Compare commits

...

146 Commits

Author SHA1 Message Date
0e4b7938d0 Add ModernBERT Decoder Models - ModernBERT, but trained with CLM! (#38967)
* working locally; need to style and test

* added docs and initial tests; need to debug and flesh out

* fixed tests

* working long context; batches

* working fa2 and eager

* update tests

* add missing confnigs

* remove default autoset

* fix spacing

* fix most tests

* fixed tests

* fix to init

* refactor to match new transformers updates

* remove static cache option

* fa2 fix

* fix docs

* in progress

* working on tests

* fixed issue with attn outputs

* remove debug

* fix local config attr

* update doc string

* fix docstring

* add docs to toc

* correct typo in toc

* add new updates from main w.r.t. ModernBERT RoPE

* fix local param

---------

Co-authored-by: oweller2 <oweller2@dsailogin.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l07.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@n02.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l08.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l01.mgmt.ai.cluster>
Co-authored-by: oweller2 <oweller2@l02.mgmt.ai.cluster>
2025-07-15 10:40:41 +02:00
0b724114cf Fix typo in /v1/models output payload (#39414) 2025-07-15 08:59:25 +01:00
8d6259b0b8 [refactor] set attention implementation (#38974)
* update

* fix some tests

* init from config, changes it in-place, add deepcopy in tests

* fix modernbert

* don't delete thsi config attr

* update

* style and copies

* skip tests in generation

* fix style

* accidentally removed flash-attn-3, revert

* docs

* forgot about flags set to False

* fix copies

* address a few comments

* fix copies

* custom code BC
2025-07-15 09:34:06 +02:00
6017f5e8ed [siglip] fix pooling comment (#39378)
* feat(siglip2): add forward pass with pooled output logic in Siglip2TextModel

* test(siglip2): add test_text_model.py to verify pooled output behavior

* style(siglip2): fix formatting in test_text_model.py using Ruff

* fix(siglip2): remove misleading 'sticky EOS' comment and sync modular-classic files

* fix(siglip2): remove misleading 'sticky EOS' comment and sync modular-classic files

* chore(siglip2): regenerate classic model after modular change

* Update
2025-07-14 17:47:19 +00:00
8d40ca5749 Update phi4_multimodal.md (#38830)
* Update phi4_multimodal.md

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi4_multimodal.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

* Update phi4_multimodal.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-14 10:35:17 -07:00
3635415af2 [Docs] Fix typo in CustomTrainer compute_loss method and adjust loss reduction logic (#39391)
Fix typo in CustomTrainer compute_loss method and adjust loss reduction logic
2025-07-14 09:25:06 -07:00
3a48e9534c Use np.pad instead of np.lib.pad. (#39346)
* Use np.pad instead of np.lib.pad.

* Update audio_utils.py

Formatting
2025-07-14 16:05:28 +00:00
3d8be20cd2 Totally rewrite how pipelines load preprocessors (#38947)
* Totally rewrite how pipelines load preprocessors

* Delete more mappings

* Fix conditionals, thanks Cyril!
2025-07-14 16:40:04 +01:00
903944a411 [examples] fix do_reduce_labels argument for run_semantic_segmentation_no_trainer (#39322)
* no use do_reduce_labels argument in model

* use do_reducer_labels in AutoImageProcessor
2025-07-14 10:16:49 +00:00
8165c703ab Fix Lfm2 and common tests (#39398)
* fix

* better fix

* typo
2025-07-14 12:02:59 +02:00
878d60a3cb Deprecate AutoModelForVision2Seq (#38900)
deprecate vision2seq
2025-07-14 11:42:06 +02:00
ad333d4852 [Qwen2.5-VL] Fix torch.finfo() TypeError for integer attention_mask_tensor (#39333)
* Update modeling_qwen2_5_vl.py

### 🐛 Bug Description

When using Unsloth’s Qwen2.5-VL vision models (both 3B and 7B) with the latest HuggingFace Transformers (commit: 520b9dcb42cef21662c304583368ff6645116a45), the model crashes due to a type mismatch in the attention mask handling.

---

### 🔥 Error Traceback

* Fix dtype compatibility in attention mask processing

Replace hardcoded torch.finfo() usage with dtype-aware function selection to handle both integer and floating-point attention mask tensors.
Technical Details:

Problem: Line 1292 assumes floating-point dtype for attention_mask_tensor
Solution: Add dtype check to use torch.iinfo() for integer types and torch.finfo() for float types
Files Modified: transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py

* Update modeling_qwen2_5_vl.py

* Update modeling_qwen2_5_vl.py

* Fix: Cast to float before applying torch.finfo

* # Fix: Use appropriate function based on dtype

* Update modular_qwen2_5_vl.py

* Fix: Cast to float before applying torch.finfo

* Fix: Use appropriate function based on dtype

* Fix: Use appropriate function based on dtype

* Updatet modeling_glm4v.py

* Only apply conversion for floating point tensors (inverted masks)

* corrected the format issue

reformatted modeling_glm4v.py

All done!  🍰 
1 file reformatted

* Fix: Cast to float before applying torch.finfo

Corrected the format issue

* Fix torch.finfo() for integer attention mask

#39333

* Run make fix-copies and make style for CI compliance

- Updated dependency versions table
- Fixed code formatting and style issues
- Sorted auto mappings
- Updated documentation TOC

* Fix torch.finfo() TypeError for

Fix torch.finfo() TypeError for integer attention_mask_tensor #39333

* Fix torch.finfo() TypeError for integer
2025-07-14 07:47:39 +00:00
c30af65521 [BLIP] remove cache from Qformer (#39335)
* remove cache from Qformer

* fix

* this was never correct...
2025-07-14 09:20:01 +02:00
66cd995618 [shieldgemma] fix checkpoint loading (#39348)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-14 08:34:58 +02:00
a1ad9197c5 Fix overriding Fast Image/Video Processors instance attributes affect other instances (#39363)
* fix and add tests

* nit
2025-07-12 23:39:06 +00:00
dc98fb3e5e update docker file to use latest timm (for perception_lm) (#39380)
update docker file for timm

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-12 23:19:37 +02:00
5c30f7e390 Update Model Card for Encoder Decoder Model (#39272)
* update model card.

* add back the model contributors for mamba and mamba2.

* update the model card.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update batches with correct alignment.

* update examples and remove quantization example.

* update the examples.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update example.

* correct the example.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-11 11:23:08 -07:00
0d7efe3e4b fix gpt2 usage doc (#39351)
fix typo of gpt2 doc usage
2025-07-11 10:59:41 -07:00
a646fd55fd Updated CamemBERT model card to new standardized format (#39227)
* Updated CamemBERT model card to new standardized format

* Applied review suggestions for CamemBERT: restored API refs, added examples, badges, and attribution

* Updated CamemBERT usage examples, quantization, badges, and format

* Updated CamemBERT badges

* Fixed CLI Section
2025-07-11 10:59:09 -07:00
af74ec65a7 Update Readme to Run Multiple Choice Script from Example Directory (#39323)
* Update Readme to run in current place

* Update Readme files to execute PyTorch examples from their respective folders
2025-07-11 10:58:26 -07:00
70e57e4710 Add mistral common support (#38906)
* wip: correct docstrings

* Add mistral-common support.

* quality

* wip: add requested methods

* wip: fix tests

* wip: add internally some methods not being supported in mistral-common

* wip

* wip: add opencv dependency and update test list

* wip: add mistral-common to testing dependencies

* wip: revert some test changes

* wip: ci

* wip: ci

* clean

* check

* check

* check

* wip: add hf image format to apply_chat_template and return pixel_values

* wip: make mistral-common non-installed safe

* wip: clean zip

* fix: from_pretrained

* fix: path and base64

* fix: path and import root

* wip: add docs

* clean

* clean

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-07-11 16:26:58 +00:00
665418dacc Remove device check in HQQ quantizer (#39299)
* Remove device check in HQQ quantizer

Fix https://github.com/huggingface/transformers/issues/38439

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-11 14:59:51 +00:00
601bea2c4e Verbose error in fix mode for utils/check_docstrings.py (#38915)
* fix ast deprecations for python 3.14: replace node.n by node.value and use `ast.Constant`

More verbose exceptions in `fix_docstring` on docstring formatting issues.
2025-07-11 14:36:10 +00:00
24f771a043 fix failing test_sdpa_can_dispatch_on_flash (#39259)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-11 16:30:56 +02:00
ee74397d20 update cb TP (#39361)
* update cb TP

* safety
2025-07-11 15:54:25 +02:00
9bc675b3b6 Fix link for testpypi (#39360)
fix link
2025-07-11 15:34:01 +02:00
bf607f6d3b PerceptionLM (#37878)
* plm template

* A working plm with fixed image features

* hacked processor

* First version that reproduced PLM output using PE from timm.

* Simplify and fix tie_word_embeddings

* Use PIL resize. Simplify converstion.

* First version that works with video input.

* simplifed image preprocessing (not batched)

* Minor fixes after rebasing on main.

* Video processor based on new API.

* Revert to use _preprocess for image processor.

* refactor with modular

* fix tie_word_embedding

* Testing with timm PE

* check in missed converstion from modular to model.py

* First working version of PLM with Eva PE. PLM-1B and 3B outputs are exactly the same as before. PLM-8B output has some differences.

* address review comments

* Fixed batching if video and image examples mixed.

* Simplify PE configuration.

* Enable AutoModel for PerceptionEncoder.

* Update PE config style.

* update all headers

* Minor fixes.

* Move lm_head to PerceptionLMForConditionalGeneration.
Fix vit_G model specification.

* Fix for testing_modeling_perception_lm.py

* Image processing refactoring to use more common parts.

* Fix processor test.

* update tests to use model from hub

* More test fixes.

* integration test GT update after rebasing; probably due to video preprocessing

* update test media path to hub

* Stop tracking local scripts

* address some review comments

* refactor image processing.

* small fixes

* update documentation and minor fixes

* remove scripts

* Minor fix for CI

* Fix image processing

* CI and doc fix

* CI formatting fix

* ruff fix

* ruff formatting

* ran utils/sort_auto_mappings.py

* update docstring

* more docstring udpates

* add vision_input_type default fallback for image processing

* more verbose variable naming

* test update

* Remove PE and PEConfig use AutoModel(TimmWrapper) instead

* Minor cleanup.

* Minor Fix: remove any ref to PE. Ruff format and check.

* fix docstring

* Fix modular/model consistency.Improvex docstringfor  .

* Fix PerceptionLMForConditionalGenerationModelTest

* ruff fix

* fix for check_repo

* minor formatting

* dummy size arg to fix for processor test.

* Update docstring for PerceptionLMConfig

* Minor fixes from review feedback.

* Revert some minor changes per reviewer feedback.

* update base_model_prefix

* address reviewer feedback

* fix comment in modeling file

* address reviewer feedback

* ruff format

* Pre-merge test update.

* reapply modular and fix checkpoint name

* processor test path

* use modular a bit more

* remove dead code

* add token decorator

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-11 11:07:32 +02:00
4b47b2b8ea Updated Switch Transformers model card with standardized format (Issue #36979) (#39305)
* Updated Switch Transformers model card with standardized format (Issue #36979)

* Apply reviewer suggestions to the new standardised Switch Transformer's model card

* Update switch_transformers.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-10 15:34:10 -07:00
fe1a5b73e6 [modular] speedup check_modular_conversion with multiprocessing (#37456)
* Change topological sort to return level-based output (lists of lists)

* Update main for modular converter

* Update test

* update check_modular_conversion

* Update gitignore

* Fix missing conversion for glm4

* Update

* Fix error msg

* Fixup

* fix docstring

* update docs

* Add comment

* delete qwen3_moe
2025-07-10 19:07:59 +01:00
571a8c2131 Add a default value for position_ids in masking_utils (#39310)
* set default

* Update masking_utils.py

* add small test
2025-07-10 18:53:40 +02:00
bdc8028cb3 [Core] [Offloading] Enable saving offloaded models with multiple shared tensor groups (#39263)
* fix counting meta tensors, fix onloading meta tensors

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* remove unrelated fix

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

* add test

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>

---------

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
2025-07-10 18:33:30 +02:00
df49b399dc [tests] tag serve tests as slow (#39343)
* maybe they need more cpu resources?

