Compare commits

...

703 Commits

Author SHA1 Message Date
ca38d640b7 fix 2025-10-17 22:21:10 +02:00
b8011a3dc5 fix 2025-10-17 21:30:29 +02:00
a118c8e1c4 fix 2025-10-17 20:59:00 +02:00
0109c42409 fix 2025-10-17 20:30:23 +02:00
3c7552f733 fix 2025-10-17 15:40:54 +02:00
4757bf062b fix 2025-10-17 15:12:12 +02:00
aceaa7ce97 fix 2025-10-17 15:05:09 +02:00
c9293376a0 fix 2025-10-17 12:04:50 +02:00
e69d3ca150 check 1 2025-10-17 10:44:24 +02:00
bffad7f4fb check 1 2025-10-17 09:21:09 +02:00
740f952218 check 1 2025-10-17 06:57:10 +02:00
950c4e5303 check 1 2025-10-17 06:28:55 +02:00
89970f4797 check 1 2025-10-17 03:03:25 +02:00
a4a46e62a5 check 1 2025-10-16 21:32:04 +02:00
9b36498d5f 1 2025-10-16 21:16:53 +02:00
eefbf4ac8b 🌐 [i18n-KO] Translated llama4.md to Korean (#40396)
* docs: ko: llama4.md

* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

---------

Co-authored-by: TaskerJang <bymyself103@naver.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-10-16 11:28:27 -07:00
50ca781d78 🌐 [i18n-KO] Translated code_llama.md to Korean (#40558)
* docs: ko: code_llama.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

---------

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>
2025-10-16 11:27:46 -07:00
8739fc05c4 [i18n-KO] Translated big_bird.md to Korean (#40445)
* docs: ko: BigBird.md

* feat: nmt draft

* fix: manual edits
2025-10-16 11:23:56 -07:00
77b5ad65ee 🌐 [i18n-KO] Translated sam_hq.md to Korean (#41340)
* fix: manual edits

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-10-16 11:10:16 -07:00
a9731a725e 🌐 [i18n-KO] Translated chat_extras.md to Korean (#39863)
* docs: ko: chat_extras.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

* Apply suggestions from code review

* Update docs/source/ko/chat_extras.md
2025-10-16 10:41:03 -07:00
bdbc2d037b [Trainer] [Breaking change] use_cache default to False (#41585)
* use_cache default to `False` when training

* style

* Fix comment

* add checks

* style

* set

* switch
2025-10-16 18:51:36 +02:00
fe11cbb808 Erroring when KernelConfig is passed without use_kernels = True (#41657)
* update

* update
2025-10-16 18:08:46 +02:00
6344371a91 improve utils/check_bad_commit.py (#41658)
* robust

* robust

* robust

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-16 15:51:19 +00:00
a408384a88 Improve package version check (#41661)
fix
2025-10-16 17:31:58 +02:00
f7c33abab3 Small changes to benchmarking script (#41662) 2025-10-16 17:25:49 +02:00
9839d57a02 Fix serving continuous batching (#41624)
* udpate-serving-cb

* style

* style

* check none

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-10-16 17:24:21 +02:00
e85d5ab2bb Fix dtype casting with quantization (#41665)
fix dtype casting
2025-10-16 17:19:32 +02:00
1c36d407d5 Add in-out modalities as class attribute per model (#41366)
* update all models

* fix copies

* explanation comment

* better notation in omni model

* style

* fix copies

* output_modalities under generation mixin

* fix copies

* oh, glm4v also needs conversion
2025-10-16 17:11:06 +02:00
0215846d98 Switch to CB if cache_implementation == paged (#41655)
* Add a switch to CB in case of paged cache

* Added paged as a valid cache implem

* Added a fallback on inputs_ids as a name

* Rookie mistake

* Removed paged from cache implems

* Added warning about some  beam search args

* Moved up CB warning
2025-10-16 17:00:18 +02:00
9e99198e5e Use | for Optional and Union typing (#41646)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 14:29:54 +00:00
bf815e9b5e [Masks] Fix mask handling in eager for vision models (#41625)
add mask handling in case of models that do use it
2025-10-16 16:27:26 +02:00
vb
4a43e3d57c purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet (#41656) 2025-10-16 16:17:09 +02:00
8725ce10ed [Fix] Deepseek V3 expert bias routing (#41647)
* [Fix] Deepseek V3 expert bias routing

* [Fix] fix-copies

* [Fix] Run make style
2025-10-16 14:04:48 +00:00
1fb3fc4db0 [kernels] refactor function kernel calling (#41577)
* refactor function kernel callling

* nit

* don't pass the mapping

* use _kernels_available

* rm import
2025-10-16 15:43:02 +02:00
9176af574a Double router compute? (#41653)
* weird double router compute?

* flip it
2025-10-16 15:17:21 +02:00
503c933f36 Fix confusing cls assignment (#41642)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 13:01:07 +00:00
2aff20aff6 Fix typos in documentation (#41641)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:46 +00:00
981370c038 Format MarkDown documentation and tiny fixes (#41638)
* Fix MarkDown syntax

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:06 +00:00
eef9fb2af3 Fix EncoderDecoder cache (#41612)
* Fix EncoderDecoder cache

* Add the option for the ddp data tuples to have 2 elems

* Modifiy the order of the KV and sliding

* Adapted RAG and Whisper to new EncoderDecoderCache

* A single comma

* Remove kwargs in map

* Fixed order in manual injection cache test

* Slight changes to support legacy format

* Removed Nonnes
2025-10-16 14:55:41 +02:00
35dc8f0a2e Adjust device logging level and add minor fixes (#41636)
This commit addresses a noisy warning and improves the robustness of the base pipeline implementation.

- The device placement message in the pipeline base class has been changed from a `warning` to a `debug` log. This reduces log noise for users who are aware of their device setup, while still providing the information for debugging purposes.

- Additionally, potential `UnboundLocalError` exceptions in the `_pad` and `check_model_type` functions have been prevented by initializing variables before their conditional assignment.
2025-10-16 12:47:39 +00:00
2935a1be19 Fix fp32_ln for various models (#41605)
* Add is_causal to KosmosTextAttention

* Move get target_dtype to be imported elsewhere

* Fix fp32 flash attention bug in bark

* Fix is_causal in mllama

* Fix fp32 issue on StableLM

* Fix repo-consistency
2025-10-16 14:18:49 +02:00
b9bd8c45a1 [CI] Build translated docs (#41632)
fix
2025-10-16 14:01:33 +02:00
baecdb8a97 [Ernie 4.5 Moe] Fix Moe and offloading (#41385)
fix
2025-10-16 13:59:01 +02:00
44539827d5 [Executorch] Simplify for encoder models (#41627)
* Trigger Build

* revert extra treatment for executorch as we default to no vmapping now
2025-10-16 13:57:52 +02:00
143acfe2ce fix check inputs for text2text pipeline (#41556)
fix check inputs

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-16 11:42:41 +00:00
67fae90519 Fix FP-Quant quantization fallback CPU dispatch. (#41619)
* fp_quant fix

* Update quantizer_fp_quant.py
2025-10-16 11:41:01 +00:00
af2a66ced9 Migrate transformers cli to Typer (#41487)
* Add typer-slim as explicit dependency

* Migrate CLI to Typer

* code quality

* bump release candidate

* adapt test_cli.py

* Remove ./commands + adapt tests

* fix quality

* consistency

* doctested

* do not serve model in chat

* style

* will it fix them?

* fix test

* capitalize classes

* Rebase

* Rebase

* tests + fixup

tests + fixup

* csutom error message

* fix ?

* should be good

* fix caplog globally

* inner caplog

* last attempt

* Retry

* Let's try with capsys disabled

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-10-16 13:29:42 +02:00
a59124e27e Add missing dates to docs (#41576)
add dates
2025-10-16 09:32:28 +00:00
81f97b17d2 Remove randomly added script (#41650)
remove
2025-10-16 11:23:53 +02:00
c0a5cf19ad Fix tokenization test (#41649)
fix
2025-10-16 11:14:20 +02:00
3ef6f2c415 Allow passing tp_plan in from_pretrained directly (#41435)
* start

* allow passing it

* fix plans

* fix

* fix

* style

* style

* fix

* add_test

* oupsi indent

* fix

* fix

* fix for CI without accelerator

* fix import
2025-10-16 11:12:07 +02:00
59efd86da2 Add aux loss for GLM-4.5V (#41564)
* add aux

* update

* update config to text_config

* use qwen data class to avoid repeat again

* format

* update

* use 1e-4

* update

* update for remove init

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-10-16 09:04:21 +00:00
7b7d17f9bf 🚨 [v5] Toggle the serialization format in processors (#41474)
* toggle the serialization

* prob this fixes it

* fix tests

* typo

* delete legacy save entirely

* remove extra nesting in if

* revert test and serialzie a public attr instead of private
2025-10-16 10:19:22 +02:00
e20df45bf6 Add Backbone API fine-tuning tutorial (#41590)
---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-15 18:42:32 +02:00
19df66dcba Update executorch.md (#41582)
* Update executorch.md

* Update executorch.md

* Update executorch.md

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-15 09:01:46 -07:00
9f71e3a604 [docs] Duplicate entry (#41591)
fix
2025-10-15 17:02:36 +02:00
bc9900562d Fix quantization base class (#41613)
* fix

* fix

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-15 16:58:17 +02:00
72fd67929b Remove deprecated code (#41616)
remove

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-15 16:57:52 +02:00
da382917aa Remove the head masking block in some vision models (#41620)
* old

* new

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 15:51:01 +02:00
313afcc468 [chat template] update when "push_to_hub" (#39815)
* update templates push to hub

* rvert jinja suffix and move it to processor file
2025-10-15 13:49:59 +00:00
7bba4d1202 Fix video processing channel format (#41603)
fix
2025-10-15 15:48:01 +02:00
ab92534377 enable sdpa enable gqa logic for Ascend NPU (#41601)
* enable gqa logic for Ascend NPU

* remove redundant comments

* fix comments about Ascend NPU

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-10-15 13:45:28 +00:00
56a727dde5 Add fast path for bidirectional mask creation to fix regression (#41586)
* fixed performance regression

* also fixed the older_torch function

* Update src/transformers/masking_utils.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* fix

* more general

* fix slicing

* fix data dependent

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-15 15:30:39 +02:00
dc6fdeb705 Update a dataset reop link (#41618)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 14:41:38 +02:00
3953b65440 Reinstate early CUDA init fix (#41617)
* Reinstate early CUDA init fix

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

* Delay import further

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

---------

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-15 14:41:10 +02:00
96d245a83d torch 2.9 don't ❤️ torchcodec 💔 (#41610)
pin

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 14:34:00 +02:00
bb0c3af995 More markdown file fixes (#41599)
* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-15 12:29:27 +00:00
70e871959c Fix trainer simple tests (#41449)
* fix

* fix ray

* train to tune

* breaking changes wrt generation config

* Fix !

* fix

* fix

* fix deepspeed !

* fix

* fix

* fix

* improve logic

* revert and fix

* revert comment

* oups

* revert change

* fix

* style

* typo in comment

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-15 14:09:00 +02:00
c4210796e0 Import expand_device_map instead of redefining it (#41608)
remove it
2025-10-15 14:00:09 +02:00
fcd1ccdb78 [Docs] Fix changed references (#41614)
* fix

* fix

* other ln
2025-10-15 13:59:13 +02:00
2b2c20f315 Update issue template (#41573)
* update

* fix
2025-10-15 13:54:37 +02:00
e2122c4bcb remove ray_scope and check_quantized_param (#41587)
remove
2025-10-15 13:10:35 +02:00
e89cef6625 fix some case failures lead by "torch.compile recompiled part of th… (#41558)
* fix some case failures lead by "`torch.compile` recompiled part of the forward pass" in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-10-15 10:45:29 +00:00
26b7f66850 Add logits_to_keep to many older CausalLM models (#41335)
* Add logits_to_keep to CausalLM models

* Skip failing test for git model

* Remove unused return_dict from kosmos2 signature

* Revert BlipForQuestionAnswering
2025-10-15 11:56:01 +02:00
5db730786d [device_map] Accelerate loading by computing device_map much faster (#41548)
* start

* add the important fix

* continue

* big cleanup

* type hints

* add method

* fix typehints

* typehints

* fix

* oupsi

* remove space

* improve function

* CI
2025-10-15 11:18:57 +02:00
13a35a5057 Enable non-streaming mode in transformers serve (#41446)
* Enable non-streaming in transformers serve

Remove typos

Remove typos

Remove typos

* Fix tests

* Arthur review
2025-10-15 09:37:26 +02:00
94df0e6560 Benchmark overhaul (#41408)
* Big refactor, still classes to move around and script to re-complexify

* Move to streamer, isolate benches, propagate num tokens

* Some refacto

* Added compile mode to name

* Re-order

* Move to dt_tokens

* Better format

* Fix and disable use_cache by default

* Fixed compile and SDPA backend default

* Refactor results format

* Added default compile mode

* Always use cache

* Fixed cache and added flex

* Plan for missing modules

* Experiments: no cg and shuffle

* Disable compile for FA

* Remove wall time, add sweep mode, get git commit

* Review compliance, start

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Update benchmark_v2/framework/benchmark_runner.py

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Disable workflow

* Pretty print

* Added some pretty names to have pretty logs

* Review n2 compliance (end?)

* Style and end of PR

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-10-14 21:41:43 +02:00
9e4199ede3 Gemma3 fixes (#41572)
* Multiple device error fix

* FA2 equivalence fix

* Move the train fwd in cfg test

* Style

* Added comment

* Made the comment more clear
2025-10-14 18:33:27 +02:00
4c8d293599 Fix typsetting and content of llm_tutorial_optimization.md (#41172)
* Fix typsetting of llm_tutorial_optimization

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix errors

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-14 08:40:26 -07:00
a99b1be3c7 Revert some breaking changes bnb (#41581)
fix
2025-10-14 16:28:16 +02:00
82cae9eb52 Add __iter__ to DynamicCache (#41569)
* Add __iter__ to DynamicCache

* Fix tests that use ddp init
2025-10-14 16:16:32 +02:00
4fad35ee4a [VisionEncoderDecoderModel] Update loss function (#40863)
Update loss function
2025-10-14 16:03:00 +02:00
ae6f6cc3e0 Revert "add rmsnorm kernels support for Intel XPU" (#41579)
Revert "add rmsnorm kernels support for Intel XPU (#41563)"

This reverts commit fd787c5f6d667d3e00def70f588972af4437f631.
2025-10-14 15:49:33 +02:00
fd787c5f6d add rmsnorm kernels support for Intel XPU (#41563)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-10-14 13:26:09 +00:00
4e4f2af586 Add conditional checks to _check_and_adjust_attn_implementation() (#41542) 2025-10-14 13:00:07 +00:00
3648fde486 Add DINOv3Backbone for ConvNext variant (#40651)
---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-10-14 14:57:04 +02:00
abf5b57a68 delete some tokenizer tests using pickle (#41514)
* hate pickle

* hate pickle

* hate pickle

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-14 14:50:51 +02:00
8fe4db5399 [kernels] rm mra kernels (#41507)
* fix modeling

* remove kernel

* fix style
2025-10-14 13:34:04 +02:00
c620c38bb0 [Qwen3VLMoe] Fixed: Expected self.dtype to be equal to src.dtype - routing_weights casting (#41420)
* Fixed Expected self.dtype to be equal to src.dtype on eval

* Fixed Expected self.dtype to be equal to src.dtype on eval

* Fixed Expected self.dtype to be equal to src.dtype on eval

* generated modeling_qwen3_vl_moe.py file

* Fixed Ernie_4_5_MoE router casting

* Fixed routing_weights dtype casting (ernie4_5_moe, hunyuan_v1_moe, qwen2_moe, qwen3_moe, qwen3_next,qwen3_omni_moe)

* rollback hunyuan_v1_moe changes

---------

Co-authored-by: Daniel Oliveira <daniel-oliveira-11@hotmail.com>
Co-authored-by: Daniel Oliveira <36623265+daniel3303@users.noreply.github.com>
2025-10-14 13:14:49 +02:00
0798797ec9 Fix an import error with PreTrainModel (#41571) 2025-10-14 13:13:37 +02:00
0566b6f5bd Patch MistralCommonTokenizer (#41439)
* Fix token_to_id and add add_generation_prompt

* Fix spm download

* Refactor spm

* Try another possibly non-gated spm

* Improve get_vocab

* lint

* Improve get_vocab

* Add warn to piece_to_id

* Improve from_pretrained raise and revert model spm

* Revert fast
2025-10-14 11:13:19 +00:00
b3e3c3dc93 [Qwen3VL] fix device mismatch error for FSDP2 training (#41536)
For FSDP2, parameters might be on a meta device, and the weight.device attribute may
not accurately reflect where the actual computation will happen during forward passes.

```log
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 776, in forward
    pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 745, in fast_pos_embed_interpolate
    pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/module.py", line 1879, in _call_impl
    return inner()
           ^^^^^^^
  File "torch/nn/modules/module.py", line 1827, in inner
    result = forward_call(*args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/sparse.py", line 192, in forward
    return F.embedding(
           ^^^^^^^^^^^^
  File "torch/nn/functional.py", line 2546, in embedding
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected all tensors to be on the same device, but got index is on cpu, different from other tensors on cuda:0 (when checking argument in method wrapper_CUDA__index_select)
```
https://github.com/volcengine/verl/pull/3686#issuecomment-3380981817

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-10-14 10:28:25 +00:00
b84c0b31c6 Remove references to AutoModelForVision2Seq (#41513)
* Since Vision2Seq is deprecated, remove it from pipelines and docstrings

* Catch some more references
2025-10-13 17:00:07 +01:00
1ee3b288a6 [from_pretrained] Small refactor from_pretrained: move around unrelated stuff (#41445)
* drafts

* up

* simplify modeling utils

* more simplifications

* type kwargs

* up

* move more accelerate related stuff

* safeguarding?

* nits

* remove func when func is NOPE

* more

* nits

* styling

* yups

* up

* ups

* revert

* protect trainer utils iport

* fix doc

* Update src/transformers/integrations/peft.py

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* review

* update

* ?

* fixx

* update

* super small update

* ups

* style

* this is stupid

* 🤦 well this was the issue

* small nit

* fix

* nit

* damn the missing return

* one last stupid fix

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-13 16:33:32 +02:00
cad74496ca [model] Add VideoLLaMA3 implementation (#40499)
* Add VideoLLaMA3 implementation

* Run style fix

* Switch to modular

* Fix config and smart_resize

* Fix

* Fix

* Fix style

* Fix

* Ruff fix

* Rename

* Rename

* Fix

* Clean

* Fix consistency

* Add doc

* Fix

* Fix

* Fix doc

* Update generated code

* remove test_initialization

* fix tests

* simplify

* tests

* Add VideoLlama3IntegrationTest

* replace asserts

* fix tests

---------

Co-authored-by: steven-ccq <55176896+steven-ccq@users.noreply.github.com>
Co-authored-by: steven-ccq <1456320989@qq.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-13 15:54:34 +02:00
3813a8e3a1 Add VideoMAE video processor (#41534)
* Add video processor for VideoMAE

* Document VideoMAE video processor

* Add regression tests for VideoMAE video processor

* refactor: Use direct batch key access for pixel_values_videos

* test: add parity test for VideoMAEVideoProcessor vs VideoMAEImageProcessor

* docs(videomae): update model docstring example to demonstrate VideoMAEVideoProcessor (TorchCodec-based decoding and sampling)
2025-10-13 15:42:27 +02:00
66d8d7a077 Fixed typos and formatting (#34215)
#hacktoberfest
2025-10-13 13:38:06 +00:00
d621be8286 🚨 [v5] generate delegates default cache initialization to the model (#41505) 2025-10-13 13:20:48 +01:00
d7c9fbdb64 Enable modular files from other libraries (#41372)
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-13 13:48:32 +02:00
41e763decd Add AMD developer cloud support (#41126)
* Add AMD developer cloud support

* Add AMD remote svg link.

* Update notebooks/README.md

Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>

---------

Co-authored-by: Rémi Ouazan <83456801+remi-or@users.noreply.github.com>
Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>
2025-10-13 12:17:24 +02:00
cf1e9834ec Restore cuda graphs to continuous batching (#41421)
* Type hints and small fixes

* Remove unusued params

* Made slice inputs the default

* ruffed

* Updated some var name and moved index slicing

* Logging arg in example

* Added some padding debug var and reformat out cg

* First working CG, fixe size

* Working flexible CG

* CG are compatible with all implementations

* Fixed CG API

* Update example

* Documentation

* Fix padding tokens in FA

* Review compliance

* Better doc around weird bug

* Style

* Fix for sliding with CG
2025-10-13 11:57:56 +02:00
6c901bdc0e [SAM] Fix typing hints (#41506)
fix
2025-10-13 11:52:00 +02:00
58f9e13313 Fixed Type-hints in function defintions (#41525)
* Explicitly annotate default None parameters as Optional

* make style.

* make style.

* Fixed check_copies.

* fix consistency.
2025-10-13 11:48:37 +02:00
eb28242251 Add MLlama fast image processor (#41391)
* Merge conflict

* add fast processor

* add fast processor

* make style

* add new convert rgb

* use nested group by shape in mllama fast, add support for multiple inputs in group by shape

* refactor after review

---------

Co-authored-by: Vincent <phamvinh257@gmail.com>
2025-10-13 09:16:05 +00:00
65cb8fac6d [Qwen3VL] fix: hidden_states in place modification error (#41535)
```
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 941, in forward
    hidden_states = self._deepstack_process(
                    ^^^^^^^^^^^^^^^^^^^^^^^^
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 960, in _deepstack_process
    hidden_states[visual_pos_masks, :] = local_this
    ~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Output 0 of SliceBackward0 is a view and is being modified inplace. This view was created inside a custom Function (or because an input was returned as-is) and the autograd logic to handle view+inplace would override the custom backward associated with the custom Function, leading to incorrect gradients. This behavior is forbidden. You can fix this by cloning the output of the custom Function.
```

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-10-13 10:50:14 +02:00
3927ffed31 [testing] reduce runtime of HunYuanMoEV1IntegrationTest:test_model_generation (#41373)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-10 22:27:01 +02:00
7164924a7e Fix Latex typesetting in documentation (#41177)
Fix Latex typsetting in documentation

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-10 08:54:27 -07:00
26a5368c44 Allow optuna's catch kwargs passthrough (#41496)
* allow optuna's catch kwargs passthrough

* apply ruff formatting

---------

Co-authored-by: nicha <nicha.api@nectec.or.th>
2025-10-10 13:58:07 +00:00
feca4f3de7 remove tpu_num_cores (#41383)
* remove-tpu-num-cores

* fix

* let's remove it

* style

* Update examples/legacy/seq2seq/finetune_tpu.sh

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-10 15:53:28 +02:00
c6042a4169 Remove outdated flags (#41512)
remove flags
2025-10-10 14:34:47 +02:00
dfd4121cd4 add Trainer import to .md in appropriate cell block for training.ipynb transformers_doc (#41484)
add Trainer import to .md in appropriate cell block for docs
2025-10-10 12:04:07 +00:00
60f6ec438a Fix detectron2 import (#41510)
* fix

* fix

* typo
2025-10-10 13:33:47 +02:00
f9f8bf5a10 Revert local_rank deletion and some cleaning (#41504)
* forgot those

* clean

* Fix

* merge

* fix

* fix
2025-10-10 12:23:04 +02:00
b4067472ae Bump to hfh 1.0.0.rc5 to fix test (#41508) 2025-10-10 12:12:08 +02:00
bc529a3368 More trainer cleaning (#41489)
clean
2025-10-10 11:55:43 +02:00
b92fc0c6e1 [QoL] modular conversion shows LoC saved (#41500)
smol qol conversion
2025-10-10 11:55:23 +02:00
2eae7c7452 Set truncation to False in Qwen3Omni to avoid default truncation (#41473)
* Set `truncation` to `False` in Qwen3Omni to avoid default truncation

* move `padding` and `truncation` to audio default args

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-10-10 09:55:18 +00:00
c5094a4f97 [voxtral] language detection + skipping lang:xx (#41225)
* proc + doc update

* improve doc

* add lang:xx in decode

* update voxtral test

* nit

* nit

* update test value

* use regex
2025-10-10 09:18:30 +00:00
f4487ec521 fix gemma3n case failure (#41426)
* fix gemma3n case failure

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update dependency_versions_table.py

* change the case argument passing way to make the case PASS,
generation_config way need re-visit

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-10 09:15:27 +00:00
e8194fe84f Fix some tests (#41503)
* fix

* fix

* doc
2025-10-10 11:05:09 +02:00
9556b36b2f [causallm tester] automate pipeline mappings + bloom tests (#41318) 2025-10-10 10:02:00 +01:00
5aca530b34 [Parakeet] unnecessary warning & auto mapping (#41412)
* add parakeet to CONFIG_MAPPING_NAMES

* TOKENIZER_MAPPING_NAMES update

* fix auto tokenizer

* update

* fix
2025-10-10 11:00:15 +02:00
4f323369db Fixed tiny incorrect imports in glm4v (#41483)
Fixed tiny import issue in glm4v
2025-10-10 08:57:01 +00:00
f5f3457278 Try to remove pickle - BloomTokenizerFast (#41466)
* pickle 1

* pickle 1

* pickle 1

* pickle 1

* pickle 1

* pickle 1

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-10 10:52:51 +02:00
3585737746 [kernels] rm yoso kernel (#41495)
* disable kernel mapping

* rm kernel

* delete files

* style

* typo
2025-10-10 10:50:12 +02:00
b543679d0e [kernels] Remove RWKV kernel finally ! (#41493)
* rm kernel

* fix style
2025-10-10 10:32:05 +02:00
ac7777be16 fix bnb model loading (#41499) 2025-10-10 08:27:29 +00:00
17c31a98ac Streaming should be handled at the request-level rather than at the istance level (#41444)
* Streaming should be handled at the request-level rather than at the instance level

* Add tests

* Require torch GPU
2025-10-10 10:24:55 +02:00
b28902c86b Remove DISABLE_KERNEL_MAPPING flag (#41475)
rm disable
2025-10-10 10:19:25 +02:00
d0271be18f Update philosophy (#41438)
* update philosophy

* Update docs/source/en/philosophy.md

Co-authored-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* emphasis

---------

Co-authored-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-10 06:52:18 +00:00
0419ff881d Remove local_rank arg from TrainingArguments (#41382) 2025-10-09 18:54:12 +02:00
081391b20e deprecate jit_mode_eval (#41376) 2025-10-09 18:50:45 +02:00
1ddbbdef48 [Trainer] deprecate ray scope (#41403) 2025-10-09 18:50:00 +02:00
c20849bad1 [CI] Fix copies on main (#41486)
fix copies
2025-10-09 18:38:14 +02:00
776eea8612 deprecate overwrite_output_dir (#41323)
* dep

* style

* rm

* wut

* style
2025-10-09 18:36:19 +02:00
3839d51013 report_to default changed to "none" + cleaning deprecated env var (#41375)
* reporting

* fix

* fix
2025-10-09 18:28:48 +02:00
78f79ba5af Update GLM-4.6 doc (#41471)
Update glm4_moe.md
2025-10-09 09:18:05 -07:00
11c597b1b8 Remove deprecated args in Trainer for v5 (#41404)
remove deprecated code
2025-10-09 18:10:14 +02:00
b450d55a91 Remove past_index (#41384)
* remove-tpu-num-cores

* fix

* rm past index

* Revert "fix"

This reverts commit 7608a6c059210957d3a77812e66178c8b79a9313.

* Revert "remove-tpu-num-cores"

This reverts commit ef08a51d71389849851518d67d8ad6c9ea8f04fc.
2025-10-09 18:06:46 +02:00
1a3a5f5289 Remove SigOpt (#41479)
* remove sigopt

* style
2025-10-09 18:05:55 +02:00
823fab4860 Fix bnb fsdp loading for pre-quantized checkpoint (#41415)
* fix

* fix

* get_param_name

* fix device name
2025-10-09 18:05:35 +02:00
42d4e13a0b RT-Detr correct 2d positional embeddings for non-square images (#41380)
* Correct 2d positional embeddings for non-square images

* Simplify bug fix propagate changes to other models

---------

Co-authored-by: Konstantinos Pitas <kostasp210@gmail.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-10-09 17:58:22 +02:00
0eae41ad36 Add Code World Model (CWM) (#41199)
* [wip][cwm] Code World Model stubs and setup in HF Transformers

* [wip] Get other things working

* [wip] Working

* Tokenizer pad

* fix: cwm window attn

* temp remove test

* temp remove test

* Fixes

* Temporarily add auto config remapping option until VLLM 0.11 is out

* Fix model type and add layer validation

* Lint, remove CwmForSequenceClassification

* Lint, tests

* Remove CwmForSequenceClassification

* Lint

* Remove intermediary layer expors/doc errorss, fix tests

* Lint

* run python utils/sort_auto_mappings.py --check_only

* Remove Cwm processor mapping, get check_repo passing

* Remove CwmTextConfig from test

* Add docstring for CwmConfig

* remove global_window and window_pattern params from config

* Fix docstrings

* Revert change to auto docstring util

* lint

* Fixes minus test improvements

* Alter tests to simply check logits

* lint

* Have slow tests use repo, make CwmPretrainedModel passthrough

* Remove decoder layer implementation, use Llama3Decoder + CwmAttetion

* Use linear w/o bias for CwmAttention, add token-level integration test

* Don't ignore config attention bias

* Remove attention bias parameter entirely from config

---------

Co-authored-by: galco <galco@meta.com>
2025-10-09 17:57:45 +02:00
589fc29c9d enhance patched_tearDown to support python 3.11+ (#41429)
* enhance to support python 3.11+

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-09 21:19:29 +05:30
26b5b52676 [Fix] Fix test file error (#40973)
Fix test file error
2025-10-09 15:30:53 +00:00
34b861abd1 🚨 [Attention Masks] Bidirectional masks for encoder and encoder-decoder models (#41265)
* new masks

* fixes

* adjust comments

* fix unnecessary mask creation on sdpa

* simplify masks more

* propogate to other models

* style + repo consistency

* copies

* no comment

* fix attempt

* finally fix grounding dinos

* fix distilbert

* fix executorch

* move to own module

* address first few comments WIP

* revert device comments, simplify executorch further

* fix typo

* add a test for cuda graphs

* move cleanup...

* fix conflict with new main

* fix esm and evolla
2025-10-09 16:56:11 +02:00
b44d91570f [v5] remove load_in_4bit and load_in_8bit (#41287)
* [v5] remove load_in_4bit and load_in_8bit

* fix

* reveert

* fix

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-09 16:34:04 +02:00
d99069195b Cleaning hub kernels (#41477)
* disable kernel mapping

* cleaning

* revert

* fix style
2025-10-09 16:32:18 +02:00
bf38b2d11d Change RT-Detr docs to reflect fixed 640x640 input size (#41364)
* Update rt_detr docs to mention 640x640 input size

The authors of RT-Detr mention that the model was trained on 640x640 images and was meant to be used for inference on 640x640 images.
Also, the current implementation has certain quirks that make training/inferring on images of different sizes problematic. For example,
the pixel masks used for batches of varying image sizes are discarded. I've added a few lines in the docs to notify the user about these issues.

* Batching not possible with variable image sizes

* Remove reference to batching

---------

Co-authored-by: Konstantinos Pitas <kostasp210@gmail.com>
2025-10-09 14:29:16 +00:00
72a3fc275c Remove infer_device (#41088)
* Remove infer_device

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix docs using accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix conflict

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 14:05:39 +00:00
9ef804472b Pickle - part 2 (#41476)
* pickle 2

* pickle 2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-09 13:46:53 +00:00
2b5e4c0d13 Import Callable from collections.abc (#41130)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 12:12:43 +00:00
add4df62ba Fix tests fsdp (#41422)
* Fix tests

* fix !

* fix
2025-10-09 14:09:52 +02:00
3e87072666 Fix auto model configuration for encoder of perceptionlm (#41464)
* fix auto model configuration for encoder of perceptionlm

* delete perception_encoder auto registrations
2025-10-09 14:08:03 +02:00
f0544d7e7c Remove KERAS_NLP_IMPORT_ERROR (#41468)
Remove unused variables of error messages

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 11:58:30 +00:00
d1c6310d6a 🚨 [v5] Rendundant code in nested configs (#41314)
* batch update models

* delete even more

* fix modular super init location

* fix

* fix copies

* fix again, these have force-set values in configs

* fix copies
2025-10-09 13:47:44 +02:00
927aa8bef2 [kernels] Cleanup deta kernel (#41470)
* cleanup deta kernel

* fix modeling
2025-10-09 13:17:42 +02:00
1951f3be8e Update GLM-4.1V MMRope implementation (#41182)
* update for 4D mask

* update

* Update modular_glm4v.py

* 1

* Revert "1"

This reverts commit d13a763e876fa049c5fb70a8b3447b335dbb6098.

* update as glm4v logtic

* update

* 1

* update

* Create convert_glm4v_moe_mgt_weights_to_hf.py

* update

* update
2025-10-09 12:15:47 +02:00
f50fd7fb6b [v5] rm utils/tf_ops/ (#41402)
rm utils/tf_ops/
2025-10-09 10:27:47 +01:00
be3fa93b29 Subconfig is a class attribute (#41308)
* delete

* fix this test

* fix copies

* oke, more tests to fix

* fix last tests on DPT

* deleted accidentally
2025-10-09 10:46:44 +02:00
8137dbdbbd 🚨 [v5] Rename left traces of past_key_value in BERT-like models (#41448)
rename everything
2025-10-09 10:44:44 +02:00
7aa888b7fa Fix doc (#41457)
* dummy

* remove
2025-10-08 20:13:21 +02:00
bfe2b623ef Fix generate outputs and simplify cache tests (#41440)
* start refactoring

* simplify

* tests

* tests

* fix

* zamba

* final fix

* fix
2025-10-08 19:04:18 +02:00
b9be8a8775 enable some falcon-mamba uts on xpu (#41428)
* enable some falcon-mamba uts on xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-08 18:48:04 +02:00
bef73bf8d7 Update hqq.md (#41452)
mistake in loading model
2025-10-08 07:44:56 -07:00
89a4115a6b Validate processing kwargs with @strict from huggingface_hub (#40793)
* initial design draft

* delete

* fix a few tests

* fix

* fix the rest of tests

* common-kwargs

* why the runner complains about typing with "|"?

* revert

* forgot to delete

* update

* fix last issues

* add more detalis in docs

* pin the latest hub release

* fix tests for new models

* also fast image processor

* fix copies

* image processing ast validated

* fix more tests

* typo.and fix copies

* bump

* style

* fix some tests

* fix copies

* pin rc4 and mark all TypedDict as non-total

* delete typed dict adaptor

* address comments

* delete optionals
2025-10-08 16:14:09 +02:00
82ffeb28ad Add Top-H decoding (entropy-bounded truncation) as a LogitsWarper for text generation (#40837)
* init

* added TopH

* Update TopH logits_process.py

* Update logits_process.py

* Update test_logits_process.py

* Update test_logits_process.py

* added test No. 4

* Resolving __init__.py issues

* Resolving configuration_utils.py Issues

* Resolving logits_process.py Issues

* Resolving utils.py Issues

* Resolving test_logits_process.py Issues

* Resolving __init__.py issues

* Resolving logits_process.py Issues

* Resolving __init__.py issues

* Updated Docs

* Updated Docstring

* style: autoformat with make fixup

* Fixing Docstring

* Update logits_process.py removed defaults

* Variable H name -> cumulative_entropy

* Using torch.distributions.Categorical

* Improve torch_dtype checks (#40808)

* Improve torch_dtype checks

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Apply suggestions from code review

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add VideoProcessors to auto-backend requirements (#40843)

* add it

* fix existing ones

* add perception to auto_mapping...

* Adds Causal Conv 1D kernel for mamba models (#40765)

* add kernel

* make style

* keep causal-conv1d

* small fix

* small fix

* fix modular converter

* modular fix + lazy loading

* revert changes modular

* nit

* hub kernels update

* update

* small nit

* Update no split modules in T5Gemma model (#40810)

* Update no split modules in T5Gemma model

* Update no_split_modules also for T5Gemma modular

* Remove model_split_percents from test cases

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Replace image classification loss functions to `self.loss_function` (#40764)

* Fix the misalignment between the l2norm in GDN of Qwen3-Next and the implementation in the FLA library. (#40842)

* align torch implementation of gdn with fla.

* fix fla import.

* fix

* remove unused attr

* fixes

* strictly align l2norm in Qwen3-Next with FLA implementation.

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* Fixes for continuous batching (#40828)

* Fix for CB attn mask and refactor

* Tests for CB (not all passing)

* Passing tests and a logger fix

* Fixed the KV metrics that were broken when we moved to hybrid alloc

* Fix circular import and style

* Added tests for FA

* Unfolded test to have device expectations

* Fixes for H100

* more fixes for h100

* H100 are good

* Style

* Adding some comments from #40831

* Rename test

* Avoid 1 letter variables

* Dictonnary is only removed during kwargs

* Test for supported sample

* Fix a unvoluntary slice

* Fixes for non-sliced inputs and small example improvments

* Slice inputs is more understandabe

* Style

* [tests] re-enable aria fast tests (#40846)

* rise from the dead

* test

* [SAM2] Fix inconsistent results with original implementation with input boxes (#40800)

* Fix inconsistencies with box input inference with original repo

* remove print

* always pad

* fix modular

* [Sam2Video] Fix video inference with batched boxes and add test (#40797)

fix video inference with batched boxes and add test

* add: differential privacy research model (#40851)

* VaultGemma

* Removing Sequence and Token classification models. Removing integration tests for now

* Remove pass-only modular code. style fixes

* Update vaultgemma.md

* Update docs/source/en/model_doc/vaultgemma.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Update docs/source/en/model_doc/vaultgemma.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Add links to model doc

* Correct model doc usage examples

* Updating model doc to describe differences from Gemma 2

* Update model_doc links

* Adding integration tests

* style fixes

* repo consistency

* attribute exception

---------

Co-authored-by: Amer <amersinha@gmail.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* [test] Fix test_eager_matches_sdpa incorrectly skipped (#40852)

* ouput_attentions in typed kwargs

* correct typing in GenericForTokenClassification

* improve

* [tests] move generative tests away from `test_modeling_common.py` (#40854)

move tests

* [generate] Always use decoder config to init cache (#40772)

* mega derp

* fix

* always use the decoder

* Use checkpoint in auto_class_docstring (#40844)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix TrainingArguments.parallelism_config NameError with accelerate<1.10.1 (#40818)

Fix ParallelismConfig type for accelerate < 1.10.1

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Redirect MI355 CI results to dummy dataset (#40862)

* [Bug fix #40813] Fix base_model_tp_plan of Starcoder2 model. (#40814)

Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>

* [docstrings / type hints] Update outdated annotations for `past_key_values`  (#40803)

* some fixes

* nits

* indentation

* indentation

* a bunch of type hints

* bulk changes

* fix florence kwargs  (#40826)

* fix: XIELU act parameters not being casted to correct dtype (#40812)

* Update model tags and integration references in bug report (#40881)

* [Qwen3 Next] Use numerically stable `rsqrt` (#40848)

use numerically stable inverse

* Adding Support for Qwen3-VL Series (#40795)

* add qwen3vl series

* make fixup

* fix import

* re-protect import

* fix it finally (need to merge main into the branch)

* skip processor test (need the checkpoint)

* oups typo

* simplify modular

* remove unecesary attr

* fix layer

* remove unused rope_deltas args

* reuse image def

* remove unnesesary imports

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* [`VaultGemma`] Update expectations in integration tests (#40855)

* fix tests

* style

* Fix modular consistency (#40883)

* reapply modular

* add missing one

* 🔴 Move variable output controls to `_prepare_generation_config ` (#40715)

* move checks to validate steps where possible

* fix csm and other models that override _sample

* ops dia you again

* opsie

* joao review

* Move variable output controls to `prepare_inputs_for_generation`

* fix a bunch of models

* back to basics

* final touches

* Clarify passing is_causal in sdpa_attention_paged_forward (#40838)

* Correctly pass is_causal in sdpa_attention_paged_forward

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add comment

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve comments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use torch.expm1 and torch.log1p for better numerical results (#40860)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add Fast PromptDepthAnything Processor (#40602)

* Test & import setup

* First version passing tests

* Ruff

* Dummy post processing

* Add numerical test

* Adjust

* Doc

* Ruff

* remove unused arg

* Refine interpolation method and push test script

* update bench

* Comments

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Remove benchmrk script

* Update docstrings

* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* doc

* further process kwargs

* remove it

* remove

* Remove to dict

* remove crop middle

* Remove param specific handling

* Update testing logic

* remove ensure multiple of as kwargs

* fix formatting

* Remove none default and get image size

* Move stuff to _preprocess_image_like_inputs and refacto

* Clean

* ruff

* End of file & comments

* ruff again

* Padding fixed

* Remove comments to pass tests

* Remove prompt depth from kwargs

* Adjust output_size logic

* Docstring for preprocess

* auto_docstring for preprocess

* pass as an arg

* update test batched

* stack images

* remove prompt scale to meter

* return tensors back in preprocess

* remove copying of images

* Update behavior to match old processoer

* Fix batch size of tests

* fix test and fast

* Fix slow processor

* Put tests back to pytorch

* remove check and modify batched tests

* test do_pad + slow processor fix

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>

* Fix deta loading & dataclass (#40878)

* fix

* fix 2

* Remove dict branch of attention_mask in sdpa_attention_paged_forward (#40882)

Remove dict branch of attention_mask

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* 🌐 [i18n-KO] Translated smolvlm.md to Korean (#40414)

* fix: manual edits

* Apply suggestions from code review

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* 🌐 [i18n-KO] Translated `imageprocessor.md` to Korean (#39557)

* feat: manual translation

* docs: fix ko/_toctree.yml

* Apply suggestions from code review

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

* Update docs/source/ko/image_processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* [generate] remove docs of a feature that no longer exists (#40895)

* Make debugging failing tests (check and update expect output values) easier 🔥  (#40727)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixing the call to kernelize (#40628)

* fix

* style

* overload train and eval

* add getter and setter

* Fix getter  regression (#40824)

* test things

* style

* move tests to a sane place

* Fix flaky `Gemma3nAudioFeatureExtractionTest::test_dither` (#40902)

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* [cache] Merge static sliding and static chunked layer (#40893)

* merge

* get rid of tensors in get_mask_sizes!!

* remove branch

* add comment explanation

* re-add the class with deprecation cycle

* Harmonize CacheLayer names (#40892)

* unify naming

* style

* doc as well

* post rebase fix

* style

* style

* revert

* [cache] Only use scalars in `get_mask_sizes` (#40907)

* remove tensor ops

* style

* style

* Set seed for `Glm4vIntegrationTest` (#40905)

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add Olmo3 model (#40778)

* transformers add-new-model-like for Olmo3

* Implement modular Olmo3

* Update Olmo3 tests

* Copy Olmo2 weight converter to Olmo3

* Implement Olmo3 weight converter

* Fix code quality errors

* Remove unused import

* Address rope-related PR comments

* Update Olmo3 model doc with minimal details

* Fix Olmo3 rope test failure

* Fix 7B integration test

* remove dummy EncodingFast (#40864)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve module name handling for local custom code (#40809)

* Improve module name handling for local custom code

* Use `%lazy` in logging messages

* Revert "Use `%lazy` in logging messages"

This reverts commit 5848755d5805e67177c5218f351c0ac852df9340.

* Add notes for sanitization rule in docstring

* Remove too many underscores

* Update src/transformers/dynamic_module_utils.py

* Update src/transformers/dynamic_module_utils.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove `runner_map` (#40880)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* disable `test_fast_is_faster_than_slow` (#40909)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* [gemma3] `Gemma3ForConditionalGeneration` compatible with assisted generation (#40791)

* gemma3vision compatible with assisted generation

* docstring

* BC

* docstring

* failing checks

* make fixup

* apply changes to modular

* misc fixes

* is_initialized

* fix poor rebase

* [generate] misc fixes (#40906)

misc fixes

* 🔴Make `center_crop` fast equivalent to slow (#40856)

make center_crop fast equivalent to slow

* Fix dtype in Paligemma (#40912)

* fix dtypes

* fix copies

* delete unused attr

* [Docs] Adding documentation of MXFP4 Quantization (#40885)

* adding mxfp4 quantization docs

* review suggestions

* Apply suggestions from code review

Co-authored-by: vb <vaibhavs10@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: vb <vaibhavs10@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Processor load with multi-processing (#40786)

push

* [Llama4] Remove `image_sizes` arg and deprecate `vision_feature_layer` (#40832)

* Remove unused arg

* deprecate

* revrt one change

* get set go

* version correction

* fix

* make style

* comment

* Fix #40067: Add dedicated UMT5 support to GGUF loader (config, tokenizer, test) (#40218)

* Fix #40067 : add UMT5 support in GGUF loader (config, tokenizer, test)

* chore: fix code formatting and linting issues

* refactor: move UMT5 GGUF test to quantization directory and clean up comments

* chore: trigger CI pipeline

* refactor(tests): Move UMT5 Encoder GGUF test to GgufModelTests. This consolidates the new test into the main class for consistency.

