mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
Compare commits
5 Commits
fix_whatev
...
v4.30.0
Author | SHA1 | Date | |
---|---|---|---|
fe861e578f | |||
b3e27a8057 | |||
53e1f5cf66 | |||
17db177714 | |||
905892f090 |
@ -292,7 +292,7 @@ Current number of checkpoints: ** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
|
||||
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
|
||||
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
|
||||
1. **[Autoformer](https://huggingface.co/docs/transformers/main/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
|
||||
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
|
||||
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
||||
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
||||
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
|
||||
@ -406,7 +406,7 @@ Current number of checkpoints: ** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
|
||||
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MobileViTV2](https://huggingface.co/docs/transformers/main/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
@ -448,7 +448,7 @@ Current number of checkpoints: ** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
|
||||
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
|
||||
|
@ -61,7 +61,7 @@ from transformers.utils import check_min_version, get_full_repo_name, send_examp
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils import check_min_version, get_full_repo_name, send_examp
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
||||
|
@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
||||
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
|
||||
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -43,7 +43,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -53,7 +53,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils import PaddingStrategy, check_min_version, get_full_repo
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
# You should update this to your particular problem to have better documentation of `model_type`
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
||||
|
||||
|
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
|
||||
|
||||
|
@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
||||
|
||||
|
@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")
|
||||
|
@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version(
|
||||
"datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt"
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
|
@ -50,7 +50,7 @@ from transformers.utils import PaddingStrategy, check_min_version, send_example_
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, check_min_version,
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
# region Checking dependencies
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
task_to_keys = {
|
||||
"cola": ("sentence", None),
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
# region Dependencies and constants
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.30.0.dev0")
|
||||
check_min_version("4.30.0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
|
||||
|
||||
|
4
setup.py
4
setup.py
@ -98,7 +98,7 @@ if stale_egg_info.exists():
|
||||
# 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py
|
||||
_deps = [
|
||||
"Pillow",
|
||||
"accelerate>=0.20.1",
|
||||
"accelerate>=0.20.2",
|
||||
"av==9.2.0", # Latest version of PyAV (10.0.0) has issues with audio stream.
|
||||
"beautifulsoup4",
|
||||
"black~=23.1",
|
||||
@ -428,7 +428,7 @@ install_requires = [
|
||||
|
||||
setup(
|
||||
name="transformers",
|
||||
version="4.30.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="4.30.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)",
|
||||
author_email="transformers@huggingface.co",
|
||||
description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow",
|
||||
|
@ -18,7 +18,7 @@
|
||||
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
|
||||
# in the namespace without actually importing anything (and especially none of the backends).
|
||||
|
||||
__version__ = "4.30.0.dev0"
|
||||
__version__ = "4.30.0"
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
# 2. run `make deps_table_update``
|
||||
deps = {
|
||||
"Pillow": "Pillow",
|
||||
"accelerate": "accelerate>=0.20.1",
|
||||
"accelerate": "accelerate>=0.20.2",
|
||||
"av": "av==9.2.0",
|
||||
"beautifulsoup4": "beautifulsoup4",
|
||||
"black": "black~=23.1",
|
||||
|
@ -668,7 +668,8 @@ DEPARALLELIZE_DOCSTRING = r"""
|
||||
GPT2_START_DOCSTRING,
|
||||
)
|
||||
class GPT2Model(GPT2PreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
||||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
||||
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
@ -1149,6 +1150,7 @@ input sequence).
