_modified_models.outputs.matrix != '' && needs.get_modified_models.outputs.matrix != '[]'
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-push"
docker: huggingface/transformers-all-latest-gpu
ci_event: push
report_repo_id: hf-internal-testing/transformers_ci_push
commit_sha: ${{ github.sha }}
models: ${{ needs.get_modified_models.outputs.matrix }}
secrets: inherit
name: Slow & FA2 tests
runs-on:
group: aws-g5-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
strategy:
fail-fast: false
matrix:
model-name: ${{ fromJson(needs.get_modified_models.outputs.matrix) }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install locally transformers & other libs
run: |
apt install sudo
sudo -H pip install --upgrade pip
sudo -H pip uninstall -y transformers
sudo -H pip install -U -e ".[testing]"
MAX_JOBS=4 pip install flash-attn --no-build-isolation
pip install bitsandbytes
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Show installed libraries and their versions
run: pip freeze
- name: Run FA2 tests
id: run_fa2_tests
run:
pytest -rsfE -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.model-name }}_fa2_tests
path: /transformers/reports/${{ matrix.model-name }}_fa2_tests
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
status: ${{ steps.run_fa2_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Run integration tests
id: run_integration_tests
if: always()
run:
pytest -rsfE -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_integration_${{ matrix.model-name }}
path: /transformers/reports/tests_integration_${{ matrix.model-name }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
status: ${{ steps.run_integration_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Tailscale # In order to be able to SSH when a test fails
if: ${{ runner.debug == '1'}}
uses: huggingface/tailscale-action@v1
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -1,56 +1,43 @@
name: Nvidia CI with nightly torch
name: Self-hosted runner (nightly-ci)
on:
repository_dispatch:
# triggered when the daily scheduled Nvidia CI is completed.
# This way, we can compare the results more easily.
workflow_run:
workflows: ["Nvidia CI"]
branches: ["main"]
types: [completed]
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_ci_with_nightly_torch*
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
- run_nightly_ci*
jobs:
build_nightly_torch_ci_images:
name: Build CI Docker Images with nightly torch
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
with:
job: latest-with-torch-nightly-docker
secrets: inherit
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
needs: build_nightly_torch_ci_images
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
docker: huggingface/transformers-all-latest-torch-nightly-gpu
ci_event: Nightly CI
report_repo_id: hf-internal-testing/transformers_daily_ci_with_torch_nightly
commit_sha: ${{ github.event.workflow_run.head_sha || github.sha }}
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
# test deepspeed nightly build with the latest release torch
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Nightly CI
working-directory-prefix: /workspace
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi300 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi300
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi300
secrets: inherit

View File

@ -1,9 +1,9 @@
name: Self-hosted runner scale set (AMD mi355 scheduled CI caller)
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu : amd-mi355-ci-1gpu
# 2gpu : amd-mi355-ci-2gpu
# For example, 1gpu scale set: amd-mi300-ci-1gpu
# 2gpu scale set: amd-mi300-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
@ -20,10 +20,10 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -32,10 +32,10 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
@ -44,20 +44,20 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -20,11 +20,10 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: amd-mi325
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
env_file: /etc/podinfo/gha-gpu-isolation-settings
secrets: inherit
torch-pipeline:
@ -33,11 +32,10 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: amd-mi325
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
env_file: /etc/podinfo/gha-gpu-isolation-settings
secrets: inherit
example-ci:
@ -46,11 +44,10 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: amd-mi325
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
env_file: /etc/podinfo/gha-gpu-isolation-settings
secrets: inherit
deepspeed-ci:
@ -59,9 +56,8 @@ jobs:
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: amd-mi325
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
env_file: /etc/podinfo/gha-gpu-isolation-settings
secrets: inherit

View File

@ -1,4 +1,5 @@
name: Nvidia CI
name: Self-hosted runner (scheduled)
on:
repository_dispatch:
@ -6,7 +7,7 @@ on:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci*
- run_scheduled_ci*
workflow_dispatch:
inputs:
prev_workflow_run_id:
@ -52,9 +53,7 @@ jobs:
slack_report_channel: "#transformers-ci-daily-models"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
torch-pipeline:
@ -66,7 +65,6 @@ jobs:
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
example-ci:
@ -78,7 +76,6 @@ jobs:
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
trainer-fsdp-ci:
@ -88,10 +85,8 @@ jobs:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-all-latest-gpu
runner_type: "a10"
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
deepspeed-ci:
@ -104,7 +99,6 @@ jobs:
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
quantization-ci:
@ -116,5 +110,4 @@ jobs:
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit

View File

@ -1,4 +1,4 @@
name: Nvidia CI (job definitions)
name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
@ -28,16 +28,7 @@ on:
report_repo_id:
required: true
type: string
commit_sha:
required: false
type: string
runner_type:
required: false
type: string
models:
default: ""
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -55,8 +46,8 @@ env:
jobs:
setup:
name: Setup
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu", "run_quantization_torch_gpu"]'), inputs.job)
name: Setup
strategy:
matrix:
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
@ -68,12 +59,13 @@ jobs:
outputs:
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
runner_map: ${{ steps.set-matrix.outputs.runner_map }}
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
@ -92,8 +84,9 @@ jobs:
working-directory: /transformers/tests
run: |
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
echo "runner_map=$(python3 ../utils/get_runner_map.py)" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
@ -117,17 +110,15 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -144,10 +135,8 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
@ -166,7 +155,7 @@ jobs:
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -234,7 +223,7 @@ jobs:
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -303,7 +292,7 @@ jobs:
steps:
- name: Update clone
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: ${{ inputs.working-directory-prefix }}/transformers
@ -411,7 +400,7 @@ jobs:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -475,7 +464,6 @@ jobs:
uses: actions/checkout@v4
with:
fetch-depth: 2
ref: ${{ inputs.commit_sha || github.sha }}
- name: Install transformers
run: pip install transformers
@ -518,7 +506,7 @@ jobs:
run_quantization_torch_gpu,
run_extract_warnings
]
if: always() && !cancelled()
if: ${{ always() }}
uses: ./.github/workflows/slack-report.yml
with:
job: ${{ inputs.job }}
@ -530,7 +518,6 @@ jobs:
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
secrets: inherit
@ -541,7 +528,7 @@ jobs:
uses: ./.github/workflows/check_failed_tests.yml
with:
docker: ${{ inputs.docker }}
start_sha: ${{ inputs.commit_sha || github.sha }}
start_sha: ${{ github.sha }}
job: ${{ inputs.job }}
slack_report_channel: ${{ inputs.slack_report_channel }}
ci_event: ${{ inputs.ci_event }}

View File

@ -24,10 +24,6 @@ on:
report_repo_id:
required: true
type: string
commit_sha:
required: false
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -36,7 +32,7 @@ jobs:
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always() && !cancelled()
if: always()
steps:
- name: Preliminary job status
shell: bash
@ -45,10 +41,6 @@ jobs:
echo "Setup status: ${{ inputs.setup_status }}"
- uses: actions/checkout@v4
with:
fetch-depth: 2
ref: ${{ inputs.commit_sha || github.sha }}
- uses: actions/download-artifact@v4
- name: Prepare some setup values
@ -75,9 +67,7 @@ jobs:
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
# This `CI_TITLE` would be empty for `schedule` or `workflow_run` events.
CI_TITLE: ${{ github.event.head_commit.message }}
CI_SHA: ${{ inputs.commit_sha || github.sha }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
@ -93,7 +83,7 @@ jobs:
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
else
python utils/notification_service.py "${{ inputs.folder_slices }}"
fi
fi
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts

View File

@ -33,17 +33,14 @@ jobs:
steps:
- name: Get runner to use
shell: bash
env:
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
run: |
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
else
echo "RUNNER=" >> $GITHUB_ENV
@ -88,11 +85,9 @@ jobs:
- name: Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell: bash
env:
GITHUB_ACTOR: ${{ github.actor }}
run: |
echo "$GITHUB_ACTOR"
github_actor=$GITHUB_ACTOR
echo "${{ github.actor }}"
github_actor=${{ github.actor }}
github_actor=${github_actor/'-'/'_'}
echo "$github_actor"
echo "github_actor=$github_actor" >> $GITHUB_ENV

1
.gitignore vendored
View File

@ -13,7 +13,6 @@ tests/fixtures/cached_*_text.txt
logs/
lightning_logs/
lang_code_data/
reports/
# Distribution / packaging
.Python

View File

@ -68,7 +68,8 @@ already reported** (use the search bar on GitHub under Issues). Your issue shoul
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
* Your **OS type and version** and **Python**, and **PyTorch** versions when applicable.
* Your **OS type and version** and **Python**, **PyTorch** and
**TensorFlow** versions when applicable.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s.
* The *full* traceback if an exception is raised.
@ -164,7 +165,8 @@ You'll need **[Python 3.9](https://github.com/huggingface/transformers/blob/main
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install Pytorch then do:
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
```bash
pip install -e ".[quality]"
@ -278,14 +280,13 @@ are working on it).<br>
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
☐ Make sure existing tests pass.<br>
☐ If adding a new feature, also add tests for it.<br>
- If you are adding a new model, make sure you use
- If you are adding a new model, make sure you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
- If you are adding new `@slow` tests, make sure they pass using
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests and make sure
- If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
@ -341,7 +342,6 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/t
```
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).

View File

@ -38,6 +38,7 @@ In particular all "Please explain" questions or objectively very user-specific f
* "How to train T5 on De->En translation?"
## The GitHub Issues
Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues).
@ -246,6 +247,7 @@ You are not required to read the following guidelines before opening an issue. H
Try not use italics and bold text too much as these often make the text more difficult to read.
12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to.
To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link".
@ -255,6 +257,7 @@ You are not required to read the following guidelines before opening an issue. H
1. https://github.com/huggingface/transformers/issues/9257
2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162
13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here.
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:

View File

@ -3,7 +3,7 @@
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples tests src utils scripts benchmark benchmark_v2
check_dirs := examples tests src utils
exclude_folders := ""
@ -52,7 +52,6 @@ repo-consistency:
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_docstrings.py
python utils/add_dates.py
# this target runs checks on all files

View File

@ -48,11 +48,9 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_it.md">Italiano</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_bn.md">বাংলা</a> |
</p>
</h4>
@ -64,11 +62,12 @@ limitations under the License.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
@ -81,7 +80,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
## Installation
Transformers works with Python 3.9+, and [PyTorch](https://pytorch.org/get-started/locally/) 2.1+.
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
@ -111,10 +110,10 @@ git clone https://github.com/huggingface/transformers.git
cd transformers
# pip
pip install '.[torch]'
pip install .[torch]
# uv
uv pip install '.[torch]'
uv pip install .[torch]
```
## Quickstart
@ -148,7 +147,7 @@ chat = [
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
]
pipeline = pipeline(task="text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", dtype=torch.bfloat16, device_map="auto")
pipeline = pipeline(task="text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
response = pipeline(chat, max_new_tokens=512)
print(response[0]["generated_text"][-1]["content"])
```
@ -194,6 +193,7 @@ pipeline("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.pn
<details>
<summary>Visual question answering</summary>
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg"></a>
</h3>
@ -242,7 +242,7 @@ pipeline(
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is optimized to work with PyTorch models provided by Transformers. For generic machine learning loops, you should use another library like [Accelerate](https://huggingface.co/docs/accelerate).
- The [example scripts](https://github.com/huggingface/transformers/tree/main/examples) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
- The [example scripts]((https://github.com/huggingface/transformers/tree/main/examples)) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
## 100 projects using Transformers
@ -280,8 +280,8 @@ Expand each modality below to see a few example models for various use cases.
- Automatic mask generation with [SAM](https://huggingface.co/facebook/sam-vit-base)
- Depth estimation with [DepthPro](https://huggingface.co/apple/DepthPro-hf)
- Image classification with [DINO v2](https://huggingface.co/facebook/dinov2-base)
- Keypoint detection with [SuperPoint](https://huggingface.co/magic-leap-community/superpoint)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Keypoint detection with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue)
- Object detection with [RT-DETRv2](https://huggingface.co/PekingU/rtdetr_v2_r50vd)
- Pose Estimation with [VitPose](https://huggingface.co/usyd-community/vitpose-base-simple)
- Universal segmentation with [OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_swin_large)

View File

@ -14,7 +14,7 @@ Models uploaded on the Hugging Face Hub come in different formats. We heavily re
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats (e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code