* Add regression check to UMT5 encoder GGUF test

Verify encoder output against reference tensor values with appropriate tolerances for stability.

* Update tests/quantization/ggml/test_ggml.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update tests/quantization/ggml/test_ggml.py

remove comments

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* [torchao safetensors] renaming get_state_dict function (#40774)

renaming get_state_dict function

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Adding activation kernels (#40890)

* first commit

* add mode

* revert modeling

* add compile

* rm print

* Minor fix for #40727 (#40929)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add support for Florence-2 training (#40914)

* Support training florence2

* update doc and testing model to florence-community

* fix florence-2 test, use head dim 16 instead of 8 for fa2

* skip test_sdpa_can_dispatch_on_flash

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Add LongCat-Flash (#40730)

* working draft for LongCat

* BC changes to deepseek_v3 for modular

* format

* various modularities

* better tp plan

* better init

* minor changes

* make modular better

* clean up patterns

* Revert a couple of modular commits, because we won't convert in the end

* make things explicit.

* draft test

* toctree, tests and imports

* drop

* woops

* make better things

* update test

* update

* fixes

* style and CI

* convert stuff

* up

* ah, yes, that

* enable gen tests

* fix cache shape in test (sum of 2 things)

* fix tests

* comments

* re-Identitise

* minimize changes

* better defaults

* modular betterment

* fix configuration, add documentation

* fix init

* add integration tests

* add info

* simplify

* update slow tests

* fix

* style

* some additional long tests

* cpu-only long test

* fix last tests?

* urg

* cleaner tests why not

* fix

* improve slow tests, no skip

* style

* don't upcast

* one skip

* finally fix parallelism

* [DOC] Add missing dates in model cards (#40922)

add missing dates

* [models] remove unused `import torch.utils.checkpoint`  (#40934)

* Intel CPU dockerfile (#40806)

* upload intel cpu dockerfile

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update cpu dockerfile

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update label name

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* docs(i18n): Correct the descriptive text in the README_zh-hans.md (#40941)

* Fix trainer tests (#40823)

* fix liger

* fix

* more

* fix

* fix hp

* fix

---------

Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>

* Fix `Glm4vMoeIntegrationTest` (#40930)

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Raise error instead of warning when using meta device in from_pretrained (#40942)

* raise instead of warning

* add timm

* remove

* Consistent naming for images kwargs (#40834)

* use consistent naming for padding

* no validation on pad size

* add warnings

* fix

* fox copies

* another fix

* fix some tests

* fix more tests

* fix lasts tests

* fix copies

* better docstring

* delete print

* Remove nested import logic for torchvision (#40940)

* remove nested import logic for torchvision

* remove unnecessary protected imports

* remove unnecessarry protected import in modular (and modeling)

* fix wrongly remove protected imports

* Fix `Glm4vModelTest::test_eager_matches_fa2_generate` (#40947)

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Update expected values for some `test_speculative_generation` (#40949)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Standardize audio embedding function name for audio multimodal models (#40919)

* Standardize audio embedding function name for audio multimodal models

* PR review

* Add FlexOlmo model (#40921)

* transformers add-new-model-like

* Add FlexOlmo implementation

* Update FlexOlmo docs

* Set default tokenization for flex olmo

* Update FlexOlmo tests

* Update attention comment

* Remove unneeded use of `sliding_window`

* Don't list dropout in eager_paged_attention_forward (#40924)

Remove dropout argument

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update expected values for one more `test_speculative_generation` after #40949 (#40967)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* FIX(trainer): ensure final checkpoint is saved when resuming training (#40347)

* fix(trainer): ensure final checkpoint is saved when resuming training

* add test

* make style && slight fix of test

* make style again

* move test code to test_trainer

* remove outdated test file

* Apply style fixes

---------

Co-authored-by: rangehow <rangehow@foxmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Add new model LFM2-VL (#40624)

* Add LFM2-VL support

* add tests

* linting, formatting, misc review changes

* add siglip2 to auto config and instantiate it in lfm2-vl configuration

* decouple image processor from processor

* remove torch import from configuration

* replace | with Optional

* remove layer truncation from modeling file

* fix copies

* update everything

* fix test case to use tiny model

* update the test cases

* fix finally the image processor and add slow tests

* fixup

* typo in docs

* fix tests

* the doc name uses underscore

* address comments from Yoni

* delete tests and unsuffling

* relative import

* do we really handle imports better now?

* fix test

* slow tests

* found a bug in ordering + slow tests

* fix copies

* dont run compile test

---------

Co-authored-by: Anna <anna@liquid.ai>
Co-authored-by: Anna Banaszak <48625325+ankke@users.noreply.github.com>

* Fix outdated version checks of accelerator (#40969)

* Fix outdated version checks of accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix outdated version checks of accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use `skip_predictor=True` in vjepa2 `get_vision_features` (#40966)

use skip_predictor in vjepa2 `get_vision_features`

* [Trainer] Fix DP loss (#40799)

* fix

* style

* Fix fp16

* style

---------

Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>

* [timm_wrapper] better handling of "Unknown model" exception in timm (#40951)

* fix(timm): Add exception handling for unknown Gemma3n model

* nit: Let’s cater to this specific issue

* nit: Simplify error handling

* Fix Issue #39030: AutoTokenizer.from_pretrained does not propagate token (#40956)

* fix merge conflicts

* change token typing

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-27-253.ec2.internal>

* [tests] Really use small models in all fast tests (#40945)

* start

* xcodec

* chameleon

* start

* layoutlm2

* layoutlm

* remove skip

* oups

* timm_wrapper

* add default

* doc

* consistency

* Add captured actual outputs to CI artifacts (#40965)

* fix

* fix

* Remove `# TODO: ???` as it make me `???`

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Revert change in `compile_friendly_resize` (#40645)

fix

* Track the CI (model) jobs that don't produce test output files (process being killed etc.) (#40981)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Using torch.distributions.Categorical

* Remove `set_model_tester_for_less_flaky_tests` (#40982)

remove

* Benchmarking v2 GH workflows (#40716)

* WIP benchmark v2 workflow

* Container was missing

* Change to sandbox branch name

* Wrong place for image name

* Variable declarations

* Remove references to file logging

* Remove unnecessary step

* Fix deps install

* Syntax

* Add workdir

* Add upload feature

* typo

* No need for hf_transfer

* Pass in runner

* Runner config

* Runner config

* Runner config

* Runner config

* Runner config

* mi325 caller

* Name workflow runs properly

* Copy-paste error

* Add final repo IDs and schedule

* Review comments

* Remove wf params

* Remove parametrization from worfkflow files

* Fix callers

* Change push trigger to pull_request + label

* Add back schedule event

* Push to the same dataset

* Simplify parameter description

* 🔴[`Attention`] Bert-based Models Attention Refactor (#38301)

* clean start to bert refactor

* some test fixes

* style

* fix last tests

* be strict on positional embeddings, fixup according tests

* cache support

* more cache fixes, new causal API

* simplify masks, fix tests for gen

* flex attn, static cache support, round of fixes

* ?

* this time

* style

* fix flash attention tests, flex attention requires torch 2.7.x to work with multiple classes (as recompile strats force a size call which is wrongly interpreted before)

* roberta

* fixup sdpa remains

* attention split, simplify args and kwargs, better typing

* fix encoder decoder

* fix test

* modular roberta

* albert

* data2vectext, making it modular tomorrow

* modular data2vec text

* tmp disable

* xmod + cache position fixes

* whoops

* electra + markuplm, small fixes

* remove wrong copy

* xlm_roberta + some embedding fixes

* roberta prelayernorm

* RemBert: remove copy, maybe doing it later

* ernie

* fix roberta offloading

* camembert

* copy fixes

* bert generation + fixes on eager

* xlm roberta xl

* bridgetower (text) + seamlessv2 copy fixes

* rocbert + small fixes

* whoops

* small round of fixups

* NOTE: kernels didnt load with an earlier version, some fixup (needs another look bc cross deps)

* the end of the tunnel?

* fixup nllbmoe + style

* we dont need this anymore

* megatron bert is barely used, low prio skip for now

* Modernize bert (template for others)

NOTE: trying to push this through, might be overdue if not in time possible

* check inputs for all others (if checkmarked)

* fix bridgetower

* style

* fix encoder decoder (partially but cause found and fix also, just needs to be done for everything else)

* proper fix for bert to force intermediate dict outputs

* propagate to others

* style

* xlm roberta xl investigation, its the layernorm...

* mobile bert

* revert this, might cause issues with composed models

* review

* style

* Remove [[autodoc]] refs to TF/Flax objects (#40996)

* remove refs

* more

* ENH: Enable readline support for transformers chat (#40911)

ENH Enable readline support for chat

This small change enables GNU readline support for the transformers chat
command. This includes, among others:

- advanced navigation and editing: ctrl + a ctrl + e alt + b alt + f
  ctrl + k alt + d etc.
- navigate and search history: arrow up/down ctrl + p ctrl + n  ctrl + r
- undo: ctrl + _
- clear screen: ctrl + l

Implementation

Although it may look strange, just importing readline is enough to
enable it in Python, see:

https://docs.python.org/3/library/functions.html#input

As readline is not available on some
platforms (https://docs.python.org/3/library/readline.html), the import
is guarded.

Readline should work on Linux, MacOS, and with WSL, I'm not sure about
Windows though. Ideally, someone can give it a try. It's possible that
Windows users would have to install
pyreadline (https://pypi.org/project/pyreadline3/).

* [testing] test `num_hidden_layers` being small in model tester (#40992)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* blt wip (#38579)

* blt wip

* cpu version

* cpu friendly with full entropy model (real time patching)

* adding config file instead of args file

* enable MPS

* refactoring unused code

* single config class in config file

* inherit from PreTrainedModel

* refactor LMTransformer --> BLTPatcher

* add conversion script

* load from new checkpoing with form_pretrained

* fixed demo from_pretrained

* clean up

* clean a few comments

* cleanup folder

* clean up dir

* cleaned up modeling further

* rename classes

* adding transformers Attention class and RotaryEmbedding class

* exchanged blt modules for transformers modules: attention, rotary_emb, create_causal_mask, etc

* seperate out patcher config, update modeling and conversion script

* rename vars to be more transformers-like

* rm unused functions

* adding cross attention from transformers

* pass arg

* rename weights

* updated conversion script

* overwritten commit! fixing PR

* apply feedback

* adding BLTRMSNorm like Llama

* add repeat_kv and eager_attention_forward copied from

* BLTMLP identical to MllamTextMLP

* clean up some args'

* more like mllama, but busier inits

* BLTTransformerLayer config

* decoder, encoder, global configs

* wip working on modular file

* cleaning up patch and configs

* clean up patcher helpers

* clean up patcher helpers further

* clean up

* some config renaming

* clean up unused configs

* clean up configs

* clean up configs

* update modular

* clean

* update demo

* config more like mllama, seperated subconfigs from subdicts

* read from config instead of self args

* update demo file

* model weights to causal lm weights

* missed file

* added tied weights keys

* BLTForCausalLM

* adding files after add-new-model-like

* update demo

* working on tests

* first running integration tests

* added integration tests

* adding tokenization tests, integration tests, and cleaned up tokenization file, + ruff

* tokenizer clean up

* modular file

* fixing rebase

* ruff

* adding correct basemodel output and updating config with checkpoint vals (for testing)

* BLTModelTests git status

* enabling inputs_embeds, although won't be equal to input_ids since need ids for patching logic

* fix sdpa == causal tests

* fix small model test and some gradient checkpointing

* skip training GC tests

* fix test

* updated modular

* update modular

* ruff

* adding modular + modeling

* modular

* more modern is_casual check

* cleaning up modular

* more modular reduction

* ruff

* modular fix

* fix styling

* return 2

* return 2

* fix some tests

* fix bltcrossattention after modular break

* some fixes / feedback

* try cache generate fix

* try cache generate fix

* fix generate tests

* attn_impl workaround

* refactoring to use recent TransformersKwargs changes

* fix hidden_states shape test

* refactor to new outputs

* simplify outputs a bit

* rm unneeded decoderlayer overwriting

* rename blt

* forgot tokenizer test renamed

* Reorder

* Reorder

* working on modular

* updates from modular

* new modular

* ruff and such

* update pretrainedmodel modular

* using cohere2 apply_rotary_pos_emb

* small changes

* apply feedback r2

* fix cross_attention

* apply more feedback

* update modeling fix

* load submodules from pretrainedmodel

* set initializer_range to subconfigs

* rm cross_attnetion_states pass when not needed

* add 7b projection layer support

* check repo

* make copies

* lost cohere2 rotate_half

* ruff

* copies?

* don't tie weights for submodules

* tie weights setting

* check docstrings

* apply feedback

* rebase

* rebased modeling

* update docs

* applying feedback

* few more fixes

* fix can_record_outputs

* fast tokenizer

* no more modulelist

* tok auto

* rm tokenizersss

* fix docs

* ruff

* fix after rebase

* fix test, configs are not subscriptable

---------

Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-30.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-103.ec2.internal>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-36.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-45.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-173-121.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-103.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-178.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-79.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-169-239.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-111.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-100.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-153.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-15.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-131.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-138.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-215.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-142.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-147.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-0.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-58.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-202.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-244.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-186.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-192.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-14.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-171-249.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-75.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-78.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-134.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-180.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-175-241.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-225.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-9.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-34.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-68.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-175.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-170-160.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-95.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-73.ec2.internal>

* [docs] rm stray tf/flax autodocs references (#40999)

rm tf references

* [`RMSNorm`] Fix rms norm init for models that center around 1 (#40796)

* fix

* fixup inits

* oops

* fixup gemma

* fixup modular order

* how does this keep happen lol

* vaultgemma is new i forgot

* remove init check

* Make `EfficientLoFTRModelTest` faster (#41000)

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix typoes in src and tests (#40845)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix more dates in model cards and wrong modalities in _toctree.yml (#40955)

* Fix model cards and modalities in toctree

* fix new models

* RUFF fix on CI scripts (#40805)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* fix dict like init for ModelOutput (#41002)

* fix dict like init

* style

* 🚨 [v5] remove generate output retrocompatibility aliases (#40998)

remove old type aliases

* [tests] update `test_left_padding_compatibility` (and minimize overwrites) (#40980)

* update test (and overwrites)

* better test comment

* 0 as a default for

* Patch more `unittest.case.TestCase.assertXXX` methods (#41008)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* 🚨 [v5] remove deprecated entry point (#40997)

* remove old entry point

* update references to transformers-cli

* 🚨 [lightglue] fix: matches order changed because of early stopped indices (#40859)

* fix: bug that made early stop change order of matches

* fix: applied code suggestion

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix: applied code suggestion to modular

* fix: integration tests

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Fix `PhimoeIntegrationTest` (#41007)

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix Glm4v test (#41011)

fix

* Update after #41007 (#41014)

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix benchmark runner argument name (#41012)

* Adding support for Qwen3Omni (#41025)

* Add Qwen3Omni

* make fix-copies, import properly

* nit

* fix wrong setup. Why was audio_token_id renamed ?

* upds

* more processing fixes

* yup

* fix more generation tests

* down to 1?

* fix import issue

* style, update check repo

* up

* fix quality at my best

* final quality?

* fix doc building

* FINAL COMMIT: SKIP IMPORTANT BUT FAILING TESTS FOR MERGE

* SKIP THE TEMPLATE ONE

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
Co-authored-by: Arthur <arthur.zucker@gmail.com>

* Making compute_loss_func always take priority in Trainer (#40632)

* logger warn, if-else logic improved

* redundant if condition fix

* Modify Qwen3Omni parameter name since VL changed it (#41045)

Modify parameter name since VL changed it

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>

* Fix Qwen video tests (#41049)

fix test

* [testing] Fix `qwen2_audio` (#41018)

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix typing of tuples (#41028)

* Fix tuple typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove optax (#41030)

Remove optax dep

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typos in English/Chinese documentation (#41031)

* Fix typos and formatting in English docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typos and formatting in Chinese docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use torch.autocast (#40975)

* Use torch.autocast

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* docs: improved RoPE function Docstrings (#41004)

* docs: improved RoPE functuon docstrings

* Update src/transformers/modeling_rope_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix condition for emitting warning when generation exceeds max model length (#40775)

correct warning when generation exceeds max model length

Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>

* Fix outdated torch version check (#40925)

Update torch minimum version check to 2.2

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove doc of tf and flax (#41029)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add Whole Word Masking and Padding Strategy to DataCollatorForLanguageModeling (#39485)

* Add whole word masking

* Vectorize whole word masking functions

* Unit test whole word masking

* Remove support for TF in whole word masking

* [testing] Fix `seed_oss` (#41052)

* fix

* fix

* fix

* fix

* fix

* fix

* Update tests/models/seed_oss/test_modeling_seed_oss.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Remove repeated import (#40937)

* Remove repeated import

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix conflict

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Simplify unnecessary Optional typing (#40839)

Remove Optional

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add write token for uploading benchmark results to the Hub (#41047)

* Separate write token for Hub upload

* Address review comments

* Address review comments

* Ci utils (#40978)

* Add CI reports dir to gitignore

* Add utils to run local CI

* Review compliance

* Style

* License

* Remove <frameworkcontent> and <pt> tags from documentation (#41055)

* Remove <frameworkcontent> and <pt> tags

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert changes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update docs/source/en/model_doc/madlad-400.md

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix CI jobs being all red 🔴 (false positive) (#41059)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Update quantization CI (#41068)

* fix

* new everything

* fix

* [i18n-bn] Add Bengali language README file (#40935)

* [i18n-bn] Add Bengali language README file and update links in existing language files

* Update Bengali README for clarity and consistency in model descriptions

* Improve documentation and errors in Mamba2-based models (#41063)

* fix bug in Mamba2 docs

* correct 'because on of' issue

* link to other Mamba2 model types

* github URL is not changed

* update error message in generated files

* Update team member list for some CI workflows (#41094)

* update list

* update list

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix crash when using chat to send 2+ request to gptoss (#40536)

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* Minor addition, no split modules for VideoMAEE (#41051)

* added no split modules

* fixed typo

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>

* Switch to `python:3.10-slim` for CircleCI docker images (#41067)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix argument name in benchmarking script (#41086)

* Fix argument name in benchmarking script

* Adjust vars

* Remove mention of TensorFlow/Flax/JAX from English documentation (#41058)

Remove mention of TensorFlow from English documentation

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typos in documentation (#41087)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typing (#40788)

* Fix optional typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix optional typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix schema typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typing

* Fix typing

* Fix typing

* Fix typing

* Use np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix quote string of np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix code

* Format

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove unused arguments (#40916)

* Fix unused arguments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove tf and flax from Chinese documentation (#41057)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* fix wrong height and width when read video use torchvision (#41091)

* docs: Fix Tool Use links and remove dead RAG links (#41104)

docs: Fix tool use links. Remove dead RAG links. Fix style

* 🚨 [generate] update paligemma mask updates (and other assisted generation-related fixes) (#40917)

* tmp

* fix modular inheritance

* nit

* paligemma 1 doesn't have swa

* use same pattern as in models with hybrid layers

* PR comments

* helium also needs layer_typed (bc it relies on gemma)

* paligemma/gemma3: same mask creation fn in fwd and generate

* propagate changes to helium (gemma-based)

* tmp commit

* slow paligemma tests passing, let's see what breaks

* fix test_left_padding_compatibility

* tmp commit

* tmp commit

* rebase error

* docs

* reduce diff

* like this?

* t5gemma

* better comment

* shorter diff

* exception

* ffs type

* optional

* shorter modular_gemma.py

* helium model actually needs no changes -- the tester is the issue

* t5gemma modular config

* a few more modular; paligemma BC

* fix processor issues?

* rm config exception

* lift warning in gemma

* [tests] gpt2 + `CausalLMModelTester` (#41003)

* tmp commit

* tmp commit

* tmp commit

* rm old GPT2ModelTester

* nit bug

* add facilities for encoder-decoder tests; add comments on ALL overwrites/extra fns

* vision_encoder_decoder

* Fix `_get_test_info` for inherited tests (#41106)

* fix _get_test_info

* fix patched

* add comment

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove bad test skips (#41109)

* remove bad skips

* remove more

* fix inits

* Format empty lines and white space in markdown files. (#41100)

* Remove additional white space and empty lines from markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add empty lines around code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update ruff to 0.13.1 + target Python 3.10 + apply fixes (#37809)

Update ruff to 0.13.1 target it to Python 3.10 and apply its fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* 🚨 [V5] Remove deprecated training arguments  (#41017)

* Remove deprecated training arguments from V5

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove deprecated training arguments from V5

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix comments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Support loading LFM2 GGUF (#41111)

* add gguf config mapping for lfm2

* add lfm2 tensor process to unsqueeze conv weights

* adjust values from gguf config to HF config

* add test for lfm2 gguf

* ruff

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* [torchao safetensors] integrate torchao safetensors support with transformers  (#40735)

* enable torchao safetensors

* enable torchao safetensors support

* add more version checking

* [Qwen3-next] Fix dimension mismatch in torch_chunk_gated_delta_rule and torch_recurrent_gated_delta_rule (#40963) (#41036)

* fix mismatched dims for qwen3 next

* propagate changes

* chore: renamed tot_heads to total_sequence_length

* Apply suggestion from @vasqu

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* minor fix to modular qwen3 next file

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Fix the error where a keyword argument appearing before *args (#41099)

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix broken `` expressions in markdown files (#41113)

Fix broken expressions in markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove self-assignment (#41062)

* Remove self-assignment

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update src/transformers/integrations/flash_paged.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* 🚨Refactor: Update text2text generation pipelines to use max_new_tokens… (#40928)

* Refactor: Update text2text generation pipelines to use max_new_tokens and resolve max_length warning

* docs(text2text_generation): 更新参数注释以反映现代生成实践

将max_length参数注释更新为max_new_tokens,以符合现代生成实践中指定生成新token数量的标准做法

* refactor(text2text_generation): Remove outdated input validation logic

* docs(text2text_generation): Revert incorrectly modified comment

* docs(text2text_generation): Revert incorrectly modified comment

* Fixed MXFP4 model storage issue (#41118)

* Fixed loading LongT5 from legacy checkpoints (#40724)

* Fixed loading LongT5 from legacy checkpoints

* Adapted the fix to work with missing lm_head

* dummy commit (#41133)

* dummy commit, nothing interesting

* dummy commit, nothing interesting

* dummy commit, nothing interesting

* dummy commit, nothing interesting

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix loading logic flaw with regards to unexpected and missing keys (#40850)

* Unexpected keys should be ignored at load with device map

* remove them all

* fix logic flaw

* fix

* simplify

* style

* fix

* revert caching allocator change

* add other test

* add nice doc

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* Using torch.distributions.Categorical

* Resolving logits_process.py Issues

* style: autoformat with make fixup

* Update logits_process.py removed defaults

* Variable H name -> cumulative_entropy

* Resolving format error

* Correction of the loop variables in logit processor

* Vectorized the loop in logits_process

* formatted  logits_process

* paper reference and stopping rule comment logits_process

* Trigger CI rerun

* Update logits_process.py

* added test_TopH_example_integration

* added test_TopH_example_integration

* Update README.md

* Restore CI config to match main (remove accidental changes)

* Restore CI config to match upstream main (no diffs)

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: ArminAzizi98 <147081650+ArminAzizi98@users.noreply.github.com>
Co-authored-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Yuchao Zhang <418121364@qq.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: Bo Zheng <368586905@qq.com>
Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Rémi Ouazan <83456801+remi-or@users.noreply.github.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: Ryan Mullins <ryanmullins@google.com>
Co-authored-by: Amer <amersinha@gmail.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
Co-authored-by: Albert Villanova del Moral <8515462+albertvillanova@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Ákos Hadnagy <akos@ahadnagy.com>
Co-authored-by: Grzegorz Kwasniewski <213329731+greg-kwasniewski1@users.noreply.github.com>
Co-authored-by: NanoCode012 <nano@axolotl.ai>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: 艾力可 <178652170+thalahors@users.noreply.github.com>
Co-authored-by: JJJYmmm <92386084+JJJYmmm@users.noreply.github.com>
Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>
Co-authored-by: Samuel Barry <127697809+SamuelBarryCS@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Shane A <shanea@allenai.org>
Co-authored-by: Xuehai Pan <XuehaiPan@pku.edu.cn>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Co-authored-by: vb <vaibhavs10@gmail.com>
Co-authored-by: Yaswanth Gali <82788246+yaswanth19@users.noreply.github.com>
Co-authored-by: Akshay Babbar <priv.akshay@outlook.com>
Co-authored-by: liangel-02 <liangel@meta.com>
Co-authored-by: Duc-Viet Hoang <vietyb00@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: lilin-1 <256404019@qq.com>
Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
Co-authored-by: Jack <32371937+jackzhxng@users.noreply.github.com>
Co-authored-by: Rangehow <88258534+rangehow@users.noreply.github.com>
Co-authored-by: rangehow <rangehow@foxmail.com>
Co-authored-by: Anna <anna@liquid.ai>
Co-authored-by: Anna Banaszak <48625325+ankke@users.noreply.github.com>
Co-authored-by: Hamish Scott <41787553+hamishs@users.noreply.github.com>
Co-authored-by: Harshal Janjani <75426551+harshaljanjani@users.noreply.github.com>
Co-authored-by: Branden <brandenkmurray@gmail.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-27-253.ec2.internal>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-30.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-103.ec2.internal>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-36.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-45.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-173-121.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-103.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-178.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-79.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-169-239.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-111.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-100.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-153.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-15.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-131.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-138.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-215.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-142.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-147.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-0.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-58.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-202.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-244.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-186.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-192.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-14.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-171-249.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-75.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-78.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-134.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-180.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-175-241.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-225.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-9.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-34.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-68.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-175.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-170-160.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-95.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-73.ec2.internal>
Co-authored-by: StevenBucaille <steven.bucaille@gmail.com>
Co-authored-by: BakerBunker <17872844+BakerBunker@users.noreply.github.com>
Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
Co-authored-by: Arthur <arthur.zucker@gmail.com>
Co-authored-by: Ayush <ayushtanwar1729@gmail.com>
Co-authored-by: Ryan Mullins <ryan@ryanmullins.org>
Co-authored-by: Yannick Schnider <Yannick.Schnider1@ibm.com>
Co-authored-by: Ralph Gleaton <70818603+rjgleaton@users.noreply.github.com>
Co-authored-by: Saidur Rahman Pulok <59414463+saidurpulok@users.noreply.github.com>
Co-authored-by: Nick Doiron <ndoiron@mapmeld.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Duygu Altinok <duygu.altinok12@gmail.com>
Co-authored-by: Jinde.Song <juude.song@gmail.com>
Co-authored-by: hbenoit <60629420+HaroldBenoit@users.noreply.github.com>
Co-authored-by: nnul <107971634+notkisk@users.noreply.github.com>
Co-authored-by: YangKai0616 <kai.yang@intel.com>
Co-authored-by: Karol Szustakowski <61427290+Szustarol@users.noreply.github.com>
Co-authored-by: souvikku <107592858+souvikku@users.noreply.github.com>
2025-10-08 13:37:51 +00:00
e064dc05c2 [testing] Fix JetMoeIntegrationTest (#41377)
* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-08 13:11:53 +00:00
20282f13fa [JetMoe] Fix KV head repetition and padding free (#41423)
fix jetmoe
2025-10-08 14:27:22 +02:00
c528f50663 Remove Python 3.9 classifier (#41410)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-08 12:20:36 +00:00
8dfc8e8cfc 🤦 CB nit! (#41413)
* 🤦

* updates

* update cb simple

* merge

* up

* update

* fix

* up

* nit

* rumble this is annoying

* update

* update

* up

* fix

* ....

* cleanup a bit

* nit

* typo

* typing and typo

* nit

* updates

* up

* final fix!

* update

* fix more import issues

* nuke is paged

* up
2025-10-08 13:36:27 +02:00
2166e26cb1 [torchao] Add regex support for ModuleFqnToConfig (#41242)
* Add regex support for ModuleFqnToConfig

Summary:
Similar to https://github.com/pytorch/ao/pull/3084 we added regex support
in transformers so people can use regex to quantize the models.

See https://github.com/pytorch/ao/pull/3084 for docs and precedence of different
configurations

Uploaded model: https://huggingface.co/torchao-testing/opt-125m-ModuleFqnToConfig-v1-regex-0.14.0.dev

Test Plan:
pytest tests/quantization/torchao_integration/test_torchao.py -k test_module_fqn_to_config_regex

Reviewers:

Subscribers:

Tasks:

Tags:

* Apply style fixes

* add assert for

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-08 11:05:15 +00:00
b13ee63b5a enable new model uts to xpu and fix some failures on xpu (#41386)
* enable new model uts to xpu and fix some failures on xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* add more

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update test_modeling_internvl.py

* Update test_modeling_llava.py

* Update test_modeling_qwen2_5_omni.py

* Update test_modeling_llava_next_video.py

* Update test_modeling_qwen3.py

* Update test_modeling_whisper.py

* Update test_modeling_whisper.py

* Update test_modeling_llava.py

* Update test_modeling_llava.py

* Update test_modeling_qwen2_5_omni.py

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-08 10:14:50 +00:00
1c5ac899e8 Use accelerator API to free device memory (#41195)
* Use accelerator API to free device memory

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use clear_device_cache

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Cleanup

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Cleanup

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-08 12:11:18 +02:00
957b1f3696 Fixing comments in __init__ file (#41414)
nit
2025-10-08 12:07:26 +02:00
13791d8f48 [v5] Bump min version of bitsandbytes to 0.46.1 (#41283)
* bump bitsandbytes to 0.46.1

* huge cleanup

* style

* fix

* req

* fix

* importerror

* fix
2025-10-08 12:04:26 +02:00
7e475552be 🚨 [v5] Prune prune_heads (#41417)
* remove _prune_heads

* remove prune_heads

* finalize the purge

* remove another patterns
2025-10-08 10:25:13 +01:00
46db0edf3b 🚨🚨 Remove all traces of legacy cache format (#41378)
* remove

* more

* add back

* tests

* revert classes

* tests

* add exceptions

* reapply modular

* rename

* oupsi

* start with whisper

* fix tests

* fix

* fix

* fix

* typing
2025-10-08 11:14:44 +02:00
ee5488440b Tiny Cleanup - Removed duplicate class field definition's (#41293)
* Removed duplicate-class-field-definition
's using RUFF PIE794

* Removed duplicate-class-field-definition
's using RUFF PIE794

* Ruff format.

* Removed duplicate-class-field-definition

* Added New ruff rule to detect duplicate class field defs

* remove comment

* order

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-08 10:49:34 +02:00
34dcd73b57 v5 dev version (#41436) 2025-10-08 10:45:33 +02:00
3553f0bc23 Fix overriding common_kwargs defaults in processor calls (#41381)
* set common_kwargs defaults before updating with kwargs

* change order to override defaults common_kwargs
2025-10-07 23:13:56 -04:00
242eb9cbdc Remove deprecation warning (#41425)
* remove

* fix space
2025-10-07 19:21:14 +02:00
50090c3fc8 [v5] Delete left traces of feature extractor (#41321)
delete the left traces
2025-10-07 18:24:08 +02:00
ccbaa1670a Fix incorrect assignment in update_device_map for GPTQ quantizer (#41328)
Fix incorrect assignment in update_device_map for GPTQ quantizer

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-07 17:28:55 +02:00
c562c5d801 [v5] Bump accelerate to 1.1.0 (#41234)
* bump to 1.1.0 !

* bump accelerate

* fix

* None

* fixed !

* style
2025-10-07 17:18:32 +02:00
88e946e062 Fix early CUDA initialisation (#41409)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-07 14:37:17 +01:00
93464a0279 Prefer raising TypeError exception for invalid type (#41346)
* Fixed raising of TypeError exception for invalid type

* Fixed failing tests.
2025-10-07 13:11:42 +00:00
0c9a72e457 [Model] Lfm2Moe (#41401)
* [new-models] LFM2-MoE

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [docs] add in template lfm2_moe doc files

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [configuration] update configuration class

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modular][lfm] minor: fix rotary_emb typo

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modeling] modular/modeling files for Lfm2Moe

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modeling][lfm2_moe] fix Lfm2Moe modular/modeling

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [configuration][lfm2_moe] update configuration keys with latest config changes

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [misc] make fixup

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modular][lfm2_moe] address comments: dtype, mlp, buffers

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [configuration][lfm2_moe] add initializer_range

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modular][lfm2_moe] include init_weights to pass test_initialization

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [tests][causal_lm] include pos_emb as possible rope attribute

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modeling][lfm2_moe] remove load_balancing_loss_func due to lack of support for hooking expert biases

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [misc] make style

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [modeling][lfm2_moe] MoE refactor PR update in LFM2Moe

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [tests] lfm2_moe: unit tests

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [misc] update LFM2-8B-A1B repo id

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [tests] lfm2: update ModelTests for lfm2

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* Update LFM2 documentation

Updated the LFM2 documentation to reflect the addition of a new model size and clarified architectural details.

* Add Lfm2Moe documentation

Add Lfm2Moe model documentation with overview and example usage.

* [misc] fix ci

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [docs] remove trust_remote_code

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [misc] ci: fix modular

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* reapply modular

* simplify

* remove static address and inplace op

* simplify

* simplify a bit more the modular

* imports

---------

Signed-off-by: Paul Pak <paulpak58@gmail.com>
Co-authored-by: Maxime Labonne <81252890+mlabonne@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-07 15:09:58 +02:00
b4428d545f Fix test for model with dotted name and relative imports (#41343) 2025-10-07 13:55:54 +01:00
0464d9eb37 [Cache] lfm2 cache: allocate empty kv layers during init (#41396)
* [Cache] lfm2 cache: allocate empty kv layers during init

Signed-off-by: Paul Pak <paulpak58@gmail.com>

* [Cache] lfm2_cache: update modular file

Signed-off-by: Paul Pak <paulpak58@gmail.com>

---------

Signed-off-by: Paul Pak <paulpak58@gmail.com>
2025-10-07 14:01:31 +02:00
da7b8ce11f [kernels] Kernel Config (#41232)
* first config

* add kernel_config

* add import logic

* fixing style

* compare class name

* add comments

* rm import

* adding kernel md files

* add to toctree

* adding to main_classes

* simplify required config

* add to doc

* style

* store the mapping

* remove nested func

* add hub mixin

* fix

* imports

* fix
2025-10-07 13:58:20 +02:00
4763b8c5b8 Correct numerical regression in vision embeddings (#41374)
created modeling file
2025-10-07 13:43:24 +02:00
caa14e7dab fix resample in asr pipeline (#41298) 2025-10-06 17:31:10 +00:00
73f8c4b8ad fix asr ut failures (#41332)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-06 17:12:19 +00:00
57e82745f9 [v5] Sync Bert and Bart eager attention (#41248)
* remove from modeling files

* remaining changes

* style / copies

* revert deprecated models and fixup some models

* oops

* sync attn impl

* fix style/copies

* fix distilbert

* remove dim check
2025-10-06 18:49:01 +02:00
505387c05b Update from pretrained error when loading (#33380)
* init commit

* style

* take comments into account

* mrege with main and simplify

* nits

* final

* small fixes

* fix

* super small update!

* add another test

* up up

* update

* fixes

* sort them by default
2025-10-06 16:10:19 +00:00
e00f46f16e serve: add non-streaming mode to /v1/responses; stream event parity; remove placeholder logprobs (#41353) 2025-10-06 16:04:17 +00:00
0395ed52ae [CB] Refactors the way we access paged (#41370)
* up

* refactor the way we handle paged attention

* affect serve as well

* update

* fix

* cup
2025-10-06 17:55:31 +02:00
39b0c9491b Remove unused function patameters (#41358)
Remove unused arguments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-06 15:38:17 +00:00
11e4b5e5ee make some ut cases pass on xpu w/ latest torch (#41337)
* make some ut cases pass on xpu w/ latest torch

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update test_modeling_llava_onevision.py

* Apply style fixes

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-06 15:38:00 +00:00
fa36c973fc Remove unnecessary list comprehension (#41305)
Remove unnecessary comprehension

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-06 14:49:02 +00:00
7a1aeec36e Fixes in check_model_inputs, GPTBigCodeModel and ImageGPTModel (#40811)
* misc fixes

* fix

* Update src/transformers/models/imagegpt/modeling_imagegpt.py

* Apply suggestion from @IlyasMoutawwakil

* pickup use_cache from args input as well

* fix
2025-10-06 16:34:24 +02:00
297a41a6cf Use canonical get_size_with_aspect_ratio (with max_size) from transformers.image_transforms to fix #37939 (#41284)
* Use canonical get_size_with_aspect_ratio (with max_size) from transformers.image_transforms to fix #37939

* Fix import sorting/style

* Fix import order

* Refactor: use canonical get_size_with_aspect_ratio across image processors (except YOLOS)

This commit updates image processing utilities in multiple model processors to use the shared
transformers.image_transforms.get_size_with_aspect_ratio for consistent resizing logic and
aspect ratio handling.

YOLOS processors are intentionally left unchanged in this commit to preserve their current
behavior and avoid breaking model-specific padding/resizing assumptions. YOLOS will be updated
in a dedicated follow-up PR once compatibility is fully verified.

* ruff fixes

* Fix check_copies.py references for get_size_with_aspect_ratio to use canonical transformers.image_transforms version

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-10-06 10:15:56 -04:00
ae60c77689 Fix flash_attention.py: wrong argument passing for attn_implementation (#41347)
* Fix flash_attention.py: wrong argument passing for attn_implementation

The name of the attn type argument for `_flash_attention_forward()` should be `implementation`, instead of `attn_implementation` which currently uses in the function call. This would result in wrong type specification.

* modify the kwargs inside _flash_attention_forward

* fix the doc

* fix typo

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-06 15:36:40 +02:00
6bf6e36d3b [testing] update test_longcat_generation_cpu (#41368)
* fix

* Update tests/models/longcat_flash/test_modeling_longcat_flash.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2025-10-06 13:21:29 +00:00
4903cd4087 🚨 Remove BetterTransformer (#41367)
remove
2025-10-06 15:18:12 +02:00
a5700c497e Better typehints for apply_chat_template (#41355) 2025-10-06 13:14:03 +00:00
089d573aca Fix typo in model proposal template (#41352) 2025-10-06 13:06:50 +00:00
c27b67f0cd 🚨 [v5] Remove relative position embeddings (for bert like models) (#41170)
* remove from modeling files

* remaining changes

* style / copies

* revert deprecated models and fixup some models

* oops
2025-10-06 14:21:41 +02:00
a89bdcf5f1 Fixing a typo for BLT model (#41325) 2025-10-06 12:16:45 +00:00
0452f28544 [ModularChecker] QOL for the modular checker (#41361)
* update

* fancy table fancy prints

* download to cache folder, never need it everagain

* stule

* update based on review
2025-10-06 12:52:10 +02:00
9db58abd6e Check model inputs - hidden states (#40994)
* update all models

* fix copies

* skip aria tests

* update other models

* skip should be in test, not tester

* i think this is more descriptive as a name

* find and replace for new models
2025-10-06 11:48:52 +02:00
db711210d2 Fix trainer for py3.9 (#41359)
fix
2025-10-06 11:36:05 +02:00
163601c619 Standardize PretrainedConfig to PreTrainedConfig (#41300)
* replace

* add metaclass for full BC

* doc

* consistency

* update deprecation message

* revert
2025-10-06 11:34:02 +02:00
55b172b8eb 🚨 Bump to Python 3.10 and rework how we check 3rd-party libraries existence (#41268)
* cleanup

* add check

* fix

* remove all global variables

* fix

* add lru caches everywhere

* fix

* fix

* style

* improve

* reorder all functions

* fix order

* improve

* fix

* fix

* fix
2025-10-06 11:04:19 +02:00
1ec0b54414 Rope for Qwen2--5-vl (#41173)
qwen2--5-vl
2025-10-06 10:56:29 +02:00
0947b9042c Fixed tiny incorrect import in gemma3 (#41354)
Fixed tiny import issue in gemma3
2025-10-06 10:55:42 +02:00
e11a00a16f JetMoe Fix jetmoe after #40132 (#41324)
* update

* up
2025-10-04 11:02:13 +02:00
1bc75db9bd Fix lr_scheduler_parsing (#41322)
* fix

* fix
2025-10-03 17:51:17 +02:00
c2b3cc3e64 Fix jamba (#41309)
* reactivate tests

* first pass

* fix

* fix bias

* fix and simplify

* finally fix this stupid bug

* add skips

* remove bad stuff

* fix copies

* simplify
2025-10-03 16:54:19 +02:00
5abfa43f02 Security/fuyu (#41320)
remove reference to compromised repo
2025-10-03 14:13:41 +00:00
217ff1e4ef AutoAWQ tests (#41295)
* initial commit

* fix

* fix multi gpu

* fix expected output

* fix

* latest

* add comment

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-03 15:17:10 +02:00
5339f72b9b 🚨 [unbloating] unify TypedDict usage in processing (#40931)
* just squash commits into one

* fix style
2025-10-03 14:17:59 +02:00
42bcc81ba2 Minor security fix for ssh-runner.yml (#41317)
security issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-03 14:14:34 +02:00
cd4422922e Add modular detector (#41289)
* doc

* doc

* no remote code

* safe-ize the release + remove remote

* fixes

* add some documentation as well
2025-10-03 14:11:10 +02:00
59eba49237 download and use HF Hub Cache (#41181)
use hub cache

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-03 11:11:37 +02:00
de3ee737cf Fix README.md error when installing from source (#41303) 2025-10-02 16:08:27 -07:00
b914445f77 Italian translation for README.md (#41269)
chore: add Italian translation for README.md
2025-10-02 15:59:28 -07:00
41e5abac5c FIX: Bug in PEFT integration delete_adapter method (#41252)
The main content of this PR is to fix a bug in the delete_adapter method
of the PeftAdapterMixin. Previously, it did not take into account
auxiliary modules from PEFT, e.g. those added by modules_to_save. This
PR fixes this oversight.

Note that the PR uses a new functionality from PEFT that exposes
integration functions like delete_adapter. Those will be contained in
the next PEFT release, 0.18.0 (yet unreleased). Therefore, the bug is
only fixed when users have a PEFT version fullfilling this requirement.
I ensured that with old PEFT versions, the integration still works the
same as previously. The newly added test for this is skipped if the PEFT
version is too low.

(Note: I tested locally with that the test will pass with PEFT 0.18.0)

While working on this, I also cleaned up the following:

- The active_adapter property has been deprecated for more than 2 years
  (#26407). It is safe to remove it now.
- There were numerous small errors or outdated pieces of information in
  the docstrings, which have been addressed.

When PEFT < 0.18.0 is used, although we cannot delete modules_to_save,
we can still detect them and warn about it.
2025-10-02 18:36:57 +02:00
da3c7d1d36 🚨 [DistilBert] Refactor Attention (#41163)
* refactor

* allow pos ids for flattened sequences
2025-10-02 17:50:48 +02:00
e54defcfc2 [Flex Attn] Fix lse x attention sinks logic (#41249)
fix
2025-10-02 17:49:39 +02:00
b3bd815786 Fix mxfp4 dequantization (#41292)
fix
2025-10-02 16:47:42 +02:00
e4930d6bde 🚨 [V5] Remove deprecated resume_download (#41122)
Remove deprecated `resume_download`

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-02 16:44:34 +02:00
7adb43e60a Build doc in 2 jobs: en and other languages (#41290)
* separate

* separate

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-02 14:33:57 +00:00
e1f1d32af0 Remove some previous team members from allow list of triggering Github Actions (#41263)
* delete

* delete

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-02 16:32:28 +02:00
1d7ebff398 Fix - remove deprecated args checking in deepspeed intergrations (#41282)
Remove deprecated args checking in deepspeed intergrations

Signed-off-by: nguyen599 <pnvmanh2123@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-02 13:59:50 +00:00
9d02602f0f Remove test_initialization (#41261)
remove it
2025-10-02 15:23:43 +02:00
248e7ef8bc [docs] remove references to recently deleted classes in non-en docs (onnx, feature processors) (#41286)
remove references to old classes
2025-10-02 12:59:28 +00:00
bc33fd3fc2 Add processor and intergration test for qwen3vl (#41277)
* support aux loss in qwen3vlmoe

* update qwen3vl processor test!

