Compare commits

..

252 Commits

Author SHA1 Message Date
1ae0cbde0b draft, wip, but that's the idea 2025-07-22 16:22:25 +00:00
c338fd43b0 [cache refactor] Move all the caching logic to a per-layer approach (#39106)
* Squash for refactor: Replace monolithic cache classes with modular LayeredCache (#38077)

- Introduces CacheLayer and Cache base classes
- Ports Static, Dynamic, Offloaded, Quantized, Hybrid, etc. to use layers
- Implements method/attr dispatch across layers to reduce boilerplate
- Adds CacheProcessor hooks for offloading, quantization, etc.
- Updates and passes tests

* fix quantized, add tests

* remove CacheProcessorList

* raushan review, arthur review

* joao review: minor things

* remove cache configs, make CacheLayer a mixin (joaos review)

* back to storage inside Cache()

* remove cachebase for decorator

* no more __getattr__

* fix tests

* joaos review except docs

* fix ast deprecations for python 3.14: replace node.n by node.value and use `ast.Constant`

More verbose exceptions in `fix_docstring` on docstring formatting issues.

* Revert "back to storage inside Cache()"

This reverts commit 27916bc2737806bf849ce2148cb1e66d59573913.

* cyril review

* simplify cache export

* fix lfm2 cache

* HybridChunked to layer

* BC proxy object for cache.key_cache[i]=...

* reorder classes

* bfff come on LFM2

* better tests for hybrid and hybridChunked

* complete coverage for hybrid chunked caches (prefill chunking)

* reimplementing HybridChunked

* cyril review

* fix ci

* docs for cache refactor

* docs

* oopsie

* oopsie

* fix after merge

* cyril review

* arthur review

* opsie

* fix lfm2

* opsie2
2025-07-22 16:10:25 +02:00
b16688e96a General weight initialization scheme (#39579)
* general + modulars from llama

* all modular models

* style and fix musicgen

* fix

* Update configuration_musicgen.py

* Update modeling_utils.py
2025-07-22 16:04:20 +02:00
015b62bf3e Add AMD GPU expectations for LLaVA tests (#39486)
* Add AMD GPU expectation to llava tests

* FMT

* Remove debug print

* Address review  comments
2025-07-22 14:01:54 +00:00
efceeaf267 Kernels flash attn (#39474)
* use partial to wrap around `transformers` utils!

* try to refactor?

* revert one wrong change

* just a nit

* push

* reverter watever was wrong!

* some nits

* fixes when there is no attention mask

* bring the licence back

* some fixes

* nit

* style

* remove prints

* correct dtype

* fa flags for testing

* update

* use paged attention if requested!

* updates

* a clone was needed, not sure why

* automatically create cu seq lens when input is flash, this at least makes sure layers don't re-compute

* simplify and improve?

* flash attention is kinda broken on recent cuda version so allow the opportunity to use something else

* fix!

* protect kernels import

* update

* properly parse generation config being passed

* revert and update

* add two tests

* some fixes

* fix test FA2

* takes comment into account

* fixup

* revert changes

* revert the clone, it is only needed because the metal kernel is not doing it?

* [docs] update attention implementation and cache docs (#39547)

* update docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* applu suggestions

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix mps on our side for now

* Update src/transformers/integrations/flash_paged.py

* no qa

---------

Co-authored-by: Vasqu <antonprogamer@gmail.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-22 15:41:06 +02:00
b62557e712 Add AMD expectations to Mistral3 tests (#39481)
Add AMD expectations to mistral3 tests
2025-07-22 15:40:16 +02:00
1806583390 [docs] Create page on inference servers with transformers backend (#39550)
* draft docs on inference servers

* Update docs/source/en/_toctree.yml

Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

* update

* dic build failed

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/transformers_as_backend.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply last suggestions

---------

Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-22 15:31:10 +02:00
cd98c1fee3 [docs] update attention implementation and cache docs (#39547)
* update docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* applu suggestions

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-22 15:06:43 +02:00
ef99537f37 Add AMD test expectations to DETR model (#39539)
* Add AMD test expectations to DETR model

* Fix baseline expectation

* Address review comments

* Make formatting a bit more consistent
2025-07-22 12:07:10 +00:00
30567c28e8 [timm_wrapper] add support for gradient checkpointing (#39287)
* feat: add support for gradient checkpointing in TimmWrapperModel and TimmWrapperForImageClassification

* ruff fix

* refactor + add test for not supported model

* ruff

* Update src/transformers/models/timm_wrapper/modeling_timm_wrapper.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/timm_wrapper/modeling_timm_wrapper.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/timm_wrapper/modeling_timm_wrapper.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/timm_wrapper/modeling_timm_wrapper.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-07-22 11:07:52 +00:00
a44dcbe513 Fixes needed for n-d parallelism and TP (#39562)
Handle non-DTensors cases in TP Layers

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-07-22 10:24:59 +00:00
0cae633ce1 Bump AMD container for 2.7.1 PyTorch (#39458)
* Bump AMD container for 2.7.1 PyTorch

* Forgot to update pinned packages
2025-07-22 12:11:38 +02:00
a88ea9cbc8 Add EfficientLoFTR model (#36355)
* initial commit

* Apply suggestions from code review

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix: various typos, typehints, refactors from suggestions

* fix: fine_matching method

* Added EfficientLoFTRModel and AutoModelForKeypointMatching class

* fix: got rid of compilation breaking instructions

* docs: added todo for plot

* fix: used correct hub repo

* docs: added comments

* fix: run modular

* doc: added PyTorch badge

* fix: model repo typo in config

* fix: make modular

* fix: removed mask values from outputs

* feat: added plot_keypoint_matching to EfficientLoFTRImageProcessor

* feat: added SuperGlueForKeypointMatching to AutoModelForKeypointMatching list

* fix: reformat

* refactor: renamed aggregation_sizes config parameter into q, kv aggregation kernel size and stride

* doc: added q, kv aggregation kernel size and stride doc to config

* refactor: converted efficientloftr implementation from modular to copied from mechanism

* tests: overwrote batching_equivalence for "keypoints" specific tests

* fix: changed EfficientLoFTRConfig import in test_modeling_rope_utils

* fix: make fix-copies

* fix: make style

* fix: update rope function to make meta tests pass

* fix: rename plot_keypoint_matching to visualize_output for clarity

* refactor: optimize image pair processing by removing redundant target size calculations

* feat: add EfficientLoFTRImageProcessor to image processor mapping

* refactor: removed logger and updated attention forward

* refactor: added auto_docstring and can_return_tuple decorators

* refactor: update type imports

* refactor: update type hints from List/Dict to list/dict for consistency

* refactor: update MODEL_MAPPING_NAMES and __all__ to include LightGlue and AutoModelForKeypointMatching

* fix: change type hint for size parameter in EfficientLoFTRImageProcessor to Optional[dict]

* fix typing

* fix some typing issues

* nit

* a few more typehint fixes

* Remove output_attentions and output_hidden_states from modeling code

* else -> elif to support efficientloftr

* nit

* tests: added EfficientLoFTR image processor tests

* refactor: reorder functions

* chore: update copyright year in EfficientLoFTR test file

* Use default rope

* Add docs

* Update visualization method

* fix doc order

* remove 2d rope test

* Update src/transformers/models/efficientloftr/modeling_efficientloftr.py

* fix docs

* Update src/transformers/models/efficientloftr/image_processing_efficientloftr.py

* update gradient

* refactor: removed unused codepath

* Add motivation to keep postprocessing in modeling code

* refactor: removed unnecessary variable declarations

* docs: use load_image from image_utils

* refactor: moved stage in and out channels computation to configuration

* refactor: set an intermediate_size parameter to be more explicit

* refactor: removed all mentions of attention masks as they are not used

* refactor: moved position_embeddings to be computed once in the model instead of every layer

* refactor: removed unnecessary hidden expansion parameter from config

* refactor: removed completely hidden expansions

* refactor: removed position embeddings slice function

* tests: fixed broken tests because of previous commit

* fix is_grayscale typehint

* not refactoring

* not renaming

* move h/w to embeddings class

* Precompute embeddings in init

* fix: replaced cuda device in convert script to accelerate device

* fix: replaced stevenbucaille repo to zju-community

* Remove accelerator.device from conversion script

* refactor: moved parameter computation in configuration instead of figuring it out when instantiating a Module

* fix: removed unused attributes in configuration

* fix: missing self

* fix: refactoring and tests

* fix: make style

---------

Co-authored-by: steven <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-07-22 10:53:16 +01:00
3bc726b381 [gemma3] fix bidirectional image mask (#39396)
* fix gemma3 mask

* make compile happy, and use only torch ops

* no full attention between images

* update tests

* fix tests

* add a fast test
2025-07-22 10:04:56 +02:00
fbeaf96f9e Update OLMoE model card (#39344)
* Update OLMoE model card

* Checks Test

* Add license and code

* Update docs/source/en/model_doc/olmoe.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update olmoe.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-21 16:41:01 -07:00
641aaed7c0 Update modernbertdecoder docs (#39453)
* update docs with paper and real model

* nit

* Apply suggestions from code review

Thanks to @stevhlui!

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Remove usage examples, add quantization

---------

Co-authored-by: oweller2 <oweller2@dsailogin.mgmt.ai.cluster>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-21 16:40:22 -07:00
049a674e68 [CI] Fix post merge ernie 4.5 (#39561)
fix repo consistency
2025-07-21 20:56:24 +02:00
b3ebc761e2 [Fast image processors] Improve handling of image-like inputs other than images (segmentation_maps) (#39489)
* improve handlike of other image-like inputs in fast image processors

* fix issues with _prepare_images_structure

* update sam image processor fast

* use dict update
2025-07-21 14:12:14 -04:00
b4115a426e [Ernie 4.5] Add ernie text models (#39228)
* init

* copied from remote

* add proper structure and llama like structure

* fixup

* revert to state that works

* get closer to llama

* slow and steady

* some removal

* masks work

* it is indeed the rope implementation, how dafuq does it mesh with the cache now hmm

* nice

* getting closer

* closer to transformers style

* let's simplify this, batching works now

* simplified

* working version with modular

* it is indeed the rotation per weights, make it complete llama style

* cleanup conversion, next to look at -> tokenizer

* remove llama artefacts

* fix modeling tests (common ones)

* style

* integration test + first look into tokenization (will need more work, focussing on modeling other models first)

* style

* working moe version, based on remote

* lets keep it simple and go step by step - transformers annotations for modular and transformers style rope (complex view)

* more cleanup

* refactor namings and remove addition forXXX classes

* our moe won't cut it it seems, correction bias seems to be missing in remote code version

* tokenization change (remote)

* our moe version works when adding normalization :D

* cleanup moe

* nits

* cleanup modeling -> let's get to modular next

* style

* modular v1

* minor things + attempt at conversion (which doesn't work)

* no conversion follow glm, fixup modular and other nits

* modular cleanup

* fixes

* tests, tests, tests + some moe dtype forcing

* simplify modular, fix fatal fa2 bug, remaining tests

* fix import issue?

* some initial docs, fix bnb faulty behavior --> needs to fix some tests because of gate needing to be float

* fix sdpa test, load on init dtype only

* fixup post merge

* style

* fix doc links

* tokenization cleanup beginnings

* simplify tokenizer by a lot as its basically llama

* tokenizer is full llama with different defaults + extra special tokens

* sync og special tokens of ernie

* fix decoding with numbers (also in remote done what a timing), begin of tok tests

* align with remote and preserve special tokens, adjust tests to ernie legacy behavior, warning for questionable behavior (also in llama)

* nits

* docs

* my daily post merge it is

* check

* tokenization update with explanations and conversion script

* review on modular (til), revert some tokenizer things i did prior, remove mtp comment (low prio)

* post merge fixes

* fixup tokenization, llama fast is the way to go

* more fixups

* check

* import fixes

* correction bias following the paddle code

* fix

* fix TP plan, fix correction bias sharding during forward

* style

* whoops

* fix tied weights

* docs and last nit

* license

* flasky tests

* move repo id, update when merged on the hub
2025-07-21 19:51:49 +02:00
69b158260f Refactor embedding input/output getter/setter (#39339)
* simplify common get/set

* remove some noise

* change some 5 years old modeling utils

* update examples

* fix copies

* revert some changes

* fixes, gah

* format

* move to Mixin

* remove smolvlm specific require grad

* skip

* force defaults

* remodularise some stuff

* remodularise more stuff

* add safety for audio models

* style

* have a correct fallback, you daft donkey

* remove this argh

* change heuristic for audio models

* fixup

* revert

* this works

* revert again

* 🧠

* aaah ESM has two modelings aaah

* add informative but short comment

* add `input_embed_layer` mixin attribute

* style

* walrus has low precedence

* modular fix

* this was breaking parser
2025-07-21 18:18:14 +02:00
2da97f0943 🌐 [i18n-KO] Translated perf_infer_gpu_multi.md to Korean (#39441)
* docs: ko: perf_infer_gpu_many.md

* feat: nmt draft

* docs: refine KO translation and enhance naturalness

* docs: add missing TOC to documentation

* Align toctree and filename with original: perf_infer_gpu_multi

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Refine Korean translation

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

* Update docs/source/ko/perf_infer_gpu_multi.md

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
2025-07-21 09:14:15 -07:00
82807e56b1 [Fast image processor] refactor fast image processor glm4v (#39490)
refactor fast image processor glm4v
2025-07-21 11:18:46 -04:00
4b4f04fcca fix ndim check of device_mesh for TP (#39538) 2025-07-21 13:09:33 +00:00
1aa7256f01 Refactor MambaCache to modeling_mamba.py (#38086)
* Refactor MambaCache to modeling_mamba.py (parity with Zamba)

* ruff

* fix dummies

* update

* update

* remove mamba ref in cache tests

* remove cache_implementation from tests

* update

* ruff

* ruff

* sneaky regression

* model consistency

* fix test_multi_gpu_data_parallel_forward

* fix falcon slow tests

* ruff

* ruff

* add sample false

* try to fix slow tests

* Revert "fix test_multi_gpu_data_parallel_forward"

This reverts commit 66b7162c7c5c5ce8a73ccf48cffc8a96343ebb33.

* fix tests on nvidia t4, remove dataparallel tests from mamba

* ruff

* remove DDP tests from mamba and falcon_mamba

* add explicit error for MambaCache

* mamba2 also needs to init cache in prepare_inputs_for_generation

* ruff

* ruff

* move MambaCache to its own file

* ruff

* unprotected import fix

* another attempt to fix unprotected imports

* Revert "another attempt to fix unprotected imports"

This reverts commit 2338354fcab630de5899321f5daced5fb312c2a2.

* fixing unprotected import, attempt 3

* Update src/transformers/cache_utils.py

* ruff's fault

* fix arthur review

* modular falcon mamba

* found a hack

* fix config docs

* fix docs

* add export info

* merge modular falcon branch

* oopsie

* fix fast path failing

* new approach

* oopsie

* fix types

* Revert new pragma in modular

This reverts commit 80b1cf160ee251536f07c40b8a0857d499e70db6.

* trying another modular workaround

* review & fix ci

* oopsie

* clear prepare_inputs on mamba/mamba2/falcon_mamba
2025-07-21 14:59:36 +02:00
a419a40234 Fix Docstring of BarkProcessor (#39546)
* Fix Docstring of BarkProcessor

* Fix typo

* Add type hint of return value for BarkProcessor.__call__
2025-07-21 12:56:44 +00:00
9323d0873c use the enable_gqa param in torch.nn.functional.scaled_dot_product_at… (#39412)
* use the enable_gqa param in torch.nn.functional.scaled_dot_product_attention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* ci failure fix

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add check

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix ci failure

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine code, extend to cuda

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine code

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix review comments

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine the PR

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-07-21 14:46:43 +02:00
6b3a1f2f51 Fix missing initializations for models created in 2023 (#39239)
* fix SwiftFormer

* fix Kosmos2

* fix Owlv2

* fix Sam

* fix Vits

* fix Pvt

* fix MobileViTV2

* fix PatchTST

* fix Bros

* fix Informer

* fix BridgeTower

* fix Mra and Yoso

* fix Rwkv

* fix EfficientNet

* fix NllbMoe

* fix Tvp

* fix Clap

* fix Autoformer

* fix SwiftFormer

* fix Mgpstr

* fix Align

* fix VitMatte

* fix SpeechT5

* add conditional check for parameters

* fix SpeechT5

* fix TimmBackbone and Clvp

* fix SwiftFormer

* fix SeamlessM4T and SeamlessM4Tv2

* fix Align

* fix Owlv2 and OwlViT

* add reviewed changes

* add reviewed changes

* fix typo

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-07-21 14:43:52 +02:00
970d9a75ce Raise TypeError instead of ValueError for invalid types (#38660)
* Raise TypeError instead of ValueError for invalid types.

* Removed un-necessary changes.

* Resolved conflicts

* Code quality

* Fix failing tests.

* Fix failing tests.
2025-07-21 12:42:00 +00:00
822c5e45b2 Fix pylint warnings (#39477)
* Fix pylint warnings

Signed-off-by: cyy <cyyever@outlook.com>

* Fix variable names

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-21 12:38:05 +00:00
dc017cd763 Fix Qwen Omni integration test (#39553)
fix
2025-07-21 14:11:46 +02:00
fdc0566e15 🚨🚨🚨 [Trainer] Enable average_tokens_across_devices by default in TrainingArguments (#39395)
Enable average_tokens_across_devices by default in TrainingArguments

Fixes #39392

This change improves loss calculation correctness for multi-GPU training by enabling proper token averaging across devices by default.

Co-authored-by: Krishnan Vignesh <krishnanvignesh@Krishnans-MacBook-Air.local>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-07-21 12:11:20 +00:00
8c102e2eb1 Rename _supports_flash_attn_2 in examples and tests (#39471)
* delete `_supports_flash_attn_2` from examples and tests

* simplify docs
2025-07-21 14:02:57 +02:00
3a152e3a5c Fix the check in flex test (#39548)
* fix the check

* fix flags

* flags
2025-07-21 13:29:44 +02:00
78fb2d2760 Fix bad tensor shape in failing Hubert test. (#39502)
Fix bad tensor shape in Hubert test.
2025-07-21 12:25:52 +01:00
39ba5f3cc2 GLM-4 Update (#39393)
* one commit with full

* Create glm4_moe.md

* Update check_config_docstrings.py

* Update __init__.py

* update

* argue

* argue: router problem

* 1

* Update test_modeling_glm4_moe.py

* Update test_modeling_glm4_moe.py

* Update test_modeling_glm4_moe.py

* Update modular_glm4_moe.py

* update

* use dsv3 pretrainmodel in modular

* update for test

* upodate new modular

* use LlamaAttention and avoid use  CohereAttention cause repeat norm

* update the modular

* update attn modular

* update

* Update modular_glm4_moe.py

* MTP layer is need to ignore

* fix gradient error using with dots_1 method

* Update test_modeling_glm4_moe.py

* Update test_modeling_glm4_moe.py

* Update test_modeling_glm4_moe.py

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-07-21 13:24:34 +02:00
344012b3a6 [qwen2 vl] fix packing with all attentions (#39447)
* fix qwen2 vl packing in FA2

* why? delete!

* qwen2-5-vl seems to work now

* update

* fix tests

* start by adapting FA2 tests

* add similar tests for sdpa/eager

* address comments

* why is this even in conditional model and not base model?
2025-07-21 12:19:15 +02:00
e42681b48b [gemma3] support sequence classification task (#39465)
* add seq clf class

* fix docs and add in auto-map

* skip tests

* optional pixels
2025-07-21 11:03:20 +02:00
34133d0a79 Fix placeholders replacement logic in auto_docstring (#39433)
Fix and simplify placeholders replacement logic
2025-07-18 22:56:23 +00:00
433d2a23d7 Update SAM/SAM HQ attention implementation + fix Cuda sync issues (#39386)
* update attention implementation and improve inference speed

* modular sam_hq + fix integration tests on A10

* fixup

* fix after review

* softmax in correct place

* return attn_weights in sam/sam_hq
2025-07-18 18:46:27 -04:00
541bed22d6 Improve @auto_docstring doc and rename args_doc.py to auto_docstring.py (#39439)
* rename `args_doc.py` to `auto_docstring.py` and improve doc

* modifs after review
2025-07-18 18:00:34 +00:00
de0dd3139d Add fast image processor SAM (#39385)
* add fast image processor sam

* nits
2025-07-18 17:27:16 +00:00
561a79a2f4 Fix BatchEncoding.to() for nested elements (#38985) 2025-07-18 14:14:45 +01:00
f4d076561f [gemma3] Fix do_convert_rgb in image processors. (#39438)
* [gemma3] Fix do_convert_rgb in image processors.

* [gemma3] Fix do_convert_rgb in image processors.
2025-07-18 12:33:00 +00:00
bcc0091937 [chat template] return assistant mask in processors (#38545)
* messed up the git history, squash commits

* raise error if slow and refine tests

* index was off by one

* fix the test
2025-07-18 12:23:20 +00:00
328ca9cf1d [dependencies] Update datasets pin (#39500)
* pyarrow pin

* make fixup

* test?

* like this?

* like this?

* like this?

* datasets pin

* comment
2025-07-18 12:05:28 +00:00
fb58377700 Slack CI bot: set default result for non-existing artifacts (#39499)
* Set default result for non-existing artifacts

* FMT

* Address review comments
2025-07-18 11:45:47 +00:00
4ded9a4113 🚨🚨 Fix and simplify attention implementation dispatch and subconfigs handling (#39423)
* first try

* Update modeling_utils.py

* Update modeling_utils.py

* big refactor

* Update modeling_utils.py

* style

* docstrings and simplify inner workings of configs

* remove all trace of _internal

* Update modeling_utils.py

* fix logic error

* Update modeling_utils.py

* recursive on config

* Update configuration_utils.py

* fix

* Update configuration_dpt.py

* Update configuration_utils.py

* Update configuration_utils.py

* Update modeling_idefics.py

* Update modeling_utils.py

* fix for old models

* more old models fixup

* Update modeling_utils.py

* Update configuration_utils.py

* Remove outdated test

* remove the deepcopy!! 🥵🥵

* Update test_modeling_gpt_bigcode.py

* fix qwen dispatch

* restrict to only models supporting it

* style

* switch name

* Update modeling_utils.py

* Update modeling_utils.py

* add tests!

* fix

* rypo

* remove bad copies

* fix

* Update modeling_utils.py

* additional check

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* fix

* skip
2025-07-18 13:41:54 +02:00
2b819ba4e3 [dependencies] temporary pyarrow pin (#39496)
* pyarrow pin

* make fixup

* test?

* like this?

* like this?

* like this?
2025-07-18 10:05:40 +00:00
967045082f Add voxtral (#39429)
* draft

* draft update (conversion working)

* mend

* draft update

* draft update: working generate

* refactor

* VoxtralProcessor draft

* processor update

* update convert_tekken_tokenizer

* refactor processor

* update convert

* make style

* better handle prefil

* make style

* add tests

* add mistral_common audio loading

* processor update

* revert changes

* audio utils update

* add audio to apply chat template mistral update

* voxtral processor update

* fix

* udpate converstion script

* make mistral tokenier from pretrain work from local dir

* fix udpates

* add integration tests

* add batched version

* processor docstring

* make style

* revert convert_tekken_tokenizer changes

* revert processing_qwen2.5 changes

* add multi-turn test

* processor improvements

* address review changes

* Update src/transformers/tokenization_mistral_common.py

Co-authored-by: Julien Denize <40604584+juliendenize@users.noreply.github.com>

* update audio utils

* nits

* integration test update

* correct _support

* update tests

* test update

* update integration tests

* fix

* fix

* fix

* add test_apply_chat_template_with_audio

* add model doc

* model doc

* nit

* doc uptade

* nit

* processor improvement

* ensure default is 3B

* nits

* make

* make

* convert modular

* update checkpoint

* fix test

* make

* make

* autos

* make

* make

* nit

* nit

* nit

---------

Co-authored-by: Julien Denize <40604584+juliendenize@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-18 00:02:04 +00:00
73869f2e81 Fix typing order (#39467)
* fix type order

* change all Union[str, dict] to Union[dict, str]

* add hf_parser test && fix test order

* add deepspeed dependency

* replace deepspeed with accelerator
2025-07-17 15:47:31 +00:00
bda75b4011 Add unified logits_to_keep support to LLMClass (#39472)
* add supports for logits_to_keep for qwen25vl and glm4v

* Update relevant modular files
2025-07-17 17:07:12 +02:00
bf6c997685 [serve] Add speech to text (/v1/audio/transcriptions) (#39434)
* Scaffolding

* Explicit content

* Naïve Responses API streaming implementation

* Cleanup

* Scaffolding

* Explicit content

* Naïve Responses API streaming implementation

* Cleanup

* use openai

* validate request, including detecting unused fields

* dict indexing

* dict var access

* tmp commit (tests failing)

* add slow

* use oai output type in completions

* (little rebase errors)

* working spec?

* guard type hint

* type hints. fix state (CB can now load different models)

* type hints; fn names; error type

* add docstrings

* responses + kv cache

* metadata support; fix kv cache; error event

* add output_index and content_index

* docstrings

* add test_build_response_event

* docs/comments

* gate test requirements; terminate cb manager on model switch

* nasty type hints

* more type hints

* disable validation by default; enable force models

* todo

* experiment: base model from typed dict

* audio working

* fix bad rebase

* load audio with librosa

* implement timed models

* almost working

* make fixup

* fix tests

* transcription request type

* tokenizer -> processor

* add example in docs

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-07-17 14:29:57 +00:00
8b3de61a65 Update integration_utils.py (#39469)
* Update integration_utils.py

sanitize mlflow upload metric

* Update integration_utils.py

change import order to pass CI

* Update integration_utils.py

add comments

* Update integration_utils.py

Remove whitespace from blank line
2025-07-17 13:57:49 +00:00
7fd60047c8 fix: ImageTextToTextPipeline handles user-defined generation_config (#39374)
fix: ImageTextToTextPipeline handles user-defined generation_config passed to the pipeline

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-07-17 13:23:29 +00:00
60b5471da3 Enable some ruff checks for performance and readability (#39383)
* Fix inefficient sequence tests

Signed-off-by: cyy <cyyever@outlook.com>

* Enable PERF102

Signed-off-by: cyy <cyyever@outlook.com>

* Enable PLC1802

Signed-off-by: cyy <cyyever@outlook.com>

* Enable PLC0208

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-17 13:21:59 +00:00
fc700c2a26 Fix convert_and_export_with_cache failures for GPU models (#38976)
* Add the `device` option for `generate()`

* Add device for default tensors to avoid tensor mismatch

* [test] Enable test_static_cache_exportability for torch_device

* infer device from the prompt_token_ids

* Add device for generated tensor

* [Test] Make `test_export_static_cache` tests to run on devices rather than only CPU

* fix format

* infer device from the model
2025-07-17 13:12:32 +00:00
54680d75c9 Update GemmaIntegrationTest::test_model_2b_bf16_dola (#39362)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-17 14:06:23 +01:00
322400af58 fix a comment typo in utils.py (#39459) 2025-07-17 13:06:04 +00:00
43f07018cf Use newer typing notation (#38934)
Signed-off-by: cyy <cyyever@outlook.com>
2025-07-17 13:05:21 +00:00
565dd0bad7 Fix tests due to breaking change in accelerate (#39451)
* update values

* fix
2025-07-17 13:51:50 +01:00
26fed50460 fix max_length calculating using cu_seq_lens (#39341) 2025-07-17 10:54:23 +02:00
cdfe6164b3 fix(pipelines): QA pipeline returns fewer than top_k results in batch mode (#39193)
* fixing the bug

* Try a simpler approach

* make fixup

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2025-07-17 10:24:30 +02:00
b85ed49e0a Corrections to PR #38642 and enhancements to Wav2Vec2Processor __call__ and pad docstrings (#38822)
* Correcting PR #38642.  The PR removed references to the deprecated method "as_target_processor()" in the
__call__ and pad method docstrings, which is correct, but also removed all references to PreTrainedTokenizer,
which is incorrect.  This commit adds back the reference to PreTrainedTokenizer and also takes the
opportunity to enhance the docstrings with the invocation procedure post removal of "as_target_processor()"
and adds information on return values.

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/wav2vec2/processing_wav2vec2.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: René Tio <tor@Jammer.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-16 14:13:07 -07:00
787a0128a9 create ijepa modelcard (ref : PR #36979 ). (#39354)
* wip: adding first version of the IJEPA model card.

* refactor based on the @stevhliu feedbacks

* refactor:
- revert the accidental removal of the autodoc api description and the image reerece architecture

- general context updation.

* - changes of model for example quantization.
- merging the  quantization content.
2025-07-16 12:40:22 -07:00
48f2233cdf Improve grammar and clarity in perf_hardware.md (#39428) 2025-07-16 12:15:15 -07:00
e68ebb695f fix cached file error when repo type is dataset (#36909)
* fix cached file

* Update hub.py
2025-07-16 18:02:26 +02:00
35a416c400 Fix indentation bug in SmolVLM image processor causing KeyError (#39452)
Fix indentation bug in Idefics3 image processor

- Fix KeyError when do_image_splitting=False
- Move split_images_grouped assignment inside loop
- Ensures all image shapes are stored, not just the last one
- This fixes the bug in both Idefics3 and generated SmolVLM processors

cc @yonigozlan

Co-authored-by: Krishnan Vignesh <krishnanvignesh@Krishnans-MacBook-Air.local>
2025-07-16 11:59:28 -04:00
2c58705dc2 Updated Megatron conversion script for gpt2 checkpoints (#38969)
* update script to support new megatron gpt format

* fixed quality failures

---------

Co-authored-by: Luke Friedrichs <LckyLke>
2025-07-16 15:54:29 +00:00
26be7f717e [CI] Fix partially red CI (#39448)
fix
2025-07-16 15:53:43 +02:00
0a88751940 Fixes #39204: add fallback if get_base_model missing (#39226)
* Fixes #39204: add fallback if get_base_model missing

* Inline try_get_base_model logic as suggested in PR review

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-16 15:51:30 +02:00
ba506f87db make the loss context manager easier to extend (#39321) 2025-07-16 15:47:24 +02:00
9f1ac6f185 Remove something that should have never been there (#38254)
* what the hell

* update

* style

* style

* typing

* fix init issue

* fix granite moe hybrid as well
2025-07-16 15:22:44 +02:00
a7ca5b5d67 Fix processor tests (#39450)
fix
2025-07-16 15:01:35 +02:00
71818f570b [Bugfix] [Quantization] Remove unused init arg (#39324)
remove unused arg from ct config init

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-07-16 14:57:42 +02:00
cc24b0378e Better typing for model.config (#39132)
* Apply to all models config annotation

* Update modular to preserve order

* Apply modular

* fix define docstring

* fix dinov2 consistency (docs<->modular)

* fix InstructBlipVideoForConditionalGeneration docs<->modular consistency

* fixup

* remove duplicate code

* Delete config_class attribute from the modeling code

* Add config_class attribute in base model

* Update init sub class

* Deprecated models update

* Update new models

* Fix remote code BC issue

* fixup

* fixing more corner cases

* fix new models

* add test

* modular docs update

* fix comment a bit

* fix for py3.9
2025-07-16 14:50:35 +02:00
4b258454a7 Fix typo in generation configuration for Janus model weight conversion (#39432)
* Fix typo in generation configuration for Janus model weight conversion

* Fix typo

* Update Janus model generation configuration

* Update Janus model to use generation_kwargs
2025-07-16 14:28:02 +02:00
de5ca373ac Responses API in transformers serve (#39155)
* Scaffolding

* Explicit content

* Naïve Responses API streaming implementation

* Cleanup

* Responses API (to be merged into #39155) (#39338)

* Scaffolding

* Explicit content

* Naïve Responses API streaming implementation

* Cleanup

* use openai

* validate request, including detecting unused fields

* dict indexing

* dict var access

* tmp commit (tests failing)

* add slow

* use oai output type in completions

* (little rebase errors)

* working spec?

* guard type hint

* type hints. fix state (CB can now load different models)

* type hints; fn names; error type

* add docstrings

* responses + kv cache

* metadata support; fix kv cache; error event

* add output_index and content_index

* docstrings

* add test_build_response_event

* docs/comments

* gate test requirements; terminate cb manager on model switch

* nasty type hints

* more type hints

* disable validation by default; enable force models

* todo

---------

Co-authored-by: Lysandre <hi@lysand.re>

* Slight bugfixes

* PR comments from #39338

* make fixup

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2025-07-16 14:16:16 +02:00
c8524aeb07 [cache] make all classes cache compatible finally (#38635)
* dump

* push other models

* fix simple greedy generation

* xmod

* add fmst and clean up some mentions of old cache format

* gpt-bigcode now follows standards

* delete tuple cache reference in generation

* fix some models

* fix some models

* fix mambas and support cache in tapas

* fix some more tests

* fix copies

* delete `_reorder_cache`

* another fix copies

* fix typos and delete unnecessary test

* fix rag generate, needs special cache reordering

* fix tapas and superglue

* reformer create special cache

* recurrent gemma `reorder_cache` was a no-op, delete

* fix-copies

* fix blio and musicgen pipeline tests

* fix reformer

* fix reformer, again...

* delete `_supports_cache_class`

* delete `supports_quantized_cache`

* fix failing tests

* fix copies

* some minor clean up

* style

* style

* fix copies

* fix tests

* fix copies

* create causal mask now needs positions?

* fixc copies

* style

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* clean-up of non-generative model after merging main

* check `is_decoder` for cache

* delete transpose for scores

* remove tuple cache from docs everywhere

* fix tests

* fix copies

* fix copies once more

* properly deprecate `encoder_attention_mask` in Bert-like models

* import `deprecate_kwarg` where needed

* fix copies again

* fix copies

* delete `nex_decoder_cache`

* fix copies asks to update for PLM

* fix copies

* rebasing had a few new models, fix them and merge asap!

* fix copies once more

* fix slow tests

* fix tests and updare PLM checkpoint

* add read token and revert accidentally removed line

* oh com -on, style

* just skip it, read token has no access to PLM yet

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-16 14:00:17 +02:00
6cb43defd0 docs: add missing numpy import to minimal example (#39444)
docs: add numpy import to minimal example
2025-07-16 11:57:13 +00:00
61163099f1 Remove runtime conditions for type checking (#37340)
Remove dynamic conditions for type checking

Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-16 13:36:48 +02:00
bfc9ddf5c6 Add StableAdamW Optimizer (#39446)
* Added StableAdamW as an optimizer option for Trainer. Also wrote tests to verify its behaviour.

* Fixed issue with

* Added docs for StableAdamW. Also fixed a typo in schedule free optimizers

---------

Co-authored-by: Gautham Krithiwas <gauthamkrithiwas2003@gmail.com>
2025-07-16 13:35:53 +02:00
b9ee528246 add test scanner (#39419)
* add test scanner

* add doc + license

* refactor for only 1 tree traversal

* add back test of only one method

* document single method scan

* format

* fixup generate tests

* minor fix

* fixup

* fixup doc
2025-07-16 12:45:46 +02:00
79941c61ce Fix missing definition of diff_file_url in notification service (#39445)
Fix missing definition of diff_file_url
2025-07-16 12:09:18 +02:00
e048d48bd0 Add cosine_with_min_lr_schedule_with_warmup_lr_rate scheduler in Trainer (#31870)
* add cosine_with_min_lr_schedule_with_warmup_lr_rate scheduler in trainer

* Update src/transformers/optimization.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update optimization.py

fix the error of the unclosed "("

* Update optimization.py

remove whitespace in line 402 in order to pass the quality test

* Update src/transformers/optimization.py

* Update src/transformers/optimization.py

* Apply style fixes

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-07-16 12:01:08 +02:00
0cf08e90dd Change log level from warning to info for scheduled request logging in ContinuousBatchProcessor (#39372)
Change log level from warning to info for scheduled request logging in ContinuousBatchProcessor
2025-07-16 11:54:20 +02:00
ae4e306a40 Defaults to adamw_torch_fused for Pytorch>=2.8 (#37358)
* Defaults to adamw_torch_fused for latest Pytorch

Signed-off-by: cyy <cyyever@outlook.com>

* Fix test

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-16 09:52:33 +00:00
4524a68c66 Fix L270 - hasattr("moe_args") returning False error (#38715)
* Fix L270 - hasattr("moe_args") returning False error

* Update src/transformers/models/llama4/convert_llama4_weights_to_hf.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-16 09:45:58 +00:00
d33a1c389f [chat template] add a testcase for kwargs (#39415)
add a testcase
2025-07-16 11:31:35 +02:00
99c9763398 Fixed a bug calculating cross entropy loss in JetMoeForCausalLM (#37830)
fix: 🐛 Fixed a bug in calculating Cross Entropy loss in JetMoeForCausalLM

In the original code, we shift the logits and pass shift_logits into the self.loss_function, but in self.loss_function, the shift_logits will be shifted again, so we are actually doing "next next token prediction", which is incorrect. I have removed the logits shifting before calling self.loss_function.