* add todo
2025-07-10 15:40:08 +00:00
36e80a18da [modeling][lfm2] LFM2: Remove deprecated seen_tokens (#39342)
* [modeling][lfm2] remove deprecated seen_tokens

* [modular][lfm2] remove deprecated seen_tokens from modular file
2025-07-10 17:27:55 +02:00
9682d07f92 LFM2 (#39340)
* [modeling][lfm2] LFM2 model on 4.53.0 interface

* [configuration] hook in LFM2 keys

* [modeling][lfm2] update modeling interface for 4.53.1

* [modeling][lfm2] apply mask to hidden conv states

* [misc] ruff format/lint

* [modeling][lfm2] minor: NotImplemented legacy cache conversion

* Create lfm2.md

* create nice modular

* style

* Update modeling_auto.py

* clean and start adding tests

* style

* Update test_modeling_lfm2.py

* Update __init__.py

* small test model size

* config

* small fix

* fix

* remove useless config attrs -> block_dim and conv_dim are hiden_size

* fix prepare inputs

* fix config

* test

* typo

* skip tests accordingly

* config docstrings

* add doc to .md

* skip config docstring check

---------

Co-authored-by: Maxime Labonne <81252890+mlabonne@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-10 16:07:33 +02:00
38c3931362 [server] add tests and fix passing a custom generation_config (#39230)
* add tests; fix passing a custom generation_config

* tool integration test

* add install step

* add accelerate as dep to serving

* add todo
2025-07-10 13:41:38 +00:00
6b09c8eab0 Handle DAC conversion when using weight_norm with newer PyTorch versions (#36393)
* Update convert_dac_checkpoint.py

* Update convert_dac_checkpoint.py

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-07-10 10:36:58 +00:00
92043bde29 fix phi3 tests (#39312)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-10 11:51:55 +02:00
520b9dcb42 fix Glm4v batch videos forward (#39172)
* changes for video

* update modular

* change get_video_features

* update video token replacement

* update modular

* add test and fix typo

* lint

* fix order

* lint

* fix

* remove dependency

* lint

* lint

* remove todo

* resize video for test

* lint..

* fix test

* new a processor for video_test

* fix test
2025-07-10 10:44:28 +02:00
bc161d5d06 Delete deprecated stuff (#38838)
* delete deprecated stuff

* fix copies

* remove unused tests

* fix modernbert and fuyu

* Update src/transformers/cache_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* bye bye `seen_tokens`

* address comments

* update typings

* ecnoder decoder models follow same pattern as whisper

* fix copies

* why is it set to False?

* fix switch transformers

* fix encoder decoder models shared weight

* fix copies and RAG

* remove `next_cache`

* fix gptj/git

* fix copies

* fix copies

* style...

* another forgotten docsrting

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-10 05:18:44 +00:00
c6ee0b1da8 Fix broken SAM after #39120 (#39289)
fix
2025-07-09 17:46:22 -04:00
aff7df8436 enable static cache on TP model (#39164)
* enable static cache on TP model

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check tp size before init kv cache

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix docstring

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add tp tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix other cache head size

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-09 21:14:45 +00:00
2ef59646b8 Fix max_length_q and max_length_k types to flash_attn_varlen_func (#37206)
Also add notes asking users to set `TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1`
or call `torch._dynamo.config.capture_scalar_outputs = True`, as currently
this will cause a graph break.

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-07-09 23:12:39 +02:00
2d600a4363 Granite speech speedups (#39197)
* ensure the query is updated during training

avoid unused parameters that DDP does not like

* avoid a crash when `kwargs` contain `padding=True`

trainers often pass this argument automatically

* minor

* Remove mel_spec lazy init, and rename to mel_filters.
this ensures save_pretrained will not crash when saving the processor during training
d5d007a1a0/src/transformers/feature_extraction_utils.py (L595)

* minor - most feature extractors has a `sampling_rate` property

* speedup relative position embeddings

* fix several issues in model saving/loading:
- avoid modifying `self._hf_peft_config_loaded` when saving
- adapter_config automatically points to the original base model - a finetuned version should point to the model save dir.
- fixing model weights names, that are changed by adding an adapter.

* minor

* minor

* minor

* fixing a crash without peft active

* add todo to replace einsum

* granite speech speedups:
1. register attention_dist to avoid cpu-to-gpu transfer every layer.
2. pad_sequence is much faster than per-sample-padding + concat.
3. avoid returning audio back to cpu when using a compute device.

* support audio.shape=(1,L)
2025-07-09 23:09:50 +02:00
5111c8ea2f Fix typo: langauge -> language (#39317) 2025-07-09 12:06:46 -07:00
2781ad092d docs: update LLaVA-NeXT model card (#38894)
* docs: update LLaVA-NeXT model card

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* [docs] Updated llava_next model card

* Update docs/source/en/model_doc/llava_next.md remove image sources

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* [fix] Change Flash Attention to SDPA badge

* [doc] fixed quantization example

* docs: updated contribution details and badges

* Update llava_next.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-09 11:32:40 -07:00
16dd7f48d0 skip files in src/ for doctest (for now) (#39316)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 19:36:48 +02:00
d61c0d087c Updated the Model docs - for the MARIAN model (#39138)
* Update marian.md

This update improves the Marian model card to follow the Hugging Face standardized model card format. The changes include:

- Added a clear description of MarianMT, its architecture, and how it differs from other models.
- Provided usage examples for Pipeline and AutoModel.
- Added a quantization example for optimizing model inference.
- Included instructions and examples for multilingual translation with language codes.
- Added an Attention Mask Visualizer example.
- Added a Resources section with relevant links to papers, the Marian framework, language codes, tokenizer guides, and quantization documentation.
- Fixed formatting issues in the code blocks for correct rendering.

This update improves the readability, usability, and consistency of the Marian model documentation for users.

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update marian.md

* Update marian.md

* Update marian.md

* Update marian.md

* Update docs/source/en/model_doc/marian.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update marian.md

* Update marian.md

* Update marian.md

* Update marian.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-09 10:23:03 -07:00
161cf3415e add stevhliu to the list in self-comment-ci.yml (#39315)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 19:07:44 +02:00
3be10c6d19 Fix consistency and a few docstrings warnings (#39314)
* Update modeling_deepseek_v2.py

* fix docstrings

* fix

* fix
2025-07-09 18:40:37 +02:00
4652677c89 🌐 [i18n-KO] Translated quark.md to Korean (#39268)
* initial translation

* removed english parts

* maintain consistency

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/quantization/quark.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* add toctree

* fixed indentation

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-07-09 09:29:51 -07:00
c980904204 Add DeepSeek V2 Model into Transformers (#36400)
* add initial structure

* doc fixes, add model base logic

* update init files

* some fixes to config and modular

* some improvements for attention

* format

* remove unused attn

* some fixes for moe layer and for decoder

* adapt _compute_yarn_parameters for deepseek

* format

* small fix

* fix for decoder forward

* add tests, small refactoring

* fix dummies

* fix init

* fix doc

* fix config docs

* add sequce doc, fix init for gate

* fix issues in tests

* fix config doc

* remove unused args

* some fixes and refactoring after review

* fix doc for config

* small fixes for config args

* revert config refactoring

* small refactoring

* minor fixes after rebase

* small fix after merge

* fix modular

* remove rotaryembd from public init

* small test fix

* some rotary pos calculation improvement

* fix format

* some improvements and fixes

* fix config

* some refactoring

* adjust some unit tests

* skip test

* small fixes and tests adjustment

* reapply modular

* fix all tests except Integration

* fix integration testzs

* cleanup BC stuff

* rope

* fix integrations tests based on a10

* style

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-09 17:04:28 +02:00
accbd8e0fe [sliding window] revert and deprecate (#39301)
* bring back and deprecate

* oops

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-07-09 16:10:38 +02:00
1cefb5d788 [modular] Allow method with the same name in case of @property decorator (#39308)
* fix

* add example

* fix

* Update modular_model_converter.py
2025-07-09 15:46:53 +02:00
4798c05c64 skip test_torchscript_* for now until the majority of the community ask for it (#39307)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 15:35:48 +02:00
fe5f3c85d2 fix aria tests (#39277)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-09 13:49:33 +02:00
0687d481e2 [flash attn 3] bring back flags (#39294)
* flash attn 3 flag

* fix copies
2025-07-09 09:45:01 +02:00
25343aafee Fix SDPA attention precision issue in Qwen2.5-VL (#37363)
* solve conflicts and remove  redundant attention_mask in qwenvit

* update decoded text check

* remove trailing whitespace
2025-07-09 07:03:44 +02:00
0e1c281745 [Tests] Update model_id in AIMv2 Tests (#39281)
* Update model_id in tests

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 21:46:32 +02:00
7ef592c96c Update T5gemma (#39210)
* bug fix: add vocab_size to t5gemmaconfig for pipeline.

* Update checkpoint placeholder

* minor change

* minor change

* minor change: update example.

* fix: add vocab_size as an explict arg.

* buf fix:

remove vocab_size verification; instead, re-set encoder/decoder vocab size.

Note, in t5gemma, vocab size of encoder/decoder shoud be always the same.

* add `add_generation_prompt` for message preprocessing.
2025-07-08 19:08:48 +02:00
1ecd52e50a Add torchcodec in docstrings/tests for datasets 4.0 (#39156)
* fix dataset run_object_detection

* bump version

* keep same dataset actually

* torchcodec in docstrings and testing utils

* torchcodec in dockerfiles and requirements

* remove duplicate

* add torchocodec to all the remaining docker files

* fix tests

* support torchcodec in audio classification and ASR

* [commit to revert] build ci-dev images

* [commit to revert] trigger circleci

* [commit to revert] build ci-dev images

* fix

* fix modeling_hubert

* backward compatible run_object_detection

* revert ci trigger commits

* fix mono conversion and support torch tensor as input

* revert map_to_array docs + fix it

* revert mono

* nit in docstring

* style

* fix modular

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 17:06:12 +02:00
1255480fd2 [lightglue] add support for remote code DISK keypoint detector (#39253)
* feat: add trust_remote_code in LightGlueConfig

* fix: made sure trust_remote_code is provided only when necessary

* fix: make style

* docs: added missing trust_remote_code docstring

* refactor: refactored LightGlue config init

* fix: removed unnecessary argument
2025-07-08 15:03:04 +00:00
838a0268b8 fix flaky test_generate_compile_model_forward (#39276)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 15:36:05 +02:00
29d0030e23 Refactor PretrainedConfig.__init__ method to make it more explicit (#39158)
* cleanup

* fix no `__init__` test

* fix missing inits
2025-07-08 14:24:39 +01:00
1580f64653 [smollm3] add tokenizer mapping for smollm3 (#39271)
add tok mapping to smollm3
2025-07-08 10:44:01 +00:00
db05e4ff33 [pagged-attention] fix off-by-1 error in pagged attention generation (#39258)
* fix off-by-1 error in pagged attention generation

* formatting

* use update_with_token
2025-07-08 12:34:22 +02:00
6f1a43896c [CI] fix docs (#39273)
* fix docs

* add ko gloassary file to toctree
2025-07-08 11:31:03 +01:00
fbdaa7b099 Add Aimv2 model (#36625)
* Model skelton

* changes

* temp push

* changes

* Added support for aimv2-native

* More changes

* More changes

* Stupid mistake correction

* Added config and refactor

* Added vison model

* update

* Refactor for lit variant

* Added Text Model

* Minor fixes

* nits

* update

* Preliminary tests

* More fixes

* Updated tests 🤗

* Refactor

* Updated testcase

* Updated config

* make fixup

* more fixes

* Bug fix and updates

* deadcode

* Fixes

* nit

* up

* Happy CI 

* Reduce LOC

* nit

* nit

* make style

* return_dict refactor

* bug fix

* fix

* doc update

* nit

* make fixup

* Minor update

* _init_weigths modifcation

* update tests

* Minor fixes post review

* Update w.r.t GradientCheckpointingLayer

* docs update

* update

* nit

* Use more Modular 😉

* Change name from AIMv2 to Aimv2

* Nit

* make style

* Add model doc pointer

* make style

* Update model doc section

* updates

* Modify attn mask and interface

* update test

* Final change

* Utilize flash and flex attn

* keep attn mask

* camelcase model name in test file

* Fix docstring

* Fix config warning finally and create_causal_mask

* disable torchscript

* remove unused arg

* remove from tests

* balance model size for tests

* fix device

* tests

* tests

* flaky test

* fix import

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-08 11:53:21 +02:00
d8590b4b0c Add Doge model (#35891)
* Add Doge Model

* Fix code quality

* Rollback an error commit

* Fix config for open-source weights

* Revert "Fix config for open-source weights"

This reverts commit 229cdcac10a6a4274d1dd13b729bc14c98eb0c76.

* Add modular_doge

* Update Doge inherits from Llama

* Fix import bug

* [docs] Add usage of doge model

* Fix Doge import pretrainedconfig from modeling_utils to configuration_utils

* [docs] remove trust remote code from doge

* Fix dynamo bug in doge model

* Update docstrings

* Import apply_rotary_pos_emb and repeat_kv from Llama

* Fix all nits

* Fix code quality

* Fix some bugs

* Fix code quality

* Remove inherited `_update_causal_mask` from Llama
This leads to incorrect weight initialization.

* Fix the wrong tensor orderings in DogeCDMoE

* Fix attention mask bug
We have to provide attention_mask for dynamic mask computation

* Modify most implementations to inherit from Llama
But there are two problems:
1. `flex_attention_forward` is not updated properly
2. `Example` error in the forward method of DogeForCausalLM

* Modify CDMoE for batch efficient implementation

* Uniform MoE configuration names, just like QwenMoE

* Fix code quality

* Fix code quality

* Fix code quality

* Add tp plan of CDMoE Module

* Hybird DMA with sliding window

* Update valid tokens greater than window size

* Fix code quality

* Add `convert_doge_weights_to_hf`

* Fix STATE_DICT_MAPPING in convert_doge_weights_to_hf.py

* Fix nits in modular_doge

* Fix code quality

* Fix all nits

* Fix all nits

* Make sure the attention function is updated inside the class

* Fix code quality issues in the Doge model and add a test for it

* Fix `test_generate`

* Fix code quality

* Fix nits fllowing suggestions

* Fix code quality

* Fix code quality issues

* Fix nits

* Fix code quality nits

* Fix the missing parameters in the configuration.