* add integration tests for qwen3vl-30a3

* remove duplicated decorator

* code clean

* fix consistency

* do not inherit from nn.Linear for better quantization

* pass check
2025-10-02 14:59:04 +02:00
639ad8ccd9 feat: use aws-highcpu-32-priv for amd docker img build (#41285)
* feat: use `aws-highcpu-32-priv` for amd docker img build

* feat: add `workflow_dispatch` event to docker build CI
2025-10-02 12:53:14 +00:00
894a2bdd8c Fix pylint generator warnings (#41258)
Fix pylint generator warnings

Signed-off-by: cyy <cyyever@outlook.com>
2025-10-02 12:35:42 +00:00
1cc9069551 Fix unnecessary single-item container checks (#41279)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-02 12:35:11 +00:00
4f286fbbf8 Biogptlogits (#41270)
added logits slicing to BioGpt for seq classifier

Signed-off-by: Aviral <aviralkamaljain@gmail.com>
2025-10-02 12:33:48 +00:00
1d91a8a454 Use max/min (#41280)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-02 12:15:27 +00:00
f1b64c5b06 Unify is_torchvision_v2_available with is_torchvision_available (#41259)
Fix is_torchvision_v2_available

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-02 11:56:37 +00:00
2f3e266692 fix async client for transformers chat (#41255)
* fix-client

* fix
2025-10-02 13:23:37 +02:00
313504bcdd 🚨 [v5] remove deprecated generate classes (constraints and beam scorers) (#41223)
rm
2025-10-02 12:11:11 +01:00
8f14300663 Allow private Space id for Trackio (#40948)
* allow prive space id for trackio

* complete docstring
2025-10-02 12:38:25 +02:00
734732140a Deprecate Trackio environment variables and deploy to Spaces by default (#40950)
* allow prive space id for trackio

* complete docstring

* Deprecate environment variables for Trackio integration; use TrainingArguments instead and deploy by default

* style

* Enhance documentation for Trackio Space ID in TrainingArguments
2025-10-02 12:37:55 +02:00
7938e91faa MoE + vllm = 😻 (#40132)
* update modeling mixtral

* oups[13;2u

* fix

* better naming?

* compute softmax and top_k inside the experts

* update minamax as well

* models that will need an update

* more models that need a fix

* stash

* fix mixtral

* update olmoe

* update

* update

* current changes

* nits

* molmoe is now fixed

* olmoe is good to go!

* refactor qwen2_moe

* fixes

* fixed moe

* fix qwen2 modular

* nit

* qwen2_moie test script works

* tricky rope !

* fix qwen3

* DeepSeek v3 MoE Standardization (#40538)

* DeepSeek-v3

Shared

Shared

* Dependents of DS3

* Standardize GLM4V MoE (#40539)

* up

* Standardize VitPose's MoE (#40549)

* VitPose

* outside

* outside

* outside

* fix

* update dbrx

* dbrx... the magix

* Refactor Ernie 4.5's MoE (#40547)

* Isolate Ernie fixes

* fix moe

---------

Co-authored-by: Vasqu <antonprogamer@gmail.com>

* fix style

* style

* fix copies

* style

* latest changes

* fixes

* had to stage

* current updaters

* up

* another modular

* modular graniteMoe

* some update

* draft another modular moe

* updaters

* up

* fix nit

* q3 nit

* fix phi moe

* we're going up up up up its our mooooment

* fix switch transformers this time around

* up

* gptsan japanese is deprecated forget about it

* fix mixtral to not be a linear (gives us more freedom)

* update

* fix copies gone wrong try catch nothing

* fix mixtral

* new refactor again

* update aria as well

* up dbrx and deepseekv3

* nit

* fix phimoe?

* fix deepseek v3

* nits

* don't bother with this one please

* up olmoe

* ??

* fix olmoe

* yups

* fiupx

* ish

* hot patch

* new qwen3

* updates

* up

* nit

* fix copies

* fix

* nits

* we're going up up up

* nits

* switch_transformesr edge case

* lol modular gptsan?

* fix deepseek

* finally all modeling match modular

* update

* up

* up

* dang

* up

* up aria

* fix dbrx

* nits here and there

* finish fixing dbrx

* fix deepseek

* upd

* up

* fix flex olmo

* updated

* update jamba

* JAMBA is stil a bit todo

* forward forward

* fix dots11

* update

* fix hunyuan

* fix some other

* update phimoe

* fuck you phimoe you are now submitted

* submit granitemoe as well

* try to fix some other models, reduces some of the failures

* fix olmoe and qwem2moe

* up

* up

* fix qwen2_moe

* update modular make it again, simpler

* nits

* up

* up

* fix

* someswitch reductions

* up

* fix qwen3vl

* some fixes to jetmo

* these should be shipped to the modular to fix jetmoe

* fix most of the nllb failures

* more nllb fixes

* fix the modular

* remove nllb modular as it sucks for now

* ?

* fix granitemoe

* granitemoehybrid don't have rope

* use rope when rope, no rope when no rope

* updates

* finish fixing dumbgrainite

* fix most of minimax

* fix

* update modular

* ?

* up

* up jetmoe still broken

* up

* fix, now align the moe

* fix jetmoe

* fix styling and qwen3 repo consitency

* updatge

* up up

* update ruff?

* nits

* modeling is goot now for switch

* fix

* more fixses to switch!

* fix some siwtch test

* ?

* ?

* up

* fix switch modular!

* nit?

* uip

* subtest

* can't believe I wasted so much time on this...

* fix

* updates

* nits

* nit jamba is fucking annoying

* ?

* fix?

* oups

* good good

* styling

* up

* make sure qwen2 sliding works!

* fix dbrx small

* lol

* nits

* fix one test

* fix load balancing loss issue

* fix jamba

* fix nllbmoe

* fix jamba consistency and doc?

* up

* thse are correct

* up

* up

* up

* some of the final cleanup

* update

* up

* fix some revert in granimoe

* bring back attention multipliers for the granite family we'll see later on if they need removal

* small jamba fix docstring and typing

* fix phimoe

* yup

* fix unk returndict in granitemoes

* up

* fix qwen config

* fix phiemoe check quality

* nits

* update based on caught non relative imports!

* fix dbrx

* Apply suggestions from code review

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* fix copies

* fiuxp

* fix dot1 regression!

* fix phimoe issue

* fix phi moe

* fix float() for some models

* fix jamba regression

* ui

* more dtype issues

* fix deepseek2 and 3?

* proper update

* fix modular deepseek!

* jamba jambaaaaaa

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Vasqu <antonprogamer@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-02 12:12:44 +02:00
e6a8e7debe Fix binding of video frames to video placeholder in InternVL model (#41237)
* Fix binding video frames to video placeholder in prompt

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>

* Add test on binding video frames to prompt

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>

* Fix code style issues

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>

* Fix broken tests on `InternVLProcessor`

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>

* Add `return_tensors` to video processor defaults

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>

---------

Signed-off-by: Daniel Bershatsky <daniel.bershatsky@gmail.com>
2025-10-02 09:43:35 +00:00
30b79effb5 Remove SageMakerTrainer (#41267)
* Remove SageMakerTrainer

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More removal

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-02 09:16:32 +00:00
aabf0a03cb Fix multi-video timestamp bug in Qwen-3-VL and GLM4V (#41229)
* fix multi-video timestamp bug in qwen3vl,glm4v

* run make fix-copies to sync modular files

* run make fix-copies to sync modular files

---------

Co-authored-by: UBT <daqin.luo@ubtrobot.com>
2025-10-02 11:15:57 +02:00
bcdd5532bf Use regex defailed flags (#41264)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-02 08:34:09 +00:00
55d63e86ea fix asr pipeline ut failures (#41275)
* fix asr pipeline ut failures

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* make style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-02 10:32:03 +02:00
522b79a346 add more activation kernels, follow up (#40944)
* add more activation kernels

* fixing style

* fix version
2025-10-02 08:45:05 +02:00
9f2d5666f8 docs: update bitsandbytes platform support (#41266) 2025-10-01 14:27:19 -04:00
9d8f693c7e add peft team members to issue/pr template (#41262)
* add

* Update .github/PULL_REQUEST_TEMPLATE.md

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2025-10-01 17:26:59 +00:00
94bbf8e199 Resolve remote custom module path warnings (#41243) 2025-10-01 15:55:42 +00:00
c4b505d0f7 Don't convert to safetensors on the fly if the call is from testing (#41194)
* don't convert

* disable

* Update src/transformers/modeling_utils.py

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* fix

* disable

* disable

* disable

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-01 17:46:21 +02:00
01c9e1ba68 [t5gemma] fix get_text_config and related fixes (#40939)
* tmp commit

* t5gemma fixes
2025-10-01 15:55:26 +01:00
025531981c [FA3] Fix masking and loading logic in same process (#41217)
fix loading and fa3 masking
2025-10-01 16:36:12 +02:00
3256773974 FP-Quant NVFP4 and Python 3.9 support (#39876)
* quartet

* quartet qat -> quartet

* format

* bf16 backward

* interfaces

* forward_method

* quartet -> fp_quant

* style

* List -> list

* list typing

* fixed format and annotations

* test_fp_quant

* docstrings and default dtypes

* better docstring and removed noop checks

* docs

* pseudoquantization support to test on non-blackwell

* pseudoquant

* Pseudoquant docs

* Update docs/source/en/quantization/fp_quant.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update docs/source/en/quantization/fp_quant.md

* Update docs/source/en/quantization/fp_quant.md

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update tests/quantization/fp_quant_integration/test_fp_quant.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update tests/quantization/fp_quant_integration/test_fp_quant.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* small test fixes

* dockerfile update

* spec link

* removed `_process_model_after_weight_loading`

* toctree

* nvfp4

* nvfp4 tests

* FP-Quant version bumped

* nvfp4 default and docs update

* trainable

* cpu if pseudoquant

* proper group size selection

* gsr

* qutlass requirement version bumo

* Upstream docker copy

* docs update

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-01 13:58:22 +00:00
d848a3953a Remove all instances of is_safetensors_available (#41233)
* safetensors is a core dep

* fix

* ok

* simplify branching

* keep it for now

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-01 13:57:28 +00:00
e4913bdf50 🚨 [v5] Remove SinkCache (#41107)
Remove SinkCache

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-01 13:46:55 +00:00
1c8f206ecc Fix pylint warnings (#41222)
* Remove unused variables

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove reimported packages

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix pylint warnings

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Simplify

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-01 13:16:22 +00:00
3016717f0d Use removeprefix and removesuffix (#41240)
* Use removeprefix and removesuffix

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-01 13:13:04 +00:00
ca975f1cb8 [V5] Remove deprecated transformers.onnx (#41214)
* Remove deprecated transformers.onnx

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove onnx docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-10-01 12:17:04 +00:00
1d1ac07893 [repo utils] Update models_to_deprecate.py (#41231)
* update models_to_deprecate

* exclude this file

* handle typos and aliases

* don't commit files

* PR suggestions; make fixup
2025-10-01 12:01:52 +00:00
bcec3e2175 fix TrainerIntegrationDeepSpeed UT failures (#41236)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-01 13:55:01 +02:00
ae879f67f8 🚨 [v5] Delete feature extractors used for vision (#41174)
* bye bye

* remove from docs

* do not use feature extractor here

* fix docs

* do not delete it

* forgot these
2025-10-01 13:20:58 +02:00
1c4d9982d3 Use math.log2 (#41241)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-01 09:52:31 +00:00
db1cc65c06 Video processor accepts single frames on cuda (#41218)
* fix

* why was is np if input is in torch
2025-10-01 10:55:11 +02:00
f22cb1e868 fix qwen text config (#41158)
* fix qwen text config

* fix tests

* fix one more test

* address comments
2025-09-30 17:23:44 +00:00
374ded5ea4 Fix white space in documentation (#41157)
* Fix white space

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert changes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix autodoc

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-30 09:41:03 -07:00
16a141765c [docs] Fix tp_plan (#41205)
remove manual
2025-09-30 09:27:50 -07:00
5d1e853032 [Trainer] deprecate num_train_tokens (#41165)
* dep

* fix

* fix
2025-09-30 15:53:16 +00:00
cecd92849e [v5] Remove train kwargs (#41127)
* rm train kwargs

* fix
2025-09-30 17:43:25 +02:00
103fa6d235 [v5] Remove deprecated prediction loop (#41123)
* rem deprecated

* more

* rm all instances of legacy arg
2025-09-30 17:43:01 +02:00
aa3e8798ba [v5] Remove tokenizer from Trainer (#41128)
* tokenizer deprecated

* style

* forgot this

* style
2025-09-30 17:42:10 +02:00
e99dee6470 Remove old sagemaker api support (#41161)
* fix

* fix
2025-09-30 17:41:52 +02:00
dded9fd112 [v5] More Training Args cleaning (#41131)
clean
2025-09-30 17:38:07 +02:00
6fb6117abe Revert "Fix DeepSpeed mixed precision precedence over Accelerate defaults" (#41124)
* Revert "Fix DeepSpeed mixed precision precedence over Accelerate defaults (#3…"

This reverts commit df67cd35f0ca1a1cbf7147b2576db31b16200cf4.

* fix
2025-09-30 17:37:42 +02:00
5bdb70450d Fix sliding window attn mask (#41228)
* Fix sliding window attn mask

* Clearer test

* Apply style fixes

* If Picasso made ascii drawings he would have made this

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-30 17:22:53 +02:00
a61fc6a0b9 Fix typing of train_args (#41142)
* Fix typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix fsdp typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-30 14:28:02 +00:00
919a4845fb Unify is_torchvision_v2_available with is_torchvision_available (#41227)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-30 15:21:49 +01:00
8e7b0655f1 update code owners (#41221)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-30 16:21:19 +02:00
2dd175e6bb Adapt to the SDPA interface to enable the NPU to call FlashAttentionScore (#41143)
Adapt to the SDPA interface to enable the NPU to call FlashAttentionScore.

Co-authored-by: frozenleaves <frozen@Mac.local>
2025-09-30 14:19:57 +00:00
cf0887f62c Remove old Python code (#41226)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-30 14:15:59 +00:00
52f5eca7c9 🚨 [v5] Remove headmasking (#41076)
* first attempt at removing

* copies

* last bits in core

* quick fixes

* tests purge

* docs and examples

* some fixes

* more

* another round of cleanups

* fix

* fix a bunch of models

* fix dummy bert

* fix

* fix new model

* fix signature change

* fix

* fix style/copies

* new models

* fix copies didnt find that damn

* test

* this shouldnt have happened during model addition
2025-09-30 16:04:57 +02:00
a80f05dfcb [generate] cache missing custom generate file (#41216)
* cache missing custom generate file

* make fixup
2025-09-30 13:32:24 +00:00
1f1e93e095 Align pull request template to bug report template (#41220)
The only difference is that I don't users to https://discuss.huggingface.co/ for hub issues.
2025-09-30 14:25:41 +02:00
2a596f5b2f [ESM] add accepts_loss_kwargs=False to EsmPreTrainedModel (#41006)
add accepts_loss_kwargs=False to EsmPreTrainedModel

Signed-off-by: Peter St. John <pstjohn@nvidia.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-30 12:06:47 +00:00
3edd8048b0 Trainer: Pass num_items_in_batch to compute_loss in prediction_step (#41183)
* Add num_items_in_batch computation to predict_step.

* address comments.

* Fix test cases.

* fixup

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-30 09:45:17 +00:00
59035fd0e1 Avoid assumption that model has config attribute in deepspeed (#41207)
Avoid assumption that model has config in deepspeed
2025-09-30 11:42:50 +02:00
d97397787e Wait for main process in _save_checkpoint to ensure best checkpoint exists (#40923)
* Update trainer.py

* fix

* fix format

* move barrier, delete redundant
2025-09-30 11:41:03 +02:00
06c04e0851 Deprecate half_precision_backend (#41134)
* deprecate

* remove

* rm apex

* fix

* fix

* fix doc
2025-09-30 11:36:44 +02:00
0e5a975608 Fix Qwen3-Omni audio_token_id serialization issue (#41192)
Fix Qwen3-Omni audio_token_id serialization by overriding parent's attribute_map

- Override attribute_map in Qwen3OmniMoeThinkerConfig to prevent inheritance of incorrect mapping
- Parent class maps audio_token_id -> audio_token_index, but implementation uses audio_token_id directly
- Fixes issue where custom audio_token_id values were not preserved during save_pretrained/from_pretrained cycles

Fixes #41191
2025-09-30 11:15:56 +02:00
42c682514b docs/examples(speech): pin CTC commands to Hub datasets; add Windows notes (#41027)
* examples(speech): load Common Voice from Hub; remove deprecated dataset-script references (Windows-friendly notes)

* docs/examples(speech): pin CTC streaming & other CTC commands to Hub datasets; add Windows notes

* make style

* examples(speech): align DataTrainingArguments help with datasets docs; minor wording fixes

* docs/examples(speech): address review  remove Hub subsection & Whisper tip; align dataset help text

* style: apply ruff/black/usort/codespell on examples/speech-recognition

* Apply style fixes

* Update examples/pytorch/speech-recognition/README.md

* update doc to match load_dataset

---------

Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-30 08:38:31 +00:00
aaf1269d83 Remove unnecessary Optional typing (#41198)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-30 08:38:05 +00:00
4a02bc7004 [docs] Fix links (#41110)
fix
2025-09-30 08:53:07 +02:00
def4a37e19 Embed interactive timeline in docs (#41015)
* embed timeline in docs (test web componentand Iframe)

* test scaling

* test multiple scales

* compensate scale in width

* set correct syle and scale

* remove bottom space created by scale

* add timeline as a separate page

* reformulate docs after review
2025-09-30 01:36:08 +00:00
3e975acc8b Fix docker quantization (#41201)
* launch docker

* remove gptq for now

* run tests

* Revert "run tests"

This reverts commit f85718ce3a21d5937bf7405b8925c125c67d1a3e.

* revert
2025-09-29 16:36:30 +00:00
8635d8e796 Fix 8bit bnb loading (#41200)
* Fix 8bit

* oups forgot the case where it is not prequantized
2025-09-29 18:34:46 +02:00
1f0e9a4778 Fix EXAONE-4.0 dummy id (#41089)
* Fix EXAONE-4.0 dummy id

* Fix exaone4 dummy (#1)

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-29 16:30:55 +00:00
bd37c45354 Add EdgeTAM (#39800)
* initial comment

* test

* initial conversion for outline

* intermediate commit for configuration

* chore:init files for sam2

* adding arbitary undefined config

* check

* add vision

* make style

* init sam2 base model

* Fix imports

* Linting

* chore:sam to sam2 classes

* Linting

* Add sam2 to models.__init__

* chore:match prompt encoder with sam2 code

* chore:prepare kwargs for mask decoder

* Add image/video predictors

* Add CUDA kernel

* Add output classes

* linting

* Add logging info

* tmp commit

* docs for sam2

* enable image processing

* check difference of original SAM2
- difference is the order of ToTensor()
- please see https://pytorch.org/vision/main/_modules/torchvision/transforms/functional.html#resize

* enable promptencoder of sam2

* fix promprencoder

* Confirmed that PromptEncoder is exactly same (Be aware of bfloat16 and float32 difference)

* Confirmed that ImageEncoder is exactly same (Be aware the linting of init)

* Confirmed that MaskDecoder is exactly same (TO DO: lint variable name)

* SamModel is now available (Need more chore for name)

* make fix-copies

* make style

* make CI happy

* Refactor VisionEncoder and PostioinEmbedding

* TO DO : fix the image_embeddings and sparse_embeddings part

* pure image inference done

* reusable features fix and make style

* styling

* refactor memoryattention

* tmp

* tmp

* refactor memoryencoder
TO DO : convert and inference the video pipeline

* TO DO : fix the image_encoder shape

* conversion finish
TO DO: need to check video inference

* make style

* remove video model

* lint

* change

* python utils/check_docstringspy --check_all

* python utils/check_config_attributes.py

* remove copies for sam2promptencoder due to configuration

* change __init__.py

* remove tensorflow version

* fix that to not use direct comparison

* make style

* add missing import

* fix image_embedding_size

* refactor Sam2 Attention

* add fully working video inference (refactoring todo)

* clarify _prepare_memory_conditioned_features

* simplify modeling code, remove unused paths

* use one model

* use auto_docstring

* refactor rope embeddings

* nit

* not using multimask when several points given

* add all sam2.1

* add video tmp

* add Sam2VideoSessionState + fast image proc + video proc

* remove init_states from model

* fix batch inference

* add image integration tests

* uniformize modeling code with other sam models and use modular

* pass vision tests an most model tests

* All tests passing

* add offloading inference state and video to cpu

* fix inference from image embedding and existing mask

* fix multi_boxes mask inference

* Fix batch images + batch boxes inference

* improve processing for image inference

* add support for mask generation pipeline

* add support for get_connected_components post processing in mask generation

* add fast image processor sam, image processor tests and use modular for sam2 image processor

* fix mistake in sam after #39120

* fix init weights

* refactor convert

* add integration tests for video + other improvements

* add needed missing docstrings

* Improve docstrings and

* improve inference speed by avoiding cuda sync

* add test

* skip test for vision_model

* minor fix for vision_model

* fix vision_model by adding sam2model and change the torch dependencies

* remove patch_size

* remove image_embedding_size

* fix patch_size

* fix test

* make style

* Separate hieradet and vision encoder in sam2

* fixup

* review changes part 1

* remove MemoryEncoderConfig and MemoryAttentionConfig

* pass q_stride instead of q_pool module

* add inference on streamed videos

* explicitely process streamed frames

* nit

* Improve docstrings in Sam2Model

* update sam2 modeling with better gestion of inference state and cache, and separate Sam2Model and Sam2VideoModel

* improve video inference api

* change inference_state to inference_session

* use modular for Sam2Model

* fix convert sam2 hf

* modular

* Update src/transformers/models/sam2/video_processing_sam2.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix minor config

* fix attention loading error

* update modeling tests to use hub checkpoints

* Use CI A10 runner for integration tests values + higher tolerance for video integration tests

* PR review part 1

* fix doc

* nit improvements

* enforce one input format for points, labels and boxes

* nit

* last few nits from PR review

* fix style

* fix the input type

* fix docs

* add sam2 model as conversion script

* improve sam2 doc

* add rough necessarry changes

* first working edgetam

* fix issue with object pointers

* Use modular as much as possible

* nit fixes + optimization

* refactor spatial perceiver

* cleanup after merge

* add working edgetam

* improve perceiver resampler code

* simplify/unify rope attention logic

* Improve comments in apply_rotary_pos_emb_2d

* add working tests

* fix test timmwrapper

* add docs

* make fixup

* nits

* fix modular

* fix modular

* PR review part 1

* split apply_rotary_pos_emb_2d

* add granularity to _prepare_memory_conditioned_features

* add dates to doc

* add separate mlp for memory attention

* Fix memory on wrong device

* store processed frames in dict

* update checkpoints in tests

* update dates

---------

Co-authored-by: sangbumchoi <danielsejong55@gmail.com>
Co-authored-by: RUFFY-369 <prakarshkaushik369@gmail.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: Haitham Khedr <haithamkhedr@meta.com>
Co-authored-by: sangbum choi <sangbumchoi@sangbumui-MacBookAir.local>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-09-29 11:54:54 -04:00
c1db38686a [Kernels Attention] Change fallback logic to error out on explicit kernels request and include FA3 (#41010)
* fix

* be more strict

* change logic to include fa3

* fix the case where nothing is requested

* modify old tests + add kernels related tests

* style
2025-09-29 17:10:59 +02:00
5426edecab Make quantizers good citizens loading-wise (#41138)
* fix param_needs_quantization

* rewrite most hqq

* clean

* fix

* comment

* remove it from exception of safetensors

* start on bnb 4bits

* post-rebase fix

* make bnb4 bit a good citizen

* remove forgotten print

* make bnb 8bits a good citizen

* better hqq

* fix

* clean

* remove state dict from signature

* switch method

* make torchao a good citizen

* fixes

* fix torchao

* add check

* typo
2025-09-29 17:04:45 +02:00
399c589dfa Separate docker images for Nvidia and AMD in benchmarking (#41119)
Separate docker images for Nvidia and AMD
2025-09-29 17:03:27 +02:00
52cbc7c868 Fix attention sink implementation in flex attention (#41083)
* Fix attention sink implementation in flex attention

* fix dim

* fix

* Remove print

* raisae error when return_lse is False yet s_aux is providewd

* Clean test files for merge

* Update src/transformers/integrations/flex_attention.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* force return lse

* Add to doc

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-09-29 14:33:03 +00:00
de9a75f5b0 fix(trainer): Avoid moving model with device_map (#41032)
* fix(trainer): Avoid moving model with device_map

When a model is loaded with `device_map="auto"` and is too large to fit on a single GPU, `accelerate` will offload some layers to the CPU or disk. The `Trainer` would previously attempt to move the entire model to the specified device, causing a `RuntimeError` because a model dispatched with `accelerate` hooks cannot be moved.

This commit fixes the issue by adding a check in `_move_model_to_device` to see if the model has an `hf_device_map` attribute. If it does, the device placement is assumed to be handled by `accelerate`, and the `model.to(device)` call is skipped.

A regression test is added to ensure the `Trainer` can be initialized with a model that has a `hf_device_map` that simulates offloading without raising an error.

* Added the logger warning for the move model

---------

Co-authored-by: google-labs-jules[bot] <161369871+google-labs-jules[bot]@users.noreply.github.com>
2025-09-29 14:31:42 +00:00
bcc0dae77c enable flex attention ut cases on XPU (#40989)
* enable flex attention ut cases on XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-29 14:30:49 +00:00
fcd483f0ff Bump hfh prerelease version (#41175) 2025-09-29 16:28:36 +02:00
a3fa1d3993 Fix inaccurate train_tokens_per_second when resuming from checkpoint (#41156)
* fix(trainer): Fix the issue of inaccurate token count in training sessions

During the training process, the initial token count was not saved, leading to inaccurate speed calculation. Now, the initial token count is saved and the increment during the session is calculated, ensuring that the speed metric accurately reflects the performance of the current training session.

* 修复错误

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-29 16:22:35 +02:00
ad74fba085 [v5] Remove model_parallel deprecated feature (#41166)
* fix

* remove model parallel

* style

* removed a bit too much

* rm comments

* fix
2025-09-29 16:14:03 +02:00
38a08b6e8a More typing fixes (#41102)
* Fix noqa

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* fix typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* remove noqa

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix chars

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-29 13:11:53 +00:00
4fade1148f [tests] CausalLMTester automatically infers other test classes from base_model_class 🐛 🔫 (#41066)
* halfway through the models

* update test checks

* refactor all

* another one

* use tuples

* more deletions

* solve bad inheritance patterns

* type

* PR ready?

* automatic model class inference from the base class

* vaultgemma

* make fixup

* make fixup

* rebase with gpt2

* make fixup :'(

* gpt2 is special
2025-09-29 15:05:08 +02:00
cdba28c344 [XPU] Add MXFP4 support for XPU (#41117)
* XPU supports gpt-oss MXFP4

* Complete MXFP4 UT file and comment information

* Complete MXFP4 UT file and comment information

* Fix code style

* Fix code style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-29 12:10:41 +02:00
2dcb20dcec CI Runners - move amd runners mi355 and 325 to runner group (#41193)
* Update CI workflows to use devmi355 branch

* Add workflow trigger for AMD scheduled CI caller

* Remove unnecessary blank line in workflow YAML

* Add trigger for workflow_run on main branch

* Update workflow references from devmi355 to main

* Change runner_scale_set to runner_group in CI config
2025-09-29 11:14:19 +02:00
d0d574b1e4 Modernbert fix (#41056)
* Add FA to docker

* Fixed padding for mdernbert

* Fixed logits and hidden states extraction in ModernBertForMultipleChoice

* Added a test for ModernBertForMultipleChoice

* fixes

* More fixes and GREEN CI

* consistency

* moar consistency
2025-09-29 10:52:44 +02:00
071eb5334f handle flash slow tests (#41072)
* handle flash slow tests

* update patch mask to 1/0 for flash

* don't skip flash

* flash

* raise tols

* rm flash support :(

* nits

---------

Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-173-7.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-171-230.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-95.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-214.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-147.ec2.internal>
2025-09-26 16:24:31 +00:00
50d2448a1a Enable fa in amd docker (#41069)
* Add FA to docker

* Use caching mechanism for qwen2_5

* Fix a typo in important models list

* Partial fixes for gemma3

* Added a commit ID for FA repo

* Detailled  the expectation storage format

* Rebase fix

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-26 13:57:58 +02:00
10f6891fc5 Remove data from examples (#41168)
Remove telemetry
2025-09-26 13:52:45 +02:00
97ca0b4712 Fix flash-attn for paged_attention when no kernels (#41078)
* Fix non-kernels flash attention paged implementation

* Cover all cases

* Style

* Update src/transformers/integrations/flash_paged.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Apply style fixes

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-26 10:41:21 +02:00
53838edde7 Improve add_dates script (#41167)
* utils/add_dates.py

* put lfm2-vl in correct category
2025-09-25 16:00:05 -04:00
449533af73 Add language specifiers to code blocks of markdown files (#41114)
* Add language specifiers to code blocks of markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update docs/source/en/model_doc/qwen3_omni_moe.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating_writing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating_writing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating_writing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update nemotron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update phimoe.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix syntax error

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-09-25 10:29:57 -07:00
e691f84412 Force new vision models addition to include a fast image processor (#40802)
* add test

* fix test and change cutoff date

* Add documentation to test
2025-09-25 15:58:18 +00:00
e54bb62a73 Simplify and improve model loading logic (#41103)
* remove unexpected keys from inputs (they have nothing to do there)

* remove input

* simplify a lot init

* fix

* fix check for non-persistent buffer

* revert because too many old and bad models...

* remove comment

* type hint

* make it a real test

* remove model_to_load -> always use the same model

* typo

* remove legacy offload_folder (we never waste that memory anymore)

* do not change prefix anymore

* change very bad function name

* create adjust method

* remove useless method

* restrict

* BC

* remove unused method

* CI

* remove unused args

* small fix

* fix

* CI

* CI

* avoid too many loops

* fix regex

* cleaner

* typo

* fix

* fix
2025-09-25 17:28:27 +02:00
6dc9ed87a0 Fix format of compressed_tensors.md (#41155)
* Fix table format

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix format

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-25 14:50:15 +00:00
a579de7f5e Add Parakeet (#39062)
* first commit

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update to handle masking for bs>1

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* Add tests and docs

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update model ids

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update docs and improve style

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update librosa location

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* import guard torch too

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* ruff code checks fix

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* ruff format check

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* updated to parakeet names

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update script

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* Add tokenizer decoding

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* Remove other model dependency

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* clean tests

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix tests

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* linting

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix ruff lint warnings

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* move to seperate folders

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* add parakeet ctc model code

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* simplify encoder structure

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* update documentation

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* add parakeet to toctree

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix tests

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* add parakeet doc

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* Address comments

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* Update featurizer to compute lens directly

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix ruff tests

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix encoding format

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* fix minor ctc decoding

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>

* revert modular_model_converter.py changes

* revert check_config_attributes.py changes

* refactor: fastconformer & parakeet_ctc -> parakeet

* modeling update

* test update

* propagate feature extractor updates

* propagate doc changes

* propagate doc changes

* propagate tokenization changes

* propagate conversion changes

* remove fastconformer tests

* remove modular

* update processor

* update processor

* tset update

* diverse fixes

* 100% macthing greedy batched

* Update conversion script.

* Refactor docs.

* Reafactor auto loading.

* Refactor and fix tokenization and processing.

* Update integration test.

* Modeling fixes:
- ensure correct attention mask shape
- ensure layer drop returns valid output
- correct blank token ID when computing CTC loss

* Format and repo consistency.

* Update model doc.

* Fix feature extraction tests.

* Fix (most) tokenizer tests.

* Add pipeline example.

* Fixes

* Use eager_attention_forward from Llama.

* Small tweaks.

* Replace Sequential with ModuleList

* Add check if not all layers copied

* Clean tokenizer.

* Standardize FastSpeech2ConformerConvolutionModule for Parakeet.

* Switch to modular for modeling and processing.

* Add processor tests.

* Fix modeling tests.

* Formating and docstrings.

* Add `return_attention_mask` like other feature extractors.

* clean up after merging main.

* nits on modeling

* configuration update

* nit

* simplification: use PretrainedTokenizerFast, simplify processor

* add dtype arg to mel_filter_bank

* feature extraction: simplify!

* modeling update

* change to ParakeetTokenizerFast

* correct attention mask handling

* auto update

* proc update

* test update

* feature extraction fixes

* modeling update

* conversion script update

* udpate tests feature integration

* update tokenization and tests

* processor tests

* revert audio_utils

* config docstring update

* blank_token -> pad_token

* modeling udpate

* doc update

* fix tests

* fix test

* fix tests

* address review comments

* add comment

* add comment

* explicitly not support flash

* atttention straightforward masking

* fix

* tokenizer update: skipping blank tokens by default

* doc update

* fix max_positions_embeddings handling

* nits

* change atol faeture extraction integration tests

* doc update + fix loss

* doc update

* nit

* update integration test for A10

* repo id name

* nit

---------

Signed-off-by: nithinraok <nithinrao.koluguri@gmail.com>
Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
Co-authored-by: Eric B <ebezzam@gmail.com>
2025-09-25 13:52:24 +00:00
1dd22a234c extend gemma3n integration ut cases on XPU (#41071)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-09-25 13:46:37 +00:00
05fb90c969 Fix single quotes in markdown (#41154)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-25 13:03:26 +00:00
44682e7131 Adapt and test huggingface_hub v1.0.0 (#40889)
* Adapt and test huggingface_hub v1.0.0.rc0

* forgot to bump hfh

* bump

* code quality

* code quality

* relax dependency table

* fix has_file

* install hfh 1.0.0.rc0 in circle ci jobs

* repostiryo

* push to hub now returns a commit url

* catch HfHubHTTPError

* check commit on branch

* add it back

* fix ?

* remove deprecated test

* uncomment another test

* trigger

* no proxies

* many more small changes

* fix load PIL Image from httpx

* require 1.0.0.rc0

* fix mocked tests

* fix others

* unchange

* unchange

* args

* Update .circleci/config.yml

* Bump to 1.0.0.rc1

* bump kernels version

* fix deps
2025-09-25 11:13:50 +00:00
750dd2a401 Fix: align Qwen2.5-VL inference rope index with training by passing s… (#41153)
Fix: align Qwen2.5-VL inference rope index with training by passing second_per_grid_ts
2025-09-25 10:33:46 +00:00
7258ea44bc Fix loading logic flaw with regards to unexpected and missing keys (#40850)
* Unexpected keys should be ignored at load with device map

* remove them all

* fix logic flaw

* fix

* simplify

* style

* fix

* revert caching allocator change

* add other test

* add nice doc

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-24 16:44:42 +02:00
2c4caa19e7 dummy commit (#41133)
* dummy commit, nothing interesting

* dummy commit, nothing interesting

* dummy commit, nothing interesting

* dummy commit, nothing interesting

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-24 16:31:46 +02:00
6d1875924c Fixed loading LongT5 from legacy checkpoints (#40724)
* Fixed loading LongT5 from legacy checkpoints

* Adapted the fix to work with missing lm_head
2025-09-24 13:13:18 +01:00
3ca43d34b1 Fixed MXFP4 model storage issue (#41118) 2025-09-24 12:11:51 +00:00
b33cb70097 🚨Refactor: Update text2text generation pipelines to use max_new_tokens… (#40928)
* Refactor: Update text2text generation pipelines to use max_new_tokens and resolve max_length warning

* docs(text2text_generation): 更新参数注释以反映现代生成实践

将max_length参数注释更新为max_new_tokens,以符合现代生成实践中指定生成新token数量的标准做法

* refactor(text2text_generation): Remove outdated input validation logic

* docs(text2text_generation): Revert incorrectly modified comment

* docs(text2text_generation): Revert incorrectly modified comment
2025-09-24 11:54:55 +00:00
b0c7034d58 Remove self-assignment (#41062)
* Remove self-assignment

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update src/transformers/integrations/flash_paged.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Clear pass

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-09-24 12:43:17 +01:00
04a0bb569c Fix broken `` expressions in markdown files (#41113)
Fix broken expressions in markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-24 11:34:12 +00:00
071c7b1423 Fix the error where a keyword argument appearing before *args (#41099)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-24 11:27:37 +00:00
80f20e0ff8 [Qwen3-next] Fix dimension mismatch in torch_chunk_gated_delta_rule and torch_recurrent_gated_delta_rule (#40963) (#41036)
* fix mismatched dims for qwen3 next

* propagate changes

* chore: renamed tot_heads to total_sequence_length

* Apply suggestion from @vasqu

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* minor fix to modular qwen3 next file

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-09-24 11:18:27 +00:00
1d81247b0c [torchao safetensors] integrate torchao safetensors support with transformers (#40735)
* enable torchao safetensors

* enable torchao safetensors support

* add more version checking
2025-09-24 12:32:47 +02:00
b533cec74d Support loading LFM2 GGUF (#41111)
* add gguf config mapping for lfm2

* add lfm2 tensor process to unsqueeze conv weights

* adjust values from gguf config to HF config

* add test for lfm2 gguf

* ruff

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-24 10:17:41 +00:00
65dcd66cc8 🚨 [V5] Remove deprecated training arguments (#41017)
* Remove deprecated training arguments from V5

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Remove deprecated training arguments from V5

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix comments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-24 12:01:27 +02:00
43a613c8da Update ruff to 0.13.1 + target Python 3.10 + apply fixes (#37809)
Update ruff to 0.13.1 target it to Python 3.10 and apply its fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-09-24 06:37:21 +00:00
f64354e89a Format empty lines and white space in markdown files. (#41100)
* Remove additional white space and empty lines from markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add empty lines around code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 16:20:01 -07:00
99b0995138 Remove bad test skips (#41109)
* remove bad skips

* remove more

* fix inits
2025-09-23 20:39:28 +02:00
00f3d90720 Fix _get_test_info for inherited tests (#41106)
* fix _get_test_info

* fix patched

* add comment

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-23 19:35:24 +02:00
cfa022e719 [tests] gpt2 + CausalLMModelTester (#41003)
* tmp commit

* tmp commit

* tmp commit

* rm old GPT2ModelTester

* nit bug

* add facilities for encoder-decoder tests; add comments on ALL overwrites/extra fns

* vision_encoder_decoder
2025-09-23 18:07:06 +01:00
869735d37d 🚨 [generate] update paligemma mask updates (and other assisted generation-related fixes) (#40917)
* tmp

* fix modular inheritance

* nit

* paligemma 1 doesn't have swa

* use same pattern as in models with hybrid layers

* PR comments

* helium also needs layer_typed (bc it relies on gemma)

* paligemma/gemma3: same mask creation fn in fwd and generate

* propagate changes to helium (gemma-based)

* tmp commit

* slow paligemma tests passing, let's see what breaks

* fix test_left_padding_compatibility

* tmp commit

* tmp commit

* rebase error

* docs

* reduce diff

* like this?

* t5gemma

* better comment

* shorter diff

* exception

* ffs type

* optional

* shorter modular_gemma.py

* helium model actually needs no changes -- the tester is the issue

* t5gemma modular config

* a few more modular; paligemma BC

* fix processor issues?

* rm config exception

* lift warning in gemma
2025-09-23 16:20:00 +00:00
71717ce91c docs: Fix Tool Use links and remove dead RAG links (#41104)
docs: Fix tool use links. Remove dead RAG links. Fix style
2025-09-23 09:18:49 -07:00
946e5f95ea fix wrong height and width when read video use torchvision (#41091) 2025-09-23 12:35:44 +00:00
870add3daf Remove tf and flax from Chinese documentation (#41057)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 11:43:17 +00:00
ae60692821 Remove unused arguments (#40916)
* Fix unused arguments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 11:40:51 +00:00
f682797866 Fix typing (#40788)
* Fix optional typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix optional typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix schema typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typing

* Fix typing

* Fix typing

* Fix typing

* Use np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Use np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix quote string of np.ndarray

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix code

* Format

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 11:36:02 +00:00
f4a6c65951 Fix typos in documentation (#41087)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 11:27:04 +00:00
89e0f472f4 Remove mention of TensorFlow/Flax/JAX from English documentation (#41058)
Remove mention of TensorFlow from English documentation

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 11:14:11 +00:00
62ce6fcb60 Fix argument name in benchmarking script (#41086)
* Fix argument name in benchmarking script

* Adjust vars
2025-09-23 13:05:27 +02:00
257fe5eea8 Switch to python:3.10-slim for CircleCI docker images (#41067)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-23 12:48:48 +02:00
0ec0325781 Minor addition, no split modules for VideoMAEE (#41051)
* added no split modules

* fixed typo

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-09-23 11:53:51 +02:00
577fa6f167 fix crash when using chat to send 2+ request to gptoss (#40536)
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2025-09-23 09:50:23 +00:00
03c92884b5 Update team member list for some CI workflows (#41094)
* update list

* update list

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-23 09:48:40 +00:00
cbb290ec23 Improve documentation and errors in Mamba2-based models (#41063)
* fix bug in Mamba2 docs

* correct 'because on of' issue

* link to other Mamba2 model types

* github URL is not changed

* update error message in generated files
2025-09-22 10:36:20 -07:00
8048c614bf [i18n-bn] Add Bengali language README file (#40935)
* [i18n-bn] Add Bengali language README file and update links in existing language files

* Update Bengali README for clarity and consistency in model descriptions
2025-09-22 09:51:39 -07:00
aa30e0642e Update quantization CI (#41068)
* fix

* new everything

* fix
2025-09-22 18:10:16 +02:00
1bb69cce82 Fix CI jobs being all red 🔴 (false positive) (#41059)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-22 16:51:00 +02:00
f15258dec2 Remove <frameworkcontent> and <pt> tags from documentation (#41055)
* Remove <frameworkcontent> and <pt> tags

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert changes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Update docs/source/en/model_doc/madlad-400.md

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-09-22 14:29:50 +00:00
2ec37649e2 Ci utils (#40978)
* Add CI reports dir to gitignore

* Add utils to run local CI

* Review compliance

* Style

* License
2025-09-22 16:16:19 +02:00
b9d337b6f3 Add write token for uploading benchmark results to the Hub (#41047)
* Separate write token for Hub upload

* Address review comments

* Address review comments
2025-09-22 14:13:46 +00:00
646ff51d1a Simplify unnecessary Optional typing (#40839)
Remove Optional

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 12:57:50 +00:00
c9939b3ab6 Remove repeated import (#40937)
* Remove repeated import

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix conflict

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 12:57:13 +00:00
4f36011545 [testing] Fix seed_oss (#41052)
* fix

* fix

* fix

* fix

* fix

* fix

* Update tests/models/seed_oss/test_modeling_seed_oss.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-09-22 14:54:30 +02:00
2b8a7e82b5 Add Whole Word Masking and Padding Strategy to DataCollatorForLanguageModeling (#39485)
* Add whole word masking

* Vectorize whole word masking functions

* Unit test whole word masking

* Remove support for TF in whole word masking
2025-09-22 13:42:34 +01:00
226667ec2f Remove doc of tf and flax (#41029)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 13:42:26 +01:00
6eff44bb8d Fix outdated torch version check (#40925)
Update torch minimum version check to 2.2

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 12:38:07 +00:00
9ff47a71e4 Fix condition for emitting warning when generation exceeds max model length (#40775)
correct warning when generation exceeds max model length

Signed-off-by: Yannick Schnider <yannick.schnider1@ibm.com>
2025-09-22 12:21:38 +00:00
ae9ef2e151 docs: improved RoPE function Docstrings (#41004)
* docs: improved RoPE functuon docstrings

* Update src/transformers/modeling_rope_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-09-22 13:21:15 +01:00
f3c481ed87 Use torch.autocast (#40975)
* Use torch.autocast

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 12:18:24 +00:00
37152f8446 Fix typos in English/Chinese documentation (#41031)
* Fix typos and formatting in English docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix typos and formatting in Chinese docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 11:31:46 +00:00
8a52288dba Remove optax (#41030)
Remove optax dep

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 11:30:39 +00:00
5f891b36cd Fix typing of tuples (#41028)
* Fix tuple typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-22 11:29:07 +00:00
c05f9d2f0e [testing] Fix qwen2_audio (#41018)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-22 10:45:31 +00:00
55a1eaf6f0 Fix Qwen video tests (#41049)
fix test
2025-09-22 12:28:11 +02:00
db802aafa4 Modify Qwen3Omni parameter name since VL changed it (#41045)
Modify parameter name since VL changed it

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-09-22 10:06:59 +00:00
8a2f24a321 Making compute_loss_func always take priority in Trainer (#40632)
* logger warn, if-else logic improved

* redundant if condition fix
2025-09-22 09:47:34 +00:00
ebbcf00ad1 Adding support for Qwen3Omni (#41025)
* Add Qwen3Omni

* make fix-copies, import properly

* nit

* fix wrong setup. Why was audio_token_id renamed ?

* upds

* more processing fixes

* yup

* fix more generation tests

* down to 1?

* fix import issue

* style, update check repo

* up

* fix quality at my best

* final quality?