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-16 11:22:00 +02:00
667ad02374 Remove double soft-max in load-balancing loss. Fixes #39055 . (#39056)
Remove double soft-max in load-balancing loss. Fixes #39055
2025-07-16 09:20:23 +00:00
31d81943c9 [Core] [Offloading] Fix saving offloaded submodules (#39280)
* fix counting meta tensors, fix onloading meta tensors

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* remove unrelated fix

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* remove unrelated change

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* add clarifying comment

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* add test_save_offloaded_model_with_direct_params

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* fix merge conflict, add decorators

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

---------

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-07-16 08:44:40 +00:00
add43c4d09 [autodocstring] add video and audio inputs (#39420)
* add  video and audio inputs in auto docstring

* fix copies
2025-07-16 09:41:50 +02:00
0dc2df5dda CI workflow for performed test regressions (#39198)
* WIP script to compare test runs for models

* Update line normalitzation logic

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-07-16 04:20:02 +02:00
1bc9ac5107 docs: update LightGlue docs (#39407)
* docs: update LightGlue docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-15 12:40:50 -07:00
d9574f2fe3 docs: update SuperGlue docs (#39406)
* docs: update SuperGlue docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-15 12:40:26 -07:00
9f41f67135 [vlm] fix loading of retrieval VLMs (#39242)
* fix vlm with retrieval

* we can't use AutoModel because new ColQwen was released after refactor

* no need for colqwen

* tied weight keys are necessary, if using IMageTextToText

* need to apply renaming in tied weights, only for ColPali

* overwrite tied keys in ColPali

* fix copies, modular can't handle if-statements
2025-07-15 17:23:54 +02:00
b1d14086e4 handle training summary when creating modelcard but offline mode is set (#37095)
* handle training summary when creating modelcard but offline mode is set

* chore: lint
2025-07-15 17:21:15 +02:00
67f42928f0 Remove residual quantization attribute from dequantized models (#39373)
* fix: removing quantization trace attribute from dequantized model

Fixes #39295

* add: test `to(dtype=torch.float16)` after dequantization
2025-07-15 17:16:10 +02:00
30c508dbcb Remove deprecated audio utils functions (#39330)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-15 14:02:25 +00:00
d8e05951b8 Fix bugs in pytorch example run_clm when streaming is enabled (#39286) 2025-07-15 15:37:28 +02:00
a989bf8d84 Fix bugs from pipeline preprocessor overhaul (#39425)
* Correct load classes for VideoClassificationPipeline

* Correct load classes for the ASR pipeline
2025-07-15 14:28:59 +01:00
53c9dcd6fd refactor: remove set_tracer_provider and set_meter_provider calls (#39422) 2025-07-15 14:22:12 +02:00
f03b384149 Fix invalid property (#39384)
Signed-off-by: cyy <cyyever@outlook.com>
2025-07-15 12:11:37 +00:00
c4d41567fa set document_question_answering pipeline _load_tokenizer to True (#39411)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-15 12:05:49 +00:00
f56b49f48f Ignore extra position embeddings weights for ESM (#39063)
* Ignore extra position embeddings weights

* Slight name fix
2025-07-15 11:57:32 +00:00
2b79f14375 support loading qwen3 gguf (#38645)
* support loading qwen3 gguf

* Add qwen3 into GGUF_TO_FAST_CONVERTERS for tokenizer conversion

* Add testcase

* Fix formatting
2025-07-15 09:53:41 +00:00
0e4b7938d0 Add ModernBERT Decoder Models - ModernBERT, but trained with CLM! (#38967)
* working locally; need to style and test

* added docs and initial tests; need to debug and flesh out

* fixed tests

* working long context; batches

* working fa2 and eager

* update tests

* add missing confnigs

* remove default autoset

* fix spacing

* fix most tests

* fixed tests

* fix to init

* refactor to match new transformers updates

* remove static cache option

* fa2 fix

* fix docs

* in progress

* working on tests

* fixed issue with attn outputs

* remove debug

* fix local config attr

* update doc string

* fix docstring

* add docs to toc

* correct typo in toc

* add new updates from main w.r.t. ModernBERT RoPE

* fix local param

---------

Co-authored-by: oweller2 <oweller2@dsailogin.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l07.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@n02.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l08.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l01.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l02.mgmt.ai.cluster>
2025-07-15 10:40:41 +02:00
0b724114cf Fix typo in /v1/models output payload (#39414) 2025-07-15 08:59:25 +01:00
8d6259b0b8 [refactor] set attention implementation (#38974)
* update

* fix some tests

* init from config, changes it in-place, add deepcopy in tests

* fix modernbert

* don't delete thsi config attr

* update

* style and copies

* skip tests in generation

* fix style

* accidentally removed flash-attn-3, revert

* docs

* forgot about flags set to False

* fix copies

* address a few comments

* fix copies

* custom code BC
2025-07-15 09:34:06 +02:00
6017f5e8ed [siglip] fix pooling comment (#39378)
* feat(siglip2): add forward pass with pooled output logic in Siglip2TextModel

* test(siglip2): add test_text_model.py to verify pooled output behavior

* style(siglip2): fix formatting in test_text_model.py using Ruff

* fix(siglip2): remove misleading 'sticky EOS' comment and sync modular-classic files

* fix(siglip2): remove misleading 'sticky EOS' comment and sync modular-classic files

* chore(siglip2): regenerate classic model after modular change

* Update
2025-07-14 17:47:19 +00:00
8d40ca5749 Update phi4_multimodal.md (#38830)
* Update phi4_multimodal.md

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-14 10:35:17 -07:00
3635415af2 [Docs] Fix typo in CustomTrainer compute_loss method and adjust loss reduction logic (#39391)
Fix typo in CustomTrainer compute_loss method and adjust loss reduction logic
2025-07-14 09:25:06 -07:00
3a48e9534c Use np.pad instead of np.lib.pad. (#39346)
* Use np.pad instead of np.lib.pad.

* Update audio_utils.py

Formatting
2025-07-14 16:05:28 +00:00
3d8be20cd2 Totally rewrite how pipelines load preprocessors (#38947)
* Totally rewrite how pipelines load preprocessors

* Delete more mappings

* Fix conditionals, thanks Cyril!
2025-07-14 16:40:04 +01:00
903944a411 [examples] fix do_reduce_labels argument for run_semantic_segmentation_no_trainer (#39322)
* no use do_reduce_labels argument in model

* use do_reducer_labels in AutoImageProcessor
2025-07-14 10:16:49 +00:00
8165c703ab Fix Lfm2 and common tests (#39398)
* fix

* better fix

* typo
2025-07-14 12:02:59 +02:00
878d60a3cb Deprecate AutoModelForVision2Seq (#38900)
deprecate vision2seq
2025-07-14 11:42:06 +02:00
ad333d4852 [Qwen2.5-VL] Fix torch.finfo() TypeError for integer attention_mask_tensor (#39333)
* Update modeling_qwen2_5_vl.py

### 🐛 Bug Description

When using Unsloth’s Qwen2.5-VL vision models (both 3B and 7B) with the latest HuggingFace Transformers (commit: 520b9dcb42cef21662c304583368ff6645116a45), the model crashes due to a type mismatch in the attention mask handling.

---

### 🔥 Error Traceback

* Fix dtype compatibility in attention mask processing

Replace hardcoded torch.finfo() usage with dtype-aware function selection to handle both integer and floating-point attention mask tensors.
Technical Details:

Problem: Line 1292 assumes floating-point dtype for attention_mask_tensor
Solution: Add dtype check to use torch.iinfo() for integer types and torch.finfo() for float types
Files Modified: transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py

* Update modeling_qwen2_5_vl.py

* Update modeling_qwen2_5_vl.py

* Fix: Cast to float before applying torch.finfo

* # Fix: Use appropriate function based on dtype

* Update modular_qwen2_5_vl.py

* Fix: Cast to float before applying torch.finfo

* Fix: Use appropriate function based on dtype

* Fix: Use appropriate function based on dtype

* Updatet modeling_glm4v.py

* Only apply conversion for floating point tensors (inverted masks)

* corrected the format issue

reformatted modeling_glm4v.py

All done!  🍰 
1 file reformatted

* Fix: Cast to float before applying torch.finfo

Corrected the format issue

* Fix torch.finfo() for integer attention mask

#39333

* Run make fix-copies and make style for CI compliance

- Updated dependency versions table
- Fixed code formatting and style issues
- Sorted auto mappings
- Updated documentation TOC

* Fix torch.finfo() TypeError for

Fix torch.finfo() TypeError for integer attention_mask_tensor #39333

* Fix torch.finfo() TypeError for integer
2025-07-14 07:47:39 +00:00
c30af65521 [BLIP] remove cache from Qformer (#39335)
* remove cache from Qformer

* fix

* this was never correct...
2025-07-14 09:20:01 +02:00
66cd995618 [shieldgemma] fix checkpoint loading (#39348)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-14 08:34:58 +02:00
a1ad9197c5 Fix overriding Fast Image/Video Processors instance attributes affect other instances (#39363)
* fix and add tests

* nit
2025-07-12 23:39:06 +00:00
dc98fb3e5e update docker file to use latest timm (for perception_lm) (#39380)
update docker file for timm

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-12 23:19:37 +02:00
5c30f7e390 Update Model Card for Encoder Decoder Model (#39272)
* update model card.

* add back the model contributors for mamba and mamba2.

* update the model card.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update batches with correct alignment.

* update examples and remove quantization example.

* update the examples.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update example.

* correct the example.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-11 11:23:08 -07:00
0d7efe3e4b fix gpt2 usage doc (#39351)
fix typo of gpt2 doc usage
2025-07-11 10:59:41 -07:00
a646fd55fd Updated CamemBERT model card to new standardized format (#39227)
* Updated CamemBERT model card to new standardized format

* Applied review suggestions for CamemBERT: restored API refs, added examples, badges, and attribution

* Updated CamemBERT usage examples, quantization, badges, and format

* Updated CamemBERT badges

* Fixed CLI Section
2025-07-11 10:59:09 -07:00
af74ec65a7 Update Readme to Run Multiple Choice Script from Example Directory (#39323)
* Update Readme to run in current place

* Update Readme files to execute PyTorch examples from their respective folders
2025-07-11 10:58:26 -07:00
70e57e4710 Add mistral common support (#38906)
* wip: correct docstrings

* Add mistral-common support.

* quality

* wip: add requested methods

* wip: fix tests

* wip: add internally some methods not being supported in mistral-common

* wip

* wip: add opencv dependency and update test list

* wip: add mistral-common to testing dependencies

* wip: revert some test changes

* wip: ci

* wip: ci

* clean

* check

* check

* check

* wip: add hf image format to apply_chat_template and return pixel_values

* wip: make mistral-common non-installed safe

* wip: clean zip

* fix: from_pretrained

* fix: path and base64

* fix: path and import root

* wip: add docs

* clean

* clean

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-07-11 16:26:58 +00:00
665418dacc Remove device check in HQQ quantizer (#39299)
* Remove device check in HQQ quantizer

Fix https://github.com/huggingface/transformers/issues/38439

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-11 14:59:51 +00:00
601bea2c4e Verbose error in fix mode for utils/check_docstrings.py (#38915)
* fix ast deprecations for python 3.14: replace node.n by node.value and use `ast.Constant`

More verbose exceptions in `fix_docstring` on docstring formatting issues.
2025-07-11 14:36:10 +00:00
24f771a043 fix failing test_sdpa_can_dispatch_on_flash (#39259)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-11 16:30:56 +02:00
ee74397d20 update cb TP (#39361)
* update cb TP

* safety
2025-07-11 15:54:25 +02:00
9bc675b3b6 Fix link for testpypi (#39360)
fix link
2025-07-11 15:34:01 +02:00
bf607f6d3b PerceptionLM (#37878)
* plm template

* A working plm with fixed image features

* hacked processor

* First version that reproduced PLM output using PE from timm.

* Simplify and fix tie_word_embeddings

* Use PIL resize. Simplify converstion.

* First version that works with video input.

* simplifed image preprocessing (not batched)

* Minor fixes after rebasing on main.

* Video processor based on new API.

* Revert to use _preprocess for image processor.

* refactor with modular

* fix tie_word_embedding

* Testing with timm PE

* check in missed converstion from modular to model.py

* First working version of PLM with Eva PE. PLM-1B and 3B outputs are exactly the same as before. PLM-8B output has some differences.

* address review comments

* Fixed batching if video and image examples mixed.

* Simplify PE configuration.

* Enable AutoModel for PerceptionEncoder.

* Update PE config style.

* update all headers

* Minor fixes.

* Move lm_head to PerceptionLMForConditionalGeneration.
Fix vit_G model specification.

* Fix for testing_modeling_perception_lm.py

* Image processing refactoring to use more common parts.

* Fix processor test.

* update tests to use model from hub

* More test fixes.

* integration test GT update after rebasing; probably due to video preprocessing

* update test media path to hub

* Stop tracking local scripts

* address some review comments

* refactor image processing.

* small fixes

* update documentation and minor fixes

* remove scripts

* Minor fix for CI

* Fix image processing

* CI and doc fix

* CI formatting fix

* ruff fix

* ruff formatting

* ran utils/sort_auto_mappings.py

* update docstring

* more docstring udpates

* add vision_input_type default fallback for image processing

* more verbose variable naming

* test update

* Remove PE and PEConfig use AutoModel(TimmWrapper) instead

* Minor cleanup.

* Minor Fix: remove any ref to PE. Ruff format and check.

* fix docstring

* Fix modular/model consistency.Improvex docstringfor  .

* Fix PerceptionLMForConditionalGenerationModelTest

* ruff fix

* fix for check_repo

* minor formatting

* dummy size arg to fix for processor test.

* Update docstring for PerceptionLMConfig

* Minor fixes from review feedback.

* Revert some minor changes per reviewer feedback.

* update base_model_prefix

* address reviewer feedback

* fix comment in modeling file

* address reviewer feedback

* ruff format

* Pre-merge test update.

* reapply modular and fix checkpoint name

* processor test path

* use modular a bit more

* remove dead code

* add token decorator

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-11 11:07:32 +02:00
4b47b2b8ea Updated Switch Transformers model card with standardized format (Issue #36979) (#39305)
* Updated Switch Transformers model card with standardized format (Issue #36979)

* Apply reviewer suggestions to the new standardised Switch Transformer's model card

* Update switch_transformers.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-10 15:34:10 -07:00
fe1a5b73e6 [modular] speedup check_modular_conversion with multiprocessing (#37456)
* Change topological sort to return level-based output (lists of lists)

* Update main for modular converter

* Update test

* update check_modular_conversion

* Update gitignore

* Fix missing conversion for glm4

* Update

* Fix error msg

* Fixup

* fix docstring

* update docs

* Add comment

* delete qwen3_moe
2025-07-10 19:07:59 +01:00
571a8c2131 Add a default value for position_ids in masking_utils (#39310)
* set default

* Update masking_utils.py

* add small test
2025-07-10 18:53:40 +02:00
bdc8028cb3 [Core] [Offloading] Enable saving offloaded models with multiple shared tensor groups (#39263)
* fix counting meta tensors, fix onloading meta tensors

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* remove unrelated fix

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* add test

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

---------

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-07-10 18:33:30 +02:00
df49b399dc [tests] tag serve tests as slow (#39343)
* maybe they need more cpu resources?

* add todo
2025-07-10 15:40:08 +00:00
36e80a18da [modeling][lfm2] LFM2: Remove deprecated seen_tokens (#39342)
* [modeling][lfm2] remove deprecated seen_tokens

* [modular][lfm2] remove deprecated seen_tokens from modular file
2025-07-10 17:27:55 +02:00
9682d07f92 LFM2 (#39340)
* [modeling][lfm2] LFM2 model on 4.53.0 interface

* [configuration] hook in LFM2 keys

* [modeling][lfm2] update modeling interface for 4.53.1

* [modeling][lfm2] apply mask to hidden conv states

* [misc] ruff format/lint

* [modeling][lfm2] minor: NotImplemented legacy cache conversion

* Create lfm2.md

* create nice modular

* style

* Update modeling_auto.py

* clean and start adding tests

* style

* Update test_modeling_lfm2.py

* Update __init__.py

* small test model size

* config

* small fix

* fix

* remove useless config attrs -> block_dim and conv_dim are hiden_size

* fix prepare inputs

* fix config

* test

* typo

* skip tests accordingly

* config docstrings

* add doc to .md

* skip config docstring check

---------

Co-authored-by: Maxime Labonne <81252890+mlabonne@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-10 16:07:33 +02:00
38c3931362 [server] add tests and fix passing a custom generation_config (#39230)
* add tests; fix passing a custom generation_config

* tool integration test

* add install step

* add accelerate as dep to serving

* add todo
2025-07-10 13:41:38 +00:00
6b09c8eab0 Handle DAC conversion when using weight_norm with newer PyTorch versions (#36393)
* Update convert_dac_checkpoint.py

* Update convert_dac_checkpoint.py

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-07-10 10:36:58 +00:00
92043bde29 fix phi3 tests (#39312)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-10 11:51:55 +02:00
520b9dcb42 fix Glm4v batch videos forward (#39172)
* changes for video

* update modular

* change get_video_features

* update video token replacement

* update modular

* add test and fix typo

* lint

* fix order

* lint

* fix

* remove dependency

* lint

* lint

* remove todo

* resize video for test

* lint..

* fix test

* new a processor for video_test

* fix test
2025-07-10 10:44:28 +02:00
bc161d5d06 Delete deprecated stuff (#38838)
* delete deprecated stuff

* fix copies

* remove unused tests

* fix modernbert and fuyu

* Update src/transformers/cache_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* bye bye `seen_tokens`

* address comments

* update typings

* ecnoder decoder models follow same pattern as whisper

* fix copies

* why is it set to False?

* fix switch transformers

* fix encoder decoder models shared weight

* fix copies and RAG

* remove `next_cache`

* fix gptj/git

* fix copies

* fix copies

* style...

* another forgotten docsrting

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-10 05:18:44 +00:00
c6ee0b1da8 Fix broken SAM after #39120 (#39289)
fix
2025-07-09 17:46:22 -04:00
aff7df8436 enable static cache on TP model (#39164)
* enable static cache on TP model

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check tp size before init kv cache

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix docstring

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add tp tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix other cache head size

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-09 21:14:45 +00:00
2ef59646b8 Fix max_length_q and max_length_k types to flash_attn_varlen_func (#37206)
Also add notes asking users to set `TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1`
or call `torch._dynamo.config.capture_scalar_outputs = True`, as currently
this will cause a graph break.

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-07-09 23:12:39 +02:00
2d600a4363 Granite speech speedups (#39197)
* ensure the query is updated during training

avoid unused parameters that DDP does not like

* avoid a crash when `kwargs` contain `padding=True`

trainers often pass this argument automatically

* minor

* Remove mel_spec lazy init, and rename to mel_filters.
this ensures save_pretrained will not crash when saving the processor during training
d5d007a1a0/src/transformers/feature_extraction_utils.py (L595)

* minor - most feature extractors has a `sampling_rate` property

* speedup relative position embeddings

* fix several issues in model saving/loading:
- avoid modifying `self._hf_peft_config_loaded` when saving
- adapter_config automatically points to the original base model - a finetuned version should point to the model save dir.
- fixing model weights names, that are changed by adding an adapter.

* minor

* minor

* minor

* fixing a crash without peft active

* add todo to replace einsum

* granite speech speedups:
1. register attention_dist to avoid cpu-to-gpu transfer every layer.
2. pad_sequence is much faster than per-sample-padding + concat.
3. avoid returning audio back to cpu when using a compute device.

* support audio.shape=(1,L)
2025-07-09 23:09:50 +02:00
5111c8ea2f Fix typo: langauge -> language (#39317) 2025-07-09 12:06:46 -07:00
2781ad092d docs: update LLaVA-NeXT model card (#38894)
* docs: update LLaVA-NeXT model card

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* [docs] Updated llava_next model card

* Update docs/source/en/model_doc/llava_next.md remove image sources

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* [fix] Change Flash Attention to SDPA badge

* [doc] fixed quantization example

* docs: updated contribution details and badges

* Update llava_next.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-09 11:32:40 -07:00
16dd7f48d0 skip files in src/ for doctest (for now) (#39316)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 19:36:48 +02:00
d61c0d087c Updated the Model docs - for the MARIAN model (#39138)
* Update marian.md

This update improves the Marian model card to follow the Hugging Face standardized model card format. The changes include:

- Added a clear description of MarianMT, its architecture, and how it differs from other models.
- Provided usage examples for Pipeline and AutoModel.
- Added a quantization example for optimizing model inference.
- Included instructions and examples for multilingual translation with language codes.
- Added an Attention Mask Visualizer example.
- Added a Resources section with relevant links to papers, the Marian framework, language codes, tokenizer guides, and quantization documentation.
- Fixed formatting issues in the code blocks for correct rendering.

This update improves the readability, usability, and consistency of the Marian model documentation for users.

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update marian.md

* Update marian.md

* Update marian.md

* Update marian.md

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update marian.md

* Update marian.md

* Update marian.md

* Update marian.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-09 10:23:03 -07:00
161cf3415e add stevhliu to the list in self-comment-ci.yml (#39315)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 19:07:44 +02:00
3be10c6d19 Fix consistency and a few docstrings warnings (#39314)
* Update modeling_deepseek_v2.py

* fix docstrings

* fix

* fix
2025-07-09 18:40:37 +02:00
4652677c89 🌐 [i18n-KO] Translated quark.md to Korean (#39268)
* initial translation

* removed english parts

* maintain consistency

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* add toctree

* fixed indentation

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-07-09 09:29:51 -07:00
c980904204 Add DeepSeek V2 Model into Transformers (#36400)
* add initial structure

* doc fixes, add model base logic

* update init files

* some fixes to config and modular

* some improvements for attention

* format

* remove unused attn

* some fixes for moe layer and for decoder

* adapt _compute_yarn_parameters for deepseek

* format

* small fix

* fix for decoder forward

* add tests, small refactoring

* fix dummies

* fix init

* fix doc

* fix config docs

* add sequce doc, fix init for gate

* fix issues in tests

* fix config doc

* remove unused args

* some fixes and refactoring after review

* fix doc for config

* small fixes for config args

* revert config refactoring

* small refactoring

* minor fixes after rebase

* small fix after merge

* fix modular

* remove rotaryembd from public init

* small test fix

* some rotary pos calculation improvement

* fix format

* some improvements and fixes

* fix config

* some refactoring

* adjust some unit tests

* skip test

* small fixes and tests adjustment

* reapply modular

* fix all tests except Integration

* fix integration testzs

* cleanup BC stuff

* rope

* fix integrations tests based on a10

* style

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-09 17:04:28 +02:00
accbd8e0fe [sliding window] revert and deprecate (#39301)
* bring back and deprecate

* oops

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-07-09 16:10:38 +02:00
1cefb5d788 [modular] Allow method with the same name in case of @property decorator (#39308)
* fix

* add example

* fix

* Update modular_model_converter.py
2025-07-09 15:46:53 +02:00
4798c05c64 skip test_torchscript_* for now until the majority of the community ask for it (#39307)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 15:35:48 +02:00
fe5f3c85d2 fix aria tests (#39277)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 13:49:33 +02:00
0687d481e2 [flash attn 3] bring back flags (#39294)
* flash attn 3 flag

* fix copies
2025-07-09 09:45:01 +02:00
25343aafee Fix SDPA attention precision issue in Qwen2.5-VL (#37363)
* solve conflicts and remove  redundant attention_mask in qwenvit

* update decoded text check

* remove trailing whitespace
2025-07-09 07:03:44 +02:00
0e1c281745 [Tests] Update model_id in AIMv2 Tests (#39281)
* Update model_id in tests

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 21:46:32 +02:00
7ef592c96c Update T5gemma (#39210)
* bug fix: add vocab_size to t5gemmaconfig for pipeline.

* Update checkpoint placeholder

* minor change

* minor change

* minor change: update example.

* fix: add vocab_size as an explict arg.

* buf fix:

remove vocab_size verification; instead, re-set encoder/decoder vocab size.

Note, in t5gemma, vocab size of encoder/decoder shoud be always the same.

* add `add_generation_prompt` for message preprocessing.
2025-07-08 19:08:48 +02:00
1ecd52e50a Add torchcodec in docstrings/tests for datasets 4.0 (#39156)
* fix dataset run_object_detection

* bump version

* keep same dataset actually

* torchcodec in docstrings and testing utils

* torchcodec in dockerfiles and requirements

* remove duplicate

* add torchocodec to all the remaining docker files

* fix tests

* support torchcodec in audio classification and ASR

* [commit to revert] build ci-dev images

* [commit to revert] trigger circleci

* [commit to revert] build ci-dev images

* fix

* fix modeling_hubert

* backward compatible run_object_detection

* revert ci trigger commits

* fix mono conversion and support torch tensor as input

* revert map_to_array docs + fix it

* revert mono

* nit in docstring

* style

* fix modular

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 17:06:12 +02:00
1255480fd2 [lightglue] add support for remote code DISK keypoint detector (#39253)
* feat: add trust_remote_code in LightGlueConfig

* fix: made sure trust_remote_code is provided only when necessary

* fix: make style

* docs: added missing trust_remote_code docstring

* refactor: refactored LightGlue config init

* fix: removed unnecessary argument
2025-07-08 15:03:04 +00:00
838a0268b8 fix flaky test_generate_compile_model_forward (#39276)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 15:36:05 +02:00
29d0030e23 Refactor PretrainedConfig.__init__ method to make it more explicit (#39158)
* cleanup

* fix no `__init__` test

* fix missing inits
2025-07-08 14:24:39 +01:00
1580f64653 [smollm3] add tokenizer mapping for smollm3 (#39271)
add tok mapping to smollm3
2025-07-08 10:44:01 +00:00
db05e4ff33 [pagged-attention] fix off-by-1 error in pagged attention generation (#39258)
* fix off-by-1 error in pagged attention generation

* formatting

* use update_with_token
2025-07-08 12:34:22 +02:00
6f1a43896c [CI] fix docs (#39273)
* fix docs

* add ko gloassary file to toctree
2025-07-08 11:31:03 +01:00
fbdaa7b099 Add Aimv2 model (#36625)
* Model skelton

* changes

* temp push

* changes

* Added support for aimv2-native

* More changes

* More changes

* Stupid mistake correction

* Added config and refactor

* Added vison model

* update

* Refactor for lit variant

* Added Text Model

* Minor fixes

* nits

* update

* Preliminary tests

* More fixes

* Updated tests 🤗

* Refactor

* Updated testcase

* Updated config

* make fixup

* more fixes

* Bug fix and updates

* deadcode

* Fixes

* nit

* up

* Happy CI 

* Reduce LOC

* nit

* nit

* make style

* return_dict refactor

* bug fix

* fix

* doc update

* nit

* make fixup

* Minor update

* _init_weigths modifcation

* update tests

* Minor fixes post review

* Update w.r.t GradientCheckpointingLayer

* docs update

* update

* nit

* Use more Modular 😉

* Change name from AIMv2 to Aimv2

* Nit

* make style

* Add model doc pointer

* make style

* Update model doc section

* updates

* Modify attn mask and interface

* update test

* Final change

* Utilize flash and flex attn

* keep attn mask

* camelcase model name in test file

* Fix docstring

* Fix config warning finally and create_causal_mask

* disable torchscript

* remove unused arg

* remove from tests

* balance model size for tests

* fix device

* tests

* tests

* flaky test

* fix import

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-08 11:53:21 +02:00
d8590b4b0c Add Doge model (#35891)
* Add Doge Model

* Fix code quality

* Rollback an error commit

* Fix config for open-source weights

* Revert "Fix config for open-source weights"

This reverts commit 229cdcac10a6a4274d1dd13b729bc14c98eb0c76.

* Add modular_doge

* Update Doge inherits from Llama

* Fix import bug

* [docs] Add usage of doge model

* Fix Doge import pretrainedconfig from modeling_utils to configuration_utils

* [docs] remove trust remote code from doge

* Fix dynamo bug in doge model

* Update docstrings

* Import apply_rotary_pos_emb and repeat_kv from Llama

* Fix all nits

* Fix code quality

* Fix some bugs

* Fix code quality

* Remove inherited `_update_causal_mask` from Llama
This leads to incorrect weight initialization.

* Fix the wrong tensor orderings in DogeCDMoE

* Fix attention mask bug
We have to provide attention_mask for dynamic mask computation

* Modify most implementations to inherit from Llama
But there are two problems:
1. `flex_attention_forward` is not updated properly
2. `Example` error in the forward method of DogeForCausalLM

* Modify CDMoE for batch efficient implementation

* Uniform MoE configuration names, just like QwenMoE

* Fix code quality

* Fix code quality

* Fix code quality

* Add tp plan of CDMoE Module

* Hybird DMA with sliding window

* Update valid tokens greater than window size

* Fix code quality

* Add `convert_doge_weights_to_hf`

* Fix STATE_DICT_MAPPING in convert_doge_weights_to_hf.py

* Fix nits in modular_doge

* Fix code quality

* Fix all nits

* Fix all nits

* Make sure the attention function is updated inside the class

* Fix code quality issues in the Doge model and add a test for it

* Fix `test_generate`

* Fix code quality

* Fix nits fllowing suggestions

* Fix code quality

* Fix code quality issues

* Fix nits

* Fix code quality nits

* Fix the missing parameters in the configuration.

* Fix the missing parameters in the configuration.

* Fix nits

* Add initialization of attention

* Fix last nits

* Simplify dynamic mask generation logic

* Rename router_logits to gate_logits for matching latest changes of MixtralModel

* Rename typings for matching latest changes of MixtralModel

* Fixes typo in comment

* Update src/transformers/models/doge/modular_doge.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix code quality issues to match other modular

* Fix code quality issues to match other modular

* Fix the static compilation errors

* Update model weights link

* Fix code quality issues to match other modular

* reapply modular and support for new outputs

* style

* simplify a lot

* fix import location

* reapply modular

* fix

* fix integration test

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-08 11:44:29 +02:00
d370bc64c6 Fix errors when use verl to train GLM4.1v model (#39199)
* Fix errors when use verl to train GLM4.1v model

* Support glm4v load from AutoModelForVision2Seq
* Set glm4v model _checkpoint_conversion_mapping attr from None to {}

* Update modeling_auto.py
2025-07-08 09:39:31 +00:00
5fb8bb3e1a fix recompiles due to instance key, and deepcopy issues (#39270)
* fix recompiles due to instance key, and deepcopy issues

* dict
2025-07-08 11:38:11 +02:00
356fd68109 fix(generation): stop beam search per-instance when heuristic satisfied (#38778)
* fix(decoding): stop beam search per-instance when heuristic satisfied

Previously, when early_stopping is set to `False`, the early-stopping heuristic only halted generation when **all** batch instances reached the criterion. This caused instances that are impossible (suggested by the heuristic) to improve keep generating, leading to inconsistent and overlong outputs across the batch.

Now we apply the heuristic **per-instance**: once a certain instance of batch has its all beams impossibe to improve, we mark that instance finished while letting others continue. This restores expected behavior and ensures consistency in batched generation.

* Add test case GenerationIntegrationTests.test_beam_search_early_stop_heuristic

* Update naming improvement_possibility -> is_early_stop_heuristic_unsatisfied

* Add comments for early stop heuristic

* Update src/transformers/generation/utils.py

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-08 08:59:37 +00:00
0b0ede8b2b remove broken block (#39255)
* remove broken block

* fixup
2025-07-08 10:41:44 +02:00
a21557fa3e Skip test_eager_matches sdpa generate and update an integration test for blip-like models (#39248)
* skip

* skip

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 10:38:25 +02:00
ea3c2c0277 Fix license text, duplicate assignment, and typo in constant names (#39250)
- Complete Apache License text in Italian documentation
- Remove duplicate variable assignment in Perceiver converter
- Fix typo in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES constant
2025-07-08 10:20:52 +02:00
b2816da802 fix xpu failures on PT 2.7 and 2.8 w/o IPEX and enable hqq cases on XPU (#39187)
* chameleon xpu bnb groundtruth update on bnb triton backend since we are
deprecating ipex backend

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enable hqq uts on XPU, all passed

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix comment

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-07-08 10:18:26 +02:00
17b3c96c00 Glm 4 doc (#39247)
* update the glm4 model readme

* update test

* update GLM-4.1V model

* update as format

* update

* fix some tests

* fix the rest

* fix on a10, not t4

* nit: dummy import

---------

Co-authored-by: raushan <raushan@huggingface.co>
2025-07-08 08:22:04 +02:00
bbca9782ca Update LED model card (#39233)
* Update LED model card

* Remove extra arguments

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-07 15:56:57 -07:00
41e865bb8d fix some flaky tests in tests/generation/test_utils.py (#39254)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 19:49:41 +02:00
93747d89ea Simplify Mixtral and its modular children (#39252)
* simplify mixtral a lot

* fix

* other moes

* mixtral

* qwen3

* back

* Update modular_qwen3_moe.py
2025-07-07 19:40:41 +02:00
3993ee1e98 Add segmentation_maps support to MobileNetV2ImageProcessor (#37312)
* Add `segmentation_maps` support to mobilenet_v2 image processor and `reduce_labels` to mobilevit

* Changed mobilenetv2 tests to support fastimageprocessor

* added `segmentation_maps` support to fast image processor

* reverted to upstream/main

* Add optional

* Use autodocstring

* Changed docs

* Docs fix

* Changed fp to match beit fp

* Change typing imports

* Fixed repo inconsistency

* Added fast-slow equivalence tests

* Removed unnecessary call

* Add `reduce_labels` to Mobilevit fast processor

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-07-07 13:34:59 -04:00
b96f213fcf Clarify per_device_train_batch_size scaling in TrainingArguments (#38… (#38857)
Clarify global batch size calculation in TrainingArguments (#38484)
2025-07-07 16:57:42 +00:00
9698052560 Add Korean translation for glossary.md (#38804)
* Add Korean translation for glossary.md

* Update docs/source/ko/glossary.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Joosun40 <77312900+Joosun40@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-07-07 09:12:55 -07:00
bf203aa9da Update tiny-agents example (#39245) 2025-07-07 15:58:36 +02:00
c4e39ee59c adjust input and output texts for test_modeling_recurrent_gemma.py (#39190)
* adjust input and output texts for test_modeling_recurrent_gemma.py

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* fix bug

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* adjust

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update Expectation match

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* fix

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 15:13:25 +02:00
14cba7ad33 enable xpu on kv-cache and hqq doc (#39246)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-07 13:12:02 +00:00
32db48db73 Fix patch helper (#39216)
remove -1
2025-07-07 15:11:48 +02:00
a3618d485a RotaryEmbeddings change is not None -> isinstance(..., dict) (#39145)
is None -> isinstance dict
2025-07-07 14:05:28 +01:00
9b09fe479f fix fastspeech2_conformer tests (#39229)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 15:04:26 +02:00
00e9efceab [bugfix] fix flash attention 2 unavailable error on Ascend NPU (#39166)
[bugfix] fix flash attention 2 error on Ascend NPU
2025-07-07 13:03:39 +00:00
056fa73fae [modular] Simplify logic and docstring handling (#39185)
* simplify a lot

* Update modular_model_converter.py

* finalize

* remove outdated functions

* apply it

* and examples
2025-07-07 14:52:57 +02:00
f16fbfb89a Make _compute_dynamic_ntk_parameters exportable (#39171)
* Make _compute_dynamic_ntk_parameters exportable

* add unit test
2025-07-07 14:48:31 +02:00
4243bb844d fix bug using FSDP V1 will lead to model device not properly set (#39177)
* fix bug using FSDP V1 will lead to model device not properly set

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update the code

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-07-07 14:47:04 +02:00
34c16167eb Don't send new comment if the previous one is less than 30 minutes (unless the content is changed) (#39170)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 14:43:50 +02:00
b8f397e456 fix typo in Gemma3n notes (#39196) 2025-07-07 14:41:33 +02:00
5348fbc005 [modular] Follow global indexing and attribute setting, and their dependencies (#39180)
* export global indexing statements

* add example

* style

* examples
2025-07-07 14:36:43 +02:00
8570bc29f3 Fix missing fast tokenizer/image_processor in whisper/qwen2.5-omni processor (#39244)
* fix missing fast tokenizer in whisper processor

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix processor test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix qwen2.5 omni processor

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-07 13:54:18 +02:00
b283d52f7f [vjepa2] replace einsum with unsqueeze (#39234) 2025-07-07 11:14:08 +01:00
a325409a50 Expectations re-order and corrected FA3 skip (#39195)
* Fix Expectations and a FA3 skip

* Fixed docstring

* Added context for Default expectation
2025-07-07 11:42:33 +02:00
b0a8e0b8d7 [video processors] Support float fps for precise frame sampling (#39134)
* [video processors] Support float fps for precise frame sampling

Enable fractional fps values (e.g., 1.5, 29.97) in video processors
for more precise frame sampling control.

- Change fps type from int to float across all video processors
- Maintain backward compatibility with integer values

Extends: #38105

* [video processors] Refine fps typing to Union[int, float]

Change fps type from Optional[float] to Optional[Union[int, float]]
for more explicit type information about supporting both integer
and floating-point frame rates.