View File

@ -6,7 +6,7 @@ developers, researchers, students, professors, engineers, and anyone else to bui
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
@ -49,7 +49,7 @@ Keywords: LLMs, Large Language Models, Agents, Chains
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retrieval mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
@ -257,7 +257,7 @@ Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusi
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
@ -309,8 +309,8 @@ Keywords: OCR, LaTeX, Math formula
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
@ -606,3 +606,4 @@ Keywords: BentoML, Framework, Deployment, AI Applications
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

View File

@ -1 +0,0 @@
benchmark_results/

View File

@ -1,354 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from logging import Logger
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
# Add the parent directory to Python path to import benchmarks_entrypoint
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import gpustat
import psutil
import psycopg2
from benchmarks_entrypoint import MetricsRecorder
# Optional heavy ML dependencies - only required when actually running the benchmark
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
torch = None
AutoModelForCausalLM = None
AutoTokenizer = None
GenerationConfig = None
StaticCache = None
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
# Only set torch precision if torch is available
if TRANSFORMERS_AVAILABLE:
torch.set_float32_matmul_precision("high")
def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
p = psutil.Process(os.getpid())
while not continue_metric_collection.is_set():
with p.oneshot():
cpu_util = p.cpu_percent()
mem_megabytes = p.memory_info().rss / (1024 * 1024)
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_util = gpu_stats[0]["utilization.gpu"]
gpu_mem_megabytes = gpu_stats[0]["memory.used"]
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
sleep(0.01)
def run_benchmark(
logger: Logger,
repository: str,
branch: str,
commit_id: str,
commit_msg: str,
metrics_recorder=None,
num_tokens_to_generate=100,
):
# Check if required ML dependencies are available
if not TRANSFORMERS_AVAILABLE:
logger.error("Transformers and torch are required to run the LLaMA benchmark. Please install them with:")
logger.error("pip install torch transformers")
logger.error("Skipping LLaMA benchmark due to missing dependencies.")
return
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
# If no metrics_recorder is provided, create one for backward compatibility
if metrics_recorder is None:
try:
metrics_recorder = MetricsRecorder(
psycopg2.connect("dbname=metrics"), logger, repository, branch, commit_id, commit_msg, True
)
should_close_recorder = True
except Exception as e:
logger.error(f"Failed to create metrics recorder: {e}")
return
else:
should_close_recorder = False
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
logger.info(f"running benchmark #{benchmark_id} on {gpu_name} for {model_id}")
metrics_thread = Thread(
target=collect_metrics,
args=[benchmark_id, continue_metric_collection, metrics_recorder],
)
metrics_thread.start()
logger.info("started background thread to fetch device metrics")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # silence warnings when compiling
device = "cuda"
logger.info("downloading weights")
# This is to avoid counting download in model load time measurement
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.float16)
gen_config = GenerationConfig(do_sample=False, top_p=1, temperature=1)
logger.info("loading model")
start = perf_counter()
model = AutoModelForCausalLM.from_pretrained(
model_id, dtype=torch.float16, generation_config=gen_config
).eval()
model.to(device)
torch.cuda.synchronize()
end = perf_counter()
model_load_time = end - start
logger.info(f"loaded model in: {model_load_time}s")
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Why dogs are so cute?"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Specify the max length (including both the prompt and the response)
# When calling `generate` with `cache_implementation="static" later, this is also used to create a `StaticCache` object
# with sequence length = `max_length`. The longer the more you will re-use it
seq_length = inputs["input_ids"].shape[1]
model.generation_config.max_length = seq_length + num_tokens_to_generate
batch_size = inputs["input_ids"].shape[0]
# Copied from the gpt-fast repo
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
# First eager forward pass
logger.info("running first eager forward pass")
start = perf_counter()
_ = model(**inputs)
torch.cuda.synchronize()
end = perf_counter()
first_eager_fwd_pass_time = end - start
logger.info(f"completed first eager forward pass in: {first_eager_fwd_pass_time}s")
# Second eager forward pass (should be faster)
logger.info("running second eager forward pass")
start = perf_counter()
_ = model(**inputs)
torch.cuda.synchronize()
end = perf_counter()
second_eager_fwd_pass_time = end - start
logger.info(f"completed second eager forward pass in: {second_eager_fwd_pass_time}s")
# First eager generation
logger.info("running first eager generation")
start = perf_counter()
output = model.generate(**inputs)
torch.cuda.synchronize()
end = perf_counter()
first_eager_generate_time = end - start
logger.info(f"completed first eager generation in: {first_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
# Second eager generation (should be faster)
logger.info("running second eager generation")
start = perf_counter()
output = model.generate(**inputs)
torch.cuda.synchronize()
end = perf_counter()
second_eager_generate_time = end - start
logger.info(f"completed second eager generation in: {second_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
logger.info("running generation timing loop")
input_pos = torch.arange(0, seq_length, device=device)
inputs = inputs["input_ids"]
start = perf_counter()
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
logits = model(inputs, position_ids=input_pos).logits
next_token, probs = sample(logits, temperature=0.6, top_k=5)
torch.cuda.synchronize()
end = perf_counter()
time_to_first_token = end - start
input_pos = torch.tensor([seq_length], device=device, dtype=torch.int)
next_token = next_token.clone()
start = perf_counter()
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
logits = model(next_token, position_ids=input_pos).logits
next_token, probs = sample(logits, temperature=0.6, top_k=5)
torch.cuda.synchronize()
end = perf_counter()
time_to_second_token = end - start
input_pos = torch.tensor([seq_length + 1], device=device, dtype=torch.int)
next_token = next_token.clone()
start = perf_counter()
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
logits = model(next_token, position_ids=input_pos).logits
next_token, probs = sample(logits, temperature=0.6, top_k=5)
torch.cuda.synchronize()
end = perf_counter()
time_to_third_token = end - start
logger.info("running longer generation timing loop")
total_time = 0
for i in range(20):
input_pos = torch.tensor([seq_length + 2 + i], device=device, dtype=torch.int)
next_token = next_token.clone()
start = perf_counter()
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
logits = model(next_token, position_ids=input_pos).logits
next_token, probs = sample(logits, temperature=0.6, top_k=5)
torch.cuda.synchronize()
end = perf_counter()
total_time += end - start
mean_time_to_next_token = total_time / 20
logger.info("running compilation benchmarks")
# Now compile the model
model = torch.compile(model, mode="max-autotune", fullgraph=True)
# StaticCache for generation
with torch.device(device):
model.setup_caches(max_batch_size=batch_size, max_seq_len=seq_length + num_tokens_to_generate)
input_pos = torch.arange(0, seq_length, device=device)
inputs = tokenizer(prompt, return_tensors="pt").to(device)["input_ids"]
logger.info("compiling model")
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.float16, generation_config=gen_config)
model.to(device)
model = torch.compile(model, mode="max-autotune", fullgraph=True)
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 1st call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
first_compile_generate_time = end - start
logger.info(f"completed first compile generation in: {first_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 2nd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
second_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {second_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 3rd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
third_compile_generate_time = end - start
logger.info(f"completed third compile generation in: {third_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 4th call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
fourth_compile_generate_time = end - start
logger.info(f"completed fourth compile generation in: {fourth_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
except Exception as e:
logger.error(f"Caught exception: {e}")
continue_metric_collection.set()
if metrics_thread is not None:
metrics_thread.join()
# Only close the recorder if we created it locally
if should_close_recorder:
metrics_recorder.close()

View File

@ -31,7 +31,9 @@ from contextlib import contextmanager
from pathlib import Path
from git import Repo
from huggingface_hub import HfApi
from optimum_benchmark import Benchmark
from optimum_benchmark_wrapper import main