* Fix the missing parameters in the configuration.

* Fix nits

* Add initialization of attention

* Fix last nits

* Simplify dynamic mask generation logic

* Rename router_logits to gate_logits for matching latest changes of MixtralModel

* Rename typings for matching latest changes of MixtralModel

* Fixes typo in comment

* Update src/transformers/models/doge/modular_doge.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix code quality issues to match other modular

* Fix code quality issues to match other modular

* Fix the static compilation errors

* Update model weights link

* Fix code quality issues to match other modular

* reapply modular and support for new outputs

* style

* simplify a lot

* fix import location

* reapply modular

* fix

* fix integration test

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-08 11:44:29 +02:00
d370bc64c6 Fix errors when use verl to train GLM4.1v model (#39199)
* Fix errors when use verl to train GLM4.1v model

* Support glm4v load from AutoModelForVision2Seq
* Set glm4v model _checkpoint_conversion_mapping attr from None to {}

* Update modeling_auto.py
2025-07-08 09:39:31 +00:00
5fb8bb3e1a fix recompiles due to instance key, and deepcopy issues (#39270)
* fix recompiles due to instance key, and deepcopy issues

* dict
2025-07-08 11:38:11 +02:00
356fd68109 fix(generation): stop beam search per-instance when heuristic satisfied (#38778)
* fix(decoding): stop beam search per-instance when heuristic satisfied

Previously, when early_stopping is set to `False`, the early-stopping heuristic only halted generation when **all** batch instances reached the criterion. This caused instances that are impossible (suggested by the heuristic) to improve keep generating, leading to inconsistent and overlong outputs across the batch.

Now we apply the heuristic **per-instance**: once a certain instance of batch has its all beams impossibe to improve, we mark that instance finished while letting others continue. This restores expected behavior and ensures consistency in batched generation.

* Add test case GenerationIntegrationTests.test_beam_search_early_stop_heuristic

* Update naming improvement_possibility -> is_early_stop_heuristic_unsatisfied

* Add comments for early stop heuristic

* Update src/transformers/generation/utils.py

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-08 08:59:37 +00:00
0b0ede8b2b remove broken block (#39255)
* remove broken block

* fixup
2025-07-08 10:41:44 +02:00
a21557fa3e Skip test_eager_matches sdpa generate and update an integration test for blip-like models (#39248)
* skip

* skip

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-08 10:38:25 +02:00
ea3c2c0277 Fix license text, duplicate assignment, and typo in constant names (#39250)
- Complete Apache License text in Italian documentation
- Remove duplicate variable assignment in Perceiver converter
- Fix typo in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES constant
2025-07-08 10:20:52 +02:00
b2816da802 fix xpu failures on PT 2.7 and 2.8 w/o IPEX and enable hqq cases on XPU (#39187)
* chameleon xpu bnb groundtruth update on bnb triton backend since we are
deprecating ipex backend

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enable hqq uts on XPU, all passed

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix comment

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-07-08 10:18:26 +02:00
17b3c96c00 Glm 4 doc (#39247)
* update the glm4 model readme

* update test

* update GLM-4.1V model

* update as format

* update

* fix some tests

* fix the rest

* fix on a10, not t4

* nit: dummy import

---------

Co-authored-by: raushan <raushan@huggingface.co>
2025-07-08 08:22:04 +02:00
bbca9782ca Update LED model card (#39233)
* Update LED model card

* Remove extra arguments

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-07 15:56:57 -07:00
41e865bb8d fix some flaky tests in tests/generation/test_utils.py (#39254)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 19:49:41 +02:00
93747d89ea Simplify Mixtral and its modular children (#39252)
* simplify mixtral a lot

* fix

* other moes

* mixtral

* qwen3

* back

* Update modular_qwen3_moe.py
2025-07-07 19:40:41 +02:00
3993ee1e98 Add segmentation_maps support to MobileNetV2ImageProcessor (#37312)
* Add `segmentation_maps` support to mobilenet_v2 image processor and `reduce_labels` to mobilevit

* Changed mobilenetv2 tests to support fastimageprocessor

* added `segmentation_maps` support to fast image processor

* reverted to upstream/main

* Add optional

* Use autodocstring

* Changed docs

* Docs fix

* Changed fp to match beit fp

* Change typing imports

* Fixed repo inconsistency

* Added fast-slow equivalence tests

* Removed unnecessary call

* Add `reduce_labels` to Mobilevit fast processor

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-07-07 13:34:59 -04:00
b96f213fcf Clarify per_device_train_batch_size scaling in TrainingArguments (#38… (#38857)
Clarify global batch size calculation in TrainingArguments (#38484)
2025-07-07 16:57:42 +00:00
9698052560 Add Korean translation for glossary.md (#38804)
* Add Korean translation for glossary.md

* Update docs/source/ko/glossary.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/glossary.md

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Joosun40 <77312900+Joosun40@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-07-07 09:12:55 -07:00
bf203aa9da Update tiny-agents example (#39245) 2025-07-07 15:58:36 +02:00
c4e39ee59c adjust input and output texts for test_modeling_recurrent_gemma.py (#39190)
* adjust input and output texts for test_modeling_recurrent_gemma.py

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* fix bug

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* adjust

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update Expectation match

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* fix

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 15:13:25 +02:00
14cba7ad33 enable xpu on kv-cache and hqq doc (#39246)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-07 13:12:02 +00:00
32db48db73 Fix patch helper (#39216)
remove -1
2025-07-07 15:11:48 +02:00
a3618d485a RotaryEmbeddings change is not None -> isinstance(..., dict) (#39145)
is None -> isinstance dict
2025-07-07 14:05:28 +01:00
9b09fe479f fix fastspeech2_conformer tests (#39229)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 15:04:26 +02:00
00e9efceab [bugfix] fix flash attention 2 unavailable error on Ascend NPU (#39166)
[bugfix] fix flash attention 2 error on Ascend NPU
2025-07-07 13:03:39 +00:00
056fa73fae [modular] Simplify logic and docstring handling (#39185)
* simplify a lot

* Update modular_model_converter.py

* finalize

* remove outdated functions

* apply it

* and examples
2025-07-07 14:52:57 +02:00
f16fbfb89a Make _compute_dynamic_ntk_parameters exportable (#39171)
* Make _compute_dynamic_ntk_parameters exportable

* add unit test
2025-07-07 14:48:31 +02:00
4243bb844d fix bug using FSDP V1 will lead to model device not properly set (#39177)
* fix bug using FSDP V1 will lead to model device not properly set

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update the code

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-07-07 14:47:04 +02:00
34c16167eb Don't send new comment if the previous one is less than 30 minutes (unless the content is changed) (#39170)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-07 14:43:50 +02:00
b8f397e456 fix typo in Gemma3n notes (#39196) 2025-07-07 14:41:33 +02:00
5348fbc005 [modular] Follow global indexing and attribute setting, and their dependencies (#39180)
* export global indexing statements

* add example

* style

* examples
2025-07-07 14:36:43 +02:00
8570bc29f3 Fix missing fast tokenizer/image_processor in whisper/qwen2.5-omni processor (#39244)
* fix missing fast tokenizer in whisper processor

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix processor test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix qwen2.5 omni processor

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-07 13:54:18 +02:00
b283d52f7f [vjepa2] replace einsum with unsqueeze (#39234) 2025-07-07 11:14:08 +01:00
a325409a50 Expectations re-order and corrected FA3 skip (#39195)
* Fix Expectations and a FA3 skip

* Fixed docstring

* Added context for Default expectation
2025-07-07 11:42:33 +02:00
b0a8e0b8d7 [video processors] Support float fps for precise frame sampling (#39134)
* [video processors] Support float fps for precise frame sampling

Enable fractional fps values (e.g., 1.5, 29.97) in video processors
for more precise frame sampling control.

- Change fps type from int to float across all video processors
- Maintain backward compatibility with integer values

Extends: #38105

* [video processors] Refine fps typing to Union[int, float]

Change fps type from Optional[float] to Optional[Union[int, float]]
for more explicit type information about supporting both integer
and floating-point frame rates.

- Update type hints and docstrings across 8 files
- Maintain backward compatibility
- Clarify support for both int and float values

Extends: #38105

* Revert "[video processors] Support float fps for precise frame sampling"

This reverts commit 7360d6e661b413ca0239e5ef61f9b1abbeab8e65.
2025-07-07 03:43:43 +00:00
ca7e1a3756 Refactor the way we handle outputs for new llamas and new models (#39120)
* just update 2 files

* update other models as well just making fix-copies

* also add the changes needed to modeling utils

* put this on the pretrained model instead

* nits and fixes

* update generic, fix to use config value

* update other modelings

* use transformers kwargs instead

* update

* update

* update other models

* update

* updates

* update

* update

* update

* fix

* finally

* very small nits

* this fixes more tests

* fix other models as well!

* update modularqwen2

* update models based on qwen2

* update

* update

* remove the **flash stuff in favor of noraml kwargs

* update

* propagate gemma?

* remove output attentions

* propagate

* support cross attention edge case

* same

* test this

* fixes

* more fix

* update

* update

* fix conflicts

* update

* fix emu3

* fix emu3

* move the fix a bit

* quel enfer

* some fixes, loss_kwargs should never had been

* finish fixing gemma3n

* fix small lm3

* fix another one

* fix csm now

* fux csm and mistral

* fix mistral now

* small fixes

* fix janusss

* only for some models

* fixup

* phix phi3

* more fixes?

* dose this fix it?

* update

* holy shit it was just graph breaks

* protect torch

* updates

* fix samhq?

* fix moonshine

* more moonshine fixes, 3 failures left!

* nits

* generic needs to support more

* more fixes to moonshine!

* fix cross attention outputs!

* fix csm!

* nits

* fix stupid kosmos2

* current updates

* fixes

* use output recorder?

* nicer!

* a little bit of magic

* update

* fix protect

* fix

* small fixes

* protect import

* fix a bunch of more models

* fix fixups

* fix some of the last ones

* nit

* partly fix phi

* update

* fix import path

* make something that is fullgraph compatible just to be sure

* typing was wrong on llama so the rest was wrong as well

* fucking ugly but at least it is still exportable

* syle

* supposed to fix moonshine, it still breaks

* fix some default

* fix the last bits of sam

* update samhq

* more fixes to am hq

* nit

* fix all output+hidden states and output_attentions!

* fix?

* fix diffllama

* updates to fix initialization on the sam pips

* ups there was a bug

* fix the last sam hq test

* fix gotocr

* fix gotocr2!

* fixes

* skip stupid tests

* there was one left :)

* fixup

* fix fix copies issues with this test file

* fix copies for sam_hq

* rm some comments

* skip 2 more failing tests

* fix

* fix everything

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* add more doc!

* fix public init

* fix modular qwen3

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2025-07-05 11:34:28 +02:00
e6a8063ef1 Update expected values (after switching to A10) - part 8 - Final (#39220)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-04 13:35:53 +02:00
cd8a041a4f Update expected values (after switching to A10) - part 7 (#39218)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-04 12:48:10 +02:00
0cf27916f0 Add packed tensor format support for flex/sdpa/eager through the mask! (#39194)
* Add the necesary logic to mask_utils

* add it everywhere

* Update masking_utils.py

* style

* Update masking_utils.py

* Update modeling_mimi.py

* Update masking_utils.py

* add support for more than batch size 1

* Update masking_utils.py

* add test

* style

* Update test_masking_utils.py

* Update masking_utils.py

* add require_token

* fix tests

* fix
2025-07-04 09:01:56 +02:00
037755ed54 Update expected values (after switching to A10) - part 6 (#39207)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 22:45:30 +02:00
1168f57abf Update expected values (after switching to A10) - part 5 (#39205)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 19:56:02 +02:00
7d9e52f376 Fix continuous batching in transformers serve (#39149)
* Fix CB

* Nit

* Update src/transformers/commands/serving.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add todos

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-07-03 18:15:31 +02:00
85d93cc6e3 [serve] Cursor support, move docs into separate page, add more examples (#39133)
* jan docs

* rm

* [cursor] tmp commit

* Cursor working :D

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/commands/serving.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* cursor docs

* try to fix agents/tools docs?

* try to fix agents/tools docs?

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add transformers chat example with transformers serve

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-07-03 17:04:16 +01:00
e15b06d8dc [typing] better return typehints for from_pretrained (#39184)
* config

* processor

* feature-extractor

* jukebox

* fixup

* update other methods in config

* remove "PretrainedConfig" annotations
2025-07-03 14:22:47 +00:00
a25fc3592e Update expected values (after switching to A10) - part 4 (#39189)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-03 15:13:06 +02:00
b31e9d19a6 [Dia] Change ckpt path in docs (#39181)
fix ckpt path
2025-07-03 10:02:58 +00:00
18e0cae207 Fix many HPU failures in the CI (#39066)
* more torch.hpu patches

* increase top_k because it results in flaky behavior when Tempreture, TopP and TopK are used together, which ends up killing beams early.