- Update type hints and docstrings across 8 files
- Maintain backward compatibility
- Clarify support for both int and float values

Extends: #38105

* Revert "[video processors] Support float fps for precise frame sampling"

This reverts commit 7360d6e661b413ca0239e5ef61f9b1abbeab8e65.
2025-07-07 03:43:43 +00:00
ca7e1a3756 Refactor the way we handle outputs for new llamas and new models (#39120)
* just update 2 files

* update other models as well just making fix-copies

* also add the changes needed to modeling utils

* put this on the pretrained model instead

* nits and fixes

* update generic, fix to use config value

* update other modelings

* use transformers kwargs instead

* update

* update

* update other models

* update

* updates

* update

* update

* update

* fix

* finally

* very small nits

* this fixes more tests

* fix other models as well!

* update modularqwen2

* update models based on qwen2

* update

* update

* remove the **flash stuff in favor of noraml kwargs

* update

* propagate gemma?

* remove output attentions

* propagate

* support cross attention edge case

* same

* test this

* fixes

* more fix

* update

* update

* fix conflicts

* update

* fix emu3

* fix emu3

* move the fix a bit

* quel enfer

* some fixes, loss_kwargs should never had been

* finish fixing gemma3n

* fix small lm3

* fix another one

* fix csm now

* fux csm and mistral

* fix mistral now

* small fixes

* fix janusss

* only for some models

* fixup

* phix phi3

* more fixes?

* dose this fix it?

* update

* holy shit it was just graph breaks

* protect torch

* updates

* fix samhq?

* fix moonshine

* more moonshine fixes, 3 failures left!

* nits

* generic needs to support more

* more fixes to moonshine!

* fix cross attention outputs!

* fix csm!

* nits

* fix stupid kosmos2

* current updates

* fixes

* use output recorder?

* nicer!

* a little bit of magic

* update

* fix protect

* fix

* small fixes

* protect import

* fix a bunch of more models

* fix fixups

* fix some of the last ones

* nit

* partly fix phi

* update

* fix import path

* make something that is fullgraph compatible just to be sure

* typing was wrong on llama so the rest was wrong as well

* fucking ugly but at least it is still exportable

* syle

* supposed to fix moonshine, it still breaks

* fix some default

* fix the last bits of sam

* update samhq

* more fixes to am hq

* nit

* fix all output+hidden states and output_attentions!

* fix?

* fix diffllama

* updates to fix initialization on the sam pips

* ups there was a bug

* fix the last sam hq test

* fix gotocr

* fix gotocr2!

* fixes

* skip stupid tests

* there was one left :)

* fixup

* fix fix copies issues with this test file

* fix copies for sam_hq

* rm some comments

* skip 2 more failing tests

* fix

* fix everything

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* add more doc!

* fix public init

* fix modular qwen3

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2025-07-05 11:34:28 +02:00
e6a8063ef1 Update expected values (after switching to A10) - part 8 - Final (#39220)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-04 13:35:53 +02:00
cd8a041a4f Update expected values (after switching to A10) - part 7 (#39218)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-04 12:48:10 +02:00
0cf27916f0 Add packed tensor format support for flex/sdpa/eager through the mask! (#39194)
* Add the necesary logic to mask_utils

* add it everywhere

* Update masking_utils.py

* style

* Update masking_utils.py

* Update modeling_mimi.py

* Update masking_utils.py

* add support for more than batch size 1

* Update masking_utils.py

* add test

* style

* Update test_masking_utils.py

* Update masking_utils.py

* add require_token

* fix tests

* fix
2025-07-04 09:01:56 +02:00
037755ed54 Update expected values (after switching to A10) - part 6 (#39207)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 22:45:30 +02:00
1168f57abf Update expected values (after switching to A10) - part 5 (#39205)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 19:56:02 +02:00
7d9e52f376 Fix continuous batching in transformers serve (#39149)
* Fix CB

* Nit

* Update src/transformers/commands/serving.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add todos

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-03 18:15:31 +02:00
85d93cc6e3 [serve] Cursor support, move docs into separate page, add more examples (#39133)
* jan docs

* rm

* [cursor] tmp commit

* Cursor working :D

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/commands/serving.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* cursor docs

* try to fix agents/tools docs?

* try to fix agents/tools docs?

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add transformers chat example with transformers serve

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-07-03 17:04:16 +01:00
e15b06d8dc [typing] better return typehints for from_pretrained (#39184)
* config

* processor

* feature-extractor

* jukebox

* fixup

* update other methods in config

* remove "PretrainedConfig" annotations
2025-07-03 14:22:47 +00:00
a25fc3592e Update expected values (after switching to A10) - part 4 (#39189)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 15:13:06 +02:00
b31e9d19a6 [Dia] Change ckpt path in docs (#39181)
fix ckpt path
2025-07-03 10:02:58 +00:00
18e0cae207 Fix many HPU failures in the CI (#39066)
* more torch.hpu patches

* increase top_k because it results in flaky behavior when Tempreture, TopP and TopK are used together, which ends up killing beams early.

* remove temporal fix

* fix scatter operation when input and src are the same

* trigger

* fix and reduce

* skip finding batch size as it makes the hpu go loco

* fix fsdp (yay all are passing)

* fix checking equal nan values

* style

* remove models list

* order

* rename to cuda_extensions

* Update src/transformers/trainer.py
2025-07-03 11:17:27 +02:00
bff964c429 Decouple device_map='auto' and tp_plan='auto' (#38942)
* dissociate

* better place

* fix
2025-07-03 11:07:11 +02:00
8178c43112 when delaying optimizer creation only prepare the model (#39152) 2025-07-03 09:04:16 +02:00
91221da2f1 [glm4v] fix video inference (#39174)
fix video inference
2025-07-03 05:20:41 +00:00
ebfbcd42da Test fixes for Aria (and some Expectation for llava_next_video) (#39131)
* Expectations for llava_next_video

* Updated image src in aria

* Fix test_small_model_integration_test

* Fix small model integration llama

* Fix a bunch of tests

* Style

* Shortened generation in test from 900 to 90
2025-07-02 23:41:14 +02:00
37a239ca50 Update expected values (after switching to A10) - part 3 (#39179)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-02 22:48:30 +02:00
9326fc332d Update expected values (after switching to A10) - part 2 (#39165)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* empty

* [skip ci]

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-02 22:47:55 +02:00
25cd65ac43 Random serve fixes (#39176)
* Fix index out of bounds exception on wrong kv reuse

* Prevent loading same model twice

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2025-07-02 22:09:58 +02:00
548794b886 [serve] Model name or path should be required (#39178)
* Model name or path should be required

* Fix + add tests

* Change print to log so it doesn't display in transformers chat
2025-07-02 22:06:47 +02:00
2d561713f8 [generate] document non-canonical beam search default behavior (#39000) 2025-07-02 18:29:16 +01:00
df12d87d18 [docs] ViTPose (#38630)
* vitpose

* fix?

* fix?

* feedback

* fix

* feedback

* feedback

* update sample image
2025-07-02 07:56:29 -07:00
2b4a12b5bf Reduce Glm4v model test size significantly (#39173)
* fix test size

* Update test_modeling_glm4v.py
2025-07-02 15:55:05 +02:00
e355c0a11c Fix missing initializations for models created in 2024 (#38987)
* fix GroundingDino

* fix SuperGlue

* fix GroundingDino

* fix MambaModel

* fix OmDetTurbo

* fix SegGpt

* fix Qwen2Audio

* fix Mamba2

* fix DabDetr

* fix Dac

* fix FalconMamba

* skip timm initialization

* fix Encodec and MusicgenMelody

* fix Musicgen

* skip timm initialization test

* fix OmDetTurbo

* clean the code

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* add reviewed changes

* add back timm

* style

* better check for parametrizations

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-02 15:03:57 +02:00
1125513a8d Blip2 fixes (#39080)
* Fixed some devices errors

* Fixed other device issues and more expectations

* Reverted support flags

* style

* More granular support

* Fixed some rebase stuff

* add a not None check before .to
2025-07-02 14:39:39 +02:00
28df7f854a Fix multimodal processor get duplicate arguments when receive kwargs for initialization (#39125)
* fix processor tokenizer override

Signed-off-by: Isotr0py <2037008807@qq.com>

* code format

Signed-off-by: Isotr0py <2037008807@qq.com>

* add regression test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

* check image processor same

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-02 19:57:15 +08:00
b61023a1b7 🚨🚨🚨 [eomt] make EoMT compatible with pipeline (#39122)
* Make EoMT compatible with pipeline

* Implicit patch offsets

* remove patch offsets from arg

* Modify tests

* Update example

* fix proc testcase

* Add few more args

* add pipeline test suite

* fix

* docstring fixes

* add pipeline test

* changes w.r.t review

* 🙈 MB

* should fix device mismatch

* debug

* Fixes device mismatch

* use decorator

* we can split mlp

* expected values update

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2025-07-02 12:25:26 +01:00
4d5822e65d [smolvlm] fix video inference (#39147)
* fix smolvlm

* better do as before, set sampling params in overwritten `apply_chat_template`

* style

* update with `setdefault`
2025-07-02 12:05:10 +02:00
9b2f5b66d8 fix default value of config to match checkpionts in LLaVa-OV models (#39163) 2025-07-02 09:45:50 +00:00
e8e0c76162 Add activation sparsity reference in gemma3n doc (#39160)
Add activation sparsity reference in the description of gemma3n
2025-07-02 04:11:03 +02:00
8e87adc45f fix llama tests (#39161)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 23:27:22 +02:00
4c1715b610 Update expected values (after switching to A10) (#39157)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* empty

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 20:54:31 +02:00
ab59cc27fe Suggest jobs to use in run-slow (#39100)
* pr

* pr

* pr

* pr

* pr

* pr

* pr

* pr

* pr

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 20:19:06 +02:00
db2f535443 update bnb ground truth (#39117)
* update bnb resulte

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* set seed to avoid sampling different results

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix int8 tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add comments

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-01 20:06:37 +02:00
260846efad fix: remove undefined variable (#39146) 2025-07-01 19:10:29 +02:00
cdfe49a4d0 Change @lru_cache() to @lru_cache to match styles from #38883. (#39093)
Match styles in #38883
2025-07-01 18:29:16 +02:00
f46798193e Fix: Ensure wandb logs config in offline mode (#38992)
* Fix: Ensure wandb logs config in offline mode

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-07-01 16:17:58 +00:00
fe838d6631 Fix missing fsdp & trainer jobs in daily CI (#39153)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 18:10:30 +02:00
1283877571 [superglue] fix wrong concatenation which made batching results wrong (#38850) 2025-07-01 12:14:44 +00:00
f8b88866f5 [VLMs] support passing embeds along with pixels (#38467)
* VLMs can work with embeds now

* update more models

* fix tests

* fix copies

* fixup

* fix

* style

* unskip tests

* fix copies

* fix tests

* style

* omni modality models

* qwen models had extra indentation

* fix some other tests

* fix copies

* fix test last time

* unrelated changes revert

* we can't rely only on embeds

* delete file

* de-flake mistral3

* fix qwen models

* fix style

* fix tests

* fix copies

* deflake the test

* modular reverted by fixes, fix again

* flaky test, overwritten

* fix copies

* style
2025-07-01 11:33:20 +00:00
20901f1d68 [typing] LlamaAttention return typehint (#38998)
* helo llama

* helo llama

* helo llama

* apply modular

* fix dia

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-07-01 11:29:52 +01:00
7a25f8dfdb [qwen2-vl] fix FA2 inference (#39121)
* fix FA2

* update is causal flag and remove mask for FA2

* update for FA2 with varlen path

* how the tests were passing with different devices?

* add comment and ref to the PR

* move mask preparation to base pretrained model

* seq len is the first dim, not second

* fix copies to fix GLM4V
2025-07-01 10:18:37 +00:00
def9663239 feat: support indivisible shards for TP model loading and TPlizing. (#37220)
* feat: support uneven loading and sharding
resolve merge conflicts
Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* fix: allow for empty tensor computations

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* test: add llama1b test case

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* due to q_proj colwise it has to be multi of 2

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
2025-07-01 10:03:22 +00:00
06c4a4d499 fix caching_allocator_warmup with tie weights (#39070)
* fix caching_allocator_warmup with tie weights

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-01 11:32:20 +02:00
e435574721 🚨 Don't use cache in non-generative models (#38751)
* deprecate for 1 version

* style

* fix some tests

* fix esm

* skip for now, GC requires positional args but we have keyword args

* remove transpose for scores in modified models only

* skip fx trace tests
2025-07-01 09:08:21 +00:00
dbc98328da Several fixes for Gemma3n (#39135)
* remove the skips

* fix the epsilon to a small value (does not make sense otherwise)

* safeguard

* overload test_eager_matches_sdpa

* Update test_modeling_common.py

* skip appropriate tests

* correct no_split_layer

* fix all devices issue

* fix backward

* fix
2025-07-01 10:34:53 +02:00
d53518c5f2 Fix key mapping for VLMs (#39029)
* fix key mapping for VLMs

* use __mro__ instead

* update key mapping in save_pretrained
2025-07-01 09:47:53 +02:00
1155 changed files with 63455 additions and 37221 deletions

View File

@ -303,7 +303,7 @@ non_model_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install ."],
install_steps=["uv venv && uv pip install .[serving]"],
marker="not generate",
parallelism=6,
)

View File

@ -18,6 +18,10 @@ jobs:
notebook_folder: transformers_doc
languages: ar de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
# Temporary pin to work around datasets exception in the docbuilder.Remove after docker images and main have
# the right dependencies (which **should** be the case by 2025-07-20). See
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
pre_command: uv pip install datasets>=2.15.0
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -15,3 +15,7 @@ jobs:
pr_number: ${{ github.event.number }}
package: transformers
languages: en
# Temporary pin to work around datasets exception in the docbuilder. Remove after docker images and main have
# the right dependencies (which **should** be the case by 2025-07-20). See
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
pre_command: uv pip install datasets>=2.15.0

157
.github/workflows/get-pr-info.yml vendored Normal file
View File

@ -0,0 +1,157 @@
name: Get PR commit SHA
on:
workflow_call:
inputs:
pr_number:
required: true
type: string
outputs:
PR_HEAD_REPO_FULL_NAME:
description: "The full name of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_FULL_NAME }}
PR_BASE_REPO_FULL_NAME:
description: "The full name of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_FULL_NAME }}
PR_HEAD_REPO_OWNER:
description: "The owner of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}
PR_BASE_REPO_OWNER:
description: "The owner of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_OWNER }}
PR_HEAD_REPO_NAME:
description: "The name of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}
PR_BASE_REPO_NAME:
description: "The name of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_NAME }}
PR_HEAD_REF:
description: "The branch name of the pull request in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REF }}
PR_BASE_REF:
description: "The branch name in the base repository (to merge into)"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REF }}
PR_HEAD_SHA:
description: "The head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_SHA }}
PR_BASE_SHA:
description: "The head sha of the target branch in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_SHA }}
PR_MERGE_COMMIT_SHA:
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
PR_HEAD_COMMIT_DATE:
description: "The date of the head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
PR_MERGE_COMMIT_DATE:
description: "The date of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_HEAD_COMMIT_TIMESTAMP:
description: "The timestamp of the head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_TIMESTAMP }}
PR_MERGE_COMMIT_TIMESTAMP:
description: "The timestamp of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
PR:
description: "The PR"
value: ${{ jobs.get-pr-info.outputs.PR }}
PR_FILES:
description: "The files touched in the PR"
value: ${{ jobs.get-pr-info.outputs.PR_FILES }}
jobs:
get-pr-info:
runs-on: ubuntu-22.04
name: Get PR commit SHA better
outputs:
PR_HEAD_REPO_FULL_NAME: ${{ steps.pr_info.outputs.head_repo_full_name }}
PR_BASE_REPO_FULL_NAME: ${{ steps.pr_info.outputs.base_repo_full_name }}
PR_HEAD_REPO_OWNER: ${{ steps.pr_info.outputs.head_repo_owner }}
PR_BASE_REPO_OWNER: ${{ steps.pr_info.outputs.base_repo_owner }}
PR_HEAD_REPO_NAME: ${{ steps.pr_info.outputs.head_repo_name }}
PR_BASE_REPO_NAME: ${{ steps.pr_info.outputs.base_repo_name }}
PR_HEAD_REF: ${{ steps.pr_info.outputs.head_ref }}
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
PR_HEAD_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.head_commit_timestamp }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.merge_commit_timestamp }}
PR: ${{ steps.pr_info.outputs.pr }}
PR_FILES: ${{ steps.pr_info.outputs.files }}
if: ${{ inputs.pr_number != '' }}
steps:
- name: Extract PR details
id: pr_info
uses: actions/github-script@v6
with:
script: |
const { data: pr } = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: ${{ inputs.pr_number }}
});
const { data: head_commit } = await github.rest.repos.getCommit({
owner: pr.head.repo.owner.login,
repo: pr.head.repo.name,
ref: pr.head.ref
});
const { data: merge_commit } = await github.rest.repos.getCommit({
owner: pr.base.repo.owner.login,
repo: pr.base.repo.name,
ref: pr.merge_commit_sha,
});
const { data: files } = await github.rest.pulls.listFiles({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: ${{ inputs.pr_number }}
});
core.setOutput('head_repo_full_name', pr.head.repo.full_name);
core.setOutput('base_repo_full_name', pr.base.repo.full_name);
core.setOutput('head_repo_owner', pr.head.repo.owner.login);
core.setOutput('base_repo_owner', pr.base.repo.owner.login);
core.setOutput('head_repo_name', pr.head.repo.name);
core.setOutput('base_repo_name', pr.base.repo.name);
core.setOutput('head_ref', pr.head.ref);
core.setOutput('base_ref', pr.base.ref);
core.setOutput('head_sha', pr.head.sha);
core.setOutput('base_sha', pr.base.sha);
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
core.setOutput('pr', pr);
core.setOutput('head_commit_date', head_commit.commit.committer.date);
core.setOutput('merge_commit_date', merge_commit.commit.committer.date);
core.setOutput('files', files);
console.log('PR head commit:', {
head_commit: head_commit,
commit: head_commit.commit,
date: head_commit.commit.committer.date
});
console.log('PR merge commit:', {
merge_commit: merge_commit,
commit: merge_commit.commit,
date: merge_commit.commit.committer.date
});
- name: Convert dates to timestamps
id: get_timestamps
run: |
head_commit_date=${{ steps.pr_info.outputs.head_commit_date }}
merge_commit_date=${{ steps.pr_info.outputs.merge_commit_date }}
echo $head_commit_date
echo $merge_commit_date
head_commit_timestamp=$(date -d "$head_commit_date" +%s)
merge_commit_timestamp=$(date -d "$merge_commit_date" +%s)
echo $head_commit_timestamp
echo $merge_commit_timestamp
echo "head_commit_timestamp=$head_commit_timestamp" >> $GITHUB_OUTPUT
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT

36
.github/workflows/get-pr-number.yml vendored Normal file
View File

@ -0,0 +1,36 @@
name: Get PR number
on:
workflow_call:
outputs:
PR_NUMBER:
description: "The extracted PR number"
value: ${{ jobs.get-pr-number.outputs.PR_NUMBER }}
jobs:
get-pr-number:
runs-on: ubuntu-22.04
name: Get PR number
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:
- name: Get PR number
shell: bash
run: |
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
elif [[ "${{ github.event.pull_request.number }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.pull_request.number }}" >> $GITHUB_ENV
elif [[ "${{ github.event.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.number }}" >> $GITHUB_ENV
else
echo "PR_NUMBER=" >> $GITHUB_ENV
fi
- name: Check PR number
shell: bash
run: |
echo "${{ env.PR_NUMBER }}"
- name: Set PR number
id: set_pr_number
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"

View File

@ -97,14 +97,6 @@ jobs:
run: |
python3 utils/print_env.py
- name: Install datasets main
working-directory: /transformers
run: python3 -m pip install --no-cache-dir git+https://github.com/huggingface/datasets.git@main
- name: Install torchcodec
working-directory: /transformers
run: python3 -m pip install --no-cache-dir torch torchvision torchaudio torchcodec --index-url https://download.pytorch.org/whl/cu126
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze

199
.github/workflows/pr_run_slow_ci.yml vendored Normal file
View File

@ -0,0 +1,199 @@
name: PR slow CI
on:
pull_request_target:
types: [opened, synchronize, reopened]
jobs:
get-pr-number:
name: Get PR number
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
name: Get PR commit SHA
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ github.event.comment.created_at != '' }}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
get-jobs:
name: Get test files to run
runs-on: ubuntu-22.04
needs: [get-pr-number, get-pr-info]
outputs:
jobs: ${{ steps.get_jobs.outputs.jobs_to_run }}
steps:
- name: Get repository content
id: repo_content
uses: actions/github-script@v6
with:
script: |
const { data: tests_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
const { data: tests_models_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests/models',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
const { data: tests_quantization_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests/quantization',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
core.setOutput('tests_dir', tests_dir);
core.setOutput('tests_models_dir', tests_models_dir);
core.setOutput('tests_quantization_dir', tests_quantization_dir);
# This checkout to the main branch
- uses: actions/checkout@v4
with:
fetch-depth: "0"
- name: Write pr_files file
run: |
cat > pr_files.txt << 'EOF'
${{ needs.get-pr-info.outputs.PR_FILES }}
EOF
- name: Write tests_dir file
run: |
cat > tests_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_dir }}
EOF
- name: Write tests_models_dir file
run: |
cat > tests_models_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_models_dir }}
EOF
- name: Write tests_quantization_dir file
run: |
cat > tests_quantization_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_quantization_dir }}
EOF
- name: Run script to get jobs to run
id: get_jobs
run: |
python utils/get_pr_run_slow_jobs.py | tee output.txt
echo "jobs_to_run: $(tail -n 1 output.txt)"
echo "jobs_to_run=$(tail -n 1 output.txt)" >> $GITHUB_OUTPUT
send_comment:
# Will delete the previous comment and send a new one if:
# - either the content is changed
# - or the previous comment is 30 minutes or more old
name: Send a comment to suggest jobs to run
if: ${{ needs.get-jobs.outputs.jobs != '' }}
needs: [get-pr-number, get-jobs]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Check and update comment if needed
uses: actions/github-script@v7
env:
BODY: "\n\nrun-slow: ${{ needs.get-jobs.outputs.jobs }}"
with:
script: |
const prNumber = ${{ needs.get-pr-number.outputs.PR_NUMBER }};
const commentPrefix = "**[For maintainers]** Suggested jobs to run (before merge)";
const thirtyMinutesAgo = new Date(Date.now() - 30 * 60 * 1000); // 30 minutes ago
const newBody = `${commentPrefix}${process.env.BODY}`;
// Get all comments on the PR
const { data: comments } = await github.rest.issues.listComments({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber
});
// Find existing comments that start with our prefix
const existingComments = comments.filter(comment =>
comment.user.login === 'github-actions[bot]' &&
comment.body.startsWith(commentPrefix)
);
let shouldCreateNewComment = true;
let commentsToDelete = [];
if (existingComments.length > 0) {
// Get the most recent comment
const mostRecentComment = existingComments
.sort((a, b) => new Date(b.created_at) - new Date(a.created_at))[0];
const commentDate = new Date(mostRecentComment.created_at);
const isOld = commentDate < thirtyMinutesAgo;
const isDifferentContent = mostRecentComment.body !== newBody;
console.log(`Most recent comment created: ${mostRecentComment.created_at}`);
console.log(`Is older than 30 minutes: ${isOld}`);
console.log(`Has different content: ${isDifferentContent}`);
if (isOld || isDifferentContent) {
// Delete all existing comments and create new one
commentsToDelete = existingComments;
console.log(`Will delete ${commentsToDelete.length} existing comment(s) and create new one`);
} else {
// Content is same and comment is recent, skip
shouldCreateNewComment = false;
console.log('Comment is recent and content unchanged, skipping update');
}
} else {
console.log('No existing comments found, will create new one');
}
// Delete old comments if needed
for (const comment of commentsToDelete) {
console.log(`Deleting comment #${comment.id} (created: ${comment.created_at})`);
await github.rest.issues.deleteComment({
owner: context.repo.owner,
repo: context.repo.repo,
comment_id: comment.id
});
}
// Create new comment if needed
if (shouldCreateNewComment) {
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber,
body: newBody
});
console.log('✅ New comment created');
} else {
console.log(' No comment update needed');
}

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -7,7 +7,7 @@ on:
- cron: "17 2 * * *"
push:
branches:
- fix-dataset-run_object_detection-and-add-torchcodec-trigger-ci
- run_scheduled_ci*
workflow_dispatch:
inputs:
prev_workflow_run_id:
@ -24,7 +24,7 @@ on:
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: "15988665799"
prev_workflow_run_id: ""
other_workflow_run_id: ""
@ -50,8 +50,64 @@ jobs:
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-dummy"
slack_report_channel: "#transformers-ci-daily-models"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
trainer-fsdp-ci:
name: Trainer/FSDP CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
quantization-ci:
name: Quantization CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit

View File

@ -84,8 +84,6 @@ jobs:
machine_type: ${{ matrix.machine_type }}
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_models_gpu
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -104,11 +102,10 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
run_pipelines_gpu:
if: ${{ inputs.job == 'run_pipelines_gpu' }}
run_pipelines_torch_gpu:
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
name: Pipelines
strategy:
fail-fast: false
@ -161,20 +158,20 @@ jobs:
- name: Run all pipeline tests on Intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_gpu_test_reports tests/pipelines -m "not not_device_test"
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports/failures_short.txt
cat reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_gpu_test_reports
path: reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
path: reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
@ -248,8 +245,8 @@ jobs:
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
path: reports/${{ env.machine_type }}_run_examples_gpu_test_reports
run_deepspeed_gpu:
if: ${{ inputs.job == 'run_deepspeed_gpu' }}
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
name: Intel Gaudi deepspeed tests
strategy:
fail-fast: false
@ -305,20 +302,20 @@ jobs:
- name: Run all deepspeed tests on intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_deepspeed_gpu_test_reports tests/deepspeed -m "not not_device_test"
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports/failures_short.txt
cat reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports
path: reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Slack Report
@ -327,8 +324,8 @@ jobs:
setup,
run_models_gpu,
run_examples_gpu,
run_pipelines_gpu,
run_deepspeed_gpu,
run_torch_cuda_extensions_gpu,
run_pipelines_torch_gpu,
run_trainer_and_fsdp_gpu,
]
if: ${{ always() }}

View File

@ -23,7 +23,7 @@ jobs:
name: Pipeline CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_pipelines_gpu
job: run_pipelines_torch_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
@ -47,7 +47,7 @@ jobs:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_deepspeed_gpu
job: run_torch_cuda_extensions_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"

View File

@ -135,6 +135,7 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit

3
.gitignore vendored
View File

@ -167,3 +167,6 @@ tags
# ruff
.ruff_cache
# modular conversion
*.modular_backup

View File

@ -28,6 +28,7 @@ from transformers.testing_utils import HfDoctestModule, HfDocTestParser
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_tokenization_mistral_common",
"test_processor",
"test_processing",
"test_beam_constraints",

View File

@ -26,10 +26,12 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir -U timm
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -1,10 +1,10 @@
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG TORCH_VISION='0.21.0'
ARG TORCH_AUDIO='2.6.0'
ARG TORCH_VISION='0.22.0'
ARG TORCH_AUDIO='2.7.0'
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \

View File

@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate

View File

@ -19,7 +19,7 @@ RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
# `datasets` requires pandas, pandas has some modules compiled with numpy=1.x causing errors
RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'pandas<2' 'numpy<2'

View File

@ -26,7 +26,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate

View File

@ -72,8 +72,6 @@
title: Caching
- local: kv_cache
title: KV cache strategies
- local: serving
title: Serving
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
- local: perplexity
@ -100,13 +98,15 @@
title: Distributed inference
- local: perf_infer_cpu
title: CPU
- local: tf_xla
title: XLA
title: Optimization
- local: agents
title: Agents
- local: tools
title: Tools
- local: serving
title: Serving
- local: transformers_as_backend
title: Inference server backends
title: Inference
- isExpanded: false
sections:
@ -141,8 +141,6 @@
title: GPU
- local: perf_train_cpu
title: CPU
- local: perf_train_tpu_tf
title: TPU
- local: perf_train_special
title: Apple Silicon
- local: perf_train_gaudi
@ -433,6 +431,8 @@
title: DiffLlama
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/doge
title: Doge
- local: model_doc/dots1
title: dots1
- local: model_doc/dpr
@ -443,6 +443,10 @@
title: Encoder Decoder Models
- local: model_doc/ernie
title: ERNIE
- local: model_doc/ernie4_5
title: Ernie4_5
- local: model_doc/ernie4_5_moe
title: Ernie4_5_MoE
- local: model_doc/ernie_m
title: ErnieM
- local: model_doc/esm
@ -477,6 +481,8 @@
title: GLM
- local: model_doc/glm4
title: glm4
- local: model_doc/glm4_moe
title: glm4_moe
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
@ -519,6 +525,8 @@
title: Jukebox
- local: model_doc/led
title: LED
- local: model_doc/lfm2
title: LFM2
- local: model_doc/llama
title: LLaMA
- local: model_doc/llama2
@ -563,6 +571,8 @@
title: MobileBERT
- local: model_doc/modernbert
title: ModernBert
- local: model_doc/modernbert-decoder
title: ModernBERTDecoder
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mpt
@ -693,6 +703,8 @@
title: Zamba2
title: Text models
- sections:
- local: model_doc/aimv2
title: Aimv2
- local: model_doc/beit
title: BEiT
- local: model_doc/bit
@ -709,6 +721,8 @@
title: D-FINE
- local: model_doc/dab-detr
title: DAB-DETR
- local: model_doc/deepseek_v2
title: DeepSeek-V2
- local: model_doc/deformable_detr
title: Deformable DETR
- local: model_doc/deit
@ -735,6 +749,8 @@
title: DPT
- local: model_doc/efficientformer
title: EfficientFormer
- local: model_doc/efficientloftr
title: EfficientLoFTR
- local: model_doc/efficientnet
title: EfficientNet
- local: model_doc/eomt
@ -1035,6 +1051,8 @@
title: PaliGemma
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/perception_lm
title: PerceptionLM
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/pix2struct
@ -1087,6 +1105,8 @@
title: Vision Text Dual Encoder
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/voxtral
title: Voxtral
- local: model_doc/xclip
title: X-CLIP
title: Multimodal models
@ -1144,4 +1164,3 @@
title: Environment Variables
title: Reference
title: API

View File

@ -14,5 +14,9 @@ rendered properly in your Markdown viewer.
-->
# Agents
(deprecated)
> [!WARNING]
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

View File

@ -60,11 +60,11 @@ You will see it prints "I just entered the attention computation" as many times
## Dynamically switching attention function
You could dynamically change the model's attention function as well, by overriding the `config._attn_implementation` field:
You could dynamically change the model's attention function as well:
```python
# Back to use original sdpa implementation
model.config._attn_implementation = "sdpa"
model.set_attn_implementation("sdpa")
model(torch.ones(1, 5, dtype=int))
```
@ -72,6 +72,34 @@ model(torch.ones(1, 5, dtype=int))
and it will stop printing the statements, as it now uses the `sdpa` attention.
This allows to quickly change an attention function, without needing to reload the model!
## Different attention per backbone in multimodal models
For multimodal models different attention functions may work better for each backbone module. For example, some vision backbones perform better in fp32, but are incompatible with FlashAttention. To continue using FlashAttention while keeping the vision encoder in fp32, create a dict and map each config to an attention implementation as shown below.
```python
from transformers import AutoModelForImageTextToText
model_id = "facebook/chameleon-7b"
attention_implementation_per_backbone = {"vision_config": "sdpa", "text_config": "flash_attention_2"}
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation=attention_implementation_per_backbone)
# NOTE: keys in the attention implementation have to be the same as the sub-config names
for key in attention_implementation_per_backbone:
assert key in model.config.sub_configs, f"Invalid key in `attention_implementation`"
# You can omit certain backbones - the default attention function (SDPA) will be used
# This is equivalent to the previous example
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2"})
# Set the same attention implementation for all backbones with single string, same as in non-multimodal models
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager")
# Alternatively use a dict with an empty key for global configuration
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"": "eager"})
```
## What about new args needed in my custom attention function?
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the

View File

@ -64,9 +64,9 @@ Arguments can also be passed directly to `@auto_docstring` for more control. Use
It builds upon the standard Transformer architecture with unique modifications.""",
custom_args="""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
"""
)
class MySpecialModel(PreTrainedModel):
@ -85,13 +85,40 @@ class MySpecialModel(PreTrainedModel):
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
r"""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
"""
# ...
```
You should also use the `@auto_docstring` decorator for classes that inherit from [`~utils.ModelOutput`].
```python
@dataclass
@auto_docstring(
custom_intro="""
Custom model outputs with additional fields.
"""
)
class MyModelOutput(ImageClassifierOutput):
r"""
loss (`torch.FloatTensor`, *optional*):
The loss of the model.
custom_field (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
A custom output field specific to this model.
"""
# Standard fields like hidden_states, logits, attentions etc. can be automatically documented if the description is the same as the standard arguments.
# However, given that the loss docstring is often different per model, you should document it in the docstring above.
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
# Custom fields need to be documented in the docstring above
custom_field: Optional[torch.FloatTensor] = None
```
</hfoption>
<hfoption id="functions">
@ -171,7 +198,7 @@ class MyModel(PreTrainedModel):
There are some rules for documenting different types of arguments and they're listed below.
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `args_doc.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `args_doc.py`.
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `auto_docstring.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `auto_docstring.py`.
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
@ -245,7 +272,7 @@ When working with modular files (`modular_model.py`), follow the guidelines belo
The `@auto_docstring` decorator automatically generates docstrings by:
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `args_doc.py` file.
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `auto_docstring.py` file.
3. Adding argument descriptions in one of two ways as shown below.
| method | description | usage |
@ -253,7 +280,7 @@ The `@auto_docstring` decorator automatically generates docstrings by:
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `args_doc.py`.
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `auto_docstring.py`.
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.

View File

@ -82,24 +82,18 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
## Cache storage implementation
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
Caches are structured as a list of layers, where each layer contains a key and value cache. The key and value caches are tensors with the shape `[batch_size, num_heads, seq_len, head_dim]`.
Layers can be of different types (e.g. `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), which mostly changes how sequence length is handled and how the cache is updated.
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
- `key_cache`: A list of tensors, one for each layer.
- `value_cache`: A list of tensors, one for each layer.
The simplest is a `DynamicLayer` that grows as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token:
When new tokens are processed:
1. For each layer, the new key and value states are concatenated with the existing cache.
```py
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
```
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
Other layer types like `StaticLayer` and `SlidingWindowLayer` have a fixed sequence length that is set when the cache is created. This makes them compatible with `torch.compile`. In the case of `SlidingWindowLayer`, existing tokens are shifted out of the cache when a new token is added.
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
@ -134,6 +128,34 @@ for _ in range(max_new_tokens):
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## Cache position
The cache position tracks where to insert new tokens in the attention cache. It represents the *absolute* position of each token in the context, independent of padding or batch structure. Suppose you already cached `N` tokens and are now processing `K` new tokens. The cache position for the new tokens will range from `N` to `N + K - 1`. In other words, you're processing tokens at positions - `[N, N + 1, N + 2, ..., N + K - 1]`.
Cache position is used internally for two purposes:
1. Selecting new tokens to process in the input sequence and ensuring only tokens that havent been cached yet are passed to the model's `forward`.
2. Storing key/value pairs at the correct positions in the cache. This is especially important for fixed-size caches, like [`StaticCache`], that pre-allocates a specific cache length.
The generation loop usually takes care of the cache position, but if you're writing a custom generation method, it is important that cache positions are accurate since they are used to write and read key/value states into fixed slots.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "You are a helpful assistant."}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
```
## Legacy cache format
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
@ -143,7 +165,7 @@ The legacy format is essentially the same data structure but organized different
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
- The format is less flexible and doesn't support features like quantization or offloading.
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
If your project depends on this legacy format, we recommend to convert to [`DynamicCache`] with [`~DynamicCache.from_legacy_cache`]. Note that legacy cache format is deprecated and not used anymore in `Transformers`. You can convert back to tuple format with [`DynamicCache.to_legacy_cache`] functions, which is helpful if you have custom logic for manipulating a cache in a specific format.
```py
import torch
@ -159,4 +181,4 @@ generation_outputs = model.generate(**inputs, return_dict_in_generate=True, retu
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
legacy_format_cache = cache.to_legacy_cache()
```
```

View File

@ -25,10 +25,7 @@ Check model leaderboards like [OpenLLM](https://hf.co/spaces/HuggingFaceH4/open_
This guide shows you how to quickly start chatting with Transformers from the command line, how build and format a conversation, and how to chat using the [`TextGenerationPipeline`].
## transformers CLI
### Interactive chat session
## chat CLI
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
@ -52,68 +49,7 @@ For a full list of options, run the command below.
transformers chat -h
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating).
### Serving a model and using MCP tools
> [!WARNING]
> This section is experimental and subject to changes in future versions
Powering the `chat` interface, we have a server that takes user messages and returns completions. The server has a chat completion API compatible with the OpenAI SDK, so you can also quickly experiment with `transformers` models on existing aplications. To launch a server separately, use the `transformers serve` CLI:
```bash
transformers serve Menlo/Jan-nano
```
Under the hood, the `chat` CLI launches and uses `transformers serve`. This server is also an MCP client, which can receive information available MCP servers (i.e. tools), massage their information into the model prompt, and prepare calls to these tools when the model commands to do so. Naturally, this requires a model that is trained to use tools.
At the moment, MCP tool usage in `transformers` has the following constraints:
- `chat` can't handle tools, but the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI can;
- Only the `qwen` family of models is supported.
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
```json
{
"model": "http://localhost:8000",
"provider": "local",
"servers": [
{
"type": "sse",
"config": {
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have a server (from `transformers serve`) running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating). It uses the `transformers serve` CLI under the hood ([docs](./serving.md#serve-cli)).
## TextGenerationPipeline