* fix doc building

* FINAL COMMIT: SKIP IMPORTANT BUT FAILING TESTS FOR MERGE

* SKIP THE TEMPLATE ONE

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
Co-authored-by: Arthur <arthur.zucker@gmail.com>
2025-09-21 23:46:27 +02:00
67097bf340 Fix benchmark runner argument name (#41012) 2025-09-20 10:53:56 +02:00
8076e755e5 Update after #41007 (#41014)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-19 21:55:46 +02:00
022c882e14 Fix Glm4v test (#41011)
fix
2025-09-19 18:54:26 +02:00
966b3dbcbe Fix PhimoeIntegrationTest (#41007)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-19 16:43:46 +00:00
04bf4112f2 🚨 [lightglue] fix: matches order changed because of early stopped indices (#40859)
* fix: bug that made early stop change order of matches

* fix: applied code suggestion

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix: applied code suggestion to modular

* fix: integration tests

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-09-19 16:41:22 +01:00
dfc230389c 🚨 [v5] remove deprecated entry point (#40997)
* remove old entry point

* update references to transformers-cli
2025-09-19 14:40:27 +00:00
8010f5d1d9 Patch more unittest.case.TestCase.assertXXX methods (#41008)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-19 16:38:12 +02:00
5bf633b32a [tests] update test_left_padding_compatibility (and minimize overwrites) (#40980)
* update test (and overwrites)

* better test comment

* 0 as a default for
2025-09-19 15:36:26 +01:00
df12617914 🚨 [v5] remove generate output retrocompatibility aliases (#40998)
remove old type aliases
2025-09-19 14:36:12 +00:00
2a538b2ed4 fix dict like init for ModelOutput (#41002)
* fix dict like init

* style
2025-09-19 16:14:44 +02:00
96a3e898cd RUFF fix on CI scripts (#40805)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-19 13:50:26 +00:00
98c8523434 Fix more dates in model cards and wrong modalities in _toctree.yml (#40955)
* Fix model cards and modalities in toctree

* fix new models
2025-09-19 09:47:28 -04:00
767f8a4c75 Fix typoes in src and tests (#40845)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-19 13:18:38 +00:00
9d9c4d24c5 Make EfficientLoFTRModelTest faster (#41000)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-19 12:51:05 +00:00
b4ba4e1da0 [RMSNorm] Fix rms norm init for models that center around 1 (#40796)
* fix

* fixup inits

* oops

* fixup gemma

* fixup modular order

* how does this keep happen lol

* vaultgemma is new i forgot

* remove init check
2025-09-19 12:15:36 +00:00
fce746512b [docs] rm stray tf/flax autodocs references (#40999)
rm tf references
2025-09-19 12:04:12 +01:00
ddfa3d4402 blt wip (#38579)
* blt wip

* cpu version

* cpu friendly with full entropy model (real time patching)

* adding config file instead of args file

* enable MPS

* refactoring unused code

* single config class in config file

* inherit from PreTrainedModel

* refactor LMTransformer --> BLTPatcher

* add conversion script

* load from new checkpoing with form_pretrained

* fixed demo from_pretrained

* clean up

* clean a few comments

* cleanup folder

* clean up dir

* cleaned up modeling further

* rename classes

* adding transformers Attention class and RotaryEmbedding class

* exchanged blt modules for transformers modules: attention, rotary_emb, create_causal_mask, etc

* seperate out patcher config, update modeling and conversion script

* rename vars to be more transformers-like

* rm unused functions

* adding cross attention from transformers

* pass arg

* rename weights

* updated conversion script

* overwritten commit! fixing PR

* apply feedback

* adding BLTRMSNorm like Llama

* add repeat_kv and eager_attention_forward copied from

* BLTMLP identical to MllamTextMLP

* clean up some args'

* more like mllama, but busier inits

* BLTTransformerLayer config

* decoder, encoder, global configs

* wip working on modular file

* cleaning up patch and configs

* clean up patcher helpers

* clean up patcher helpers further

* clean up

* some config renaming

* clean up unused configs

* clean up configs

* clean up configs

* update modular

* clean

* update demo

* config more like mllama, seperated subconfigs from subdicts

* read from config instead of self args

* update demo file

* model weights to causal lm weights

* missed file

* added tied weights keys

* BLTForCausalLM

* adding files after add-new-model-like

* update demo

* working on tests

* first running integration tests

* added integration tests

* adding tokenization tests, integration tests, and cleaned up tokenization file, + ruff

* tokenizer clean up

* modular file

* fixing rebase

* ruff

* adding correct basemodel output and updating config with checkpoint vals (for testing)

* BLTModelTests git status

* enabling inputs_embeds, although won't be equal to input_ids since need ids for patching logic

* fix sdpa == causal tests

* fix small model test and some gradient checkpointing

* skip training GC tests

* fix test

* updated modular

* update modular

* ruff

* adding modular + modeling

* modular

* more modern is_casual check

* cleaning up modular

* more modular reduction

* ruff

* modular fix

* fix styling

* return 2

* return 2

* fix some tests

* fix bltcrossattention after modular break

* some fixes / feedback

* try cache generate fix

* try cache generate fix

* fix generate tests

* attn_impl workaround

* refactoring to use recent TransformersKwargs changes

* fix hidden_states shape test

* refactor to new outputs

* simplify outputs a bit

* rm unneeded decoderlayer overwriting

* rename blt

* forgot tokenizer test renamed

* Reorder

* Reorder

* working on modular

* updates from modular

* new modular

* ruff and such

* update pretrainedmodel modular

* using cohere2 apply_rotary_pos_emb

* small changes

* apply feedback r2

* fix cross_attention

* apply more feedback

* update modeling fix

* load submodules from pretrainedmodel

* set initializer_range to subconfigs

* rm cross_attnetion_states pass when not needed

* add 7b projection layer support

* check repo

* make copies

* lost cohere2 rotate_half

* ruff

* copies?

* don't tie weights for submodules

* tie weights setting

* check docstrings

* apply feedback

* rebase

* rebased modeling

* update docs

* applying feedback

* few more fixes

* fix can_record_outputs

* fast tokenizer

* no more modulelist

* tok auto

* rm tokenizersss

* fix docs

* ruff

* fix after rebase

* fix test, configs are not subscriptable

---------

Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-30.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-103.ec2.internal>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-36.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-45.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-173-121.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-103.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-178.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-79.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-169-239.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-111.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-100.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-153.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-15.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-131.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-138.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-215.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-142.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-147.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-0.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-58.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-165-202.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-244.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-174-186.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-192.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-14.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-171-249.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-164-75.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-78.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-163-134.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-180.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-175-241.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-160-225.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-9.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-34.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-166-68.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-167-175.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-170-160.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-168-95.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-172-73.ec2.internal>
2025-09-19 11:55:55 +02:00
46ea7e613d [testing] test num_hidden_layers being small in model tester (#40992)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-19 11:45:07 +02:00
ebdc17b8e5 ENH: Enable readline support for transformers chat (#40911)
ENH Enable readline support for chat

This small change enables GNU readline support for the transformers chat
command. This includes, among others:

- advanced navigation and editing: ctrl + a ctrl + e alt + b alt + f
  ctrl + k alt + d etc.
- navigate and search history: arrow up/down ctrl + p ctrl + n  ctrl + r
- undo: ctrl + _
- clear screen: ctrl + l

Implementation

Although it may look strange, just importing readline is enough to
enable it in Python, see:

https://docs.python.org/3/library/functions.html#input

As readline is not available on some
platforms (https://docs.python.org/3/library/readline.html), the import
is guarded.

Readline should work on Linux, MacOS, and with WSL, I'm not sure about
Windows though. Ideally, someone can give it a try. It's possible that
Windows users would have to install
pyreadline (https://pypi.org/project/pyreadline3/).
2025-09-19 10:39:21 +01:00
e2dbde280f Remove [[autodoc]] refs to TF/Flax objects (#40996)
* remove refs

* more
2025-09-19 11:28:34 +02:00
155f7e2e62 🔴[Attention] Bert-based Models Attention Refactor (#38301)
* clean start to bert refactor

* some test fixes

* style

* fix last tests

* be strict on positional embeddings, fixup according tests

* cache support

* more cache fixes, new causal API

* simplify masks, fix tests for gen

* flex attn, static cache support, round of fixes

* ?

* this time

* style

* fix flash attention tests, flex attention requires torch 2.7.x to work with multiple classes (as recompile strats force a size call which is wrongly interpreted before)

* roberta

* fixup sdpa remains

* attention split, simplify args and kwargs, better typing

* fix encoder decoder

* fix test

* modular roberta

* albert

* data2vectext, making it modular tomorrow

* modular data2vec text

* tmp disable

* xmod + cache position fixes

* whoops

* electra + markuplm, small fixes

* remove wrong copy

* xlm_roberta + some embedding fixes

* roberta prelayernorm

* RemBert: remove copy, maybe doing it later

* ernie

* fix roberta offloading

* camembert

* copy fixes

* bert generation + fixes on eager

* xlm roberta xl

* bridgetower (text) + seamlessv2 copy fixes

* rocbert + small fixes

* whoops

* small round of fixups

* NOTE: kernels didnt load with an earlier version, some fixup (needs another look bc cross deps)

* the end of the tunnel?

* fixup nllbmoe + style

* we dont need this anymore

* megatron bert is barely used, low prio skip for now

* Modernize bert (template for others)

NOTE: trying to push this through, might be overdue if not in time possible

* check inputs for all others (if checkmarked)

* fix bridgetower

* style

* fix encoder decoder (partially but cause found and fix also, just needs to be done for everything else)

* proper fix for bert to force intermediate dict outputs

* propagate to others

* style

* xlm roberta xl investigation, its the layernorm...

* mobile bert

* revert this, might cause issues with composed models

* review

* style
2025-09-19 11:23:58 +02:00
61eff450d3 Benchmarking v2 GH workflows (#40716)
* WIP benchmark v2 workflow

* Container was missing

* Change to sandbox branch name

* Wrong place for image name

* Variable declarations

* Remove references to file logging

* Remove unnecessary step

* Fix deps install

* Syntax

* Add workdir

* Add upload feature

* typo

* No need for hf_transfer

* Pass in runner

* Runner config

* Runner config

* Runner config

* Runner config

* Runner config

* mi325 caller

* Name workflow runs properly

* Copy-paste error

* Add final repo IDs and schedule

* Review comments

* Remove wf params

* Remove parametrization from worfkflow files

* Fix callers

* Change push trigger to pull_request + label

* Add back schedule event

* Push to the same dataset

* Simplify parameter description
2025-09-19 08:54:49 +00:00
5f6e278a51 Remove set_model_tester_for_less_flaky_tests (#40982)
remove
2025-09-18 18:56:10 +02:00
4df2529d79 🚨🚨🚨 Fully remove Tensorflow and Jax support library-wide (#40760)
* setup

* start the purge

* continue the purge

* more and more

* more

* continue the quest: remove loading tf/jax checkpoints

* style

* fix configs

* oups forgot conflict

* continue

* still grinding

* always more

* in tje zone

* never stop

* should fix doc

* fic

* fix

* fix

* fix tests

* still tests

* fix non-deterministic

* style

* remove last rebase issues

* onnx configs

* still on the grind

* always more references

* nearly the end

* could it really be the end?

* small fix

* add converters back

* post rebase

* latest qwen

* add back all converters

* explicitly add functions in converters

* re-add
2025-09-18 18:27:39 +02:00
5ac3c5171a Track the CI (model) jobs that don't produce test output files (process being killed etc.) (#40981)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-18 18:27:27 +02:00
d9d7f6a6b9 Revert change in compile_friendly_resize (#40645)
fix
2025-09-18 16:25:45 +01:00
738b223f57 Add captured actual outputs to CI artifacts (#40965)
* fix

* fix

* Remove `# TODO: ???` as it make me `???`

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-18 15:40:53 +02:00
dd7ac4cd59 [tests] Really use small models in all fast tests (#40945)
* start

* xcodec

* chameleon

* start

* layoutlm2

* layoutlm

* remove skip

* oups

* timm_wrapper

* add default

* doc

* consistency
2025-09-18 15:24:12 +02:00
2ce35a248f Fix Issue #39030: AutoTokenizer.from_pretrained does not propagate token (#40956)
* fix merge conflicts

* change token typing

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-27-253.ec2.internal>
2025-09-18 13:22:19 +00:00
6e51ac31ef [timm_wrapper] better handling of "Unknown model" exception in timm (#40951)
* fix(timm): Add exception handling for unknown Gemma3n model

* nit: Let’s cater to this specific issue

* nit: Simplify error handling
2025-09-18 14:09:08 +01:00
9378f874c1 [Trainer] Fix DP loss (#40799)
* fix

* style

* Fix fp16

* style

---------

Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
2025-09-18 13:07:20 +00:00
7cf1f5ced0 Use skip_predictor=True in vjepa2 get_vision_features (#40966)
use skip_predictor in vjepa2 `get_vision_features`
2025-09-18 11:51:45 +00:00
f6104189fd Fix outdated version checks of accelerator (#40969)
* Fix outdated version checks of accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix outdated version checks of accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-18 11:49:14 +00:00
c532575795 Add new model LFM2-VL (#40624)
* Add LFM2-VL support

* add tests

* linting, formatting, misc review changes

* add siglip2 to auto config and instantiate it in lfm2-vl configuration

* decouple image processor from processor

* remove torch import from configuration

* replace | with Optional

* remove layer truncation from modeling file

* fix copies

* update everything

* fix test case to use tiny model

* update the test cases

* fix finally the image processor and add slow tests

* fixup

* typo in docs

* fix tests

* the doc name uses underscore

* address comments from Yoni

* delete tests and unsuffling

* relative import

* do we really handle imports better now?

* fix test

* slow tests

* found a bug in ordering + slow tests

* fix copies

* dont run compile test

---------

Co-authored-by: Anna <anna@liquid.ai>
Co-authored-by: Anna Banaszak <48625325+ankke@users.noreply.github.com>
2025-09-18 11:01:58 +00:00
564fde14f1 FIX(trainer): ensure final checkpoint is saved when resuming training (#40347)
* fix(trainer): ensure final checkpoint is saved when resuming training

* add test

* make style && slight fix of test

* make style again

* move test code to test_trainer

* remove outdated test file

* Apply style fixes

---------

Co-authored-by: rangehow <rangehow@foxmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-18 09:57:21 +00:00
5748352c27 Update expected values for one more test_speculative_generation after #40949 (#40967)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-18 11:47:14 +02:00
438343d93f Don't list dropout in eager_paged_attention_forward (#40924)
Remove dropout argument

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-18 09:05:50 +00:00
449da6bb30 Add FlexOlmo model (#40921)
* transformers add-new-model-like

* Add FlexOlmo implementation

* Update FlexOlmo docs

* Set default tokenization for flex olmo

* Update FlexOlmo tests

* Update attention comment

* Remove unneeded use of `sliding_window`
2025-09-18 09:04:06 +00:00
3bb1b4867c Standardize audio embedding function name for audio multimodal models (#40919)
* Standardize audio embedding function name for audio multimodal models

* PR review
2025-09-18 08:45:04 +00:00
58e13b9f12 Update expected values for some test_speculative_generation (#40949)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-17 20:50:38 +02:00
529d3a2b06 Fix Glm4vModelTest::test_eager_matches_fa2_generate (#40947)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-17 19:53:59 +02:00
a2ac4de8b0 Remove nested import logic for torchvision (#40940)
* remove nested import logic for torchvision

* remove unnecessary protected imports

* remove unnecessarry protected import in modular (and modeling)

* fix wrongly remove protected imports
2025-09-17 13:34:30 -04:00
8e837f6ae2 Consistent naming for images kwargs (#40834)
* use consistent naming for padding

* no validation on pad size

* add warnings

* fix

* fox copies

* another fix

* fix some tests

* fix more tests

* fix lasts tests

* fix copies

* better docstring

* delete print
2025-09-17 18:40:25 +02:00
eb04363a0d Raise error instead of warning when using meta device in from_pretrained (#40942)
* raise instead of warning

* add timm

* remove
2025-09-17 18:23:37 +02:00
ecc1d778ce Fix Glm4vMoeIntegrationTest (#40930)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-17 18:21:18 +02:00
c5553b4120 Fix trainer tests (#40823)
* fix liger

* fix

* more

* fix

* fix hp

* fix

---------

Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
2025-09-17 16:05:17 +00:00
14f01aee39 docs(i18n): Correct the descriptive text in the README_zh-hans.md (#40941) 2025-09-17 08:48:38 -07:00
26b65fb516 Intel CPU dockerfile (#40806)
* upload intel cpu dockerfile

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update cpu dockerfile

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update label name

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-09-17 15:42:30 +00:00
66f97d3f64 [models] remove unused import torch.utils.checkpoint (#40934) 2025-09-17 16:37:56 +01:00
3853bfe4d5 [DOC] Add missing dates in model cards (#40922)
add missing dates
2025-09-17 11:17:06 -04:00
6cade29278 Add LongCat-Flash (#40730)
* working draft for LongCat

* BC changes to deepseek_v3 for modular

* format

* various modularities

* better tp plan

* better init

* minor changes

* make modular better

* clean up patterns

* Revert a couple of modular commits, because we won't convert in the end

* make things explicit.

* draft test

* toctree, tests and imports

* drop

* woops

* make better things

* update test

* update

* fixes

* style and CI

* convert stuff

* up

* ah, yes, that

* enable gen tests

* fix cache shape in test (sum of 2 things)

* fix tests

* comments

* re-Identitise

* minimize changes

* better defaults

* modular betterment

* fix configuration, add documentation

* fix init

* add integration tests

* add info

* simplify

* update slow tests

* fix

* style

* some additional long tests

* cpu-only long test

* fix last tests?

* urg

* cleaner tests why not

* fix

* improve slow tests, no skip

* style

* don't upcast

* one skip

* finally fix parallelism
2025-09-17 14:48:10 +02:00
48a5565179 Add support for Florence-2 training (#40914)
* Support training florence2

* update doc and testing model to florence-community

* fix florence-2 test, use head dim 16 instead of 8 for fa2

* skip test_sdpa_can_dispatch_on_flash

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-17 11:49:56 +00:00
89949c5d2d Minor fix for #40727 (#40929)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-17 11:42:13 +02:00
c830fc1207 Adding activation kernels (#40890)
* first commit

* add mode

* revert modeling

* add compile

* rm print
2025-09-17 11:36:09 +02:00
f6999b00c3 [torchao safetensors] renaming get_state_dict function (#40774)
renaming get_state_dict function

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-09-17 11:20:50 +02:00
8428c7b9c8 Fix #40067: Add dedicated UMT5 support to GGUF loader (config, tokenizer, test) (#40218)
* Fix #40067 : add UMT5 support in GGUF loader (config, tokenizer, test)

* chore: fix code formatting and linting issues

* refactor: move UMT5 GGUF test to quantization directory and clean up comments

* chore: trigger CI pipeline

* refactor(tests): Move UMT5 Encoder GGUF test to GgufModelTests. This consolidates the new test into the main class for consistency.

* Add regression check to UMT5 encoder GGUF test

Verify encoder output against reference tensor values with appropriate tolerances for stability.

* Update tests/quantization/ggml/test_ggml.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update tests/quantization/ggml/test_ggml.py

remove comments

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-09-17 09:15:55 +00:00
ddd4caf066 [Llama4] Remove image_sizes arg and deprecate vision_feature_layer (#40832)
* Remove unused arg

* deprecate

* revrt one change

* get set go

* version correction

* fix

* make style

* comment
2025-09-17 09:14:13 +00:00
b82cd1c240 Processor load with multi-processing (#40786)
push
2025-09-17 09:46:49 +02:00
6e50a8afb2 [Docs] Adding documentation of MXFP4 Quantization (#40885)
* adding mxfp4 quantization docs

* review suggestions

* Apply suggestions from code review

Co-authored-by: vb <vaibhavs10@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: vb <vaibhavs10@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-09-16 11:31:28 -07:00
cccef4be91 Fix dtype in Paligemma (#40912)
* fix dtypes

* fix copies

* delete unused attr
2025-09-16 16:07:56 +00:00
beb09cbd5a 🔴Make center_crop fast equivalent to slow (#40856)
make center_crop fast equivalent to slow
2025-09-16 16:01:38 +00:00
d4af0d9f03 [generate] misc fixes (#40906)
misc fixes
2025-09-16 15:18:06 +01:00
3b3f6cd0c1 [gemma3] Gemma3ForConditionalGeneration compatible with assisted generation (#40791)
* gemma3vision compatible with assisted generation

* docstring

* BC

* docstring

* failing checks

* make fixup

* apply changes to modular

* misc fixes

* is_initialized

* fix poor rebase
2025-09-16 15:08:48 +01:00
88ba0f107e disable test_fast_is_faster_than_slow (#40909)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-16 15:34:04 +02:00
270da89708 Remove runner_map (#40880)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-16 15:18:07 +02:00
df03fc1f9c Improve module name handling for local custom code (#40809)
* Improve module name handling for local custom code

* Use `%lazy` in logging messages

* Revert "Use `%lazy` in logging messages"

This reverts commit 5848755d5805e67177c5218f351c0ac852df9340.

* Add notes for sanitization rule in docstring

* Remove too many underscores

* Update src/transformers/dynamic_module_utils.py

* Update src/transformers/dynamic_module_utils.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-09-16 13:11:48 +00:00
96bc19bcdf remove dummy EncodingFast (#40864)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-16 12:56:11 +00:00
d0af4269ec Add Olmo3 model (#40778)
* transformers add-new-model-like for Olmo3

* Implement modular Olmo3

* Update Olmo3 tests

* Copy Olmo2 weight converter to Olmo3

* Implement Olmo3 weight converter

* Fix code quality errors

* Remove unused import

* Address rope-related PR comments

* Update Olmo3 model doc with minimal details

* Fix Olmo3 rope test failure

* Fix 7B integration test
2025-09-16 13:28:23 +02:00
65f9ede359 Set seed for Glm4vIntegrationTest (#40905)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-16 13:01:51 +02:00
0c1839d609 [cache] Only use scalars in get_mask_sizes (#40907)
* remove tensor ops

* style

* style
2025-09-16 12:48:58 +02:00
3688a977d0 Harmonize CacheLayer names (#40892)
* unify naming

* style

* doc as well

* post rebase fix

* style

* style

* revert
2025-09-16 12:14:12 +02:00
087775d10e [cache] Merge static sliding and static chunked layer (#40893)
* merge

* get rid of tensors in get_mask_sizes!!

* remove branch

* add comment explanation

* re-add the class with deprecation cycle
2025-09-16 11:41:20 +02:00
1aff033ec9 Fix flaky Gemma3nAudioFeatureExtractionTest::test_dither (#40902)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-16 11:00:07 +02:00
65adc3aaa3 Fix getter regression (#40824)
* test things

* style

* move tests to a sane place
2025-09-16 10:57:13 +02:00
8e1a12bbee Fixing the call to kernelize (#40628)
* fix

* style

* overload train and eval

* add getter and setter
2025-09-16 10:50:54 +02:00
21c8379fb0 Make debugging failing tests (check and update expect output values) easier 🔥 (#40727)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-16 10:21:48 +02:00
5af248b3e3 [generate] remove docs of a feature that no longer exists (#40895) 2025-09-15 19:22:31 +01:00
20ee3a73f0 🌐 [i18n-KO] Translated imageprocessor.md to Korean (#39557)
* feat: manual translation

* docs: fix ko/_toctree.yml

* Apply suggestions from code review

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

* Update docs/source/ko/image_processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-09-15 10:07:16 -07:00
2141a5b764 🌐 [i18n-KO] Translated smolvlm.md to Korean (#40414)
* fix: manual edits

* Apply suggestions from code review

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/model_doc/smolvlm.md

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-09-15 10:06:57 -07:00
2a83792165 Remove dict branch of attention_mask in sdpa_attention_paged_forward (#40882)
Remove dict branch of attention_mask

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-15 17:38:13 +02:00
04d1c8f3d4 Fix deta loading & dataclass (#40878)
* fix

* fix 2
2025-09-15 17:23:13 +02:00
ff26fe8302 Add Fast PromptDepthAnything Processor (#40602)
* Test & import setup

* First version passing tests

* Ruff

* Dummy post processing

* Add numerical test

* Adjust

* Doc

* Ruff

* remove unused arg

* Refine interpolation method and push test script

* update bench

* Comments

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Remove benchmrk script

* Update docstrings

* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Update src/transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* doc

* further process kwargs

* remove it

* remove

* Remove to dict

* remove crop middle

* Remove param specific handling

* Update testing logic

* remove ensure multiple of as kwargs

* fix formatting

* Remove none default and get image size

* Move stuff to _preprocess_image_like_inputs and refacto

* Clean

* ruff

* End of file & comments

* ruff again

* Padding fixed

* Remove comments to pass tests

* Remove prompt depth from kwargs

* Adjust output_size logic

* Docstring for preprocess

* auto_docstring for preprocess

* pass as an arg

* update test batched

* stack images

* remove prompt scale to meter

* return tensors back in preprocess

* remove copying of images

* Update behavior to match old processoer

* Fix batch size of tests

* fix test and fast

* Fix slow processor

* Put tests back to pytorch

* remove check and modify batched tests

* test do_pad + slow processor fix

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-09-15 15:03:43 +00:00
6254bb4a68 Use torch.expm1 and torch.log1p for better numerical results (#40860)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-15 11:54:14 +00:00
e674e9dadb Clarify passing is_causal in sdpa_attention_paged_forward (#40838)
* Correctly pass is_causal in sdpa_attention_paged_forward

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add comment

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Improve comments

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Revert typing

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-15 11:51:22 +00:00
0957999f7f 🔴 Move variable output controls to _prepare_generation_config (#40715)
* move checks to validate steps where possible

* fix csm and other models that override _sample

* ops dia you again

* opsie

* joao review

* Move variable output controls to `prepare_inputs_for_generation`

* fix a bunch of models

* back to basics

* final touches
2025-09-15 11:08:00 +00:00
5e9ec59d0c Fix modular consistency (#40883)
* reapply modular

* add missing one
2025-09-15 13:07:08 +02:00
3442b2f300 [VaultGemma] Update expectations in integration tests (#40855)
* fix tests

* style
2025-09-15 12:46:30 +02:00
c0dbe095b0 Adding Support for Qwen3-VL Series (#40795)
* add qwen3vl series

* make fixup

* fix import

* re-protect import

* fix it finally (need to merge main into the branch)

* skip processor test (need the checkpoint)

* oups typo

* simplify modular

* remove unecesary attr

* fix layer

* remove unused rope_deltas args

* reuse image def

* remove unnesesary imports

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-09-15 12:46:18 +02:00
fc5f9105da [Qwen3 Next] Use numerically stable rsqrt (#40848)
use numerically stable inverse
2025-09-15 12:45:13 +02:00
96d3795cfc Update model tags and integration references in bug report (#40881) 2025-09-15 12:08:29 +02:00
f5e1641857 fix: XIELU act parameters not being casted to correct dtype (#40812) 2025-09-15 11:05:55 +02:00
ada64ce452 fix florence kwargs (#40826) 2025-09-15 11:05:47 +02:00
93f810e6fa [docstrings / type hints] Update outdated annotations for past_key_values (#40803)
* some fixes

* nits

* indentation

* indentation

* a bunch of type hints

* bulk changes
2025-09-15 10:52:32 +02:00
c65fea0b92 [Bug fix #40813] Fix base_model_tp_plan of Starcoder2 model. (#40814)
Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>
2025-09-15 10:46:32 +02:00
9c804f7ec4 Redirect MI355 CI results to dummy dataset (#40862) 2025-09-14 18:42:49 +02:00
02ea2b3433 Fix TrainingArguments.parallelism_config NameError with accelerate<1.10.1 (#40818)
Fix ParallelismConfig type for accelerate < 1.10.1

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-14 15:35:42 +00:00
d42e96a2a7 Use checkpoint in auto_class_docstring (#40844)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-13 00:49:19 +00:00
6eb3255842 [generate] Always use decoder config to init cache (#40772)
* mega derp

* fix

* always use the decoder
2025-09-12 18:24:22 +02:00
e682f90f60 [tests] move generative tests away from test_modeling_common.py (#40854)
move tests
2025-09-12 16:12:27 +00:00
8d8459132a [test] Fix test_eager_matches_sdpa incorrectly skipped (#40852)
* ouput_attentions in typed kwargs

* correct typing in GenericForTokenClassification

* improve
2025-09-12 18:07:48 +02:00
291772b6b5 add: differential privacy research model (#40851)
* VaultGemma

* Removing Sequence and Token classification models. Removing integration tests for now

* Remove pass-only modular code. style fixes

* Update vaultgemma.md

* Update docs/source/en/model_doc/vaultgemma.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Update docs/source/en/model_doc/vaultgemma.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Add links to model doc

* Correct model doc usage examples

* Updating model doc to describe differences from Gemma 2

* Update model_doc links

* Adding integration tests

* style fixes

* repo consistency

* attribute exception

---------

Co-authored-by: Amer <amersinha@gmail.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-09-12 17:36:03 +02:00
8502b41bf1 [Sam2Video] Fix video inference with batched boxes and add test (#40797)
fix video inference with batched boxes and add test
2025-09-12 14:33:28 +00:00
f384bb8ad5 [SAM2] Fix inconsistent results with original implementation with input boxes (#40800)
* Fix inconsistencies with box input inference with original repo

* remove print

* always pad

* fix modular
2025-09-12 14:21:22 +00:00
4cb41ad2a2 [tests] re-enable aria fast tests (#40846)
* rise from the dead

* test
2025-09-12 15:14:54 +01:00
ef053939ca Fixes for continuous batching (#40828)
* Fix for CB attn mask and refactor

* Tests for CB (not all passing)

* Passing tests and a logger fix

* Fixed the KV metrics that were broken when we moved to hybrid alloc

* Fix circular import and style

* Added tests for FA

* Unfolded test to have device expectations

* Fixes for H100

* more fixes for h100

* H100 are good

* Style

* Adding some comments from #40831

* Rename test

* Avoid 1 letter variables

* Dictonnary is only removed during kwargs

* Test for supported sample

* Fix a unvoluntary slice

* Fixes for non-sliced inputs and small example improvments

* Slice inputs is more understandabe

* Style
2025-09-12 15:35:31 +02:00
98a8078127 Fix the misalignment between the l2norm in GDN of Qwen3-Next and the implementation in the FLA library. (#40842)
* align torch implementation of gdn with fla.

* fix fla import.

* fix

* remove unused attr

* fixes

* strictly align l2norm in Qwen3-Next with FLA implementation.

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-12 14:08:01 +02:00
77aa35ee9c Replace image classification loss functions to self.loss_function (#40764) 2025-09-12 12:59:37 +01:00
797859c9b8 Update no split modules in T5Gemma model (#40810)
* Update no split modules in T5Gemma model

* Update no_split_modules also for T5Gemma modular

* Remove model_split_percents from test cases

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-09-12 10:44:57 +00:00
6e69b60806 Adds Causal Conv 1D kernel for mamba models (#40765)
* add kernel

* make style

* keep causal-conv1d

* small fix

* small fix

* fix modular converter

* modular fix + lazy loading

* revert changes modular

* nit

* hub kernels update

* update

* small nit
2025-09-12 12:22:25 +02:00
827b65c42c Add VideoProcessors to auto-backend requirements (#40843)
* add it

* fix existing ones

* add perception to auto_mapping...
2025-09-12 12:21:12 +02:00
5e2e77fb45 Improve torch_dtype checks (#40808)
* Improve torch_dtype checks

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Apply suggestions from code review

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-09-12 09:57:59 +00:00
c81f426f9a 🌐 [i18n-KO] Translated clipseg.md to Korean (#39903)
* docs: ko: model_doc/clipseg.md

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Kim Juwon <81630351+Kim-Ju-won@users.noreply.github.com>

---------

Co-authored-by: Kim Juwon <81630351+Kim-Ju-won@users.noreply.github.com>
2025-09-11 17:07:24 -07:00
cf084f5b40 [Jetmoe] Fix RoPE (#40819)
* fix

* remove prints

* why was this there...
2025-09-11 18:41:11 +02:00
dfae7dd98d Push generation config along with checkpoints (#40804) 2025-09-11 17:33:16 +02:00
c264c0ee7e add general hub test for Fast Image Processors in test_image_processing_utils (#40086)
* build unittest for ViTImageProcessorFast

* remove redundant test case

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-09-11 14:31:37 +00:00
895b3ebe41 Fix typos in src (#40782)
Fix typoes in src

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-11 13:15:15 +01:00
6d369124ad Align torch implementation of Gated DeltaNet in Qwen3-Next with fla library. (#40807)
* align torch implementation of gdn with fla.

* fix fla import.

* fix

* remove unused attr

* fixes

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-11 13:10:15 +02:00
0f1b128d33 ⚠️ 🔴 Add ministral model (#40247)
* add ministral model

* docs, tests

* nits

* fix tests

* run modular after merge

* opsie

* integration tests

* again

* fff

* dtype

* rerun modular

* arthur review

* ops

* review
2025-09-11 10:30:39 +02:00
02f1d7c091 Fix config dtype parsing for Emu3 edge case (#40766)
* fix emu3 config

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

* address comment

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

* add comments

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>

---------

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-11 08:26:45 +00:00
de01a22aff Fix edge case for tokenize (#36277) (#36555)
* Fix edge case for tokenize (#36277)

* Fix tokenizing dtype for float input cases

* add test for empty input string

* deal empty list of list like [[]]

* add tests for tokenizer for models with input that is not plain text
2025-09-11 09:57:30 +02:00
ec532f20fb feature: Add robust token counting with padding exclusion (#40416)
* created robust token counting by using existing include_num_input_tokens_seen variable and kept bool for backward compatibility and added string also to ensure everything goes well and kept default as is. also robust test cases are created

* some codebase mismatched in my local and remote, commiting to solve it and also solved code quality issue

* ci: retrigger tests

* another attemp to trigger CI for checks
2025-09-11 09:16:06 +02:00
df67cd35f0 Fix DeepSpeed mixed precision precedence over Accelerate defaults (#39856)
* Fix DeepSpeed mixed precision precedence over Accelerate defaults

Resolves issue where Accelerate would default to bf16 mixed precision
when a DeepSpeed config specifies fp16, causing a ValueError. The fix
ensures DeepSpeed config takes precedence over TrainingArguments defaults
while preserving explicit user settings.

Changes:
- Add override_training_args_from_deepspeed() method to handle config precedence
- Reorder mixed precision environment variable setting in TrainingArguments
- Ensure DeepSpeed fp16/bf16 settings override defaults but not explicit choices

Fixes #39849

* Add tests for DeepSpeed mixed precision precedence fix

- Add TestDeepSpeedMixedPrecisionPrecedence class with 3 focused tests
- Test DeepSpeed fp16/bf16 config overriding TrainingArguments defaults
- Test user explicit settings being preserved over DeepSpeed config
- Test precedence hierarchy: user settings > DeepSpeed config > defaults
- Replace massive 934-line test bloat with concise 50-line test suite
- Tests cover core functionality of PR #39856 mixed precision precedence fix
2025-09-11 09:12:15 +02:00
549ba5b8b6 [Docs] Add missing class documentation for optimizer_schedules (#31870, #23010) (#40761)
* Add missing class documentation for optimizer_schedules (#31870, #23010)

* Add section level header to the optimizer schedules
2025-09-10 14:58:21 -07:00
dae1ccfb98 fix_image_processing_fast_for_glm4v (#40483)
* fix_image_processing_fast_for_glm4v

* fix(format): auto-ruff format

* add test image processing glm4v

* fix quality

---------

Co-authored-by: Your Name <you@example.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-09-10 21:05:27 +00:00
7d57b31e16 Remove use_ipex option from Trainer (#40784)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-10 17:00:15 +00:00
3378e7dabf Move num_items_in_batch to correct device before accelerator.gather (#40773)
add device
2025-09-10 18:49:42 +02:00
e5ecb03c92 Fix the issue that csm model cannot work with pipeline mode. (#39349)
* Fix the issue that csm model cannot work with pipeline mode.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Remove batching inference

Signed-off-by: yuanwu <yuan.wu@intel.com>

* csm output is list of tensor

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/text_to_audio.py

Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>

* Use different waveform key for different model

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Fix make style errors

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Add csm tests

Signed-off-by: yuanwu <yuanwu@habana.ai>

* Update src/transformers/models/auto/tokenization_auto.py

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Signed-off-by: yuanwu <yuanwu@habana.ai>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-09-10 16:17:35 +00:00
abbed7010b Fix dotted model names (#40745)
* Fix module loading for models with dots in names

* quality check

* added test

* wrong import

* Trigger CI rerun after making test model public

* Update src/transformers/dynamic_module_utils.py

* Update tests/utils/test_dynamic_module_utils.py

* Update tests/utils/test_dynamic_module_utils.py

* Move test

* make fixup

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
2025-09-10 14:34:56 +00:00
75202b0928 Read config pattern for Qwen3Next (#40792)
read it
2025-09-10 15:18:51 +02:00
7401cfa57c Use functools.cached_property (#40607)
* cached_property is avaiable in functools

Signed-off-by: cyy <cyyever@outlook.com>

* Remove cached_property

Signed-off-by: cyy <cyyever@outlook.com>

* Fix docs

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-10 12:15:40 +00:00
8ab2448707 Fix invalid PipelineParallel member (#40789)
Fix invalid enum member

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-10 12:06:36 +00:00
6c9f412105 Fix typos in tests and util (#40780)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-10 11:45:40 +00:00
0997c2f2ab Fix doc for PerceptionLMForConditionalGeneration forward. (#40733)
* Fix doc for PerceptionLMForConditionalGeneration forward.

* fix last nit

---------

Co-authored-by: raushan <raushan@huggingface.co>
2025-09-10 11:57:19 +02:00
a72e5a4b9d 🚨 Fix Inconsistant input_feature length and attention_mask length in WhisperFeatureExtractor (#39221)
* Update feature_extraction_whisper.py

* Reformat

* Add feature extractor shape test

* reformat

* fix omni

* fix new failing whisper test

* Update src/transformers/models/whisper/feature_extraction_whisper.py

* make style

* revert omni test changes

* add comment

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Vasqu <antonprogamer@gmail.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
2025-09-10 09:38:47 +00:00
a5ecd94a3f Enable ruff on benchmark and scripts (#40634)
* Enable ruff on benchmark and scripts

Signed-off-by: cyy <cyyever@outlook.com>

* Cover benchmark_v2

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* correct

* style

* style

---------

Signed-off-by: cyy <cyyever@outlook.com>
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-10 11:38:06 +02:00
08edec9f7d [processors] Unbloating simple processors (#40377)
* modularize processor - step 1

* typos

* why raise error, super call check it also

* tiny update

* fix copies

* fix style and test

* lost an import / fix copies

* fix tests

* oops deleted accidentally
2025-09-10 10:37:19 +02:00
c52889bd51 Remove reference of video_load_backend and video_fps for processor (#40719)
* Remove reference of video_load_backend and video_fps for processor

Signed-off-by: cyy <cyyever@outlook.com>

* Restore changes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-10 08:37:11 +00:00
3340ccbd40 Fix gpt-oss router_indices in EP (#40545)
* fix out shape

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix router indice

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix mod

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix masking

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add safety cheking

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix checking

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable 1 expert per rank

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix skip

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add ep plan in config

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add update ep plan

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* rm ep_plan and add comments

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-09-10 10:30:55 +02:00
b9282355be Adding Support for Qwen3-Next (#40771)
* Add Qwen3-Next.

* fix

* style

* doc

* simplify

* fix name

* lazy cache init to allow multi-gpu inference

* simplify

* fix config to support different hybrid ratio.

* remove last commit (redundant)

* tests

* fix test

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-09 23:46:57 +02:00
79fdbf2a4a [docs] CPU install (#40631)
* init

* feedback
2025-09-09 12:51:54 -07:00
37c14430c9 [pipeline] ASR pipeline kwargs are forwared to generate (#40375)
* tmp commit

* add test

* PR suggestion
2025-09-09 17:29:25 +00:00
d09fdf5e52 Fix crash when executing MambaCache sample code (#40557)
* Fix the sample code of MambaCache

* Update automatically generated code

* Fix FalconMambaCache documents

* minor doc fixes

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
2025-09-09 16:44:49 +00:00
d33c189e5a [RoPE] run RoPE tests when the model uses RoPE (#40630)
* enable rope tests

* no manual rope test parameterization

* Apply suggestions from code review

* Update tests/models/hunyuan_v1_dense/test_modeling_hunyuan_v1_dense.py

* PR comment: use generalist torch code to find the rope layer
2025-09-09 17:11:02 +01:00
71ac7ea048 [tests] update test_past_key_values_format and delete overwrites (#40701)
* tmp

* rm some overwrites
2025-09-09 16:40:04 +01:00
7aaef98cbe rm src/transformers/convert_pytorch_checkpoint_to_tf2.py (#40718)
* rm src/transformers/convert_pytorch_checkpoint_to_tf2.py

* doctest skip
2025-09-09 16:34:54 +01:00
de5cbe8b79 [deprecations] Remove generate-related deprecations up to v4.56 (#40729)
remove generate-related deprecations up to v4.56
2025-09-09 16:32:41 +01:00
1cdbbb3e9d Support sliding window in CB (#40688)
* CB example: better compare feature

* Cache managers, still issue w/ effective length

* WIP -- fix for effective length

* Renames

* Wroking, need better parity checks, we mind be missing 1 token

* Small fixes

* Fixed wrong attn mask and broke cache into pieces

* Warmup is slowing down things, disabling it

* Cache was too big, fixed

* Simplified index objects

* Added a profile option to the example

* Avoid calls to memory reporing tools

* Restore full attention read indices for better latency

* Adressed some TODOS and style

* Docstrings for cache managers

* Docstrings for Schedulers

* Refactor scheudlers

* [Important] Cache fix for sliding window, check with small sw size

* Updated doc for cache memory compute and cache as a whole

* Moved a todo

* Nits and style

* Fix for when sliding window is smaller than max batch per token

* Paged interface update

* Support for FLash in new API

* Fix example CB

* Fix bug in CB for paged

* Revert example

* Style

* Review compliance

* Style

* Styleeeee

* Removed NO_SLIDING_WINDOW

* Review #2 compliance

* Better art

* Turn cum_seqlens_k in a dict

* Attn mask is now a dict

* Update examples/pytorch/continuous_batching.py

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Adressed McPatate pro review

* Style and fix

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-09-09 15:51:11 +02:00
ed100211cb [generate] PromptLookupCandidateGenerator won't generate forbidden tokens (#40726)
* no longer flaky :)

* PR comments

* any token-blocking logits processor works

* ?

* default

* -_-

* create fake tensors once
2025-09-09 11:04:01 +00:00
82d66e5dd0 Fix: swanlab public.cloud.experiment_url api error (#40763)
fix
2025-09-09 09:28:13 +00:00
a871f6f58d Add EfficientLoFTRImageProcessorFast for GPU-accelerated image processing (#40215)
* Add EfficientLoFTRImageProcessorFast for GPU-accelerated image processing

* Fix fast processor output format and add comprehensive tests

* Fix trailing whitespace in test file

* Apply ruff formatting to test file

* simplify pair validation logic

* add superglue tests to fast image processor

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-09-08 21:08:02 +00:00
aee5000f16 Fix Bark failing tests (#39478)
* Fix vocab size for Bark generation.

* Fix Bark processor tests.

* Fix style.

* Address comments.

* Fix formatting.