* remove temporal fix

* fix scatter operation when input and src are the same

* trigger

* fix and reduce

* skip finding batch size as it makes the hpu go loco

* fix fsdp (yay all are passing)

* fix checking equal nan values

* style

* remove models list

* order

* rename to cuda_extensions

* Update src/transformers/trainer.py
2025-07-03 11:17:27 +02:00
bff964c429 Decouple device_map='auto' and tp_plan='auto' (#38942)
* dissociate

* better place

* fix
2025-07-03 11:07:11 +02:00
8178c43112 when delaying optimizer creation only prepare the model (#39152) 2025-07-03 09:04:16 +02:00
91221da2f1 [glm4v] fix video inference (#39174)
fix video inference
2025-07-03 05:20:41 +00:00
ebfbcd42da Test fixes for Aria (and some Expectation for llava_next_video) (#39131)
* Expectations for llava_next_video

* Updated image src in aria

* Fix test_small_model_integration_test

* Fix small model integration llama

* Fix a bunch of tests

* Style

* Shortened generation in test from 900 to 90
2025-07-02 23:41:14 +02:00
37a239ca50 Update expected values (after switching to A10) - part 3 (#39179)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-02 22:48:30 +02:00
9326fc332d Update expected values (after switching to A10) - part 2 (#39165)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* empty

* [skip ci]

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-02 22:47:55 +02:00
25cd65ac43 Random serve fixes (#39176)
* Fix index out of bounds exception on wrong kv reuse

* Prevent loading same model twice

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2025-07-02 22:09:58 +02:00
548794b886 [serve] Model name or path should be required (#39178)
* Model name or path should be required

* Fix + add tests

* Change print to log so it doesn't display in transformers chat
2025-07-02 22:06:47 +02:00
2d561713f8 [generate] document non-canonical beam search default behavior (#39000) 2025-07-02 18:29:16 +01:00
df12d87d18 [docs] ViTPose (#38630)
* vitpose

* fix?

* fix?

* feedback

* fix

* feedback

* feedback

* update sample image
2025-07-02 07:56:29 -07:00
2b4a12b5bf Reduce Glm4v model test size significantly (#39173)
* fix test size

* Update test_modeling_glm4v.py
2025-07-02 15:55:05 +02:00
e355c0a11c Fix missing initializations for models created in 2024 (#38987)
* fix GroundingDino

* fix SuperGlue

* fix GroundingDino

* fix MambaModel

* fix OmDetTurbo

* fix SegGpt

* fix Qwen2Audio

* fix Mamba2

* fix DabDetr

* fix Dac

* fix FalconMamba

* skip timm initialization

* fix Encodec and MusicgenMelody

* fix Musicgen

* skip timm initialization test

* fix OmDetTurbo

* clean the code

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* add reviewed changes

* add back timm

* style

* better check for parametrizations

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-02 15:03:57 +02:00
1125513a8d Blip2 fixes (#39080)
* Fixed some devices errors

* Fixed other device issues and more expectations

* Reverted support flags

* style

* More granular support

* Fixed some rebase stuff

* add a not None check before .to
2025-07-02 14:39:39 +02:00
28df7f854a Fix multimodal processor get duplicate arguments when receive kwargs for initialization (#39125)
* fix processor tokenizer override

Signed-off-by: Isotr0py <2037008807@qq.com>

* code format

Signed-off-by: Isotr0py <2037008807@qq.com>

* add regression test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

* check image processor same

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-02 19:57:15 +08:00
b61023a1b7 🚨🚨🚨 [eomt] make EoMT compatible with pipeline (#39122)
* Make EoMT compatible with pipeline

* Implicit patch offsets

* remove patch offsets from arg

* Modify tests

* Update example

* fix proc testcase

* Add few more args

* add pipeline test suite

* fix

* docstring fixes

* add pipeline test

* changes w.r.t review

* 🙈 MB

* should fix device mismatch

* debug

* Fixes device mismatch

* use decorator

* we can split mlp

* expected values update

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2025-07-02 12:25:26 +01:00
4d5822e65d [smolvlm] fix video inference (#39147)
* fix smolvlm

* better do as before, set sampling params in overwritten `apply_chat_template`

* style

* update with `setdefault`
2025-07-02 12:05:10 +02:00
9b2f5b66d8 fix default value of config to match checkpionts in LLaVa-OV models (#39163) 2025-07-02 09:45:50 +00:00
e8e0c76162 Add activation sparsity reference in gemma3n doc (#39160)
Add activation sparsity reference in the description of gemma3n
2025-07-02 04:11:03 +02:00
8e87adc45f fix llama tests (#39161)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 23:27:22 +02:00
4c1715b610 Update expected values (after switching to A10) (#39157)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* empty

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 20:54:31 +02:00
ab59cc27fe Suggest jobs to use in run-slow (#39100)
* pr

* pr

* pr

* pr

* pr

* pr

* pr

* pr

* pr

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 20:19:06 +02:00
db2f535443 update bnb ground truth (#39117)
* update bnb resulte

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* set seed to avoid sampling different results

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix int8 tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add comments

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-01 20:06:37 +02:00
260846efad fix: remove undefined variable (#39146) 2025-07-01 19:10:29 +02:00
cdfe49a4d0 Change @lru_cache() to @lru_cache to match styles from #38883. (#39093)
Match styles in #38883
2025-07-01 18:29:16 +02:00
f46798193e Fix: Ensure wandb logs config in offline mode (#38992)
* Fix: Ensure wandb logs config in offline mode

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-07-01 16:17:58 +00:00
fe838d6631 Fix missing fsdp & trainer jobs in daily CI (#39153)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-01 18:10:30 +02:00
1283877571 [superglue] fix wrong concatenation which made batching results wrong (#38850) 2025-07-01 12:14:44 +00:00
f8b88866f5 [VLMs] support passing embeds along with pixels (#38467)
* VLMs can work with embeds now

* update more models

* fix tests

* fix copies

* fixup

* fix

* style

* unskip tests

* fix copies

* fix tests

* style

* omni modality models

* qwen models had extra indentation

* fix some other tests

* fix copies

* fix test last time

* unrelated changes revert

* we can't rely only on embeds

* delete file

* de-flake mistral3

* fix qwen models

* fix style

* fix tests

* fix copies

* deflake the test

* modular reverted by fixes, fix again

* flaky test, overwritten

* fix copies

* style
2025-07-01 11:33:20 +00:00
20901f1d68 [typing] LlamaAttention return typehint (#38998)
* helo llama

* helo llama

* helo llama

* apply modular

* fix dia

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-07-01 11:29:52 +01:00
7a25f8dfdb [qwen2-vl] fix FA2 inference (#39121)
* fix FA2

* update is causal flag and remove mask for FA2

* update for FA2 with varlen path

* how the tests were passing with different devices?

* add comment and ref to the PR

* move mask preparation to base pretrained model

* seq len is the first dim, not second

* fix copies to fix GLM4V
2025-07-01 10:18:37 +00:00
def9663239 feat: support indivisible shards for TP model loading and TPlizing. (#37220)
* feat: support uneven loading and sharding
resolve merge conflicts
Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* fix: allow for empty tensor computations

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* test: add llama1b test case

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* due to q_proj colwise it has to be multi of 2

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* refactor: use slice API

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
2025-07-01 10:03:22 +00:00
06c4a4d499 fix caching_allocator_warmup with tie weights (#39070)
* fix caching_allocator_warmup with tie weights

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-01 11:32:20 +02:00
e435574721 🚨 Don't use cache in non-generative models (#38751)
* deprecate for 1 version

* style

* fix some tests

* fix esm

* skip for now, GC requires positional args but we have keyword args

* remove transpose for scores in modified models only

* skip fx trace tests
2025-07-01 09:08:21 +00:00
dbc98328da Several fixes for Gemma3n (#39135)
* remove the skips

* fix the epsilon to a small value (does not make sense otherwise)

* safeguard

* overload test_eager_matches_sdpa

* Update test_modeling_common.py

* skip appropriate tests

* correct no_split_layer

* fix all devices issue

* fix backward

* fix
2025-07-01 10:34:53 +02:00
d53518c5f2 Fix key mapping for VLMs (#39029)
* fix key mapping for VLMs

* use __mro__ instead

* update key mapping in save_pretrained
2025-07-01 09:47:53 +02:00
706 changed files with 33313 additions and 18097 deletions

View File

@ -303,7 +303,7 @@ non_model_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install ."],
install_steps=["uv venv && uv pip install .[serving]"],
marker="not generate",
parallelism=6,
)

157
.github/workflows/get-pr-info.yml vendored Normal file
View File

@ -0,0 +1,157 @@
name: Get PR commit SHA
on:
workflow_call:
inputs:
pr_number:
required: true
type: string
outputs:
PR_HEAD_REPO_FULL_NAME:
description: "The full name of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_FULL_NAME }}
PR_BASE_REPO_FULL_NAME:
description: "The full name of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_FULL_NAME }}
PR_HEAD_REPO_OWNER:
description: "The owner of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}
PR_BASE_REPO_OWNER:
description: "The owner of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_OWNER }}
PR_HEAD_REPO_NAME:
description: "The name of the repository from which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}
PR_BASE_REPO_NAME:
description: "The name of the repository to which the pull request is created"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_NAME }}
PR_HEAD_REF:
description: "The branch name of the pull request in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REF }}
PR_BASE_REF:
description: "The branch name in the base repository (to merge into)"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REF }}
PR_HEAD_SHA:
description: "The head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_SHA }}
PR_BASE_SHA:
description: "The head sha of the target branch in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_BASE_SHA }}
PR_MERGE_COMMIT_SHA:
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
PR_HEAD_COMMIT_DATE:
description: "The date of the head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
PR_MERGE_COMMIT_DATE:
description: "The date of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_HEAD_COMMIT_TIMESTAMP:
description: "The timestamp of the head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_TIMESTAMP }}
PR_MERGE_COMMIT_TIMESTAMP:
description: "The timestamp of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
PR:
description: "The PR"
value: ${{ jobs.get-pr-info.outputs.PR }}
PR_FILES:
description: "The files touched in the PR"
value: ${{ jobs.get-pr-info.outputs.PR_FILES }}
jobs:
get-pr-info:
runs-on: ubuntu-22.04
name: Get PR commit SHA better
outputs:
PR_HEAD_REPO_FULL_NAME: ${{ steps.pr_info.outputs.head_repo_full_name }}
PR_BASE_REPO_FULL_NAME: ${{ steps.pr_info.outputs.base_repo_full_name }}
PR_HEAD_REPO_OWNER: ${{ steps.pr_info.outputs.head_repo_owner }}
PR_BASE_REPO_OWNER: ${{ steps.pr_info.outputs.base_repo_owner }}
PR_HEAD_REPO_NAME: ${{ steps.pr_info.outputs.head_repo_name }}
PR_BASE_REPO_NAME: ${{ steps.pr_info.outputs.base_repo_name }}
PR_HEAD_REF: ${{ steps.pr_info.outputs.head_ref }}
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
PR_HEAD_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.head_commit_timestamp }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.merge_commit_timestamp }}
PR: ${{ steps.pr_info.outputs.pr }}
PR_FILES: ${{ steps.pr_info.outputs.files }}
if: ${{ inputs.pr_number != '' }}
steps:
- name: Extract PR details
id: pr_info
uses: actions/github-script@v6
with:
script: |
const { data: pr } = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: ${{ inputs.pr_number }}
});
const { data: head_commit } = await github.rest.repos.getCommit({
owner: pr.head.repo.owner.login,
repo: pr.head.repo.name,
ref: pr.head.ref
});
const { data: merge_commit } = await github.rest.repos.getCommit({
owner: pr.base.repo.owner.login,
repo: pr.base.repo.name,
ref: pr.merge_commit_sha,
});
const { data: files } = await github.rest.pulls.listFiles({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: ${{ inputs.pr_number }}
});
core.setOutput('head_repo_full_name', pr.head.repo.full_name);
core.setOutput('base_repo_full_name', pr.base.repo.full_name);
core.setOutput('head_repo_owner', pr.head.repo.owner.login);
core.setOutput('base_repo_owner', pr.base.repo.owner.login);
core.setOutput('head_repo_name', pr.head.repo.name);
core.setOutput('base_repo_name', pr.base.repo.name);
core.setOutput('head_ref', pr.head.ref);
core.setOutput('base_ref', pr.base.ref);
core.setOutput('head_sha', pr.head.sha);
core.setOutput('base_sha', pr.base.sha);
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
core.setOutput('pr', pr);
core.setOutput('head_commit_date', head_commit.commit.committer.date);
core.setOutput('merge_commit_date', merge_commit.commit.committer.date);
core.setOutput('files', files);
console.log('PR head commit:', {
head_commit: head_commit,
commit: head_commit.commit,
date: head_commit.commit.committer.date
});
console.log('PR merge commit:', {
merge_commit: merge_commit,
commit: merge_commit.commit,
date: merge_commit.commit.committer.date
});
- name: Convert dates to timestamps
id: get_timestamps
run: |
head_commit_date=${{ steps.pr_info.outputs.head_commit_date }}
merge_commit_date=${{ steps.pr_info.outputs.merge_commit_date }}
echo $head_commit_date
echo $merge_commit_date
head_commit_timestamp=$(date -d "$head_commit_date" +%s)
merge_commit_timestamp=$(date -d "$merge_commit_date" +%s)
echo $head_commit_timestamp
echo $merge_commit_timestamp
echo "head_commit_timestamp=$head_commit_timestamp" >> $GITHUB_OUTPUT
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT

36
.github/workflows/get-pr-number.yml vendored Normal file
View File

@ -0,0 +1,36 @@
name: Get PR number
on:
workflow_call:
outputs:
PR_NUMBER:
description: "The extracted PR number"
value: ${{ jobs.get-pr-number.outputs.PR_NUMBER }}
jobs:
get-pr-number:
runs-on: ubuntu-22.04
name: Get PR number
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:
- name: Get PR number
shell: bash
run: |
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
elif [[ "${{ github.event.pull_request.number }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.pull_request.number }}" >> $GITHUB_ENV
elif [[ "${{ github.event.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.number }}" >> $GITHUB_ENV
else
echo "PR_NUMBER=" >> $GITHUB_ENV
fi
- name: Check PR number
shell: bash
run: |
echo "${{ env.PR_NUMBER }}"
- name: Set PR number
id: set_pr_number
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"

199
.github/workflows/pr_run_slow_ci.yml vendored Normal file
View File

@ -0,0 +1,199 @@
name: PR slow CI
on:
pull_request_target:
types: [opened, synchronize, reopened]
jobs:
get-pr-number:
name: Get PR number
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
name: Get PR commit SHA
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ github.event.comment.created_at != '' }}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
get-jobs:
name: Get test files to run
runs-on: ubuntu-22.04
needs: [get-pr-number, get-pr-info]
outputs:
jobs: ${{ steps.get_jobs.outputs.jobs_to_run }}
steps:
- name: Get repository content
id: repo_content
uses: actions/github-script@v6
with:
script: |
const { data: tests_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
const { data: tests_models_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests/models',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
const { data: tests_quantization_dir } = await github.rest.repos.getContent({
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
path: 'tests/quantization',
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
});
core.setOutput('tests_dir', tests_dir);
core.setOutput('tests_models_dir', tests_models_dir);
core.setOutput('tests_quantization_dir', tests_quantization_dir);
# This checkout to the main branch
- uses: actions/checkout@v4
with:
fetch-depth: "0"
- name: Write pr_files file
run: |
cat > pr_files.txt << 'EOF'
${{ needs.get-pr-info.outputs.PR_FILES }}
EOF
- name: Write tests_dir file
run: |
cat > tests_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_dir }}
EOF
- name: Write tests_models_dir file
run: |
cat > tests_models_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_models_dir }}
EOF
- name: Write tests_quantization_dir file
run: |
cat > tests_quantization_dir.txt << 'EOF'
${{ steps.repo_content.outputs.tests_quantization_dir }}
EOF
- name: Run script to get jobs to run
id: get_jobs
run: |
python utils/get_pr_run_slow_jobs.py | tee output.txt
echo "jobs_to_run: $(tail -n 1 output.txt)"
echo "jobs_to_run=$(tail -n 1 output.txt)" >> $GITHUB_OUTPUT
send_comment:
# Will delete the previous comment and send a new one if:
# - either the content is changed
# - or the previous comment is 30 minutes or more old
name: Send a comment to suggest jobs to run
if: ${{ needs.get-jobs.outputs.jobs != '' }}
needs: [get-pr-number, get-jobs]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Check and update comment if needed
uses: actions/github-script@v7
env:
BODY: "\n\nrun-slow: ${{ needs.get-jobs.outputs.jobs }}"
with:
script: |
const prNumber = ${{ needs.get-pr-number.outputs.PR_NUMBER }};
const commentPrefix = "**[For maintainers]** Suggested jobs to run (before merge)";
const thirtyMinutesAgo = new Date(Date.now() - 30 * 60 * 1000); // 30 minutes ago
const newBody = `${commentPrefix}${process.env.BODY}`;
// Get all comments on the PR
const { data: comments } = await github.rest.issues.listComments({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber
});
// Find existing comments that start with our prefix
const existingComments = comments.filter(comment =>
comment.user.login === 'github-actions[bot]' &&
comment.body.startsWith(commentPrefix)
);
let shouldCreateNewComment = true;
let commentsToDelete = [];
if (existingComments.length > 0) {
// Get the most recent comment
const mostRecentComment = existingComments
.sort((a, b) => new Date(b.created_at) - new Date(a.created_at))[0];
const commentDate = new Date(mostRecentComment.created_at);
const isOld = commentDate < thirtyMinutesAgo;
const isDifferentContent = mostRecentComment.body !== newBody;
console.log(`Most recent comment created: ${mostRecentComment.created_at}`);
console.log(`Is older than 30 minutes: ${isOld}`);
console.log(`Has different content: ${isDifferentContent}`);
if (isOld || isDifferentContent) {
// Delete all existing comments and create new one
commentsToDelete = existingComments;
console.log(`Will delete ${commentsToDelete.length} existing comment(s) and create new one`);
} else {
// Content is same and comment is recent, skip
shouldCreateNewComment = false;
console.log('Comment is recent and content unchanged, skipping update');
}
} else {
console.log('No existing comments found, will create new one');
}
// Delete old comments if needed
for (const comment of commentsToDelete) {
console.log(`Deleting comment #${comment.id} (created: ${comment.created_at})`);
await github.rest.issues.deleteComment({
owner: context.repo.owner,
repo: context.repo.repo,
comment_id: comment.id
});
}
// Create new comment if needed
if (shouldCreateNewComment) {
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber,
body: newBody
});
console.log('✅ New comment created');
} else {
console.log(' No comment update needed');
}

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -84,8 +84,6 @@ jobs:
machine_type: ${{ matrix.machine_type }}
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_models_gpu
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -104,11 +102,10 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
run_pipelines_gpu:
if: ${{ inputs.job == 'run_pipelines_gpu' }}
run_pipelines_torch_gpu:
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
name: Pipelines
strategy:
fail-fast: false
@ -161,20 +158,20 @@ jobs:
- name: Run all pipeline tests on Intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_gpu_test_reports tests/pipelines -m "not not_device_test"
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports/failures_short.txt
cat reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_gpu_test_reports
path: reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
path: reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
@ -248,8 +245,8 @@ jobs:
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
path: reports/${{ env.machine_type }}_run_examples_gpu_test_reports
run_deepspeed_gpu:
if: ${{ inputs.job == 'run_deepspeed_gpu' }}
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
name: Intel Gaudi deepspeed tests
strategy:
fail-fast: false
@ -305,20 +302,20 @@ jobs:
- name: Run all deepspeed tests on intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_deepspeed_gpu_test_reports tests/deepspeed -m "not not_device_test"
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports/failures_short.txt
cat reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports
path: reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Slack Report
@ -327,8 +324,8 @@ jobs:
setup,
run_models_gpu,
run_examples_gpu,
run_pipelines_gpu,
run_deepspeed_gpu,
run_torch_cuda_extensions_gpu,
run_pipelines_torch_gpu,
run_trainer_and_fsdp_gpu,
]
if: ${{ always() }}

View File

@ -23,7 +23,7 @@ jobs:
name: Pipeline CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_pipelines_gpu
job: run_pipelines_torch_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
@ -47,7 +47,7 @@ jobs:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_deepspeed_gpu
job: run_torch_cuda_extensions_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"

View File

@ -135,6 +135,7 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit

3
.gitignore vendored
View File

@ -167,3 +167,6 @@ tags
# ruff
.ruff_cache
# modular conversion
*.modular_backup

View File

@ -28,6 +28,7 @@ from transformers.testing_utils import HfDoctestModule, HfDocTestParser
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_tokenization_mistral_common",
"test_processor",
"test_processing",
"test_beam_constraints",

View File

@ -2,10 +2,10 @@ FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN uv pip uninstall transformers

View File

@ -2,10 +2,10 @@ FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip uninstall transformers

View File

@ -2,10 +2,10 @@ FROM python:3.9-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -26,10 +26,12 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir -U timm
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate

View File

@ -19,7 +19,7 @@ RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
# `datasets` requires pandas, pandas has some modules compiled with numpy=1.x causing errors
RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'pandas<2' 'numpy<2'

View File

@ -26,7 +26,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate

View File

@ -100,8 +100,6 @@
title: Distributed inference
- local: perf_infer_cpu
title: CPU
- local: tf_xla
title: XLA
title: Optimization
- local: agents
title: Agents
@ -141,8 +139,6 @@
title: GPU
- local: perf_train_cpu
title: CPU
- local: perf_train_tpu_tf
title: TPU
- local: perf_train_special
title: Apple Silicon
- local: perf_train_gaudi
@ -433,6 +429,8 @@
title: DiffLlama
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/doge
title: Doge
- local: model_doc/dots1
title: dots1
- local: model_doc/dpr
@ -519,6 +517,8 @@
title: Jukebox
- local: model_doc/led
title: LED
- local: model_doc/lfm2
title: LFM2
- local: model_doc/llama
title: LLaMA
- local: model_doc/llama2
@ -563,6 +563,8 @@
title: MobileBERT
- local: model_doc/modernbert
title: ModernBert
- local: model_doc/modernbert-decoder
title: ModernBERTDecoder
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mpt
@ -693,6 +695,8 @@
title: Zamba2
title: Text models
- sections:
- local: model_doc/aimv2
title: Aimv2
- local: model_doc/beit
title: BEiT
- local: model_doc/bit
@ -709,6 +713,8 @@
title: D-FINE
- local: model_doc/dab-detr
title: DAB-DETR
- local: model_doc/deepseek_v2
title: DeepSeek-V2
- local: model_doc/deformable_detr
title: Deformable DETR
- local: model_doc/deit
@ -1035,6 +1041,8 @@
title: PaliGemma
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/perception_lm
title: PerceptionLM
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/pix2struct
@ -1144,4 +1152,3 @@
title: Environment Variables
title: Reference
title: API

View File

@ -14,5 +14,9 @@ rendered properly in your Markdown viewer.
-->
# Agents
(deprecated)
> [!WARNING]
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

View File

@ -99,8 +99,6 @@ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_stat
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
```py

View File

@ -25,10 +25,7 @@ Check model leaderboards like [OpenLLM](https://hf.co/spaces/HuggingFaceH4/open_
This guide shows you how to quickly start chatting with Transformers from the command line, how build and format a conversation, and how to chat using the [`TextGenerationPipeline`].
## transformers CLI
### Interactive chat session
## chat CLI
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
@ -52,68 +49,7 @@ For a full list of options, run the command below.
transformers chat -h
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating).
### Serving a model and using MCP tools
> [!WARNING]
> This section is experimental and subject to changes in future versions
Powering the `chat` interface, we have a server that takes user messages and returns completions. The server has a chat completion API compatible with the OpenAI SDK, so you can also quickly experiment with `transformers` models on existing aplications. To launch a server separately, use the `transformers serve` CLI:
```bash
transformers serve Menlo/Jan-nano
```
Under the hood, the `chat` CLI launches and uses `transformers serve`. This server is also an MCP client, which can receive information available MCP servers (i.e. tools), massage their information into the model prompt, and prepare calls to these tools when the model commands to do so. Naturally, this requires a model that is trained to use tools.
At the moment, MCP tool usage in `transformers` has the following constraints:
- `chat` can't handle tools, but the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI can;
- Only the `qwen` family of models is supported.
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
```json
{
"model": "http://localhost:8000",
"provider": "local",
"servers": [
{
"type": "sse",
"config": {
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have a server (from `transformers serve`) running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating). It uses the `transformers serve` CLI under the hood ([docs](./serving.md#serve-cli)).
## TextGenerationPipeline