View File

@ -356,66 +356,93 @@ A [`Constraint`] can be used to force the generation to include specific tokens
## Caches
[[autodoc]] Cache
- update
[[autodoc]] CacheConfig
- update
[[autodoc]] QuantizedCacheConfig
- validate
[[autodoc]] DynamicCache
[[autodoc]] CacheLayerMixin
- update
- get_seq_length
- get_mask_sizes
- get_max_cache_shape
- reset
- reorder_cache
[[autodoc]] DynamicLayer
- update
- crop
- batch_repeat_interleave
- batch_select_indices
[[autodoc]] StaticLayer
- update
[[autodoc]] SlidingWindowLayer
- update
[[autodoc]] CacheProcessor
- pre_update
- post_update
[[autodoc]] OffloadedCacheProcessor
- pre_update
[[autodoc]] QuantizedCacheProcessor
- post_update
[[autodoc]] QuantoQuantizedCacheProcessor
- post_update
[[autodoc]] HQQQuantizedCacheProcessor
- post_update
[[autodoc]] Cache
- update
- get_seq_length
- get_mask_sizes
- get_max_cache_shape
- reset
- reorder_cache
- crop
- batch_repeat_interleave
- batch_select_indices
[[autodoc]] DynamicCache
- to_legacy_cache
- from_legacy_cache
[[autodoc]] QuantizedCache
- update
- get_seq_length
[[autodoc]] QuantoQuantizedCache
[[autodoc]] QuantoQuantizedCacheProcessor
[[autodoc]] HQQQuantizedCache
[[autodoc]] HQQQuantizedCacheProcessor
[[autodoc]] OffloadedCache
- update
- prefetch_layer
- evict_previous_layer
[[autodoc]] StaticCache
- update
- get_seq_length
- reset
[[autodoc]] OffloadedStaticCache
- update
- get_seq_length
- reset
[[autodoc]] HybridCache
- update
- get_seq_length
- reset
[[autodoc]] HybridChunkedCache
[[autodoc]] SlidingWindowCache
- update
- reset
[[autodoc]] EncoderDecoderCache
- get_seq_length
- to_legacy_cache
- from_legacy_cache
- reset
- reorder_cache
[[autodoc]] MambaCache
- update_conv_state
- update_ssm_state
- reset
[[autodoc]] CacheConfig
[[autodoc]] QuantizedCacheConfig
## Watermark Utils
[[autodoc]] WatermarkingConfig

View File

@ -247,3 +247,114 @@ first and last layer will be shown. This is useful when some layers (typically c
layers.
[[autodoc]] model_addition_debugger_context
## Analyzer of skipped tests
### Scan skipped tests - for model adders and maintainers
This small util is a power user tool intended for model adders and maintainers. It lists all test methods
existing in `test_modeling_common.py`, inherited by all model tester classes, and scans the repository to measure
how many tests are being skipped and for which models.
### Rationale
When porting models to transformers, tests fail as they should, and sometimes `test_modeling_common` feels irreconcilable with the peculiarities of our brand new model. But how can we be sure we're not breaking everything by adding a seemingly innocent skip?
This utility:
- scans all test_modeling_common methods
- looks for times where a method is skipped
- returns a summary json you can load as a DataFrame/inspect
**For instance test_inputs_embeds is skipped in a whooping 39% proportion at the time of writing this util.**
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/f7f671f69b88ce4967e19179172c248958d35742/transformers/tests_skipped_visualisation.png)
### Usage
You can run the skipped test analyzer in two ways:
#### Full scan (default)
From the root of `transformers` repo, scans all common test methods and outputs the results to a JSON file (default: `all_tests_scan_result.json`).
```bash
python utils/scan_skipped_tests.py --output_dir path/to/output
```
- `--output_dir` (optional): Directory where the JSON results will be saved. Defaults to the current directory.
**Example output:**
```
🔬 Parsing 331 model test files once each...
📝 Aggregating 224 tests...
(224/224) test_update_candidate_strategy_with_matches_1es_3d_is_nonecodet_schedule_fa_kwargs
✅ Scan complete.
📄 JSON saved to /home/pablo/git/transformers/all_tests_scan_result.json
```
And it will generate `all_tests_scan_result.json` file that you can inspect. The JSON is indexed by method name, and each entry follows this schema, indicating the origin as well (from `common`or `GenerationMixin`.)
```json
{
"<method_name>": {
"origin": "<test suite>"
"models_ran": ["<model_name>", ...],
"models_skipped": ["<model_name>", ...],
"skipped_proportion": <float>,
"reasons_skipped": ["<model_name>: <reason>",
...
]
},
...
}
```
Which you can visualise as above with e.g. `pandas`
```python
df = pd.read_json('all_tests_scan_result.json').T
df.sort_values(by=['skipped_proportion'], ascending=False)
```
### Scan a single test method
You can focus on a specific test method using `--test_method_name`:
```bash
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
```
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).
- `--output_dir` (optional): Directory where the JSON result will be saved.
**Example output:**
```bash
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds
🔬 Parsing 331 model test files once each...
== test_inputs_embeds ==
Ran : 199/323
Skipped : 124/323 (38.4%)
- aimv2: Aimv2 does not use inputs_embeds
- align: Inputs_embeds is tested in individual model tests
- altclip: Inputs_embeds is tested in individual model tests
- audio_spectrogram_transformer: AST does not use inputs_embeds
- beit: BEiT does not use inputs_embeds
- bit: Bit does not use inputs_embeds
- blip: Blip does not use inputs_embeds
- blip_2: Inputs_embeds is tested in individual model tests
- bridgetower:
- canine: CANINE does not have a get_input_embeddings() method.
- ...
📄 JSON saved to /home/pablo/git/transformers/scan_test_inputs_embeds.json
```

View File

@ -44,7 +44,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
@ -59,7 +59,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
past_key_values = DynamicCache()
@ -134,7 +134,7 @@ The [`QuantizedCache`] reduces memory requirements by quantizing the KV values t
> [!WARNING]
> Quantizing the cache can harm latency if the context length is short and there is enough GPU memory available for generation without enabling cache quantization. Try to find a balance between memory efficiency and latency.
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and indicate the quantization backend in [`QuantizedCacheConfig`]. Any additional quantization related parameters should also be passed either as a dict or an instance of [`QuantizedCacheConfig`]. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and the quantization backend, as well as any additional quantization related parameters should also be passed either as a dict. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
<hfoptions id="quantized-cache">
<hfoption id="HQQQuantizedCache">
@ -142,13 +142,14 @@ Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [
For [`HQQQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `1`.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache, QuantizedCacheConfig
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"axis-key": 1, "axis-value": 1, "backend": "hqq"})
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"backend": "HQQ"})
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
```
@ -159,13 +160,14 @@ I like rock music because it's loud and energetic. It's a great way to express m
For [`QuantoQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `0`.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache, QuantizedCacheConfig
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "axis-key": 0, "axis-value": 0, "backend": "quanto"})
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
```
@ -207,14 +209,14 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map={"": 0})
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static")
tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
```
Cache offloading requires a CUDA GPU.
Cache offloading requires a CUDA GPU or Intel XPU.
### Sliding window cache
@ -227,7 +229,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window")
@ -273,7 +275,6 @@ from transformers.cache_utils import (
StaticCache,
SlidingWindowCache,
QuantoQuantizedCache,
QuantizedCacheConfig,
)
model_id = "meta-llama/Llama-2-7b-chat-hf"
@ -306,15 +307,15 @@ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, StaticCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map={"": 0})
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# You can also init a DynamicCache, if that suits you better
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device=model.device.type, dtype=torch.bfloat16)
INITIAL_PROMPT = "You are a helpful assistant. "
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to(model.device.type)
# This is the common prompt cached, we need to run forward without grad to be able to copy
with torch.no_grad():
prompt_cache = model(**inputs_initial_prompt, past_key_values = prompt_cache).past_key_values
@ -322,7 +323,7 @@ with torch.no_grad():
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to(model.device.type)
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]

View File

@ -341,7 +341,7 @@ A known issue with transformer models is that the self-attention mechanism grows
FlashAttention and [FlashAttention-2](./perf_infer_gpu_one#flashattention-2) break up the attention computation into smaller chunks and reduces the number of intermediate read/write operations to the GPU memory to speed up inference. FlashAttention-2 improves on the original FlashAttention algorithm by also parallelizing over sequence length dimension and better partitioning work on the hardware to reduce synchronization and communication overhead.
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`].
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or set with `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface) after the model is loaded.
```py
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
@ -353,6 +353,14 @@ model = AutoModelForCausalLM.from_pretrained(
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
# Change the model's attention dynamically after loading
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
quantization_config=quant_config,
torch_dtype=torch.bfloat16
)
model.set_attention_implementation("flash_attention_2")
```
### PyTorch scaled dot product attention
@ -360,7 +368,7 @@ model = AutoModelForCausalLM.from_pretrained(
Scaled dot product attention (SDPA) is automatically enabled in PyTorch 2.0 and it supports FlashAttention, xFormers, and PyTorch's C++ implementation. SDPA chooses the most performant attention algorithm if you're using a CUDA backend. For other backends, SDPA defaults to the PyTorch C++ implementation.
> [!TIP]
> SDPA automaticallysupports FlashAttention-2 as long as you have the latest PyTorch version installed.
> SDPA automatically supports FlashAttention-2 as long as you have the latest PyTorch version installed.
Use the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to explicitly enable or disable any of the four attention algorithms. For example, use `SDPBackend.FLASH_ATTENTION` to enable FlashAttention.

View File

@ -0,0 +1,104 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# AIMv2
## Overview
The AIMv2 model was proposed in [Multimodal Autoregressive Pre-training of Large Vision Encoders](https://arxiv.org/abs/2411.14402) by Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby.
The abstract from the paper is the following:
*We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.*
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
The original code can be found [here](https://github.com/apple/ml-aim).
## Usage Example
Here is an example of Image Feature Extraction using specific checkpoints on resized images and native resolution images:
```python
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-native")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-native")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
```
Here is an example of a checkpoint performing zero-shot classification:
```python
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit")
inputs = processor(
images=image,
text=text,
add_special_tokens=True,
truncation=True,
padding=True,
return_tensors="pt",
)
outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=-1)
```
## Aimv2Config
[[autodoc]] Aimv2Config
## Aimv2TextConfig
[[autodoc]] Aimv2TextConfig
## Aimv2VisionConfig
[[autodoc]] Aimv2VisionConfig
## Aimv2Model
[[autodoc]] Aimv2Model
- forward
## Aimv2VisionModel
[[autodoc]] Aimv2VisionModel
- forward
## Aimv2TextModel
[[autodoc]] Aimv2TextModel
- forward
</pt>
<tf>

View File

@ -258,6 +258,10 @@ The following auto classes are available for the following computer vision tasks
[[autodoc]] AutoModelForKeypointDetection
### AutoModelForKeypointMatching
[[autodoc]] AutoModelForKeypointMatching
### AutoModelForMaskedImageModeling
[[autodoc]] AutoModelForMaskedImageModeling

View File

@ -14,49 +14,105 @@ rendered properly in your Markdown viewer.
-->
# CamemBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CamemBERT
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by
[Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la
Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model
trained on 138GB of French text.
[CamemBERT](https://huggingface.co/papers/1911.03894) is a language model based on [RoBERTa](./roberta), but trained specifically on French text from the OSCAR dataset, making it more effective for French language tasks.
The abstract from the paper is the following:
What sets CamemBERT apart is that it learned from a huge, high quality collection of French data, as opposed to mixing lots of languages. This helps it really understand French better than many multilingual models.
*Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available
models have either been trained on English data or on the concatenation of data in multiple languages. This makes
practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French,
we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the
performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging,
dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art
for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and
downstream applications for French NLP.*
Common applications of CamemBERT include masked language modeling (Fill-mask prediction), text classification (sentiment analysis), token classification (entity recognition) and sentence pair classification (entailment tasks).
This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/).
You can find all the original CamemBERT checkpoints under the [ALMAnaCH](https://huggingface.co/almanach/models?search=camembert) organization.
<Tip>
> [!TIP]
> This model was contributed by the [ALMAnaCH (Inria)](https://huggingface.co/almanach) team.
>
> Click on the CamemBERT models in the right sidebar for more examples of how to apply CamemBERT to different NLP tasks.
This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well
as the information relative to the inputs and outputs.
The examples below demonstrate how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
</Tip>
<hfoptions id="usage">
## Resources
<hfoption id="Pipeline">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
```python
import torch
from transformers import pipeline
pipeline = pipeline("fill-mask", model="camembert-base", torch_dtype=torch.float16, device=0)
pipeline("Le camembert est un délicieux fromage <mask>.")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
model = AutoModelForMaskedLM.from_pretrained("camembert-base", torch_dtype="auto", device_map="auto", attn_implementation="sdpa")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Le camembert est un délicieux fromage <mask>." | transformers run --task fill-mask --model camembert-base --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing weights in lower precision. Refer to the [Quantization](../quantization/overview) overview for available options.
The example below uses [bitsandbytes](../quantization/bitsandbytes) quantization to quantize the weights to 8-bits.
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM, BitsAndBytesConfig
import torch
quant_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForMaskedLM.from_pretrained(
"almanach/camembert-large",
quantization_config=quant_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-large")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
## CamembertConfig
@ -137,5 +193,4 @@ as the information relative to the inputs and outputs.
[[autodoc]] TFCamembertForQuestionAnswering
</tf>
</frameworkcontent>
</frameworkcontent>

View File

@ -0,0 +1,49 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSeek-V2
## Overview
The DeepSeek-V2 model was proposed in [DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model](https://arxiv.org/abs/2405.04434) by DeepSeek-AI Team.
The abstract from the paper is the following:
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
The original code can be found [here](https://huggingface.co/deepseek-ai/DeepSeek-V2).
### Usage tips
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
## DeepseekV2Config
[[autodoc]] DeepseekV2Config
## DeepseekV2Model
[[autodoc]] DeepseekV2Model
- forward
## DeepseekV2ForCausalLM
[[autodoc]] DeepseekV2ForCausalLM
- forward
## DeepseekV2ForSequenceClassification
[[autodoc]] DeepseekV2ForSequenceClassification
- forward

View File

@ -44,7 +44,7 @@ tokens and decodes them back into audio.
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
text = ["[S1] Dia is an open weights text to dialogue model."]
processor = AutoProcessor.from_pretrained(model_checkpoint)
@ -66,7 +66,7 @@ from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
@ -93,7 +93,7 @@ from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))

View File

@ -0,0 +1,103 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Doge
## Overview
Doge is a series of small language models based on the [Doge](https://github.com/SmallDoges/small-doge) architecture, aiming to combine the advantages of state-space and self-attention algorithms, calculate dynamic masks from cached value states using the zero-order hold method, and solve the problem of existing mainstream language models getting lost in context. It uses the `wsd_scheduler` scheduler to pre-train on the `smollm-corpus`, and can continue training on new datasets or add sparse activation feedforward networks from stable stage checkpoints.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F426/transformers/model_doc/doge_architecture.png" alt="drawing" width="600"/>
As shown in the figure below, the sequence transformation part of the Doge architecture uses `Dynamic Mask Attention`, which can be understood as using self-attention related to value states during training, and using state-space without past state decay during inference, to solve the problem of existing Transformers or SSMs getting lost in long text. The state transformation part of Doge uses `Cross Domain Mixture of Experts`, which consists of dense linear layers and sparse embedding layers, and can additionally increase sparse parameters to continue training from dense weight checkpoints without retraining the entire model, thereby reducing the cost of continuous iteration of the model. In addition, Doge also uses `RMSNorm` and `Residual` with learnable parameters to adapt the gradient range of deep models.
Checkout all Doge model checkpoints [here](https://huggingface.co/collections/SmallDoge/doge-slm-679cc991f027c4a3abbded4a).
## Usage
<details>
<summary>Using Doge-Base for text generation</summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M")
inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs))
```
</details>
<details>
<summary>Using Doge-Instruct for question answering</summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M-Instruct")
generation_config = GenerationConfig(
max_new_tokens=100,
use_cache=True,
do_sample=True,
temperature=0.8,
top_p=0.9,
repetition_penalty=1.0
)
steamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
prompt = "Hi, how are you doing today?"
conversation = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
conversation=conversation,
tokenize=True,
return_tensors="pt",
)
outputs = model.generate(
inputs,
tokenizer=tokenizer,
generation_config=generation_config,
streamer=steamer
)
```
</details>
## DogeConfig
[[autodoc]] DogeConfig
## DogeModel
[[autodoc]] DogeModel
- forward
## DogeForCausalLM
[[autodoc]] DogeForCausalLM
- forward
## DogeForSequenceClassification
[[autodoc]] DogeForSequenceClassification
- forward

View File

@ -0,0 +1,114 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the MIT License; you may not use this file except in compliance with
the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# EfficientLoFTR
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
The EfficientLoFTR model was proposed in [Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed](https://arxiv.org/abs/2403.04765) by Yifan Wang, Xingyi He, Sida Peng, Dongli Tan and Xiaowei Zhou.
This model consists of matching two images together by finding pixel correspondences. It can be used to estimate the pose between them.
This model is useful for tasks such as image matching, homography estimation, etc.
The abstract from the paper is the following:
*We present a novel method for efficiently producing semidense matches across images. Previous detector-free matcher
LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios but suffers
from low efficiency. We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
One key observation is that performing the transformer over the entire feature map is redundant due to shared local
information, therefore we propose an aggregated attention mechanism with adaptive token selection for efficiency.
Furthermore, we find spatial variance exists in LoFTRs fine correlation module, which is adverse to matching accuracy.
A novel two-stage correlation layer is proposed to achieve accurate subpixel correspondences for accuracy improvement.
Our efficiency optimized model is 2.5× faster than LoFTR which can even surpass state-of-the-art efficient sparse
matching pipeline SuperPoint + LightGlue. Moreover, extensive experiments show that our method can achieve higher
accuracy compared with competitive semi-dense matchers, with considerable efficiency benefits. This opens up exciting
prospects for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
Project page: [https://zju3dv.github.io/efficientloftr/](https://zju3dv.github.io/efficientloftr/).*
## How to use
Here is a quick example of using the model.
```python
import torch
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
from transformers.image_utils import load_image
image1 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg")
image2 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg")
images = [image1, image2]
processor = AutoImageProcessor.from_pretrained("stevenbucaille/efficientloftr")
model = AutoModelForKeypointMatching.from_pretrained("stevenbucaille/efficientloftr")
inputs = processor(images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
You can use the `post_process_keypoint_matching` method from the `ImageProcessor` to get the keypoints and matches in a more readable format:
```python
image_sizes = [[(image.height, image.width) for image in images]]
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(outputs):
print("For the image pair", i)
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
)
```
From the post processed outputs, you can visualize the matches between the two images using the following code:
```python
images_with_matching = processor.visualize_keypoint_matching(images, outputs)
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2nJZQlFToCYp_iLurvcZ4.png)
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
## EfficientLoFTRConfig
[[autodoc]] EfficientLoFTRConfig
## EfficientLoFTRImageProcessor
[[autodoc]] EfficientLoFTRImageProcessor
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
## EfficientLoFTRModel
[[autodoc]] EfficientLoFTRModel
- forward
## EfficientLoFTRForKeypointMatching
[[autodoc]] EfficientLoFTRForKeypointMatching
- forward

View File

@ -14,115 +14,88 @@ rendered properly in your Markdown viewer.
-->
# Encoder Decoder Models
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Encoder Decoder Models
The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
[`EncoderDecoderModel`](https://huggingface.co/papers/1706.03762) initializes a sequence-to-sequence model with any pretrained autoencoder and pretrained autoregressive model. It is effective for sequence generation tasks as demonstrated in [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) which uses [`BertModel`] as the encoder and decoder.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks
was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by
Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
> [!TIP]
> This model was contributed by [thomwolf](https://huggingface.co/thomwolf) and the TensorFlow/Flax version by [ydshieh](https://huggingface.co/ydshieh).
>
> Click on the Encoder Decoder models in the right sidebar for more examples of how to apply Encoder Decoder to different language tasks.
After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like
any other models (see the examples for more information).
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder
and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) by Yang Liu and Mirella Lapata.
## Randomly initializing `EncoderDecoderModel` from model configurations.
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
from transformers import pipeline
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
summarizer = pipeline(
"summarization",
model="patrickvonplaten/bert2bert-cnn_dailymail-fp16",
device=0
)
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = EncoderDecoderModel(config=config)
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
print(summarizer(text))
```
## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
[`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method.
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import EncoderDecoderModel, BertTokenizer
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
model = AutoModelForCausalLM.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16", torch_dtype=torch.bfloat16, device_map="auto",attn_implementation="sdpa")
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device)
summary = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True)
print(tokenizer.decode(summary[0], skip_special_tokens=True))
```
## Loading an existing `EncoderDecoderModel` checkpoint and perform inference.
</hfoption>
<hfoption id="transformers CLI">
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
```bash
echo -e "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen." | transformers-cli run --task summarization --model "patrickvonplaten/bert2bert-cnn_dailymail-fp16" --device 0
```
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
</hfoption>
</hfoptions>
## Notes
- [`EncoderDecoderModel`] can be initialized using any pretrained encoder and decoder. But depending on the decoder architecture, the cross-attention layers may be randomly initialized.
These models require downstream fine-tuning, as discussed in this [blog post](https://huggingface.co/blog/warm-starting-encoder-decoder). Use [`~EncoderDecoderModel.from_encoder_decoder_pretrained`] to combine encoder and decoder checkpoints.
```python
>>> from transformers import AutoTokenizer, EncoderDecoderModel
from transformers import EncoderDecoderModel, BertTokenizer
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> # let's perform inference on a long piece of text
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
>>> # autoregressively generate summary (uses greedy decoding by default)
>>> generated_ids = model.generate(input_ids)
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
"google-bert/bert-base-uncased",
"google-bert/bert-base-uncased"
)
```
## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`.
[`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a
pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch
checkpoints for a particular encoder-decoder model, a workaround is:
```python
>>> # a workaround to load from pytorch checkpoint
>>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel
>>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
>>> _model.encoder.save_pretrained("./encoder")
>>> _model.decoder.save_pretrained("./decoder")
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
... )
>>> # This is only for copying some specific attributes of this particular model.
>>> model.config = _model.config
```
## Training
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model.
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the
`input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded
target sequence).
- Encoder Decoder models can be fine-tuned like BART, T5 or any other encoder-decoder model. Only 2 inputs are required to compute a loss, `input_ids` and `labels`. Refer to this [notebook](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for a more detailed training example.
```python
>>> from transformers import BertTokenizer, EncoderDecoderModel
@ -147,11 +120,42 @@ target sequence).
>>> loss = model(input_ids=input_ids, labels=labels).loss
```
Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training.
- [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config as shown below.
This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions
were contributed by [ydshieh](https://github.com/ydshieh).
```python
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = EncoderDecoderModel(config=config)
```
- The Encoder Decoder Model can also be used for translation as shown below.
```python
from transformers import AutoTokenizer, EncoderDecoderModel
# Load a pre-trained translation model
model_name = "google/bert2bert_L-24_wmt_en_de"
tokenizer = AutoTokenizer.from_pretrained(model_name, pad_token="<pad>", eos_token="</s>", bos_token="<s>")
model = EncoderDecoderModel.from_pretrained(model_name)
# Input sentence to translate
input_text = "Plants create energy through a process known as"
# Encode the input text
inputs = tokenizer(input_text, return_tensors="pt", add_special_tokens=False).input_ids
# Generate the translated output
outputs = model.generate(inputs)[0]
# Decode the output tokens to get the translated sentence
translated_text = tokenizer.decode(outputs, skip_special_tokens=True)
print("Translated text:", translated_text)
```
## EncoderDecoderConfig

View File

@ -74,20 +74,16 @@ inputs = processor(
return_tensors="pt",
)
# Remove Patch Offsets from inputs — only used later for post-processing.
patch_offsets = inputs.pop("patch_offsets")
with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_semantic_segmentation(
outputs,
patch_offsets=patch_offsets,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the segmentation mask
@ -130,12 +126,12 @@ with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_instance_segmentation(
outputs,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the segmentation mask
@ -173,12 +169,12 @@ with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_panoptic_segmentation(
outputs,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the panoptic segmentation mask

View File

@ -0,0 +1,99 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
</div>
# Ernie 4.5
## Overview
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
Other models from the family can be found at [Ernie 4.5 MoE](./ernie4_5_moe.md).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
</div>
## Usage Tips
### Generate text
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "baidu/ERNIE-4.5-0.3B-PT"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
)
# prepare the model input
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# decode the generated ids
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
```
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
## Ernie4_5Config
[[autodoc]] Ernie4_5Config
## Ernie4_5Model
[[autodoc]] Ernie4_5Model
- forward
## Ernie4_5ForCausalLM
[[autodoc]] Ernie4_5ForCausalLM
- forward

View File

@ -0,0 +1,183 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
</div>
# Ernie 4.5 MoE
## Overview
The Ernie 4.5 MoE model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
experts.
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
</div>
## Usage Tips
### Generate text
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
)
# prepare the model input
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# decode the generated ids
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
```
### Distributed Generation with Tensor Parallelism
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
tp_plan="auto",
)
# prepare the model input
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# decode the generated ids
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
```
### Quantization with Bitsandbytes
```python
import torch
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
)
# prepare the model input
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# decode the generated ids
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
```
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
## Ernie4_5_MoEConfig
[[autodoc]] Ernie4_5_MoEConfig
## Ernie4_5_MoEModel
[[autodoc]] Ernie4_5_MoEModel
- forward
## Ernie4_5_MoEForCausalLM
[[autodoc]] Ernie4_5_MoEForCausalLM
- forward
- generate

View File

@ -110,6 +110,13 @@ outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## FalconMambaCache
[[autodoc]] FalconMambaCache
- update_conv_state
- update_ssm_state
- reset
## FalconMambaConfig
[[autodoc]] FalconMambaConfig

View File

@ -267,3 +267,8 @@ visualizer("<img>What is shown in this image?")
[[autodoc]] Gemma3ForConditionalGeneration
- forward
## Gemma3ForSequenceClassification
[[autodoc]] Gemma3ForSequenceClassification
- forward

View File

@ -29,7 +29,7 @@ rendered properly in your Markdown viewer.
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
[MatFormer][matformer], Per-Layer Embeddings (PLE), activation sparsity, and KV cache sharing. The language model uses
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
@ -121,7 +121,7 @@ echo -e "Plants create energy through a process known as" | transformers run --t
## Notes
- Use [`Gemma3nForConditionalGeneration`] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text,
image-only and aduio-only inputs.
image-only and audio-only inputs.
- Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to
the processor. Each batch should be a list of one or more images.
@ -201,4 +201,5 @@ echo -e "Plants create energy through a process known as" | transformers run --t
[gemma3n-collection]: https://huggingface.co/collections/google/gemma-3n
[laurel]: https://arxiv.org/abs/2411.07501
[matformer]: https://arxiv.org/abs/2310.07707
[spark-transformer]: https://arxiv.org/abs/2506.06644
[usm]: https://arxiv.org/abs/2303.01037

View File

@ -18,7 +18,37 @@ rendered properly in your Markdown viewer.
## Overview
To be released with the official model launch.
The GLM family welcomes new members [GLM-4-0414](https://arxiv.org/pdf/2406.12793) series models.
The **GLM-4-32B-0414** series models, featuring 32 billion parameters. Its performance is comparable to OpenAIs GPT
series and DeepSeeks V3/R1 series. It also supports very user-friendly local deployment features. GLM-4-32B-Base-0414
was pre-trained on 15T of high-quality data, including substantial reasoning-type synthetic data. This lays the
foundation for subsequent reinforcement learning extensions. In the post-training stage, we employed human preference
alignment for dialogue scenarios. Additionally, using techniques like rejection sampling and reinforcement learning, we
enhanced the models performance in instruction following, engineering code, and function calling, thus strengthening
the atomic capabilities required for agent tasks. GLM-4-32B-0414 achieves good results in engineering code, Artifact
generation, function calling, search-based Q&A, and report generation. In particular, on several benchmarks, such as
code generation or specific Q&A tasks, GLM-4-32B-Base-0414 achieves comparable performance with those larger models like
GPT-4o and DeepSeek-V3-0324 (671B).
**GLM-Z1-32B-0414** is a reasoning model with deep thinking capabilities. This was developed based on GLM-4-32B-0414
through cold start, extended reinforcement learning, and further training on tasks including mathematics, code, and
logic. Compared to the base model, GLM-Z1-32B-0414 significantly improves mathematical abilities and the capability to
solve complex tasks. During training, we also introduced general reinforcement learning based on pairwise ranking
feedback, which enhances the model's general capabilities.
**GLM-Z1-Rumination-32B-0414** is a deep reasoning model with rumination capabilities (against OpenAI's Deep Research).
Unlike typical deep thinking models, the rumination model is capable of deeper and longer thinking to solve more
open-ended and complex problems (e.g., writing a comparative analysis of AI development in two cities and their future
development plans). Z1-Rumination is trained through scaling end-to-end reinforcement learning with responses graded by
the ground truth answers or rubrics and can make use of search tools during its deep thinking process to handle complex
tasks. The model shows significant improvements in research-style writing and complex tasks.
Finally, **GLM-Z1-9B-0414** is a surprise. We employed all the aforementioned techniques to train a small model (9B).
GLM-Z1-9B-0414 exhibits excellent capabilities in mathematical reasoning and general tasks. Its overall performance is
top-ranked among all open-source models of the same size. Especially in resource-constrained scenarios, this model
achieves an excellent balance between efficiency and effectiveness, providing a powerful option for users seeking
lightweight deployment.
## Glm4Config

View File

@ -0,0 +1,35 @@
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Glm4Moe
## Overview
This will update After model release.
## Glm4MoeConfig
[[autodoc]] Glm4MoeConfig
## Glm4MoeModel
[[autodoc]] Glm4MoeModel
- forward
## Glm4MoeForCausalLM
[[autodoc]] Glm4MoeForCausalLM
- forward

View File

@ -23,6 +23,29 @@ rendered properly in your Markdown viewer.
# GLM-4.1V
## Overview
**GLM-4.1V-9B-Thinking** is a bilingual vision-language model optimized for reasoning, built on GLM-4-9B. It introduces
a "thinking paradigm" with reinforcement learning, achieving state-of-the-art results among 10B-class models and
rivaling 72B-scale models. It supports 64k context, 4K resolution, and arbitrary aspect ratios, with an open-source base
model for further research. You can check our paper [here](https://huggingface.co/papers/2507.01006). and below is a abstract.
*We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding
and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework.
We first develop a capable vision foundation model with significant potential through large-scale pre-training, which
arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum
Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a
diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding,
GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art
performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model
outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks
relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or
superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document
understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information
are released at https://github.com/THUDM/GLM-4.1V-Thinking.*
## Usage
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">

View File

@ -57,7 +57,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))

View File

@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@ -14,53 +14,107 @@ rendered properly in your Markdown viewer.
-->
# I-JEPA
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# I-JEPA
The I-JEPA model was proposed in [Image-based Joint-Embedding Predictive Architecture](https://huggingface.co/papers/2301.08243) by Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas.
I-JEPA is a self-supervised learning method that predicts the representations of one part of an image based on other parts of the same image. This approach focuses on learning semantic features without relying on pre-defined invariances from hand-crafted data transformations, which can bias specific tasks, or on filling in pixel-level details, which often leads to less meaningful representations.
[I-JEPA](https://huggingface.co/papers/2301.08243) is a self-supervised learning method that learns semantic image representations by predicting parts of an image from other parts of the image. It compares the abstract representations of the image (rather than pixel level comparisons), which avoids the typical pitfalls of data augmentation bias and pixel-level details that don't capture semantic meaning.
The abstract from the paper is the following:
You can find the original I-JEPA checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=ijepa) organization.
> [!TIP]
> This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image- based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample tar- get blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transform- ers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg"
alt="drawing" width="600"/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg">
<small> I-JEPA architecture. Taken from the <a href="https://huggingface.co/papers/2301.08243">original paper.</a> </small>
This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
The original code can be found [here](https://github.com/facebookresearch/ijepa).
> Click on the I-JEPA models in the right sidebar for more examples of how to apply I-JEPA to different image representation and classification tasks.
## How to use
The example below demonstrates how to extract image features with [`Pipeline`] or the [`AutoModel`] class.
Here is how to use this model for image feature extraction:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
```py
import torch
from transformers import pipeline
feature_extractor = pipeline(
task="image-feature-extraction",
model="facebook/ijepa_vith14_1k",
device=0,
torch_dtype=torch.bfloat16
)
features = feature_extractor("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", return_tensors=True)
print(f"Feature shape: {features.shape}")
```
</hfoption>
<hfoption id="AutoModel">
```py
import requests
import torch
from PIL import Image
from torch.nn.functional import cosine_similarity
from transformers import AutoModel, AutoProcessor
from transformers import AutoModel, AutoProcessor
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw)
image_2 = Image.open(requests.get(url_2, stream=True).raw)
processor = AutoProcessor.from_pretrained("facebook/ijepa_vith14_1k")
model = AutoModel.from_pretrained("facebook/ijepa_vith14_1k", torch_dtype="auto", attn_implementation="sdpa")
def infer(image):
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1)
embed_1 = infer(image_1)
embed_2 = infer(image_2)
similarity = cosine_similarity(embed_1, embed_2)
print(similarity)
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```py
import torch
from transformers import BitsAndBytesConfig, AutoModel, AutoProcessor
from datasets import load_dataset
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw)
image_2 = Image.open(requests.get(url_2, stream=True).raw)
model_id = "facebook/ijepa_vith14_1k"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained("facebook/ijepa_vitg16_22k")
model = AutoModel.from_pretrained("facebook/ijepa_vitg16_22k", quantization_config=quantization_config, torch_dtype="auto", attn_implementation="sdpa")
@torch.no_grad()
def infer(image):
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
@ -74,15 +128,6 @@ similarity = cosine_similarity(embed_1, embed_2)
print(similarity)
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with I-JEPA.
<PipelineTag pipeline="image-classification"/>
- [`IJepaForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
## IJepaConfig
[[autodoc]] IJepaConfig
@ -95,4 +140,5 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
## IJepaForImageClassification
[[autodoc]] IJepaForImageClassification
- forward
- forward

View File

@ -14,62 +14,135 @@ rendered properly in your Markdown viewer.
-->
# LED
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# LED
The LED model was proposed in [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz
Beltagy, Matthew E. Peters, Arman Cohan.
[Longformer-Encoder-Decoder (LED)](https://huggingface.co/papers/2004.05150) is an encoder-decoder transformer model for sequence-to-sequence tasks like summarization. It extends [Longformer](.longformer), an encoder-only model designed to handle long inputs, by adding a decoder layer. The decoder uses full self-attention on the encoded tokens and previously decoded locations. Because of Longformer's linear self-attention mechanism, LED is more efficient than standard encoder-decoder models when processing long sequences.
The abstract from the paper is the following:
You can find all the original [LED] checkpoints under the [Ai2](https://huggingface.co/allenai/models?search=led) organization.
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting
long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization
dataset.*
> [!TIP]
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
>
> Click on the LED models in the right sidebar for more examples of how to apply LED to different language tasks.
## Usage tips
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
- [`LEDForConditionalGeneration`] is an extension of
[`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with
*Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of
[`BartTokenizer`].
- LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of
1024 tokens.
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is
gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
- LED makes use of *global attention* by means of the `global_attention_mask` (see
[`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first
`<s>` token. For question answering, it is advised to put *global attention* on all tokens of the question.
- To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM)
errors. This can be done by executing `model.gradient_checkpointing_enable()`.
Moreover, the `use_cache=False`
flag can be used to disable the caching mechanism to save memory.
- LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="summarization",
model="allenai/led-base-16384",
torch_dtype=torch.float16,
device=0
)
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained(
"allenai/led-base-16384"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"allenai/led-base-16384",
torch_dtype=torch.float16,
device_map="auto"
)
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# Place global attention on the first token
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
global_attention_mask[:, 0] = 1
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
!echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers-cli run --task summarization --model allenai/led-base-16384 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"allenai/led-large-16384",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"allenai/led-large-16384"
)
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# Place global attention on the first token
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
global_attention_mask[:, 0] = 1
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional self-attention layer with Longformer's chunked self-attention layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`].
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. A small speedup is gained when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
- LED works best on long-range sequence-to-sequence tasks where the `input_ids` are significantly longer than 1024 tokens.
- LED uses global attention by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put global attention only on the first `<s>` token. For question answering, it is advised to put global attention on all tokens of the question.
- To fine-tune LED on all 16384 parameters, gradient checkpointing can be enabled in case training leads to out-of-memory (OOM) errors. Enable gradient checkpointing by adding `model.gradient_checkpointing_enable()` and setting `use_cache=False` to disable the caching mechanism to save memory.
- Inputs should be padded on the right because LED uses absolute position embeddings.
## Resources
- [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing).
- [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing).
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
- Read the [LED on Arxiv notebook](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing) to see how LED can achieve state-of-the-art performance on Arxiv article summarization.
- Read the [Fine-tune LED notebook](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing) to learn how to fine-tune LED on PubMed articles.
## LEDConfig