View File

@ -1,36 +1,15 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib.util
import json
import logging
import os
import sys
import uuid
from datetime import datetime
from typing import Dict, Tuple
import pandas as pd
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
try:
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
register_adapter(dict, Json)
PSYCOPG2_AVAILABLE = True
except ImportError:
PSYCOPG2_AVAILABLE = False
register_adapter(dict, Json)
class ImportModuleException(Exception):
@ -39,272 +18,61 @@ class ImportModuleException(Exception):
class MetricsRecorder:
def __init__(
self,
connection,
logger: logging.Logger,
repository: str,
branch: str,
commit_id: str,
commit_msg: str,
collect_csv_data: bool = True,
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str
):
self.conn = connection
self.use_database = connection is not None
if self.use_database:
self.conn.autocommit = True
self.conn.autocommit = True
self.logger = logger
self.repository = repository
self.branch = branch
self.commit_id = commit_id
self.commit_msg = commit_msg
self.collect_csv_data = collect_csv_data
# For CSV export - store all data in pandas DataFrames (only if CSV collection is enabled)
if self.collect_csv_data:
# Initialize empty DataFrames with proper schemas
self.benchmarks_df = pd.DataFrame(
columns=[
"benchmark_id",
"repository",
"branch",
"commit_id",
"commit_message",
"metadata",
"created_at",
]
)
self.device_measurements_df = pd.DataFrame(
columns=["benchmark_id", "cpu_util", "mem_megabytes", "gpu_util", "gpu_mem_megabytes", "time"]
)
self.model_measurements_df = pd.DataFrame(
columns=[
"benchmark_id",
"time",
"model_load_time",
"first_eager_forward_pass_time_secs",
"second_eager_forward_pass_time_secs",
"first_eager_generate_time_secs",
"second_eager_generate_time_secs",
"time_to_first_token_secs",
"time_to_second_token_secs",
"time_to_third_token_secs",
"time_to_next_token_mean_secs",
"first_compile_generate_time_secs",
"second_compile_generate_time_secs",
"third_compile_generate_time_secs",
"fourth_compile_generate_time_secs",
]
)
else:
self.benchmarks_df = None
self.device_measurements_df = None
self.model_measurements_df = None
def initialise_benchmark(self, metadata: dict[str, str]) -> str:
def initialise_benchmark(self, metadata: dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id (UUID)
Creates a new benchmark, returns the benchmark id
"""
# Generate a unique UUID for this benchmark
benchmark_id = str(uuid.uuid4())
if self.use_database:
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (benchmark_id, repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s, %s)",
(benchmark_id, self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
)
self.logger.debug(f"initialised benchmark #{benchmark_id}")
# Store benchmark data for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame
new_row = pd.DataFrame(
[
{
"benchmark_id": benchmark_id,
"repository": self.repository,
"branch": self.branch,
"commit_id": self.commit_id,
"commit_message": self.commit_msg,
"metadata": json.dumps(metadata),
"created_at": datetime.utcnow().isoformat(),
}
]
# gpu_name: str, model_id: str
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
(self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
)
self.benchmarks_df = pd.concat([self.benchmarks_df, new_row], ignore_index=True)
benchmark_id = cur.fetchone()[0]
logger.debug(f"initialised benchmark #{benchmark_id}")
return benchmark_id
mode_info = []
if self.use_database:
mode_info.append("database")
if self.collect_csv_data:
mode_info.append("CSV")
mode_str = " + ".join(mode_info) if mode_info else "no storage"
self.logger.debug(f"initialised benchmark #{benchmark_id} ({mode_str} mode)")
return benchmark_id
def collect_device_measurements(self, benchmark_id: str, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes):
def collect_device_measurements(self, benchmark_id: int, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes):
"""
Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function.
"""
# Store device measurements for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame
new_row = pd.DataFrame(
[
{
"benchmark_id": benchmark_id,
"cpu_util": cpu_util,
"mem_megabytes": mem_megabytes,
"gpu_util": gpu_util,
"gpu_mem_megabytes": gpu_mem_megabytes,
"time": datetime.utcnow().isoformat(),
}
]
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
)
self.device_measurements_df = pd.concat([self.device_measurements_df, new_row], ignore_index=True)
# Store in database if available
if self.use_database:
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
)
self.logger.debug(
f"collected device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: str, measurements: dict[str, float]):
# Store model measurements for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame with flattened measurements
row_data = {"benchmark_id": benchmark_id, "time": datetime.utcnow().isoformat()}
# Flatten the measurements dict into the row
row_data.update(measurements)
new_row = pd.DataFrame([row_data])
self.model_measurements_df = pd.concat([self.model_measurements_df, new_row], ignore_index=True)
# Store in database if available
if self.use_database:
with self.conn.cursor() as cur:
cur.execute(
"""
INSERT INTO model_measurements (
benchmark_id,
measurements
) VALUES (%s, %s)
""",
(
benchmark_id,
measurements,
),
)
self.logger.debug(f"collected model measurements for benchmark #{benchmark_id}: {measurements}")
def export_to_csv(self, output_dir: str = "benchmark_results"):
"""
Export all collected data to CSV files using pandas DataFrames
"""
if not self.collect_csv_data:
self.logger.warning("CSV data collection is disabled - no CSV files will be generated")
return
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.logger.info(f"Created output directory: {output_dir}")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
files_created = []
# Export using pandas DataFrames
self._export_pandas_data(output_dir, timestamp, files_created)
self.logger.info(f"CSV export complete! Created {len(files_created)} files in {output_dir}")
def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list):
"""
Export CSV files using pandas DataFrames
"""
# Export benchmarks
benchmarks_file = os.path.join(output_dir, f"benchmarks_{timestamp}.csv")
self.benchmarks_df.to_csv(benchmarks_file, index=False)
files_created.append(benchmarks_file)
self.logger.info(f"Exported {len(self.benchmarks_df)} benchmark records to {benchmarks_file}")
# Export device measurements
device_file = os.path.join(output_dir, f"device_measurements_{timestamp}.csv")
self.device_measurements_df.to_csv(device_file, index=False)
files_created.append(device_file)
self.logger.info(f"Exported {len(self.device_measurements_df)} device measurement records to {device_file}")
# Export model measurements (already flattened)
model_file = os.path.join(output_dir, f"model_measurements_{timestamp}.csv")
self.model_measurements_df.to_csv(model_file, index=False)
files_created.append(model_file)
self.logger.info(f"Exported {len(self.model_measurements_df)} model measurement records to {model_file}")
# Create comprehensive summary using pandas operations
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.csv")
self._create_summary(summary_file)
files_created.append(summary_file)
def _create_summary(self, summary_file: str):
"""
Create a comprehensive summary CSV using pandas operations
"""
if len(self.benchmarks_df) == 0:
# Create empty summary file
summary_df = pd.DataFrame()
summary_df.to_csv(summary_file, index=False)
self.logger.info(f"Created empty benchmark summary at {summary_file}")
return
# Start with benchmarks as the base
summary_df = self.benchmarks_df.copy()
# Add model measurements (join on benchmark_id)
if len(self.model_measurements_df) > 0:
# Drop 'time' column from model measurements to avoid conflicts
model_df = self.model_measurements_df.drop(columns=["time"], errors="ignore")
summary_df = summary_df.merge(model_df, on="benchmark_id", how="left")
# Calculate device measurement aggregates using pandas groupby
if len(self.device_measurements_df) > 0:
device_agg = (
self.device_measurements_df.groupby("benchmark_id")
.agg(
{
"cpu_util": ["mean", "max", "std", "count"],
"mem_megabytes": ["mean", "max", "std"],
"gpu_util": ["mean", "max", "std"],
"gpu_mem_megabytes": ["mean", "max", "std"],
}
)
.round(3)
def collect_model_measurements(self, benchmark_id: int, measurements: dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
INSERT INTO model_measurements (
benchmark_id,
measurements
) VALUES (%s, %s)
""",
(
benchmark_id,
measurements,
),
)
# Flatten column names
device_agg.columns = [f"{col[0]}_{col[1]}" for col in device_agg.columns]
device_agg = device_agg.reset_index()
# Rename count column to be more descriptive
if "cpu_util_count" in device_agg.columns:
device_agg = device_agg.rename(columns={"cpu_util_count": "device_measurement_count"})
# Merge with summary
summary_df = summary_df.merge(device_agg, on="benchmark_id", how="left")
# Export the comprehensive summary
summary_df.to_csv(summary_file, index=False)
self.logger.info(f"Created comprehensive benchmark summary with {len(summary_df)} records at {summary_file}")
self.logger.debug(f"inserted model measurements for benchmark #{benchmark_id}: {measurements}")
def close(self):
if self.use_database and self.conn:
self.conn.close()
self.conn.close()
logger = logging.getLogger(__name__)
@ -317,7 +85,7 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments() -> tuple[str, str, str, str, bool, str]:
def parse_arguments() -> tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""
@ -347,21 +115,9 @@ def parse_arguments() -> tuple[str, str, str, str, bool, str]:
help="The commit message associated with the commit, truncated to 70 characters.",
)
parser.add_argument("--csv", action="store_true", default=False, help="Enable CSV output files generation.")
parser.add_argument(
"--csv-output-dir",
type=str,
default="benchmark_results",
help="Directory for CSV output files (default: benchmark_results).",
)
args = parser.parse_args()
# CSV is disabled by default, only enabled when --csv is used
generate_csv = args.csv
return args.repository, args.branch, args.commit_id, args.commit_msg, generate_csv, args.csv_output_dir
return args.repository, args.branch, args.commit_id, args.commit_msg
def import_from_path(module_name, file_path):
@ -375,128 +131,22 @@ def import_from_path(module_name, file_path):
raise ImportModuleException(f"failed to load python module: {e}")
def create_database_connection():
"""
Try to create a database connection. Returns None if connection fails.
"""
if not PSYCOPG2_AVAILABLE:
logger.warning("psycopg2 not available - running in CSV-only mode")
return None
try:
import psycopg2
conn = psycopg2.connect("dbname=metrics")
logger.info("Successfully connected to database")
return conn
except Exception as e:
logger.warning(f"Failed to connect to database: {e}. Running in CSV-only mode")
return None
def create_global_metrics_recorder(
repository: str, branch: str, commit_id: str, commit_msg: str, generate_csv: bool = False
) -> MetricsRecorder:
"""
Create a global metrics recorder that will be used across all benchmarks.
"""
connection = create_database_connection()
recorder = MetricsRecorder(connection, logger, repository, branch, commit_id, commit_msg, generate_csv)
# Log the storage mode
storage_modes = []
if connection is not None:
storage_modes.append("database")
if generate_csv:
storage_modes.append("CSV")
if not storage_modes:
logger.warning("Running benchmarks with NO data storage (no database connection, CSV disabled)")
logger.warning("Use --csv flag to enable CSV output when database is unavailable")
else:
logger.info(f"Running benchmarks with: {' + '.join(storage_modes)} storage")
return recorder
if __name__ == "__main__":
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
benches_folder_path = os.path.join(benchmarks_folder_path, "benches")
repository, branch, commit_id, commit_msg, generate_csv, csv_output_dir = parse_arguments()
repository, branch, commit_id, commit_msg = parse_arguments()
# Create a global metrics recorder
global_metrics_recorder = create_global_metrics_recorder(repository, branch, commit_id, commit_msg, generate_csv)
successful_benchmarks = 0
failed_benchmarks = 0
# Automatically discover all benchmark modules in benches/ folder
benchmark_modules = []
if os.path.exists(benches_folder_path):
logger.debug(f"Scanning for benchmarks in: {benches_folder_path}")
for entry in os.scandir(benches_folder_path):
for entry in os.scandir(benchmarks_folder_path):
try:
if not entry.name.endswith(".py"):
continue
if entry.name.startswith("__"): # Skip __init__.py, __pycache__, etc.
if entry.path == __file__:
continue
# Check if the file has a run_benchmark function
try:
logger.debug(f"checking if benches/{entry.name} has run_benchmark function")
module = import_from_path(entry.name.split(".")[0], entry.path)
if hasattr(module, "run_benchmark"):
benchmark_modules.append(entry.name)
logger.debug(f"discovered benchmark: {entry.name}")
else:
logger.debug(f"skipping {entry.name} - no run_benchmark function found")
except Exception as e:
logger.debug(f"failed to check benches/{entry.name}: {e}")
else:
logger.warning(f"Benches directory not found: {benches_folder_path}")
if benchmark_modules:
logger.info(f"Discovered {len(benchmark_modules)} benchmark(s): {benchmark_modules}")
else:
logger.warning("No benchmark modules found in benches/ directory")
for module_name in benchmark_modules:
module_path = os.path.join(benches_folder_path, module_name)
try:
logger.debug(f"loading: {module_name}")
module = import_from_path(module_name.split(".")[0], module_path)
logger.info(f"running benchmarks in: {module_name}")
# Check if the module has an updated run_benchmark function that accepts metrics_recorder
try:
# Try the new signature first
module.run_benchmark(logger, repository, branch, commit_id, commit_msg, global_metrics_recorder)
except TypeError:
# Fall back to the old signature for backward compatibility
logger.warning(
f"Module {module_name} using old run_benchmark signature - database connection will be created per module"
)
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
successful_benchmarks += 1
logger.debug(f"loading: {entry.name}")
module = import_from_path(entry.name.split(".")[0], entry.path)
logger.info(f"running benchmarks in: {entry.name}")
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
except ImportModuleException as e:
logger.error(e)
failed_benchmarks += 1
except Exception as e:
logger.error(f"error running benchmarks for {module_name}: {e}")
failed_benchmarks += 1
# Export CSV results at the end (if enabled)
try:
if generate_csv:
global_metrics_recorder.export_to_csv(csv_output_dir)
logger.info(f"CSV reports have been generated and saved to the {csv_output_dir} directory")
else:
logger.info("CSV generation disabled - no CSV files created (use --csv to enable)")
logger.info(f"Benchmark run completed. Successful: {successful_benchmarks}, Failed: {failed_benchmarks}")
except Exception as e:
logger.error(f"Failed to export CSV results: {e}")
finally:
global_metrics_recorder.close()
logger.error(f"error running benchmarks for {entry.name}: {e}")

View File

@ -19,7 +19,7 @@ backend:
model: meta-llama/Llama-2-7b-hf
cache_implementation: static
torch_compile: true
dtype: float16
torch_dtype: float16
torch_compile_config:
backend: inductor
mode: reduce-overhead

34
benchmark/init_db.sql Normal file
View File

@ -0,0 +1,34 @@
CREATE TABLE IF NOT EXISTS benchmarks (
benchmark_id SERIAL PRIMARY KEY,
repository VARCHAR(255),
branch VARCHAR(255),
commit_id VARCHAR(72),
commit_message VARCHAR(70),
metadata jsonb,
created_at timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS benchmarks_benchmark_id_idx ON benchmarks (benchmark_id);
CREATE INDEX IF NOT EXISTS benchmarks_branch_idx ON benchmarks (branch);
CREATE TABLE IF NOT EXISTS device_measurements (
measurement_id SERIAL PRIMARY KEY,
benchmark_id int REFERENCES benchmarks (benchmark_id),
cpu_util double precision,
mem_megabytes double precision,
gpu_util double precision,
gpu_mem_megabytes double precision,
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS device_measurements_branch_idx ON device_measurements (benchmark_id);
CREATE TABLE IF NOT EXISTS model_measurements (
measurement_id SERIAL PRIMARY KEY,
benchmark_id int REFERENCES benchmarks (benchmark_id),
measurements jsonb,
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS model_measurements_branch_idx ON model_measurements (benchmark_id);