---------

Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-09-08 20:24:51 +02:00
126264d015 🌐 [i18n-KO] Translated 'xclip.md' to Korean (#39594)
* feat: nmt draft

* fix: manual edits

* docs: ko: xclip.md

* feat: nmt draft

* fix: manual edits

* fix: Modify _toctree.yml file to reflect review

* fix: Modify _toctree.yml file to reflect review

* jungnerd_suggestion_modified_01 ko_xclip.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* jungnerd_suggestion_modified_02 ko_xclip.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-09-08 11:19:10 -07:00
5a468e56b7 Fix continue_final_message in apply_chat_template to prevent substring matching issues (#40732)
* Fix continue_final_message parameter in apply_chat_template

* after run fixup

* Handle trim in the template

* after fixup

* Update src/transformers/utils/chat_template_utils.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-09-08 17:25:12 +00:00
e8db153599 Fix inconsistency in SeamlessM4T and SeamlessM4Tv2 docs (#39364) 2025-09-08 10:01:44 -07:00
fd2a29d468 Fix more typos (#40627)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-08 16:05:40 +00:00
bb8e9cd675 Remove unnecessary tildes from documentation (#40748) 2025-09-08 08:56:35 -07:00
a9b313a0c2 docs: add continuous batching to serving (#40758)
* docs: tmp

* docs: add continuous batching to serving

* docs: reword after @lysandrejik review
2025-09-08 15:50:28 +00:00
2077f17547 feat: err when unsupported attn impl is set w/ --continuous_batching (#40618)
* feat: err when unsupported attn impl is set w/ `--continuous_batching`

* refactor: move defaults and support list to CB code

* feat: add action item in error msg

* fix(serve): add default attn implementation

* feat(serve): add log when `attn_implementation` is `None`

* feat: raise Exception when attn_implementation is not supported by CB
2025-09-08 14:31:49 +00:00
dc262ee6f5 remove FSDP prefix when using save_pretrained with FSDP2 (#40207)
* remove FSDP prefix when using save_pretrained with FSDP2

* Fix: use removeprefix correctly

---------

Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
Co-authored-by: S1ro1 <matej.sirovatka@gmail.com>
2025-09-08 14:52:31 +02:00
9ab6078323 remove gemmas eager training warning (#40744)
* removed warning

* removed remaining warnings
2025-09-08 14:41:52 +02:00
2a1eb5b508 Add BF16 support check for MUSA backend (#40576)
add musa bf16 supported

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-08 12:39:14 +00:00
7b8d40ea7a Set accepts_loss_kwargs to False for ConvNext(|V2)ForImageClassification (#40746) 2025-09-08 14:25:43 +02:00
def7558f74 Fix np array typing (#40741)
Fix typing

Signed-off-by: cyy <cyyever@outlook.com>
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-08 11:30:40 +00:00
44b3888d2a Fix order of mask functions when using and/or_mask_function (#40753)
fix order
2025-09-08 12:31:42 +02:00
3f7bda4209 [Continous Batching] fix do_Sample=True in continuous batching (#40692)
* fix do_Sample=True in continous batching

* added test

* fix top_p

* test

* Update examples/pytorch/continuous_batching.py
2025-09-08 10:30:15 +02:00
bb45d3631e refactor(serve): move request_id to headers (#40722)
* refactor(serve): move `request_id` to headers

* fix(serve): typo in middleware fn name

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-09-05 17:50:04 +02:00
12b8e10dbf Skip VitMatteImageProcessingTest::test_fast_is_faster_than_slow (#40713)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-05 17:36:20 +02:00
6b232618b6 Keypoint matching docs (#40541)
---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: StevenBucaille <steven.bucaille@gmail.com>
2025-09-05 17:24:56 +02:00
948bc0fa34 [Gemma Embedding] Fix SWA (#40700)
* fix gemma embedding flash attention

* fix sdpa

* fix atttempt number 2

* alternative gemma fix

* fix modular
2025-09-05 17:12:00 +02:00
828044cadb Add Optional typing (#40686)
* Add Optional typing

Signed-off-by: cyy <cyyever@outlook.com>

* Fix typing

Signed-off-by: cyy <cyyever@outlook.com>

* Format

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-05 15:05:51 +00:00
e9d6a6907b [tests] remove overwrites of removed test (#40720)
rm tests from method moved to hub
2025-09-05 16:04:22 +01:00
96a5774f2e [serve] re-enable tests (#40717)
run tests
2025-09-05 15:15:34 +01:00
c76387e580 Fix arguments (#40605)
* Fix invalid arguments

Signed-off-by: cyy <cyyever@outlook.com>

* Fix typing

Signed-off-by: cyy <cyyever@outlook.com>

* Add missing self

Signed-off-by: cyy <cyyever@outlook.com>

* Add missing self and other fixes

Signed-off-by: cyy <cyyever@outlook.com>

*  More fixes

Signed-off-by: cyy <cyyever@outlook.com>

*  More fixes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-05 13:50:04 +00:00
21f09032db 🔴 Update Glm4V to use config values (#40712)
* update to use config

* just fix it

* fixup want this to be reformatted
2025-09-05 13:19:50 +00:00
b62e5b6051 Fix parent classes of AllKwargsForChatTemplate (#40685)
Fix parent classes of AllKwargsForChatTemplate because the *Kwargs are members

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-05 11:08:51 +00:00
313effa7ad [onnx] use logical or for grounding dino mask (#40625)
* change |= operator to use torch logical or for friendly export to different backends

* change |= operator to use torch logical or for friendly export to different backends in grounding dino model

---------

Co-authored-by: Lewis Marshall <lewism@elderda.co.uk>
2025-09-05 10:55:20 +00:00
f3211b5db7 [moduar] Add missing self in post-process methods (#40711) 2025-09-05 10:49:52 +00:00
a2a8a3ca1e [tests] fix blip2 edge case (#40699) 2025-09-05 11:35:29 +01:00
4e195f1949 🚨 Allow check_model_inputs in core VLMs (#40342)
* allow `check_model_inputs` in core VLMs

* address comments

* fix style

* why this didnt fail prev?

* chec for Noneness instead

* batch update vlms

* fix some tests

* fix copies

* oops delete

* fix efficientloftr

* fix copies

* i am stupid, fix idefics

* fix GC

* return type and other comments

* we shouldn't manually change attention anymore

* fix style

* fix copies

* fix the test
2025-09-05 10:05:56 +00:00
93df343def Fix parent classes of ProcessingKwargs (#40676)
FIx parent classes of ProcessingKwargs

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-05 10:01:16 +00:00
89e103c15e feat(serve): add healthcheck test (#40697) 2025-09-05 11:56:34 +02:00
a2fffa505d Fetch more test data with hf_hub_download (#40710)
[test-all] tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-05 09:49:31 +00:00
4a88e81532 Add Fast Image Processor for ImageGPT (#39592)
* initial commit

* initial setup

* Overiding imageGPT specific functions

* imported is_torch_available and utilized it for importing torch in imageGPT fast

* Created init and ImageGPTFastImageProcessorKwargs

* added return_tensors, data_format, and input_data_format to ImageGPTFastImageProcessorKwargs

* set up arguments and process and _preprocess definitions

* Added arguments to _preprocess

* Added additional optional arguments

* Copied logic over from base imageGPT processor

* Implemented 2nd draft of fast imageGPT preprocess using batch processing

* Implemented 3rd draft of imageGPT fast _preprocessor. Pulled logic from BaseImageProcessorFast

* modified imageGPT test file to properly run fast processor tests

* converts images to torch.float32 from torch.unit8

* fixed a typo with self.image_processor_list in the imagegpt test file

* updated more instances of image_processing = self.image_processing_class in the test file to test fast processor

* standardized normalization to not use image mean or std

* Merged changes from solution2 branch

* Merged changes from solution2 test file

* fixed testing through baseImageGPT processor file

* Fixed check_code_quality test. Removed unncessary list comprehension.

* reorganized imports in image_processing_imagegpt_fast

* formatted image_processing_imagegpt_fast.py

* Added arg documentation

* Added FastImageProcessorKwargs class + Docs for new kwargs

* Reformatted previous

* Added F to normalization

* fixed ruff linting and cleaned up fast processor file

* implemented requested changes

* fixed ruff checks

* fixed formatting issues

* fix(ruff after merging main)

* simplify logic and reuse standard equivalenec tests

---------

Co-authored-by: Ethan Ayaay <ayaayethan@gmail.com>
Co-authored-by: chris <christine05789@gmail.com>
Co-authored-by: Ethan Ayaay <98191976+ayaayethan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-09-04 22:45:06 +00:00
9db11b728b Fetch one missing test data (#40703)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 23:05:23 +02:00
acd820561f Align assisted generate for unified signature in decoding methods (#40657)
* Squashed previous branch

* unify assisted generate to common decoding method signature

* move checks to validate steps where possible

* fix csm and other models that override _sample

* ops dia you again

* opsie

* joao review
2025-09-04 22:47:44 +02:00
16b821c542 Avoid T5GemmaModelTest::test_eager_matches_sdpa_inference being flaky (#40702)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 20:44:40 +00:00
519c2524af Fix broken Llama4 accuracy in MoE part (#40609)
* Fix broken Llama4 accuracy in MoE part

Llama4 accuracy is broken by a bug in
https://github.com/huggingface/transformers/pull/39501 . It forgot to
transpose the router_scores before applying it to routed_in, causing
Llama4 to generate garbage output.

This PR fixes that issue by adding back the transpose() and adding some
comments explaining why the transpose() is needed.

Signed-off-by: Po-Han Huang <pohanh@nvidia.com>

* remove comment

---------

Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-04 22:14:44 +02:00
586dc5d06e [Glm4.5V] fix vLLM support (#40696)
* fix

* add a test case
2025-09-04 22:09:20 +02:00
ad2da3ea83 Fix self.dropout_p is not defined for SamAttention/Sam2Attention (#40667)
Fix dropout_p is not defined for SamAttention/Sam2Attention
2025-09-04 19:32:39 +02:00
e39f222096 Fix backward compatibility with accelerate in Trainer (#40668) 2025-09-04 18:15:15 +02:00
d8f670583e Change docker image to preview for the MI355 CI (#40693)
* Change docker image to preview for the MI355 CI

* Use pushed image
2025-09-04 17:23:09 +02:00
4cbca0d1af Fixing bug in Voxtral when merging text and audio embeddings (#40671)
* Fixing bug when replacing text-audio token placeholders with audio embeddings

* apply changes

---------

Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-09-04 15:11:23 +00:00
9a6c6568db feat: support request cancellation (#40599)
* feat: support request cancellation

* test: add cancellation test

* refactor: use exisitng fn to check req cancellation

* feat(cb): make cancellation thread safe

* refactor(serve): update test to use `requests` instead of `httpx`
2025-09-04 17:01:29 +02:00
87f38dbfce add: embedding model (#40694)
* Gemma 3 for Embeddings

* Style fixes

* Rename conversion file for consistency

* Default padding side emb vs gen

* Corrected 270m config

* style fixes

* EmbeddingGemma config

* TODO for built-in prompts

* Resolving the sentence similarity bug and updating the architecture

* code style

* Add query prompt for SentenceTransformers

* Code quality

* Fixing or_mask_function return types

* Adding placeholder prompts for document and passage

* Finalizing prompt templates

* Adding Retrieval ro preconfigured prompts

* Add Gemma 3 270M Config

* Correcting num_linear_layers flag default

* Export Sentence Transformer in correct dtype

---------

Co-authored-by: Sindhu Raghuram <sindhuraghuram@google.com>
2025-09-04 16:16:15 +02:00
5b0c01b5e2 Final test data cache - inside CI docker images (#40689)
* run

* build

* build

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 13:12:49 +00:00
1f3cc935cc Load a tiny video to make CI faster (#40684)
* load a tiny video to make CI faster

* add video in url_to_local_path
2025-09-04 14:49:00 +02:00
669230a86f fix broken offline mode when loading tokenizer from hub (#40669)
* fix broken offline mode when loading tokenizer from hub

* formatting

* make quality

* fix import order
2025-09-04 12:15:56 +00:00
91b34be9cf Add codebook_dim attribute to DacVectorQuantize for DacResidualVectorQuantize.from_latents() (#40665)
* Add instance attribute to DacVectorQuantize for use in DacResidualVectorQuantize.from_latents

* add from_latent tests

* style fix

* Fix style for test_modeling_dac.py
2025-09-04 11:29:53 +00:00
25b4a0d8ae Add sequence classification support for small Gemma 3 text models (#40562)
* add seq class for gemma3 text model

* add Gemma3TextForSequenceClassification to modeling file

* After run make fixup

* let's just check

* thiis is why it was crashing, tests were just failing...

* skip it, tested only for seq clf

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-09-04 09:44:59 +00:00
30a4b8707d CircleCI docker images cleanup / update / fix (#40681)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 10:42:18 +02:00
7f92e1f91a Mark Aimv2ModelTest::test_eager_matches_sdpa_inference_04_fp16_pad_right_sdpa_kernels as flaky (#40683)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 10:30:14 +02:00
ca9b36a9c1 Avoid night torch CI not run because of irrelevant docker image failing to build (#40677)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 09:06:37 +02:00
d40e7ea52d Skip more fast v.s slow image processor tests (#40675)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-04 06:35:44 +02:00
34595cf296 Even more test data cached (#40636)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 21:20:37 +00:00
f22ec7f174 Benchmarking V2: framework impl (#40486)
* Start revamping benchmarking

* Start refactoring benchmarking

* Use Pandas for CSV

* import fix

* Remove benchmark files

* Remove sample data

* Address review comments

* Benchmarking v2

* Fix llama bench parameters

* Working checkpoint

* Readme touchups

* Remove unnecessary test

* Massage the framework a bit

* Small cleanup

* Remove unnecessary flushes

* Remove references to mock benchmark

* Take commit ID from CLI

* Address review comments

* Use Events for thread comms

* Tiny renaming
2025-09-03 22:26:32 +02:00
459c1fa47a refactor: use tolist instead of list comprehension calling .item() (#40646) 2025-09-03 19:25:29 +02:00
afd1393df1 Remove overwritten GitModelTest::test_beam_search_generate (#40666)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 18:55:45 +02:00
68b9cbb7f5 Skip test_prompt_lookup_decoding_matches_greedy_search for qwen2_audio (#40664)
* Skip `test_prompt_lookup_decoding_matches_greedy_search` for `qwen2_audio`

* Skip `test_prompt_lookup_decoding_matches_greedy_search` for `qwen2_audio`

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 18:43:35 +02:00
55676d7d4c Fix warning for output_attentions=True (#40597)
* Fix attn_implementation for output_attentions

* remove setting attention, just raise warning

* improve message

* Update src/transformers/utils/generic.py
2025-09-03 16:25:13 +00:00
b67608f587 Skip test_fast_is_faster_than_slow for Owlv2ImageProcessingTest (#40663)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 17:49:10 +02:00
30d66dc3bc Update check_determinism inside test_determinism (#40661)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 17:30:39 +02:00
3f40ebf620 Allow custom args in custom_generate Callables and unify generation args structure (#40586)
* Squashed commit of the following:

commit beb2b5f7a04ea9e12876696db66f3589fbae10c5
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 16:03:25 2025 +0200

    also standardize _get_stopping_criteria

commit 15c25663fa991e0a215a7f3cdcf13a9d3a989faa
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 15:48:38 2025 +0200

    watch super.generate() usages

commit 67dd845be2202d191a54b2872f1cb3f71b74b7d6
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 14:44:32 2025 +0200

    ops

commit 4655dfa28fd59d5dc083a41d8396de042d99858c
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 14:41:36 2025 +0200

    wrong merge

commit 46478143994e7b27d51c972a7881e0fea3cb6e3c
Merge: a72c2c4b2f 8564e210ca
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 14:36:15 2025 +0200

    Merge branch 'main' of github.com:huggingface/transformers into fix-custom-gen-from-function2

commit a72c2c4b2f9c0e09fe6ec7992d4d02bfa279da2a
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 14:04:59 2025 +0200

    ops5

commit e72f91411b961979bb3d271810f57905cee5b577
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 12:06:19 2025 +0200

    ops4

commit 12ca97b1078a42167143e0243036f6ef87d5fdac
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:58:59 2025 +0200

    ops3

commit 8cac6c60a318dd381793d4bf1ef3775823f3c95b
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:43:03 2025 +0200

    ops2

commit 4681a7d5dc6c8b96a515d9d79f06380c096b9a9f
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:40:51 2025 +0200

    ops

commit 0d72aa6cbd99a5933c5a95a39bea9088ee21e50f
Merge: e0d47e980e 5bb6186b8e
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:37:28 2025 +0200

    Merge branch 'remove-constrained-bs' into fix-custom-gen-from-function2

commit 5bb6186b8efbd5fdb8e3464a22f958343b9c450c
Merge: 44973dac7d b0db5a02f3
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:36:30 2025 +0200

    Merge branch 'main' into remove-constrained-bs

commit 44973dac7df4b4e2111c71f5fac918be21f3de52
Merge: 1ddab4bee1 893d89e5e6
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 11:29:48 2025 +0200

    Merge commit '893d89e5e6fac7279fe4292bfa3b027172287162' into remove-constrained-bs

commit e0d47e980e26d32b028c2b402ccb71262637a7a7
Merge: 88128e4563 1ddab4bee1
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 10:52:50 2025 +0200

    Merge branch 'remove-constrained-bs' into fix-custom-gen-from-function2

commit 88128e4563c0be583728e1d3c639bc93143c4029
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Mon Sep 1 10:44:38 2025 +0200

    fix custom generate args, refactor gen mode args

commit 1ddab4bee159f6c20722e7ff5cd41d5041fab0aa
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Sun Aug 31 21:03:53 2025 +0200

    fix

commit 6095fdda677ef7fbeb06c05f4f914a11b45257b4
Merge: 4a8b6d2ce1 04addbc9ec
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 17:49:16 2025 +0200

    Merge branch 'remove-constrained-bs' of github.com:manueldeprada/transformers into remove-constrained-bs

commit 4a8b6d2ce18b3a8b52c5261fea427e2416f65187
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 17:48:25 2025 +0200

    restore and deprecate beam obkects

commit 04addbc9ec62dd4f59d15128e8cd9499e2cda3bb
Merge: e800c7841e becab2c601
Author: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>
Date:   Thu Aug 28 14:38:29 2025 +0200

    Merge branch 'main' into remove-constrained-bs

commit e800c7841e5c46ce5698fc9be309d0808f85d23c
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 14:38:10 2025 +0200

    tests gone after green

commit 33971d21ac40aef76a7e1122f4a98ef28beadbe8
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 14:07:11 2025 +0200

    tests green, changed handling of deprecated methods

commit ab303835c184d0a87789da7aed7d8de5ba85d867
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 12:58:01 2025 +0200

    tests fix

commit ec74274ca52a6aa0b5f300374fda838609680506
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 12:32:05 2025 +0200

    ops

commit 0fb19004ccd285dcad485fce0865b355ce5493e0
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 11:45:16 2025 +0200

    whoops

commit c946bea5e45aea021c8878c57fcabc2a13f06fe5
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 11:35:36 2025 +0200

    testing...

commit 924c0dec6d9ea6b4890644fe7f711dc778f820bb
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 11:22:46 2025 +0200

    sweeep ready for tests

commit b05aa771d3994b07cd460cda74b274c9e4f315e6
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Thu Aug 28 11:13:01 2025 +0200

    restore and deprecate constraints

commit 9c7962d10efa7178b69d3c99e69663756e1cd979
Merge: fceeb383f9 c17bf304d5
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 20:44:21 2025 +0200

    Merge branch 'remove-group-bs' into remove-constrained-bs

commit c17bf304d5cf33af7f34f9f6057915d5f5821dae
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 17:00:50 2025 +0200

    fix test

commit d579aeec6706b77fcc24c1f6806cd7277d7db56e
Merge: 822efd8c3c ed5dd2999c
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 16:04:31 2025 +0200

    Merge branch 'main' of github.com:huggingface/transformers into remove-group-bs

commit 822efd8c3cf475d079e64293aa06e4ab59740fd7
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 15:59:51 2025 +0200

    aaand remove tests after all green!!

commit 62cb274a4acb9f24201902242f1b0dc4e46daac1
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 11:48:19 2025 +0200

    fix

commit c89c892e7b24a7d71831f2b35264456005030925
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Wed Aug 27 11:45:20 2025 +0200

    testing that hub works the same

commit fceeb383f99e4a836679d67b1d2a8520152eaf49
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Tue Aug 26 20:06:59 2025 +0200

    draft

commit 6a9b384078f3798587ba865ac7ddfefc9a79e41c
Merge: 8af3af13ab 58cebc848b
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Tue Aug 26 15:00:05 2025 +0200

    Merge branch 'main' of github.com:huggingface/transformers into remove-group-bs

commit 8af3af13abb85ca60e795d0390832f398a56c34f
Author: Manuel de Prada Corral <manueldeprada@gmail.com>
Date:   Tue Aug 26 11:55:45 2025 +0200

    Squashed commit remove-constrastive-search

* ops

* fix

* ops

* review

* fix

* fix dia

* review
2025-09-03 17:30:09 +02:00
a8f400367d Avoid attention_mask copy in qwen2.5 (#40658)
Signed-off-by: cyy <cyyever@outlook.com>
2025-09-03 15:17:22 +00:00
57f5668d0b Fix Metaclip modular conversion (#40660)
* Fix Metaclip modular conversion

* manually run check_copies
2025-09-03 16:13:50 +01:00
238a8274b4 feat(serving): add healthcheck (#40653) 2025-09-03 16:43:12 +02:00
f2416b4fd2 fix pipeline dtype (#40638)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-03 16:05:48 +02:00
5ea5c8179b Mark LongformerModelTest::test_attention_outputs as flaky (#40655)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 13:19:02 +00:00
fe1a9e0dba Remove TF/Flax examples (#40654)
* Remove TF/Flax examples

* Remove check_full_copies

* Trigger CI
2025-09-03 14:15:57 +01:00
5e2e496149 fix MetaCLIP 2 wrong link & wrong model names in the docstrings (#40565)
* fix MetaCLIP 2 wrong link & wrong model names in the documentation and docstrings

* ruff reformatted

* update files generated by modular

* update meta_clip2 to metaclip_2 to match the original

* _supports_flash_attn = False

---------

Co-authored-by: Yung-Sung Chuang <yungsung@meta.com>
2025-09-03 13:53:56 +01:00
03708ccf6f add DeepseekV3ForTokenClassification (#40641)
* add DeepseekV3ForTokenClassification

* fix typo

---------

Co-authored-by: json.bourne <json.bourne@kakaocorp.com>
2025-09-03 12:30:09 +00:00
c485c52db4 Skip test_prompt_lookup_decoding_matches_greedy_search for voxtral (#40643)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 11:45:29 +00:00
2bbf98a83d Fix: PIL image load in Processing utils apply_chat_template (#40622) 2025-09-03 13:06:05 +02:00
acc968c581 [CP] Add attention_mask to the buffer when the mask is causal (#40619)
Fix attention mask validation for context parallelism

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-09-03 10:19:35 +00:00
cb54ce4ec6 [auto-model] propagate kwargs (#40491)
propagate kwargs
2025-09-03 09:59:20 +00:00
ye
0f5e45a6d1 fix: gas for gemma fixed (#40591)
* fix: gas for gemma fixed

* feat: run fix-copies

* feat: added issue label
2025-09-03 08:44:14 +00:00
e690fe61e8 Fix too many requests in TestMistralCommonTokenizer (#40623)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-03 05:05:03 +02:00
00a8364271 🌐 [i18n-KO] Translated deepseek_v3.md to Korean (#39649)
* docs: ko: deepseek_v3.md

* feat: nmt draft

* fix: manual edits

* fix: glossary edits

* docs : 4N3MONE recommandced modified contents

* Update docs/source/ko/model_doc/deepseek_v3.md

Co-authored-by: Kim Juwon <81630351+Kim-Ju-won@users.noreply.github.com>

* Update docs/source/ko/model_doc/deepseek_v3.md

Co-authored-by: Kim Juwon <81630351+Kim-Ju-won@users.noreply.github.com>

* add_toctree.yml

---------

Co-authored-by: Kim Juwon <81630351+Kim-Ju-won@users.noreply.github.com>
2025-09-02 13:35:56 -07:00
ed49376a42 Remove random flag (#40629)
remove flag
2025-09-02 19:10:02 +02:00
d47ad91c3c Support TF32 flag for MUSA backend (#33187)
* Support MUSA (Moore Threads GPU) backend in transformers
Add accelerate version check, needs accelerate>=0.33.0

* Support TF32 flag for MUSA backend

* fix typo
2025-09-02 16:27:10 +00:00
a470f21396 Enable more ruff UP rules (#40579)
* Import Sequence from collections.abc

Signed-off-by: cyy <cyyever@outlook.com>

* Apply ruff UP rules

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-09-02 17:29:59 +02:00
37103d6f22 Fix invalid typing (#40612)
Signed-off-by: cyy <cyyever@outlook.com>
2025-09-02 13:10:22 +00:00
4f542052b9 Remove unnecessary pillow version check (#40604)
Signed-off-by: cyy <cyyever@outlook.com>
2025-09-02 12:59:22 +00:00
8c60a7c385 Add collated reports job to Nvidia CI (#40470)
* Add collated reports job to Nvidia CI

* machine_type

* Move collated reports job to model_jobs

* Propagate repo id variable

* assifgn runner_type is self-scheduled-caller
2025-09-02 14:25:22 +02:00
97266dfd50 Fix flaky JambaModelTest.test_load_balancing_loss (#40617)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-02 13:58:16 +02:00
91be12bdc6 Avoid too many request caused by AutoModelTest::test_dynamic_saving_from_local_repo (#40614)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-02 12:08:52 +02:00
bbd8085b0b Fix processor chat template (#40613)
fix tests
2025-09-02 10:59:48 +02:00
b2b1c30b1b fix: continuous batching in transformers serve (#40479)
* fix: continuous batching in `transformers serve`

* fix: short circuit inner gen loop when prepare_next_batch prepared nothing

* docs: add comment explaining FastAPI lifespan

* test: add CB serving tests

* refactor: remove gen cfg max new tokens override bc unnecessary

* docs: add docstring for `ServeCommand::run`

* feat: use new `DecodeStream` API
2025-09-02 10:45:05 +02:00
8a091cc07c Disable cache for TokenizerTesterMixin temporarily (#40611)
* try no cache

* try no cache

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-02 08:40:04 +02:00
514b3e81b7 Multiple fixes to FA tests in AMD (#40498)
* Expectations for gemma3

* Fixes for Qwen2_5_VL tests

* Added expectation but underlying pb is still there

* Better handling of mrope section for Qwen2_5_vl

* Fixes for FA2 tests and reformat batch test for Qwen2_5_Omni

* Fix multi-device error in qwen2_5_omni

* Styel and repo-consistency

* Removed inherited test because fix in common

* slow tests fixes

* Style

* Fixes for qwen2_5_vl or omni for FA test
2025-09-01 20:49:50 +02:00
b3655507bb Pin torchcodec to 0.5 in AMD docker (#40598) 2025-09-01 20:39:55 +02:00
4da03d7f57 Reduce more test data fetch (#40595)
* example

* fix

* fix

* add to fetch script

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 18:07:18 +02:00
abf5900a76 [Tests] Fixup duplicated mrope logic (#40592)
cleanup duplicated logic
2025-09-01 17:22:34 +02:00
3beac9c659 Fix quite a lot of FA tests (#40548)
* fix_rope_change

* fix

* do it dynamically

* style

* simplify a lot

* better fix

* fix

* fix

* fix

* fix

* style

* fix
2025-09-01 16:42:50 +02:00
21e708c8fd Fix for missing default values in encoder decoder (#40517)
* Added default_value for is_updated and type check

* Forgot one

* Repo consistency
2025-09-01 16:11:23 +02:00
c99d43e6ec Fix siglip flaky test_eager_matches_sdpa_inference (#40584)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 15:17:25 +02:00
3c3dac3c12 Add Copilot instructions (#40432)
* Add copilot-instructions.md

* Fix typo

* Update .github/copilot-instructions.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-09-01 14:09:54 +01:00
2b71c5b7a6 Fix inexistent imports (#40580)
Signed-off-by: cyy <cyyever@outlook.com>
2025-09-01 13:05:00 +00:00
8e0b2c8baf Skip TvpImageProcessingTest::test_slow_fast_equivalence (#40593)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 15:03:34 +02:00
a543095c99 Fix typos (#40585)
Signed-off-by: cyy <cyyever@outlook.com>
2025-09-01 12:58:23 +00:00
8564e210ca 🚨 Remove Constrained Beam Search decoding strategy (#40518)
* Squashed remove-constrastive-search

* sweeep ready for tests

* testing...

* whoops

* ops

* tests fix

* tests green, changed handling of deprecated methods

* tests gone after green

* restore and deprecate beam obkects

* restore and deprecate constraint objects

* fix ci

* review
2025-09-01 12:34:48 +00:00
564be6d895 Support batch size > 1 image-text inference (#36682)
* update make nested image list

* fix make flat list of images

* update type anno

* fix image_processing_smolvlm

* use first image

* add verbose comment

* fix images

* rollback

* fix ut

* Update image_processing_smolvlm.py

* Update image_processing_idefics3.py

* add tests and fix some processors

* fix copies

* fix after rebase

* make the test cover chat templates

* sjip udop, no point in fixing it

* fix after rebase

* fix a few more tests

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: raushan <raushan@huggingface.co>
2025-09-01 12:26:07 +00:00
3bccb02616 🚨 Remove Group Beam Search decoding strategy (#40495)
* Squashed remove-constrastive-search

* testing that tests pass using hub

* fix

* aaand remove tests after all green!!
2025-09-01 13:42:48 +02:00
90953d5bc1 Fix custom generate relative imports (#40480) 2025-09-01 13:38:56 +02:00
2537ed4477 Update get_*_features methods + update doc snippets (#40555)
* siglip

* clip

* aimv2

* metaclip_2

* align

* align fixup

* altclip

* blip2 (make consistent)

* chineese clip

* clipseg

* flava

* groupvit

* owlv2

* owlvit

* vision_encoder

* clap

* x_clip

* fixup

* fix siglip2

* blip2

* fix blip2 tests (revert to original)

* fix docs
2025-09-01 12:37:43 +01:00
48ebae975e Fix llava image processor (#40588)
fix
2025-09-01 13:32:57 +02:00
db6821b79c Allow remi-or to run-slow (#40590)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 12:30:53 +02:00
6546f288a1 Fix CircleCI step passes in the case of pytest worker crash at test collection time (#40552)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 11:33:23 +02:00
cfed99d310 Fix test_eager_matches_sdpa_inference not run for CLIP (#40581)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-09-01 11:21:56 +02:00
1d742644c0 [qwen-vl] fix position ids (#40490)
* fix position ids

* fixup

* adjust tests since they are failing on main as well

* add a comment to make it clear
2025-09-01 09:10:41 +00:00
0b24507379 processor tests - use dummy videos (#40537)
* use dummy videos

* failing on main, new model merged had conflicts
2025-09-01 09:04:47 +00:00
b0db5a02f3 Set test_all_params_have_gradient=False for DeepseekV2ModelTest (#40566)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-30 22:46:31 +02:00
1363fceeec remove the redundant non maintained jieba and use rjieba instead (#40383)
* porting not maintained jieba to rjieba

* Fix format

* replaced the line with rjieba instead of removing it

* cut_all is not included as a parameter. cut_all is a seperate function rjieba

* rev

* jieba remove installation

* Trigger tests

* Update tokenization_cpm.py

* Update tokenization_cpm_fast.py

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-30 13:28:52 +02:00
36fddebcee pin pytest-rerunfailures<16.0 (#40561)
ping pytest-rerunfailures<16.0

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-30 12:58:44 +02:00
2d3b8863e8 Fix collated reports upload filename (#40556) 2025-08-30 09:35:51 +02:00
ce48e9cac0 Dev version 2025-08-29 20:17:34 +02:00
155fd926d2 Fix GptOssModelTest::test_assisted_decoding_matches_greedy_search_1_same (#40551)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>
2025-08-29 15:53:53 +00:00
1067577ad2 fix gpt-oss out shape (#40535)
* fix out shape

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* reset gpt-oss modeling

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix copies

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-29 15:20:33 +00:00
7efb4c87ca Flaky CI is annoying (#40543)
* mark flaky

* and the non batch one
2025-08-29 16:47:44 +02:00
828a27fd32 Fix gpt-oss rope warning (#40550)
* fix

* fix print

* rm

* real fix

* fix

* style
2025-08-29 14:40:33 +00:00
74a24217f5 Add bfloat16 support detection for MPS in is_torch_bf16_gpu_available() (#40458)
* Add bfloat16 support detection for MPS (Apple Silicon) in is_torch_bf16_gpu_available

bfloat16 seems to have been supported for a few years now in Metal and torch.mps.

Make sure to allow it and not throw on bf16 usage with "Your setup doesn't support bf16/gpu." from TrainingArguments.

* Check bf16 support for MPS using torch method

Actually seems method exists: 5859edf113/torch/_dynamo/device_interface.py (L519)

It simply checks if you are on MacOs 14 or higher.

* Document Metal emulation for bf16 support

Add note about Metal emulation for bf16 support on M1/M2.

* Update bf16 support check for MPS backend

is_bf16_supported() not exposed even if defined on MPSInterface, use same approach as in accelerate pr.

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-29 14:37:15 +00:00
ffdd10fced Allow compression on meta device (#39039)
* disable gradient calculation for int weights

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>

* Update src/transformers/quantizers/quantizer_compressed_tensors.py

Co-authored-by: Kyle Sayers <kylesayrs@gmail.com>

* updated model procession before/after weight loading

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>

* fix style

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>

* reformat

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>

* fix style

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>

---------

Signed-off-by: shanjiaz <zsjwpianpian@gmail.com>
Co-authored-by: Kyle Sayers <kylesayrs@gmail.com>
2025-08-29 15:49:15 +02:00
f0e778112f Clean-up kernel loading and dispatch (#40542)
* clean

* clean imporrts

* fix imports

* oups

* more imports

* more imports

* more

* move it to integrations

* fix

* style

* fix doc
2025-08-29 14:14:38 +02:00
f68eb5f135 Redundant code removal (#40534)
redundant code
2025-08-29 11:30:23 +00:00
d888bd435d Fix typos (#40511)
Signed-off-by: cyy <cyyever@outlook.com>
2025-08-29 11:25:33 +00:00
11a6b95553 Oupsy (#40544)
fix bump!
2025-08-29 12:59:49 +02:00
b07144ac27 tokenizers bump tokenizers version (#40540)
* bump tokenizers version

* use rc0

* ?

* fml

* update
2025-08-29 12:34:41 +02:00
008c0ba8e2 Fix SeamlessM4Tv2ModelWithTextInputTest::test_retain_grad_hidden_states_attentions (#40532)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-28 23:30:59 +02:00
89ef1b6e0b Set test_all_params_have_gradient=False for HunYuanMoEV1ModelTest (#40530)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-28 22:32:51 +02:00
2e0f1d6a37 [Qwen Omni/VL] Fix fa tests (#40528)
* fix

* style

* flaky flaky

* flaky flaky

* oopsie, we need the out of place for sure

* flaky flaky

* flaky flaky
2025-08-28 21:07:22 +02:00
68013c505a Improve Gemma3n model and tests (#39764) 2025-08-28 20:25:42 +02:00
ffcb344612 Lazy import torchcodec (#40526)
* lazy import

* parse version

* omg, we need to guard version parse as well
2025-08-28 18:57:14 +02:00
8c7f685079 Fix typo: 'casual' to 'causal' (#40374)
fix typo: 'casual' to 'causal'

Co-authored-by: demo <vamshika0210@gamil.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-28 09:17:37 -07:00
d61fab1549 skip some padding_matches_padding_free_with_position_ids for FA2 (#40521)
skip 1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-28 17:20:07 +02:00
31336ab750 Fix mistral3 tests after "[Kosmos 2.5] Rename checkpoints" (#40523)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-28 16:29:54 +02:00
851b8f281d [kernels] If flash attention2 is not installed / fails to import (cc on our cluster) default to kernels (#40178)
* first step if flash not installed but you set to use it

* try importing

* now default to using it

* update our tests as well

* wow yesterday I was not awake

* fixup

* style

* lol the fix was very very simple

* `RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
` for updated dockers

* push review comments

* fix

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-08-28 16:20:25 +02:00
de9e2d7a2e Skip some flex attn tests (#40519)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-28 15:43:38 +02:00
7e1aee4db6 [FA] Remaining Cleanup (#40424)
* fa cleanup

* flaky tests

* readd removed test and changeup comments to reflect the purpose

* flaky tests
2025-08-28 15:01:19 +02:00
893d89e5e6 [omni modality] support composite processor config (#38142)
* dump ugly option to check again tomorrow

* tiny update

* do not save as nested dict yet!

* fix and add tests

* fix dia audio tokenizers

* rename the flag and fix new model Evolla

* fix style

* address comments

* broken from different PRp

* fix saving layoutLM

* delete print

* delete!
2025-08-28 14:40:27 +02:00
becab2c601 Use the config for DynamicCache initialization in all modelings (#40420)
* update all

* remove the most horrible old code

* style
2025-08-28 14:32:30 +02:00
8acbbdcadf [serve] fix request_id unexpected (#40501)
* fix request-id in serving

* style

* fix
2025-08-28 14:16:28 +02:00
2300be3b41 sped up gguf tokenizer for nemotron test (#40509)
sped up tokenizer for nemotron test
2025-08-28 12:10:49 +00:00
b2b654afbf correct kes to keys. (#40489)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-08-28 12:00:22 +00:00
476cd7bab1 [vision] Improve keypoint-matching models docs (#40497)
fix options and add inference_mode
2025-08-28 12:31:21 +01:00
1499f9e356 [Kosmos 2.5] Rename checkpoints (#40338) 2025-08-28 13:30:41 +02:00
10ddfb0be5 Add more missing arguments (#40354)
Add missing arguments

Signed-off-by: cyy <cyyever@outlook.com>
2025-08-28 12:21:51 +02:00
d10603f701 Add Apertus (#39381)
* init swissai model

* AutoModelForCausalLM

* AutoModelForCausalLM mapping

* qk norm and post ln optional

* fix wrong shape of qk norm: megatron uses head_dim

* automodel fixes

* minor fix in forward

* fix rope validation to accept llama3 scaling

* `SwissAIForTokenClassification` support

* Align `SwissAI` to v4.52.4

* Align `SwissAI` to v4.53.1

* Init CUDA xIELU

* `SwissAI*`->`Apertus*`

* ci fix

* check_docstring ignore ApertusConfig

* Licensing and placeholder tests

* Placeholder doc

* XIELU syntax

* `_xielu_python` optimization

* Fix xIELU

* [tmp] `{beta,eps}` persistent=False
until {beta,eps} saved in checkpoint

* Modular `Apertus`

* CUDA xIELU logging

* ci fix

* ci fix

* ci fix

* Update license

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* Update tests/models/apertus/test_modeling_apertus.py

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* `.utils.import_utils.is_torchdynamo_compiling`

* `Apertus` class ordering

* `past_key_value{->s}`, `make fix-copies`

* ci fix

* Remove unused configuration parameters

* `{beta,eps}` saved in checkpoint

* `{beta,eps}` Temporarily on CPU

* Suggestions

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* ci fix

* remove fx_compatible (deprecated)

* remove `rotary_embedding_layer`

As the tests are written for a config without default scaling (which is not the case in Apertus) - besides, rope scaling is tested in other models so it's all safe.

* fully removing `Mask4DTestHard` class

Not needed (for now)

* switch to `dtype` instead of `torch_dtype`

Following this:
https://github.com/huggingface/transformers/pull/39782

* remove unused imports

* remove `cache_implementation="static"`

* +Apertus to `docs/source/en/_toctree.yml` for the doc builder

---------

Co-authored-by: Alexander Hagele <alexanderhagele@gmail.com>
Co-authored-by: dhia680 <garbayad@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Dhia Garbaya <84809366+dhia680@users.noreply.github.com>
2025-08-28 11:55:43 +02:00
f9b9a5e884 Update quantization overview for XPU (#40331)
* update xpu quantization overview

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix aqlm tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update gguf support

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix gguf tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix xpu gguf precision error

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* replace deprecated models

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix import org

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update xpu ggml tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert wrong change

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix xpu tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* xpu optimum-quanto goes green

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-08-28 09:52:59 +00:00
b824f4986f fix typo (#40484)
* fix typo

Signed-off-by: guochenxu <guochenxu@modelbest.cn>

* csm & qwen omni

Signed-off-by: guochenxu <guochenxu@modelbest.cn>

* format

Signed-off-by: guochenxu <guochenxu@modelbest.cn>

* Apply style fixes

* omni

Signed-off-by: guochenxu <guochenxu@modelbest.cn>

---------

Signed-off-by: guochenxu <guochenxu@modelbest.cn>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-28 08:31:25 +00:00
c9ff166718 Various AMD expectations (#40510)
* AMD expectations for qwen2

* Added more detailled excpectation to smolvlm

* Added AMD expectations to TableTransformer

* Style
2025-08-28 10:15:21 +02:00
721d4aee81 Include machine type in collated reports filename (#40514) 2025-08-28 09:28:12 +02:00
98289c5546 [modular] Classes can now be defined and referenced in arbitrary order (without bringing unwanted dependencies) (#40507)
* remove future class from dependency graph

* convert all
2025-08-27 23:06:10 +02:00
e3d8fd730e docs(pixtral): Update Pixtral model card to new format (#40442)
* docs(pixtral): Update Pixtral model card to new format

* docs(pixtral): Change cuda into auto for device_map

* docs(pixtral): Apply suggestions from review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(pixtral): Apply suggestions from review, changing mistral-community into Mistral AI

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(pixtral): Apply suggestions from review [!TIP] part

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(pixtral): Finalize model card with tested code examples

This commit finalizes the update for the Pixtral model card.

* Fix the hfoption by the right one

* @BryanBradfo docs(pixtral): Changing the redirection of bitsandbytes

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(pixtral): Add of ` to highlight the tokens

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(pixtral): Move image block per final review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-27 11:38:51 -07:00
821384d5d4 Fix the CI workflow of merge to main (#40503)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-27 18:35:12 +02:00
304225aa15 Collated reports: no need to upload artifact (#40502)
No need to upload collated reports as gh artifact
2025-08-27 18:31:55 +02:00
3c343c6601 [Whisper] Add rocm expected results to certain tests (#40482)
* Add rocm expected results to certain tests

* Specify rocm version in expectations so we know origin. Improved var names

* Update test var names
2025-08-27 16:19:11 +00:00
6350636964 Fix qwen2_moe tests (#40494)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-27 16:22:04 +02:00
52aaa3f500 [EfficientLoFTR] dynamic image size support (#40329)
* fix: reverted efficientloftr embeddings computation to inference time with lru cache

* fix: added dtype and device for torch ones and zeros creation

* fix: fixed embed height and width computation with aggregation

* fix: make style

* fix error message

* fix fa2 tests

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-08-27 15:05:08 +01:00
ed5dd2999c [ESM] support attention API (#40370)
* ESM supports attention API

* supports flags

* fix tests

* fix copiees

* another fixup needed after fixing tests

* fix tests and make sure Evolla copied everything

* fix

* order

* forgot about "is_causal" for fa2

* cross attention can't be causal
2025-08-27 15:39:04 +02:00
8b804311ba [modular] Remove ambiguity in all calls to parent class methods + fix dependency graph (#40456)
* fix in modular

* remove leftover print

* fix everything except when it's in assignment

* fix assignment as well

* more general

* better

* better

* better comment

* docstring

* cleaner

* remove base

* doc
2025-08-27 14:51:28 +02:00
a3afebbbbe [modular] Use multi-processing + fix model import issue (#40481)
* add mp and simplify a bit

* improve

* fix

* fix imports

* nit
2025-08-27 14:51:12 +02:00
75d6f17de6 Validate GptOssConfig rope config after it's fully initialized (#40474)
* Validate GptOssConfig rope config after it's fully initialized

Fixes #40461

* Remove whitespaces
2025-08-27 10:16:58 +01:00
80f4c0c6a0 CI when PR merged to main (#40451)
* up

* up

* up

* up

* up

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-27 10:56:18 +02:00
ff8b88a948 Fix nightly torch CI (#40469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-26 22:02:15 +02:00
74ad608a2b Not to shock AMD team by the cancelled workflow run notification ❤️ 💖 (#40467) 2025-08-26 20:53:24 +02:00
c8c7623f20 Update SegFormer model card (#40417)
* Update SegFormer model card

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/segformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the segformer model card

* Remove quantization example

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-26 08:27:25 -07:00
3569 changed files with 138567 additions and 321042 deletions

View File

@ -16,10 +16,9 @@
import argparse
import copy
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import glob
from typing import Any, Optional
import yaml
@ -30,6 +29,7 @@ COMMON_ENV_VARIABLES = {
"RUN_PIPELINE_TESTS": False,
# will be adjust in `CircleCIJob.to_dict`.
"RUN_FLAKY": True,
"DISABLE_SAFETENSORS_CONVERSION": True,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "vvv": None, "rsfE":None}
@ -82,15 +82,15 @@ class EmptyJob:
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
additional_env: dict[str, Any] = None
docker_image: list[dict[str, str]] = None
install_steps: list[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 0
pytest_num_workers: int = 8
pytest_options: Dict[str, Any] = None
pytest_options: dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
tests_to_run: Optional[List[str]] = None
tests_to_run: Optional[list[str]] = None
num_test_files_per_worker: Optional[int] = 10
# This should be only used for doctest job!
command_timeout: Optional[int] = None
@ -130,6 +130,12 @@ class CircleCIJob:
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
if self.job_name != "tests_hub":
# fmt: off
# not critical
env.update({"HF_TOKEN": "".join(["h", "f", "_", "H", "o", "d", "V", "u", "M", "q", "b", "R", "m", "t", "b", "z", "F", "Q", "O", "Q", "A", "J", "G", "D", "l", "V", "Q", "r", "R", "N", "w", "D", "M", "V", "C", "s", "d"])})
# fmt: on
# Do not run tests decorated by @is_flaky on pull requests
env['RUN_FLAKY'] = os.environ.get("CIRCLE_PULL_REQUEST", "") == ""
env.update(self.additional_env)
@ -149,7 +155,7 @@ class CircleCIJob:
# Examples special case: we need to download NLTK files in advance to avoid cuncurrency issues
timeout_cmd = f"timeout {self.command_timeout} " if self.command_timeout else ""
marker_cmd = f"-m '{self.marker}'" if self.marker is not None else ""
junit_flags = f" -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
junit_flags = " -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
joined_flaky_patterns = "|".join(FLAKY_TEST_FAILURE_PATTERNS)
repeat_on_failure_flags = f"--reruns 5 --reruns-delay 2 --only-rerun '({joined_flaky_patterns})'"
parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> '
@ -177,14 +183,33 @@ class CircleCIJob:
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
}
},
{"run": {"name": "fetch hub objects before pytest", "command": "python3 utils/fetch_hub_objects_for_ci.py"}},
# During the CircleCI docker images build time, we might already (or not) download the data.
# If it's done already, the files are inside the directory `/test_data/`.
{"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
{"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
{"run": {
"name": "Run tests",
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
},
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
{"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
{"run":
{
"name": "Check for test crashes",
"when": "always",
"command": """if [ ! -f tests_output.txt ]; then
echo "ERROR: tests_output.txt does not exist - tests may not have run properly"
exit 1
elif grep -q "crashed and worker restarting disabled" tests_output.txt; then
echo "ERROR: Worker crash detected in test output"
echo "Found: crashed and worker restarting disabled"
exit 1
else
echo "Tests output file exists and no worker crashes detected"
fi"""
},
},
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
{"run": {"name": "Errors", "when": "always", "command": "python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
{"store_test_results": {"path": "test-results"}},
{"store_artifacts": {"path": "test-results/junit.xml"}},
{"store_artifacts": {"path": "reports"}},
@ -246,7 +271,6 @@ custom_tokenizers_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
)
examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
@ -270,19 +294,6 @@ hub_job = CircleCIJob(
resource_class="medium",
)
onnx_job = CircleCIJob(
"onnx",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
resource_class="small",
)
exotic_models_job = CircleCIJob(
"exotic_models",
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
@ -290,7 +301,6 @@ exotic_models_job = CircleCIJob(
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
docker_image=[{"image":"huggingface/transformers-consistency"}],
@ -298,7 +308,6 @@ repo_utils_job = CircleCIJob(
resource_class="large",
)
non_model_job = CircleCIJob(
"non_model",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
@ -334,7 +343,7 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
REGULAR_TESTS = [torch_job, hub_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job]
PIPELINE_TESTS = [pipelines_torch_job]
REPO_UTIL_TESTS = [repo_utils_job]

View File

@ -1,5 +1,6 @@
import re
import argparse
import re
def parse_pytest_output(file_path):
skipped_tests = {}

View File

@ -36,26 +36,31 @@ body:
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @eustlb
- text models: @ArthurZucker @Cyrilvallez
- vision models: @yonigozlan @molbap
- audio models: @eustlb @ebezzam @vasqu
- multimodal models: @zucchini-nlp
- graph models: @clefourrier
Library:
- flax: @gante and @Rocketknight1
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @zach-huggingface @SunMarc
- trainer: @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker
- CIs: @ydshieh
Integrations:
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization: @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo
Devices/Backends:
@ -69,19 +74,6 @@ body:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @Rocketknight1
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.
placeholder: "@Username ..."