View File

@ -0,0 +1,84 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# LFM2
## Overview
[LFM2](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models) represents a new generation of Liquid Foundation Models developed by [Liquid AI](https://liquid.ai/), specifically designed for edge AI and on-device deployment.
The models are available in three sizes (350M, 700M, and 1.2B parameters) and are engineered to run efficiently on CPU, GPU, and NPU hardware, making them particularly well-suited for applications requiring low latency, offline operation, and privacy.
## Architecture
The architecture consists of 16 blocks total: 10 double-gated short-range convolution blocks and 6 blocks of grouped query attention. This design stems from the concept of dynamical systems, where linear operations are modulated by input-dependent gates, allowing for "liquid" dynamics that can adapt in real-time. The short convolutions are particularly optimized for embedded SoC CPUs, making them ideal for devices that require fast, local inference without relying on cloud connectivity.
The key architectural innovation of LFM2 lies in its systematic approach to balancing quality, latency, and memory efficiency through our STAR neural architecture search engine. Using STAR, Liquid AI optimized the models for real-world performance on embedded hardware, measuring actual peak memory usage and inference speed on Qualcomm Snapdragon processors. This results in models that achieve 2x faster decode and prefill performance compared to similar-sized models, while maintaining superior benchmark performance across knowledge, mathematics, instruction following, and multilingual tasks.
## Example
The following example shows how to generate an answer using the `AutoModelForCausalLM` class.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_id = "LiquidAI/LFM2-1.2B"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Generate answer
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
)
output = model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=512,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
```
## Lfm2Config
[[autodoc]] Lfm2Config
## Lfm2Model
[[autodoc]] Lfm2Model
- forward
## Lfm2ForCausalLM
[[autodoc]] Lfm2ForCausalLM
- forward

View File

@ -10,37 +10,31 @@ specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# LightGlue
## Overview
[LightGlue](https://arxiv.org/abs/2306.13643) is a deep neural network that learns to match local features across images. It revisits multiple design decisions of SuperGlue and derives simple but effective improvements. Cumulatively, these improvements make LightGlue more efficient - in terms of both memory and computation, more accurate, and much easier to train. Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching two sets of local features extracted from two images, with the goal of being faster than SuperGlue. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them.
The LightGlue model was proposed in [LightGlue: Local Feature Matching at Light Speed](https://arxiv.org/abs/2306.13643)
by Philipp Lindenberger, Paul-Edouard Sarlin and Marc Pollefeys.
You can find all the original LightGlue checkpoints under the [ETH-CVG](https://huggingface.co/ETH-CVG) organization.
Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching
two sets of local features extracted from two images, its goal is to be faster than SuperGlue. Paired with the
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
> [!TIP]
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
>
> Click on the LightGlue models in the right sidebar for more examples of how to apply LightGlue to different computer vision tasks.
The abstract from the paper is the following:
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
*We introduce LightGlue, a deep neural network that learns to match local features across images. We revisit multiple
design decisions of SuperGlue, the state of the art in sparse matching, and derive simple but effective improvements.
Cumulatively, they make LightGlue more efficient - in terms of both memory and computation, more accurate, and much
easier to train. One key property is that LightGlue is adaptive to the difficulty of the problem: the inference is much
faster on image pairs that are intuitively easy to match, for example because of a larger visual overlap or limited
appearance change. This opens up exciting prospects for deploying deep matchers in latency-sensitive applications like
3D reconstruction. The code and trained models are publicly available at this [https URL](https://github.com/cvg/LightGlue)*
<hfoptions id="usage">
<hfoption id="AutoModel">
## How to use
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
matching scores.
```python
```py
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
@ -59,31 +53,70 @@ model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
inputs = processor(images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
You can use the `post_process_keypoint_matching` method from the `LightGlueImageProcessor` to get the keypoints and matches in a readable format:
```python
# Post-process to get keypoints and matches
image_sizes = [[(image.height, image.width) for image in images]]
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(outputs):
print("For the image pair", i)
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
)
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
```
You can visualize the matches between the images by providing the original images as well as the outputs to this method:
```python
processor.plot_keypoint_matching(images, outputs)
```
</hfoption>
</hfoptions>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/duPp09ty8NRZlMZS18ccP.png)
## Notes
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/cvg/LightGlue).
- LightGlue is adaptive to the task difficulty. Inference is much faster on image pairs that are intuitively easy to match, for example, because of a larger visual overlap or limited appearance change.
```py
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
# LightGlue requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
outputs = model(**inputs)
# Extract matching information
keypoints0 = outputs.keypoints0 # Keypoints in first image
keypoints1 = outputs.keypoints1 # Keypoints in second image
matches = outputs.matches # Matching indices
matching_scores = outputs.matching_scores # Confidence scores
```
- The model outputs matching indices, keypoints, and confidence scores for each match, similar to SuperGlue but with improved efficiency.
- For better visualization and analysis, use the [`LightGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
```py
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
```
- Visualize the matches between the images using the built-in plotting functionality.
```py
# Easy visualization using the built-in plotting method
processor.plot_keypoint_matching(images, processed_outputs)
```
<div class="flex justify-center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/duPp09ty8NRZlMZS18ccP.png">
</div>
## Resources
- Refer to the [original LightGlue repository](https://github.com/cvg/LightGlue) for more examples and implementation details.
## LightGlueConfig
@ -97,8 +130,13 @@ The original code can be found [here](https://github.com/cvg/LightGlue).
- post_process_keypoint_matching
- plot_keypoint_matching
<frameworkcontent>
<pt>
## LightGlueForKeypointMatching
[[autodoc]] LightGlueForKeypointMatching
- forward
</pt>
</frameworkcontent>

View File

@ -14,287 +14,178 @@ rendered properly in your Markdown viewer.
-->
# LLaVA-NeXT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# LLaVA-NeXT
The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa](llava) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
[LLaVANeXT](https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/) improves on [Llava](./llava) by increasing the input image resolution by 4x more pixels and supporting 3 aspect ratios (up to 672x672, 336x1344, 1344x336) to better grasp visual details. It is also trained on an improved visual instruction tuning dataset covering more scenarios and applications to improve OCR and common sense reasoning.
The introduction from the blog is the following:
You can find all the original LLaVANeXT checkpoints under the [LLaVA-NeXT](https://huggingface.co/collections/llava-hf/llava-next-65f75c4afac77fd37dbbe6cf) collection.
*In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications.
> [!TIP]
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
>
> Click on the LLaVANeXT models in the right sidebar for more examples of how to apply Llava-NeXT to different multimodal tasks.
Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
<hfoptions id="usage">
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning.
Efficient deployment and inference with SGLang.
Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_overview.png"
alt="drawing" width="600"/>
<small> LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the <a href="https://huggingface.co/papers/2310.03744">original paper.</a> </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
<Tip warning={true}>
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
</Tip>
> [!NOTE]
> LLaVA models after release v4.46 will raise warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you.
Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many `<image>` placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings.
The attributes can be obtained from model config, as `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`. The `num_additional_image_tokens` should be `1` if the vision backbone adds a CLS token or `0` if nothing extra is added to the vision patches.
### Formatting Prompts with Chat Templates
Each **checkpoint** is trained with a specific prompt format, depending on the underlying large language model backbone. To ensure correct formatting, use the processors `apply_chat_template` method.
**Important:**
- You must construct a conversation history — passing a plain string won't work.
- Each message should be a dictionary with `"role"` and `"content"` keys.
- The `"content"` should be a list of dictionaries for different modalities like `"text"` and `"image"`.
Heres an example of how to structure your input. We will use [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and a conversation history of text and image.
<hfoption id="Pipeline">
```python
from transformers import LlavaNextProcessor
import torch
from transformers import pipeline
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Whats shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]"
pipeline = pipeline(
task="image-text-to-text",
model="llava-hf/llava-v1.6-mistral-7b-hf",
device=0,
torch_dtype=torch.bfloat16
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
},
{ "type": "text", "text": "Describe this image."},
]
}
]
pipeline(text=messages, max_new_tokens=20, return_full_text=False)
```
- If you want to construct a chat prompt yourself, below is a list of possible formats
.
[llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format:
```bash
"[INST] <image>\nWhat is shown in this image? [/INST]"
</hfoption>
<hfoption id="AutoModel">
```python
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, LlavaNextForConditionalGeneration
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16).to("cuda")
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
[llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format:
```bash
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor, BitsAndBytesConfig
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4"
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quant_config, device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What does this chart show?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
with torch.inference_mode():
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
[llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format:
```bash
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
## Notes
* Different checkpoints (Mistral, Vicuna, etc.) require a specific prompt format depending on the underlying LLM. Always use [`~ProcessorMixin.apply_chat_template`] to ensure correct formatting. Refer to the [Templates](../chat_templating) guide for more details.
* Set `padding_side="left"` during batched generation for more accurate results.
```py
processor.tokenizer.padding_side = "left"
```
[llama3-llava-next-8b-hf](https://huggingface.co/llava-hf/llava-next-8b-hf) requires the following format:
* LLaVA-NeXT uses different numbers of patches for images and pads the inputs inside the modeling code except when padding is done during processing. The default setting is *left-padding* if the model is in `eval()` mode, otherwise it is *right-padding*.
```bash
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
```
* LLaVA models after v4.46 raises warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}`, and `processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add these attributes to the processor if you own the model checkpoint or open a PR if it isn't.
[llava-next-72b-hf](https://huggingface.co/llava-hf/llava-next-72b-hf) and [llava-next-110b-hf](https://huggingface.co/llava-hf/llava-next-110b-hf) require the following format:
Adding these attributes means LLaVA will try to infer the number of image tokens required per image and expand the text with the same number of `<image>` token placeholders. There are usually ~500 tokens per image, so make sure the text is not truncated because it will cause a failure when merging the embeddings. The attributes can be found in `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`.
```bash
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
```
The `num_additional_image_tokens` should be `1` if the vision backbone adds a `CLS` token or `0` if nothing extra is added.
🚀 **Bonus:** If you're using `transformers>=4.49.0`, you can also get a vectorized output from `apply_chat_template`. See the **Usage Examples** below for more details on how to use it.
## Usage example
### Single image inference
Here's how to load the model and perform inference in half-precision (`torch.float16`):
* The example below demonstrates inference with multiple input images.
```python
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
import requests, torch
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16
).to("cuda")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16)
model.to("cuda:0")
# Load multiple images
url1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_comparison.png"
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image1 = Image.open(requests.get(url1, stream=True).raw)
image2 = Image.open(requests.get(url2, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{"role": "user", "content": [{"type": "image"}, {"type": "image"}, {"type": "text", "text": "Compare these two images and describe the differences."}]}
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda:0")
inputs = processor([image1, image2], prompt, return_tensors="pt").to("cuda")
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
### Multi image inference
LLaVa-Next can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
# Load the model in half-precision
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a red stop sign in the image."},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this image? How many cats do you see?"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
prompts = [prompt_1, prompt_2]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes`, and to have access to a GPU/accelerator that is supported by the library.
<Tip>
bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit [this link](https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend).
We value your feedback to help identify bugs before the full release! Check out [these docs](https://huggingface.co/docs/bitsandbytes/main/en/non_cuda_backends) for more details and feedback links.
</Tip>
Simply change the snippet above with:
```python
from transformers import AutoModelForImageTextToText, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
```
### Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import AutoModelForImageTextToText
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.float16,
use_flash_attention_2=True
).to(0)
```
## LlavaNextConfig

View File

@ -28,6 +28,7 @@ You can find all the original Mamba checkpoints under the [State Space Models](h
> [!TIP]
> This model was contributed by [Molbap](https://huggingface.co/Molbap) and [AntonV](https://huggingface.co/AntonV).
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
@ -115,6 +116,13 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
trainer.train()
```
## MambaCache
[[autodoc]] MambaCache
- update_conv_state
- update_ssm_state
- reset
## MambaConfig
[[autodoc]] MambaConfig

View File

@ -26,6 +26,7 @@ rendered properly in your Markdown viewer.
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
> [!TIP]
> This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.

View File

@ -14,159 +14,138 @@ rendered properly in your Markdown viewer.
-->
# MarianMT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
A framework for translation models, using the same models as BART. Translations should be similar, but not identical to output in the test set linked to in each model card.
This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
# MarianMT
## Implementation Notes
- Each model is about 298 MB on disk, there are more than 1,000 models.
- The list of supported language pairs can be found [here](https://huggingface.co/Helsinki-NLP).
- Models were originally trained by [Jörg Tiedemann](https://researchportal.helsinki.fi/en/persons/j%C3%B6rg-tiedemann) using the [Marian](https://marian-nmt.github.io/) C++ library, which supports fast training and translation.
- All models are transformer encoder-decoders with 6 layers in each component. Each model's performance is documented
in a model card.
- The 80 opus models that require BPE preprocessing are not supported.
- The modeling code is the same as [`BartForConditionalGeneration`] with a few minor modifications:
[MarianMT](https://huggingface.co/papers/1804.00344) is a machine translation model trained with the Marian framework which is written in pure C++. The framework includes its own custom auto-differentiation engine and efficient meta-algorithms to train encoder-decoder models like BART.
- static (sinusoid) positional embeddings (`MarianConfig.static_position_embeddings=True`)
- no layernorm_embedding (`MarianConfig.normalize_embedding=False`)
- the model starts generating with `pad_token_id` (which has 0 as a token_embedding) as the prefix (Bart uses
`<s/>`),
- Code to bulk convert models can be found in `convert_marian_to_pytorch.py`.
All MarianMT models are transformer encoder-decoders with 6 layers in each component, use static sinusoidal positional embeddings, don't have a layernorm embedding, and the model starts generating with the prefix `pad_token_id` instead of `<s/>`.
## Naming
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`
- The language codes used to name models are inconsistent. Two digit codes can usually be found [here](https://developers.google.com/admin-sdk/directory/v1/languages), three digit codes require googling "language
code {code}".
- Codes formatted like `es_AR` are usually `code_{region}`. That one is Spanish from Argentina.
- The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second
group use a combination of ISO-639-5 codes and ISO-639-2 codes.
You can find all the original MarianMT checkpoints under the [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP/models?search=opus-mt) organization.
## Examples
> [!TIP]
> This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
>
> Click on the MarianMT models in the right sidebar for more examples of how to apply MarianMT to translation tasks.
- Since Marian models are smaller than many other translation models available in the library, they can be useful for
fine-tuning experiments and integration tests.
- [Fine-tune on GPU](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/train_distil_marian_enro.sh)
## Multilingual Models
The example below demonstrates how to translate text using [`Pipeline`] or the [`AutoModel`] class.
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`:
- If a model can output multiple languages, and you should specify a language code by prepending the desired output
language to the `src_text`.
- You can see a models's supported language codes in its model card, under target constituents, like in [opus-mt-en-roa](https://huggingface.co/Helsinki-NLP/opus-mt-en-roa).
- Note that if a model is only multilingual on the source side, like `Helsinki-NLP/opus-mt-roa-en`, no language
codes are required.
New multi-lingual models from the [Tatoeba-Challenge repo](https://github.com/Helsinki-NLP/Tatoeba-Challenge)
require 3 character language codes:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fra<< this is a sentence in english that we want to translate to french",
... ">>por<< This should go to portuguese",
... ">>esp<< And this to Spanish",
... ]
import torch
from transformers import pipeline
>>> model_name = "Helsinki-NLP/opus-mt-en-roa"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> print(tokenizer.supported_language_codes)
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
pipeline = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, device=0)
pipeline("Hello, how are you?")
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
```
Here is the code to see all available pretrained models on the hub:
</hfoption>
<hfoption id="AutoModel">
```python
from huggingface_hub import list_models
model_list = list_models()
org = "Helsinki-NLP"
model_ids = [x.id for x in model_list if x.id.startswith(org)]
suffix = [x.split("/")[1] for x in model_ids]
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, attn_implementation="sdpa", device_map="auto")
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Old Style Multi-Lingual Models
</hfoption>
</hfoptions>
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language
group:
```python no-style
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
'Helsinki-NLP/opus-mt-ROMANCE-en',
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
'Helsinki-NLP/opus-mt-de-ZH',
'Helsinki-NLP/opus-mt-en-CELTIC',
'Helsinki-NLP/opus-mt-en-ROMANCE',
'Helsinki-NLP/opus-mt-es-NORWAY',
'Helsinki-NLP/opus-mt-fi-NORWAY',
'Helsinki-NLP/opus-mt-fi-ZH',
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
'Helsinki-NLP/opus-mt-sv-NORWAY',
'Helsinki-NLP/opus-mt-sv-ZH']
GROUP_MEMBERS = {
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
}
```
Example of translating english to many romance languages, using old-style 2 character language codes
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```python
>>> from transformers import MarianMTModel, MarianTokenizer
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
>>> src_text = [
... ">>fr<< this is a sentence in english that we want to translate to french",
... ">>pt<< This should go to portuguese",
... ">>es<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
visualizer = AttentionMaskVisualizer("Helsinki-NLP/opus-mt-en-de")
visualizer("Hello, how are you?")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/marianmt-attn-mask.png"/>
</div>
## Resources
## Notes
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
- [Causal language modeling task guide](../tasks/language_modeling)
- MarianMT models are ~298MB on disk and there are more than 1000 models. Check this [list](https://huggingface.co/Helsinki-NLP) for supported language pairs. The language codes may be inconsistent. Two digit codes can be found [here](https://developers.google.com/admin-sdk/directory/v1/languages) while three digit codes may require further searching.
- Models that require BPE preprocessing are not supported.
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`. Language codes formatted like `es_AR` usually refer to the `code_{region}`. For example, `es_AR` refers to Spanish from Argentina.
- If a model can output multiple languages, prepend the desired output language to `src_txt` as shown below. New multilingual models from the [Tatoeba-Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge) require 3 character language codes.
```python
from transformers import MarianMTModel, MarianTokenizer
# Model trained on multiple source languages → multiple target languages
# Example: multilingual to Arabic (arb)
model_name = "Helsinki-NLP/opus-mt-mul-mul" # Tatoeba Challenge model
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Prepend the desired output language code (3-letter ISO 639-3)
src_texts = ["arb>> Hello, how are you today?"]
# Tokenize and translate
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
# Decode and print result
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
print(translated_texts[0])
```
- Older multilingual models use 2 character language codes.
```python
from transformers import MarianMTModel, MarianTokenizer
# Example: older multilingual model (like en → many)
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" # English → French, Spanish, Italian, etc.
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Prepend the 2-letter ISO 639-1 target language code (older format)
src_texts = [">>fr<< Hello, how are you today?"]
# Tokenize and translate
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
# Decode and print result
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
print(translated_texts[0])
```
## MarianConfig

View File

@ -139,6 +139,10 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
[[autodoc]] MistralConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## MistralModel
[[autodoc]] MistralModel

View File

@ -227,6 +227,10 @@ This example also how to use `BitsAndBytes` to load the model in 4bit quantizati
[[autodoc]] Mistral3Config
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## Mistral3Model
[[autodoc]] Mistral3Model

View File

@ -197,6 +197,10 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] MixtralConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## MixtralModel
[[autodoc]] MixtralModel

View File

@ -114,6 +114,7 @@ print(f"The predicted class label is: {predicted_class_label}")
[[autodoc]] MobileNetV2ImageProcessor
- preprocess
- post_process_semantic_segmentation
## MobileNetV2ImageProcessorFast

View File

@ -0,0 +1,188 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ModernBERT Decoder
ModernBERT Decoder has the same architecture as [ModernBERT](https://huggingface.co/papers/2412.13663) but it is trained from scratch with a causal language modeling objective from the [Ettin paper](https://huggingface.co/papers/2507.11412). This allows for using the same architecture to compare encoders and decoders. This model is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.
ModernBERT Decoder uses sliding window attention and rotary positional embeddings for efficiency and to handle longer sequences.
You can find all the original ModernBERT Decoder checkpoints under the [jhu-clsp](https://huggingface.co/collections/jhu-clsp/encoders-vs-decoders-the-ettin-suite-686303e16142257eed8e6aeb) collection.
> [!TIP]
> This model was contributed by [orionw](https://huggingface.co/orionweller).
>
> Click on the ModernBERT Decoder models in the right sidebar for more examples of how to apply ModernBERT Decoder to different text generation tasks.
The example below demonstrates how to use ModernBERT Decoder for text generation with [`Pipeline`], [`AutoModel`] (with and without quantization), and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
generator = pipeline(
task="text-generation",
model="jhu-clsp/ettin-decoder-17m",
torch_dtype=torch.float16,
device=0
)
generator("The future of artificial intelligence is", max_length=50, num_return_sequences=1)
# For sequence classification
classifier = pipeline(
task="text-classification",
model="jhu-clsp/ettin-decoder-17m",
torch_dtype=torch.float16,
device=0
)
classifier("This movie is really great!")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-17m")
model = AutoModelForCausalLM.from_pretrained(
"jhu-clsp/ettin-decoder-17m",
torch_dtype=torch.float16,
device_map="auto",
)
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=50,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
# For sequence classification
from transformers import AutoModelForSequenceClassification
classifier_model = AutoModelForSequenceClassification.from_pretrained(
"jhu-clsp/ettin-decoder-17m",
torch_dtype=torch.float16,
device_map="auto",
num_labels=2
)
text = "This movie is really great!"
inputs = tokenizer(text, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = classifier_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1)
print(f"Predicted class: {predicted_class.item()}")
print(f"Prediction probabilities: {predictions}")
```
</hfoption>
<hfoption id="AutoModel (w/quantization)">
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-1b")
model = AutoModelForCausalLM.from_pretrained(
"jhu-clsp/ettin-decoder-1b",
torch_dtype=torch.float16,
device_map="auto",
quantization_config=quantization_config
)
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=50,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo "The future of artificial intelligence is" | transformers run --task text-generation --model jhu-clsp/ettin-decoder-17m --device 0
```
</hfoption>
</hfoptions>
## ModernBertDecoderConfig
[[autodoc]] ModernBertDecoderConfig
<frameworkcontent>
<pt>
## ModernBertDecoderModel
[[autodoc]] ModernBertDecoderModel
- forward
## ModernBertDecoderForCausalLM
[[autodoc]] ModernBertDecoderForCausalLM
- forward
## ModernBertDecoderForSequenceClassification
[[autodoc]] ModernBertDecoderForSequenceClassification
- forward
</pt>
</frameworkcontent>

View File

@ -14,27 +14,89 @@ rendered properly in your Markdown viewer.
-->
# OLMoE
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# OLMoE
The OLMoE model was proposed in [OLMoE: Open Mixture-of-Experts Language Models](https://huggingface.co/papers/2409.02060) by Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, Hannaneh Hajishirzi.
[OLMoE](https://huggingface.co/papers/2409.02060) is a sparse Mixture-of-Experts (MoE) language model with 7B parameters but only 1B parameters are used per input token. It has similar inference costs as dense models but trains ~3x faster. OLMoE uses fine-grained routing with 64 small experts in each layer and uses a dropless token-based routing algorithm.
OLMoE is a series of **O**pen **L**anguage **Mo**dels using sparse **M**ixture-**o**f-**E**xperts designed to enable the science of language models. We release all code, checkpoints, logs, and details involved in training these models.
You can find all the original OLMoE checkpoints under the [OLMoE](https://huggingface.co/collections/allenai/olmoe-november-2024-66cf678c047657a30c8cd3da) collection.
The abstract from the paper is the following:
> [!TIP]
> This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
>
> Click on the OLMoE models in the right sidebar for more examples of how to apply OLMoE to different language tasks.
*We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.*
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class.
This model was contributed by [Muennighoff](https://hf.co/Muennighoff).
The original code can be found [here](https://github.com/allenai/OLMoE).
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="allenai/OLMoE-1B-7B-0125",
torch_dtype=torch.float16,
device=0,
)
result = pipe("Dionysus is the god of")
print(result)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto").to(device)
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
inputs = tokenizer("Bitcoin is", return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(**inputs, max_length=64)
print(tokenizer.decode(output[0]))
```
## Quantization
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", attn_implementation="sdpa", torch_dtype="auto", device_map="auto", quantization_config=quantization_config).to(device)
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
inputs = tokenizer("Bitcoin is", return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(**inputs, max_length=64)
print(tokenizer.decode(output[0]))
```
## OlmoeConfig

View File

@ -0,0 +1,68 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PerceptionLM
## Overview
The PerceptionLM model was proposed in [PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding](https://ai.meta.com/research/publications/perceptionlm-open-access-data-and-models-for-detailed-visual-understanding/) by Jang Hyun Cho et al. It's a fully open, reproducible model for transparent research in image and video understanding. PLM consists of
a vision encoder with a small scale (<8B parameters) LLM decoder.
The abstract from the paper is the following:
*Vision-language models are integral to computer vision research, yet many high-performing models
remain closed-source, obscuring their data, design and training recipe. The research community
has responded by using distillation from black-box models to label training data, achieving strong
benchmark results, at the cost of measurable scientific progress. However, without knowing the details
of the teacher model and its data sources, scientific progress remains difficult to measure. In this
paper, we study building a Perception Language Model (PLM) in a fully open and reproducible
framework for transparent research in image and video understanding. We analyze standard training
pipelines without distillation from proprietary models and explore large-scale synthetic data to identify
critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M
human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded
video captions. Additionally, we introduce PLMVideoBench, a suite for evaluating challenging video
understanding tasks focusing on the ability to reason about what”, where”, when”, and how of a
video. We make our work fully reproducible by providing data, training recipes, code & models.*
This model was contributed by [shumingh](https://huggingface.co/shumingh).
The original code can be found [here](https://github.com/facebookresearch/perception_models).
## PerceptionLMConfig
[[autodoc]] PerceptionLMConfig
## PerceptionLMProcessor
[[autodoc]] PerceptionLMProcessor
## PerceptionLMImageProcessorFast
[[autodoc]] PerceptionLMImageProcessorFast
## PerceptionLMVideoProcessor
[[autodoc]] PerceptionLMVideoProcessor
## PerceptionLMModel
[[autodoc]] PerceptionLMModel
## PerceptionLMForConditionalGeneration
[[autodoc]] PerceptionLMForConditionalGeneration
- forward

View File

@ -9,44 +9,53 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
# Phi4 Multimodal
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-EE4C2C?logo=pytorch&logoColor=white&style=flat">
</div>
</div>
## Overview
## Phi4 Multimodal
Phi4 Multimodal is a lightweight open multimodal foundation model that leverages the language, vision, and speech research and datasets used for Phi-3.5 and 4.0 models. The model processes text, image, and audio inputs, generating text outputs, and comes with 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning, direct preference optimization and RLHF (Reinforcement Learning from Human Feedback) to support precise instruction adherence and safety measures. The languages that each modal supports are the following:
[Phi4 Multimodal](https://huggingface.co/papers/2503.01743) is a multimodal model capable of text, image, and speech and audio inputs or any combination of these. It features a mixture of LoRA adapters for handling different inputs, and each input is routed to the appropriate encoder.
- Text: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian
- Vision: English
- Audio: English, Chinese, German, French, Italian, Japanese, Spanish, Portuguese
You can find all the original Phi4 Multimodal checkpoints under the [Phi4](https://huggingface.co/collections/microsoft/phi-4-677e9380e514feb5577a40e4) collection.
This model was contributed by [Cyril Vallez](https://huggingface.co/cyrilvallez). The most recent code can be
found [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/phi4_multimodal/modeling_phi4_multimodal.py).
> [!TIP]
> This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez).
>
> Click on the Phi-4 Multimodal in the right sidebar for more examples of how to apply Phi-4 Multimodal to different tasks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
`Phi4-multimodal-instruct` can be found on the [Huggingface Hub](https://huggingface.co/microsoft/Phi-4-multimodal-instruct)
```python
from transformers import pipeline
generator = pipeline("text-generation", model="microsoft/Phi-4-multimodal-instruct", torch_dtype="auto", device=0)
In the following, we demonstrate how to use it for inference depending on the input modalities (text, image, audio).
prompt = "Explain the concept of multimodal AI in simple terms."
result = generator(prompt, max_length=50)
print(result[0]['generated_text'])
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
# Define model path
model_path = "microsoft/Phi-4-multimodal-instruct"
device = "cuda:0"
# Load model and processor
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
# Optional: load the adapters (note that without them, the base model will very likely not work well)
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
model.load_adapter(model_path, adapter_name="vision", device_map=device, adapter_kwargs={"subfolder": 'vision-lora'})
# Part : Image Processing
messages = [
{
"role": "user",
@ -57,7 +66,7 @@ messages = [
},
]
model.set_adapter("vision") # if loaded, activate the vision adapter
model.set_adapter("vision")
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
@ -66,7 +75,6 @@ inputs = processor.apply_chat_template(
return_tensors="pt",
).to(device)
# Generate response
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
@ -77,10 +85,27 @@ response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
```
</hfoption>
</hfoptions>
# Part 2: Audio Processing
model.set_adapter("speech") # if loaded, activate the speech adapter
## Notes
The example below demonstrates inference with an audio and text input.
```py
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
model_path = "microsoft/Phi-4-multimodal-instruct"
device = "cuda:0"
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
model.set_adapter("speech")
audio_url = "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac"
messages = [
{
@ -110,6 +135,7 @@ response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
```
## Phi4MultimodalFeatureExtractor

View File

@ -86,6 +86,10 @@ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up
[[autodoc]] PixtralVisionConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## PixtralVisionModel
[[autodoc]] PixtralVisionModel

View File

@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
SAM (Segment Anything Model) was proposed in [Segment Anything](https://huggingface.co/papers/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
The model can be used to predict segmentation masks of any object of interest given an input image.
The model can be used to predict segmentation masks of any object of interest given an input image.
![example image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-output.png)
@ -37,9 +37,9 @@ Tips:
- The model predicts binary masks that states the presence or not of the object of interest given an image.
- The model predicts much better results if input 2D points and/or input bounding boxes are provided
- You can prompt multiple points for the same image, and predict a single mask.
- You can prompt multiple points for the same image, and predict a single mask.
- Fine-tuning the model is not supported yet
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
- According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
@ -149,6 +149,11 @@ alt="drawing" width="900"/>
[[autodoc]] SamImageProcessor
## SamImageProcessorFast
[[autodoc]] SamImageProcessorFast
## SamVisionModel
[[autodoc]] SamVisionModel

View File

@ -61,19 +61,16 @@ predicted token ids.
- Step-by-step Speech Translation
```python
>>> import torch
>>> from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
>>> from datasets import load_dataset
>>> from torchcodec.decoders import AudioDecoder
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> def map_to_array(batch):
... decoder = AudioDecoder(batch["file"])
... batch["speech"] = decoder.get_all_samples().data
... return batch
>>> def map_to_array(example):
... example["speech"] = example["audio"]["array"]
... return example
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

View File

@ -10,40 +10,31 @@ specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# SuperGlue
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[SuperGlue](https://huggingface.co/papers/1911.11763) is a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs are predicted by a graph neural network. SuperGlue introduces a flexible context aggregation mechanism based on attention, enabling it to reason about the underlying 3D scene and feature assignments jointly. Paired with the [SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
## Overview
You can find all the original SuperGlue checkpoints under the [Magic Leap Community](https://huggingface.co/magic-leap-community) organization.
The SuperGlue model was proposed in [SuperGlue: Learning Feature Matching with Graph Neural Networks](https://huggingface.co/papers/1911.11763) by Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
> [!TIP]
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
>
> Click on the SuperGlue models in the right sidebar for more examples of how to apply SuperGlue to different computer vision tasks.
This model consists of matching two sets of interest points detected in an image. Paired with the
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
The abstract from the paper is the following:
<hfoptions id="usage">
<hfoption id="AutoModel">
*This paper introduces SuperGlue, a neural network that matches two sets of local features by jointly finding correspondences
and rejecting non-matchable points. Assignments are estimated by solving a differentiable optimal transport problem, whose costs
are predicted by a graph neural network. We introduce a flexible context aggregation mechanism based on attention, enabling
SuperGlue to reason about the underlying 3D scene and feature assignments jointly. Compared to traditional, hand-designed heuristics,
our technique learns priors over geometric transformations and regularities of the 3D world through end-to-end training from image
pairs. SuperGlue outperforms other learned approaches and achieves state-of-the-art results on the task of pose estimation in
challenging real-world indoor and outdoor environments. The proposed method performs matching in real-time on a modern GPU and
can be readily integrated into modern SfM or SLAM systems. The code and trained weights are publicly available at this [URL](https://github.com/magicleap/SuperGluePretrainedNetwork).*
## How to use
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
matching scores.
```python
```py
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
@ -52,7 +43,7 @@ import requests
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
image1 = Image.open(requests.get(url_image1, stream=True).raw)
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
image_2 = Image.open(requests.get(url_image2, stream=True).raw)
image2 = Image.open(requests.get(url_image2, stream=True).raw)
images = [image1, image2]
@ -62,67 +53,97 @@ model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
inputs = processor(images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
You can use the `post_process_keypoint_matching` method from the `SuperGlueImageProcessor` to get the keypoints and matches in a more readable format:
```python
# Post-process to get keypoints and matches
image_sizes = [[(image.height, image.width) for image in images]]
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(outputs):
print("For the image pair", i)
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
```
</hfoption>
</hfoptions>
## Notes
- SuperGlue performs feature matching between two images simultaneously, requiring pairs of images as input.
```python
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
# SuperGlue requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
outputs = model(**inputs)
# Extract matching information
keypoints0 = outputs.keypoints0 # Keypoints in first image
keypoints1 = outputs.keypoints1 # Keypoints in second image
matches = outputs.matches # Matching indices
matching_scores = outputs.matching_scores # Confidence scores
```
- The model outputs matching indices, keypoints, and confidence scores for each match.
- For better visualization and analysis, use the [`SuperGlueImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
```py
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
```
- The example below demonstrates how to visualize matches between two images.
```py
import matplotlib.pyplot as plt
import numpy as np
# Create side by side image
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
plt.imshow(merged_image)
plt.axis("off")
# Retrieve the keypoints and matches
output = processed_outputs[0]
keypoints0 = output["keypoints0"]
keypoints1 = output["keypoints1"]
matching_scores = output["matching_scores"]
# Plot the matches
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
plt.plot(
[keypoint0[0], keypoint1[0] + image1.width],
[keypoint0[1], keypoint1[1]],
color=plt.get_cmap("RdYlGn")(matching_score.item()),
alpha=0.9,
linewidth=0.5,
)
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
```
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
```
From the outputs, you can visualize the matches between the two images using the following code:
```python
import matplotlib.pyplot as plt
import numpy as np
<div class="flex justify-center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/01ZYaLB1NL5XdA8u7yCo4.png">
</div>
# Create side by side image
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
plt.imshow(merged_image)
plt.axis("off")
## Resources
# Retrieve the keypoints and matches
output = outputs[0]
keypoints0 = output["keypoints0"]
keypoints1 = output["keypoints1"]
matching_scores = output["matching_scores"]
keypoints0_x, keypoints0_y = keypoints0[:, 0].numpy(), keypoints0[:, 1].numpy()
keypoints1_x, keypoints1_y = keypoints1[:, 0].numpy(), keypoints1[:, 1].numpy()
# Plot the matches
for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip(
keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, matching_scores
):
plt.plot(
[keypoint0_x, keypoint1_x + image1.width],
[keypoint0_y, keypoint1_y],
color=plt.get_cmap("RdYlGn")(matching_score.item()),
alpha=0.9,
linewidth=0.5,
)
plt.scatter(keypoint0_x, keypoint0_y, c="black", s=2)
plt.scatter(keypoint1_x + image1.width, keypoint1_y, c="black", s=2)
# Save the plot
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
plt.close()
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/01ZYaLB1NL5XdA8u7yCo4.png)
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/magicleap/SuperGluePretrainedNetwork).
- Refer to the [original SuperGlue repository](https://github.com/magicleap/SuperGluePretrainedNetwork) for more examples and implementation details.
## SuperGlueConfig
@ -133,10 +154,15 @@ The original code can be found [here](https://github.com/magicleap/SuperGluePret
[[autodoc]] SuperGlueImageProcessor
- preprocess
- post_process_keypoint_matching
<frameworkcontent>
<pt>
## SuperGlueForKeypointMatching
[[autodoc]] SuperGlueForKeypointMatching
- forward
- post_process_keypoint_matching
</pt>
</frameworkcontent>

View File

@ -14,35 +14,90 @@ rendered properly in your Markdown viewer.
-->
# SwitchTransformers
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Switch Transformers
The SwitchTransformers model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://huggingface.co/papers/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
[Switch Transformers](https://huggingface.co/papers/2101.03961) is a sparse T5 model where the MLP layer is replaced by a Mixture-of-Experts (MoE). A routing mechanism associates each token with an expert and each expert is a dense MLP. Sparsity enables better scaling and the routing mechanism allows the model to select relevant weights on the fly which increases model capacity.
The Switch Transformer model uses a sparse T5 encoder-decoder architecture, where the MLP are replaced by a Mixture of Experts (MoE). A routing mechanism (top 1 in this case) associates each token to one of the expert, where each expert is a dense MLP. While switch transformers have a lot more weights than their equivalent dense models, the sparsity allows better scaling and better finetuning performance at scale.
During a forward pass, only a fraction of the weights are used. The routing mechanism allows the model to select relevant weights on the fly which increases the model capacity without increasing the number of operations.
You can find all the original Switch Transformers checkpoints under the [Switch Transformer](https://huggingface.co/collections/google/switch-transformers-release-6548c35c6507968374b56d1f) collection.
The abstract from the paper is the following:
*In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model.*
> [!TIP]
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
>
> Click on the Switch Transformers models in the right sidebar for more examples of how to apply Switch Transformers to different natural language tasks.
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ).
The original code can be found [here](https://github.com/google/flaxformer/tree/main/flaxformer/architectures/moe).
The example below demonstrates how to predict the masked token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- SwitchTransformers uses the [`T5Tokenizer`], which can be loaded directly from each model's repository.
- The released weights are pretrained on English [Masked Language Modeling](https://moon-ci-docs.huggingface.co/docs/transformers/pr_19323/en/glossary#general-terms) task, and should be finetuned.
```python
import torch
from transformers import pipeline
## Resources
pipeline = pipeline(
task="text2text-generation",
model="google/switch-base-8",
torch_dtype=torch.float16,
device=0
)
print(pipeline("The capital of France is <extra_id_0>."))
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", torch_dtype=torch.float16)
input_text = "The capital of France is <extra_id_0>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "The capital of France is <extra_id_0>." | transformers run --task text2text-generation --model google/switch-base-8 --device 0
# [{'generated_text': 'Paris.'}]
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes/) to only quantize the weights to 8-bits.
```py
# pip install bitsandbytes
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", quantization_config=quantization_config)
input_text = "The capital of France is <extra_id_0>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## SwitchTransformersConfig

View File

@ -14,16 +14,25 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# T5Gemma
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large langauge models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large language models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
T5Gemma has two groups of model sizes: 1) [Gemma 2](https://ai.google.dev/gemma/docs/core/model_card_2) sizes (2B-2B, 9B-2B, and 9B-9B), which are based on the offical Gemma 2 models (2B and 9B); and 2) [T5](https://arxiv.org/abs/1910.10683) sizes (Small, Base, Large, and XL), where are pretrained under the Gemma 2 framework following T5 configuration. In addition, we also provide a model at ML size (medium large, ~2B in total), which is in-between T5 Large and T5 XL.
The pretrained varaints are trained with two objectives: prefix language modeling with knowledge distillation (PrefixLM) and UL2, separately. We release both variants for each model size. The instruction-turned varaints was post-trained with supervised fine-tuning and reinforcement learning.
> [!TIP]
> Click on the T5Gemma models in the right sidebar for more examples of how to apply T5Gemma to different language tasks.
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
@ -35,43 +44,52 @@ import torch
from transformers import pipeline
pipe = pipeline(
task="text2text-generation",
model="google/t5gemma-placeholder",
"text2text-generation",
model="google/t5gemma-2b-2b-prefixlm-it",
torch_dtype=torch.bfloat16,
device="cuda",
device="cuda", # replace with "mps" to run on a Mac device
)
pipe("Question: Why is the sky blue?\nAnswer:", max_new_tokens=50)
messages = [
{"role": "user", "content": "Tell me an unknown interesting biology fact about the brain."},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipe(prompt, max_new_tokens=32)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-placeholder")
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-2b-2b-prefixlm-it")
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/t5gemma-placeholder",
"google/t5gemma-2b-2b-prefixlm-it",
device_map="auto",
torch_dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Question: Why is the sky blue?\nAnswer:"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
messages = [
{"role": "user", "content": "Tell me an unknown interesting biology fact about the brain."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True, add_generation_prompt=True).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
print(tokenizer.decode(outputs[0]))
```
</hfoption>
<hfoption id="transformers CLI">
```
echo -e "Question: Why is the sky blue? Answer:" | transformers run --task text2text-generation --model google/t5gemma-placeholder --device 0
echo -e "Write me a poem about Machine Learning. Answer:" | transformers run --task text2text-generation --model google/t5gemma-2b-2b-prefixlm --device 0
```
</hfoption>
</hfoptions>
## T5GemmaConfig