346
benchmark/llama.py Normal file
View File

@ -0,0 +1,346 @@
from logging import Logger
import os
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
from benchmarks_entrypoint import MetricsRecorder
import gpustat
import psutil
import psycopg2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
torch.set_float32_matmul_precision("high")
def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
p = psutil.Process(os.getpid())
while not continue_metric_collection.is_set():
with p.oneshot():
cpu_util = p.cpu_percent()
mem_megabytes = p.memory_info().rss / (1024 * 1024)
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_util = gpu_stats[0]["utilization.gpu"]
gpu_mem_megabytes = gpu_stats[0]["memory.used"]
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
sleep(0.01)
def run_benchmark(
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100
):
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
metrics_recorder = MetricsRecorder(
psycopg2.connect("dbname=metrics"), logger, repository, branch, commit_id, commit_msg
)
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
logger.info(f"running benchmark #{benchmark_id} on {gpu_name} for {model_id}")
metrics_thread = Thread(
target=collect_metrics,
args=[benchmark_id, continue_metric_collection, metrics_recorder],
)
metrics_thread.start()
logger.info("started background thread to fetch device metrics")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # silence warnings when compiling
device = "cuda"
logger.info("downloading weights")
# This is to avoid counting download in model load time measurement
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
gen_config = GenerationConfig(do_sample=False, top_p=1, temperature=1)
logger.info("loading model")
start = perf_counter()
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, generation_config=gen_config
).eval()
model.to(device)
torch.cuda.synchronize()
end = perf_counter()
model_load_time = end - start
logger.info(f"loaded model in: {model_load_time}s")
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Why dogs are so cute?"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Specify the max length (including both the prompt and the response)
# When calling `generate` with `cache_implementation="static" later, this is also used to create a `StaticCache` object
# with sequence length = `max_length`. The longer the more you will re-use it
seq_length = inputs["input_ids"].shape[1]
model.generation_config.max_length = seq_length + num_tokens_to_generate
batch_size = inputs["input_ids"].shape[0]
# Copied from the gpt-fast repo
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[:, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def decode_one_token(model, cur_token, cache_position, past_key_values):
logits = model(
cur_token,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)[0]
new_token = sample(logits, temperature=0.6, top_k=5)[0]
return new_token
#########
# Eager #
#########
with torch.no_grad():
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
)
cache_position = torch.arange(seq_length, device=device)
start = perf_counter()
model(
**inputs,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)
end = perf_counter()
first_eager_fwd_pass_time = end - start
logger.info(f"completed first eager fwd pass in: {first_eager_fwd_pass_time}s")
start = perf_counter()
output = model.generate(**inputs, do_sample=False)
end = perf_counter()
first_eager_generate_time = end - start
logger.info(f"completed first eager generation in: {first_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
)
cache_position = torch.arange(seq_length, device=device)
start = perf_counter()
model(
**inputs,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)
end = perf_counter()
second_eager_fwd_pass_time = end - start
logger.info(f"completed second eager fwd pass in: {second_eager_fwd_pass_time}s")
start = perf_counter()
model.generate(**inputs, do_sample=False)
end = perf_counter()
second_eager_generate_time = end - start
logger.info(f"completed second eager generation in: {second_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
torch.compiler.reset()
################
# Forward pass #
################
# `torch.compile(model, ...)` is not recommended as you compile callbacks
# and full generate. We recommend compiling only the forward for now.
# "reduce-overhead" will use cudagraphs.
generated_ids = torch.zeros(
(batch_size, num_tokens_to_generate + seq_length), dtype=torch.int, device=device
)
generated_ids[:, :seq_length] = inputs["input_ids"]
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
# TODO use decode_one_token(model, input_id.clone(), cache_position) for verification
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate + 10,
)
cache_position = torch.arange(seq_length, device=device)
all_generated_tokens = []
### First compile, prefill
start = perf_counter()
next_token = decode_one_token(
model, inputs["input_ids"], cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_first_token = end - start
logger.info(f"completed first compile generation in: {time_to_first_token}s")
cache_position += 1
all_generated_tokens += next_token.tolist()
cache_position = torch.tensor([seq_length], device=device)
### First compile, decoding
start = perf_counter()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_second_token = end - start
logger.info(f"completed second compile generation in: {time_to_second_token}s")
cache_position += 1
all_generated_tokens += next_token.tolist()
### Second compile, decoding
start = perf_counter()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_third_token = end - start
logger.info(f"completed third compile forward in: {time_to_third_token}s")
cache_position += 1
all_generated_tokens += next_token.tolist()
### Using cuda graphs decoding
start = perf_counter()
for _ in range(1, num_tokens_to_generate):
all_generated_tokens += next_token.tolist()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
cache_position += 1
torch.cuda.synchronize()
end = perf_counter()
mean_time_to_next_token = (end - start) / num_tokens_to_generate
logger.info(f"completed next compile generation in: {mean_time_to_next_token}s")
logger.info(f"generated: {tokenizer.batch_decode(all_generated_tokens)}")
####################
# Generate compile #
####################
torch.compiler.reset()
# we will not compile full generate as it' s to intensive, tho we measure full forward!
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 1st call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
torch.cuda.synchronize()
end = perf_counter()
first_compile_generate_time = end - start
logger.info(f"completed first compile generation in: {first_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 2nd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
torch.cuda.synchronize()
end = perf_counter()
second_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {second_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 3rd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
third_compile_generate_time = end - start
logger.info(f"completed third compile generation in: {third_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 4th call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
fourth_compile_generate_time = end - start
logger.info(f"completed fourth compile generation in: {fourth_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
except Exception as e:
logger.error(f"Caught exception: {e}")
continue_metric_collection.set()
if metrics_thread is not None:
metrics_thread.join()
metrics_recorder.close()

View File

@ -3,11 +3,7 @@ import subprocess
def main(config_dir, config_name, args):
subprocess.run(
["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"]
+ ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"]
+ args
)
subprocess.run(["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"] + ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"] + args)
if __name__ == "__main__":

View File

@ -2,5 +2,4 @@ gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_transfer
pandas>=1.5.0
hf_transfer