View File

@ -39,41 +39,40 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @eustlb
- text models: @ArthurZucker @Cyrilvallez
- vision models: @yonigozlan @molbap
- audio models: @eustlb @ebezzam @vasqu
- multimodal models: @zucchini-nlp
- graph models: @clefourrier
Library:
- flax: @gante and @Rocketknight1
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @zach-huggingface, @SunMarc and @qgallouedec
- chat templates: @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker
- CIs: @ydshieh
Integrations:
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization: @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo
Devices/Backends:
- AMD ROCm: @ivarflakstad
- Intel XPU: @IlyasMoutawwakil
- Ascend NPU: @ivarflakstad
Documentation: @stevhliu
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @Rocketknight1
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.
-->

39
.github/copilot-instructions.md vendored Normal file
View File

@ -0,0 +1,39 @@
# copilot-instructions.md Guide for Hugging Face Transformers
This copilot-instructions.md file provides guidance for code agents working with this codebase.
## Core Project Structure
- `/src/transformers`: This contains the core source code for the library
- `/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
- `/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
- `/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
- `/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
## Coding Conventions for Hugging Face Transformers
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
We use two mechanisms to keep this code in sync:
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
When adding new models, you should prefer `modular` style and inherit as many classes as possible from existing models.
## Testing
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -13,14 +13,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import github
import json
from github import Github
import os
import re
from collections import Counter
from pathlib import Path
import github
from github import Github
def pattern_to_regex(pattern):
if pattern.startswith("/"):
start_anchor = True

View File

@ -7,8 +7,8 @@ docs/ @stevhliu
/docker/ @ydshieh @ArthurZucker
# More high-level globs catch cases when specific rules later don't apply
/src/transformers/models/*/processing* @molbap @yonigozlan @qubvel
/src/transformers/models/*/image_processing* @qubvel
/src/transformers/models/*/processing* @molbap @yonigozlan
/src/transformers/models/*/image_processing* @yonigozlan
/src/transformers/models/*/image_processing_*_fast* @yonigozlan
# Owners of subsections of the library
@ -186,65 +186,65 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/zamba/mod*_zamba* @ArthurZucker
# Vision models
/src/transformers/models/beit/mod*_beit* @amyeroberts @qubvel
/src/transformers/models/bit/mod*_bit* @amyeroberts @qubvel
/src/transformers/models/conditional_detr/mod*_conditional_detr* @amyeroberts @qubvel
/src/transformers/models/convnext/mod*_convnext* @amyeroberts @qubvel
/src/transformers/models/convnextv2/mod*_convnextv2* @amyeroberts @qubvel
/src/transformers/models/cvt/mod*_cvt* @amyeroberts @qubvel
/src/transformers/models/deformable_detr/mod*_deformable_detr* @amyeroberts @qubvel
/src/transformers/models/deit/mod*_deit* @amyeroberts @qubvel
/src/transformers/models/depth_anything/mod*_depth_anything* @amyeroberts @qubvel
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @amyeroberts @qubvel
/src/transformers/models/deta/mod*_deta* @amyeroberts @qubvel
/src/transformers/models/detr/mod*_detr* @amyeroberts @qubvel
/src/transformers/models/dinat/mod*_dinat* @amyeroberts @qubvel
/src/transformers/models/dinov2/mod*_dinov2* @amyeroberts @qubvel
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @amyeroberts @qubvel
/src/transformers/models/dit/mod*_dit* @amyeroberts @qubvel
/src/transformers/models/dpt/mod*_dpt* @amyeroberts @qubvel
/src/transformers/models/efficientformer/mod*_efficientformer* @amyeroberts @qubvel
/src/transformers/models/efficientnet/mod*_efficientnet* @amyeroberts @qubvel
/src/transformers/models/focalnet/mod*_focalnet* @amyeroberts @qubvel
/src/transformers/models/glpn/mod*_glpn* @amyeroberts @qubvel
/src/transformers/models/hiera/mod*_hiera* @amyeroberts @qubvel
/src/transformers/models/ijepa/mod*_ijepa* @amyeroberts @qubvel
/src/transformers/models/imagegpt/mod*_imagegpt* @amyeroberts @qubvel
/src/transformers/models/levit/mod*_levit* @amyeroberts @qubvel
/src/transformers/models/mask2former/mod*_mask2former* @amyeroberts @qubvel
/src/transformers/models/maskformer/mod*_maskformer* @amyeroberts @qubvel
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @amyeroberts @qubvel
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @amyeroberts @qubvel
/src/transformers/models/mobilevit/mod*_mobilevit* @amyeroberts @qubvel
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @amyeroberts @qubvel
/src/transformers/models/nat/mod*_nat* @amyeroberts @qubvel
/src/transformers/models/poolformer/mod*_poolformer* @amyeroberts @qubvel
/src/transformers/models/pvt/mod*_pvt* @amyeroberts @qubvel
/src/transformers/models/pvt_v2/mod*_pvt_v2* @amyeroberts @qubvel
/src/transformers/models/regnet/mod*_regnet* @amyeroberts @qubvel
/src/transformers/models/resnet/mod*_resnet* @amyeroberts @qubvel
/src/transformers/models/rt_detr/mod*_rt_detr* @amyeroberts @qubvel
/src/transformers/models/segformer/mod*_segformer* @amyeroberts @qubvel
/src/transformers/models/seggpt/mod*_seggpt* @amyeroberts @qubvel
/src/transformers/models/superpoint/mod*_superpoint* @amyeroberts @qubvel
/src/transformers/models/swiftformer/mod*_swiftformer* @amyeroberts @qubvel
/src/transformers/models/swin/mod*_swin* @amyeroberts @qubvel
/src/transformers/models/swinv2/mod*_swinv2* @amyeroberts @qubvel
/src/transformers/models/swin2sr/mod*_swin2sr* @amyeroberts @qubvel
/src/transformers/models/table_transformer/mod*_table_transformer* @amyeroberts @qubvel
/src/transformers/models/textnet/mod*_textnet* @amyeroberts @qubvel
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @amyeroberts @qubvel
/src/transformers/models/upernet/mod*_upernet* @amyeroberts @qubvel
/src/transformers/models/van/mod*_van* @amyeroberts @qubvel
/src/transformers/models/vit/mod*_vit* @amyeroberts @qubvel
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @amyeroberts @qubvel
/src/transformers/models/vitdet/mod*_vitdet* @amyeroberts @qubvel
/src/transformers/models/vit_mae/mod*_vit_mae* @amyeroberts @qubvel
/src/transformers/models/vitmatte/mod*_vitmatte* @amyeroberts @qubvel
/src/transformers/models/vit_msn/mod*_vit_msn* @amyeroberts @qubvel
/src/transformers/models/vitpose/mod*_vitpose* @amyeroberts @qubvel
/src/transformers/models/yolos/mod*_yolos* @amyeroberts @qubvel
/src/transformers/models/zoedepth/mod*_zoedepth* @amyeroberts @qubvel
/src/transformers/models/beit/mod*_beit* @yonigozlan @molbap
/src/transformers/models/bit/mod*_bit* @yonigozlan @molbap
/src/transformers/models/conditional_detr/mod*_conditional_detr* @yonigozlan @molbap
/src/transformers/models/convnext/mod*_convnext* @yonigozlan @molbap
/src/transformers/models/convnextv2/mod*_convnextv2* @yonigozlan @molbap
/src/transformers/models/cvt/mod*_cvt* @yonigozlan @molbap
/src/transformers/models/deformable_detr/mod*_deformable_detr* @yonigozlan @molbap
/src/transformers/models/deit/mod*_deit* @yonigozlan @molbap
/src/transformers/models/depth_anything/mod*_depth_anything* @yonigozlan @molbap
/src/transformers/models/depth_anything_v2/mod*_depth_anything_v2* @yonigozlan @molbap
/src/transformers/models/deta/mod*_deta* @yonigozlan @molbap
/src/transformers/models/detr/mod*_detr* @yonigozlan @molbap
/src/transformers/models/dinat/mod*_dinat* @yonigozlan @molbap
/src/transformers/models/dinov2/mod*_dinov2* @yonigozlan @molbap
/src/transformers/models/dinov2_with_registers/mod*_dinov2_with_registers* @yonigozlan @molbap
/src/transformers/models/dit/mod*_dit* @yonigozlan @molbap
/src/transformers/models/dpt/mod*_dpt* @yonigozlan @molbap
/src/transformers/models/efficientformer/mod*_efficientformer* @yonigozlan @molbap
/src/transformers/models/efficientnet/mod*_efficientnet* @yonigozlan @molbap
/src/transformers/models/focalnet/mod*_focalnet* @yonigozlan @molbap
/src/transformers/models/glpn/mod*_glpn* @yonigozlan @molbap
/src/transformers/models/hiera/mod*_hiera* @yonigozlan @molbap
/src/transformers/models/ijepa/mod*_ijepa* @yonigozlan @molbap
/src/transformers/models/imagegpt/mod*_imagegpt* @yonigozlan @molbap
/src/transformers/models/levit/mod*_levit* @yonigozlan @molbap
/src/transformers/models/mask2former/mod*_mask2former* @yonigozlan @molbap
/src/transformers/models/maskformer/mod*_maskformer* @yonigozlan @molbap
/src/transformers/models/mobilenet_v1/mod*_mobilenet_v1* @yonigozlan @molbap
/src/transformers/models/mobilenet_v2/mod*_mobilenet_v2* @yonigozlan @molbap
/src/transformers/models/mobilevit/mod*_mobilevit* @yonigozlan @molbap
/src/transformers/models/mobilevitv2/mod*_mobilevitv2* @yonigozlan @molbap
/src/transformers/models/nat/mod*_nat* @yonigozlan @molbap
/src/transformers/models/poolformer/mod*_poolformer* @yonigozlan @molbap
/src/transformers/models/pvt/mod*_pvt* @yonigozlan @molbap
/src/transformers/models/pvt_v2/mod*_pvt_v2* @yonigozlan @molbap
/src/transformers/models/regnet/mod*_regnet* @yonigozlan @molbap
/src/transformers/models/resnet/mod*_resnet* @yonigozlan @molbap
/src/transformers/models/rt_detr/mod*_rt_detr* @yonigozlan @molbap
/src/transformers/models/segformer/mod*_segformer* @yonigozlan @molbap
/src/transformers/models/seggpt/mod*_seggpt* @yonigozlan @molbap
/src/transformers/models/superpoint/mod*_superpoint* @yonigozlan @molbap
/src/transformers/models/swiftformer/mod*_swiftformer* @yonigozlan @molbap
/src/transformers/models/swin/mod*_swin* @yonigozlan @molbap
/src/transformers/models/swinv2/mod*_swinv2* @yonigozlan @molbap
/src/transformers/models/swin2sr/mod*_swin2sr* @yonigozlan @molbap
/src/transformers/models/table_transformer/mod*_table_transformer* @yonigozlan @molbap
/src/transformers/models/textnet/mod*_textnet* @yonigozlan @molbap
/src/transformers/models/timm_wrapper/mod*_timm_wrapper* @yonigozlan @molbap
/src/transformers/models/upernet/mod*_upernet* @yonigozlan @molbap
/src/transformers/models/van/mod*_van* @yonigozlan @molbap
/src/transformers/models/vit/mod*_vit* @yonigozlan @molbap
/src/transformers/models/vit_hybrid/mod*_vit_hybrid* @yonigozlan @molbap
/src/transformers/models/vitdet/mod*_vitdet* @yonigozlan @molbap
/src/transformers/models/vit_mae/mod*_vit_mae* @yonigozlan @molbap
/src/transformers/models/vitmatte/mod*_vitmatte* @yonigozlan @molbap
/src/transformers/models/vit_msn/mod*_vit_msn* @yonigozlan @molbap
/src/transformers/models/vitpose/mod*_vitpose* @yonigozlan @molbap
/src/transformers/models/yolos/mod*_yolos* @yonigozlan @molbap
/src/transformers/models/zoedepth/mod*_zoedepth* @yonigozlan @molbap
# Audio models
/src/transformers/models/audio_spectrogram_transformer/mod*_audio_spectrogram_transformer* @eustlb
@ -304,7 +304,7 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/donut/mod*_donut* @zucchini-nlp
/src/transformers/models/flava/mod*_flava* @zucchini-nlp
/src/transformers/models/git/mod*_git* @zucchini-nlp
/src/transformers/models/grounding_dino/mod*_grounding_dino* @qubvel
/src/transformers/models/grounding_dino/mod*_grounding_dino* @yonigozlan
/src/transformers/models/groupvit/mod*_groupvit* @zucchini-nlp
/src/transformers/models/idefics/mod*_idefics* @zucchini-nlp
/src/transformers/models/idefics2/mod*_idefics2* @zucchini-nlp
@ -326,10 +326,10 @@ trainer_utils.py @zach-huggingface @SunMarc
/src/transformers/models/mgp_str/mod*_mgp_str* @zucchini-nlp
/src/transformers/models/mllama/mod*_mllama* @zucchini-nlp
/src/transformers/models/nougat/mod*_nougat* @NielsRogge
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @qubvel @yonigozlan
/src/transformers/models/omdet_turbo/mod*_omdet_turbo* @yonigozlan
/src/transformers/models/oneformer/mod*_oneformer* @zucchini-nlp
/src/transformers/models/owlvit/mod*_owlvit* @qubvel
/src/transformers/models/owlv2/mod*_owlv2* @qubvel
/src/transformers/models/owlvit/mod*_owlvit* @yonigozlan
/src/transformers/models/owlv2/mod*_owlv2* @yonigozlan
/src/transformers/models/paligemma/mod*_paligemma* @zucchini-nlp @molbap
/src/transformers/models/perceiver/mod*_perceiver* @zucchini-nlp
/src/transformers/models/pix2struct/mod*_pix2struct* @zucchini-nlp

View File

@ -1,10 +1,7 @@
name: Self-hosted runner (benchmark)
on:
push:
branches: [main]
pull_request:
types: [ opened, labeled, reopened, synchronize ]
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}

57
.github/workflows/benchmark_v2.yml vendored Normal file
View File

@ -0,0 +1,57 @@
name: Benchmark v2 Framework
on:
workflow_dispatch:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
benchmark-v2:
name: Benchmark v2
runs-on: ${{ inputs.runner }}
if: |
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark')) ||
(github.event_name == 'schedule')
container:
image: ${{ inputs.container_image }}
options: ${{ inputs.container_options }}
steps:
- name: Get repo
uses: actions/checkout@v4
with:
ref: ${{ inputs.commit_sha || github.sha }}
- name: Install benchmark dependencies
run: |
python3 -m pip install -r benchmark_v2/requirements.txt
- name: Reinstall transformers in edit mode
run: |
python3 -m pip uninstall -y transformers
python3 -m pip install -e ".[torch]"
- name: Show installed libraries and their versions
run: |
python3 -m pip list
python3 -c "import torch; print(f'PyTorch version: {torch.__version__}')"
python3 -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
python3 -c "import torch; print(f'CUDA device count: {torch.cuda.device_count()}')" || true
nvidia-smi || true
- name: Run benchmark v2
working-directory: benchmark_v2
run: |
echo "Running benchmarks"
python3 run_benchmarks.py \
--commit-id '${{ inputs.commit_sha || github.sha }}' \
--run-id '${{ inputs.run_id }}' \
--push-to-hub '${{ inputs.benchmark_repo_id}}' \
--token '${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}' \
--log-level INFO
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}

View File

@ -0,0 +1,17 @@
name: Benchmark v2 Scheduled Runner - A10 Single-GPU
on:
workflow_dispatch:
jobs:
benchmark-v2-default:
name: Benchmark v2 - Default Models
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: aws-g5-4xlarge-cache-use1-public-80
container_image: huggingface/transformers-pytorch-gpu
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit

View File

@ -0,0 +1,17 @@
name: Benchmark v2 Scheduled Runner - MI325 Single-GPU
on:
workflow_dispatch:
jobs:
benchmark-v2-default:
name: Benchmark v2 - Default Models
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: amd-mi325-ci-1gpu
container_image: huggingface/transformers-pytorch-amd-gpu
container_options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit

View File

@ -26,7 +26,7 @@ jobs:
strategy:
matrix:
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "jax-light", "examples-torch", "examples-tf"]
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "exotic-models", "examples-torch"]
continue-on-error: true
steps:

View File

@ -5,6 +5,7 @@ on:
branches:
- build_ci_docker_image*
repository_dispatch:
workflow_dispatch:
workflow_call:
inputs:
image_postfix:
@ -221,7 +222,7 @@ jobs:
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on:
group: aws-general-8-plus
group: aws-highcpu-32-priv
steps:
-
name: Set up Docker Buildx

View File

@ -2,6 +2,10 @@ name: Build docker images (Nightly CI)
on:
workflow_call:
inputs:
job:
required: true
type: string
push:
branches:
- build_nightly_ci_docker_image*
@ -12,7 +16,8 @@ concurrency:
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
name: "Nightly PyTorch"
if: inputs.job == 'latest-with-torch-nightly-docker' || inputs.job == ''
runs-on:
group: aws-general-8-plus
steps:
@ -41,6 +46,7 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
if: inputs.job == 'nightly-torch-deepspeed-docker' || inputs.job == ''
runs-on:
group: aws-g4dn-2xlarge-cache
steps:

View File

@ -16,8 +16,20 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: ar de en es fr hi it ko pt tr zh ja te
languages: en
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
build_other_lang:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: ar de es fr hi it ja ko pt zh
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -35,16 +35,20 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
check_new_failures:
name: " "
name: "Find commits for new failing tests"
strategy:
matrix:
run_idx: [1]
runs-on:
group: aws-g5-4xlarge-cache
outputs:
process: ${{ steps.check_file.outputs.process }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -55,14 +59,17 @@ jobs:
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
id: check_file
working-directory: /transformers
run: |
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
echo "process=true" >> $GITHUB_OUTPUT
else
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
echo "process=false" >> $GITHUB_OUTPUT
fi
- uses: actions/download-artifact@v4
@ -119,6 +126,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Install pytest-flakefinder
if: ${{ env.process == 'true' }}
run: python3 -m pip install pytest-flakefinder
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
@ -127,25 +138,63 @@ jobs:
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
cat new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Checkout back
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
process_new_failures_with_commit_info:
name: "process bad commit reports"
needs: check_new_failures
if: needs.check_new_failures.outputs.process == 'true'
runs-on:
group: aws-g5-4xlarge-cache
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- uses: actions/download-artifact@v4
with:
pattern: new_failures_with_bad_commit_${{ inputs.job }}*
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}
merge-multiple: true
- name: Check files
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
ls -la /transformers
ls -la /transformers/new_failures_with_bad_commit_${{ inputs.job }}
# Currently, we only run with a single runner by using `run_idx: [1]`. We might try to run with multiple runners
# to further reduce the false positive caused by flaky tests, which requires further processing to merge reports.
- name: Merge files
shell: bash
working-directory: /transformers
run: |
cp /transformers/new_failures_with_bad_commit_${{ inputs.job }}/new_failures_with_bad_commit_${{ inputs.job }}_1.json new_failures_with_bad_commit.json
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -157,7 +206,6 @@ jobs:
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -172,13 +220,12 @@ jobs:
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.

View File

@ -41,9 +41,3 @@ jobs:
--job ${{ inputs.job }} \
--report-repo-id ${{ inputs.report_repo_id }} \
--gpu-name ${{ inputs.gpu_name }}
- name: Upload collated reports
uses: actions/upload-artifact@v4
with:
name: collated_reports_${{ env.CI_SHA }}.json
path: collated_reports_${{ env.CI_SHA }}.json

View File

@ -16,7 +16,6 @@ env:
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:

View File

@ -12,9 +12,6 @@ on:
slice_id:
required: true
type: number
runner_map:
required: false
type: string
docker:
required: true
type: string
@ -25,6 +22,12 @@ on:
required: false
default: run_models_gpu
type: string
runner_type:
required: false
type: string
report_repo_id:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -35,7 +38,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
@ -48,10 +50,12 @@ jobs:
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on:
group: ${{ fromJson(inputs.runner_map)[matrix.folders][inputs.machine_type] }}
group: '${{ inputs.machine_type }}'
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
machine_type: ${{ steps.set_machine_type.outputs.machine_type }}
steps:
- name: Echo input and matrix info
shell: bash
@ -105,6 +109,7 @@ jobs:
run: pip freeze
- name: Set `machine_type` for report and artifact names
id: set_machine_type
working-directory: /transformers
shell: bash
run: |
@ -120,26 +125,58 @@ jobs:
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
echo "machine_type=$machine_type" >> $GITHUB_OUTPUT
- name: Create report directory if it doesn't exist
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
echo "dummy" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/dummy.txt
ls -la /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
run: |
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
ls -la
# Extract the exit code from the output file
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
exit ${EXIT_CODE:-1}
- name: Failure short reports
if: ${{ failure() }}
# This step is only to show information on Github Actions log.
# Always mark this step as successful, even if the report directory or the file `failures_short.txt` in it doesn't exist
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
- name: Captured information
if: ${{ failure() }}
continue-on-error: true
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/captured_info.txt
- name: Copy test_outputs.txt
if: ${{ always() }}
continue-on-error: true
run: |
cp /transformers/test_outputs.txt /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
collated_reports:
name: Collated Reports
if: ${{ always() }}
needs: run_models_gpu
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
with:
job: run_models_gpu
report_repo_id: ${{ inputs.report_repo_id }}
gpu_name: ${{ inputs.runner_type }}
machine_type: ${{ needs.run_models_gpu.outputs.machine_type }}
secrets: inherit

View File

@ -26,7 +26,6 @@ env:
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:

View File

@ -14,7 +14,7 @@ permissions: {}
jobs:
get-pr-number:
name: Get PR number
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
@ -98,7 +98,7 @@ jobs:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
languages: ar de en es fr hi it ja ko pt zh
update_run_status:
name: Update Check Run Status

View File

@ -4,17 +4,6 @@ on:
push:
branches: [ main ]
env:
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
get_modified_models:
name: "Get all modified files"
@ -25,111 +14,144 @@ jobs:
- name: Check out code
uses: actions/checkout@v4
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
- name: Get changed files using `actions/github-script`
id: get-changed-files
uses: actions/github-script@v7
with:
files: src/transformers/models/**
script: |
let files = [];
// Only handle push events
if (context.eventName === 'push') {
const afterSha = context.payload.after;
const branchName = context.payload.ref.replace('refs/heads/', '');
let baseSha;
if (branchName === 'main') {
console.log('Push to main branch, comparing to parent commit');
// Get the parent commit of the pushed commit
const { data: commit } = await github.rest.repos.getCommit({
owner: context.repo.owner,
repo: context.repo.repo,
ref: afterSha
});
baseSha = commit.parents[0]?.sha;
if (!baseSha) {
throw new Error('No parent commit found for the pushed commit');
}
} else {
console.log(`Push to branch ${branchName}, comparing to main`);
baseSha = 'main';
}
const { data: comparison } = await github.rest.repos.compareCommits({
owner: context.repo.owner,
repo: context.repo.repo,
base: baseSha,
head: afterSha
});
// Include added, modified, and renamed files
files = comparison.files
.filter(file => file.status === 'added' || file.status === 'modified' || file.status === 'renamed')
.map(file => file.filename);
}
// Include all files under src/transformers/ (not just models subdirectory)
const filteredFiles = files.filter(file =>
file.startsWith('src/transformers/')
);
core.setOutput('changed_files', filteredFiles.join(' '));
core.setOutput('any_changed', filteredFiles.length > 0 ? 'true' : 'false');
- name: Run step if only the files listed above change
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
- name: Parse changed files with Python
if: steps.get-changed-files.outputs.any_changed == 'true'
env:
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
CHANGED_FILES: ${{ steps.get-changed-files.outputs.changed_files }}
id: set-matrix
run: |
model_arrays=()
for file in $ALL_CHANGED_FILES; do
model_path="${file#*models/}"
model_path="models/${model_path%%/*}"
if grep -qFx "$model_path" utils/important_models.txt; then
# Append the file to the matrix string
model_arrays+=("$model_path")
fi
done
matrix_string=$(printf '"%s", ' "${model_arrays[@]}" | sed 's/, $//')
echo "matrix=[$matrix_string]" >> $GITHUB_OUTPUT
test_modified_files:
python3 - << 'EOF'
import os
import sys
import json
# Add the utils directory to Python path
sys.path.insert(0, 'utils')
# Import the important models list
from important_files import IMPORTANT_MODELS
print(f"Important models: {IMPORTANT_MODELS}")
# Get the changed files from the previous step
changed_files_str = os.environ.get('CHANGED_FILES', '')
changed_files = changed_files_str.split() if changed_files_str else []
# Filter to only Python files
python_files = [f for f in changed_files if f.endswith('.py')]
print(f"Python files changed: {python_files}")
result_models = set()
# Specific files that trigger all models
transformers_utils_files = [
'modeling_utils.py',
'modeling_rope_utils.py',
'modeling_flash_attention_utils.py',
'modeling_attn_mask_utils.py',
'cache_utils.py',
'masking_utils.py',
'pytorch_utils.py'
]
# Single loop through all Python files
for file in python_files:
# Check for files under src/transformers/models/
if file.startswith('src/transformers/models/'):
remaining_path = file[len('src/transformers/models/'):]
if '/' in remaining_path:
model_dir = remaining_path.split('/')[0]
if model_dir in IMPORTANT_MODELS:
result_models.add(model_dir)
print(f"Added model directory: {model_dir}")
# Check for specific files under src/transformers/ or src/transformers/generation/ files
elif file.startswith('src/transformers/generation/') or \
(file.startswith('src/transformers/') and os.path.basename(file) in transformers_utils_files):
print(f"Found core file: {file} - including all important models")
result_models.update(IMPORTANT_MODELS)
break # No need to continue once we include all models
# Convert to sorted list and create matrix
result_list = sorted(list(result_models))
print(f"Final model list: {result_list}")
if result_list:
matrix_json = json.dumps(result_list)
print(f"matrix={matrix_json}")
# Write to GITHUB_OUTPUT
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
f.write(f"matrix={matrix_json}\n")
else:
print("matrix=[]")
with open(os.environ['GITHUB_OUTPUT'], 'a') as f:
f.write("matrix=[]\n")
EOF
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
needs: get_modified_models
name: Slow & FA2 tests
runs-on:
group: aws-g5-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
strategy:
fail-fast: false
matrix:
model-name: ${{ fromJson(needs.get_modified_models.outputs.matrix) }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install locally transformers & other libs
run: |
apt install sudo
sudo -H pip install --upgrade pip
sudo -H pip uninstall -y transformers
sudo -H pip install -U -e ".[testing]"
MAX_JOBS=4 pip install flash-attn --no-build-isolation
pip install bitsandbytes
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Show installed libraries and their versions
run: pip freeze
- name: Run FA2 tests
id: run_fa2_tests
run:
pytest -rsfE -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.model-name }}_fa2_tests
path: /transformers/reports/${{ matrix.model-name }}_fa2_tests
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
status: ${{ steps.run_fa2_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Run integration tests
id: run_integration_tests
if: always()
run:
pytest -rsfE -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_integration_${{ matrix.model-name }}
path: /transformers/reports/tests_integration_${{ matrix.model-name }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
status: ${{ steps.run_integration_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Tailscale # In order to be able to SSH when a test fails
if: ${{ runner.debug == '1'}}
uses: huggingface/tailscale-action@v1
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
if: needs.get_modified_models.outputs.matrix != '' && needs.get_modified_models.outputs.matrix != '[]'
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-push"
docker: huggingface/transformers-all-latest-gpu
ci_event: push
report_repo_id: hf-internal-testing/transformers_ci_push
commit_sha: ${{ github.sha }}
models: ${{ needs.get_modified_models.outputs.matrix }}
secrets: inherit

View File

@ -20,7 +20,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
@ -29,7 +28,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -12,12 +12,36 @@ on:
branches:
- run_ci_with_nightly_torch*
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
build_nightly_torch_ci_images:
name: Build CI Docker Images with nightly torch
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
with:
job: latest-with-torch-nightly-docker
secrets: inherit
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
needs: build_nightly_torch_ci_images

View File

@ -20,7 +20,7 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
runner_group: amd-mi325
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
@ -33,7 +33,7 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
runner_group: amd-mi325
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
@ -46,7 +46,7 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
runner_group: amd-mi325
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
@ -59,7 +59,7 @@ jobs:
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
runner_group: amd-mi325
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci

View File

@ -3,7 +3,7 @@ name: Self-hosted runner scale set (AMD mi355 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu : amd-mi355-ci-1gpu
# 2gpu : amd-mi355-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
@ -20,10 +20,10 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi355-ci
docker: huggingface/transformers-pytorch-amd-gpu
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: optimum-amd/transformers_daily_ci
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit
torch-pipeline:
@ -32,10 +32,10 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi355-ci
docker: huggingface/transformers-pytorch-amd-gpu
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: optimum-amd/transformers_daily_ci
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit
example-ci:
@ -44,20 +44,20 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi355-ci
docker: huggingface/transformers-pytorch-amd-gpu
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: optimum-amd/transformers_daily_ci
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi355-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
runner_group: hfc-amd-mi355
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: optimum-amd/transformers_daily_ci
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit

View File

@ -6,7 +6,7 @@ on:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci*
- multi_jobs_to_check_bad_commit
workflow_dispatch:
inputs:
prev_workflow_run_id:
@ -23,7 +23,7 @@ on:
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
prev_workflow_run_id: "18548615847"
other_workflow_run_id: ""
@ -49,70 +49,10 @@ jobs:
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-models"
slack_report_channel: "#transformers-ci-dummy"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
trainer-fsdp-ci:
name: Trainer/FSDP CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
quantization-ci:
name: Quantization CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit

View File

@ -26,7 +26,6 @@ env:
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:

View File

@ -31,7 +31,13 @@ on:
commit_sha:
required: false
type: string
runner_type:
required: false
type: string
models:
default: ""
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -42,7 +48,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
NUM_SLICES: 2
@ -62,13 +67,12 @@ jobs:
outputs:
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
runner_map: ${{ steps.set-matrix.outputs.runner_map }}
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Cleanup
working-directory: /transformers
@ -87,9 +91,8 @@ jobs:
working-directory: /transformers/tests
run: |
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
echo "runner_map=$(python3 ../utils/get_runner_map.py)" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
@ -113,16 +116,17 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -139,9 +143,10 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
@ -512,7 +517,7 @@ jobs:
run_quantization_torch_gpu,
run_extract_warnings
]
if: ${{ always() }}
if: always() && !cancelled()
uses: ./.github/workflows/slack-report.yml
with:
job: ${{ inputs.job }}

View File

@ -36,7 +36,7 @@ jobs:
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
if: always() && !cancelled()
steps:
- name: Preliminary job status
shell: bash
@ -75,6 +75,8 @@ jobs:
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
# This `CI_TITLE` would be empty for `schedule` or `workflow_run` events.
CI_TITLE: ${{ github.event.head_commit.message }}
CI_SHA: ${{ inputs.commit_sha || github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
@ -91,7 +93,7 @@ jobs:
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
else
python utils/notification_service.py "${{ inputs.folder_slices }}"
fi
fi
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts

View File

@ -20,7 +20,6 @@ env:
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
@ -33,14 +32,17 @@ jobs:
steps:
- name: Get runner to use
shell: bash
env:
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
run: |
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
else
echo "RUNNER=" >> $GITHUB_ENV
@ -85,9 +87,11 @@ jobs:
- name: Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell: bash
env:
GITHUB_ACTOR: ${{ github.actor }}
run: |
echo "${{ github.actor }}"
github_actor=${{ github.actor }}
echo "$GITHUB_ACTOR"
github_actor=$GITHUB_ACTOR
github_actor=${github_actor/'-'/'_'}
echo "$github_actor"
echo "github_actor=$github_actor" >> $GITHUB_ENV

5
.gitignore vendored
View File

@ -13,6 +13,7 @@ tests/fixtures/cached_*_text.txt
logs/
lightning_logs/
lang_code_data/
reports/
# Distribution / packaging
.Python
@ -97,6 +98,7 @@ celerybeat-schedule
# Environments
.env
.venv
.venv*
env/
venv/
ENV/
@ -170,3 +172,6 @@ tags
# modular conversion
*.modular_backup
# Cursor IDE files
.cursor/

View File

@ -278,13 +278,14 @@ are working on it).<br>
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
☐ Make sure existing tests pass.<br>
☐ If adding a new feature, also add tests for it.<br>
- If you are adding a new model, make sure you use
- If you are adding a new model, make sure you use
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
- If you are adding new `@slow` tests, make sure they pass using
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests and make sure
- If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
@ -340,6 +341,7 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/t
```
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).

View File

@ -38,7 +38,6 @@ In particular all "Please explain" questions or objectively very user-specific f
* "How to train T5 on De->En translation?"
## The GitHub Issues
Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues).
@ -154,7 +153,7 @@ You are not required to read the following guidelines before opening an issue. H
cd examples/seq2seq
torchrun --nproc_per_node=2 ./finetune_trainer.py \
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
--output_dir output_dir --overwrite_output_dir \
--output_dir output_dir \
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \
@ -247,7 +246,6 @@ You are not required to read the following guidelines before opening an issue. H
Try not use italics and bold text too much as these often make the text more difficult to read.
12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to.
To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link".
@ -257,7 +255,6 @@ You are not required to read the following guidelines before opening an issue. H
1. https://github.com/huggingface/transformers/issues/9257
2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162
13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here.
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:

View File

@ -3,7 +3,7 @@
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples tests src utils
check_dirs := examples tests src utils scripts benchmark benchmark_v2
exclude_folders := ""

View File

@ -48,9 +48,11 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_it.md">Italiano</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_bn.md">বাংলা</a> |
</p>
</h4>
@ -62,12 +64,11 @@ limitations under the License.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
@ -80,7 +81,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
## Installation
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
Transformers works with Python 3.9+, and [PyTorch](https://pytorch.org/get-started/locally/) 2.1+.
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
@ -110,10 +111,10 @@ git clone https://github.com/huggingface/transformers.git
cd transformers
# pip
pip install .[torch]
pip install '.[torch]'
# uv
uv pip install .[torch]
uv pip install '.[torch]'
```
## Quickstart
@ -193,7 +194,6 @@ pipeline("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.pn
<details>
<summary>Visual question answering</summary>
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg"></a>
</h3>

View File

@ -6,7 +6,7 @@ developers, researchers, students, professors, engineers, and anyone else to bui
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
@ -49,7 +49,7 @@ Keywords: LLMs, Large Language Models, Agents, Chains
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retrieval mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
@ -257,7 +257,7 @@ Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusi
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
@ -309,8 +309,8 @@ Keywords: OCR, LaTeX, Math formula
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
@ -606,4 +606,3 @@ Keywords: BentoML, Framework, Deployment, AI Applications
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

View File

@ -11,25 +11,27 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import Logger
import os
import sys
from logging import Logger
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
import sys
# Add the parent directory to Python path to import benchmarks_entrypoint
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from benchmarks_entrypoint import MetricsRecorder
import gpustat
import psutil
import psycopg2
from benchmarks_entrypoint import MetricsRecorder
# Optional heavy ML dependencies - only required when actually running the benchmark
try:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
@ -39,7 +41,7 @@ except ImportError:
GenerationConfig = None
StaticCache = None
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_XET_HIGH_PERFORMANCE"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
# Only set torch precision if torch is available
@ -63,7 +65,13 @@ def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
def run_benchmark(
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, metrics_recorder=None, num_tokens_to_generate=100
logger: Logger,
repository: str,
branch: str,
commit_id: str,
commit_msg: str,
metrics_recorder=None,
num_tokens_to_generate=100,
):
# Check if required ML dependencies are available
if not TRANSFORMERS_AVAILABLE:
@ -71,11 +79,11 @@ def run_benchmark(
logger.error("pip install torch transformers")
logger.error("Skipping LLaMA benchmark due to missing dependencies.")
return
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
# If no metrics_recorder is provided, create one for backward compatibility
if metrics_recorder is None:
try:
@ -136,7 +144,7 @@ def run_benchmark(
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def logits_to_probs(logits, temperature: float = 1.0, top_k: int | None = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
@ -146,7 +154,7 @@ def run_benchmark(
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def sample(logits, temperature: float = 1.0, top_k: int | None = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
@ -154,7 +162,7 @@ def run_benchmark(
# First eager forward pass
logger.info("running first eager forward pass")
start = perf_counter()
outputs = model(**inputs)
_ = model(**inputs)
torch.cuda.synchronize()
end = perf_counter()
first_eager_fwd_pass_time = end - start
@ -163,7 +171,7 @@ def run_benchmark(
# Second eager forward pass (should be faster)
logger.info("running second eager forward pass")
start = perf_counter()
outputs = model(**inputs)
_ = model(**inputs)
torch.cuda.synchronize()
end = perf_counter()
second_eager_fwd_pass_time = end - start
@ -339,7 +347,7 @@ def run_benchmark(
continue_metric_collection.set()
if metrics_thread is not None:
metrics_thread.join()
# Only close the recorder if we created it locally
if should_close_recorder:
metrics_recorder.close()
metrics_recorder.close()

View File

@ -31,9 +31,7 @@ from contextlib import contextmanager
from pathlib import Path
from git import Repo
from huggingface_hub import HfApi
from optimum_benchmark import Benchmark
from optimum_benchmark_wrapper import main