View File

@ -44,7 +44,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
@ -59,7 +59,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
past_key_values = DynamicCache()
@ -142,13 +142,14 @@ Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [
For [`HQQQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `1`.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache, QuantizedCacheConfig
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"axis-key": 1, "axis-value": 1, "backend": "hqq"})
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"backend": "HQQ"})
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
```
@ -159,13 +160,14 @@ I like rock music because it's loud and energetic. It's a great way to express m
For [`QuantoQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `0`.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache, QuantizedCacheConfig
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "axis-key": 0, "axis-value": 0, "backend": "quanto"})
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
```
@ -207,14 +209,14 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map={"": 0})
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static")
tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
```
Cache offloading requires a CUDA GPU.
Cache offloading requires a CUDA GPU or Intel XPU.
### Sliding window cache
@ -227,7 +229,7 @@ import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window")
@ -306,15 +308,15 @@ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, StaticCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map={"": 0})
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# You can also init a DynamicCache, if that suits you better
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device=model.device.type, dtype=torch.bfloat16)
INITIAL_PROMPT = "You are a helpful assistant. "
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to(model.device.type)
# This is the common prompt cached, we need to run forward without grad to be able to copy
with torch.no_grad():
prompt_cache = model(**inputs_initial_prompt, past_key_values = prompt_cache).past_key_values
@ -322,7 +324,7 @@ with torch.no_grad():
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to(model.device.type)
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]

View File

@ -0,0 +1,104 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# AIMv2
## Overview
The AIMv2 model was proposed in [Multimodal Autoregressive Pre-training of Large Vision Encoders](https://arxiv.org/abs/2411.14402) by Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby.
The abstract from the paper is the following:
*We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.*
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
The original code can be found [here](https://github.com/apple/ml-aim).
## Usage Example
Here is an example of Image Feature Extraction using specific checkpoints on resized images and native resolution images:
```python
import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-native")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-native")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
```
Here is an example of a checkpoint performing zero-shot classification:
```python
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit")
inputs = processor(
images=image,
text=text,
add_special_tokens=True,
truncation=True,
padding=True,
return_tensors="pt",
)
outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=-1)
```
## Aimv2Config
[[autodoc]] Aimv2Config
## Aimv2TextConfig
[[autodoc]] Aimv2TextConfig
## Aimv2VisionConfig
[[autodoc]] Aimv2VisionConfig
## Aimv2Model
[[autodoc]] Aimv2Model
- forward
## Aimv2VisionModel
[[autodoc]] Aimv2VisionModel
- forward
## Aimv2TextModel
[[autodoc]] Aimv2TextModel
- forward
</pt>
<tf>

View File

@ -14,49 +14,105 @@ rendered properly in your Markdown viewer.
-->
# CamemBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CamemBERT
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by
[Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la
Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model
trained on 138GB of French text.
[CamemBERT](https://huggingface.co/papers/1911.03894) is a language model based on [RoBERTa](./roberta), but trained specifically on French text from the OSCAR dataset, making it more effective for French language tasks.
The abstract from the paper is the following:
What sets CamemBERT apart is that it learned from a huge, high quality collection of French data, as opposed to mixing lots of languages. This helps it really understand French better than many multilingual models.
*Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available
models have either been trained on English data or on the concatenation of data in multiple languages. This makes
practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French,
we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the
performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging,
dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art
for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and
downstream applications for French NLP.*
Common applications of CamemBERT include masked language modeling (Fill-mask prediction), text classification (sentiment analysis), token classification (entity recognition) and sentence pair classification (entailment tasks).
This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/).
You can find all the original CamemBERT checkpoints under the [ALMAnaCH](https://huggingface.co/almanach/models?search=camembert) organization.
<Tip>
> [!TIP]
> This model was contributed by the [ALMAnaCH (Inria)](https://huggingface.co/almanach) team.
>
> Click on the CamemBERT models in the right sidebar for more examples of how to apply CamemBERT to different NLP tasks.
This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well
as the information relative to the inputs and outputs.
The examples below demonstrate how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
</Tip>
<hfoptions id="usage">
## Resources
<hfoption id="Pipeline">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
```python
import torch
from transformers import pipeline
pipeline = pipeline("fill-mask", model="camembert-base", torch_dtype=torch.float16, device=0)
pipeline("Le camembert est un délicieux fromage <mask>.")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
model = AutoModelForMaskedLM.from_pretrained("camembert-base", torch_dtype="auto", device_map="auto", attn_implementation="sdpa")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Le camembert est un délicieux fromage <mask>." | transformers run --task fill-mask --model camembert-base --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing weights in lower precision. Refer to the [Quantization](../quantization/overview) overview for available options.
The example below uses [bitsandbytes](../quantization/bitsandbytes) quantization to quantize the weights to 8-bits.
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM, BitsAndBytesConfig
import torch
quant_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForMaskedLM.from_pretrained(
"almanach/camembert-large",
quantization_config=quant_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-large")
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
## CamembertConfig
@ -137,5 +193,4 @@ as the information relative to the inputs and outputs.
[[autodoc]] TFCamembertForQuestionAnswering
</tf>
</frameworkcontent>
</frameworkcontent>

View File

@ -0,0 +1,49 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSeek-V2
## Overview
The DeepSeek-V2 model was proposed in [DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model](https://arxiv.org/abs/2405.04434) by DeepSeek-AI Team.
The abstract from the paper is the following:
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
The original code can be found [here](https://huggingface.co/deepseek-ai/DeepSeek-V2).
### Usage tips
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
## DeepseekV2Config
[[autodoc]] DeepseekV2Config
## DeepseekV2Model
[[autodoc]] DeepseekV2Model
- forward
## DeepseekV2ForCausalLM
[[autodoc]] DeepseekV2ForCausalLM
- forward
## DeepseekV2ForSequenceClassification
[[autodoc]] DeepseekV2ForSequenceClassification
- forward

View File

@ -44,7 +44,7 @@ tokens and decodes them back into audio.
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
text = ["[S1] Dia is an open weights text to dialogue model."]
processor = AutoProcessor.from_pretrained(model_checkpoint)
@ -66,7 +66,7 @@ from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
@ -93,7 +93,7 @@ from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
torch_device = "cuda"
model_checkpoint = "buttercrab/dia-v1-1.6b"
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))

View File

@ -0,0 +1,103 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Doge
## Overview
Doge is a series of small language models based on the [Doge](https://github.com/SmallDoges/small-doge) architecture, aiming to combine the advantages of state-space and self-attention algorithms, calculate dynamic masks from cached value states using the zero-order hold method, and solve the problem of existing mainstream language models getting lost in context. It uses the `wsd_scheduler` scheduler to pre-train on the `smollm-corpus`, and can continue training on new datasets or add sparse activation feedforward networks from stable stage checkpoints.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F426/transformers/model_doc/doge_architecture.png" alt="drawing" width="600"/>
As shown in the figure below, the sequence transformation part of the Doge architecture uses `Dynamic Mask Attention`, which can be understood as using self-attention related to value states during training, and using state-space without past state decay during inference, to solve the problem of existing Transformers or SSMs getting lost in long text. The state transformation part of Doge uses `Cross Domain Mixture of Experts`, which consists of dense linear layers and sparse embedding layers, and can additionally increase sparse parameters to continue training from dense weight checkpoints without retraining the entire model, thereby reducing the cost of continuous iteration of the model. In addition, Doge also uses `RMSNorm` and `Residual` with learnable parameters to adapt the gradient range of deep models.
Checkout all Doge model checkpoints [here](https://huggingface.co/collections/SmallDoge/doge-slm-679cc991f027c4a3abbded4a).
## Usage
<details>
<summary>Using Doge-Base for text generation</summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M")
inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs))
```
</details>
<details>
<summary>Using Doge-Instruct for question answering</summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M-Instruct")
generation_config = GenerationConfig(
max_new_tokens=100,
use_cache=True,
do_sample=True,
temperature=0.8,
top_p=0.9,
repetition_penalty=1.0
)
steamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
prompt = "Hi, how are you doing today?"
conversation = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
conversation=conversation,
tokenize=True,
return_tensors="pt",
)
outputs = model.generate(
inputs,
tokenizer=tokenizer,
generation_config=generation_config,
streamer=steamer
)
```
</details>
## DogeConfig
[[autodoc]] DogeConfig
## DogeModel
[[autodoc]] DogeModel
- forward
## DogeForCausalLM
[[autodoc]] DogeForCausalLM
- forward
## DogeForSequenceClassification
[[autodoc]] DogeForSequenceClassification
- forward

View File

@ -14,115 +14,88 @@ rendered properly in your Markdown viewer.
-->
# Encoder Decoder Models
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Encoder Decoder Models
The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
[`EncoderDecoderModel`](https://huggingface.co/papers/1706.03762) initializes a sequence-to-sequence model with any pretrained autoencoder and pretrained autoregressive model. It is effective for sequence generation tasks as demonstrated in [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) which uses [`BertModel`] as the encoder and decoder.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks
was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by
Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
> [!TIP]
> This model was contributed by [thomwolf](https://huggingface.co/thomwolf) and the TensorFlow/Flax version by [ydshieh](https://huggingface.co/ydshieh).
>
> Click on the Encoder Decoder models in the right sidebar for more examples of how to apply Encoder Decoder to different language tasks.
After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like
any other models (see the examples for more information).
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder
and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) by Yang Liu and Mirella Lapata.
## Randomly initializing `EncoderDecoderModel` from model configurations.
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
from transformers import pipeline
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
summarizer = pipeline(
"summarization",
model="patrickvonplaten/bert2bert-cnn_dailymail-fp16",
device=0
)
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = EncoderDecoderModel(config=config)
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
print(summarizer(text))
```
## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
[`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method.
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import EncoderDecoderModel, BertTokenizer
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
model = AutoModelForCausalLM.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16", torch_dtype=torch.bfloat16, device_map="auto",attn_implementation="sdpa")
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device)
summary = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True)
print(tokenizer.decode(summary[0], skip_special_tokens=True))
```
## Loading an existing `EncoderDecoderModel` checkpoint and perform inference.
</hfoption>
<hfoption id="transformers CLI">
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
```bash
echo -e "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen." | transformers-cli run --task summarization --model "patrickvonplaten/bert2bert-cnn_dailymail-fp16" --device 0
```
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
</hfoption>
</hfoptions>
## Notes
- [`EncoderDecoderModel`] can be initialized using any pretrained encoder and decoder. But depending on the decoder architecture, the cross-attention layers may be randomly initialized.
These models require downstream fine-tuning, as discussed in this [blog post](https://huggingface.co/blog/warm-starting-encoder-decoder). Use [`~EncoderDecoderModel.from_encoder_decoder_pretrained`] to combine encoder and decoder checkpoints.
```python
>>> from transformers import AutoTokenizer, EncoderDecoderModel
from transformers import EncoderDecoderModel, BertTokenizer
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> # let's perform inference on a long piece of text
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
>>> # autoregressively generate summary (uses greedy decoding by default)
>>> generated_ids = model.generate(input_ids)
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
"google-bert/bert-base-uncased",
"google-bert/bert-base-uncased"
)
```
## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`.
[`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a
pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch
checkpoints for a particular encoder-decoder model, a workaround is:
```python
>>> # a workaround to load from pytorch checkpoint
>>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel
>>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
>>> _model.encoder.save_pretrained("./encoder")
>>> _model.decoder.save_pretrained("./decoder")
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
... )
>>> # This is only for copying some specific attributes of this particular model.
>>> model.config = _model.config
```
## Training
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model.
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the
`input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded
target sequence).
- Encoder Decoder models can be fine-tuned like BART, T5 or any other encoder-decoder model. Only 2 inputs are required to compute a loss, `input_ids` and `labels`. Refer to this [notebook](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for a more detailed training example.
```python
>>> from transformers import BertTokenizer, EncoderDecoderModel
@ -147,11 +120,42 @@ target sequence).
>>> loss = model(input_ids=input_ids, labels=labels).loss
```
Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training.
- [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config as shown below.
This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions
were contributed by [ydshieh](https://github.com/ydshieh).
```python
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = EncoderDecoderModel(config=config)
```
- The Encoder Decoder Model can also be used for translation as shown below.
```python
from transformers import AutoTokenizer, EncoderDecoderModel
# Load a pre-trained translation model
model_name = "google/bert2bert_L-24_wmt_en_de"
tokenizer = AutoTokenizer.from_pretrained(model_name, pad_token="<pad>", eos_token="</s>", bos_token="<s>")
model = EncoderDecoderModel.from_pretrained(model_name)
# Input sentence to translate
input_text = "Plants create energy through a process known as"
# Encode the input text
inputs = tokenizer(input_text, return_tensors="pt", add_special_tokens=False).input_ids
# Generate the translated output
outputs = model.generate(inputs)[0]
# Decode the output tokens to get the translated sentence
translated_text = tokenizer.decode(outputs, skip_special_tokens=True)
print("Translated text:", translated_text)
```
## EncoderDecoderConfig

View File

@ -74,20 +74,16 @@ inputs = processor(
return_tensors="pt",
)
# Remove Patch Offsets from inputs — only used later for post-processing.
patch_offsets = inputs.pop("patch_offsets")
with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_semantic_segmentation(
outputs,
patch_offsets=patch_offsets,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the segmentation mask
@ -130,12 +126,12 @@ with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_instance_segmentation(
outputs,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the segmentation mask
@ -173,12 +169,12 @@ with torch.inference_mode():
outputs = model(**inputs)
# Prepare the original image size in the format (height, width)
original_image_sizes = [(image.height, image.width)]
target_sizes = [(image.height, image.width)]
# Post-process the model outputs to get final segmentation prediction
preds = processor.post_process_panoptic_segmentation(
outputs,
original_image_sizes=original_image_sizes,
target_sizes=target_sizes,
)
# Visualize the panoptic segmentation mask

View File

@ -29,7 +29,7 @@ rendered properly in your Markdown viewer.
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
[MatFormer][matformer], Per-Layer Embeddings (PLE), activation sparsity, and KV cache sharing. The language model uses
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
@ -121,7 +121,7 @@ echo -e "Plants create energy through a process known as" | transformers run --t
## Notes
- Use [`Gemma3nForConditionalGeneration`] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text,
image-only and aduio-only inputs.
image-only and audio-only inputs.
- Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to
the processor. Each batch should be a list of one or more images.
@ -201,4 +201,5 @@ echo -e "Plants create energy through a process known as" | transformers run --t
[gemma3n-collection]: https://huggingface.co/collections/google/gemma-3n
[laurel]: https://arxiv.org/abs/2411.07501
[matformer]: https://arxiv.org/abs/2310.07707
[spark-transformer]: https://arxiv.org/abs/2506.06644
[usm]: https://arxiv.org/abs/2303.01037