|
||||
GPT2_START_DOCSTRING,
|
||||
)
|
||||
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
||||
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
@ -1377,6 +1379,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
||||
GPT2_START_DOCSTRING,
|
||||
)
|
||||
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
||||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
@ -1600,6 +1603,7 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
||||
GPT2_START_DOCSTRING,
|
||||
)
|
||||
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
||||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
|
@ -1339,6 +1339,11 @@ class TestCasePlus(unittest.TestCase):
|
||||
AcceleratorState._reset_state()
|
||||
PartialState._reset_state()
|
||||
|
||||
# delete all the env variables having `ACCELERATE` in them
|
||||
for k in list(os.environ.keys()):
|
||||
if "ACCELERATE" in k:
|
||||
del os.environ[k]
|
||||
|
||||
|
||||
def mockenv(**kwargs):
|
||||
"""
|
||||
|
@ -134,6 +134,8 @@ from .trainer_utils import (
|
||||
)
|
||||
from .training_args import OptimizerNames, ParallelMode, TrainingArguments
|
||||
from .utils import (
|
||||
ADAPTER_SAFE_WEIGHTS_NAME,
|
||||
ADAPTER_WEIGHTS_NAME,
|
||||
CONFIG_NAME,
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
@ -2177,11 +2179,20 @@ class Trainer:
|
||||
logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
|
||||
best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
|
||||
best_safe_model_path = os.path.join(self.state.best_model_checkpoint, SAFE_WEIGHTS_NAME)
|
||||
best_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_WEIGHTS_NAME)
|
||||
best_safe_adapter_model_path = os.path.join(self.state.best_model_checkpoint, ADAPTER_SAFE_WEIGHTS_NAME)
|
||||
|
||||
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
|
||||
if os.path.exists(best_model_path) or os.path.exists(best_safe_model_path):
|
||||
if (
|
||||
os.path.exists(best_model_path)
|
||||
or os.path.exists(best_safe_model_path)
|
||||
or os.path.exists(best_adapter_model_path)
|
||||
or os.path.exists(best_safe_adapter_model_path)
|
||||
):
|
||||
if self.is_deepspeed_enabled:
|
||||
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
|
||||
else:
|
||||
has_been_loaded = True
|
||||
if is_sagemaker_mp_enabled():
|
||||
if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
|
||||
# If the 'user_content.pt' file exists, load with the new smp api.
|
||||
@ -2207,10 +2218,10 @@ class Trainer:
|
||||
self.accelerator, model, self.state.best_model_checkpoint
|
||||
)
|
||||
else:
|
||||
if hasattr(model, "base_model") and getattr(model.base_model, "is_8bit_serializable", False):
|
||||
# If train base_8_bit_models using PEFT & LoRA, assume that adapter have been saved properly.
|
||||
if is_peft_available() and isinstance(model, PeftModel):
|
||||
# If train a model using PEFT & LoRA, assume that adapter have been saved properly.
|
||||
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
|
||||
if os.path.exists(os.path.join(self.state.best_model_checkpoint, "adapter_model.bin")):
|
||||
if os.path.exists(best_adapter_model_path) or os.path.exists(best_safe_adapter_model_path):
|
||||
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
|
||||
# Load_adapter has no return value present, modify it when appropriate.
|
||||
from torch.nn.modules.module import _IncompatibleKeys
|
||||
@ -2219,12 +2230,13 @@ class Trainer:
|
||||
else:
|
||||
logger.warning(
|
||||
"The intermediate checkpoints of PEFT may not be saved correctly, "
|
||||
"using `TrainerCallback` to save adapter_model.bin in corresponding folders, "
|
||||
f"using `TrainerCallback` to save {ADAPTER_WEIGHTS_NAME} in corresponding folders, "
|
||||
"here are some examples https://github.com/huggingface/peft/issues/96"
|
||||
)
|
||||
has_been_loaded = False
|
||||
else:
|
||||
# We can't do pure 8bit training using transformers.
|
||||
logger.warning("Could not loading a quantized checkpoint.")
|
||||
logger.warning("Could not load adapter model, make sure to have `peft>=0.3.0` installed")
|
||||
has_been_loaded = False
|
||||
else:
|
||||
# We load the model state dict on the CPU to avoid an OOM error.
|
||||
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
|
||||
@ -2236,7 +2248,7 @@ class Trainer:
|
||||
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
|
||||
# which takes *args instead of **kwargs
|
||||
load_result = model.load_state_dict(state_dict, False)
|
||||
if not is_sagemaker_mp_enabled():
|
||||
if not is_sagemaker_mp_enabled() and has_been_loaded:
|
||||
self._issue_warnings_after_load(load_result)
|
||||
elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
|
||||
load_result = load_sharded_checkpoint(
|
||||
|
@ -177,6 +177,8 @@ from .import_utils import (
|
||||
|
||||
WEIGHTS_NAME = "pytorch_model.bin"
|
||||
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
|
||||
ADAPTER_WEIGHTS_NAME = "adapter_model.bin"
|
||||
ADAPTER_SAFE_WEIGHTS_NAME = "adapter_model.safetensors"
|
||||
TF2_WEIGHTS_NAME = "tf_model.h5"
|
||||
TF2_WEIGHTS_INDEX_NAME = "tf_model.h5.index.json"
|
||||
TF_WEIGHTS_NAME = "model.ckpt"
|
||||
|
Reference in New Issue
Block a user