View File

@ -13,19 +13,20 @@
# limitations under the License.
import argparse
import importlib.util
import json
import logging
import os
import sys
import json
import uuid
from datetime import datetime
from typing import Dict, Tuple, Optional, List
import pandas as pd
try:
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
register_adapter(dict, Json)
PSYCOPG2_AVAILABLE = True
except ImportError:
@ -38,8 +39,14 @@ class ImportModuleException(Exception):
class MetricsRecorder:
def __init__(
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str,
collect_csv_data: bool = True
self,
connection,
logger: logging.Logger,
repository: str,
branch: str,
commit_id: str,
commit_msg: str,
collect_csv_data: bool = True,
):
self.conn = connection
self.use_database = connection is not None
@ -51,27 +58,43 @@ class MetricsRecorder:
self.commit_id = commit_id
self.commit_msg = commit_msg
self.collect_csv_data = collect_csv_data
# For CSV export - store all data in pandas DataFrames (only if CSV collection is enabled)
if self.collect_csv_data:
# Initialize empty DataFrames with proper schemas
self.benchmarks_df = pd.DataFrame(columns=[
'benchmark_id', 'repository', 'branch', 'commit_id', 'commit_message',
'metadata', 'created_at'
])
self.device_measurements_df = pd.DataFrame(columns=[
'benchmark_id', 'cpu_util', 'mem_megabytes', 'gpu_util',
'gpu_mem_megabytes', 'time'
])
self.model_measurements_df = pd.DataFrame(columns=[
'benchmark_id', 'time', 'model_load_time', 'first_eager_forward_pass_time_secs',
'second_eager_forward_pass_time_secs', 'first_eager_generate_time_secs',
'second_eager_generate_time_secs', 'time_to_first_token_secs',
'time_to_second_token_secs', 'time_to_third_token_secs',
'time_to_next_token_mean_secs', 'first_compile_generate_time_secs',
'second_compile_generate_time_secs', 'third_compile_generate_time_secs',
'fourth_compile_generate_time_secs'
])
self.benchmarks_df = pd.DataFrame(
columns=[
"benchmark_id",
"repository",
"branch",
"commit_id",
"commit_message",
"metadata",
"created_at",
]
)
self.device_measurements_df = pd.DataFrame(
columns=["benchmark_id", "cpu_util", "mem_megabytes", "gpu_util", "gpu_mem_megabytes", "time"]
)
self.model_measurements_df = pd.DataFrame(
columns=[
"benchmark_id",
"time",
"model_load_time",
"first_eager_forward_pass_time_secs",
"second_eager_forward_pass_time_secs",
"first_eager_generate_time_secs",
"second_eager_generate_time_secs",
"time_to_first_token_secs",
"time_to_second_token_secs",
"time_to_third_token_secs",
"time_to_next_token_mean_secs",
"first_compile_generate_time_secs",
"second_compile_generate_time_secs",
"third_compile_generate_time_secs",
"fourth_compile_generate_time_secs",
]
)
else:
self.benchmarks_df = None
self.device_measurements_df = None
@ -83,7 +106,7 @@ class MetricsRecorder:
"""
# Generate a unique UUID for this benchmark
benchmark_id = str(uuid.uuid4())
if self.use_database:
with self.conn.cursor() as cur:
cur.execute(
@ -91,28 +114,32 @@ class MetricsRecorder:
(benchmark_id, self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
)
self.logger.debug(f"initialised benchmark #{benchmark_id}")
# Store benchmark data for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame
new_row = pd.DataFrame([{
'benchmark_id': benchmark_id,
'repository': self.repository,
'branch': self.branch,
'commit_id': self.commit_id,
'commit_message': self.commit_msg,
'metadata': json.dumps(metadata),
'created_at': datetime.utcnow().isoformat()
}])
new_row = pd.DataFrame(
[
{
"benchmark_id": benchmark_id,
"repository": self.repository,
"branch": self.branch,
"commit_id": self.commit_id,
"commit_message": self.commit_msg,
"metadata": json.dumps(metadata),
"created_at": datetime.utcnow().isoformat(),
}
]
)
self.benchmarks_df = pd.concat([self.benchmarks_df, new_row], ignore_index=True)
mode_info = []
if self.use_database:
mode_info.append("database")
if self.collect_csv_data:
mode_info.append("CSV")
mode_str = " + ".join(mode_info) if mode_info else "no storage"
self.logger.debug(f"initialised benchmark #{benchmark_id} ({mode_str} mode)")
return benchmark_id
@ -123,16 +150,20 @@ class MetricsRecorder:
# Store device measurements for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame
new_row = pd.DataFrame([{
'benchmark_id': benchmark_id,
'cpu_util': cpu_util,
'mem_megabytes': mem_megabytes,
'gpu_util': gpu_util,
'gpu_mem_megabytes': gpu_mem_megabytes,
'time': datetime.utcnow().isoformat()
}])
new_row = pd.DataFrame(
[
{
"benchmark_id": benchmark_id,
"cpu_util": cpu_util,
"mem_megabytes": mem_megabytes,
"gpu_util": gpu_util,
"gpu_mem_megabytes": gpu_mem_megabytes,
"time": datetime.utcnow().isoformat(),
}
]
)
self.device_measurements_df = pd.concat([self.device_measurements_df, new_row], ignore_index=True)
# Store in database if available
if self.use_database:
with self.conn.cursor() as cur:
@ -140,7 +171,7 @@ class MetricsRecorder:
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
)
self.logger.debug(
f"collected device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
@ -149,16 +180,13 @@ class MetricsRecorder:
# Store model measurements for CSV export (if enabled)
if self.collect_csv_data:
# Add row to pandas DataFrame with flattened measurements
row_data = {
'benchmark_id': benchmark_id,
'time': datetime.utcnow().isoformat()
}
row_data = {"benchmark_id": benchmark_id, "time": datetime.utcnow().isoformat()}
# Flatten the measurements dict into the row
row_data.update(measurements)
new_row = pd.DataFrame([row_data])
self.model_measurements_df = pd.concat([self.model_measurements_df, new_row], ignore_index=True)
# Store in database if available
if self.use_database:
with self.conn.cursor() as cur:
@ -174,7 +202,7 @@ class MetricsRecorder:
measurements,
),
)
self.logger.debug(f"collected model measurements for benchmark #{benchmark_id}: {measurements}")
def export_to_csv(self, output_dir: str = "benchmark_results"):
@ -184,19 +212,19 @@ class MetricsRecorder:
if not self.collect_csv_data:
self.logger.warning("CSV data collection is disabled - no CSV files will be generated")
return
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.logger.info(f"Created output directory: {output_dir}")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
files_created = []
# Export using pandas DataFrames
self._export_pandas_data(output_dir, timestamp, files_created)
self.logger.info(f"CSV export complete! Created {len(files_created)} files in {output_dir}")
def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list):
"""
Export CSV files using pandas DataFrames
@ -206,24 +234,24 @@ class MetricsRecorder:
self.benchmarks_df.to_csv(benchmarks_file, index=False)
files_created.append(benchmarks_file)
self.logger.info(f"Exported {len(self.benchmarks_df)} benchmark records to {benchmarks_file}")
# Export device measurements
# Export device measurements
device_file = os.path.join(output_dir, f"device_measurements_{timestamp}.csv")
self.device_measurements_df.to_csv(device_file, index=False)
files_created.append(device_file)
self.logger.info(f"Exported {len(self.device_measurements_df)} device measurement records to {device_file}")
# Export model measurements (already flattened)
model_file = os.path.join(output_dir, f"model_measurements_{timestamp}.csv")
self.model_measurements_df.to_csv(model_file, index=False)
files_created.append(model_file)
self.logger.info(f"Exported {len(self.model_measurements_df)} model measurement records to {model_file}")
# Create comprehensive summary using pandas operations
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.csv")
self._create_summary(summary_file)
files_created.append(summary_file)
def _create_summary(self, summary_file: str):
"""
Create a comprehensive summary CSV using pandas operations
@ -234,36 +262,42 @@ class MetricsRecorder:
summary_df.to_csv(summary_file, index=False)
self.logger.info(f"Created empty benchmark summary at {summary_file}")
return
# Start with benchmarks as the base
summary_df = self.benchmarks_df.copy()
# Add model measurements (join on benchmark_id)
if len(self.model_measurements_df) > 0:
# Drop 'time' column from model measurements to avoid conflicts
model_df = self.model_measurements_df.drop(columns=['time'], errors='ignore')
summary_df = summary_df.merge(model_df, on='benchmark_id', how='left')
model_df = self.model_measurements_df.drop(columns=["time"], errors="ignore")
summary_df = summary_df.merge(model_df, on="benchmark_id", how="left")
# Calculate device measurement aggregates using pandas groupby
if len(self.device_measurements_df) > 0:
device_agg = self.device_measurements_df.groupby('benchmark_id').agg({
'cpu_util': ['mean', 'max', 'std', 'count'],
'mem_megabytes': ['mean', 'max', 'std'],
'gpu_util': ['mean', 'max', 'std'],
'gpu_mem_megabytes': ['mean', 'max', 'std']
}).round(3)
device_agg = (
self.device_measurements_df.groupby("benchmark_id")
.agg(
{
"cpu_util": ["mean", "max", "std", "count"],
"mem_megabytes": ["mean", "max", "std"],
"gpu_util": ["mean", "max", "std"],
"gpu_mem_megabytes": ["mean", "max", "std"],
}
)
.round(3)
)
# Flatten column names
device_agg.columns = [f"{col[0]}_{col[1]}" for col in device_agg.columns]
device_agg = device_agg.reset_index()
# Rename count column to be more descriptive
if 'cpu_util_count' in device_agg.columns:
device_agg = device_agg.rename(columns={'cpu_util_count': 'device_measurement_count'})
if "cpu_util_count" in device_agg.columns:
device_agg = device_agg.rename(columns={"cpu_util_count": "device_measurement_count"})
# Merge with summary
summary_df = summary_df.merge(device_agg, on='benchmark_id', how='left')
summary_df = summary_df.merge(device_agg, on="benchmark_id", how="left")
# Export the comprehensive summary
summary_df.to_csv(summary_file, index=False)
self.logger.info(f"Created comprehensive benchmark summary with {len(summary_df)} records at {summary_file}")
@ -312,23 +346,18 @@ def parse_arguments() -> tuple[str, str, str, str, bool, str]:
type=str,
help="The commit message associated with the commit, truncated to 70 characters.",
)
parser.add_argument(
"--csv",
action="store_true",
default=False,
help="Enable CSV output files generation."
)
parser.add_argument("--csv", action="store_true", default=False, help="Enable CSV output files generation.")
parser.add_argument(
"--csv-output-dir",
type=str,
default="benchmark_results",
help="Directory for CSV output files (default: benchmark_results)."
help="Directory for CSV output files (default: benchmark_results).",
)
args = parser.parse_args()
# CSV is disabled by default, only enabled when --csv is used
generate_csv = args.csv
@ -353,9 +382,10 @@ def create_database_connection():
if not PSYCOPG2_AVAILABLE:
logger.warning("psycopg2 not available - running in CSV-only mode")
return None
try:
import psycopg2
conn = psycopg2.connect("dbname=metrics")
logger.info("Successfully connected to database")
return conn
@ -364,27 +394,28 @@ def create_database_connection():
return None
def create_global_metrics_recorder(repository: str, branch: str, commit_id: str, commit_msg: str,
generate_csv: bool = False) -> MetricsRecorder:
def create_global_metrics_recorder(
repository: str, branch: str, commit_id: str, commit_msg: str, generate_csv: bool = False
) -> MetricsRecorder:
"""
Create a global metrics recorder that will be used across all benchmarks.
"""
connection = create_database_connection()
recorder = MetricsRecorder(connection, logger, repository, branch, commit_id, commit_msg, generate_csv)
# Log the storage mode
storage_modes = []
if connection is not None:
storage_modes.append("database")
if generate_csv:
storage_modes.append("CSV")
if not storage_modes:
logger.warning("Running benchmarks with NO data storage (no database connection, CSV disabled)")
logger.warning("Use --csv flag to enable CSV output when database is unavailable")
else:
logger.info(f"Running benchmarks with: {' + '.join(storage_modes)} storage")
return recorder
@ -393,16 +424,16 @@ if __name__ == "__main__":
benches_folder_path = os.path.join(benchmarks_folder_path, "benches")
repository, branch, commit_id, commit_msg, generate_csv, csv_output_dir = parse_arguments()
# Create a global metrics recorder
global_metrics_recorder = create_global_metrics_recorder(repository, branch, commit_id, commit_msg, generate_csv)
successful_benchmarks = 0
failed_benchmarks = 0
# Automatically discover all benchmark modules in benches/ folder
benchmark_modules = []
if os.path.exists(benches_folder_path):
logger.debug(f"Scanning for benchmarks in: {benches_folder_path}")
for entry in os.scandir(benches_folder_path):
@ -410,12 +441,12 @@ if __name__ == "__main__":
continue
if entry.name.startswith("__"): # Skip __init__.py, __pycache__, etc.
continue
# Check if the file has a run_benchmark function
try:
logger.debug(f"checking if benches/{entry.name} has run_benchmark function")
module = import_from_path(entry.name.split(".")[0], entry.path)
if hasattr(module, 'run_benchmark'):
if hasattr(module, "run_benchmark"):
benchmark_modules.append(entry.name)
logger.debug(f"discovered benchmark: {entry.name}")
else:
@ -436,16 +467,18 @@ if __name__ == "__main__":
logger.debug(f"loading: {module_name}")
module = import_from_path(module_name.split(".")[0], module_path)
logger.info(f"running benchmarks in: {module_name}")
# Check if the module has an updated run_benchmark function that accepts metrics_recorder
try:
# Try the new signature first
module.run_benchmark(logger, repository, branch, commit_id, commit_msg, global_metrics_recorder)
except TypeError:
# Fall back to the old signature for backward compatibility
logger.warning(f"Module {module_name} using old run_benchmark signature - database connection will be created per module")
logger.warning(
f"Module {module_name} using old run_benchmark signature - database connection will be created per module"
)
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
successful_benchmarks += 1
except ImportModuleException as e:
logger.error(e)
@ -461,7 +494,7 @@ if __name__ == "__main__":
logger.info(f"CSV reports have been generated and saved to the {csv_output_dir} directory")
else:
logger.info("CSV generation disabled - no CSV files created (use --csv to enable)")
logger.info(f"Benchmark run completed. Successful: {successful_benchmarks}, Failed: {failed_benchmarks}")
except Exception as e:
logger.error(f"Failed to export CSV results: {e}")

View File

@ -3,7 +3,11 @@ import subprocess
def main(config_dir, config_name, args):
subprocess.run(["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"] + ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"] + args)
subprocess.run(
["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"]
+ ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"]
+ args
)
if __name__ == "__main__":

View File

@ -2,5 +2,5 @@ gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_transfer
hf_xet
pandas>=1.5.0

2
benchmark_v2/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
benchmark_results/
benchmark_results_profiles/

138
benchmark_v2/README.md Normal file
View File

@ -0,0 +1,138 @@
# Benchmarking v2
A comprehensive benchmarking framework for transformer models that supports multiple execution modes (eager, compiled, kernelized), detailed performance metrics collection, and structured output format.
## Quick Start
### Running All Benchmarks
```bash
# Run all benchmarks with default settings
python run_benchmarks.py
# Specify output directory
python run_benchmarks.py --output-dir my_results
# Run with custom parameters
python run_benchmarks.py \
--warmup-iterations 5 \
--measurement-iterations 10 \
--num-tokens-to-generate 200
```
### Uploading Results to HuggingFace Dataset
You can automatically upload benchmark results to a HuggingFace Dataset for tracking and analysis:
```bash
# Upload to a public dataset with auto-generated run ID
python run_benchmarks.py --upload-to-hub username/benchmark-results
# Upload with a custom run ID for easy identification
python run_benchmarks.py --upload-to-hub username/benchmark-results --run-id experiment_v1
# Upload with custom HuggingFace token (if not set in environment)
python run_benchmarks.py --upload-to-hub username/benchmark-results --token hf_your_token_here
```
**Dataset Directory Structure:**
```
dataset_name/
├── 2025-01-15/
│ ├── runs/ # Non-scheduled runs (manual, PR, etc.)
│ │ └── 123-1245151651/ # GitHub run number and ID
│ │ └── benchmark_results/
│ │ ├── benchmark_summary_20250115_143022.json
│ │ └── model-name/
│ │ └── model-name_benchmark_20250115_143022.json
│ └── benchmark_results_abc123de/ # Scheduled runs (daily CI)
│ ├── benchmark_summary_20250115_143022.json
│ └── model-name/
│ └── model-name_benchmark_20250115_143022.json
└── 2025-01-16/
└── ...
```
**Authentication for Uploads:**
For uploading results, you need a HuggingFace token with write permissions to the target dataset. You can provide the token in several ways (in order of precedence):
1. Command line: `--token hf_your_token_here`
3. Environment variable: `HF_TOKEN`
### Running Specific Benchmarks
```bash
# Include only specific benchmarks
python run_benchmarks.py --include llama
# Exclude specific benchmarks
python run_benchmarks.py --exclude old_benchmark
## Output Format
Results are saved as JSON files with the following structure:
```json
{
"model_name": "llama_2_7b",
"benchmark_scenarios": [
{
"scenario_name": "eager_variant",
"metadata": {
"timestamp": "2025-01-XX...",
"commit_id": "abc123...",
"hardware_info": {
"gpu_name": "NVIDIA A100",
"gpu_memory_total": 40960,
"cpu_count": 64
},
"config": {
"variant": "eager",
"warmup_iterations": 3,
"measurement_iterations": 5
}
},
"measurements": {
"latency": {
"mean": 2.45,
"median": 2.43,
"std": 0.12,
"min": 2.31,
"max": 2.67,
"p95": 2.61,
"p99": 2.65
},
"time_to_first_token": {
"mean": 0.15,
"std": 0.02
},
"tokens_per_second": {
"mean": 87.3,
"unit": "tokens/sec"
}
},
"gpu_metrics": {
"gpu_utilization_mean": 85.2,
"gpu_memory_used_mean": 12450
}
}
]
}
```
### Debug Mode
```bash
python run_benchmarks.py --log-level DEBUG
```
## Contributing
To add new benchmarks:
1. Create a new file in `benches/`
2. Implement the `ModelBenchmark` interface
3. Add a runner function (`run_<benchmark_name>` or `run_benchmark`)
4. run_benchmarks.py

View File

@ -0,0 +1,215 @@
import hashlib
import json
import logging
from typing import Any
KERNELIZATION_AVAILABLE = False
try:
from kernels import Mode, kernelize # noqa: F401
KERNELIZATION_AVAILABLE = True
except ImportError:
pass
logger = logging.getLogger(__name__)
class BenchmarkConfig:
"""Configuration for a single benchmark scenario."""
def __init__(
self,
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
attn_implementation: str = "eager",
sdpa_backend: str | None = None,
compile_mode: str | None = None,
compile_options: dict[str, Any] | None = None,
kernelize: bool = False,
name: str | None = None,
skip_validity_check: bool = False,
) -> None:
# Benchmark parameters
self.warmup_iterations = warmup_iterations
self.measurement_iterations = measurement_iterations
self.gpu_monitoring = gpu_monitoring
# Input parameters
self.batch_size = batch_size
self.sequence_length = sequence_length
self.num_tokens_to_generate = num_tokens_to_generate
# Generation parameters
self.attn_implementation = attn_implementation
self.sdpa_backend = sdpa_backend
# Optimization parameters
self.compile_mode = compile_mode
self.compile_options = compile_options if compile_options is not None else {}
self.kernelize = kernelize
# Constant parameters
self.dtype = "torch.bfloat16"
self.device = "cuda"
self.check_validity(skip_validity_check)
self.name = name if name is not None else self.infer_name()
def check_validity(self, skip_validity_check: bool = False) -> None:
if skip_validity_check:
return
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
is_fa = self.attn_implementation == "flash_attention_2"
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
if is_fa:
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
self.compile_mode = None
@property
def hash(self) -> str:
return hashlib.sha256(json.dumps(self.to_dict()).encode()).hexdigest()
def infer_name(self, compact: bool = True) -> str:
"""Infer a human-readable name for the benchmark config, either compact or verbose."""
if compact:
iter_str = f"w{self.warmup_iterations}_i{self.measurement_iterations}"
gpu_monitor_str = "monitored" if self.gpu_monitoring else "unmonitored"
dimensions_str = f"b{self.batch_size}_s{self.sequence_length}_n{self.num_tokens_to_generate}"
attn_code = self.attn_implementation
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
sep = "-"
else:
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
gpu_monitor_str = ("with" if self.gpu_monitoring else "no") + " GPU monitoring"
dimensions_str = f"batch size {self.batch_size}, sequence length {self.sequence_length}, {self.num_tokens_to_generate} generated tokens"
attn_code = f"{self.attn_implementation} attention"
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
sep = ", "
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
def to_dict(self) -> dict[str, Any]:
return {
"name": self.name,
"warmup_iterations": self.warmup_iterations,
"measurement_iterations": self.measurement_iterations,
"gpu_monitoring": self.gpu_monitoring,
"batch_size": self.batch_size,
"sequence_length": self.sequence_length,
"num_tokens_to_generate": self.num_tokens_to_generate,
"attn_implementation": self.attn_implementation,
"sdpa_backend": self.sdpa_backend,
"compile_mode": self.compile_mode,
"compile_options": self.compile_options | {}, # to avoid inplace modification of the original dict
"kernelize": self.kernelize,
}
@classmethod
def from_dict(cls, data: dict[str, Any], skip_validity_check: bool = False) -> "BenchmarkConfig":
return cls(
warmup_iterations=data.get("warmup_iterations", 5),
measurement_iterations=data.get("measurement_iterations", 20),
gpu_monitoring=data.get("gpu_monitoring", False),
batch_size=data.get("batch_size", 1),
sequence_length=data.get("sequence_length", 128),
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
attn_implementation=data.get("attn_implementation", "eager"),
sdpa_backend=data.get("sdpa_backend"),
compile_mode=data.get("compile_mode"),
compile_options=data.get("compile_options"),
kernelize=data.get("kernelize", False),
name=data.get("name"),
skip_validity_check=skip_validity_check,
)
def cross_generate_configs(
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
compiled_mode: list[str | None],
kernelized: list[bool],
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
configs = []
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
for cm in list(dict.fromkeys(compiled_mode)):
for kernelize_on in list(dict.fromkeys(kernelized)):
config = BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
**kwargs,
)
configs.append(config)
return configs
def generate_all_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"),
("flex_attention", None),
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)
def generate_main_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
return [ # TODO: test max-autotune instead of default
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="eager", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="flash_attention_2", **kwargs),
]

View File

@ -0,0 +1,389 @@
import gc
import json
import logging
import os
import pathlib
import re
import time
from contextlib import nullcontext
from datetime import datetime
from queue import Queue
from typing import Any
import torch
from tqdm import trange
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
CompileConfig,
GenerationConfig,
GenerationMixin,
)
from transformers.generation.streamers import BaseStreamer
from .benchmark_config import BenchmarkConfig
from .data_classes import BenchmarkMetadata, BenchmarkResult, GPURawMetrics, pretty_print_dict
from .hardware_metrics import GPUMonitor
try:
from kernels import Mode, kernelize # noqa: F401
except ImportError:
kernelize = None
Mode = None
DEFAULT_PROMPT = "\n".join([
"The French Revolution was a period of political and societal change in France that began with the Estates General of 1789 and ended with the Coup of 18 Brumaire on 9 November 1799.",
"Many of the revolution's ideas are considered fundamental principles of liberal democracy, and its values remain central to modern French political discourse.",
"It was caused by a combination of social, political, and economic factors which the existing regime proved unable to manage.",
"Financial crisis and widespread social distress led to the convocation of the Estates General in May 1789, its first meeting since 1614.",
"The representatives of the Third Estate broke away and re-constituted themselves as a National Assembly in June.",
"The Storming of the Bastille in Paris on 14 July led to a series of radical measures by the Assembly, including the abolition of feudalism, state control over the Catholic Church in France, and issuing the Declaration of the Rights of Man and of the Citizen.",
"The next three years were dominated by a struggle for political control.",
"King Louis XVI's attempted flight to Varennes in June 1791 further discredited the monarchy, and military defeats after the outbreak of the French Revolutionary Wars in April 1792 led to the insurrection of 10 August 1792.",
"As a result, the monarchy was replaced by the French First Republic in September, followed by the execution of Louis XVI himself in January 1793.",
"After another revolt in June 1793, the constitution was suspended, and political power passed from the National Convention to the Committee of Public Safety, dominated by radical Jacobins led by Maximilien Robespierre.",
"About 16,000 people were sentenced by the Revolutionary Tribunal and executed in the Reign of Terror, which ended in July 1794 with the Thermidorian Reaction.",
"Weakened by external threats and internal opposition, the Committee of Public Safety was replaced in November 1795 by the Directory.",
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
]) # fmt: skip
def compact_json_numeric_arrays(data: dict):
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
pattern = r"\[\s*\n\s*((?:\d+(?:\.\d+)?\s*,\s*)*\d+(?:\.\d+)?)\s*\n\s*\]"
def replace_numeric_array(match):
# Get the array content
content = match.group(1)
# Remove extra whitespace but keep commas
compact_content = re.sub(r"\s+", " ", content).strip()
return f"[{compact_content}]"
return re.sub(pattern, replace_numeric_array, json.dumps(data, indent=4, default=str), flags=re.DOTALL)
def get_git_revision() -> str:
base_path = pathlib.Path(__file__).parent.parent.parent
git_dir = base_path / ".git"
with (git_dir / "HEAD").open("r") as head:
ref = head.readline().split(" ")[-1].strip()
with (git_dir / ref).open("r") as git_hash:
return git_hash.readline().strip()
def get_sdpa_backend(backend_name: str | None) -> torch.nn.attention.SDPBackend | None:
"""Get the SDPA backend enum from string name."""
if backend_name is None:
return None
try:
backend_map = {
"math": torch.nn.attention.SDPBackend.MATH,
"flash_attention": torch.nn.attention.SDPBackend.FLASH_ATTENTION,
"efficient_attention": torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
"cudnn_attention": torch.nn.attention.SDPBackend.CUDNN_ATTENTION,
}
return backend_map.get(backend_name.lower())
except AttributeError:
# torch.nn.attention.SDPBackend not available in older torch versions
return None
def flush_memory():
"""Flush GPU memory and run garbage collection."""
gc.collect()
# Dynamo resets
torch._dynamo.reset()
torch._dynamo.reset_code_caches()
if hasattr(torch._inductor, "codecache"):
# Clear FX graph cache
if hasattr(torch._inductor.codecache, "FxGraphCache"):
torch._inductor.codecache.FxGraphCache.clear()
# Clear PyCodeCache
if hasattr(torch._inductor.codecache, "PyCodeCache"):
torch._inductor.codecache.PyCodeCache.cache_clear()
# Clear TritonFuture cache (for async compilation)
if hasattr(torch._inductor.codecache, "TritonFuture"):
if hasattr(torch._inductor.codecache.TritonFuture, "_compile_cache"):
torch._inductor.codecache.TritonFuture._compile_cache.clear()
# Clear CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
gc.collect()
class BenchmarkStreamer(BaseStreamer):
def __init__(self, **kwargs) -> None:
self.timestamps = []
self.text_queue = Queue()
def put(self, value):
"""Receives tokens and logs the timestamp of the generation."""
self.timestamps.append(time.perf_counter())
def end(self):
self.timestamps.append(time.perf_counter())
def __iter__(self):
return self
def __next__(self):
value = self.text_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
class BenchmarkRunner:
"""Main benchmark runner that coordinates benchmark execution."""
def __init__(self, logger: logging.Logger, output_dir: str | None = None, commit_id: str | None = None) -> None:
# Those stay constant for the whole run
self.logger = logger
if output_dir is None:
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
self.output_dir = output_dir
self.commit_id = get_git_revision() if commit_id is None else commit_id
os.makedirs(self.output_dir, exist_ok=True)
self.profile_dir = None
# Attributes that are reset for each model
self._setup_for = ""
# Attributes that are reset for each run
self.model: GenerationMixin | None = None
def cleanup(self) -> None:
del self.model
self.model = None
flush_memory()
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
# Some attributes only need to be set once per model
if self._setup_for != model_id:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
# We set the EOS token to the padding token for open-ended generation
self.tokenizer.eos_token = self.tokenizer.pad_token
self._setup_for = model_id
# Prepare inputs
self.inputs = self.tokenizer(
[DEFAULT_PROMPT for _ in range(config.batch_size)],
return_tensors="pt",
max_length=config.sequence_length,
truncation=True,
return_attention_mask=True,
).to(config.device)
self.inputs["use_cache"] = True
# Prepare generation config
gen_config = GenerationConfig(
do_sample=False, top_p=1.0, temperature=1.0, max_new_tokens=config.num_tokens_to_generate
)
# Prepare compile config
if config.compile_mode is not None:
gen_config.compile_config = CompileConfig(mode=config.compile_mode, options=config.compile_options)
gen_config.cache_implementation = "static"
# Load model
self.logger.debug(f"Loading model {model_id} on device {config.device}...")
dtype = getattr(torch, config.dtype.removeprefix("torch."))
self.model = AutoModelForCausalLM.from_pretrained(
model_id, dtype=dtype, attn_implementation=config.attn_implementation, generation_config=gen_config
)
self.model = self.model.eval().to(config.device)
# Kernelize the model if needed
if config.kernelize:
self.model = kernelize(self.model, mode=Mode.INFERENCE)
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
sdpa_ctx = nullcontext()
if config.attn_implementation == "sdpa":
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
sdpa_ctx = torch.nn.attention.sdpa_kernel(sdpa_backend)
with sdpa_ctx, torch.no_grad():
self.logger.info(f"Running benchmark scenario: {config.name}")
# Quick validation: try one measurement first to see if this scenario works
flush_memory()
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=1, gpu_monitor=None
)
if e2e_latency < 0:
self.logger.warning(f"Skipping config {config.name}: {e2e_latency = } (no GPU monitoring)")
return None
# Warmup runs
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
for _ in trange(config.warmup_iterations):
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
self.logger.info("Warmup over.")
# Measurement runs
result = BenchmarkResult()
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
for _ in trange(config.measurement_iterations):
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=config.num_tokens_to_generate,
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
)
result.accumulate(e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics)
self.logger.info("Benchmarking done. Cleaning up.")
# Profile if needed
if num_tokens_to_profile > 0:
self.profile_generate(num_tokens_to_profile, config.name)
return {
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
"measurements": result,
"config": config,
}
def time_generate(
self,
max_new_tokens: int,
gpu_monitor: GPUMonitor | None = None,
) -> tuple[float, list[float], str, GPURawMetrics | None]:
"""Time the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
# Prepare gpu monitoring if needed
if gpu_monitor is not None:
gpu_monitor.start()
# Prepare streamer
streamer = BenchmarkStreamer()
# Generate and time
wall_time_0 = time.perf_counter()
outputs = self.model.generate(
**self.inputs,
max_new_tokens=max_new_tokens,
streamer=streamer,
)
wall_time_1 = time.perf_counter()
# Stop gpu monitoring if needed
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
# Check if generation had the right number of tokens
input_tokens = self.inputs["input_ids"].size(-1)
batch_size, output_tokens = outputs.shape
new_tokens = output_tokens - input_tokens
if new_tokens != max_new_tokens:
raise RuntimeError(f"Generated {new_tokens} tokens, expected {max_new_tokens}")
# Decode outputs
decoded_output = self.tokenizer.decode(outputs[0, input_tokens:], skip_special_tokens=True)
shape_and_decoded_output = f"{tuple(outputs.shape)} | {decoded_output}"
# Compute intermediate quantities
e2e_latency = wall_time_1 - wall_time_0
token_generation_times = [t - wall_time_0 for t in streamer.timestamps[1:]]
return e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics
def profile_generate(self, num_tokens_to_profile: int, config_name: str) -> None:
"""Profile the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
profiler = torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
record_shapes=True,
)
with profiler as prof:
_ = self.model.generate(
**self.inputs,
max_new_tokens=num_tokens_to_profile,
)
if self.profile_dir is None:
self.profile_dir = self.output_dir + "_profiles"
os.makedirs(self.profile_dir, exist_ok=True)
prof.export_chrome_trace(f"{self.profile_dir}/{config_name}.json")
def run_benchmarks(
self,
model_id: str,
benchmark_configs: list[BenchmarkConfig],
num_tokens_to_profile: int = 0,
pretty_print_summary: bool = True,
) -> dict[str, Any]:
all_results = {}
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
start_time = time.perf_counter()
n_configs = len(benchmark_configs)
for i, config in enumerate(benchmark_configs):
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
config.sdpa_backend = default_backend
# Skip if already run
if config.hash in all_results:
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
continue
# Otherwise, run the benchmark
self.setup_one_run(model_id, config)
self.logger.info(
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
)
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
try:
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
if results is not None:
all_results[config.hash] = results
except Exception as e:
self.logger.error(f"Error running with scenario: {config.name}:\n{repr(e)}")
# Cleanup model and save results
self.cleanup()
self.save_results(model_id, all_results, timestamp=timestamp)
if pretty_print_summary:
print()
print("=" * 100)
print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
print(f"Total number of benchmarks: {len(all_results)}")
if len(all_results) > 0:
print("First run metadata:")
first_key = list(all_results.keys())[0]
first_metadata = all_results[first_key]["metadata"].to_dict()
hardware_info = first_metadata.pop("hardware_info")
pretty_print_dict(first_metadata | hardware_info, tabs=1)
for result in all_results.values():
print("=" * 100)
print(f"Config: {result['config'].infer_name(compact=False)}\n")
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
print("=" * 100)
return all_results
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
"""Save benchmark results to JSON file."""
# Create model-specific subdirectory
model_name = model_name.replace("/", "_")
model_dir = os.path.join(self.output_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
# Create filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
filename = f"{model_name}_benchmark_{timestamp}.json"
filepath = os.path.join(model_dir, filename)
# Convert results to dict
converted_results = {}
for cfg_hash in results.keys():
converted_results[cfg_hash] = {
"metadata": results[cfg_hash]["metadata"].to_dict(),
"measurements": results[cfg_hash]["measurements"].to_dict(),
"config": results[cfg_hash]["config"].to_dict(),
}
# Save to JSON file
with open(filepath, "w") as f:
f.write(compact_json_numeric_arrays(converted_results))
self.logger.info(f"Results saved to {filepath}")
return filepath

View File

@ -0,0 +1,160 @@
from dataclasses import dataclass
from datetime import datetime
from typing import Any
import numpy as np
from .hardware_metrics import GPURawMetrics, HardwareInfo
def compute_basic_statistics(measurements: list[float]) -> dict[str, float]:
return {
"avg": np.mean(measurements),
"std": np.std(measurements),
"min": np.min(measurements),
"med": np.median(measurements),
"max": np.max(measurements),
"p95": np.percentile(measurements, 95),
}
def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
for key in list(stats.keys()):
value = stats[key]
if value > 3600:
stats[key] = f"{(value / 3600):.2f}hr"
elif value > 60:
stats[key] = f"{(value / 60):.2f}min"
elif value > 1:
stats[key] = f"{value:.2f}s"
elif value > 1e-3:
stats[key] = f"{(value * 1e3):.2f}ms"
elif value > 1e-6:
stats[key] = f"{(value * 1e6):.2f}us"
else:
stats[key] = f"{(value * 1e9):.2f}ns"
return stats
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
keys = ["avg", "std", "min", "med", "max", "p95"]
for key in keys:
max_length = max(len(stat[key]) for stat in stats)
for stat in stats:
stat[key] = stat[key].ljust(max_length, " ")
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
max_key_length = max([len(key) for key in data.keys()])
for key, value in data.items():
tabs_str = " " * tabs
padded_key = key.ljust(max_key_length + 1, ".")
print(f"{tabs_str}{padded_key}: {value}")
@dataclass
class BenchmarkMetadata:
"""Metadata collected for each benchmark run."""
model_id: str
timestamp: str
commit_id: str
hardware_info: HardwareInfo
def __init__(self, model_id: str, commit_id: str):
self.model_id = model_id
self.timestamp = datetime.utcnow().isoformat()
self.commit_id = commit_id
self.hardware_info = HardwareInfo()
def to_dict(self) -> dict[str, Any]:
return {
"timestamp": self.timestamp,
"commit_id": self.commit_id,
"hardware_info": self.hardware_info.to_dict(),
}
class BenchmarkResult:
"""Result from a series of benchmark runs."""
def __init__(self) -> None:
self.e2e_latency = []
self.token_generation_times = [] # time at which each token was generated (relative to start of the generation)
self.shape_and_decoded_outputs = []
self.gpu_metrics = []
def accumulate(
self,
e2e_latency: float,
token_generation_times: list[float],
shape_and_decoded_output: str,
gpu_metrics: GPURawMetrics | None,
) -> None:
self.e2e_latency.append(e2e_latency)
self.token_generation_times.append(token_generation_times)
self.shape_and_decoded_outputs.append(shape_and_decoded_output)
self.gpu_metrics.append(gpu_metrics)
def to_dict(self) -> dict[str, None | int | float]:
# Save GPU metrics as None if it contains only None values
if all(gm is None for gm in self.gpu_metrics):
gpu_metrics = None
else:
gpu_metrics = [gm.to_dict() for gm in self.gpu_metrics]
return {
"e2e_latency": self.e2e_latency,
"token_generation_times": self.token_generation_times,
"shape_and_decoded_outputs": self.shape_and_decoded_outputs,
"gpu_metrics": gpu_metrics,
}
@classmethod
def from_dict(cls, data: dict[str, None | int | float]) -> "BenchmarkResult":
# Handle GPU metrics, which is saved as None if it contains only None values
if data["gpu_metrics"] is None:
gpu_metrics = [None for _ in range(len(data["e2e_latency"]))]
else:
gpu_metrics = [GPURawMetrics.from_dict(gm) for gm in data["gpu_metrics"]]
# Create a new instance and accumulate the data
new_instance = cls()
for i in range(len(data["e2e_latency"])):
new_instance.accumulate(
e2e_latency=data["e2e_latency"][i],
token_generation_times=data["token_generation_times"][i],
shape_and_decoded_output=data["shape_and_decoded_outputs"][i],
gpu_metrics=gpu_metrics[i],
)
return new_instance
def get_measured_ttft(self) -> list[float]:
return [dt[0] for dt in self.token_generation_times if len(dt) > 0]
def get_measured_itl(self) -> list[float]:
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
def get_throughput(self, batch_size: int) -> float:
return [
batch_size * len(dt) / e2e_latency
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
]
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
stats_to_collate = [
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
if batch_size > 0:
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
collated_stats = equalize_lengths_and_collate(stats_to_collate)
dict_to_pprint = {
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
}
if batch_size > 0:
dict_to_pprint["Throughput"] = collated_stats[3]
pretty_print_dict(dict_to_pprint, tabs=tabs)

View File

@ -0,0 +1,171 @@
import json
import logging
import subprocess
import sys
import threading
import time
from dataclasses import dataclass
from enum import Enum
from logging import Logger
import gpustat
import psutil
import torch
# Data class to hold the hardware information
def get_device_name_and_memory_total() -> tuple[str, float]:
"""Returns the name and memory total of GPU 0."""
device_name = torch.cuda.get_device_properties(0).name
device_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
return device_name, device_memory_total
class HardwareInfo:
"""A class to hold information about the hardware."""
def __init__(self) -> None:
# Retrieve GPU stats
try:
self.gpu_name, self.gpu_memory_total_gb = get_device_name_and_memory_total()
except Exception:
self.gpu_name, self.gpu_memory_total_gb = None, None
# Retrieve python, torch and CUDA version
self.python_version = f"{sys.version.split()[0]}"
self.torch_version = torch.__version__
if hasattr(torch, "cuda") and torch.cuda.is_available():
self.cuda_version = torch.version.cuda
else:
self.cuda_version = None
# Retrieve general hardware information
self.cpu_count = psutil.cpu_count()
self.memory_total_mb = int(psutil.virtual_memory().total / (1024 * 1024))
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"gpu_name": self.gpu_name,
"gpu_memory_total_gb": self.gpu_memory_total_gb,
"python_version": self.python_version,
"torch_version": self.torch_version,
}
# Functions to get information about the GPU
def get_amd_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an AMD GPU, both in percent"""
rocm_smi_output = subprocess.check_output(["rocm-smi", "--json", "--showuse", "--showmeminfo", "VRAM"])
gpu_stats = json.loads(rocm_smi_output.decode("utf-8"))
gpu_stats = [
(card_id, stats["GPU use (%)"], stats["VRAM Total Used Memory (B)"]) for card_id, stats in gpu_stats.items()
]
gpu_stats.sort(key=lambda x: x[1], reverse=True)
return int(gpu_stats[0][1]), float(gpu_stats[0][2]) / 1024**3
def get_nvidia_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an NVIDIA GPU, both in percent"""
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_stats = gpu_stats[0]
return int(gpu_stats["utilization.gpu"]), float(gpu_stats["memory.used"]) / 1024**3
class GPUStatsCollector:
"""A class to get statistics about the GPU. It serves as a wrapper that holds the GPU total memory and its name,
which is used to call the right function to get the utilization and memory used."""
def __init__(self) -> None:
self.device_name, self.device_memory_total = get_device_name_and_memory_total()
# Monkey patch the get_utilization_and_memory_used method based on the GPU type
if "amd" in self.device_name.lower():
self.get_utilization_and_memory_used = get_amd_gpu_stats
elif "nvidia" in self.device_name.lower():
self.get_utilization_and_memory_used = get_nvidia_gpu_stats
else:
raise RuntimeError(f"Unsupported GPU: {self.device_name}")
def get_measurements(self) -> tuple[int, float]:
"""Get the utilization and memory used of the GPU, both in percent"""
raise NotImplementedError("This method is meant to be monkey patched during __init__")
# Simple data classes to hold the raw GPU metrics
class GPUMonitoringStatus(Enum):
"""Status of GPU monitoring."""
SUCCESS = "success"
FAILED = "failed"
NO_GPUS_AVAILABLE = "no_gpus_available"
NO_SAMPLES_COLLECTED = "no_samples_collected"
@dataclass
class GPURawMetrics:
"""Raw values for GPU utilization and memory used."""
utilization: list[float] # in percent
memory_used: list[float] # in GB
timestamps: list[float] # in seconds
timestamp_0: float # in seconds
monitoring_status: GPUMonitoringStatus
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"utilization": self.utilization,
"memory_used": self.memory_used,
"timestamps": self.timestamps,
"timestamp_0": self.timestamp_0,
"monitoring_status": self.monitoring_status.value,
}
# Main class, used to monitor the GPU utilization during benchmark execution
class GPUMonitor:
"""Monitor GPU utilization during benchmark execution."""
def __init__(self, sample_interval_sec: float = 0.1, logger: Logger | None = None):
self.sample_interval_sec = sample_interval_sec
self.logger = logger if logger is not None else logging.getLogger(__name__)
self.num_available_gpus = torch.cuda.device_count()
if self.num_available_gpus == 0:
raise RuntimeError("No GPUs detected by torch.cuda.device_count().")
self.gpu_stats_getter = GPUStatsCollector()
def start(self):
"""Start monitoring GPU metrics."""
# Clear the stop event to enable monitoring
self.stop_event = threading.Event()
self.gpu_utilization = []
self.gpu_memory_used = []
self.timestamps = []
self.thread = threading.Thread(target=self._monitor_loop)
self.thread.start()
self.logger.debug("GPU monitoring started")
def stop_and_collect(self) -> GPURawMetrics:
"""Stop monitoring and return collected metrics."""
self.stop_event.set()
self.thread.join()
if self.gpu_utilization:
timestamp_0 = self.timestamps[0]
metrics = GPURawMetrics(
utilization=self.gpu_utilization,
memory_used=self.gpu_memory_used,
timestamps=[t - timestamp_0 for t in self.timestamps],
timestamp_0=timestamp_0,
monitoring_status=GPUMonitoringStatus.SUCCESS,
)
self.logger.debug(f"GPU monitoring completed: {len(self.gpu_utilization)} samples collected")
else:
metrics = GPURawMetrics(monitoring_status=GPUMonitoringStatus.NO_SAMPLES_COLLECTED)
return metrics
def _monitor_loop(self):
"""Background monitoring loop using threading.Event for communication."""
while not self.stop_event.is_set():
utilization, memory_used = self.gpu_stats_getter.get_utilization_and_memory_used()
self.gpu_utilization.append(utilization)
self.gpu_memory_used.append(memory_used)
self.timestamps.append(time.time())
if self.stop_event.wait(timeout=self.sample_interval_sec):
break

View File

@ -0,0 +1,7 @@
numpy>=1.21.0
psutil>=5.8.0
gpustat>=1.0.0
torch>=2.0.0
transformers>=4.30.0
datasets>=2.10.0
huggingface_hub>=0.16.0

116
benchmark_v2/run_benchmarks.py Executable file
View File

@ -0,0 +1,116 @@
#!/usr/bin/env python3
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Top-level benchmarking script that automatically discovers and runs all benchmarks
in the ./benches directory, organizing outputs into model-specific subfolders.
"""
import argparse
import logging
import sys
import uuid
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
from framework.benchmark_runner import BenchmarkRunner
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations")
parser.add_argument("--iterations", type=int, default=10, help="Number of measurement iterations")
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
args = parser.parse_args()
# Setup logging
benchmark_run_uuid = str(uuid.uuid4())[:8]
numeric_level = getattr(logging, args.log_level.upper())
handlers = [logging.StreamHandler(sys.stdout)]
logging.basicConfig(
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
)
logger = logging.getLogger("benchmark_v2")
logger.info("Starting benchmark discovery and execution")
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
logger.info(f"Output directory: {args.output_dir}")
# Error out if one of the arguments is not provided
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
raise ValueError(
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
)
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
if args.cross_generate:
benchmark_configs = generate_all_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
else:
benchmark_configs = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
# Otherwise, we benchmark across all combinations of dimensions
else:
main_config = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)[0]
benchmark_configs = []
for num_tokens_to_generate in args.num_tokens_to_generate:
for sequence_length in args.sequence_length:
for batch_size in args.batch_size:
cfg_dict = main_config.to_dict()
cfg_dict["batch_size"] = batch_size
cfg_dict["sequence_length"] = sequence_length
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
cfg_dict.pop("name")
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
results = runner.run_benchmarks(
args.model_id,
benchmark_configs,
args.num_tokens_to_profile,
pretty_print_summary=True,
)
# runner.save_results(args.model_id, results)

View File

@ -16,6 +16,7 @@
# by pytest before any tests are run
import doctest
import os
import sys
import warnings
from os.path import abspath, dirname, join
@ -27,6 +28,7 @@ from transformers.testing_utils import (
HfDoctestModule,
HfDocTestParser,
is_torch_available,
patch_testing_methods_to_collect_info,
patch_torch_compile_force_graph,
)
@ -52,7 +54,6 @@ NOT_DEVICE_TESTS = {
"test_gradient_checkpointing_backward_compatibility",
"test_gradient_checkpointing_enable_disable",
"test_torch_save_load",
"test_initialization",
"test_forward_signature",
"test_model_get_set_embeddings",
"test_model_main_input_name",
@ -62,11 +63,8 @@ NOT_DEVICE_TESTS = {
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
"test_model_weights_reload_no_missing_tied_weights",
"test_mismatched_shapes_have_properly_initialized_weights",
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
"test_can_load_ignoring_mismatched_shapes",
"test_model_is_small",
"test_tf_from_pt_safetensors",
"test_flax_from_pt_safetensors",
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
"ModelTester::test_pipeline_",
"/repo_utils/",
@ -91,6 +89,8 @@ def pytest_configure(config):
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
def pytest_collection_modifyitems(items):
for item in items:
@ -145,3 +145,7 @@ if is_torch_available():
# patch `torch.compile`: if `TORCH_COMPILE_FORCE_FULLGRAPH=1` (or values considered as true, e.g. yes, y, etc.),
# the patched version will always run with `fullgraph=True`.
patch_torch_compile_force_graph()
if os.environ.get("PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS", "").lower() in ("yes", "true", "on", "y", "1"):
patch_testing_methods_to_collect_info()

View File

@ -1,15 +1,13 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN git lfs install
RUN uv pip uninstall transformers

View File

@ -1,8 +1,8 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
@ -15,12 +15,20 @@ RUN mv catch.hpp ../libs/
RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later
RUN uv run python -m unidic download
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,13 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git
RUN apt-get install -y g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,12 +1,19 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,17 +1,24 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
# RUN git clone https://github.com/facebookresearch/detectron2.git
# RUN python3 -m pip install --no-cache-dir -e detectron2
RUN uv pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3' --no-build-isolation
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,10 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,10 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -1,11 +1,18 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,12 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git
RUN apt-get install -y cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,16 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,11 +1,17 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
# fetch test data and hub objects within CircleCI docker images to reduce even more connections
# we don't need a full clone of `transformers` to run `fetch_hub_objects_for_ci.py`
# the data are downloaded to the directory `/test_data` and during CircleCI's CI runtime, we need to move them to the root of `transformers`
RUN mkdir test_data && cd test_data && curl -O https://raw.githubusercontent.com/huggingface/transformers/${REF}/utils/fetch_hub_objects_for_ci.py && python3 fetch_hub_objects_for_ci.py
RUN uv pip uninstall transformers

View File

@ -1,19 +0,0 @@
FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
RUN echo ${REF}
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -12,8 +12,6 @@ SHELL ["sh", "-lc"]
ARG PYTORCH='2.8.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# Disable kernel mapping for now until all tests pass
ENV DISABLE_KERNEL_MAPPING=1
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
@ -26,13 +24,14 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U timm
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
RUN python3 -m pip install --no-cache-dir pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
@ -41,6 +40,8 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
# For bettertransformer
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For kernels
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
# For video model testing
RUN python3 -m pip install --no-cache-dir av
@ -52,7 +53,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
RUN python3 -m pip install --no-cache-dir quanto
# After using A10 as CI runner, let's run FA2 tests
RUN python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
# TODO (ydshieh): check this again
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests

View File

@ -15,8 +15,8 @@ RUN apt update && \
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow \
torch
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
RUN git clone https://github.com/NVIDIA/apex
RUN cd apex && \

View File

@ -0,0 +1,71 @@
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu24.04 AS base
LABEL maintainer="Hugging Face"
SHELL ["/bin/bash", "-c"]
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
apt-get update
RUN apt-get update && \
apt-get -y install \
apt-utils \
build-essential \
ca-certificates \
clinfo \
curl \
git \
git-lfs \
vim \
numactl \
gnupg2 \
gpg-agent \
python3-dev \
python3-opencv \
unzip \
ffmpeg \
tesseract-ocr \
espeak-ng \
wget \
ncurses-term \
google-perftools \
libjemalloc-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# Use virtual env because Ubuntu:24 does not allowed pip on original python
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install --upgrade pip wheel
RUN pip install torch torchvision torchaudio torchcodec --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
RUN pip install av pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sentence_transformers sacremoses nltk rouge_score librosa soundfile mpi4py pytorch_msssim
RUN pip install onnx optimum onnxruntime
RUN pip install autoawq
RUN pip install gptqmodel --no-build-isolation
RUN pip install -U datasets timm transformers accelerate peft diffusers opencv-python kenlm evaluate
RUN pip install -U intel-openmp
# install bitsandbytes
RUN git clone https://github.com/bitsandbytes-foundation/bitsandbytes.git && cd bitsandbytes/ && \
cmake -DCOMPUTE_BACKEND=cpu -S . && make && pip install . && cd ../
# CPU don't need triton
RUN pip uninstall triton -y
ENV LD_PRELOAD=${LD_PRELOAD}:/opt/venv/lib/libiomp5.so:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4
ENV KMP_AFFINITY=granularity=fine,compact,1,0
RUN touch /entrypoint.sh
RUN chmod +x /entrypoint.sh
RUN echo "#!/bin/bash" >> /entrypoint.sh
RUN echo "/bin/bash" >> /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -1,59 +0,0 @@
ARG BASE_DOCKER_IMAGE
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
# We will install `accelerate@main` in Past CI workflow file
RUN python3 -m pip uninstall -y accelerate
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/deepspeedai/DeepSpeed/issues/2010
# RUN git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -20,14 +20,9 @@ WORKDIR /
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# On ROCm, torchcodec is required to decode audio files
# RUN python3 -m pip install --no-cache-dir torchcodec
# Install transformers
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
# Remove tensorflow and flax as they are no longer supported by transformers
RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
@ -37,3 +32,13 @@ RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels
# On ROCm, torchcodec is required to decode audio files and 0.4 or 0.6 fails
RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
cd flash-attention && \
GPU_ARCHS="gfx942" python setup.py install
RUN python3 -m pip install --no-cache-dir einops

View File

@ -25,8 +25,6 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,11 +9,9 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.8.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
# Disable kernel mapping for quantization tests
ENV DISABLE_KERNEL_MAPPING=1
ARG CUDA='cu126'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
@ -30,31 +28,20 @@ RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio tor
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add gptqmodel for gtpq quantization testing, installed from source for pytorch==2.6.0 compatibility
RUN python3 -m pip install lm_eval
RUN git clone https://github.com/ModelCloud/GPTQModel.git && cd GPTQModel && pip install -v . --no-build-isolation
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add PEFT
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add vptq for quantization testing
RUN pip install vptq
# Add bitsandbytes
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add spqr for quantization testing
# Commented for now as No matching distribution found we need to reach out to the authors
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
# # Add gptqmodel
# RUN python3 -m pip install --no-cache-dir gptqmodel
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
@ -63,25 +50,11 @@ RUN python3 -m pip install --no-cache-dir hqq
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# New release v0.2.8
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir optimum-quanto
# Add eetq for quantization testing
RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
# # Add flute-kernel and fast_hadamard_transform for quantization testing
# # Commented for now as they cause issues with the build
# # TODO: create a new workflow to test them
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
# Add fp-quant for quantization testing
# Requires py3.11 but our CI runs on 3.9
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Add compressed-tensors for quantization testing
RUN python3 -m pip install --no-cache-dir compressed-tensors
@ -89,7 +62,10 @@ RUN python3 -m pip install --no-cache-dir compressed-tensors
RUN python3 -m pip install --no-cache-dir amd-quark
# Add AutoRound for quantization testing
RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
RUN python3 -m pip install --no-cache-dir auto-round
# Add torchao for quantization testing
RUN python3 -m pip install --no-cache-dir torchao
# Add transformers in editable mode
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
@ -103,3 +79,27 @@ RUN python3 -m pip uninstall -y flash-attn
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Add fp-quant for quantization testing
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.2.0"
# Low usage or incompatible lib, will enable later on
# # Add aqlm for quantization testing
# RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# # Add vptq for quantization testing
# RUN pip install vptq
# Add spqr for quantization testing
# Commented for now as No matching distribution found we need to reach out to the authors
# RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
# # Add eetq for quantization testing
# RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submodule update --init --recursive && pip install .
# # Add flute-kernel and fast_hadamard_transform for quantization testing
# # Commented for now as they cause issues with the build
# # TODO: create a new workflow to test them
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git

View File

@ -1,25 +0,0 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
# If set to nothing, will install the latest version
ARG TENSORFLOW='2.13'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir -U "tensorflow_probability<0.22"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -50,7 +50,7 @@ Begin translating the text!
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
- If the `_toctree.yml` file doesnt exist for your language, create one by copying the English version and removing unrelated sections.
- If the `_toctree.yml` file doesn't exist for your language, create one by copying the English version and removing unrelated sections.
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
Heres an example structure for the `_toctree.yml` file:

View File

@ -123,8 +123,6 @@
title: تشغيل التدريب على Amazon SageMaker
- local: serialization
title: التصدير إلى ONNX
- local: tflite
title: التصدير إلى TFLite
- local: torchscript
title: التصدير إلى TorchScript
- local: notebooks
@ -184,8 +182,6 @@
# title: التدريب الفعال على وحدة المعالجة المركزية (CPU)
# - local: perf_train_cpu_many
# title: التدريب الموزع لوحدة المعالجة المركزية (CPU)
# - local: perf_train_tpu_tf
# title: التدريب على (TPU) باستخدام TensorFlow
# - local: perf_train_special
# title: تدريب PyTorch على Apple silicon
# - local: perf_hardware
@ -203,8 +199,6 @@
# title: إنشاء نموذج كبير
# - local: debugging
# title: تصحيح الأخطاء البرمجية
# - local: tf_xla
# title: تكامل XLA لنماذج TensorFlow
# - local: perf_torch_compile
# title: تحسين الاستدلال باستخدام `torch.compile()`
# title: الأداء وقابلية التوسع
@ -260,8 +254,6 @@
# title: التكوين
# - local: main_classes/data_collator
# title: مجمع البيانات
# - local: main_classes/keras_callbacks
# title: استدعاءات Keras
# - local: main_classes/logging
# title: التسجيل
# - local: main_classes/model

View File

@ -52,7 +52,7 @@
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
</div>
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PreTrainedConfig.from_pretrained`]:
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
@ -115,8 +115,6 @@
## النموذج التلقائي (AutoModel)
<frameworkcontent>
<pt>
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
```py
@ -143,25 +141,4 @@
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</pt>
<tf>
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</tf>
</frameworkcontent>