View File

@ -37,6 +37,7 @@ The original code can be found [here](https://github.com/google-research/timesfm
To use the model:
```python
import numpy as np
import torch
from transformers import TimesFmModelForPrediction

View File

@ -10,52 +10,39 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# ViTPose
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ViTPose
The ViTPose model was proposed in [ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation](https://huggingface.co/papers/2204.12484) by Yufei Xu, Jing Zhang, Qiming Zhang, Dacheng Tao. ViTPose employs a standard, non-hierarchical [Vision Transformer](vit) as backbone for the task of keypoint estimation. A simple decoder head is added on top to predict the heatmaps from a given image. Despite its simplicity, the model gets state-of-the-art results on the challenging MS COCO Keypoint Detection benchmark. The model was further improved in [ViTPose++: Vision Transformer for Generic Body Pose Estimation](https://huggingface.co/papers/2212.04246) where the authors employ
a mixture-of-experts (MoE) module in the ViT backbone along with pre-training on more data, which further enhances the performance.
[ViTPose](https://huggingface.co/papers/2204.12484) is a vision transformer-based model for keypoint (pose) estimation. It uses a simple, non-hierarchical [ViT](./vit) backbone and a lightweight decoder head. This architecture simplifies model design, takes advantage of transformer scalability, and can be adapted to different training strategies.
The abstract from the paper is the following:
*Although no specific domain knowledge is considered in the design, plain vision transformers have shown excellent performance in visual recognition tasks. However, little effort has been made to reveal the potential of such simple structures for pose estimation tasks. In this paper, we show the surprisingly good capabilities of plain vision transformers for pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model called ViTPose. Specifically, ViTPose employs plain and non-hierarchical vision transformers as backbones to extract features for a given person instance and a lightweight decoder for pose estimation. It can be scaled up from 100M to 1B parameters by taking the advantages of the scalable model capacity and high parallelism of transformers, setting a new Pareto front between throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, pre-training and finetuning strategy, as well as dealing with multiple pose tasks. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our basic ViTPose model outperforms representative methods on the challenging MS COCO Keypoint Detection benchmark, while the largest model sets a new state-of-the-art.*
[ViTPose++](https://huggingface.co/papers/2212.04246) improves on ViTPose by incorporating a mixture-of-experts (MoE) module in the backbone and using more diverse pretraining data.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose-architecture.png"
alt="drawing" width="600"/>
<small> ViTPose architecture. Taken from the <a href="https://huggingface.co/papers/2204.12484">original paper.</a> </small>
You can find all ViTPose and ViTPose++ checkpoints under the [ViTPose collection](https://huggingface.co/collections/usyd-community/vitpose-677fcfd0a0b2b5c8f79c4335).
This model was contributed by [nielsr](https://huggingface.co/nielsr) and [sangbumchoi](https://github.com/SangbumChoi).
The original code can be found [here](https://github.com/ViTAE-Transformer/ViTPose).
## Usage Tips
ViTPose is a so-called top-down keypoint detection model. This means that one first uses an object detector, like [RT-DETR](rt_detr.md), to detect people (or other instances) in an image. Next, ViTPose takes the cropped images as input and predicts the keypoints for each of them.
The example below demonstrates pose estimation with the [`VitPoseForPoseEstimation`] class.
```py
import torch
import requests
import numpy as np
import supervision as sv
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
device = "cuda" if torch.cuda.is_available() else "cpu"
url = "http://images.cocodataset.org/val2017/000000000139.jpg"
url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)
# ------------------------------------------------------------------------
# Stage 1. Detect humans on the image
# ------------------------------------------------------------------------
# You can choose any detector of your choice
# Detect humans in the image
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
@ -67,7 +54,7 @@ with torch.no_grad():
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
result = results[0]
# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
@ -77,10 +64,7 @@ person_boxes = person_boxes.cpu().numpy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
# ------------------------------------------------------------------------
# Stage 2. Detect keypoints for each person found
# ------------------------------------------------------------------------
# Detect keypoints for each person found
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-base-simple")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=device)
@ -90,54 +74,7 @@ with torch.no_grad():
outputs = model(**inputs)
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0] # results for first image
```
### ViTPose++ models
The best [checkpoints](https://huggingface.co/collections/usyd-community/vitpose-677fcfd0a0b2b5c8f79c4335) are those of the [ViTPose++ paper](https://huggingface.co/papers/2212.04246). ViTPose++ models employ a so-called [Mixture-of-Experts (MoE)](https://huggingface.co/blog/moe) architecture for the ViT backbone, resulting in better performance.
The ViTPose+ checkpoints use 6 experts, hence 6 different dataset indices can be passed.
An overview of the various dataset indices is provided below:
- 0: [COCO validation 2017](https://cocodataset.org/#overview) dataset, using an object detector that gets 56 AP on the "person" class
- 1: [AiC](https://github.com/fabbrimatteo/AiC-Dataset) dataset
- 2: [MPII](https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset) dataset
- 3: [AP-10K](https://github.com/AlexTheBad/AP-10K) dataset
- 4: [APT-36K](https://github.com/pandorgan/APT-36K) dataset
- 5: [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) dataset
Pass the `dataset_index` argument in the forward of the model to indicate which experts to use for each example in the batch. Example usage is shown below:
```python
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)
with torch.no_grad():
outputs = model(**inputs, dataset_index=dataset_index)
```
The ViTPose+ checkpoints use 6 experts, hence 6 different dataset indices can be passed.
An overview of the various dataset indices is provided below:
- 0: [COCO validation 2017](https://cocodataset.org/#overview) dataset, using an object detector that gets 56 AP on the "person" class
- 1: [AiC](https://github.com/fabbrimatteo/AiC-Dataset) dataset
- 2: [MPII](https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset) dataset
- 3: [AP-10K](https://github.com/AlexTheBad/AP-10K) dataset
- 4: [APT-36K](https://github.com/pandorgan/APT-36K) dataset
- 5: [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) dataset
### Visualization
To visualize the various keypoints, one can either leverage the `supervision` [library](https://github.com/roboflow/supervision (requires `pip install supervision`):
```python
import supervision as sv
image_pose_result = pose_results[0]
xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()
@ -162,119 +99,192 @@ annotated_frame = vertex_annotator.annotate(
scene=annotated_frame,
key_points=key_points
)
annotated_frame
```
Alternatively, one can also visualize the keypoints using [OpenCV](https://opencv.org/) (requires `pip install opencv-python`):
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose.png"/>
</div>
```python
import math
import cv2
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
if pose_keypoint_color is not None:
assert len(pose_keypoint_color) == len(keypoints)
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
x_coord, y_coord = int(kpt[0]), int(kpt[1])
if kpt_score > keypoint_score_threshold:
color = tuple(int(c) for c in pose_keypoint_color[kid])
if show_keypoint_weight:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
height, width, _ = image.shape
if keypoint_edges is not None and link_colors is not None:
assert len(link_colors) == len(keypoint_edges)
for sk_id, sk in enumerate(keypoint_edges):
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
if (
x1 > 0
and x1 < width
and y1 > 0
and y1 < height
and x2 > 0
and x2 < width
and y2 > 0
and y2 < height
and score1 > keypoint_score_threshold
and score2 > keypoint_score_threshold
):
color = tuple(int(c) for c in link_colors[sk_id])
```py
# pip install torchao
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation, TorchAoConfig
url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-huge")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-huge", device_map=device, quantization_config=quantization_config)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]
```
## Notes
- Use [`AutoProcessor`] to automatically prepare bounding box and image inputs.
- ViTPose is a top-down pose estimator. It uses a object detector to detect individuals first before keypoint prediction.
- ViTPose++ has 6 different MoE expert heads (COCO validation `0`, AiC `1`, MPII `2`, AP-10K `3`, APT-36K `4`, COCO-WholeBody `5`) which supports 6 different datasets. Pass a specific value corresponding to the dataset to the `dataset_index` to indicate which expert to use.
```py
from transformers import AutoProcessor, VitPoseForPoseEstimation
device = "cuda" if torch.cuda.is_available() else "cpu"
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)
with torch.no_grad():
outputs = model(**inputs, dataset_index=dataset_index)
```
- [OpenCV](https://opencv.org/) is an alternative option for visualizing the estimated pose.
```py
# pip install opencv-python
import math
import cv2
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
if pose_keypoint_color is not None:
assert len(pose_keypoint_color) == len(keypoints)
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
x_coord, y_coord = int(kpt[0]), int(kpt[1])
if kpt_score > keypoint_score_threshold:
color = tuple(int(c) for c in pose_keypoint_color[kid])
if show_keypoint_weight:
X = (x1, x2)
Y = (y1, y2)
mean_x = np.mean(X)
mean_y = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
polygon = cv2.ellipse2Poly(
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(image, polygon, color)
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
height, width, _ = image.shape
if keypoint_edges is not None and link_colors is not None:
assert len(link_colors) == len(keypoint_edges)
for sk_id, sk in enumerate(keypoint_edges):
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
if (
x1 > 0
and x1 < width
and y1 > 0
and y1 < height
and x2 > 0
and x2 < width
and y2 > 0
and y2 < height
and score1 > keypoint_score_threshold
and score2 > keypoint_score_threshold
):
color = tuple(int(c) for c in link_colors[sk_id])
if show_keypoint_weight:
X = (x1, x2)
Y = (y1, y2)
mean_x = np.mean(X)
mean_y = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
polygon = cv2.ellipse2Poly(
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(image, polygon, color)
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges
# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges
palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
]
)
palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
]
)
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]
numpy_image = np.array(image)
numpy_image = np.array(image)
for pose_result in image_pose_result:
scores = np.array(pose_result["scores"])
keypoints = np.array(pose_result["keypoints"])
for pose_result in image_pose_result:
scores = np.array(pose_result["scores"])
keypoints = np.array(pose_result["keypoints"])
# draw each point on image
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)
# draw each point on image
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)
# draw links
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
# draw links
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
pose_image = Image.fromarray(numpy_image)
pose_image
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose-coco.jpg" alt="drawing" width="600"/>
pose_image = Image.fromarray(numpy_image)
pose_image
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViTPose. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Refer to resources below to learn more about using ViTPose.
- A demo of ViTPose on images and video can be found [here](https://huggingface.co/spaces/hysts/ViTPose-transformers).
- A notebook illustrating inference and visualization can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTPose/Inference_with_ViTPose_for_human_pose_estimation.ipynb).
- This [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTPose/Inference_with_ViTPose_for_body_pose_estimation.ipynb) demonstrates inference and visualization.
- This [Space](https://huggingface.co/spaces/hysts/ViTPose-transformers) demonstrates ViTPose on images and video.
## VitPoseImageProcessor

View File

@ -0,0 +1,300 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Voxtral
Voxtral is an upgrade of [Ministral 3B and Mistral Small 3B](https://mistral.ai/news/ministraux), extending its language capabilities with audio input support. It is designed to handle tasks such as speech transcription, translation, and audio understanding.
You can read more in Mistral's [realease blog post](https://mistral.ai/news/voxtral).
The model is available in two checkpoints:
- 3B: [mistralai/Voxtral-Mini-3B-2507](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507)
- 24B: [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507)
## Key Features
Voxtral builds on Ministral-3B by adding audio processing capabilities:
- **Transcription mode**: Includes a dedicated mode for speech transcription. By default, Voxtral detects the spoken language and transcribes it accordingly.
- **Long-form context**: With a 32k token context window, Voxtral can process up to 30 minutes of audio for transcription or 40 minutes for broader audio understanding.
- **Integrated Q&A and summarization**: Supports querying audio directly and producing structured summaries without relying on separate ASR and language models.
- **Multilingual support**: Automatically detects language and performs well across several widely spoken languages, including English, Spanish, French, Portuguese, Hindi, German, Dutch, and Italian.
- **Function calling via voice**: Can trigger functions or workflows directly from spoken input based on detected user intent.
- **Text capabilities**: Maintains the strong text processing performance of its Ministral-3B foundation.
## Usage
Let's first load the model!
```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
```
### Audio Instruct Mode
The model supports audio-text instructions, including multi-turn and multi-audio interactions, all processed in batches.
➡️ audio + text instruction
```python
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"url": "https://huggingface.co/datasets/eustlb/audio-samples/resolve/main/dude_where_is_my_car.wav",
},
{"type": "text", "text": "What can you tell me about this audio?"},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
➡️ multi-audio + text instruction
```python
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
},
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
➡️ multi-turn:
```python
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
},
{"type": "text", "text": "Describe briefly what you can hear."},
],
},
{
"role": "assistant",
"content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
},
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
},
{"type": "text", "text": "Ok, now compare this new audio with the previous one."},
],
},
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
➡️ text only:
```python
conversation = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What if a cyber brain could possibly generate its own ghost, and create a soul all by itself?",
},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
➡️ audio only:
```python
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
➡️ batched inference!
```python
conversations = [
[
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
},
{
"type": "text",
"text": "Who's speaking in the speach and what city's weather is being discussed?",
},
],
}
],
[
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
},
{"type": "text", "text": "What can you tell me about this audio?"},
],
}
],
]
inputs = processor.apply_chat_template(conversations)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
print(decoded_output)
print("=" * 80)
```
### Transcription Mode
Use the model to transcribe audio (supports English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)!
```python
inputs = processor.apply_transcrition_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3")
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
print(decoded_output)
print("=" * 80)
```
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
## VoxtralConfig
[[autodoc]] VoxtralConfig
## VoxtralEncoderConfig
[[autodoc]] VoxtralEncoderConfig
## VoxtralProcessor
[[autodoc]] VoxtralProcessor
## VoxtralEncoder
[[autodoc]] VoxtralEncoder
- forward
## VoxtralForConditionalGeneration
[[autodoc]] VoxtralForConditionalGeneration
- forward

View File

@ -172,9 +172,9 @@ Otherwise, [`~Wav2Vec2ProcessorWithLM.batch_decode`] performance will be slower
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> def map_to_array(batch):
... batch["speech"] = batch["audio"]["array"]
... return batch
>>> def map_to_array(example):
... example["speech"] = example["audio"]["array"]
... return example
>>> # prepare speech data for batch inference

View File

@ -164,7 +164,7 @@ args = TrainingArguments(
output_dir="./test-schedulefree",
max_steps=1000,
per_device_train_batch_size=4,
+ optim="schedule_free_radamw,
+ optim="schedule_free_radamw",
+ lr_scheduler_type="constant",
gradient_checkpointing=True,
logging_strategy="steps",
@ -174,3 +174,29 @@ args = TrainingArguments(
run_name="sfo",
)
```
## StableAdamW
```bash
pip install torch-optimi
```
[StableAdamW](https://arxiv.org/pdf/2304.13013) is a hybrid between AdamW and AdaFactor. It ports AdaFactor's update clipping into AdamW, which removes the need for gradient clipping. Otherwise, it behaves as a drop-in replacement for AdamW.
> [!TIP]
> If training on large batch sizes or still observing training loss spikes, consider reducing beta_2 between [0.95, 0.99].
```diff
args = TrainingArguments(
output_dir="./test-stable-adamw",
max_steps=1000,
per_device_train_batch_size=4,
+ optim="stable_adamw",
gradient_checkpointing=True,
logging_strategy="steps",
logging_steps=1,
learning_rate=2e-6,
save_strategy="no",
run_name="stable-adamw",
)
```

View File

@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
# Build your own machine
One of the most important consideration when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
One of the most important considerations when building a machine for deep learning is the GPU choice. GPUs are the standard workhorse for deep learning owing to their tensor cores for performing very efficient matrix multiplication and high memory bandwidth. To train large models, you either need a more powerful GPU, multiple GPUs, or take advantage of techniques that offload some of the load to the CPU or NVMe.
This guide provides some practical tips for setting up a GPU for deep learning. For a more detailed discussion and comparison of GPUs, take a look at the [Which GPU(s) to Get for Deep Learning](https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/) blog post.
@ -25,11 +25,11 @@ High-end consumer GPUs may have two or three PCIe 8-pin power sockets, and you s
Each PCIe 8-pin power cable should be connected to a 12V rail on the power supply unit (PSU) and can deliver up to 150W. Other GPUs may use a PCIe 12-pin connector which can deliver up to 500-600W. Lower-end GPUs may only use a PCIe 6-pin connector which supplies up to 75W.
It is important the PSU has stable voltage otherwise it may not be able to supply the GPU with enough power to function properly during peak usage.
It is important that the PSU maintains stable voltage; otherwise, it may fail to supply the GPU with enough power during peak usage.
## Cooling
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158 - 167F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194F, the GPU may begin to throttle performance.
An overheated GPU throttles its performance and can even shutdown if it's too hot to prevent damage. Keeping the GPU temperature low, anywhere between 158167°F, is essential for delivering full performance and maintaining its lifespan. Once temperatures reach 183 - 194°F, the GPU may begin to throttle performance.
## Multi-GPU connectivity

View File

@ -177,10 +177,16 @@ There are three supported implementations available.
SDPA is used by default for PyTorch v2.1.1. and greater when an implementation is available. You could explicitly enable SDPA by setting `attn_implementation="sdpa"` in [`~PreTrainedModel.from_pretrained`] though. Certain attention parameters, such as `head_mask` and `output_attentions=True`, are unsupported and returns a warning that Transformers will fall back to the (slower) eager implementation.
Refer to the [AttentionInterface](./attention_interface) guide to learn how to change the attention implementation after loading a model.
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto", attn_implementation="sdpa")
# Change the model's attention dynamically after loading it
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto")
model.set_attention_implementation("sdpa")
```
SDPA selects the most performant implementation available, but you can also explicitly select an implementation with [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager. The example below shows how to enable the FlashAttention2 implementation with `enable_flash=True`.
@ -234,7 +240,7 @@ FlashAttention2 support is currently limited to Instinct MI210, Instinct MI250 a
</hfoption>
</hfoptions>
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`]. FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
Enable FlashAttention2 by setting `attn_implementation="flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or by setting `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface). FlashAttention2 is only supported for models with the fp16 or bf16 torch type. Make sure to cast your model to the appropriate data type first.
```py
from transformers import AutoModelForCausalLM

View File

@ -1,355 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TPU
TPU (Tensor Processing Unit) is a type of hardware designed to accelerate tensor computations for training and inference. TPUs are generally accessed through Google cloud services, but smaller TPUs are also available for free from [Google Colab](https://colab.research.google.com/notebooks/tpu.ipynb) or [Kaggle](https://www.kaggle.com/docs/tpu).
This guide focuses on training a Keras model for sequence classification on a TPU from Google Colab. Make sure the TPU runtime is enabled by going to **Runtime > Change runtime type** and selecting a TPU.
Run the command below to install the latest version of Transformers and [Datasets](https://huggingface.co/docs/datasets).
```py
!pip install --U transformers datasets
```
Create an instance of [tf.distribute.cluster_resolver.TPUClusterResolver](https://www.tensorflow.org/api_docs/python/tf/distribute/cluster_resolver/TPUClusterResolver), and then connect to the remote cluster and initialize the TPUs.
```py
import tensorflow as tf
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
```
There are various distribution strategies for running your model on multiple TPUs. The [tpu.distribute.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/TPUStrategy) offers synchronized distributed training.
```py
strategy = tf.distribute.TPUStrategy(resolver)
```
Load and tokenize a dataset - this example uses [CoLA](https://huggingface.co/datasets/nyu-mll/glue/viewer/cola) from the GLUE benchmark - and pad all samples to the maximum length so it is easier to load as an array and to avoid [XLA compilation issues](#xla).
```py
from transformers import AutoTokenizer
from datasets import load_dataset
import numpy as np
dataset = load_dataset("glue", "cola")["train"]
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
train_data = tokenizer(
dataset["sentence"],
padding="max_length",
truncation=True,
max_length=128,
return_tensors="np",
)
train_data = dict(train_data)
train_labels = np.array(dataset["label"])
```
The model **must** be created inside [Strategy.scope](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy#scope) in order to replicate the model layers on each TPU device.
```py
from transformers import TFAutoModelForSequenceClassification
with strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
model.compile(optimizer="adam")
```
TPUs only accept [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) inputs unlike the Keras [fit](https://keras.io/api/models/model_training_apis/#fit-method) method which accepts a broader range of inputs.
```py
BATCH_SIZE = 8 * strategy.num_replicas_in_sync
tf_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
tf_dataset = tf_dataset.shuffle(len(tf_dataset))
tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True)
```
Finally, call [fit](https://keras.io/api/models/model_training_apis/#fit-method) to start training.
```py
model.fit(tf_dataset)
```
## Large datasets
The dataset created above pads every sample to the maximum length and loads the whole dataset into memory. This may not be possible if you're working with larger datasets. When training on large datasets, you may want to create a [tf.TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) or stream the data.
### tf.TFRecord
[tf.TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) is the standard [tf.data](https://www.tensorflow.org/guide/data) format for storing training data. For very large training jobs, it's worth preprocessing your data and storing it in the `tf.TFRecord` format and building a `tf.data` pipeline on top. Refer to the table below to help you decide whether `tf.TFRecord` is helpful for you.
| pros | cons |
|---|---|
| works on all TPU instances | costs associated with cloud storage |
| supports huge datasets and massive throughput | some data types (images) can take a lot of space to store |
| suitable for training on entire TPU pods | |
| preprocessing is done in advance, maximizing training speed | |
Preprocess and tokenize the dataset before writing it to a `tf.TFRecord` to avoid writing every time the data is loaded.
An exception is made for *train-time augmentations*, because augmentations applied after writing to a `tf.TFRecord` results in the same augmentation for each epoch. Instead, apply augmentations in the `tf.data` pipeline that loads the data.
> [!TIP]
> In practice, you probably won't be able to load the entire dataset in memory. Load a chunk of the dataset at a time and convert it to `TFRecord`, and repeat until the entire dataset is in the `TFRecord` format. Then you can use a list of all the files to create a `TFRecordDataset`. The example below demonstrates a single file for simplicity.
```py
tokenized_data = tokenizer(
dataset["sentence"],
padding="max_length",
truncation=True,
max_length=128,
return_tensors="np",
)
labels = dataset["label"]
with tf.io.TFRecordWriter("dataset.tfrecords") as file_writer:
for i in range(len(labels)):
features = {
"input_ids": tf.train.Feature(
int64_list=tf.train.Int64List(value=tokenized_data["input_ids"][i])
),
"attention_mask": tf.train.Feature(
int64_list=tf.train.Int64List(value=tokenized_data["attention_mask"][i])
),
"labels": tf.train.Feature(
int64_list=tf.train.Int64List(value=[labels[i]])
),
}
features = tf.train.Features(feature=features)
example = tf.train.Example(features=features)
record_bytes = example.SerializeToString()
file_writer.write(record_bytes)
```
Build a [TFRecordDataset](https://www.tensorflow.org/api_docs/python/tf/data/TFRecordDataset) using the saved filename to load it.
```py
def decode_fn(sample):
features = {
"input_ids": tf.io.FixedLenFeature((128,), dtype=tf.int64),
"attention_mask": tf.io.FixedLenFeature((128,), dtype=tf.int64),
"labels": tf.io.FixedLenFeature((1,), dtype=tf.int64),
}
return tf.io.parse_example(sample, features)
# TFRecordDataset can handle gs:// paths
tf_dataset = tf.data.TFRecordDataset(["gs://matt-tf-tpu-tutorial-datasets/cola/dataset.tfrecords"])
tf_dataset = tf_dataset.map(decode_fn)
tf_dataset = tf_dataset.shuffle(len(dataset)).batch(BATCH_SIZE, drop_remainder=True)
tf_dataset = tf_dataset.apply(
tf.data.experimental.assert_cardinality(len(labels) // BATCH_SIZE)
)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
model.fit(tf_dataset)
```
### Stream from raw data
Data can be stored in its native format and preprocessed in a [tf.data](https://www.tensorflow.org/guide/data) pipeline as the data is loaded. This approach isn't supported for many models with complex tokenization schemes, but some models like BERT are supported because their tokenization can be compiled. Refer to the table below to help you decide whether this approach is helpful for you.
| pros | cons |
|---|---|
| suitable for highly compressed big data in native format (images, audio) | requires writing a full preprocessing pipeline |
| convenient if raw data is available in a public cloud bucket | complex preprocessing on-the-fly can hurt throughput |
| works on all TPU instances if data is stored in Google Cloud | must place data in cloud storage if not already there |
| | not as suitable for text data because writing a tokenization pipeline is hard (use `TFRecord` for text) |
The example below demonstrates streaming data for an image model.
Load an image dataset and get a list of the underlying image file paths and labels.
```py
from datasets import load_dataset
image_dataset = load_dataset("beans", split="train")
filenames = image_dataset["image_file_path"]
labels = image_dataset["labels"]
```
Convert the local filenames in the dataset into `gs://` paths in Google Cloud Storage.
```py
# strip everything but the category directory and filenames
base_filenames = ['/'.join(filename.split('/')[-2:]) for filename in filenames]
# prepend the Google Cloud base path to everything instead
gs_paths = ["gs://matt-tf-tpu-tutorial-datasets/beans/"+filename for filename in base_filenames]
# create tf_dataset
tf_dataset = tf.data.Dataset.from_tensor_slices(
{"filename": gs_paths, "labels": labels}
)
tf_dataset = tf_dataset.shuffle(len(tf_dataset))
```
Transformers preprocessing classes like [`AutoImageProcessor`] are framework-agnostic and can't be compiled into a pipeline by `tf.data`. To get around this, get the normalization values (`mean` and `std`) from the [`AutoImageProcessor`] and use them in the `tf.data` pipeline.
```py
from transformers import AutoImageProcessor
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
image_size = (processor.size["height"], processor.size["width"])
image_mean = processor.image_mean
image_std = processor.image_std
```
Use these normalization values to create a function to load and preprocess the images.
```py
BATCH_SIZE = 8 * strategy.num_replicas_in_sync
def decode_fn(sample):
image_data = tf.io.read_file(sample["filename"])
image = tf.io.decode_jpeg(image_data, channels=3)
image = tf.image.resize(image, image_size)
array = tf.cast(image, tf.float32)
array /= 255.0
array = (array - image_mean) / image_std
array = tf.transpose(array, perm=[2, 0, 1])
return {"pixel_values": array, "labels": sample["labels"]}
tf_dataset = tf_dataset.map(decode_fn)
tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True)
print(tf_dataset.element_spec)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
from transformers import TFAutoModelForImageClassification
with strategy.scope():
model = TFAutoModelForImageClassification.from_pretrained(image_model_checkpoint)
model.compile(optimizer="adam")
model.fit(tf_dataset)
```
### Stream with prepare_tf_dataset
[`~TFPreTrainedModel.prepare_tf_dataset`] creates a `tf.data` pipeline that loads samples from [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). The pipeline uses [tf.numpy_function]() or [`~datasets.Dataset.from_generator`], which can't be compiled by TensorFlow, to access the underlying `tf.data.Dataset`. It also won't work on a Colab TPU or TPU Nodes because the pipeline streams data from a local disk. Refer to the table below to help you decide whether this approach is helpful for you.
| pros | cons |
|---|---|
| simple code | only works on TPU VM |
| same approach on TPU/GPU | data must be available as a Hugging Face Dataset |
| dataset doesn't have to fit in memory | data must fit on local storage |
| supports variable padding | data loading may be a bottleneck on a big TPU pod slice |
[`~TFPreTrainedModel.prepare_tf_dataset`] only works on [TPU VM](#tpu-types). Add the tokenizer output as columns in the dataset since the dataset is stored on disk, which means it can handle data larger than the available memory. Use [`~TFPreTrainedModel.prepare_tf_dataset`] to stream data from the dataset by wrapping it with a `tf.data` pipeline.
```py
def tokenize_function(examples):
return tokenizer(
examples["sentence"], padding="max_length", truncation=True, max_length=128
)
# add the tokenizer output to the dataset as new columns
dataset = dataset.map(tokenize_function)
# prepare_tf_dataset() chooses columns that match the models input names
tf_dataset = model.prepare_tf_dataset(
dataset, batch_size=BATCH_SIZE, shuffle=True, tokenizer=tokenizer
)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
with strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
model.compile(optimizer="adam")
model.fit(tf_dataset)
```
## TPU types
There are two types of TPUs, a TPU Node and a TPU VM.
A TPU Node indirectly accesses a remote TPU. It requires a separate VM to initialize your network and data pipeline, and then forwards it to the remote node. Google Colab TPUs are an example of a TPU Node. You can't use local data because the TPU is remotely located, and data must be stored in Google Cloud Storage where the data pipeline can access it.
TPU VM are connected directly to the machine the TPU is located on, and they are generally easier to work with, especially when it comes to your data pipeline.
> [!TIP]
> We recommend avoiding TPU Nodes if possible because it is more difficult to debug than TPU VMs. TPU Nodes may also be unsupported in the future and become a legacy access method.
A single TPU (v2-8, v3-8, v4-8) runs 8 replicas. TPUs can exist in **pods** which run hundreds or even thousands of replicas simultaneously. When you only use a portion of a pod, it is referred to as a **pod slice**. On Google Colab, you'll typically get a single v2-8 TPU.
## XLA
[XLA](https://openxla.org/xla) is a linear algebra compiler for high-performance execution and it is used by default to improve performance on TPUs.
Before executing your code on a TPU, it's a good idea to try it first on a CPU or GPU because it is easier to debug. You can train for a few steps to make sure the model and data pipeline work as expected. Set `jit_compile=True` in the [compile](https://keras.io/api/models/model_training_apis/#compile-method) method to enable XLA compilation (but remember to remove this line of code before running on a TPU).
The section below outlines three rules for making your code XLA-compatible. Transformers enforce the first two rules for models and loss functions by default, but don't forget about them if you're writing your own models and loss functions.
### Data dependent conditionals
Any `if` statements cannot depend on values inside a [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor). The code below can't be compiled by XLA.
```py
if tf.reduce_sum(tensor) > 10:
tensor = tensor / 2.0
```
To compile with XLA, use [tf.cond](https://www.tensorflow.org/api_docs/python/tf/cond) or remove the conditional and use indicator variables instead as shown below.
```py
sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32)
tensor = tensor / (1.0 + sum_over_10)
```
### Data dependent shapes
The shape of a [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor) cannot depend on their values. For example, [tf.unique](https://www.tensorflow.org/api_docs/python/tf/unique) can't be compiled because it returns a tensor containing an instance of each unique value in the input. The shape of this output depends on how repetitive the input [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor) is.
This is an issue during **label masking**, where labels are set to a negative value to indicate they should be ignored when computing the loss. The code below can't be compiled by XLA because the shape of `masked_outputs` and `masked_labels` depend on how many positions are masked.
```py
label_mask = labels >= 0
masked_outputs = outputs[label_mask]
masked_labels = labels[label_mask]
loss = compute_loss(masked_outputs, masked_labels)
mean_loss = torch.mean(loss)
```
To compile with XLA, avoid the data-dependent shapes by computing the loss for every position and zeroing out the masked positions in both the numerator and denominator when calculating the mean. Convert `tf.bool` to `tf.float32` as an indicator variable to make your code XLA-compatible.
```py
label_mask = tf.cast(labels >= 0, tf.float32)
loss = compute_loss(outputs, labels)
loss = loss * label_mask
mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask)
```
### Recompile different input shapes
XLA recompiles your model if input shapes are variable which create huge performance problems. It is especially common in text models because input texts have variable lengths after tokenization.
> [!WARNING]
> Execessive padding can also severely slow down training because requires more compute and memory to process.
To avoid different shapes, use padding to pad all your inputs to the same length and use an `attention_mask`. Try padding batches of samples to a multiple of 32 or 64 tokens. Use the parameters `padding="max_length"`, `padding="longest"`, or `pad_to_multiple_of` to help with padding. This often increases the number of tokens by a small amount, but it significantly reduces the number of unique input shapes because every input shape is a multiple of 32 or 64. Fewer unique input shapes requires fewer recompilation.

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
HQQ further supports fine-tuning with [PEFT](https://huggingface.co/docs/peft) and is fully compatible with [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) for even faster inference and training.
Install HQQ with the following command to get the latest version and to build its corresponding CUDA kernels.
Install HQQ with the following command to get the latest version and to build its corresponding CUDA kernels if you are using a cuda device. It also support Intel XPU with pure pytorch implementation.
```bash
pip install hqq
@ -34,13 +34,14 @@ You can choose to either replace all the linear layers in a model with the same
Quantize a model by creating a [`HqqConfig`] and specifying the `nbits` and `group_size` to replace for all the linear layers ([torch.nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html)) of the model.
``` py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
quant_config = HqqConfig(nbits=8, group_size=64)
model = transformers.AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.float16,
device_map="cuda",
device_map="auto",
quantization_config=quant_config
)
```
@ -67,7 +68,7 @@ quant_config = HqqConfig(dynamic_config={
model = transformers.AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.float16,
device_map="cuda",
device_map="auto",
quantization_config=quant_config
)
```

View File

@ -16,49 +16,195 @@ rendered properly in your Markdown viewer.
# Serving
Transformer models can be served for inference with specialized libraries such as Text Generation Inference (TGI) and vLLM. These libraries are specifically designed to optimize performance with LLMs and include many unique optimization features that may not be included in Transformers.
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
## TGI
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
## Serve CLI
> [!TIP]
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
> [!WARNING]
> This section is experimental and subject to change in future versions
Serve a Transformers implementation the same way you'd serve a TGI model.
You can serve models of diverse modalities supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers compatibility with the OpenAI SDK, which is the _de facto_ standard for LLM conversations and other related tasks. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
```docker
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
```
The server supports the following REST APIs:
- `/v1/chat/completions`
- `/v1/responses`
- `/v1/audio/transcriptions`
- `/v1/models`
Add `--trust-remote_code` to the command to serve a custom Transformers model.
```docker
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
```
## vLLM
[vLLM](https://docs.vllm.ai/en/latest/index.html) can also serve a Transformers implementation of a model if it isn't [natively implemented](https://docs.vllm.ai/en/latest/models/supported_models.html#list-of-text-only-language-models) in vLLM.
Many features like quantization, LoRA adapters, and distributed inference and serving are supported for the Transformers implementation.
> [!TIP]
> Refer to the [Transformers fallback](https://docs.vllm.ai/en/latest/models/supported_models.html#transformers-fallback) section for more details.
By default, vLLM serves the native implementation and if it doesn't exist, it falls back on the Transformers implementation. But you can also set `--model-impl transformers` to explicitly use the Transformers model implementation.
To launch a server, simply use the `transformers serve` CLI command:
```shell
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
--task generate \
--model-impl transformers
transformers serve
```
Add the `trust-remote-code` parameter to enable loading a remote code model.
The simplest way to interact with the server is through our `transformers chat` CLI
```shell
vllm serve Qwen/Qwen2.5-1.5B-Instruct \
--task generate \
--model-impl transformers \
--trust-remote-code
```
transformers chat localhost:8000 --model-name-or-path Qwen/Qwen3-4B
```
or by sending an HTTP request with `cURL`, e.g.
```shell
curl -X POST http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-Instruct"}'
```
from which you'll receive multiple chunks in the Completions API format
```shell
data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863, "model": "Qwen/Qwen2.5-0.5B-Instruct", "system_fingerprint": "", "choices": [{"delta": {"role": "assistant", "content": "", "tool_call_id": null, "tool_calls": null}, "index": 0, "finish_reason": null, "logprobs": null}]}
data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863, "model": "Qwen/Qwen2.5-0.5B-Instruct", "system_fingerprint": "", "choices": [{"delta": {"role": "assistant", "content": "", "tool_call_id": null, "tool_calls": null}, "index": 0, "finish_reason": null, "logprobs": null}]}
(...)
```
The server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
> [!TIP]
> At the moment, MCP tool usage in `transformers` is limited to the `qwen` family of models.
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
### Usage example 1: chat with local requests (feat. Jan)
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
### Usage example 2: chat with external requests (feat. Cursor)
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch a server with CORS enabled, run
```shell
transformers serve --enable-cors
```
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see an https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>
### Usage example 3: `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```
### Usage example 4: speech to text transcription (feat. Open WebUI)
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
```shell
transformers serve --enable-cors
```
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
If you've done everything correctly, the audio tab should look like this
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
</h3>
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.