View File

@ -18,7 +18,37 @@ rendered properly in your Markdown viewer.
## Overview
To be released with the official model launch.
The GLM family welcomes new members [GLM-4-0414](https://arxiv.org/pdf/2406.12793) series models.
The **GLM-4-32B-0414** series models, featuring 32 billion parameters. Its performance is comparable to OpenAIs GPT
series and DeepSeeks V3/R1 series. It also supports very user-friendly local deployment features. GLM-4-32B-Base-0414
was pre-trained on 15T of high-quality data, including substantial reasoning-type synthetic data. This lays the
foundation for subsequent reinforcement learning extensions. In the post-training stage, we employed human preference
alignment for dialogue scenarios. Additionally, using techniques like rejection sampling and reinforcement learning, we
enhanced the models performance in instruction following, engineering code, and function calling, thus strengthening
the atomic capabilities required for agent tasks. GLM-4-32B-0414 achieves good results in engineering code, Artifact
generation, function calling, search-based Q&A, and report generation. In particular, on several benchmarks, such as
code generation or specific Q&A tasks, GLM-4-32B-Base-0414 achieves comparable performance with those larger models like
GPT-4o and DeepSeek-V3-0324 (671B).
**GLM-Z1-32B-0414** is a reasoning model with deep thinking capabilities. This was developed based on GLM-4-32B-0414
through cold start, extended reinforcement learning, and further training on tasks including mathematics, code, and
logic. Compared to the base model, GLM-Z1-32B-0414 significantly improves mathematical abilities and the capability to
solve complex tasks. During training, we also introduced general reinforcement learning based on pairwise ranking
feedback, which enhances the model's general capabilities.
**GLM-Z1-Rumination-32B-0414** is a deep reasoning model with rumination capabilities (against OpenAI's Deep Research).
Unlike typical deep thinking models, the rumination model is capable of deeper and longer thinking to solve more
open-ended and complex problems (e.g., writing a comparative analysis of AI development in two cities and their future
development plans). Z1-Rumination is trained through scaling end-to-end reinforcement learning with responses graded by
the ground truth answers or rubrics and can make use of search tools during its deep thinking process to handle complex
tasks. The model shows significant improvements in research-style writing and complex tasks.
Finally, **GLM-Z1-9B-0414** is a surprise. We employed all the aforementioned techniques to train a small model (9B).
GLM-Z1-9B-0414 exhibits excellent capabilities in mathematical reasoning and general tasks. Its overall performance is
top-ranked among all open-source models of the same size. Especially in resource-constrained scenarios, this model
achieves an excellent balance between efficiency and effectiveness, providing a powerful option for users seeking
lightweight deployment.
## Glm4Config

View File

@ -23,6 +23,29 @@ rendered properly in your Markdown viewer.
# GLM-4.1V
## Overview
**GLM-4.1V-9B-Thinking** is a bilingual vision-language model optimized for reasoning, built on GLM-4-9B. It introduces
a "thinking paradigm" with reinforcement learning, achieving state-of-the-art results among 10B-class models and
rivaling 72B-scale models. It supports 64k context, 4K resolution, and arbitrary aspect ratios, with an open-source base
model for further research. You can check our paper [here](https://huggingface.co/papers/2507.01006). and below is a abstract.
*We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding
and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework.
We first develop a capable vision foundation model with significant potential through large-scale pre-training, which
arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum
Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a
diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding,
GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art
performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model
outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks
relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or
superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document
understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information
are released at https://github.com/THUDM/GLM-4.1V-Thinking.*
## Usage
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">

View File

@ -57,7 +57,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))

View File

@ -14,62 +14,135 @@ rendered properly in your Markdown viewer.
-->
# LED
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# LED
The LED model was proposed in [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz
Beltagy, Matthew E. Peters, Arman Cohan.
[Longformer-Encoder-Decoder (LED)](https://huggingface.co/papers/2004.05150) is an encoder-decoder transformer model for sequence-to-sequence tasks like summarization. It extends [Longformer](.longformer), an encoder-only model designed to handle long inputs, by adding a decoder layer. The decoder uses full self-attention on the encoded tokens and previously decoded locations. Because of Longformer's linear self-attention mechanism, LED is more efficient than standard encoder-decoder models when processing long sequences.
The abstract from the paper is the following:
You can find all the original [LED] checkpoints under the [Ai2](https://huggingface.co/allenai/models?search=led) organization.
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting
long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization
dataset.*
> [!TIP]
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
>
> Click on the LED models in the right sidebar for more examples of how to apply LED to different language tasks.
## Usage tips
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
- [`LEDForConditionalGeneration`] is an extension of
[`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with
*Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of
[`BartTokenizer`].
- LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of
1024 tokens.
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is
gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
- LED makes use of *global attention* by means of the `global_attention_mask` (see
[`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first
`<s>` token. For question answering, it is advised to put *global attention* on all tokens of the question.
- To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM)
errors. This can be done by executing `model.gradient_checkpointing_enable()`.
Moreover, the `use_cache=False`
flag can be used to disable the caching mechanism to save memory.
- LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="summarization",
model="allenai/led-base-16384",
torch_dtype=torch.float16,
device=0
)
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained(
"allenai/led-base-16384"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"allenai/led-base-16384",
torch_dtype=torch.float16,
device_map="auto"
)
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# Place global attention on the first token
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
global_attention_mask[:, 0] = 1
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
!echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers-cli run --task summarization --model allenai/led-base-16384 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"allenai/led-large-16384",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"allenai/led-large-16384"
)
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# Place global attention on the first token
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
global_attention_mask[:, 0] = 1
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional self-attention layer with Longformer's chunked self-attention layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`].
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. A small speedup is gained when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
- LED works best on long-range sequence-to-sequence tasks where the `input_ids` are significantly longer than 1024 tokens.
- LED uses global attention by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put global attention only on the first `<s>` token. For question answering, it is advised to put global attention on all tokens of the question.
- To fine-tune LED on all 16384 parameters, gradient checkpointing can be enabled in case training leads to out-of-memory (OOM) errors. Enable gradient checkpointing by adding `model.gradient_checkpointing_enable()` and setting `use_cache=False` to disable the caching mechanism to save memory.
- Inputs should be padded on the right because LED uses absolute position embeddings.
## Resources
- [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing).
- [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing).
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
- Read the [LED on Arxiv notebook](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing) to see how LED can achieve state-of-the-art performance on Arxiv article summarization.
- Read the [Fine-tune LED notebook](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing) to learn how to fine-tune LED on PubMed articles.
## LEDConfig