View File

@ -1 +0,0 @@
benchmark_results/

View File

@ -1,138 +0,0 @@
# Benchmarking v2
A comprehensive benchmarking framework for transformer models that supports multiple execution modes (eager, compiled, kernelized), detailed performance metrics collection, and structured output format.
## Quick Start
### Running All Benchmarks
```bash
# Run all benchmarks with default settings
python run_benchmarks.py
# Specify output directory
python run_benchmarks.py --output-dir my_results
# Run with custom parameters
python run_benchmarks.py \
--warmup-iterations 5 \
--measurement-iterations 10 \
--num-tokens-to-generate 200
```
### Uploading Results to HuggingFace Dataset
You can automatically upload benchmark results to a HuggingFace Dataset for tracking and analysis:
```bash
# Upload to a public dataset with auto-generated run ID
python run_benchmarks.py --upload-to-hub username/benchmark-results
# Upload with a custom run ID for easy identification
python run_benchmarks.py --upload-to-hub username/benchmark-results --run-id experiment_v1
# Upload with custom HuggingFace token (if not set in environment)
python run_benchmarks.py --upload-to-hub username/benchmark-results --token hf_your_token_here
```
**Dataset Directory Structure:**
```
dataset_name/
├── 2025-01-15/
│ ├── runs/ # Non-scheduled runs (manual, PR, etc.)
│ │ └── 123-1245151651/ # GitHub run number and ID
│ │ └── benchmark_results/
│ │ ├── benchmark_summary_20250115_143022.json
│ │ └── model-name/
│ │ └── model-name_benchmark_20250115_143022.json
│ └── benchmark_results_abc123de/ # Scheduled runs (daily CI)
│ ├── benchmark_summary_20250115_143022.json
│ └── model-name/
│ └── model-name_benchmark_20250115_143022.json
└── 2025-01-16/
└── ...
```
**Authentication for Uploads:**
For uploading results, you need a HuggingFace token with write permissions to the target dataset. You can provide the token in several ways (in order of precedence):
1. Command line: `--token hf_your_token_here`
3. Environment variable: `HF_TOKEN`
### Running Specific Benchmarks
```bash
# Include only specific benchmarks
python run_benchmarks.py --include llama
# Exclude specific benchmarks
python run_benchmarks.py --exclude old_benchmark
## Output Format
Results are saved as JSON files with the following structure:
```json
{
"model_name": "llama_2_7b",
"benchmark_scenarios": [
{
"scenario_name": "eager_variant",
"metadata": {
"timestamp": "2025-01-XX...",
"commit_id": "abc123...",
"hardware_info": {
"gpu_name": "NVIDIA A100",
"gpu_memory_total": 40960,
"cpu_count": 64
},
"config": {
"variant": "eager",
"warmup_iterations": 3,
"measurement_iterations": 5
}
},
"measurements": {
"latency": {
"mean": 2.45,
"median": 2.43,
"std": 0.12,
"min": 2.31,
"max": 2.67,
"p95": 2.61,
"p99": 2.65
},
"time_to_first_token": {
"mean": 0.15,
"std": 0.02
},
"tokens_per_second": {
"mean": 87.3,
"unit": "tokens/sec"
}
},
"gpu_metrics": {
"gpu_utilization_mean": 85.2,
"gpu_memory_used_mean": 12450
}
}
]
}
```
### Debug Mode
```bash
python run_benchmarks.py --log-level DEBUG
```
## Contributing
To add new benchmarks:
1. Create a new file in `benches/`
2. Implement the `ModelBenchmark` interface
3. Add a runner function (`run_<benchmark_name>` or `run_benchmark`)
4. run_benchmarks.py

View File

@ -1 +0,0 @@
# Benchmark implementations directory

View File

@ -1,165 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any
import torch
from benchmark_framework import ModelBenchmark
os.environ["TOKENIZERS_PARALLELISM"] = "1"
torch.set_float32_matmul_precision("high")
class LLaMABenchmark(ModelBenchmark):
"""Simplified LLaMA model benchmark implementation using the ModelBenchmark base class."""
def __init__(self, logger: logging.Logger):
super().__init__(logger)
self._default_prompt = "Why dogs are so cute?" # Custom prompt for LLaMA
def get_scenario_configs(self) -> list[dict[str, Any]]:
"""
Get LLaMA-specific scenario configurations.
Returns:
List of scenario configuration dictionaries
"""
return [
# Eager variants
{"variant": "eager", "compile_mode": None, "use_cache": True, "description": "Eager execution with cache"},
# Compiled variants
{
"variant": "compiled",
"compile_mode": "max-autotune",
"use_cache": True,
"description": "Compiled with max autotune",
},
# Kernelized variant (if available)
{
"variant": "kernelized",
"compile_mode": "max-autotune",
"use_cache": True,
"description": "Kernelized execution",
},
]
def _is_kernelization_available(self) -> bool:
"""Check if kernelization is available for LLaMA."""
try:
from kernels import Mode, kernelize # noqa: F401
return True
except ImportError:
self.logger.debug("Kernelization not available: kernels module not found")
return False
def get_default_generation_config(self) -> dict[str, Any]:
"""Get LLaMA-specific generation configuration."""
return {
"do_sample": False,
"top_p": 1.0,
"temperature": 1.0,
"repetition_penalty": 1.0,
"max_new_tokens": None, # Will be set per scenario
}
def get_model_init_kwargs(self, config) -> dict[str, Any]:
"""Get LLaMA-specific model initialization kwargs."""
return {
"torch_dtype": getattr(torch, config.torch_dtype),
"attn_implementation": config.attn_implementation,
"use_cache": True,
}
def get_default_torch_dtype(self) -> str:
"""Get default torch dtype for LLaMA."""
return "float16" # LLaMA works well with float16
def get_default_device(self) -> str:
"""Get default device for LLaMA."""
return "cuda" # LLaMA prefers CUDA
def run_llama(logger, output_dir, **kwargs):
"""
Run LLaMA benchmark with the given configuration.
Args:
logger: Logger instance
output_dir: Output directory for results
**kwargs: Additional configuration options
Returns:
Path to output file if successful
"""
from benchmark_framework import BenchmarkRunner
# Extract parameters with defaults
model_id = kwargs.get("model_id", "meta-llama/Llama-2-7b-hf")
warmup_iterations = kwargs.get("warmup_iterations", 3)
measurement_iterations = kwargs.get("measurement_iterations", 5)
num_tokens_to_generate = kwargs.get("num_tokens_to_generate", 100)
include_sdpa_variants = kwargs.get("include_sdpa_variants", True)
device = kwargs.get("device", "cuda")
torch_dtype = kwargs.get("torch_dtype", "float16")
batch_size = kwargs.get("batch_size", 1)
commit_id = kwargs.get("commit_id")
logger.info(f"Starting LLaMA benchmark for model: {model_id}")
logger.info(
f"Configuration: warmup={warmup_iterations}, measurement={measurement_iterations}, tokens={num_tokens_to_generate}"
)
try:
# Create benchmark instance
benchmark = LLaMABenchmark(logger)
# Create scenarios
scenarios = benchmark.create_scenarios(
model_id=model_id,
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
num_tokens_to_generate=num_tokens_to_generate,
include_sdpa_variants=include_sdpa_variants,
device=device,
torch_dtype=torch_dtype,
batch_size=batch_size,
)
logger.info(f"Created {len(scenarios)} benchmark scenarios")
# Create runner and execute benchmarks
runner = BenchmarkRunner(logger, output_dir)
results = runner.run_benchmark(benchmark, scenarios, commit_id=commit_id)
if not results:
logger.warning("No successful benchmark results")
return None
# Save results
model_name = model_id.split("/")[-1] # Extract model name from ID
output_file = runner.save_results(model_name, results)
logger.info(f"LLaMA benchmark completed successfully. Results saved to: {output_file}")
return output_file
except Exception as e:
logger.error(f"LLaMA benchmark failed: {e}")
import traceback
logger.debug(traceback.format_exc())
raise

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +0,0 @@
numpy>=1.21.0
psutil>=5.8.0
gpustat>=1.0.0
torch>=2.0.0
transformers>=4.30.0
datasets>=2.10.0
huggingface_hub>=0.16.0

View File

@ -1,495 +0,0 @@
#!/usr/bin/env python3
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Top-level benchmarking script that automatically discovers and runs all benchmarks
in the ./benches directory, organizing outputs into model-specific subfolders.
"""
import argparse
import importlib.util
import json
import logging
import os
import sys
import uuid
from datetime import datetime
from pathlib import Path
from typing import Any, Optional
def setup_logging(log_level: str = "INFO", enable_file_logging: bool = False) -> logging.Logger:
"""Setup logging configuration."""
numeric_level = getattr(logging, log_level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError(f"Invalid log level: {log_level}")
handlers = [logging.StreamHandler(sys.stdout)]
if enable_file_logging:
handlers.append(logging.FileHandler(f"benchmark_run_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"))
logging.basicConfig(
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
)
return logging.getLogger(__name__)
def discover_benchmarks(benches_dir: str) -> list[dict[str, Any]]:
"""
Discover all benchmark modules in the benches directory.
Returns:
List of dictionaries containing benchmark module info
"""
benchmarks = []
benches_path = Path(benches_dir)
if not benches_path.exists():
raise FileNotFoundError(f"Benches directory not found: {benches_dir}")
for py_file in benches_path.glob("*.py"):
if py_file.name.startswith("__"):
continue
module_name = py_file.stem
try:
# Import the module
spec = importlib.util.spec_from_file_location(module_name, py_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Check if it has a benchmark runner function
if hasattr(module, f"run_{module_name}"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, f"run_{module_name}"),
}
)
elif hasattr(module, "run_benchmark"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, "run_benchmark"),
}
)
else:
logging.warning(f"No runner function found in {py_file}")
except Exception as e:
logging.error(f"Failed to import {py_file}: {e}")
return benchmarks
def run_single_benchmark(
benchmark_info: dict[str, Any], output_dir: str, logger: logging.Logger, **kwargs
) -> Optional[str]:
"""
Run a single benchmark and return the output file path.
Args:
benchmark_info: Dictionary containing benchmark module info
output_dir: Base output directory
logger: Logger instance
**kwargs: Additional arguments to pass to the benchmark
Returns:
Path to the output file if successful, None otherwise
"""
benchmark_name = benchmark_info["name"]
runner_func = benchmark_info["runner_function"]
logger.info(f"Running benchmark: {benchmark_name}")
try:
# Check function signature to determine what arguments to pass
import inspect
sig = inspect.signature(runner_func)
# Prepare arguments based on function signature
func_kwargs = {"logger": logger, "output_dir": output_dir}
# Add other kwargs if the function accepts them
for param_name in sig.parameters:
if param_name in kwargs:
func_kwargs[param_name] = kwargs[param_name]
# Filter kwargs to only include parameters the function accepts
# If function has **kwargs, include all provided kwargs
has_var_kwargs = any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values())
if has_var_kwargs:
valid_kwargs = {**func_kwargs, **kwargs}
else:
valid_kwargs = {k: v for k, v in func_kwargs.items() if k in sig.parameters}
# Run the benchmark
result = runner_func(**valid_kwargs)
if isinstance(result, str):
# Function returned a file path
return result
else:
logger.info(f"Benchmark {benchmark_name} completed successfully")
return "completed"
except Exception as e:
logger.error(f"Benchmark {benchmark_name} failed: {e}")
import traceback
logger.debug(traceback.format_exc())
return None
def generate_summary_report(
output_dir: str,
benchmark_results: dict[str, Any],
logger: logging.Logger,
benchmark_run_uuid: Optional[str] = None,
) -> str:
"""Generate a summary report of all benchmark runs."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.json")
summary_data = {
"run_metadata": {
"timestamp": datetime.utcnow().isoformat(),
"benchmark_run_uuid": benchmark_run_uuid,
"total_benchmarks": len(benchmark_results),
"successful_benchmarks": len([r for r in benchmark_results.values() if r is not None]),
"failed_benchmarks": len([r for r in benchmark_results.values() if r is None]),
},
"benchmark_results": benchmark_results,
"output_directory": output_dir,
}
with open(summary_file, "w") as f:
json.dump(summary_data, f, indent=2, default=str)
logger.info(f"Summary report saved to: {summary_file}")
return summary_file
def upload_results_to_hf_dataset(
output_dir: str,
summary_file: str,
dataset_name: str,
run_id: Optional[str] = None,
token: Optional[str] = None,
logger: Optional[logging.Logger] = None,
) -> Optional[str]:
"""
Upload benchmark results to a HuggingFace Dataset.
Based on upload_collated_report() from utils/collated_reports.py
Args:
output_dir: Local output directory containing results
summary_file: Path to the summary file
dataset_name: Name of the HuggingFace dataset to upload to
run_id: Unique run identifier (if None, will generate one)
token: HuggingFace token for authentication (if None, will use environment variables)
logger: Logger instance
Returns:
The run_id used for the upload, None if upload failed
"""
if logger is None:
logger = logging.getLogger(__name__)
import os
from huggingface_hub import HfApi
api = HfApi()
if run_id is None:
github_run_number = os.getenv("GITHUB_RUN_NUMBER")
github_run_id = os.getenv("GITHUB_RUN_ID")
if github_run_number and github_run_id:
run_id = f"{github_run_number}-{github_run_id}"
date_folder = datetime.now().strftime("%Y-%m-%d")
github_event_name = os.getenv("GITHUB_EVENT_NAME")
if github_event_name != "schedule":
# Non-scheduled runs go under a runs subfolder
repo_path = f"{date_folder}/runs/{run_id}/benchmark_results"
else:
# Scheduled runs go directly under the date
repo_path = f"{date_folder}/{run_id}/benchmark_results"
logger.info(f"Uploading benchmark results to dataset '{dataset_name}' at path '{repo_path}'")
try:
# Upload all files in the output directory
from pathlib import Path
output_path = Path(output_dir)
for file_path in output_path.rglob("*"):
if file_path.is_file():
# Calculate relative path from output_dir
relative_path = file_path.relative_to(output_path)
path_in_repo = f"{repo_path}/{relative_path}"
logger.debug(f"Uploading {file_path} to {path_in_repo}")
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=path_in_repo,
repo_id=dataset_name,
repo_type="dataset",
token=token,
commit_message=f"Upload benchmark results for run {run_id}",
)
logger.info(
f"Successfully uploaded results to: https://huggingface.co/datasets/{dataset_name}/tree/main/{repo_path}"
)
return run_id
except Exception as upload_error:
logger.error(f"Failed to upload results: {upload_error}")
import traceback
logger.debug(traceback.format_exc())
return None
def main():
"""Main entry point for the benchmarking script."""
# Generate a unique UUID for this benchmark run
benchmark_run_uuid = str(uuid.uuid4())[:8]
parser = argparse.ArgumentParser(
description="Run all benchmarks in the ./benches directory",
epilog="""
Examples:
# Run all available benchmarks
python3 run_benchmarks.py
# Run with specific model and upload to HuggingFace Dataset
python3 run_benchmarks.py --model-id meta-llama/Llama-2-7b-hf --upload-to-hf username/benchmark-results
# Run with custom run ID and upload to HuggingFace Dataset
python3 run_benchmarks.py --run-id experiment_v1 --upload-to-hf org/benchmarks
# Run only specific benchmarks with file logging
python3 run_benchmarks.py --include llama --enable-file-logging
""", # noqa: W293
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--output-dir",
type=str,
default="benchmark_results",
help="Base output directory for benchmark results (default: benchmark_results)",
)
parser.add_argument(
"--benches-dir",
type=str,
default="./benches",
help="Directory containing benchmark implementations (default: ./benches)",
)
parser.add_argument(
"--log-level",
type=str,
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
default="INFO",
help="Logging level (default: INFO)",
)
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup-iterations", type=int, default=3, help="Number of warmup iterations (default: 3)")
parser.add_argument(
"--measurement-iterations", type=int, default=5, help="Number of measurement iterations (default: 5)"
)
parser.add_argument(
"--num-tokens-to-generate",
type=int,
default=100,
help="Number of tokens to generate in benchmarks (default: 100)",
)
parser.add_argument("--include", type=str, nargs="*", help="Only run benchmarks matching these names")
parser.add_argument("--exclude", type=str, nargs="*", help="Exclude benchmarks matching these names")
parser.add_argument("--enable-file-logging", action="store_true", help="Enable file logging (disabled by default)")
parser.add_argument(
"--commit-id", type=str, help="Git commit ID for metadata (if not provided, will auto-detect from git)"
)
parser.add_argument(
"--push-to-hub",
type=str,
help="Upload results to HuggingFace Dataset (provide dataset name, e.g., 'username/benchmark-results')",
)
parser.add_argument(
"--run-id", type=str, help="Custom run ID for organizing results (if not provided, will generate a unique ID)"
)
parser.add_argument(
"--token",
type=str,
help="HuggingFace token for dataset uploads (if not provided, will use HF_TOKEN environment variable)",
)
args = parser.parse_args()
# Setup logging
logger = setup_logging(args.log_level, args.enable_file_logging)
logger.info("Starting benchmark discovery and execution")
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Benches directory: {args.benches_dir}")
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
try:
# Discover benchmarks
benchmarks = discover_benchmarks(args.benches_dir)
logger.info(f"Discovered {len(benchmarks)} benchmark(s): {[b['name'] for b in benchmarks]}")
if not benchmarks:
logger.warning("No benchmarks found!")
return 1
# Filter benchmarks based on include/exclude
filtered_benchmarks = benchmarks
if args.include:
filtered_benchmarks = [
b for b in filtered_benchmarks if any(pattern in b["name"] for pattern in args.include)
]
logger.info(f"Filtered to include: {[b['name'] for b in filtered_benchmarks]}")
if args.exclude:
filtered_benchmarks = [
b for b in filtered_benchmarks if not any(pattern in b["name"] for pattern in args.exclude)
]
logger.info(f"After exclusion: {[b['name'] for b in filtered_benchmarks]}")
if not filtered_benchmarks:
logger.warning("No benchmarks remaining after filtering!")
return 1
# Prepare common kwargs for benchmarks
benchmark_kwargs = {
"warmup_iterations": args.warmup_iterations,
"measurement_iterations": args.measurement_iterations,
"num_tokens_to_generate": args.num_tokens_to_generate,
}