View File

@ -1,129 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# XLA
[[open-in-colab]]
[Accelerated Linear Algebra (XLA)](https://openxla.org/xla) is a linear algebra compiler that optimizes model runtime across different hardware and frameworks.
This guide will look specifically at how to accelerate *TensorFlow* models with XLA.
## TensorFlow
XLA can potentially accelerate a TensorFlow model without making any source code changes. It is already packaged with the TensorFlow library, and it is triggered with `jit_compile` in any graph creating function such as [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
If you're using Keras methods like [fit](https://keras.io/api/models/model_training_apis/#fit-method) and [predict](https://keras.io/api/models/model_training_apis/#predict-method), enable XLA by passing `jit_compile=True` to [compile](https://keras.io/api/models/model_training_apis/#compile-method).
```py
model.compile(jit_compile=True)
```
XLA can be used to accelerate any arbitrary [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
Models with a TensorFlow implementation like [GPT2](./model_doc/gpt2), [T5](./model_doc/t5), [OPT](./model_doc/opt), and [Whisper](./model_doc/whisper) are XLA compatible. The speed up depends on a model, but in general, TensorFlow models in Transformers get a ~100x speed up.
### Functions
A typical forward pass in a TensorFlow model is shown below. To run a forward pass with XLA, wrap the model with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function) and set `jit_compile=True`.
```diff
import tensorflow as tf
model = tf.keras.Sequential(
[tf.keras.layers.Dense(10, input_shape=(10,), activation="relu"), tf.keras.layers.Dense(5, activation="softmax")]
)
# Generate random inputs for the model.
batch_size = 16
input_vector_dim = 10
random_inputs = tf.random.normal((batch_size, input_vector_dim))
# Run a forward pass.
- _ = model(random_inputs)
+ xla_fn = tf.function(model, jit_compile=True)
+ _ = xla_fn(random_inputs)
```
The default `call` function of the model is used to compile the XLA graph. But if there's any other model function you want to compile with XLA, wrap them with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
```py
my_xla_fn = tf.function(model.my_xla_fn, jit_compile=True)
```
### Text generation
You could also compile other model functions with XLA. For example, enable XLA for text generation by wrapping [`~TFGenerationMixin.generate`] with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
# Will error if the minimal version of Transformers is not installed.
from transformers.utils import check_min_version
check_min_version("4.21.0")
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2")
input_string = ["TensorFlow is"]
xla_generate = tf.function(model.generate, jit_compile=True)
tokenized_input = tokenizer(input_string, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
"Generated -- TensorFlow is an open-source, open-source, distributed-source application framework for the"
```
## Tracing
When executing an XLA-enabled function for the first time, it tries to infer the computation graph in a process known as *tracing*. This is a time-consuming step, but any consecutive calls to the function will be much faster because it won't have to trace the computation graph again.
To ensure a function is only traced once, the inputs must have the same shape as when the graph was built. This usually isn't an issue for fixed input shapes like images, but it can be an issue for inputs with variable shapes like text.
One way to handle this is to pad your text so it always has the same shape. Configure padding options such as [pad_to_multiple_of](https://hf.co/docs/transformers/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.pad.pad_to_multiple_of) in the tokenizer.
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2")
input_string = ["TensorFlow is"]
xla_generate = tf.function(model.generate, jit_compile=True)
# Call tokenizer with padding options.
tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
```
In addition to the input shape, any changes to the generation options at any point also triggers tracing.
## Resources
Learn more about XLA with the following resources.
- A [notebook](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/91_tf_xla_generate.ipynb) demonstrating XLA-compatible encoder-decoder and decoder-only text generation models.
- The [Faster Text Generation with TensorFlow and XLA](https://hf.co/blog/tf-xla-generate) blog post compares benchmarks for XLA-compatible models and provides a friendly introduction to XLA in TensorFlow.
- The [How Hugging Face improved Text Generation performance with XLA](https://blog.tensorflow.org/2022/11/how-hugging-face-improved-text-generation-performance-with-xla.html) blog post discusses the design philosophy behind adding XLA to TensorFlow models in Transformers.
- The [Introduction to graphs and tf.function](https://www.tensorflow.org/guide/intro_to_graphs) guide.
- The [Better performance with tf.function](https://www.tensorflow.org/guide/function) guide.
- The [XLA](https://openxla.org/xla) documentation.

View File

@ -14,5 +14,9 @@ rendered properly in your Markdown viewer.
-->
# Tools
(deprecated)
> [!WARNING]
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

View File

@ -187,13 +187,13 @@ from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_losss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
labels = inputs.pop("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss for 3 labels with different weights
reduction = "mean" if num_items_in_batch is not None else "sum"
reduction = "sum" if num_items_in_batch is not None else "mean"
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device, reduction=reduction))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
if num_items_in_batch is not None:

View File

@ -0,0 +1,254 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Inference server backends
Transformers' models are compatible with different inference servers like vLLM and SGLang. Instead of implementing a model for each inference server, you only need one model, which can be plugged into any inference server. It simplifies maintenance and makes it easy for users to use different inference servers for different use cases.
With Transformers as a backend, you can also serve any model - including custom and Hub-hosted models - without waiting for native support.
This guide shows how to use Transformers' models as a backend to some popular inference servers and how to build a model that supports all inference servers.
## vLLM
[vLLM](https://github.com/vllm-project/vllm) is a high-performance inference engine optimized for serving LLMs at scale. It supports many Transformers' models, including all decoder-only LLMs and several vision-language models (VLMs). VLMs currently support image inputs only, with video support planned.
vLLM automatically selects the best backend, and if a model isnt natively supported, it falls back to the Transformers model. To explicitly use a Transformers' model, set `model_impl="transformers"`.
```python
from vllm import LLM
llm = LLM(model="meta-llama/Llama-3.2-1B", model_impl="transformers")
```
Add `--model-impl transformers` to `vllm serve` to launch a server with a Transformers' model.
```bash
vllm serve meta-llama/Llama-3.2-1B \
--task generate \
--model-impl transformers
```
Refer to the [vLLM docs](https://docs.vllm.ai/en/latest/models/transformers_backend.html) for more usage examples and tips on using a Transformers as the backend.
## SGLang
[SGLang](https://github.com/InternLM/sglang) is a high-performance, OpenAI-compatible server and runtime designed for chat-based LLMs. It offers fast inference, role-based conversation handling, and support for custom pipelines, making it great for building real-world LLM apps.
SGLang automatically falls back to the Transformers backend if a model isnt natively supported. To explicitly use a Transformers' model, set `impl="transformers"`.
```python
import sglang as sgl
llm = sgl.Engine("meta-llama/Llama-3.2-1B-Instruct", impl="transformers")
print(llm.generate(["The capital of France is"], {"max_new_tokens": 20})[0])
```
Add `impl transformers` to `sglang.launch_server` to launch a server with a Transformers' model.
```bash
python3 -m sglang.launch_server \
--model-path kyutai/helium-1-preview-2b \
--impl transformers \
--host 0.0.0.0 \
--port 30000
```
Refer to the [SGLang docs](https://docs.sglang.ai/supported_models/transformers_fallback.html) for more usage examples and tips on using a Transformers as the backend.
## TGI
[TGI](https://huggingface.co/docs/text-generation-inference/index) can serve models that aren't [natively implemented](https://huggingface.co/docs/text-generation-inference/supported_models) by falling back on the Transformers implementation of the model. Some of TGIs high-performance features aren't available in the Transformers implementation, but other features like continuous batching and streaming are still supported.
> [!TIP]
> Refer to the [Non-core model serving](https://huggingface.co/docs/text-generation-inference/basic_tutorials/non_core_models) guide for more details.
Serve a Transformers implementation the same way you'd serve a TGI model.
```docker
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id gpt2
```
Add `--trust-remote_code` to the command to serve a custom Transformers model.
```docker
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id <CUSTOM_MODEL_ID> --trust-remote-code
```
## Building a compatible model backend
To ensure a model is compatible as a backend to any inference server, make sure it is compatible with Transformers and supports the [AttentionInterface](./attention_interface) class.
1. A model must be Transformers-compatible following the model [contribution guidelines](./add_new_model) or the [custom model contribution guidelines](./custom_models). Make sure the model has a valid `config.json` in its directory and a valid `auto_map` field pointing to the model class in the config.
2. A model's attentions needs to be configurable with the [AttentionInterface](./attention_interface) to allow custom and optimized attention functions. This is important for enabling the performance features of the different inference servers.
Use `ALL_ATTENTION_FUNCTIONS` when defining the attention layer and propagate `**kwargs**` from the base `MyModel` class to the attention layers. Set `_supports_attention_backend` to `True` in [`PreTrainedModel`]. Expand the code below for an example.
<details>
<summary>modeling_my_model.py</summary>
```python
from transformers import PreTrainedModel
from torch import nn
class MyAttention(nn.Module):
def forward(self, hidden_states, **kwargs):
...
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
**kwargs,
)
...
class MyModel(PreTrainedModel):
_supports_attention_backend = True
```
</details>
3. This step is optional, but if you want to support tensor parallel and/or pipeline parallel features, add the following keys to the config.
* `base_model_tp_plan` enables [tensor parallelism](./perf_infer_gpu_multi) by mapping fully qualified layer name patterns to tensor parallel styles. Only the `"colwise"` and `"rowwise"` partitioning strategies are currently supported.
* `base_model_pp_plan` enables pipeline parallelism by mapping direct child layer names to tuples of lists of strings. The list in the first element of the tuple contains the names of the input arguments. The list in the last element of the tuple contains the names of the variables the layer outputs to in the modeling code.
Expand the code below for an example.
<details>
<summary>configuration_my_model.py</summary>
```python
from transformers import PretrainedConfig
class MyConfig(PretrainedConfig):
base_model_tp_plan = {
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
```
</details>
### Multimodal models
For multimodal models, you need to include a few more changes on top of the general recommendations. These rules ensure that your model integrates properly with multimodal data.
1. A multimodal model requires a base `MyMultiModalModel` class to handle multimodal fusion without a language modeling head and a separate generative class that adds a head.
The base model needs to implement the `get_image_features()` method to accept image pixel values and return encoded outputs. These are later merged with the language embeddings and don't require any postprocessing. The shape of the returned features must match the number of input images. If a vision encoder returns variable-length outputs (patch-based), return a list of 2D tensors of size `(image_seq_len, image_dim)` for each image.
Expand the code below for an example.
<details>
<summary>modeling_my_multimodal_model.py</summary>
```python
from transformers.generation import GenerationMixin
class MyMultimodalModel(MyMultimodalPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.language_model = AutoModel.from_config(config.text_config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multimodal_projection = nn.Linear(vision_dim, text_dim)
def get_image_features(self, pixel_values):
return self.vision_tower(pixel_values).last_hidden_states
def forward(self, input_ids, pixel_values, **kwargs):
# process your inputs
return MyModelOutputWithPast(
last_hidden_state=last_hidden_state,
image_hidden_states=image_features,
[...]
)
class MyMultimodalModelForConditionalGeneration(MyMultimodalPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.model = MyMultimodalModel(config)
self.lm_head = nn.Linear(hidden_dim, vocab_size)
```
</details>
2. A multimodal model config must be nested with the following fields.
* text_config: decoder language model config
* vision_config: vision encoder config
* image_token_id: ID of the image placeholder token used in the input to indicate image position
3. A multimodal model's processing class must have the `self.image_token` and `self.image_token_ids` attributes. These are placeholder tokens used to indicate image positions in the input. The placeholder token is the same token used in the input prompt and to mask scatter image features.
The processing class also needs ` self._get_num_multimodal_tokens` method to compute the number of placeholder tokens needed for multimodal inputs with given sizes and to return a [`MultiModalData`] object. The placeholder for row and column tokens don't count as image placeholders. Only the tokens that are actually replaced by image features are computed.
Finally, when `return_mm_token_type_ids=True`, the class has to return `mm_token_type_ids` to indicate whether each position is a text token (`0`) or image placeholder token (`1`). Each image's token type IDs must be contiguous with no breaks between consecutive ones.
Expand the code below for an example.
<details>
<summary>processing_my_multimodal_model.py</summary>
```python
class MyMultimodalProcessor(ProcessorMixin):
def __call__(self, images=None, text=None, **kwargs):
if return_mm_token_type_ids:
mm_token_type_ids = np.zeros_like(input_ids)
mm_token_type_ids[input_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
num_image_tokens = [256] * len(image_sizes) # 256 placeholder tokens for each image always
num_image_patches = [1] * len(image_sizes) # no patching, thus each image is processed as a single base image
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
```
</details>
## Resources
* Read the [Transformers backend integration in vLLM](https://blog.vllm.ai/2025/04/11/transformers-backend.html) blog post for more details about the Transformers backend in vLLM.
* Read the [Transformers backend integration in SGLang](https://huggingface.co/blog/transformers-backend-sglang) blog post for more details about the Transformers backend in SGLang.

View File

@ -7,6 +7,7 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

View File

@ -157,6 +157,8 @@
title: (번역중) VPTQ
- local: quantization/quanto
title: Quanto
- local: quantization/quark
title: Quark
- local: quantization/eetq
title: EETQ
- local: in_translation
@ -200,6 +202,8 @@
title: CPU로 추론하기
- local: perf_infer_gpu_one
title: 하나의 GPU를 활용한 추론
- local: perf_infer_gpu_multi
title: 다중 GPU를 활용한 추론
title: 추론 최적화하기
- local: big_models
title: 대형 모델을 인스턴스화
@ -225,7 +229,7 @@
- sections:
- local: philosophy
title: 이념과 목표
- local: in_translation
- local: glossary
title: (번역중) Glossary
- local: task_summary
title: 🤗 Transformers로 할 수 있는 작업