View File

@ -54,19 +54,19 @@ DistilBertConfig {
```
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PreTrainedConfig.from_pretrained`] :
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PreTrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PreTrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
@ -81,8 +81,6 @@ DistilBertConfig {
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
<frameworkcontent>
<pt>
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
```py
@ -105,39 +103,11 @@ DistilBertConfig {
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</pt>
<tf>
قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</tf>
</frameworkcontent>
### رؤوس النموذج
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
<frameworkcontent>
<pt>
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
```py
@ -153,25 +123,6 @@ DistilBertConfig {
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</pt>
<tf>
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## مجزئ النصوص

View File

@ -20,11 +20,11 @@
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
```python
from transformers import PretrainedConfig
from transformers import PreTrainedConfig
from typing import List
class ResnetConfig(PretrainedConfig):
class ResnetConfig(PreTrainedConfig):
model_type = "resnet"
def __init__(
@ -58,11 +58,11 @@ class ResnetConfig(PretrainedConfig):
```
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
- يجب أن ترث من `PretrainedConfig`،
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
- يجب أن ترث من `PreTrainedConfig`،
- يجب أن تقبل دالة `__init__` الخاصة بـ `PreTrainedConfig` أي معامﻻت إضافية kwargs،
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PreTrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
@ -82,7 +82,7 @@ resnet50d_config.save_pretrained("custom-resnet")
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PreTrainedConfig`]، مثل [`~PreTrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
## كتابة نموذج مخصص

View File

@ -60,10 +60,10 @@ pip install transformers bitsandbytes>=0.39.0 -q
أولاً، تحتاج إلى تحميل النموذج.
```py
>>> from transformers import AutoModelForCausalLM
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -113,12 +113,12 @@ pip install transformers bitsandbytes>=0.39.0 -q
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -192,7 +192,7 @@ LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/l
```python
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
>>> model = AutoModelForCausalLM.from_pretrained(
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
>>> set_seed(0)
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""

View File

@ -231,7 +231,7 @@ flush()
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_4bit=True), pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -329,174 +329,6 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
لنلقِ نظرة على مثال عملي.
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
```python
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
-----
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
Answer: Sure. Here is a function that does that.
def alternating(list1, list2):
results = []
for i in range(len(list1)):
results.append(list1[i])
results.append(list2[i])
return results
Question: Can you write some test cases for this function?
Answer: Sure, here are some tests.
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
assert alternating([], []) == []
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
Answer: Here is the modified function.
def alternating(list1, list2):
results = []
for i in range(min(len(list1), len(list2))):
results.append(list1[i])
results.append(list2[i])
if len(list1) > len(list2):
results.extend(list1[i+1:])
else:
results.extend(list2[i+1:])
return results
-----
"""
```
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
```python
long_prompt = 10 * system_prompt + prompt
```
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
```python
import time
start_time = time.time()
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 10.96854019165039 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
37.668193340301514
```
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
```python
flush()
```
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
```python
model.to_bettertransformer()
```
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
```py
start_time = time.time()
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 3.0211617946624756 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
دعنا نقيس استهلاك الذاكرة لآخر مرة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
32.617331981658936
```
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
```py
flush()
```
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
## 3. الابتكارات المعمارية
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:
@ -640,7 +472,7 @@ for _ in range(5):
next_token_id = torch.argmax(next_logits, dim=-1)
print("shape of input_ids", next_token_id.shape)
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
print("length of key-value cache", past_key_values.get_seq_length()) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
generated_tokens.append(next_token_id.item())
generated_text = tokenizer.batch_decode(generated_tokens)

View File

@ -65,43 +65,15 @@ pip install huggingface_hub
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
<frameworkcontent>
<pt>
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
حدد `from_pt=True` لتحويل نقطة تحقق من PyTorch إلى TensorFlow:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
بعد ذلك، يمكنك حفظ نموذج TensorFlow الجديد بنقطة التحقق الجديدة:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
إذا كان النموذج متاحًا في Flax، فيمكنك أيضًا تحويل نقطة تحقق من PyTorch إلى Flax:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## دفع نموذج أثناء التدريب
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
@ -127,29 +99,6 @@ pip install huggingface_hub
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
- دليل إخراج لنموذجك.
- مُجزّئ اللغوي.
- `hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
أضف الاستدعاء إلى [`fit`](https://keras.io/api/models/model_training_apis/)، وسيقوم 🤗 Transformers بدفع النموذج المدرب إلى Hub:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## استخدام دالة `push_to_hub`
@ -220,4 +169,4 @@ pip install huggingface_hub
* قم بإنشاء ملف `README.md` وتحميله يدويًا.
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).

View File

@ -39,7 +39,6 @@
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
| [كيفية تدريب نموذج لغة من البداية](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| تسليط الضوء على جميع الخطوات لتدريب نموذج Transformer بشكل فعال على بيانات مخصصة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
| [كيفية إنشاء نص](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| كيفية استخدام أساليب فك التشفير المختلفة لإنشاء اللغة باستخدام المحولات | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
| [كيفية إنشاء نص (مع قيود)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| كيفية توجيه إنشاء اللغة باستخدام القيود التي يوفرها المستخدم | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| كيف يدفع Reformer حدود النمذجة اللغوية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
#### رؤية الكمبيوتر[[pytorch-cv]]

View File

@ -152,8 +152,6 @@ pip install datasets
قم بتعيين معلمة `return_tensors` إلى إما `pt` لـ PyTorch، أو `tf` لـ TensorFlow:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
@ -173,33 +171,6 @@ pip install datasets
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
<Tip>

View File

@ -12,20 +12,10 @@
ستحتاج أيضًا إلى تثبيت إطار عمل التعلم الآلي المفضل لديك:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
## خط الأنابيب
@ -122,8 +112,6 @@ label: NEGATIVE, with score: 0.5309
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي):
```py
@ -132,18 +120,6 @@ label: NEGATIVE, with score: 0.5309
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي:
@ -192,8 +168,6 @@ label: NEGATIVE, with score: 0.5309
يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
@ -204,20 +178,6 @@ label: NEGATIVE, with score: 0.5309
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
<Tip>
@ -227,8 +187,6 @@ label: NEGATIVE, with score: 0.5309
### AutoModel
<frameworkcontent>
<pt>
تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]:
```py
@ -264,39 +222,6 @@ label: NEGATIVE, with score: 0.5309
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
راجع [ملخص المهام](./task_summary) للمهام المدعومة بواسطة فئة [`AutoModel`].
</Tip>
الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. يمكنك تمرير المصفوفات كما هي:
```py
>>> tf_outputs = tf_model(tf_batch)
```
يقوم النموذج بإخراج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` لاسترداد الاحتمالات:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
@ -306,8 +231,6 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
### حفظ النموذج
<frameworkcontent>
<pt>
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`PreTrainedModel.save_pretrained`]:
```py
@ -321,28 +244,9 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`TFPreTrainedModel.save_pretrained`]:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
@ -350,17 +254,6 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>
## إنشاء نماذج مخصصة
@ -375,8 +268,6 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`AutoModel.from_config`]:
```py
@ -384,17 +275,6 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
قم بإنشاء نموذج من تكوينك المخصص باستخدام [`TFAutoModel.from_config`]:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
الق نظرة على دليل [إنشاء بنية مخصصة](./create_a_model) لمزيد من المعلومات حول بناء التكوينات المخصصة.

View File

@ -76,8 +76,6 @@ pip install -r requirements.txt
## تشغيل نص برمجي
<frameworkcontent>
<pt>
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets).
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) على بنية تدعم الملخص.
@ -95,31 +93,8 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets/).
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام Keras على بنية تدعم الملخص.
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
- يتطلب نموذج T5 ماعمل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## التدريب الموزع والدقة المختلطة
@ -141,7 +116,6 @@ torchrun \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -149,8 +123,6 @@ torchrun \
## تشغيل نص برمجي على وحدة معالجة الدقة الفائقة (TPU)
<frameworkcontent>
<pt>
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. يدعم PyTorch وحدات معالجة الدقة الفائقة (TPUs) مع [XLA](https://www.tensorflow.org/xla) مجمع الدقة الفائقة للتعلم العميق (راجع [هنا](https://github.com/pytorch/xla/blob/master/README.md) لمزيد من التفاصيل). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتشغيل نص `xla_spawn.py` البرمجي واستخدم معامل `num_cores` لتعيين عدد وحدات معالجة الدقة الفائقة (TPU) التي تريد استخدامها.
@ -166,28 +138,8 @@ python xla_spawn.py --num_cores 8 \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. تستخدم نصوص TensorFlow البرمجية استراتيجية [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) للتدريب على وحدات معالجة الدقة الفائقة (TPUs). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتمرير اسم مورد وحدة معالجة الدقة الفائقة (TPU) إلى حجة `tpu`.
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## تشغيل نص برمجي باستخدام 🤗 Accelerate
@ -242,7 +194,6 @@ python examples/pytorch/summarization/run_summarization.py \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
@ -270,7 +221,6 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -284,8 +234,6 @@ examples/pytorch/summarization/run_summarization.py -h
خيار آخر مفيد لتمكينه هو استئناف التدريب من نقطة تفتيش سابقة. سيضمن ذلك أنك تستطيع الاستمرار من حيث توقفت دون البدء من جديد إذا تم مقاطعة تدريبك. هناك طريقتان لاستئناف التدريب من نقطة تفتيش.
تستخدم الطريقة الأولى المعلمة `output_dir previous_output_dir` لاستئناف التدريب من أحدث نقطة تفتيش مخزنة في `output_dir`. في هذه الحالة، يجب عليك إزالة `overwrite_output_dir`:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
@ -297,24 +245,6 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
تستخدم الطريقة الثانية معلمة `resume_from_checkpoint path_to_specific_checkpoint` لاستئناف التدريب من مجلد نقطة تفتيش محددة.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
@ -346,6 +276,5 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```

View File

@ -182,8 +182,6 @@ pip install transformers datasets evaluate
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأفضل أن تقوم بـ *الحشو الديناميكي* للجمل إلى الطول الأطول في الدفعة أثناء التجميع، بدلاً من حشو كامل المجموعة من البيانات إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
```py
@ -193,23 +191,9 @@ pip install transformers datasets evaluate
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
```
</pt>
<tf>
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
```py
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -267,75 +251,6 @@ Perplexity: 49.61
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتدريب نموذج باستخدام Keras، اطلع على [البرنامج التعليمي الأساسي](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لتدريب نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معاملات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل DistilGPT2 باستخدام [`TFAutoModelForCausalLM`]:
```py
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
```
حول مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة الافتراضية، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # لا يوجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومجمّع البيانات في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_clm-model",
... tokenizer=tokenizer,
... )
```
أخيراً، أنت جاهز لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العصور، والتعليقات الخاصة بك لتدريب النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -365,8 +280,6 @@ Perplexity: 49.61
[{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
```
<frameworkcontent>
<pt>
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
```py
@ -392,31 +305,3 @@ Perplexity: 49.61
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
```
</pt>
<tf>
قم بتقسيم النص وإرجاع `input_ids` كـ TensorFlow tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model")
>>> inputs = tokenizer(prompt, return_tensors="tf").input_ids
```
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الملخص. للمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والبارامترات للتحكم في التوليد، راجع صفحة [استراتيجيات توليد النص](../generation_strategies).
```py
>>> from transformers import TFAutoModelForCausalLM
>>> model = TFAutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model")
>>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
```
فك ترميز الرموز المولدة مرة أخرى إلى نص:
```py
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']
```
</tf>
</frameworkcontent>

View File

@ -176,8 +176,6 @@ pip install transformers datasets evaluate
الآن، قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأكثر كفاءة أن تقوم بـ *الحشو الديناميكي* ليصل طولها إلى أطول جملة في الدفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
@ -187,23 +185,9 @@ pip install transformers datasets evaluate
>>> tokenizer.pad_token = tokenizer.eos_token
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)
```
</pt>
<tf>
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
```py
>>> from transformers import DataCollatorForLanguageModeling
>>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -263,75 +247,6 @@ Perplexity: 8.76
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لتعديل نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل DistilRoBERTa باستخدام [`TFAutoModelForMaskedLM`]:
```py
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base")
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... lm_dataset["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... lm_dataset["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers لديها جميعها دالة خسارة افتراضية ذات صلة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة ما لم تكن تريد ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # لا توجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالج الرموز في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_eli5_mlm_model",
... tokenizer=tokenizer,
... )
```
أخيراً، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد العصور، والتعليقات الخاصة بك لتعديل النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائياً إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -372,8 +287,6 @@ Perplexity: 8.76
'sequence': 'The Milky Way is a small galaxy.'}]
```
<frameworkcontent>
<pt>
قم بتجزئة النص وإرجاع `input_ids` كمتجهات PyTorch. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
```py
@ -405,38 +318,3 @@ The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.
```
</pt>
<tf>
قم بتقسيم النص إلى رموز وإرجاع `input_ids` كـ TensorFlow tensors. ستحتاج أيضًا إلى تحديد موضع رمز `<mask>`:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_mlm_model")
>>> inputs = tokenizer(text, return_tensors="tf")
>>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1]
```
قم بتمرير المدخلات إلى النموذج وإرجاع `logits` للرمز المقنع:
```py
>>> from transformers import TFAutoModelForMaskedLM
>>> model = TFAutoModelForMaskedLM.from_pretrained("username/my_awesome_eli5_mlm_model")
>>> logits = model(**inputs).logits
>>> mask_token_logits = logits[0, mask_token_index, :]
```
ثم قم بإرجاع الرموز الثلاثة المقنعة ذات الاحتمالية الأعلى وطباعتها:
```py
>>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy()
>>> for token in top_3_tokens:
... print(text.replace(tokenizer.mask_token, tokenizer.decode([token])))
The Milky Way is a spiral galaxy.
The Milky Way is a massive galaxy.
The Milky Way is a small galaxy.
```
</tf>
</frameworkcontent>

View File

@ -116,8 +116,6 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
يقوم `DataCollatorForMultipleChoice` بتجميع جميع مدخلات النموذج، ويطبق الحشو، ثم يعيد تجميع النتائج في شكلها الأصلي:
<frameworkcontent>
<pt>
```py
>>> from dataclasses import dataclass
@ -158,50 +156,6 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
... batch["labels"] = torch.tensor(labels, dtype=torch.int64)
... return batch
```
</pt>
<tf>
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import tensorflow as tf
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Data collator that will dynamically pad the inputs for multiple choice received.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="tf",
... )
... batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
... batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
... return batch
```
</tf>
</frameworkcontent>
## التقييم (Evaluate)
@ -228,8 +182,6 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -283,93 +235,6 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فراجع الدرس الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 2
>>> total_train_steps = (len(tokenized_swag["train"]) // batch_size) * num_train_epochs
>>> optimizer, schedule = create_optimizer(init_lr=5e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
ثم يمكنك تحميل BERT باستخدام [`TFAutoModelForMultipleChoice`]:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("google-bert/bert-base-uncased")
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_swag["train"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_swag["validation"],
... shuffle=False,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة مناسبة للمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> model.compile(optimizer=optimizer) # لا توجد وسيطة خسارة!
```
الخطوتان الأخيرتان قبل بدء التدريب هما: حساب دقة التنبؤات، وتوفير طريقة لرفع النموذج إلى Hub. ويمكن تحقيق ذلك باستخدام [استدعاءات Keras](../main_classes/keras_callbacks)
مرر دالتك `compute_metrics` إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك ومعالجك في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_model",
... tokenizer=tokenizer,
... )
```
ثم قم بتضمين الاستدعاءات معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! استدعِ[`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب والاستدعاءات لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=2, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -390,8 +255,6 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
>>> candidate2 = "The law applies to baguettes."
```
<frameworkcontent>
<pt>
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد تنسورات PyTorch. يجب عليك أيضًا إنشاء بعض `العلامات`:
```py
@ -419,34 +282,3 @@ tokenized_swag = swag.map(preprocess_function, batched=True)
>>> predicted_class
0
```
</pt>
<tf>
قم بتحليل كل مطالبة وزوج إجابة مرشح وأعد موترات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_swag_model")
>>> inputs = tokenizer([[prompt, candidate1], [prompt, candidate2]], return_tensors="tf", padding=True)
```
مرر مدخلاتك إلى النموذج وأعد القيم logits:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("username/my_awesome_swag_model")
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in inputs.items()}
>>> outputs = model(inputs)
>>> logits = outputs.logits
```
استخرج الفئة ذات الاحتمالية الأكبر:
```py
>>> predicted_class = int(tf.math.argmax(logits, axis=-1)[0])
>>> predicted_class
0
```
</tf>
</frameworkcontent>

View File

@ -167,29 +167,15 @@ pip install transformers datasets evaluate
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DefaultDataCollator`]. بخلاف مجمّعات البيانات الأخرى في 🤗 Transformers، لا يطبق [`DefaultDataCollator`] أي معالجة مسبقة إضافية مثل الحشو.
<frameworkcontent>
<pt>
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator()
```
</pt>
<tf>
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
```
</tf>
</frameworkcontent>
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -240,82 +226,6 @@ pip install transformers datasets evaluate
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن، وجدول معدل التعلم، وبعض المعاملات الفائقة للتدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_epochs = 2
>>> total_train_steps = (len(tokenized_squad["train"]) // batch_size) * num_epochs
>>> optimizer, schedule = create_optimizer(
... init_lr=2e-5,
... num_warmup_steps=0,
... num_train_steps=total_train_steps,
... )
```
ثم يمكنك تحميل DistilBERT باستخدام [`TFAutoModelForQuestionAnswering`]:
```py
>>> from transformers import TFAutoModelForQuestionAnswering
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_squad["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_squad["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
```
آخر شيء يجب إعداده قبل بدء التدريب هو توفير طريقة لدفع نموذجك إلى Hub. يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالجك المعجمي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> callback = PushToHubCallback(
... output_dir="my_awesome_qa_model",
... tokenizer=tokenizer,
... )
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العهود، ومعاودة الاتصال الخاصة بك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=[callback])
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -357,8 +267,6 @@ pip install transformers datasets evaluate
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسّم النص وأرجع تنسورات PyTorch:
@ -394,39 +302,3 @@ pip install transformers datasets evaluate
>>> tokenizer.decode(predict_answer_tokens)
'176 billion parameters and can generate text in 46 languages natural languages and 13'
```
</pt>
<tf>
قم بتحليل النص المعجمي وأعد موترات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_qa_model")
>>> inputs = tokenizer(question, context, return_tensors="tf")
```
مرر مدخلاتك إلى النموذج وأعد `logits`:
```py
>>> from transformers import TFAutoModelForQuestionAnswering
>>> model = TFAutoModelForQuestionAnswering.from_pretrained("my_awesome_qa_model")
>>> outputs = model(**inputs)
```
احصل على أعلى احتمال من مخرجات النموذج لموضعي البداية والنهاية:
```py
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
```
استخلاص الإجابة من الرموز المتوقعة:
```py
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'176 billion parameters and can generate text in 46 languages natural languages and 13'
```
</tf>
</frameworkcontent>

View File

@ -92,24 +92,12 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`]. الأكثر كفاءة هو استخدام الحشو الديناميكي لجعل الجمل متساوية في الطول داخل كل دفعة، بدلًا من حشو كامل البيانات إلى الحد الأقصى للطول.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم(Evaluate)
@ -143,8 +131,6 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
>>> label2id = {"NEGATIVE": 0, "POSITIVE": 1}
```
<frameworkcontent>
<pt>
<Tip>
إذا لم تكن على دراية بضبط نموذج دقيق باستخدام [`Trainer`], فالق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
@ -205,98 +191,6 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بضبط نموذج باستخدام Keras، قم بالاطلاع على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة المحسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> import tensorflow as tf
>>> batch_size = 16
>>> num_epochs = 5
>>> batches_per_epoch = len(tokenized_imdb["train"]) // batch_size
>>> total_train_steps = int(batches_per_epoch * num_epochs)
>>> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForSequenceClassification`] بالإضافة إلى عدد التصنيفات المتوقعة، وتعيينات التسميات:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(
... "distilbert/distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id
... )
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_imdb["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_imdb["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب الدقة من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
قم بتمرير دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك والمجزئ اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_model",
... tokenizer=tokenizer,
... )
```
ثم اجمع الاستدعاءات معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد الحقبات، واستدعاءاتك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -328,8 +222,6 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قم يتجزئة النص وإرجاع تنسورات PyTorch:
```py
@ -356,32 +248,3 @@ tokenized_imdb = imdb.map(preprocess_function, batched=True)
>>> model.config.id2label[predicted_class_id]
'POSITIVE'
```
</pt>
<tf>
قم بتحليل النص وإرجاع تنسيقات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_model")
>>> inputs = tokenizer(text, return_tensors="tf")
```
قم بتمرير مدخلاتك إلى النموذج وإرجاع `logits`:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_model")
>>> logits = model(**inputs).logits
```
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم `id2label` لتحويلها إلى تصنيف نصي:
```py
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'POSITIVE'
```
</tf>
</frameworkcontent>

View File

@ -118,24 +118,12 @@ pip install transformers datasets evaluate rouge_score
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء عملية التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم (Evaluate)
@ -170,8 +158,6 @@ pip install transformers datasets evaluate rouge_score
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -226,91 +212,6 @@ pip install transformers datasets evaluate rouge_score
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل التعلم وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer, AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل T5 باستخدام [`TFAutoModelForSeq2SeqLM`]:
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_billsum["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... tokenized_billsum["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة افتراضيًا، لذلك لست بحاجة إلى تحديد واحدة ما لم تكن ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب درجة ROUGE من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_test_set)
```
حدد مكان دفع نموذجك ومُحلِّلك اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_billsum_model",
... tokenizer=tokenizer,
... )
```
ثم اجمع استدعاءاتك معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -341,8 +242,6 @@ pip install transformers datasets evaluate rouge_score
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسم النص وإرجع `input_ids` كتنسورات PyTorch:
```py
@ -367,31 +266,3 @@ pip install transformers datasets evaluate rouge_score
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
```
</pt>
<tf>
قسم النص وإرجع `input_ids` كتنسورات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_billsum_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء التلخيص. لمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والمعلمات للتحكم في التوليد، راجع واجهة برمجة تطبيقات [توليد النص](../main_classes/text_generation).
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("username/my_awesome_billsum_model")
>>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
```
فك تشفير معرفات الرموز المولدة مرة أخرى إلى نص:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in american history. it will ask the ultra-wealthy and corporations to pay their fair share.'
```
</tf>
</frameworkcontent>

View File

@ -151,22 +151,11 @@ pip install transformers datasets evaluate seqeval
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`].من الأفضل استخدام *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بالكامل إلى الطول الأقصى.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم(Evaluate)
@ -246,8 +235,6 @@ pip install transformers datasets evaluate seqeval
... }
```
<frameworkcontent>
<pt>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام [`Trainer`], ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-with-pytorch-trainer)!
@ -302,101 +289,6 @@ pip install transformers datasets evaluate seqeval
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن على دراية بتعديل نموذج باستخدام Keras، ألق نظرة على الدليل التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
للتعديل على نموذج في TensorFlow، ابدأ بإعداد دالة محسن، وجدول معدل التعلم، وبعض معلمات التدريب:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 3
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=2e-5,
... num_train_steps=num_train_steps,
... weight_decay_rate=0.01,
... num_warmup_steps=0,
... )
```
ثم يمكنك تحميل DistilBERT مع [`TFAutoModelForTokenClassification`] إلى جانب عدد التسميات المتوقعة، وتخطيطات التسميات:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained(
... "distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
... )
```
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` مع [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_wnut["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = model.prepare_tf_dataset(
... tokenized_wnut["validation"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
هيّئ النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers تتضمن دالة خسارة افتراضية مرتبطة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب درجات seqeval من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
حدد مكان دفع نموذجك والمحلل اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_wnut_model",
... tokenizer=tokenizer,
... )
```
ثم جمّع callbacks الخاصة بك معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز الآن لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع بيانات التدريب والتحقق، وعدد الحقبات، وcallbacks لتعديل النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -457,8 +349,6 @@ pip install transformers datasets evaluate seqeval
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قسّم النص إلى رموز وأرجع المُوتّرات بلغة PyTorch:
```py
@ -502,49 +392,3 @@ pip install transformers datasets evaluate seqeval
'O',
'O']
```
</pt>
<tf>
قسّم النص إلى رموز وأرجع المُوتّرات ب TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> inputs = tokenizer(text, return_tensors="tf")
```
مرر مدخلاتك إلى النموذج واحصل على `logits`:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
>>> logits = model(**inputs).logits
```
استخرج الفئة ذات الاحتمالية الأعلى، واستخدم جدول `id2label` الخاصة بالنموذج لتحويلها إلى تسمية نصية:
```py
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_token_class
['O',
'O',
'B-location',
'I-location',
'B-group',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'O',
'B-location',
'B-location',
'O',
'O']
```
</tf>
</frameworkcontent>

View File

@ -113,24 +113,12 @@ pip install transformers datasets evaluate sacrebleu
الآن أنشئ دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. من الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
```
</tf>
</frameworkcontent>
## التقييم (Evaluate)
@ -177,8 +165,6 @@ pip install transformers datasets evaluate sacrebleu
## التدريب (Train)
<frameworkcontent>
<pt>
<Tip>
@ -233,91 +219,6 @@ pip install transformers datasets evaluate sacrebleu
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
إذا لم تكن معتادًا على ضبط نموذج باستخدام Keras، فألق نظرة على البرنامج التعليمي الأساسي [هنا](../training#train-a-tensorflow-model-with-keras)!
</Tip>
لضبط نموذج في TensorFlow، ابدأ بإعداد دالة مُحسِّن وجدول معدل تعلم وبعض المعلمات الفائقة للتدريب:
```py
>>> from transformers import AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
ثم يمكنك تحميل T5 باستخدام [`TFAutoModelForSeq2SeqLM`]:
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
```
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_books["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... tokenized_books["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer) # No loss argument!
```
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب مقياس SacreBLEU من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_test_set)
```
حدد مكان دفع نموذجك ومعالجك اللغوي في [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_opus_books_model",
... tokenizer=tokenizer,
... )
```
ثم اجمع استدعاءاتك معًا:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
```
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -351,8 +252,6 @@ pip install transformers datasets evaluate sacrebleu
يمكنك أيضًا تكرار نتائج `pipeline` يدويًا إذا أردت:
<frameworkcontent>
<pt>
قم بتحويل النص إلى رموز وإرجاع `input_ids` كموترات PyTorch:
```py
@ -377,31 +276,3 @@ pip install transformers datasets evaluate sacrebleu
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lignées partagent des ressources avec des bactéries enfixant l'azote.'
```
</pt>
<tf>
قم بتحويل النص إلى رموز وإرجاع `input_ids` كموترات TensorFlow:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الترجمة. لمزيد من التفاصيل حول استراتيجيات توليد النصوص المختلفة والمعلمات للتحكم في التوليد، تحقق من واجهة برمجة تطبيقات [توليد النصوص](../main_classes/text_generation).
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("username/my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```
فك تشفير معرفات الرموز المولدة مرة أخرى إلى نص:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.'
```
</tf>
</frameworkcontent>

View File

@ -1,40 +0,0 @@
# التصدير إلى TFLite
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) هو إطار عمل خفيف الوزن لنشر نماذج التعلم الآلي على الأجهزة المحدودة الموارد، مثل الهواتف المحمولة، والأنظمة المدمجة، وأجهزة إنترنت الأشياء (IoT). تم تصميم TFLite لتشغيل النماذج وتحسينها بكفاءة على هذه الأجهزة ذات الطاقة الحاسوبية والذاكرة واستهلاك الطاقة المحدودة.
يُمثَّل نموذج TensorFlow Lite بتنسيق محمول فعال خاص يُعرَّف بامتداد الملف `.tflite`.
🤗 Optimum يقدم وظيفة لتصدير نماذج 🤗 Transformers إلى TFLite من خلال الوحدة النمطية `exporters.tflite`. بالنسبة لقائمة هندسات النماذج المدعومة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/tflite/overview).
لتصدير نموذج إلى TFLite، قم بتثبيت متطلبات البرنامج المطلوبة:
```bash
pip install optimum[exporters-tf]
```
للاطلاع على جميع المغامﻻت المتاحة، راجع [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model)، أو عرض المساعدة في سطر الأوامر:
```bash
optimum-cli export tflite --help
```
لتصدير نسخة النموذج ل 🤗 Hub، على سبيل المثال، `google-bert/bert-base-uncased`، قم بتشغيل الأمر التالي:
```bash
optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/
```
ستظهر لك السجلات التي تُبيّن التقدم وموقع حفظ ملف `model.tflite` الناتج، كما في المثال التالي:
```bash
Validating TFLite model...
-[] TFLite model output names match reference model (logits)
- Validating TFLite Model output "logits":
-[] (1, 128, 30522) matches (1, 128, 30522)
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
- logits: max diff = 5.817413330078125e-05.
The exported model was saved at: bert_tflite
```
يُبيّن المثال أعلاه كيفية تصدير نسخة من النموذج ل 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج المجزء اللغوى في نفس المسار (`local_path`). عند استخدام CLI، قم بتمرير `local_path` إلى معامل `model` بدلاً من اسم النسخة على 🤗 Hub.

View File

@ -611,7 +611,6 @@ accelerate launch \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
يمكنك أيضًا تحديد المعلمات من ملف `config_file.yaml` مباشرة في سطر الأوامر:
@ -634,7 +633,6 @@ accelerate launch --num_processes=2 \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
اطلع على برنامج تعليمي [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) لمعرفة المزيد حول `accelerate_launch` والتكوينات المخصصة.

View File

@ -58,8 +58,6 @@
في شريط التنقل الأيمن للقفز إلى الإطار الذي تريده - وإذا كنت تريد إخفاء كل المحتوى لإطار معين،
فاستخدم الزر في الركن العلوي الأيمن من كتلة الإطار!
<frameworkcontent>
<pt>
<Youtube id="nvBXf7s7vTI"/>
## التدريب باستخدام PyTorch Trainer
@ -139,124 +137,10 @@
```py
>>> trainer.train()
```
</pt>
<tf>
<a id='keras'></a>
<Youtube id="rnTGBy2ax1c"/>
## تدريب نموذج TensorFlow باستخدام Keras
يمكنك أيضًا تدريب نماذج 🤗 Transformers في TensorFlow باستخدام واجهة برمجة تطبيقات Keras!
### تحميل البيانات لـ Keras
عندما تريد تدريب نموذج 🤗 Transformers باستخدام واجهة برمجة تطبيقات Keras، فأنت بحاجة إلى تحويل مجموعة البيانات الخاصة بك إلى تنسيق يفهمه
Keras. إذا كانت مجموعة البيانات الخاصة بك صغيرة، فيمكنك ببساطة تحويلها بالكامل إلى مصفوفات NumPy وإرسالها إلى Keras.
دعونا نجرب ذلك أولاً قبل أن نقوم بأي شيء أكثر تعقيدًا.
أولاً، قم بتحميل مجموعة بيانات. سنستخدم مجموعة بيانات CoLA من معيار [GLUE benchmark](https://huggingface.co/datasets/glue
نظرًا لأنه مهمة تصنيف نص ثنائي بسيطة، وسنأخذ فقط قسم التدريب الآن.
```py
from datasets import load_dataset
dataset = load_dataset("glue"، "cola")
dataset = dataset ["train"] # خذ فقط قسم التدريب الآن
```
بعد ذلك، قم بتحميل أداة المُجزّئ اللغوي وقم بترميز البيانات كمصفوفات NumPy. لاحظ أن التصنيفات هي بالفعل قائمة من 0 و 1،
لذا يمكننا ببساطة تحويل ذلك مباشرة إلى مصفوفة NumPy بدون ترميز!
```py
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
```
أخيرًا، قم بتحميل وتجميع وتناسب النموذج. لاحظ أن نماذج Transformers تحتوي جميعها على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك:
```py
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
# تحميل وتجميع النموذج الخاص بنا
model = TFAutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased")
# معدلات التعلم المنخفضة أفضل غالبًا لضبط النماذج الدقيقة
model.compile(optimizer=Adam(3e-5)) # لا توجد دالة خسارة!
model.fit(tokenized_data, labels)
```
<Tip>
أنت لست مضطرًا لتمرير دالة خسارة إلى نماذجك عند تجميعها! تختار نماذج Hugging Face تلقائيًا
دالة خسارة مناسبة لمهمتها وهندسة نموذجها إذا تُركت هذه الحجة فارغة. يمكنك دائمًا
تجاوز ذلك عن طريق تحديد دالة خسارة بنفسك إذا كنت تريد ذلك!
</Tip>
يعمل هذا النهج بشكل رائع لمجموعات البيانات الصغيرة، ولكن بالنسبة لمجموعات البيانات الأكبر، فقد تجد أنه يصبح مشكلة. لماذا؟
لأن المصفوفة المرمزة والتصنيفات يجب أن يتم تحميلها بالكامل في الذاكرة، ولأن NumPy لا يتعامل مع
المصفوفات"غير المنتظمة"، لذا حشو كل عينة إلى طول أطول عينة في مجموعة البيانات بأكملها. سيؤدي ذلك إلى زيادة حجم المصفوفة لديك، وستبطئ الرموز الزائده من عملية التدريب أيضًا!
### تحميل البيانات كـ tf.data.Dataset
إذا كنت تريد تجنب إبطاء التدريب، فيمكنك تحميل بياناتك كـ `tf.data.Dataset` بدلاً من ذلك. على الرغم من أنه يمكنك كتابة خط أنابيب `tf.data` الخاص بك إذا كنت تريد، إلا أن لدينا طريقتين مختصرتين للقيام بذلك:
- [`~TFPreTrainedModel.prepare_tf_dataset`]: هذه هي الطريقة التي نوصي بها في معظم الحالات. نظرًا لأنه طريقة
على نموذجك، فيمكنه فحص النموذج لتحديد الأعمدة القابلة للاستخدام كمدخلات للنموذج تلقائيًا،
واستبعاد الأعمدة الأخرى لإنشاء مجموعة بيانات أبسط وأكثر كفاءة.
- [`~datasets.Dataset.to_tf_dataset`]: هذه الطريقة أكثر أساسية، وهي مفيدة عندما تريد التحكم بدقة في كيفية
إنشاء مجموعة البيانات الخاصة بك، عن طريق تحديد أعمدة `columns` و `label_cols` المحددة التي سيتم تضمينها.
قبل أن تتمكن من استخدام [`~TFPreTrainedModel.prepare_tf_dataset`]، ستحتاج إلى إضافة مخرجات المُجزئ إلى مجموعة البيانات الخاصة بك كأعمدة، كما هو موضح في
عينة التعليمات البرمجية التالية:
```py
def tokenize_dataset (data):
# ستتم إضافة مفاتيح القاموس الذي تمت إعادته كأعمدة إلى مجموعة البيانات
return tokenizer(data["text"])
dataset = dataset.map(tokenize_dataset)
```
تذكر أن مجموعات بيانات Hugging Face يتم تخزينها على القرص بشكل افتراضي، لذا فلن يؤدي ذلك إلى تضخيم استخدام الذاكرة لديك! بمجرد إضافة الأعمدة، يمكنك بث الدفعات من مجموعة البيانات وإضافة الترميز إلى كل دفعة، مما يقلل بشكل كبير من عدد رموز الترقيم مقارنة بترميز مجموعة البيانات بأكملها.
```py
>>> tf_dataset = model.prepare_tf_dataset(dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer)
```
لاحظ أنه في عينة التعليمات البرمجية أعلاه، تحتاج إلى تمرير المُجزئ اللغوي إلى `prepare_tf_dataset` حتى تتمكن من حشو الدُفعات بشكل صحيح أثناء تحميلها.
إذا كانت جميع العينات في مجموعة البيانات الخاصة بك بنفس الطول ولم يكن الترميز ضروريًا، فيمكنك تخطي هذا المعامل.
إذا كنت بحاجة إلى القيام بشيء أكثر تعقيدًا من مجرد ترميز العينات (على سبيل المثال، إفساد الرموز للنمذجة اللغوية المُقنعة)،
فيمكنك استخدام معامل `collate_fn` بدلاً من ذلك لتمرير دالة يتم استدعاؤها لتحويل
قائمة العينات إلى دفعة وتطبيق أي معالجة مسبقة تريدها. راجع أمثلةنا [examples](https://github.com/huggingface/transformers/tree/main/examples) أو
[دفاتر الملاحظات](https://huggingface.co/docs/transformers/notebooks) لرؤية هذا النهج في العمل.
بمجرد إنشاء `tf.data.Dataset`، يمكنك تجميع النموذج وتناسبه كما هو الحال من قبل:
```py
model.compile(optimizer=Adam(3e-5)) # No loss argument!
model.fit(tf_dataset)
```
</tf>
</frameworkcontent>
<a id='pytorch_native'></a>
## تدريب في PyTorch الأصلي
<frameworkcontent>
<pt>
<Youtube id="Dh9CL8fyG80"/>
[`Trainer`] يهتم بحلقة التدريب ويسمح لك بضبط نموذج في سطر واحد من التعليمات البرمجية. بالنسبة للمستخدمين الذين يفضلون كتابة حلقة التدريب الخاصة بهم، يمكنك أيضًا ضبط نموذج 🤗 Transformers في PyTorch الأصلي.
@ -397,8 +281,6 @@ torch.cuda.empty_cache()
>>> metric.compute()
```
</pt>
</frameworkcontent>
<a id='additional-resources'></a>
@ -409,4 +291,4 @@ torch.cuda.empty_cache()
- [🤗 أمثلة المحولات](https://github.com/huggingface/transformers/tree/main/examples) تتضمن
النصوص البرمجية لتدريب مهام NLP الشائعة في PyTorch وTensorFlow.
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.

View File

@ -53,7 +53,7 @@ Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek ei
### Überblick über die Modelle
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
[`PreTrainedModel`] und [`PreTrainedConfig`]. Als Beispiel werden wir
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
Schauen wir uns das mal an:
@ -81,10 +81,10 @@ model.config # model has access to its config
```
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
[`PreTrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
[`~PreTrainedModel.save_pretrained`] wird automatisch
[`~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
[`~PreTrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
### Code-Stil

View File

@ -81,8 +81,6 @@ Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
## AutoModel
<frameworkcontent>
<pt>
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
```py
@ -108,24 +106,3 @@ TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Arc
</Tip>
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</pt>
<tf>
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</tf>
</frameworkcontent>

View File

@ -78,10 +78,10 @@ Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere
Zunächst müssen Sie das Modell laden.
```py
>>> from transformers import AutoModelForCausalLM
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -119,12 +119,12 @@ Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zun
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```

View File

@ -79,43 +79,15 @@ Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
<frameworkcontent>
<pt>
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## Ein Modell während des Trainings hochladen
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
@ -141,29 +113,6 @@ Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
- Ein Ausgabeverzeichnis für Ihr Modell.
- Einen Tokenizer.
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## Verwenden Sie die Funktion `push_to_hub`.
@ -229,4 +178,4 @@ Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verz
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).

View File

@ -153,8 +153,6 @@ Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurüc
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
@ -174,32 +172,6 @@ Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
## Audio

Some files were not shown because too many files have changed in this diff Show More