if args.model_id:
benchmark_kwargs["model_id"] = args.model_id
# Add commit_id if provided
if args.commit_id:
benchmark_kwargs["commit_id"] = args.commit_id
# Run benchmarks
benchmark_results = {}
successful_count = 0
for benchmark_info in filtered_benchmarks:
result = run_single_benchmark(benchmark_info, args.output_dir, logger, **benchmark_kwargs)
benchmark_results[benchmark_info["name"]] = result
if result is not None:
successful_count += 1
# Generate summary report
summary_file = generate_summary_report(args.output_dir, benchmark_results, logger, benchmark_run_uuid)
# Upload results to HuggingFace Dataset if requested
upload_run_id = None
if args.push_to_hub:
logger.info("=" * 60)
logger.info("UPLOADING TO HUGGINGFACE DATASET")
logger.info("=" * 60)
# Use provided run_id or fallback to benchmark run UUID
effective_run_id = args.run_id or benchmark_run_uuid
upload_run_id = upload_results_to_hf_dataset(
output_dir=args.output_dir,
summary_file=summary_file,
dataset_name=args.push_to_hub,
run_id=effective_run_id,
token=args.token,
logger=logger,
)
if upload_run_id:
logger.info(f"Upload completed with run ID: {upload_run_id}")
else:
logger.warning("Upload failed - continuing with local results")
# Final summary
total_benchmarks = len(filtered_benchmarks)
failed_count = total_benchmarks - successful_count
logger.info("=" * 60)
logger.info("BENCHMARK RUN SUMMARY")
logger.info("=" * 60)
logger.info(f"Total benchmarks: {total_benchmarks}")
logger.info(f"Successful: {successful_count}")
logger.info(f"Failed: {failed_count}")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Summary report: {summary_file}")
if args.push_to_hub:
if upload_run_id:
logger.info(f"HuggingFace Dataset: {args.push_to_hub}")
logger.info(f"Run ID: {upload_run_id}")
logger.info(
f"View results: https://huggingface.co/datasets/{args.push_to_hub}/tree/main/{datetime.now().strftime('%Y-%m-%d')}/runs/{upload_run_id}"
)
else:
logger.warning("Upload to HuggingFace Dataset failed")
if failed_count > 0:
logger.warning(f"{failed_count} benchmark(s) failed. Check logs for details.")
return 1
else:
logger.info("All benchmarks completed successfully!")
return 0
except Exception as e:
logger.error(f"Benchmark run failed: {e}")
import traceback
logger.debug(traceback.format_exc())
return 1
if __name__ == "__main__":
sys.exit(main())

View File

@ -16,7 +16,6 @@
# by pytest before any tests are run
import doctest
import os
import sys
import warnings
from os.path import abspath, dirname, join
@ -24,18 +23,13 @@ from os.path import abspath, dirname, join
import _pytest
import pytest
from transformers.testing_utils import (
HfDoctestModule,
HfDocTestParser,
is_torch_available,
patch_testing_methods_to_collect_info,
patch_torch_compile_force_graph,
)
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_tokenization_mistral_common",
"test_processor",
"test_processing",
"test_beam_constraints",
"test_configuration_utils",
@ -54,6 +48,7 @@ NOT_DEVICE_TESTS = {
"test_gradient_checkpointing_backward_compatibility",
"test_gradient_checkpointing_enable_disable",
"test_torch_save_load",
"test_initialization",
"test_forward_signature",
"test_model_get_set_embeddings",
"test_model_main_input_name",
@ -63,8 +58,11 @@ NOT_DEVICE_TESTS = {
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
"test_model_weights_reload_no_missing_tied_weights",
"test_can_load_ignoring_mismatched_shapes",
"test_mismatched_shapes_have_properly_initialized_weights",
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
"test_model_is_small",
"test_tf_from_pt_safetensors",
"test_flax_from_pt_safetensors",
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
"ModelTester::test_pipeline_",
"/repo_utils/",
@ -86,10 +84,6 @@ def pytest_configure(config):
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
def pytest_collection_modifyitems(items):
@ -134,18 +128,3 @@ class CustomOutputChecker(OutputChecker):
doctest.OutputChecker = CustomOutputChecker
_pytest.doctest.DoctestModule = HfDoctestModule
doctest.DocTestParser = HfDocTestParser
if is_torch_available():
import torch
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# We set it to `False` for CI. See https://github.com/pytorch/pytorch/issues/157274#issuecomment-3090791615
torch.backends.cudnn.allow_tf32 = False
# patch `torch.compile`: if `TORCH_COMPILE_FORCE_FULLGRAPH=1` (or values considered as true, e.g. yes, y, etc.),
# the patched version will always run with `fullgraph=True`.
patch_torch_compile_force_graph()
if os.environ.get("PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS", "").lower() in ("yes", "true", "on", "y", "1"):
patch_testing_methods_to_collect_info()

View File

@ -1,13 +1,15 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
RUN git lfs install
RUN uv pip uninstall transformers

View File

@ -1,10 +1,10 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler git-lfs curl
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz
RUN tar xvf jumanpp-2.0.0-rc3.tar.xz
@ -15,20 +15,12 @@ RUN mv catch.hpp ../libs/
RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later
RUN uv run python -m unidic download
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN python3 -m unidic download
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,13 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git
RUN apt-get install -y g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,19 +1,12 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,24 +1,17 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
# RUN git clone https://github.com/facebookresearch/detectron2.git
# RUN python3 -m pip install --no-cache-dir -e detectron2
RUN uv pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3' --no-build-isolation
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,10 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,10 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,18 +1,11 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers

View File

@ -1,9 +1,9 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y time git
RUN apt-get update && apt-get install -y time git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv
RUN pip install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools GitPython "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ruff]" urllib3
RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,12 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git
RUN apt-get install -y cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,16 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,17 +1,11 @@
FROM python:3.10-slim
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers

View File

@ -0,0 +1,19 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
RUN echo ${REF}
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# Disable kernel mapping for now until all tests pass
@ -26,14 +26,13 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir -U timm
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
RUN python3 -m pip install --no-cache-dir pytesseract
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
@ -42,8 +41,6 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
# For bettertransformer
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For kernels
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
# For video model testing
RUN python3 -m pip install --no-cache-dir av
@ -54,14 +51,15 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
# Some tests require quanto
RUN python3 -m pip install --no-cache-dir quanto
# After using A10 as CI runner, let's run FA2 tests
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
# TODO (ydshieh): check this again
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
# (`deformable_detr`, `rwkv`, `mra`)
RUN python3 -m pip uninstall -y ninja
# For `dinat` model
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
# pin `0.17.4` otherwise `cannot import name 'natten2dav' from 'natten.functional'`
RUN python3 -m pip install --no-cache-dir natten==0.17.4+torch250cu121 -f https://shi-labs.com/natten/wheels
# For `nougat` tokenizer
RUN python3 -m pip install --no-cache-dir python-Levenshtein

View File

@ -15,8 +15,8 @@ RUN apt update && \
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow \
torch
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
RUN git clone https://github.com/NVIDIA/apex
RUN cd apex && \

View File

@ -1,71 +0,0 @@
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS base
LABEL maintainer="Hugging Face"
SHELL ["/bin/bash", "-c"]
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
apt-get update
RUN apt-get update && \
apt-get -y install \
apt-utils \
build-essential \
ca-certificates \
clinfo \
curl \
git \
git-lfs \
vim \
numactl \
gnupg2 \
gpg-agent \
python3-dev \
python3-opencv \
unzip \
ffmpeg \
tesseract-ocr \
espeak-ng \
wget \
ncurses-term \
google-perftools \
libjemalloc-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# Use virtual env because Ubuntu:24 does not allowed pip on original python
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install --upgrade pip wheel
RUN pip install torch torchvision torchaudio torchcodec --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
RUN pip install av pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sentence_transformers sacremoses nltk rouge_score librosa soundfile mpi4py pytorch_msssim
RUN pip install onnx optimum onnxruntime
RUN pip install autoawq
RUN pip install gptqmodel --no-build-isolation
RUN pip install -U datasets timm transformers accelerate peft diffusers opencv-python kenlm evaluate
RUN pip install -U intel-openmp
# install bitsandbytes
RUN git clone https://github.com/bitsandbytes-foundation/bitsandbytes.git && cd bitsandbytes/ && \
cmake -DCOMPUTE_BACKEND=cpu -S . && make && pip install . && cd ../
# CPU don't need triton
RUN pip uninstall triton -y
ENV LD_PRELOAD=${LD_PRELOAD}:/opt/venv/lib/libiomp5.so:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4
ENV KMP_AFFINITY=granularity=fine,compact,1,0
RUN touch /entrypoint.sh
RUN chmod +x /entrypoint.sh
RUN echo "#!/bin/bash" >> /entrypoint.sh
RUN echo "/bin/bash" >> /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -0,0 +1,59 @@
ARG BASE_DOCKER_IMAGE
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
# We will install `accelerate@main` in Past CI workflow file
RUN python3 -m pip uninstall -y accelerate
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/deepspeedai/DeepSpeed/issues/2010
# RUN git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -20,9 +20,14 @@ WORKDIR /
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# On ROCm, torchcodec is required to decode audio files
# RUN python3 -m pip install --no-cache-dir torchcodec
# Install transformers
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
# Remove tensorflow and flax as they are no longer supported by transformers
RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
@ -32,13 +37,3 @@ RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels
# On ROCm, torchcodec is required to decode audio files and 0.4 or 0.6 fails
RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
cd flash-attention && \
GPU_ARCHS="gfx942" python setup.py install
RUN python3 -m pip install --no-cache-dir einops

View File

@ -4,7 +4,7 @@ LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'

View File

@ -11,7 +11,7 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.7.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
@ -25,6 +25,8 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,9 +9,9 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.6.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
ARG CUDA='cu121'
# Disable kernel mapping for quantization tests
ENV DISABLE_KERNEL_MAPPING=1
@ -30,20 +30,31 @@ RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio tor
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add gptqmodel for gtpq quantization testing, installed from source for pytorch==2.6.0 compatibility
RUN python3 -m pip install lm_eval
RUN git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel && pip install -v . --no-build-isolation
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add PEFT
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add bitsandbytes
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add vptq for quantization testing
RUN pip install vptq
# # Add gptqmodel
# RUN python3 -m pip install --no-cache-dir gptqmodel
# Add spqr for quantization testing
# Commented for now as No matching distribution found we need to reach out to the authors
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
@ -52,11 +63,24 @@ RUN python3 -m pip install --no-cache-dir hqq
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# New release v0.2.8
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir optimum-quanto
# Add eetq for quantization testing
RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
# # Add flute-kernel and fast_hadamard_transform for quantization testing
# # Commented for now as they cause issues with the build
# # TODO: create a new workflow to test them
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
# Add fp-quant for quantization testing
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Add compressed-tensors for quantization testing
RUN python3 -m pip install --no-cache-dir compressed-tensors
@ -64,10 +88,7 @@ RUN python3 -m pip install --no-cache-dir compressed-tensors
RUN python3 -m pip install --no-cache-dir amd-quark
# Add AutoRound for quantization testing
RUN python3 -m pip install --no-cache-dir auto-round
# Add torchao for quantization testing
RUN python3 -m pip install --no-cache-dir torchao
RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
# Add transformers in editable mode
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
@ -81,27 +102,3 @@ RUN python3 -m pip uninstall -y flash-attn
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Add fp-quant for quantization testing
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.2.0"
# Low usage or incompatible lib, will enable later on
# # Add aqlm for quantization testing
# RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# # Add vptq for quantization testing
# RUN pip install vptq
# Add spqr for quantization testing
# Commented for now as No matching distribution found we need to reach out to the authors
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
# # Add eetq for quantization testing
# RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
# # Add flute-kernel and fast_hadamard_transform for quantization testing
# # Commented for now as they cause issues with the build
# # TODO: create a new workflow to test them
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git

View File

@ -0,0 +1,25 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
# If set to nothing, will install the latest version
ARG TENSORFLOW='2.13'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir -U "tensorflow_probability<0.22"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -20,21 +20,22 @@ To generate the documentation, you first have to build it. Several packages are
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[dev]"
pip install -e ".[docs]"
```
> [!NOTE]
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
Then you need to install our special tool that builds the documentation:
```bash
pip install git+https://github.com/huggingface/doc-builder
```
> [!NOTE]
> You only need to generate the documentation to inspect it locally (if you're planning changes and want to
> check how they look before committing for instance). You don't have to commit the built documentation.
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to commit the built documentation.
---
## Building the documentation
@ -71,8 +72,12 @@ doc-builder preview transformers docs/source/en/
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
> [!NOTE]
> The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
@ -159,9 +164,6 @@ These classes should be added using our Markdown syntax. Usually as follows:
[[autodoc]] XXXConfig
```
> [!IMPORTANT]
> Always add a blank line after `[[autodoc]]` to ensure it passes the CI/CD checks.
This will include every public method of the configuration that is documented. If for some reason you wish for a method
not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:

View File

@ -50,7 +50,7 @@ Begin translating the text!
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
- If the `_toctree.yml` file doesn't exist for your language, create one by copying the English version and removing unrelated sections.
- If the `_toctree.yml` file doesnt exist for your language, create one by copying the English version and removing unrelated sections.
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
Heres an example structure for the `_toctree.yml` file:

View File

@ -123,6 +123,8 @@
title: تشغيل التدريب على Amazon SageMaker
- local: serialization
title: التصدير إلى ONNX
- local: tflite
title: التصدير إلى TFLite
- local: torchscript
title: التصدير إلى TorchScript
- local: notebooks
@ -182,6 +184,8 @@
# title: التدريب الفعال على وحدة المعالجة المركزية (CPU)
# - local: perf_train_cpu_many
# title: التدريب الموزع لوحدة المعالجة المركزية (CPU)
# - local: perf_train_tpu_tf
# title: التدريب على (TPU) باستخدام TensorFlow
# - local: perf_train_special
# title: تدريب PyTorch على Apple silicon
# - local: perf_hardware
@ -199,6 +203,8 @@
# title: إنشاء نموذج كبير
# - local: debugging
# title: تصحيح الأخطاء البرمجية
# - local: tf_xla
# title: تكامل XLA لنماذج TensorFlow
# - local: perf_torch_compile
# title: تحسين الاستدلال باستخدام `torch.compile()`
# title: الأداء وقابلية التوسع
@ -254,6 +260,8 @@
# title: التكوين
# - local: main_classes/data_collator
# title: مجمع البيانات
# - local: main_classes/keras_callbacks
# title: استدعاءات Keras
# - local: main_classes/logging
# title: التسجيل
# - local: main_classes/model

View File

@ -52,7 +52,7 @@
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
</div>
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PreTrainedConfig.from_pretrained`]:
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
@ -115,6 +115,8 @@
## النموذج التلقائي (AutoModel)
<frameworkcontent>
<pt>
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
```py
@ -141,4 +143,25 @@
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</pt>
<tf>
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</tf>
</frameworkcontent>