454
docs/source/ko/glossary.md Normal file
View File

@ -0,0 +1,454 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 용어집(Glossary)
이 용어집은 전반적인 머신러닝 및 🤗 Transformers 관련 용어를 정의하여 문서를 더 잘 이해하는 데 도움을 줍니다.
## A
### 어텐션 마스크 (attention mask)
어텐션 마스크(attention mask)는 여러 시퀀스를 배치(batch)로 처리할 때 사용되는 선택적 인자입니다.
<Youtube id="M6adb1j2jPI"/>
이 인자는 모델에게 어떤 토큰에 주의를 기울여야 하는지, 그리고 어떤 토큰은 무시해야 하는지를 알려줍니다.
예를 들어, 다음 두 개의 시퀀스가 있다고 가정해 봅시다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
인코딩된 버전들의 길이가 다릅니다:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
따라서 이 두 시퀀스를 그대로 하나의 텐서에 넣을 수는 없습니다. 첫 번째 시퀀스를 두 번째 길이에 맞춰 패딩 하거나, 반대로 두 번째 시퀀스를 첫 번째 길이에 맞춰 잘라내야 합니다.
첫 번째 경우에는 ID 목록이 패딩 인덱스로 확장됩니다. 이렇게 패딩을 적용하려면 토크나이저에 리스트를 전달하고 다음과 같이 요청할 수 있습니다:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
첫 번째 문장 오른쪽에 0이 추가되어 두 번째 문장과 길이가 같아진 것을 볼 수 있습니다:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
이것은 PyTorch나 TensorFlow의 텐서로 변환될 수 있습니다. 어텐션 마스크는 모델이 패딩 된 인덱스를 참조하지 않도록 해당 위치를 나타내는 이진 텐서입니다. [`BertTokenizer`]의 경우, `1`은 어텐션이 필요한 값을 나타내고, `0`은 패딩 된 값을 나타냅니다. 이 어텐션 마스크는 토크나이저가 반환되는 딕셔너리의 "attention_mask" 키 아래에 포함되어 있습니다:
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
### 오토인코딩 모델 (autoencoding models)
[인코더 모델](#encoder-models)과 [마스킹된 언어 모델링](#masked-language-modeling-mlm)을 참고하세요.
### 자기회귀 모델 (autoregressive models)
[인과적 언어 모델링](#causal-language-modeling)과 [디코더 모델](#decoder-models)을 참고하세요.
## B
### 백본 (backbone)
백본(backbone)은 원시(hidden) 은닉 상태(hidden state) 또는 특징(feature)을 출력하는 네트워크(임베딩과 레이어)입니다. 일반적으로 이 백본은 해당 특징을 입력으로 받아 예측을 수행하는 [헤드](#head)와 연결됩니다. 예를 들어, [`ViTModel`]은 특정 헤드가 없는 백본입니다. 다른 모델들도[`VitModel`]을 백본으로 사용할 수 있으며, [DPT](model_doc/dpt)등이 그 예시입니다.
## C
### 인과적 언어 모델링 (causal language modeling)
모델이 텍스트를 순서대로 읽으며 다음 단어를 예측해야 하는 사전 학습(pretraining) 작업입니다. 일반적으로 문장을 전체로 읽되, 모델 내부에서 특징 시점 이후의 토큰을 마스킹(masking)하여 다음 단어를 예측하게 됩니다.
### 채널 (channel)
컬러 이미지는 빨간색(R), 초록색(G), 파란색(B)의 세 채널 값을 조합하여 구성되며, 흑백 이미지는 단일 채널만을 가집니다. 🤗 Transformers에서는 이미지 텐서의 채널이 첫 번째 또는 마지막 차원에 위치할 수 있습니다:[`n_channels`, `height`, `width`] 또는 [`height`, `width`, `n_channels`]와 같은 형식입니다.
### 연결 시간분류(connectionist temporal classification, CTC)
입력과 출력의 정렬 상태를 정확히 몰라도 모델이 학습할 수 있도록 돕는 알고리즘입니다. CTC는 주어진 입력에 대해 가능한 모든 출력의 확률 분포를 계산하고, 그중 가장 가능성이 높은 출력을 선택합니다. CTC는 말하는 속도의 차이 등 여러 이유로 음성과 텍스트가 항상 정확하게 일치하지 않기 때문에 음성 인식 작업에서 자주 사용됩니다.
### 컨볼루션 (convolution)
신경망에서 사용되는 레이어의 한 종류로, 입력 행렬에 대해 더 작은 행렬(커널 또는 필터)을 원소별로 곱한 뒤 그 값을 합산해 새로운 행렬을 만드는 연산입니다. 이 연산을 컨볼루션 연산이라고 하며, 입력 행렬 전체에 걸쳐 반복적으로 수행됩니다. 각 연산은 입력 행렬의 서로 다른 구간에 적용됩니다. 컨볼루션 신경망(CNN)은 컴퓨터 비전 분야에서 널리 사용됩니다.
## D
### 데이터 병렬화 (DataParallel)
여러 개의 GPU에서 훈련을 수행할 때 사용하는 병렬화 기법으로, 동일한 모델 구성이 여러 번 복제되며 각 인스턴스는 서로 다른 데이터 조각을 받습니다. 모든 인스턴스는 병렬로 처리를 수행하며, 각 훈련 단계가 끝난 후 결과를 동기화합니다.
DataParallel 방식에 대해 더 알아보려면 [여기](perf_train_gpu_many#dataparallel-vs-distributeddataparallel)를 참고하세요.
### 디코더 입력 ID (decoder input IDs)
이 입력은 인코더-디코더 모델에 특화된 것으로, 디코더에 전달될 input ID 들을 포함합니다. 이러한 입력은 번역이나 요약과 같은 시퀀스-투-시퀀스(sequence-to-sequence) 작업에 사용되며, 일반적으로 모델마다 고유한 방식으로 구성됩니다.
대부분의 인코더-디코더 모델(BART, T5 등)은 `labels`로부터 자동으로 `decoder_input_ids`를 생성합니다. 이러한 모델에서는 학습 시 `labels`를 전달하는 것이 일반적으로 권장됩니다.
시퀀스-투-시퀀스 학습에서 각 모델이 이러한 input ID를 어떻게 처리하는지는 모델 문서를 참고하시기를 바랍니다.
### 디코더 모델 (decoder models)
자기회귀 모델(Autoregressive models)이라고도 불리는 디코더 모델은 인과 언어 모델링(causal language modeling)이라 불리는 사전 학습 작업을 수행합니다. 이 작업에서는 모델이 텍스트를 순서대로 읽고 다음 단어를 예측해야 합니다. 일반적으로 문장의 전체를 읽되, 특정 시점 이후의 토큰은 마스크로 가려 예측하게 합니다.
<Youtube id="d_ixlCubqQw"/>
### 딥러닝 (deep learning)
여러 층의 신경망(neural network)을 사용하는 머신러닝 알고리즘입니다.
## E
### 인코더 모델 (encoder models)
자동 인코딩 모델(Autoencoding models)이라고도 불리는 인코더 모델은 텍스트나 이미지와 같은 입력을 받아 임베딩이라 불리는 압축된 수치 표현으로 반환합니다. 일반적으로 인코더 모델은 입력 시퀀스의 일부를 마스킹하고 더 의미 있는 표현을 생성하도록 학습하는 [masked language modeling](#masked-language-modeling-mlm)과 같은 기술을 사용하여 사전 학습됩니다.
<Youtube id="H39Z_720T5s"/>
## F
### 특징 추출 (feature extraction)
머신러닝 알고리즘이 더 효과적으로 학습할 수 있도록, 원시 데이터를 선택하고 변환하여 더 유용한 특징(feature) 집합으로 만드는 과정입니다. 예를 들어, 원시 텍스트를 워드 임베딩으로 변환하거나 이미지나 비디오 데이터에서 윤곽선이나 형태와 같은 중요한 특징을 추출하는 것이 있습니다.
### 피드 포워드 청킹 (feed forward chunking)
트랜스포머의 각 residual attention Block에서는 self-Attention Layer 다음에 보통 두 개의 Feed Forward Layer가 이어집니다. 이 Feed Forward Layers의 중간 임베딩 크기는 종종 모델의 히든 사이즈(hidden size)보다 큽니다(예:
`google-bert/bert-base-uncased` 모델의 경우).
입력 크기가 `[batch_size, sequence_length]`일 경우, 중간 Feed Forward 임베딩
`[batch_size, sequence_length, config.intermediate_size]`을 저장하는 데 필요한 메모리는 전체 메모리 사용량의 큰 부분을 차지할 수 있습니다.
[Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문의 저자들은 이 연산이 `sequence_length` 차원에 대해 독립적이기 때문에,토큰마다 Feed Forward Layer의 출력 임베딩을 각 토큰별로 `[batch_size, config.hidden_size]`을 개별적으로 계산한 뒤, 이를 이어 붙여 `[batch_size, sequence_length, config.hidden_size]` 형태로 만들 수 있습니다.`n = sequence_length`. 이 방식은 계산 시간은 늘어나지만, 메모리 사용량은 줄어들게 됩니다.
[`apply_chunking_to_forward`] 함수를 사용하는 모델의 경우, `chunk_size`는 병렬로 계산되는 출력 임베딩의 개수를 정의하며, 이는 메모리 사용량과 계산 시간 간의 트레이드오프를 결정합니다.
`chunk_size`가 0으로 설정되면, 피드 포워드 청킹(Feed Forward Chunking)은 수행되지 않습니다.
### 파인튜닝 모델 (finetuned models)
파인튜닝(Finetuning)은 전이 학습(transfer learning)의 한 형태로, 사전 학습된 (pretrained) 모델을 사용하여 가중치를 고정(freeze)하고, 출력층을 새롭게 추가된 [모델 헤드](#head)로 교체한 뒤, 해당 모델 헤드를 목표 데이터셋에 맞게 학습시키는 방식입니다.
자세한 내용은 [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) 튜토리얼을 참고하시고, 🤗 Transformers를 사용해 모델을 파인 튜닝하는 방법도 함께 확인해 보세요.
## H
### 헤드 (head)
모델 헤드(model head)란 신경망의 마지막 층을 의미하며, 이 층은 이전 층에서 나온 히든 상태(hidden states)를 받아 다른 차원으로 변환합니다. 각 작업(task)에 따라 서로 다른 모델 헤드가 사용됩니다. 예를 들어:
* [`GPT2ForSequenceClassification`]은 기본 [`GPT2Model`] 위에 시퀀스 분류를 위한 선형계층(linear layer)을 추가한 모델 헤드입니다.
* [`ViTForImageClassification`]은 이미지 분류를 위한 모델 헤드로, 기본 [`ViTModel`] 위에 `CLS` 토큰의 마지막 히든 상태에 선형 계층(linear layer)을 추가한 구조입니다.
* [`Wav2Vec2ForCTC`]는 기본 [`Wav2Vec2Model`] 위에 [CTC](#connectionist-temporal-classification-ctc)를 적용한 언어 모델링 헤드입니다.
## I
### 이미지 패치 (image patch)
비전 기반 Transformer 모델은 이미지를 작은 패치로 분할한 후, 각 패치를 선형 임베딩하여 시퀀스로 모델에 입력합니다. 모델의 구성 파일에서 `patch_size`(또는 해상도)를 확인할 수 있습니다.
### 인퍼런스 (inference)
인퍼런스는 학습이 완료된 모델에 새로운 데이터를 입력하여 예측을 수행하는 과정입니다. 🤗 Transformer에서 인퍼런스를 수행하는 방법은 [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) 튜토리얼을 참고하세요.
### 입력 ID (input IDs)
입력 ID는 종종 모델에 입력으로 전달해야 하는 유일한 필수 파라미터입니다. 이들은 토큰의 인덱스로, 모델이 입력으로 사용할 시퀀스를 구성하는 토큰들의 숫자 표현입니다.
<Youtube id="VFp38yj8h3A"/>
토크나이저마다 작동 방식은 다르지만, 기본 메커니즘은 동일합니다. 다음은 [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) 토크나이저인 BERT 토크나이저를 사용한 예시입니다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
토크나이저는 시퀀스를 토크나이저의 토큰 목록에 있는 항목으로 분리합니다.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
토큰은 단어이거나 서브 워드(subword)입니다. 예를 들어, "VRAM"은 모델의 어휘 사전에 없는 단어이기 때문에 "V", "RA", "M"으로 나뉘었습니다. 이 토큰들이 개별 단어가 아니라 같은 단어의 일부임을 나타내기 위해 "RA"와 "M" 앞에 더블 해시(`##`)가 추가 됩니다.
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
이러한 토큰들은 모델이 이해할 수 있는 ID로 변환될 수 있습니다. 이 과정은 문장을 바로 토크나이저에 입력함으로써 수행되며, 성능 최적화를 위해 [🤗 Tokenizers](https://github.com/huggingface/tokenizers)의 Rust 구현을 활용합니다.
```python
>>> inputs = tokenizer(sequence)
```
토크나이저는 해당 모델이 올바르게 작동하는 데 필요한 모든 인자를 포함한 딕셔너리를 반환합니다. 토큰 인덱스는 `input_ids`라는 키에 저장됩니다.
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
```
토크나이저는 (연결된 모델이 이를 사용하는 경우) 자동으로 "특수 토큰"을 추가합니다. 이들은 모델이 특정 상황에서 사용하는 특별한 ID입니다.
이전의 ID 시퀀스를 디코딩하면,
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
우리는 다음과 같은 결과를 보게 될 것입니다.
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
이는 [`BertModel`]이 입력값을 기대하는 방식이기 때문입니다.
## L
### 레이블 (labels)
레이블은 모델이 손실(loss)을 직접 계산할 수 있도록 전달되는 선택적 인자입니다. 이 레이블은 모델이 예측해야 할 정답 값을 의미하며, 모델은 예측값과 이 정답(label) 사이의 차이를 표준 손실 함수를 이용해 계산하게 됩니다.
이 레이블(label)의 형태는 모델 헤드(model head)의 종류에 따라 달라집니다. 예를 들어:
- 시퀀스 분류 모델([`BertForSequenceClassification`] 등)의 경우, 모델은
`(batch_size)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 전체 시퀀스에 대한 예상 레이블을 나타냅니다.
- 토큰 분류 모델([`BertForTokenClassification`] 등)의 경우, 모델은 `(batch_size, seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다.
- 마스킹 언어 모델([`BertForMaskedLM`])의 경우, 모델은 `(batch_size,seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다. 레이블은 마스킹 된 토큰의 토큰 ID이며, 나머지 토큰에 대해서는 무시할 값을 사용합니다(일반적으로 -100).
- 시퀀스 투 시퀀스 작업([`BartForConditionalGeneration`], [`MBartForConditionalGeneration`]등)의 경우, 모델은 `(batch_size, tgt_seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 입력 시퀀스에 대응하는 타겟 시퀀스를 나타냅니다. 학습 중에는 BART와 T5가 적절한 `decoder_input_ids`와 디코더 attention 마스크를 내부적으로 생성하므로, 일반적으로 따로 제공할 필요가 없습니다. 단, 이는 Encoder-Decoder 프레임워크를 직접 활용하는 모델에는 적용되지 않습니다.
- 이미지 분류 모델([`ViTForImageClassification`] 등)의 경우, 모델은 `(batch_size)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 개별 이미지에 대한 예상 레이블을 나타냅니다.
- 시멘틱 세그멘테이션 모델([`SegformerForSemanticSegmentation`] 등)의 경우, 모델은 `(batch_size, height, width)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 개별 픽셀에 대한 예상 레이블을 나타냅니다.
- 객체 탐지 모델([`DetrForObjectDetection`] 등)의 경우, 모델은 `class_labels``boxes` 키를 포함하는 딕셔너리들의 리스트를 입력으로 받습니다. 배치의 각 값은 개별 이미지에 대한 예상 클래스 레이블과 바운딩 박스 정보를 나타냅니다.
- 자동 음성 인식 모델([`Wav2Vec2ForCTC`] 등)의 경우 모델은 `(batch_size,target_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다.
<Tip>
모델마다 요구하는 레이블 형식이 다를 수 있으므로, 각 모델의 문서를 확인하여 해당 모델에 맞는 레이블 형식을 반드시 확인하세요!
</Tip>
기본 모델([`BertModel`] 등)은 레이블을 입력으로 받지 않습니다. 이러한 모델은 단순히 특징(feature)을 출력하는 기본 트랜스포머 모델이기 때문입니다.
### 대규모 언어 모델 (LLM)
대규모 데이터로 학습된 트랜스포머 언어 모델(GPT-3, BLOOM, OPT 등)을 지칭하는 일반적인 용어입니다. 이러한 모델은 학습할 수 있는 파라미터(parameter)의 수가 매우 많으며, 예를 들어 GPT-3는 약 1,750억 개의 파라미터를 가지고 있습니다.
## M
### 마스킹된 언어 모델링 (MLM)
사전 학습 단계 중 하나로, 모델은 일부 토큰이 무작위로 마스킹 된 손상된 문장을 입력받고, 원래의 문장을 예측해야 합니다.
### 멀티모달 (multimodal)
텍스트와 이미지와 같은 다른 형태의 입력을 함께 사용하는 작업입니다.
## N
### 자연어 생성 (NLG)
텍스트를 생성하는 모든 작업을 의미합니다. (예: [Write With Transformers](https://transformer.huggingface.co/), 번역 등).
### 자연어 처리 (NLP)
텍스트를 다루는 작업 전반을 지칭하는 일반적인 용어입니다.
### 자연어 이해 (NLU)
텍스트에 담긴 의미를 이해하는 모든 작업을 포함합니다. (예: 전체 문서 분류, 개별 단어 분류 등).
## P
### 파이프라인 (pipeline)
🤗 Transformers에서 파이프라인은 데이터를 전처리하고 변환한 후, 모델을 통해 예측값을 반환하는 일련의 단계를 순차적으로 수행하는 추상화된 개념입니다. 파이프라인에 포함될 수 있는 단계로는 데이터 전처리, 특징 추출(feature extraction), 정규화(normalization) 등이 있습니다.
자세한 내용은 [Pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) 문서를 참고하세요.
### 파이프라인 병렬화 (PP)
모델을 수직 방향(레이어 단위)으로 여러 GPU에 분할하여 병렬로 처리하는 병렬화 기법입니다. 각 GPU는 모델의 하나 또는 여러 개의 레이어만을 담당하며, 전체 파이프라인의 서로 다른 단계를 병렬로 처리하게 됩니다. 또한 각 GPU는 배치(batch)의 일부 작은 조각만 처리합니다. Pipeline Parallel 방식에 대해 더 알아보려면 [이 문서](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism)를 참고하세요.
### 픽셀 값 (pixel values)
이미지를 수치상으로 표현한 텐서로, 모델에 입력으로 전달됩니다. 이 텐서는 이미지 프로세서를 통해 생성되면, 값은 [`batch_size`, `num_channels`, `height`, `width`] 형태의 차원을 가집니다.
### 풀링 (pooling)
행렬의 특정 차원에서 최댓값이나 평균값을 취하여 더 작은 행렬로 줄이는 연산입니다. 풀링 계층은 주로 합성곱 계층 사이에 위치하여 특징 표현을 다운샘플링 하는 데 사용됩니다.
### 포지션 ID (position IDs)
RNN 모델과 달리 트랜스포머는 각 토큰의 위치 정보를 내부적으로 가지고 있지 않습니다. 따라서 모델은 `position_ids`를 사용하여 각 토큰이 시퀀스 내에서 어느 위치에 있는지를 인식합니다. 이 값은 선택적인 파라미터입니다. 모델에 `position_ids`를 전달하지 않으면, 절대 위치 임베딩 방식으로 자동 생성됩니다. 절대 위치 임베딩은 `[0, config.max_position_embeddings - 1]` 범위 내에서 선택됩니다. 일부 모델은 사인파 형태의 위치 임베딩(sinusoidal position embeddings) 또는 상대 위치 임베딩(relative position embeddings)과 같은 다른 유형의 위치 임베딩을 사용하기도 합니다.
### 전처리 (preprocessing)
머신러닝 모델이 쉽게 처리할 수 있도록 가공되지 않은 데이터를 정제하는 작업입니다. 예를 들어, 텍스트는 일반적으로 토큰화(tokenization) 과정을 거칩니다. 다른 입력 유형에 대한 전처리 방식이 궁금하다면 [Preprocess](https://huggingface.co/docs/transformers/preprocessing) 튜토리얼을 참고해 보세요.
### 사전 학습된 모델 (pretrained model)
일부 데이터(예: 위키피디아 전체)로 사전 학습(pretraining)된 모델입니다. 사전 학습은 자기 지도 학습(self-supervised learning)의 목표를 포함하며, 예를 들어 문장을 읽고 다음 단어를 예측하거나 ([causal language modeling](#causal-language-modeling)) 참고, 일부 단어를 마스킹하고 이를 예측하는 방식([masked language modeling](#masked-language-modeling-mlm))이 있습니다.
음성 및 비전 모델은 고유의 사전 학습 목표를 가지고 있습니다. 예를 들어, Wav2Vec2는 음성 표현 중 "진짜"를 "가짜" 중에서 구분하는 대조 학습(contrastive learning) 방식으로 사전 학습된 음성 모델입니다. 반면, BEiT는 이미지 패치 중 일부를 마스킹하고 이를 예측하는 마스킹 이미지 모델링 방식으로 사전 학습된 비전 모델입니다. 이는 마스킹 언어 모델링과 유사한 방식입니다.
## R
### 순환 신경망 (RNN)
텍스트와 같은 시퀀스 데이터를 처리하기 위해 레이어에 반복 구조(루프)를 사용하는 신경망 모델의 한 종류입니다.
### 표현학습 (representation learning)
머신러닝의 하위 분야로, 원시 데이터로부터 의미 있는 표현을 학습하는 데 중점을 둡니다. 대표적인 기법으로는 단어 임베딩, 오토인코더(autoencoder), 생성적 적대 신경망(GAN) 등이 있습니다.
## S
### 샘플링 속도 (sampling rate)
샘플링 속도는 1초에 추출하는 (오디오 신호) 샘플의 개수를 헤르츠(Hz) 단위로 나타낸 측정값입니다. 이는 음성처럼 연속적인 신호를 디지털화하여 이산적인 형태로 만드는 결과입니다.
### 셀프 어텐션 (self-attention)
입력의 각 요소가 다른 어떤 요소에 주목해야 하는지를 스스로 판단하는 메커니즘입니다. 이는 모델이 문장에서 특정 단어만을 보는 것이 아니라, 다른 단어들과의 관계를 고려하여 어떤 정보에 더 집중해야 할지를 학습하게 합니다.
### 자기지도 학습 (self-supervised learning)
레이블이 없는 데이터로부터 모델이 스스로 학습 목표를 정의하여 학습하는 머신러닝 기법의 한 종류입니다. [비지도 학습](#unsupervised-learning)이나 [지도 학습](#supervised-learning)과 달리, 학습 과정 자체는 감독 방식 되지만, 라벨이 명시적으로 주어지는 것은 아닙니다.
예시로는 [마스크 언어 모델링](#masked-language-modeling-mlm)이 있으며, 이는 문장의 일부 토큰을 제거한 상태로 모델에 입력하고, 모델이 해당 토큰을 예측하도록 학습하는 방식입니다.
### 준지도 학습 (semi-supervised learning)
소량의 라벨이 달린 데이터와 대량의 라벨이 없는 데이터를 함께 사용하여 모델의 정확도를 높이는 머신러닝 훈련 기법의 넓은 범주입니다. 이는 [지도 학습](#supervised-learning)이나 [비지도 학습](#unsupervised-learning)과는 다른 방식입니다.
준지도 학습 기법의 예로는 "자기 학습(self-training)"이 있습니다. 이 방식은 먼저 라벨이 있는 데이터로 모델을 학습시키고, 그 모델을 사용해 라벨이 없는 데이터에 대한 예측을 수행합니다. 모델이 가장 높은 확신을 가지고 예측한 라벨이 없는 데이터 일부를 라벨이 있는 데이터로 추가하고, 이를 통해 모델을 다시 학습시킵니다.
### 시퀀스 투 시퀀스 (seq2seq)
입력으로부터 새로운 시퀀스를 생성하는 모델입니다. 예를 들어 번역 모델이나 요약 모델이 이에 해당하며, 대표적인 예로는 [Bart](model_doc/bart)나[T5](model_doc/t5) 모델이 있습니다.
### 분할 DDP (Sharded DDP)
[ZeRO](#zero-redundancy-optimizer-zero) 개념을 기반으로 다양한 구현에서 사용되는 다른 이름으로 불립니다.
### 스트라이드 (stride)
[convolution](#convolution) 또는 [pooling](#pooling)에서 스트라이드(stride)는 커널이 행렬 위를 이동하는 간격을 의미합니다. 스트라이드가 1이면 커널이 한 픽셀씩 이동하고, 2이면 두 픽셀씩 이동합니다.
### 지도학습 (supervised learning)
정답이 포함된 라벨링된 데이터를 직접 사용하여 모델의 성능을 개선하는 학습 방식입니다. 학습 중인 모델에 데이터를 입력하고, 예측 결과를 정답과 비교하여 오차를 계산합니다. 모델은 이 오차를 기반으로 가중치를 업데이트하며, 이러한 과정을 반복하여 성능을 최적화합니다.
## T
### 텐서 병렬화 (TP)
여러 GPU에서 훈련하기 위한 병렬화 기법으로, 각 텐서를 여러 덩어리(chunk)로 나눕니다. 따라서 전체 텐서가 단일 GPU에 상주하는 대신, 텐서의 각 조각(shard)이 지정된 GPU에 상주하게 됩니다. 이 조각들은 각각 다른 GPU에서 개별적으로 병렬 처리되며, 처리 단계가 끝날 때 결과가 동기화됩니다. 이러한 분할이 수평 방향으로 일어나기 때문에, 이는 때때로 수평적 병렬화라고 불립니다. Tensor Parallelism에 대해 더 알아보려면 [여기](perf_train_gpu_many#tensor-parallelism)를 참고하세요.
### 토큰 (token)
일반적인 단어 단위이지만, 때에 따라 서브 워드(자주 사용되지 않는 단어는 서브 워드로 분리됨)나 문장 부호도 포함될 수 있는 문장의 구성 요소입니다.
### 토큰 타입 ID (token type IDs)
일부 모델은 문장 쌍 분류나 질의 응답 작업을 수행하는 데 사용됩니다.
<Youtube id="0u3ioSwev3s"/>
이러한 작업에서는 두 개의 서로 다른 시퀀스를 하나의 "input_ids" 항목으로 결합해야 하며, 일반적으로 `[CLS]` 분류용 및 `[SEP]` 구분용과 같은 특수 토큰을 사용하여 처리합니다. 예를 들어, BERT 모델은 두 개의 시퀀스를 다음과 같은 방식으로 구성합니다:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
두 개의 시퀀스를 `tokenizer`에 리스트가 아닌 개별 인자로 전달하면, 토크나이저가 자동으로 이러한 문장을 생성해 줍니다. 예시는 다음과 같습니다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a, sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
결과는 아래와 같습니다:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP]
```
이 코드는 일부 모델이 두 개의 시퀀스를 어떻게 구분하는지 이해하는 데 충분합니다. 그러나 BERT와 같은 다른 모델은 토큰 타입 ID(또는 세그먼트 ID)를 추가로 사용합니다. 이 ID는 0과 1로 구성된 이진 마스크로, 두 시퀀스를 구분하는 역할을 합니다.
토크나이저는 이 마스크를 "token_type_id" 항목으로 반환합니다:
```python
>>> encoded_dict["token_type_ids"]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
질문에 사용되는 첫 번째 시퀀스인 "context"는 모든 토큰이 `0`으로 표시됩니다. 반면 두 번째 시퀀스인 "question"은 모든 토큰이 `1`로 표시됩니다.
일부 모델(예: [`XLNetModel`])은 `2`로 표시되는 추가 토큰을 사용하기도 합니다.
### 전이학습 (transfer learning)
사전 학습된(pretrained) 모델을 가져와 특정 작업에 맞는 데이터셋에 대해 추가 학습하는 기술입니다. 모델을 처음부터 학습시키는 대신, 기존 모델이 학습한 지식을 출발점으로 삼아 더욱 빠르게 학습할 수 있습니다. 이를 통해 학습 속도를 높이고 필요한 데이터양도 줄일 수 있습니다.
### 트랜스포머 (transformer)
셀프 어텐션 메커니즘을 기반으로 한 딥러닝 모델 아키텍처입니다.
## U
### 비지도 학습 (unsupervised learning)
정답(레이블)이 포함되지 않은 데이터를 이용해 모델을 학습시키는 방식입니다. 비지도 학습은 데이터 분포의 통계적 특성을 활용해 유용한 패턴을 찾아냅니다.
## Z
### Zero Redundancy Optimizer (ZeRO)
[TensorParallel](#tensor-parallelism-tp)과 유사하게 텐서를 샤딩(sharding)하는 병렬 처리 기법이지만, 순전파(forward)나 역전파(backward) 계산 시점에 전체 텐서를 다시 복원한다는 점에서 차이가 있습니다. 따라서 모델 자체를 수정할 필요가 없습니다. 이 방법은 GPU 메모리가 부족할 경우 이를 보완하기 위한 다양한 오프로딩 (offloading) 기법도 지원합니다.
ZeRO에 대해 더 알아보려면 [이 문서](perf_train_gpu_many#zero-data-parallelism)를 참고하세요.

View File

@ -345,12 +345,6 @@ generation_output[:2]
[[autodoc]] Cache
- update
[[autodoc]] CacheConfig
- update
[[autodoc]] QuantizedCacheConfig
- validate
[[autodoc]] DynamicCache
- update
- get_seq_length

View File

@ -0,0 +1,311 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 분산 추론[[distributed-inference]]
모델이 단일 GPU에 올라가지 않는 경우, [텐서 병렬 처리](./perf_train_gpu_many#tensor-parallelism)를 사용한 분산 추론이 도움이 될 수 있습니다. 텐서 병렬화는 모델을 여러 가속기(CUDA GPU, Intel XPU 등)에 분할하여 행렬 곱셈과 같은 계산을 병렬화합니다. 이를 통해 더 큰 모델을 메모리에 올릴 수 있으며, 각 가속기가 텐서의 일부를 처리하므로 추론 속도가 향상됩니다.
그러나 텐서 병렬화는 통신 오버헤드를 발생시키므로, 빠른 노드 내 통신을 활용할 수 있는 다중 가속기 환경에서 사용하는 것이 가장 효과적입니다. 다중 노드 학습 환경에서는 사용 사례에 따라 파이프라인 병렬화나 데이터 병렬화를 사용하는 것이 더 효율적일 수 있습니다.
> [!TIP]
> 텐서 병렬화에 대해 더 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)의 텐서 병렬화 섹션을 참조하세요.
아래 목록에서 텐서 병렬 처리를 기본적으로 지원하는 모델을 확인할 수 있습니다. 새로운 모델에 대한 지원을 추가하려면 GitHub 이슈나 풀 리퀘스트를 열어주세요.
<details>
<summary>지원되는 모델 보기</summary>
* [Cohere](./model_doc/cohere) 및 [Cohere 2](./model_doc/cohere2)
* [Gemma](./model_doc/gemma) 및 [Gemma 2](./model_doc/gemma2)
* [GLM](./model_doc/glm)
* [Granite](./model_doc/granite)
* [Llama](./model_doc/llama)
* [Mistral](./model_doc/mistral)
* [Mixtral](./model_doc/mixtral)
* [OLMo](./model_doc/olmo) 및 [OLMo2](./model_doc/olmo2)
* [Phi](./model_doc/phi) 및 [Phi-3](./model_doc/phi3)
* [Qwen2](./model_doc/qwen2), [Qwen2Moe](./model_doc/qwen2_moe), 및 [Qwen2-VL](./model_doc/qwen2_5_vl)
* [Starcoder2](./model_doc/starcoder2)
</details>
이 가이드는 Transformers에서 다양한 분할 전략을 사용하여 텐서 병렬화를 활성화하는 방법을 설명합니다.
## 모델 분할[[partitioning-a-model]]
Transformers는 `tp_plan`매개변수를 활용할 수 있는 모델에 대해 텐서 병렬 처리를 지원합니다. 모델 분할 방식은 두 가지가 있습니다.
- `auto` 텐서 병렬화 계획은 사전 정의된 구성을 기반으로 모델(위에 언급된 지원 모델)을 자동으로 분할합니다.
- 사용자 지정 분할 계획을 직접 정의하여 [~PreTrainedModel.from_pretrained] 메소드의 `tp_plan` 매개변수로 전달할 수 있습니다.
<hfoptions id="sharding">
<hfoption id="auto plan">
```py
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # 모든 가능한 전략을 시각화하기에 더 좋음
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # 적은 수의 GPU에 더 좋음
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
print(model._tp_plan)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
prompt = "Can I help"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
# 분산 실행
outputs = model(inputs)
```
위의 추론 스크립트를 GPU당 4개 프로세스로 [torchrun](https://pytorch.org/docs/stable/elastic/run.html)에서 실행하세요.
```bash
torchrun --nproc-per-node 4 demo.py
```
</hfoption>
<hfoption id="manual plan">
각 레이어에 대한 텐서 병렬 계획을 `tp_plan`에 정의한 후 [`~PreTrainedModel.from_pretrained`]에 전달하세요. 아래 예시는 열 및 행 분할을 조합하여 사용합니다. 지원되는 다른 분할 전략은 [분할 전략](#partitioning-strategies) 섹션을 참고하세요.
> [!WARNING]
> 사용자 지정 분할 계획을 수동으로 지정하려면 모델 아키텍처와 분할 전략이 함께 상호 작용하는 방식에 대한 충분한 이해가 필요합니다. 분할 전략을 잘못 설정하면 모델이 매우 느려지거나, 오류가 발생하거나, 부정확한 결과를 낼 수 있습니다. 자세히 알아보려면 [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism)을 참고하세요.
```py
from transformers import AutoModelForCausalLM
tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise",
"model.layers.*.self_attn.k_proj": "colwise",
"model.layers.*.self_attn.v_proj": "colwise",
"model.layers.*.self_attn.o_proj": "rowwise",
...
}
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
print(model._tp_plan)
```
</hfoption>
</hfoptions>
## 분할 전략[[partitioning-strategies]]
모든 분할 전략은 문자열을 전략 구현에 매핑하는 [`ParallelInterface`] 클래스에서 정의됩니다. 모든 전략은 [`~PreTrainedModel.from_pretrained`]의 `tp_plan`을 통해 설정되므로 이 클래스와 직접 상호 작용할 필요는 없지만, 어떤 전략을 사용할 수 있는지 확인할 때 유용합니다.
```py
class ParallelInterface(MutableMapping):
"""
허용된 어텐션 함수를 추적하는 딕셔너리 같은 객체입니다. `register()` 호출로 새로운 어텐션 함수를 쉽게 추가할 수 있습니다.
모델이 기존 어텐션 함수(예: `sdpa`)를 로컬에서 덮어쓰려면 `modeling_<model>.py` 내부에서 이 클래스의 새 인스턴스를 선언하고
해당 인스턴스에서 선언해야 합니다.
"""
_global_mapping = {
"colwise": ColwiseParallel(),
"rowwise": RowwiseParallel(),
"colwise_rep": ColwiseParallel(output_layouts=Replicate()),
"rowwise_rep": RowwiseParallel(input_layouts=Replicate()),
"local_colwise": ColwiseParallel(use_dtensor=False),
"local_rowwise": RowwiseParallel(use_dtensor=False),
"local": IsolatedParallel(),
"gather": GatherParallel(),
"local_packed_rowwise": PackedRowwiseParallel(use_dtensor=False),
"sequence_parallel": SequenceParallel(),
"replicate": ReplicateParallel(),
}
```
각 전략에 대해 자세히 알아보려면 아래 표를 참고하세요.
| 전략 | 설명 |
|---|---|
| `ColwiseParallel` | 가중치와 편향의 열 방향 분할. |
| `RowwiseParallel` | 가중치와 편향의 행 방향 분할. `nn.Embedding` 모듈 분할도 지원. |
| `SequenceParallel` | `LayerNorm``Dropout` 레이어를 지원하는 시퀀스 병렬 구현. [RMSNorm](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34)의 Python 구현도 지원. |
| `PackedColwiseParallel` | 패킹된 가중치를 지원하는 `ColwiseParallel`의 변형(예: `up_proj``gate_proj`를 함께 패킹). 자세한 내용은 [코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)를 참조하세요. |
| `PackedRowwiseParallel` | 패킹된 가중치를 지원하는 `RowwiseParallel`의 변형([코드](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) 참조). |
| `GatherParallel` | 기기 간 모듈의 출력을 수집. |
| `IsolatedParallel` | Mixture-of-Experts(MoE) 레이어의 전문가에 사용되어 다른 기기로부터 모듈을 격리. |
| `ReplicateParallel` | 부분적으로 분할된 모델로 인해 `torch.distributed` API가 중단되는 것을 방지하기 위해 모든 기기에 모듈을 복제. |
### 패킹된 전략[[packed-strategies]]
가중치 패킹은 여러 선형 레이어를 하나의 더 큰 레이어로 합치는 기법입니다. 패킹된 전략인 `PackedColwiseParallel``PackedRowwiseParallel`은 패킹된 가중치를 분할하는 데 사용됩니다. 기본적인 `ColwiseParallel`이나 `RowwiseParallel`은 패킹된 가중치를 올바르게 분할하지 못합니다.
아래 예시는 `up_proj``gate_proj`를 단일 `gate_up_proj` 모듈로 패킹하고 `gate_up_proj`를 분할하기 위해 `PackedRowwiseParallel` 전략이 필요합니다.
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
배치 행렬 곱셈을 `forward` 패스에서 사용하여 `gate_up_proj` 모듈의 출력을 계산할 수 있습니다.
```python
def forward(self, hidden_states):
...
gate_up = torch.bmm(hidden_states, self.gate_up_proj) # gate_up_proj 모듈의 출력 계산
gate, up = gate_up.chunk(2, dim=-1) # 출력을 gate와 up으로 분할
```
> [!TIP]
> `Packed*`를 사용해야 하는 이유에 대한 시각적 표현은 [이 주석](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)을 참고하세요.
### 로컬 전략[[local-strategies]]
로컬 전략(`local_colwise`, `local_rowwise`, `local_packed_rowwise`)은 [torch.chunk](https://docs.pytorch.org/docs/stable/generated/torch.chunk.html)와 같은 일부 연산에서 지원되지 않기 때문에 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)를 사용하지 않습니다. 대신 로컬 전략은 기본 [torch.Tensor](https://docs.pytorch.org/docs/stable/tensors.html)를 사용하고 일부 분산 로직을 수동으로 수행합니다.
<!--
Readd this when I get the exact error message
> [!TIP]
> 사용자 정의 분할 전략을 사용하는데 `... is not supported` 오류로 작동하지 않는 경우, `local*` 전략을 사용해서 더 잘 작동하는지 시도해보세요.
-->
## 사용자 정의 분할 전략[[custom-partitioning-strategies]]
사용자 정의 분할 전략은 [`TensorParallelLayer`](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py)를 상속하고 `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn`을 구현해야 합니다.
그런 다음 `tp_plan`에서 해당 전략을 지정했을 때 디스패칭 로직이 찾을 수 있도록 `ParallelInterface` 매핑에 등록해야 합니다.
아래 예시는 이 워크플로우로 `ColwiseParallel`을 구현하는 방법을 보여줍니다.
1. `TensorParallelLayer`를 상속합니다. `__init__` 메소드에서 입력 및 출력 텐서가 기기에 어떻게 배치되어야 하는지 설명하는 `input_layouts``output_layouts`을 정의합니다. `desired_input_layouts` 속성은 입력이 기기에 어떻게 배치*되어야만* 하는지를 명시하는 데 사용됩니다.
```python
class ColwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Optional[Placement] = None, # 이전 레이어에서 오는 입력 레이아웃
output_layouts: Optional[Placement] = None, # 달성하고자 하는 출력 레이아웃
use_local_output: bool = True, # 로컬 출력 사용 여부
use_dtensor=True, # DTensor 사용 여부
):
self.input_layouts = (input_layouts or Replicate(),) # 이전 레이어에서 오는 입력 분할
self.output_layouts = (output_layouts or Shard(-1),) # 원하는 출력 분할
self.desired_input_layouts = (Replicate(),) # 원하는 입력 분할, 입력은 GPU 간에 복제되어야 함
self.use_local_output = use_local_output
self.use_dtensor = use_dtensor
```
2. `partition_tensor`, `_prepare_input_fn`, `_prepare_output_fn` 메서드를 구현합니다.
`partition_tensor` 메소드는 텐서를 분할하고 분할된 텐서로 `empty_param`을 채웁니다. 유틸리티 함수 `get_tensor_shard`를 사용하여 주어진 랭크에 대한 원본 매개변수의 올바른 분할을 얻고, 패킹된 가중치에 대해서는 `get_packed_weights`를 사용하세요.
```python
def partition_tensor(
self,
param, # 매개변수의 전체 텐서
empty_param, # 매개변수의 빈 텐서, 분할된 텐서로 채워짐
param_type, # 매개변수 유형, `bias` 또는 `weight`
param_casting_dtype, # 매개변수를 캐스팅할 유형
to_contiguous, # 텐서를 연속적인 메모리 레이아웃으로 변환할지 여부
rank, # 현재 기기의 랭크
device_mesh, # 기기 메시
) -> nn.Parameter: # 분할된 매개변수 반환
...
```
`_prepare_input_fn`과 `_prepare_output_fn` 메소드는 [사전 포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) 및 [포워드](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) 훅에서 사용됩니다. `__init__`에서 지정된 대로 입력과 출력을 원하는 레이아웃으로 재분배합니다.
```python
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
...
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
...
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
...
# 사용자 정의 로직 수행, DTensor로 캐스팅 등.
...
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
```
3. `tp_plan`과 함께 사용할 수 있도록 전략을 [`ParallelInterface`]에 등록합니다.
```python
from transformers.integrations.tensor_parallel import ParallelInterface
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise_custom",
...
}
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
```
## 벤치마크[[benchmarks]]
텐서 병렬화는 특히 큰 배치 크기나 긴 시퀀스를 가진 입력에 대한 추론 속도를 크게 향상시킬 수 있습니다.
시퀀스 길이가 512인 [Llama](./model_doc/llama)에서 단일 포워드 패스에 대한 예상 속도 향상 수치는 아래 차트를 참조하세요.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
</div>
## 설계 구현[[design-implementation]]
Transformers 텐서 병렬화 구현은 프레임워크에 구애받지 않지만, 구체적인 구현을 위해서는 [DeviceMesh](https://docs.pytorch.org/tutorials/recipes/distributed_device_mesh.html)와 [torch.distributed](https://docs.pytorch.org/tutorials/beginner/dist_overview.html)의 [DTensor](https://docs.pytorch.org/docs/stable/distributed.tensor.html)에 의존하여 간단하고 확장 가능한 인터페이스를 제공합니다.
### DeviceMesh[[devicemesh]]
`DeviceMesh`를 함께 통신하는 기기들의 다차원 그리드로 상상해보세요. 병렬 처리 전략마다 각기 다른 통신 패턴이 필요하므로, 여러 하위 메시를 가진 `DeviceMesh`를 만들 수 있습니다.
```python
from torch.distributed.device_mesh import init_device_mesh
# 4개 GPU의 1D 메시 생성
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
```
`torch.distributed`에서 정의된 대부분의 병렬화 전략은 메시 자체나 하위 메시에 적용할 수 있으며, 자동으로 통신 패턴을 처리합니다.
### DTensor[[dtensor]]
`DTensor`(분산 텐서)는 일반적인 텐서 연산 위에 분산 로직을 처리하는 텐서 하위 클래스입니다. 텐서 병렬화의 대부분의 모델 가중치는 `DTensor` 형태로 저장됩니다.
DTensor의 가장 중요한 부분은 `placement` 속성입니다. 이는 PyTorch에게 텐서가 `DeviceMesh`의 기기에 어떻게 배치되는지 알려주기 때문입니다. `placement` 속성은 다음 값을 가질 수 있습니다.
- `Shard(dimension)` - `DTensor`가 구성된 `DeviceMesh`에서 주어진 차원에 걸쳐 어떻게 분할되는지 나타냅니다. 아래 예시는 열 방향 분할을 위해 다양한 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
```python
weight = ...
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # 첫 번째(열 방향) 차원에 걸쳐 분할
bias = ...
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # 유일한 차원에 걸쳐 분할
```
이 예시는 행 방향 분할을 위해 여러 차원에 걸쳐 가중치를 분할하는 방법을 보여줍니다.
```python
weight = ...
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # 두 번째(행 방향) 차원에 걸쳐 분할
bias = ...
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
```
- `Replicate()` - `DTensor`가 `DeviceMesh`에 걸쳐 복제됨을 나타냅니다. 각 기기에 텐서의 전체 사본만 생성합니다.
```py
bias = ...
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # 모든 GPU에 편향 복제
```
- `Partial()` - 텐서가 감소 연산을 기다리고 있는 상태임을 나타냅니다 (일반적으로 Transformers에서의 사용 사례와는 직접적인 관련이 적습니다).

View File

@ -0,0 +1,85 @@
<!--Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quark[[quark]]
[Quark](https://quark.docs.amd.com/latest/)는 특정 데이터 타입, 알고리즘, 하드웨어에 구애받지 않도록 설계된 딥러닝 양자화 툴킷입니다. Quark에서는 다양한 전처리 전략, 알고리즘, 데이터 타입을 조합하여 사용할 수 있습니다.
🤗 Transformers를 통해 통합된 PyTorch 지원은 주로 AMD CPU 및 GPU를 대상으로 하며, 주로 평가 목적으로 사용됩니다. 예를 들어, [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)를 🤗 Transformers 백엔드와 함께 사용하여 Quark로 양자화된 다양한 모델을 원활하게 평가할 수 있습니다.
Quark에 관심이 있는 사용자는 [문서](https://quark.docs.amd.com/latest/)를 참고하여 모델 양자화를 시작하고 지원되는 오픈 소스 라이브러리에서 사용할 수 있습니다!
Quark는 자체 체크포인트/[설정 포맷](https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV-Quark-test/blob/main/config.json#L26)를 가지고 있지만, 다른 양자화/런타임 구현체 ([AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq), [네이티브 fp8](https://huggingface.co/docs/transformers/quantization/finegrained_fp8))와 호환되는 직렬화 레이아웃으로 모델을 생성하는 것도 지원합니다.
Transformer에서 Quark 양자화 모델을 로드하려면 먼저 라이브러리를 설치해야 합니다:
```bash
pip install amd-quark
```
## 지원 매트릭스[[Support matrix]]
Quark를 통해 양자화된 모델은 함께 조합할 수 있는 광범위한 기능을 지원합니다. 구성에 관계없이 모든 양자화된 모델은 `PretrainedModel.from_pretrained`를 통해 원활하게 다시 로드할 수 있습니다.
아래 표는 Quark에서 지원하는 몇 가지 기능을 보여줍니다:
| **기능** | **Quark에서 지원하는 항목** | |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|---|
| 데이터 타입 | int8, int4, int2, bfloat16, float16, fp8_e5m2, fp8_e4m3, fp6_e3m2, fp6_e2m3, fp4, OCP MX, MX6, MX9, bfp16 | |
| 양자화 전 모델 변환 | SmoothQuant, QuaRot, SpinQuant, AWQ | |
| 양자화 알고리즘 | GPTQ | |
| 지원 연산자 | ``nn.Linear``, ``nn.Conv2d``, ``nn.ConvTranspose2d``, ``nn.Embedding``, ``nn.EmbeddingBag`` | |
| 세분성(Granularity) | per-tensor, per-channel, per-block, per-layer, per-layer type | |
| KV 캐시 | fp8 | |
| 활성화 캘리브레이션 | MinMax / Percentile / MSE | |
| 양자화 전략 | weight-only, static, dynamic, with or without output quantization | |
## Hugging Face Hub의 모델[[Models on Hugging Face Hub]]
Quark 네이티브 직렬화를 사용하는 공개 모델은 https://huggingface.co/models?other=quark 에서 찾을 수 있습니다.
Quark는 [`quant_method="fp8"`을 이용하는 모델](https://huggingface.co/models?other=fp8)과 [`quant_method="awq"`을 사용하는 모델](https://huggingface.co/models?other=awq)도 지원하지만, Transformers는 이러한 모델을 [AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq)를 통해 불러오거나
[🤗 Transformers의 네이티브 fp8 지원](https://huggingface.co/docs/transformers/quantization/finegrained_fp8)을 사용합니다.
## Transformers에서 Quark모델 사용하기[[Using Quark models in Transformers]]
다음은 Transformers에서 Quark 모델을 불러오는 방법의 예시입니다:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "EmbeddedLLM/Llama-3.1-8B-Instruct-w_fp8_per_channel_sym"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = model.to("cuda")
print(model.model.layers[0].self_attn.q_proj)
# QParamsLinear(
# (weight_quantizer): ScaledRealQuantizer()
# (input_quantizer): ScaledRealQuantizer()
# (output_quantizer): ScaledRealQuantizer()
# )
tokenizer = AutoTokenizer.from_pretrained(model_id)
inp = tokenizer("Where is a good place to cycle around Tokyo?", return_tensors="pt")
inp = inp.to("cuda")
res = model.generate(**inp, min_new_tokens=50, max_new_tokens=100)
print(tokenizer.batch_decode(res)[0])
# <|begin_of_text|>Where is a good place to cycle around Tokyo? There are several places in Tokyo that are suitable for cycling, depending on your skill level and interests. Here are a few suggestions:
# 1. Yoyogi Park: This park is a popular spot for cycling and has a wide, flat path that's perfect for beginners. You can also visit the Meiji Shrine, a famous Shinto shrine located in the park.
# 2. Imperial Palace East Garden: This beautiful garden has a large, flat path that's perfect for cycling. You can also visit the
```

View File

@ -545,7 +545,7 @@ def main():
# region Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
raise TypeError(
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
" this requirement"

View File

@ -0,0 +1,216 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_duplicated_method.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_duplicated_method.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DuplicatedMethodConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DuplicatedMethodModel`]. It is used to instantiate an DuplicatedMethod
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DuplicatedMethod-7B.
e.g. [meta-duplicated_method/DuplicatedMethod-2-7b-hf](https://huggingface.co/meta-duplicated_method/DuplicatedMethod-2-7b-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DuplicatedMethod model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DuplicatedMethodModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. DuplicatedMethod 1 supports up to 2048 tokens,
DuplicatedMethod 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'duplicated_method3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'duplicated_method3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import DuplicatedMethodModel, DuplicatedMethodConfig
>>> # Initializing a DuplicatedMethod duplicated_method-7b style configuration
>>> configuration = DuplicatedMethodConfig()
>>> # Initializing a model from the duplicated_method-7b style configuration
>>> model = DuplicatedMethodModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "duplicated_method"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `DuplicatedMethodModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def vocab_size(self):
return 45
@vocab_size.setter
def vocab_size(self, value):
self.vocab_size = value

View File

@ -125,8 +125,6 @@ class MyNewModelConfig(PretrainedConfig):
>>> # Accessing the model configuration
>>> configuration = model.config
```
new_param (`int`, *optional*, defaults to `False`):
A fun new parameter
"""
model_type = "my_new_model"

View File

@ -1,446 +0,0 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_dummy.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_dummy.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging
from .configuration_dummy import DummyConfig
logger = logging.get_logger(__name__)
@use_kernel_forward_from_hub("RMSNorm")
class DummyRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DummyRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class DummyRotaryEmbedding(nn.Module):
def __init__(self, config: DummyConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class DummyMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 4]
x2 = x[..., x.shape[-1] // 4 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class DummyAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DummyConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DummyDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: DummyConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DummyAttention(config=config, layer_idx=layer_idx)
self.mlp = DummyMLP(config)
self.input_layernorm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class DummyPreTrainedModel(PreTrainedModel):
config_class = DummyConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DummyDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, DummyRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class DummyModel(DummyPreTrainedModel):
def __init__(self, config: DummyConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DummyDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DummyRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)

View File

@ -0,0 +1,169 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_global_indexing.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_global_indexing.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional
import torch
from torch import nn
from transformers.modeling_utils import AttentionInterface
from ...cache_utils import Cache
from ...processing_utils import Unpack
from ...utils import TransformersKwargs
from .configuration_global_indexing import GlobalIndexingConfig
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def custom_flex(x, **kwargs):
"""Dummy function."""
return x
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
# This indexing statement and associated function should be exported correctly!
ALL_ATTENTION_FUNCTIONS["flex_attention"] = custom_flex
class GlobalIndexingAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlobalIndexingConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights

View File

@ -289,7 +289,6 @@ class Multimodal2VisionEncoder(nn.Module):
self.layers = nn.ModuleList([Multimodal2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
@can_return_tuple
def forward(
self,
inputs_embeds,
@ -455,7 +454,6 @@ class Multimodal2VisionTransformer(nn.Module):
self.encoder = Multimodal2VisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@can_return_tuple
@auto_docstring
def forward(
self,
@ -499,7 +497,7 @@ class Multimodal2VisionPreTrainedModel(PreTrainedModel):
base_model_prefix = "multimodal2_vision"
supports_gradient_checkpointing = True
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_flash_attn = True
_supports_flex_attn = True
_supports_attention_backend = True

View File

@ -12,13 +12,13 @@ from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ...utils.generic import check_model_inputs
from .configuration_my_new_model2 import MyNewModel2Config
@ -65,7 +65,7 @@ class MyNewModel2RotaryEmbedding(nn.Module):
def __init__(self, config: MyNewModel2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -149,7 +149,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -200,8 +200,8 @@ class MyNewModel2Attention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -254,22 +254,19 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
@ -282,12 +279,7 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
return hidden_states
@auto_docstring
@ -297,13 +289,17 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_no_split_modules = ["MyNewModel2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": MyNewModel2DecoderLayer,
"attentions": MyNewModel2Attention,
}
def _init_weights(self, module):
std = self.config.initializer_range
@ -337,13 +333,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@check_model_inputs
@auto_docstring
def forward(
self,
@ -353,26 +343,12 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
@ -394,6 +370,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
# embed positions
@ -408,42 +385,21 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@ -471,12 +427,6 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
@ -488,8 +438,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -505,8 +454,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)

View File

@ -95,7 +95,7 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_flash_attn_2 = True
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_attention_backend = True
@ -118,6 +118,8 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
)
class NewTaskModelModel(NewTaskModelPreTrainedModel):
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
# we are filtering the logits/labels so we shouldn't divide the loss based on num_items_in_batch
accepts_loss_kwargs = False
def __init__(self, config: NewTaskModelConfig):
super().__init__(config)
@ -313,9 +315,11 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
special_image_mask = input_ids == self.config.image_token_id
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
@ -385,12 +389,6 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
@ -433,32 +431,6 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
num_logits_to_keep: int = 0,
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, NewTaskModelForNewTask
>>> model = NewTaskModelForNewTask.from_pretrained("google/new_task_model2-3b-mix-224")
>>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224")
>>> prompt = "Where is the cat standing?"
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs,)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Where is the cat standing?\nsnow"
```
Returns:
"""
vlm_outputs = super().forward(

View File

@ -14,12 +14,12 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...integrations import use_kernel_forward_from_hub
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple
from ...utils import TransformersKwargs, auto_docstring
from ...utils.generic import check_model_inputs
from .configuration_super import SuperConfig
@ -48,7 +48,7 @@ class SuperRotaryEmbedding(nn.Module):
def __init__(self, config: SuperConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -148,7 +148,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -199,8 +199,8 @@ class SuperAttention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -253,22 +253,19 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
@ -281,12 +278,7 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
return hidden_states
@auto_docstring
@ -296,13 +288,17 @@ class SuperPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_no_split_modules = ["SuperDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": SuperDecoderLayer,
"attentions": SuperAttention,
}
def _init_weights(self, module):
std = self.config.initializer_range
@ -336,13 +332,7 @@ class SuperModel(SuperPreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@check_model_inputs
@auto_docstring
def forward(
self,

View File

@ -11,9 +11,9 @@ import torch
from torch import nn
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs
from .configuration_switch_function import SwitchFunctionConfig
@ -72,7 +72,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -123,8 +123,8 @@ class SwitchFunctionAttention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)

View File

@ -1,15 +0,0 @@
import torch
from transformers.models.llama.modeling_llama import LlamaModel
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 4]
x2 = x[..., x.shape[-1] // 4 :]
return torch.cat((-x2, x1), dim=-1)
# example where we need some deps and some functions
class DummyModel(LlamaModel):
pass

Some files were not shown because too many files have changed in this diff Show More