View File

@ -304,7 +304,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "NousResearch/Hermes-2-Pro-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype=torch.bfloat16, device_map="auto")
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
```python
messages = [

View File

@ -25,7 +25,7 @@ chat = [
import torch
from transformers import pipeline
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
response = pipe(chat, max_new_tokens=512)
print(response[0]['generated_text'][-1]['content'])
```
@ -126,7 +126,7 @@ chat = [
]
# 1: تحميل النموذج والمحلل
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
# 2: تطبيق قالب الدردشة
@ -164,7 +164,7 @@ print("Decoded output:\n", decoded_output)
### اعتبارات الذاكرة
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "dtype" كما فعلنا أعلاه.
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "torch_dtype" كما فعلنا أعلاه.
ومن الممكن أيضًا النزول إلى أقل من 16 بت باستخدام "التكميم"، وهي طريقة لضغط أوزان النموذج بطريقة تفقد بعض المعلومات. يسمح هذا بضغط كل معلمة إلى 8 بتات أو 4 بتات أو حتى أقل. لاحظ أنه، خاصة في 4 بتات، قد تتأثر جودة ناتج النموذج سلبًا، ولكن غالبًا ما يكون هذا مقايضة تستحق القيام بها لتناسب نموذج محادثة أكبر وأكثر قدرة في الذاكرة. دعنا كيف يمكننا تطبيق ذلك باستخدام مكتبة `bitsandbytes`:

View File

@ -54,19 +54,19 @@ DistilBertConfig {
```
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PreTrainedConfig.from_pretrained`] :
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PreTrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PreTrainedConfig.from_pretrained`]:
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
@ -81,6 +81,8 @@ DistilBertConfig {
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
<frameworkcontent>
<pt>
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
```py
@ -103,11 +105,39 @@ DistilBertConfig {
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</pt>
<tf>
قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</tf>
</frameworkcontent>
### رؤوس النموذج
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
<frameworkcontent>
<pt>
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
```py
@ -123,6 +153,25 @@ DistilBertConfig {
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</pt>
<tf>
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## مجزئ النصوص

View File

@ -20,11 +20,11 @@
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
```python
from transformers import PreTrainedConfig
from transformers import PretrainedConfig
from typing import List
class ResnetConfig(PreTrainedConfig):
class ResnetConfig(PretrainedConfig):
model_type = "resnet"
def __init__(
@ -58,11 +58,11 @@ class ResnetConfig(PreTrainedConfig):
```
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
- يجب أن ترث من `PreTrainedConfig`،
- يجب أن تقبل دالة `__init__` الخاصة بـ `PreTrainedConfig` أي معامﻻت إضافية kwargs،
- يجب أن ترث من `PretrainedConfig`،
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PreTrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
@ -82,7 +82,7 @@ resnet50d_config.save_pretrained("custom-resnet")
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PreTrainedConfig`]، مثل [`~PreTrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
## كتابة نموذج مخصص

View File

@ -13,11 +13,11 @@
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization).
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)](https://huggingface.co/papers/2305.13245).
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://huggingface.co/papers/2305.13245)).
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.
@ -73,7 +73,7 @@ model = AutoModelForCausalLM.from_pretrained("bigscience/bloom", device_map="aut
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", dtype=torch.bfloat16, device_map="auto", pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=0)
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -114,7 +114,7 @@ bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
> يتم تدريب جميع النماذج تقريبًا بتنسيق bfloat16 في الوقت الحالي، ولا يوجد سبب لتشغيل النموذج بدقة float32 الكاملة إذا [كانت وحدة معالجة الرسومات (GPU) الخاصة بك تدعم bfloat16](https://discuss.pytorch.org/t/bfloat16-native-support/117155/5). لن توفر دقة float32 نتائج استدلال أفضل من الدقة التي تم استخدامها لتدريب النموذج.
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"torch_dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., torch_dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
دعونا نحدد وظيفة `flush(...)` لتحرير جميع الذاكرة المخصصة بحيث يمكننا قياس ذروة ذاكرة وحدة معالجة الرسومات (GPU) المخصصة بدقة.
@ -329,6 +329,174 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
لنلقِ نظرة على مثال عملي.
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
```python
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
-----
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
Answer: Sure. Here is a function that does that.
def alternating(list1, list2):
results = []
for i in range(len(list1)):
results.append(list1[i])
results.append(list2[i])
return results
Question: Can you write some test cases for this function?
Answer: Sure, here are some tests.
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
assert alternating([], []) == []
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
Answer: Here is the modified function.
def alternating(list1, list2):
results = []
for i in range(min(len(list1), len(list2))):
results.append(list1[i])
results.append(list2[i])
if len(list1) > len(list2):
results.extend(list1[i+1:])
else:
results.extend(list2[i+1:])
return results
-----
"""
```
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
```python
long_prompt = 10 * system_prompt + prompt
```
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
```python
import time
start_time = time.time()
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 10.96854019165039 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
37.668193340301514
```
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
```python
flush()
```
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
```python
model.to_bettertransformer()
```
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
```py
start_time = time.time()
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 3.0211617946624756 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
دعنا نقيس استهلاك الذاكرة لآخر مرة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
32.617331981658936
```
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
```py
flush()
```
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
## 3. الابتكارات المعمارية
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:

View File

@ -65,15 +65,43 @@ pip install huggingface_hub
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
<frameworkcontent>
<pt>
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
حدد `from_pt=True` لتحويل نقطة تحقق من PyTorch إلى TensorFlow:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
بعد ذلك، يمكنك حفظ نموذج TensorFlow الجديد بنقطة التحقق الجديدة:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
إذا كان النموذج متاحًا في Flax، فيمكنك أيضًا تحويل نقطة تحقق من PyTorch إلى Flax:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## دفع نموذج أثناء التدريب
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
@ -99,6 +127,29 @@ pip install huggingface_hub
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
- دليل إخراج لنموذجك.
- مُجزّئ اللغوي.
- `hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
أضف الاستدعاء إلى [`fit`](https://keras.io/api/models/model_training_apis/)، وسيقوم 🤗 Transformers بدفع النموذج المدرب إلى Hub:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## استخدام دالة `push_to_hub`
@ -169,4 +220,4 @@ pip install huggingface_hub
* قم بإنشاء ملف `README.md` وتحميله يدويًا.
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).

View File

@ -39,6 +39,7 @@
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
| [كيفية تدريب نموذج لغة من البداية](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| تسليط الضوء على جميع الخطوات لتدريب نموذج Transformer بشكل فعال على بيانات مخصصة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
| [كيفية إنشاء نص](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| كيفية استخدام أساليب فك التشفير المختلفة لإنشاء اللغة باستخدام المحولات | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
| [كيفية إنشاء نص (مع قيود)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| كيفية توجيه إنشاء اللغة باستخدام القيود التي يوفرها المستخدم | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| كيف يدفع Reformer حدود النمذجة اللغوية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
#### رؤية الكمبيوتر[[pytorch-cv]]

View File

@ -90,7 +90,7 @@ out = transcriber(...) # سيتم الرجوع إلى استخدام `my_parame
transcriber = pipeline(model="openai/whisper-large-v2", device=0)
```
إذا كان النموذج كبيرًا جدًا بالنسبة لوحدة معالجة الرسومات (GPU) واحدة، وأنت تستخدم PyTorch، فيمكنك تعيين `dtype='float16'` لتمكين الاستدلال بدقة FP16. عادةً ما لا يتسبب ذلك في حدوث انخفاضات كبيرة في الأداء، ولكن تأكد من تقييمه على نماذجك!
إذا كان النموذج كبيرًا جدًا بالنسبة لوحدة معالجة الرسومات (GPU) واحدة، وأنت تستخدم PyTorch، فيمكنك تعيين `torch_dtype='float16'` لتمكين الاستدلال بدقة FP16. عادةً ما لا يتسبب ذلك في حدوث انخفاضات كبيرة في الأداء، ولكن تأكد من تقييمه على نماذجك!
بدلاً من ذلك، يمكنك تعيين `device_map="auto"` لتحديد كيفية تحميل مخزنات النموذج وتخزينها تلقائيًا. يتطلب استخدام معامل `device_map` مكتبه 🤗 [Accelerate](https://huggingface.co/docs/accelerate):
@ -273,7 +273,7 @@ pip install pytesseract
import torch
from transformers import pipeline
pipe = pipeline(model="facebook/opt-1.3b", dtype=torch.bfloat16, device_map="auto")
pipe = pipeline(model="facebook/opt-1.3b", torch_dtype=torch.bfloat16, device_map="auto")
output = pipe("This is a cool example!", do_sample=True, top_p=0.95)
```

View File

@ -152,6 +152,8 @@ pip install datasets
قم بتعيين معلمة `return_tensors` إلى إما `pt` لـ PyTorch، أو `tf` لـ TensorFlow:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
@ -171,6 +173,33 @@ pip install datasets
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
<Tip>

View File

@ -12,10 +12,20 @@
ستحتاج أيضًا إلى تثبيت إطار عمل التعلم الآلي المفضل لديك:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
## خط الأنابيب
@ -112,6 +122,8 @@ label: NEGATIVE, with score: 0.5309
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي):
```py
@ -120,6 +132,18 @@ label: NEGATIVE, with score: 0.5309
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي:
@ -168,6 +192,8 @@ label: NEGATIVE, with score: 0.5309
يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
@ -178,6 +204,20 @@ label: NEGATIVE, with score: 0.5309
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
<Tip>
@ -187,6 +227,8 @@ label: NEGATIVE, with score: 0.5309
### AutoModel
<frameworkcontent>
<pt>
تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]:
```py
@ -222,6 +264,39 @@ label: NEGATIVE, with score: 0.5309
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
راجع [ملخص المهام](./task_summary) للمهام المدعومة بواسطة فئة [`AutoModel`].
</Tip>
الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. يمكنك تمرير المصفوفات كما هي:
```py
>>> tf_outputs = tf_model(tf_batch)
```
يقوم النموذج بإخراج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` لاسترداد الاحتمالات:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
@ -231,6 +306,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
### حفظ النموذج
<frameworkcontent>
<pt>
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`PreTrainedModel.save_pretrained`]:
```py
@ -244,9 +321,28 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`TFPreTrainedModel.save_pretrained`]:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
@ -254,6 +350,17 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>
## إنشاء نماذج مخصصة
@ -268,6 +375,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`AutoModel.from_config`]:
```py
@ -275,6 +384,17 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`TFAutoModel.from_config`]:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
الق نظرة على دليل [إنشاء بنية مخصصة](./create_a_model) لمزيد من المعلومات حول بناء التكوينات المخصصة.

View File

@ -76,6 +76,8 @@ pip install -r requirements.txt
## تشغيل نص برمجي
<frameworkcontent>
<pt>
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets).
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) على بنية تدعم الملخص.
@ -96,6 +98,28 @@ python examples/pytorch/summarization/run_summarization.py \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets/).
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام Keras على بنية تدعم الملخص.
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
- يتطلب نموذج T5 ماعمل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## التدريب الموزع والدقة المختلطة
@ -125,6 +149,8 @@ torchrun \
## تشغيل نص برمجي على وحدة معالجة الدقة الفائقة (TPU)
<frameworkcontent>
<pt>
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. يدعم PyTorch وحدات معالجة الدقة الفائقة (TPUs) مع [XLA](https://www.tensorflow.org/xla) مجمع الدقة الفائقة للتعلم العميق (راجع [هنا](https://github.com/pytorch/xla/blob/master/README.md) لمزيد من التفاصيل). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتشغيل نص `xla_spawn.py` البرمجي واستخدم معامل `num_cores` لتعيين عدد وحدات معالجة الدقة الفائقة (TPU) التي تريد استخدامها.
@ -143,6 +169,25 @@ python xla_spawn.py --num_cores 8 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. تستخدم نصوص TensorFlow البرمجية استراتيجية [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) للتدريب على وحدات معالجة الدقة الفائقة (TPUs). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتمرير اسم مورد وحدة معالجة الدقة الفائقة (TPU) إلى حجة `tpu`.
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## تشغيل نص برمجي باستخدام 🤗 Accelerate

View File

@ -182,6 +182,8 @@ pip install transformers datasets evaluate
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأفضل أن تقوم بـ *الحشو الديناميكي* للجمل إلى الطول الأطول في الدفعة أثناء التجميع، بدلاً من حشو كامل المجموعة من البيانات إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
```py
@ -191,9 +193,23 @@ pip install transformers datasets evaluate
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
```
</pt>
<tf>
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
```py
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -251,6 +267,75 @@ Perplexity: 49.61
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتدريب نموذج باستخدام Keras، اطلع على [البرنامج التعليمي الأساسي](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لتدريب نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معاملات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل DistilGPT2 باستخدام [`TFAutoModelForCausalLM`]:
```py
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
```
حول مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة الافتراضية، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # لا يوجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومجمّع البيانات في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_clm-model",
... tokenizer=tokenizer,
... )
```
أخيراً، أنت جاهز لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العصور، والتعليقات الخاصة بك لتدريب النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -280,6 +365,8 @@ Perplexity: 49.61
[{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
```
<frameworkcontent>
<pt>
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
```py
@ -305,3 +392,31 @@ Perplexity: 49.61
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
```
</pt>
<tf>
قم بتقسيم النص وإرجاع `input_ids` كـ TensorFlow tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="tf").input_ids
```
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الملخص. للمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والبارامترات للتحكم في التوليد، راجع صفحة [استراتيجيات توليد النص](../generation_strategies).
```py
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model")
>>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
```
فك ترميز الرموز المولدة مرة أخرى إلى نص:
```py
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']
```
</tf>
</frameworkcontent>

View File

@ -176,6 +176,8 @@ pip install transformers datasets evaluate
الآن، قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأكثر كفاءة أن تقوم بـ *الحشو الديناميكي* ليصل طولها إلى أطول جملة في الدفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
@ -185,9 +187,23 @@ pip install transformers datasets evaluate
>>> tokenizer.pad_token = tokenizer.eos_token
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)
```
</pt>
<tf>
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
```py
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -247,6 +263,75 @@ Perplexity: 8.76
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لتعديل نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل DistilRoBERTa باستخدام [`TFAutoModelForMaskedLM`]:
```py
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base")
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers لديها جميعها دالة خسارة افتراضية ذات صلة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة ما لم تكن تريد ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # لا توجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالج الرموز في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_mlm_model",
... tokenizer=tokenizer,
... )
```
أخيراً، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد العصور، والتعليقات الخاصة بك لتعديل النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائياً إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -287,6 +372,8 @@ Perplexity: 8.76
'sequence': 'The Milky Way is a small galaxy.'}]
```
<frameworkcontent>
<pt>
قم بتجزئة النص وإرجاع `input_ids` كمتجهات PyTorch. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
```py
@ -318,3 +405,38 @@ The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.
```
</pt>
<tf>
قم بتقسيم النص إلى رموز وإرجاع `input_ids` كـ TensorFlow tensors. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_mlm_model")
>>> inputs = tokenizer(text, return_tensors="tf")
>>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1]
```
قم بتمرير المدخلات إلى النموذج وإرجاع `logits` للرمز المقنع:
```py
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("username/my_awesome_eli5_mlm_model")
>>> logits = model(**inputs).logits
>>> mask_token_logits = logits[0, mask_token_index, :]
```
ثم قم بإرجاع الرموز الثلاثة المقنعة ذات الاحتمالية الأعلى وطباعتها:
```py
>>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy()
>>> for token in top_3_tokens:
... print(text.replace(tokenizer.mask_token, tokenizer.decode([token])))
The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.
```
</tf>
</frameworkcontent>

View File

@ -116,6 +116,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
يقوم `DataCollatorForMultipleChoice` بتجميع جميع مدخلات النموذج، ويطبق الحشو، ثم يعيد تجميع النتائج في شكلها الأصلي:
<frameworkcontent>
<pt>
```py
>>> from dataclasses import dataclass
@ -156,6 +158,50 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
... batch["labels"] = torch.tensor(labels, dtype=torch.int64)
... return batch
```
</pt>
<tf>
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import tensorflow as tf
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Data collator that will dynamically pad the inputs for multiple choice received.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="tf",
... )
... batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
... batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
... return batch
```
</tf>
</frameworkcontent>
## التقييم (Evaluate)
@ -182,6 +228,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -235,6 +283,93 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فراجع الدرس الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 2
>>> total_train_steps = (len(tokenized_swag["train"]) // batch_size) * num_train_epochs
>>> optimizer, schedule = create_optimizer(init_lr=5e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
ثم يمكنك تحميل BERT باستخدام [`TFAutoModelForMultipleChoice`]:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_swag["train"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_swag["validation"],
... shuffle=False,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة مناسبة للمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> model.compile(optimizer=optimizer) # لا توجد وسيطة خسارة!
```
الخطوتان الأخيرتان قبل بدء التدريب هما: حساب دقة التنبؤات، وتوفير طريقة لرفع النموذج إلى Hub. ويمكن تحقيق ذلك باستخدام [استدعاءات Keras](../main_classes/keras_callbacks)
مرر دالتك `compute_metrics` إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك ومعالجك في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_model",
... tokenizer=tokenizer,
... )
```
ثم قم بتضمين الاستدعاءات معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! استدعِ[`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب والاستدعاءات لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=2, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -255,6 +390,8 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
>>> candidate2 = "The law applies to baguettes."
```
<frameworkcontent>
<pt>
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد تنسورات PyTorch. يجب عليك أيضًا إنشاء بعض `العلامات`:
```py
@ -282,3 +419,34 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
>>> predicted_class
0
```
</pt>
<tf>
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد موترات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_swag_model")
>>> inputs = tokenizer([[prompt, candidate1], [prompt, candidate2]], return_tensors="tf", padding=True)
```
مرر مدخلاتك إلى النموذج وأعد القيم logits:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("username/my_awesome_swag_model")
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in inputs.items()}
>>> outputs = model(inputs)
>>> logits = outputs.logits
```
استخرج الفئة ذات الاحتمالية الأكبر:
```py
>>> predicted_class = int(tf.math.argmax(logits, axis=-1)[0])
>>> predicted_class
0
```
</tf>
</frameworkcontent>

View File

@ -167,15 +167,29 @@ pip install transformers datasets evaluate
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DefaultDataCollator`]. بخلاف مجمّعات البيانات الأخرى في 🤗 Transformers، لا يطبق [`DefaultDataCollator`] أي معالجة مسبقة إضافية مثل الحشو.
<frameworkcontent>
<pt>
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator()
```
</pt>
<tf>
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -226,6 +240,82 @@ pip install transformers datasets evaluate
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن، وجدول معدل التعلم، وبعض المعاملات الفائقة للتدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_epochs = 2
>>> total_train_steps = (len(tokenized_squad["train"]) // batch_size) * num_epochs
>>> optimizer, schedule = create_optimizer(
... init_lr=2e-5,
... num_warmup_steps=0,
... num_train_steps=total_train_steps,
... )
```
ثم يمكنك تحميل DistilBERT باستخدام [`TFAutoModelForQuestionAnswering`]:
```py
>>> from transformers import TFAutoModelForQuestionAnswering
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_squad["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_squad["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
```
آخر شيء يجب إعداده قبل بدء التدريب هو توفير طريقة لدفع نموذجك إلى Hub. يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالجك المعجمي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_qa_model",
... tokenizer=tokenizer,
... )
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العهود، ومعاودة الاتصال الخاصة بك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -267,6 +357,8 @@ pip install transformers datasets evaluate
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسّم النص وأرجع تنسورات PyTorch:
@ -302,3 +394,39 @@ pip install transformers datasets evaluate
>>> tokenizer.decode(predict_answer_tokens)
'176 billion parameters and can generate text in 46 languages natural languages and 13'
```
</pt>
<tf>
قم بتحليل النص المعجمي وأعد موترات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_qa_model")
>>> inputs = tokenizer(question, context, return_tensors="tf")
```
مرر مدخلاتك إلى النموذج وأعد `logits`:
```py
>>> from transformers import TFAutoModelForQuestionAnswering
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("my_awesome_qa_model")
>>> outputs = model(**inputs)
```
احصل على أعلى احتمال من مخرجات النموذج لموضعي البداية والنهاية:
```py
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
```
استخلاص الإجابة من الرموز المتوقعة:
```py
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'176 billion parameters and can generate text in 46 languages natural languages and 13'
```
</tf>
</frameworkcontent>

View File

@ -92,12 +92,24 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`]. الأكثر كفاءة هو استخدام الحشو الديناميكي لجعل الجمل متساوية في الطول داخل كل دفعة، بدلًا من حشو كامل البيانات إلى الحد الأقصى للطول.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم(Evaluate)
@ -131,6 +143,8 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
>>> label2id = {"NEGATIVE": 0, "POSITIVE": 1}
```
<frameworkcontent>
<pt>
<Tip>
إذا لم تكن على دراية بضبط نموذج دقيق باستخدام [`Trainer`], فالق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
@ -191,6 +205,98 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بضبط نموذج باستخدام Keras، قم بالاطلاع على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> import tensorflow as tf
>>> batch_size = 16
>>> num_epochs = 5
>>> batches_per_epoch = len(tokenized_imdb["train"]) // batch_size
>>> total_train_steps = int(batches_per_epoch * num_epochs)
>>> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForSequenceClassification`] بالإضافة إلى عدد التصنيفات المتوقعة، وتعيينات التسميات:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(
... "distilbert/distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id
... )
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_imdb["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_imdb["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب الدقة من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
قم بتمرير دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك والمجزئ اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_model",
... tokenizer=tokenizer,
... )
```
ثم اجمع الاستدعاءات معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد الحقبات، واستدعاءاتك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -222,6 +328,8 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قم يتجزئة النص وإرجاع تنسورات PyTorch:
```py
@ -248,3 +356,32 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
>>> model.config.id2label[predicted_class_id]
'POSITIVE'
```
</pt>
<tf>
قم بتحليل النص وإرجاع تنسيقات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_model")
>>> inputs = tokenizer(text, return_tensors="tf")
```
قم بتمرير مدخلاتك إلى النموذج وإرجاع `logits`:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_model")
>>> logits = model(**inputs).logits
```
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم `id2label` لتحويلها إلى تصنيف نصي:
```py
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'POSITIVE'
```
</tf>
</frameworkcontent>

View File

@ -118,12 +118,24 @@ pip install transformers datasets evaluate rouge_score
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء عملية التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم (Evaluate)
@ -158,6 +170,8 @@ pip install transformers datasets evaluate rouge_score
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -212,6 +226,91 @@ pip install transformers datasets evaluate rouge_score
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل T5 باستخدام [`TFAutoModelForSeq2SeqLM`]:
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_billsum["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... tokenized_billsum["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة افتراضيًا، لذلك لست بحاجة إلى تحديد واحدة ما لم تكن ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب درجة ROUGE من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_test_set)
```
حدد مكان دفع نموذجك ومُحلِّلك اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_billsum_model",
... tokenizer=tokenizer,
... )
```
ثم اجمع استدعاءاتك معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -242,6 +341,8 @@ pip install transformers datasets evaluate rouge_score
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
```py
@ -266,3 +367,31 @@ pip install transformers datasets evaluate rouge_score
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
```
</pt>
<tf>
قسم النص وإرجع `input_ids` كتنسورات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_billsum_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء التلخيص. لمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والمعلمات للتحكم في التوليد، راجع واجهة برمجة تطبيقات [توليد النص](../main_classes/text_generation).
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("username/my_awesome_billsum_model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
```
فك تشفير معرفات الرموز المولدة مرة أخرى إلى نص:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
```
</tf>
</frameworkcontent>

View File

@ -151,11 +151,22 @@ pip install transformers datasets evaluate seqeval
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`].من الأفضل استخدام *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بالكامل إلى الطول الأقصى.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم(Evaluate)
@ -235,6 +246,8 @@ pip install transformers datasets evaluate seqeval
... }
```
<frameworkcontent>
<pt>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
@ -289,6 +302,101 @@ pip install transformers datasets evaluate seqeval
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
للتعديل على نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 3
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=2e-5,
... num_train_steps=num_train_steps,
... weight_decay_rate=0.01,
... num_warmup_steps=0,
... )
```
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForTokenClassification`] إلى جانب عدد التسميات المتوقعة، وتخطيطات التسميات:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained(
... "distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
... )
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` مع [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_wnut["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_wnut["validation"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
هيّئ النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers تتضمن دالة خسارة افتراضية مرتبطة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب درجات seqeval من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك والمحلل اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_wnut_model",
... tokenizer=tokenizer,
... )
```
ثم جمّع callbacks الخاصة بك معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز الآن لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع بيانات التدريب والتحقق، وعدد الحقبات، وcallbacks لتعديل النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -349,6 +457,8 @@ pip install transformers datasets evaluate seqeval
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسّم النص إلى رموز وأرجع المُوتّرات بلغة PyTorch:
```py
@ -392,3 +502,49 @@ pip install transformers datasets evaluate seqeval
'O',
'O']
```
</pt>
<tf>
قسّم النص إلى رموز وأرجع المُوتّرات ب TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> inputs = tokenizer(text, return_tensors="tf")
```
مرر مدخلاتك إلى النموذج واحصل على `logits`:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> logits = model(**inputs).logits
```
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم جدول `id2label` الخاصة بالنموذج لتحويلها إلى تسمية نصية:
```py
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_token_class
['O',
'O',
'B-location',
'I-location',
'B-group',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'B-location',
'B-location',
'O',
'O']
```
</tf>
</frameworkcontent>

Some files were not shown because too many files have changed in this diff Show More