View File

@ -0,0 +1,84 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# LFM2
## Overview
[LFM2](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models) represents a new generation of Liquid Foundation Models developed by [Liquid AI](https://liquid.ai/), specifically designed for edge AI and on-device deployment.
The models are available in three sizes (350M, 700M, and 1.2B parameters) and are engineered to run efficiently on CPU, GPU, and NPU hardware, making them particularly well-suited for applications requiring low latency, offline operation, and privacy.
## Architecture
The architecture consists of 16 blocks total: 10 double-gated short-range convolution blocks and 6 blocks of grouped query attention. This design stems from the concept of dynamical systems, where linear operations are modulated by input-dependent gates, allowing for "liquid" dynamics that can adapt in real-time. The short convolutions are particularly optimized for embedded SoC CPUs, making them ideal for devices that require fast, local inference without relying on cloud connectivity.
The key architectural innovation of LFM2 lies in its systematic approach to balancing quality, latency, and memory efficiency through our STAR neural architecture search engine. Using STAR, Liquid AI optimized the models for real-world performance on embedded hardware, measuring actual peak memory usage and inference speed on Qualcomm Snapdragon processors. This results in models that achieve 2x faster decode and prefill performance compared to similar-sized models, while maintaining superior benchmark performance across knowledge, mathematics, instruction following, and multilingual tasks.
## Example
The following example shows how to generate an answer using the `AutoModelForCausalLM` class.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model_id = "LiquidAI/LFM2-1.2B"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Generate answer
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
)
output = model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=512,
)
print(tokenizer.decode(output[0], skip_special_tokens=False))
```
## Lfm2Config
[[autodoc]] Lfm2Config
## Lfm2Model
[[autodoc]] Lfm2Model
- forward
## Lfm2ForCausalLM
[[autodoc]] Lfm2ForCausalLM
- forward

View File

@ -14,287 +14,178 @@ rendered properly in your Markdown viewer.
-->
# LLaVA-NeXT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# LLaVA-NeXT
The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa](llava) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
[LLaVANeXT](https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/) improves on [Llava](./llava) by increasing the input image resolution by 4x more pixels and supporting 3 aspect ratios (up to 672x672, 336x1344, 1344x336) to better grasp visual details. It is also trained on an improved visual instruction tuning dataset covering more scenarios and applications to improve OCR and common sense reasoning.
The introduction from the blog is the following:
You can find all the original LLaVANeXT checkpoints under the [LLaVA-NeXT](https://huggingface.co/collections/llava-hf/llava-next-65f75c4afac77fd37dbbe6cf) collection.
*In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications.
> [!TIP]
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
>
> Click on the LLaVANeXT models in the right sidebar for more examples of how to apply Llava-NeXT to different multimodal tasks.
Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
<hfoptions id="usage">
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning.
Efficient deployment and inference with SGLang.
Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_overview.png"
alt="drawing" width="600"/>
<small> LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the <a href="https://huggingface.co/papers/2310.03744">original paper.</a> </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
<Tip warning={true}>
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
</Tip>
> [!NOTE]
> LLaVA models after release v4.46 will raise warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you.
Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many `<image>` placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings.
The attributes can be obtained from model config, as `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`. The `num_additional_image_tokens` should be `1` if the vision backbone adds a CLS token or `0` if nothing extra is added to the vision patches.
### Formatting Prompts with Chat Templates
Each **checkpoint** is trained with a specific prompt format, depending on the underlying large language model backbone. To ensure correct formatting, use the processors `apply_chat_template` method.
**Important:**
- You must construct a conversation history — passing a plain string won't work.
- Each message should be a dictionary with `"role"` and `"content"` keys.
- The `"content"` should be a list of dictionaries for different modalities like `"text"` and `"image"`.
Heres an example of how to structure your input. We will use [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and a conversation history of text and image.
<hfoption id="Pipeline">
```python
from transformers import LlavaNextProcessor
import torch
from transformers import pipeline
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Whats shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]"
pipeline = pipeline(
task="image-text-to-text",
model="llava-hf/llava-v1.6-mistral-7b-hf",
device=0,
torch_dtype=torch.bfloat16
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
},
{ "type": "text", "text": "Describe this image."},
]
}
]
pipeline(text=messages, max_new_tokens=20, return_full_text=False)
```
- If you want to construct a chat prompt yourself, below is a list of possible formats
.
[llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format:
```bash
"[INST] <image>\nWhat is shown in this image? [/INST]"
</hfoption>
<hfoption id="AutoModel">
```python
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, LlavaNextForConditionalGeneration
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16).to("cuda")
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
[llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format:
```bash
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor, BitsAndBytesConfig
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4"
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quant_config, device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What does this chart show?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda")
with torch.inference_mode():
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
[llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format:
```bash
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
## Notes
* Different checkpoints (Mistral, Vicuna, etc.) require a specific prompt format depending on the underlying LLM. Always use [`~ProcessorMixin.apply_chat_template`] to ensure correct formatting. Refer to the [Templates](../chat_templating) guide for more details.
* Set `padding_side="left"` during batched generation for more accurate results.
```py
processor.tokenizer.padding_side = "left"
```
[llama3-llava-next-8b-hf](https://huggingface.co/llava-hf/llava-next-8b-hf) requires the following format:
* LLaVA-NeXT uses different numbers of patches for images and pads the inputs inside the modeling code except when padding is done during processing. The default setting is *left-padding* if the model is in `eval()` mode, otherwise it is *right-padding*.
```bash
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
```
* LLaVA models after v4.46 raises warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}`, and `processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add these attributes to the processor if you own the model checkpoint or open a PR if it isn't.
[llava-next-72b-hf](https://huggingface.co/llava-hf/llava-next-72b-hf) and [llava-next-110b-hf](https://huggingface.co/llava-hf/llava-next-110b-hf) require the following format:
Adding these attributes means LLaVA will try to infer the number of image tokens required per image and expand the text with the same number of `<image>` token placeholders. There are usually ~500 tokens per image, so make sure the text is not truncated because it will cause a failure when merging the embeddings. The attributes can be found in `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`.
```bash
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
```
The `num_additional_image_tokens` should be `1` if the vision backbone adds a `CLS` token or `0` if nothing extra is added.
🚀 **Bonus:** If you're using `transformers>=4.49.0`, you can also get a vectorized output from `apply_chat_template`. See the **Usage Examples** below for more details on how to use it.
## Usage example
### Single image inference
Here's how to load the model and perform inference in half-precision (`torch.float16`):
* The example below demonstrates inference with multiple input images.
```python
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
import requests, torch
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16
).to("cuda")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16)
model.to("cuda:0")
# Load multiple images
url1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_ocr.png"
url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_comparison.png"
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image1 = Image.open(requests.get(url1, stream=True).raw)
image2 = Image.open(requests.get(url2, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{"role": "user", "content": [{"type": "image"}, {"type": "image"}, {"type": "text", "text": "Compare these two images and describe the differences."}]}
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(image, prompt, return_tensors="pt").to("cuda:0")
inputs = processor([image1, image2], prompt, return_tensors="pt").to("cuda")
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
### Multi image inference
LLaVa-Next can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
# Load the model in half-precision
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a red stop sign in the image."},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this image? How many cats do you see?"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
prompts = [prompt_1, prompt_2]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes`, and to have access to a GPU/accelerator that is supported by the library.
<Tip>
bitsandbytes is being refactored to support multiple backends beyond CUDA. Currently, ROCm (AMD GPU) and Intel CPU implementations are mature, with Intel XPU in progress and Apple Silicon support expected by Q4/Q1. For installation instructions and the latest backend updates, visit [this link](https://huggingface.co/docs/bitsandbytes/main/en/installation#multi-backend).
We value your feedback to help identify bugs before the full release! Check out [these docs](https://huggingface.co/docs/bitsandbytes/main/en/non_cuda_backends) for more details and feedback links.
</Tip>
Simply change the snippet above with:
```python
from transformers import AutoModelForImageTextToText, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForImageTextToText.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
```
### Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import AutoModelForImageTextToText
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.float16,
use_flash_attention_2=True
).to(0)
```
## LlavaNextConfig

View File

@ -28,6 +28,7 @@ You can find all the original Mamba checkpoints under the [State Space Models](h
> [!TIP]
> This model was contributed by [Molbap](https://huggingface.co/Molbap) and [AntonV](https://huggingface.co/AntonV).
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.

View File

@ -26,6 +26,7 @@ rendered properly in your Markdown viewer.
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
> [!TIP]
> This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.

View File

@ -14,159 +14,138 @@ rendered properly in your Markdown viewer.
-->
# MarianMT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
A framework for translation models, using the same models as BART. Translations should be similar, but not identical to output in the test set linked to in each model card.
This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
# MarianMT
## Implementation Notes
- Each model is about 298 MB on disk, there are more than 1,000 models.
- The list of supported language pairs can be found [here](https://huggingface.co/Helsinki-NLP).
- Models were originally trained by [Jörg Tiedemann](https://researchportal.helsinki.fi/en/persons/j%C3%B6rg-tiedemann) using the [Marian](https://marian-nmt.github.io/) C++ library, which supports fast training and translation.
- All models are transformer encoder-decoders with 6 layers in each component. Each model's performance is documented
in a model card.
- The 80 opus models that require BPE preprocessing are not supported.
- The modeling code is the same as [`BartForConditionalGeneration`] with a few minor modifications:
[MarianMT](https://huggingface.co/papers/1804.00344) is a machine translation model trained with the Marian framework which is written in pure C++. The framework includes its own custom auto-differentiation engine and efficient meta-algorithms to train encoder-decoder models like BART.
- static (sinusoid) positional embeddings (`MarianConfig.static_position_embeddings=True`)
- no layernorm_embedding (`MarianConfig.normalize_embedding=False`)
- the model starts generating with `pad_token_id` (which has 0 as a token_embedding) as the prefix (Bart uses
`<s/>`),
- Code to bulk convert models can be found in `convert_marian_to_pytorch.py`.
All MarianMT models are transformer encoder-decoders with 6 layers in each component, use static sinusoidal positional embeddings, don't have a layernorm embedding, and the model starts generating with the prefix `pad_token_id` instead of `<s/>`.
## Naming
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`
- The language codes used to name models are inconsistent. Two digit codes can usually be found [here](https://developers.google.com/admin-sdk/directory/v1/languages), three digit codes require googling "language
code {code}".
- Codes formatted like `es_AR` are usually `code_{region}`. That one is Spanish from Argentina.
- The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second
group use a combination of ISO-639-5 codes and ISO-639-2 codes.
You can find all the original MarianMT checkpoints under the [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP/models?search=opus-mt) organization.
## Examples
> [!TIP]
> This model was contributed by [sshleifer](https://huggingface.co/sshleifer).
>
> Click on the MarianMT models in the right sidebar for more examples of how to apply MarianMT to translation tasks.
- Since Marian models are smaller than many other translation models available in the library, they can be useful for
fine-tuning experiments and integration tests.
- [Fine-tune on GPU](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/train_distil_marian_enro.sh)
## Multilingual Models
The example below demonstrates how to translate text using [`Pipeline`] or the [`AutoModel`] class.
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`:
- If a model can output multiple languages, and you should specify a language code by prepending the desired output
language to the `src_text`.
- You can see a models's supported language codes in its model card, under target constituents, like in [opus-mt-en-roa](https://huggingface.co/Helsinki-NLP/opus-mt-en-roa).
- Note that if a model is only multilingual on the source side, like `Helsinki-NLP/opus-mt-roa-en`, no language
codes are required.
New multi-lingual models from the [Tatoeba-Challenge repo](https://github.com/Helsinki-NLP/Tatoeba-Challenge)
require 3 character language codes:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fra<< this is a sentence in english that we want to translate to french",
... ">>por<< This should go to portuguese",
... ">>esp<< And this to Spanish",
... ]
import torch
from transformers import pipeline
>>> model_name = "Helsinki-NLP/opus-mt-en-roa"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> print(tokenizer.supported_language_codes)
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
pipeline = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, device=0)
pipeline("Hello, how are you?")
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
```
Here is the code to see all available pretrained models on the hub:
</hfoption>
<hfoption id="AutoModel">
```python
from huggingface_hub import list_models
model_list = list_models()
org = "Helsinki-NLP"
model_ids = [x.id for x in model_list if x.id.startswith(org)]
suffix = [x.split("/")[1] for x in model_ids]
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-de", torch_dtype=torch.float16, attn_implementation="sdpa", device_map="auto")
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Old Style Multi-Lingual Models
</hfoption>
</hfoptions>
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language
group:
```python no-style
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
'Helsinki-NLP/opus-mt-ROMANCE-en',
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
'Helsinki-NLP/opus-mt-de-ZH',
'Helsinki-NLP/opus-mt-en-CELTIC',
'Helsinki-NLP/opus-mt-en-ROMANCE',
'Helsinki-NLP/opus-mt-es-NORWAY',
'Helsinki-NLP/opus-mt-fi-NORWAY',
'Helsinki-NLP/opus-mt-fi-ZH',
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
'Helsinki-NLP/opus-mt-sv-NORWAY',
'Helsinki-NLP/opus-mt-sv-ZH']
GROUP_MEMBERS = {
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
}
```
Example of translating english to many romance languages, using old-style 2 character language codes
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```python
>>> from transformers import MarianMTModel, MarianTokenizer
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
>>> src_text = [
... ">>fr<< this is a sentence in english that we want to translate to french",
... ">>pt<< This should go to portuguese",
... ">>es<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
visualizer = AttentionMaskVisualizer("Helsinki-NLP/opus-mt-en-de")
visualizer("Hello, how are you?")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/marianmt-attn-mask.png"/>
</div>
## Resources
## Notes
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
- [Causal language modeling task guide](../tasks/language_modeling)
- MarianMT models are ~298MB on disk and there are more than 1000 models. Check this [list](https://huggingface.co/Helsinki-NLP) for supported language pairs. The language codes may be inconsistent. Two digit codes can be found [here](https://developers.google.com/admin-sdk/directory/v1/languages) while three digit codes may require further searching.
- Models that require BPE preprocessing are not supported.
- All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`. Language codes formatted like `es_AR` usually refer to the `code_{region}`. For example, `es_AR` refers to Spanish from Argentina.
- If a model can output multiple languages, prepend the desired output language to `src_txt` as shown below. New multilingual models from the [Tatoeba-Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge) require 3 character language codes.
```python
from transformers import MarianMTModel, MarianTokenizer
# Model trained on multiple source languages → multiple target languages
# Example: multilingual to Arabic (arb)
model_name = "Helsinki-NLP/opus-mt-mul-mul" # Tatoeba Challenge model
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Prepend the desired output language code (3-letter ISO 639-3)
src_texts = ["arb>> Hello, how are you today?"]
# Tokenize and translate
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
# Decode and print result
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
print(translated_texts[0])
```
- Older multilingual models use 2 character language codes.
```python
from transformers import MarianMTModel, MarianTokenizer
# Example: older multilingual model (like en → many)
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" # English → French, Spanish, Italian, etc.
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Prepend the 2-letter ISO 639-1 target language code (older format)
src_texts = [">>fr<< Hello, how are you today?"]
# Tokenize and translate
inputs = tokenizer(src_texts, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs)
# Decode and print result
translated_texts = tokenizer.batch_decode(translated, skip_special_tokens=True)
print(translated_texts[0])
```
## MarianConfig

View File

@ -139,6 +139,10 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
[[autodoc]] MistralConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## MistralModel
[[autodoc]] MistralModel

View File

@ -227,6 +227,10 @@ This example also how to use `BitsAndBytes` to load the model in 4bit quantizati
[[autodoc]] Mistral3Config
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## Mistral3Model
[[autodoc]] Mistral3Model

View File

@ -197,6 +197,10 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] MixtralConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## MixtralModel
[[autodoc]] MixtralModel

View File

@ -114,6 +114,7 @@ print(f"The predicted class label is: {predicted_class_label}")
[[autodoc]] MobileNetV2ImageProcessor
- preprocess
- post_process_semantic_segmentation
## MobileNetV2ImageProcessorFast

View File

@ -0,0 +1,155 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ModernBERT Decoder
ModernBERT Decoder is the same architecture as [ModernBERT](https://huggingface.co/papers/2412.13663) but trained from scratch with a causal language modeling (CLM) objective. This allows for using the same architecture for comparing encoders and decoders. This is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.
Like the encoder version, ModernBERT Decoder incorporates modern architectural improvements such as rotary positional embeddings to support sequences of up to 8192 tokens, unpadding to avoid wasting compute on padding tokens, GeGLU layers, and alternating attention patterns. However, it uses causal (unidirectional) attention to enable autoregressive generation.
> [!TIP]
> Click on the ModernBERT Decoder models in the right sidebar for more examples of how to apply ModernBERT Decoder to different text generation tasks.
The example below demonstrates how to use ModernBERT Decoder for text generation with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
generator = pipeline(
task="text-generation",
model="blab-jhu/test-32m-dec",
torch_dtype=torch.float16,
device=0
)
generator("The future of artificial intelligence is", max_length=50, num_return_sequences=1)
# For sequence classification
classifier = pipeline(
task="text-classification",
model="blab-jhu/test-32m-dec",
torch_dtype=torch.float16,
device=0
)
classifier("This movie is really great!")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("blab-jhu/test-32m-dec")
model = AutoModelForCausalLM.from_pretrained(
"blab-jhu/test-32m-dec",
torch_dtype=torch.float16,
device_map="auto",
)
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=50,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
# For sequence classification
from transformers import AutoModelForSequenceClassification
classifier_model = AutoModelForSequenceClassification.from_pretrained(
"blab-jhu/test-32m-dec",
torch_dtype=torch.float16,
device_map="auto",
num_labels=2
)
text = "This movie is really great!"
inputs = tokenizer(text, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = classifier_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1)
print(f"Predicted class: {predicted_class.item()}")
print(f"Prediction probabilities: {predictions}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo "The future of artificial intelligence is" | transformers run --task text-generation --model your-username/modernbert-decoder-base --device 0
```
</hfoption>
</hfoptions>
## ModernBertDecoderConfig
[[autodoc]] ModernBertDecoderConfig
<frameworkcontent>
<pt>
## ModernBertDecoderModel
[[autodoc]] ModernBertDecoderModel
- forward
## ModernBertDecoderForCausalLM
[[autodoc]] ModernBertDecoderForCausalLM
- forward
## ModernBertDecoderForSequenceClassification
[[autodoc]] ModernBertDecoderForSequenceClassification
- forward
### Usage tips
The ModernBertDecoder model can be fine-tuned for various text generation tasks using the HuggingFace Transformers library. It supports efficient inference with features like:
- **Causal attention**: Ensures autoregressive generation by masking future tokens
- **Sliding window attention**: Alternates between local and global attention patterns for efficiency
- **Rotary positional embeddings**: Enables handling of longer sequences up to 8000 tokens
- **FlashAttention support**: Optimized attention computation for faster training and inference
</pt>
</frameworkcontent>

View File

@ -0,0 +1,68 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PerceptionLM
## Overview
The PerceptionLM model was proposed in [PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding](https://ai.meta.com/research/publications/perceptionlm-open-access-data-and-models-for-detailed-visual-understanding/) by Jang Hyun Cho et al. It's a fully open, reproducible model for transparent research in image and video understanding. PLM consists of
a vision encoder with a small scale (<8B parameters) LLM decoder.
The abstract from the paper is the following:
*Vision-language models are integral to computer vision research, yet many high-performing models
remain closed-source, obscuring their data, design and training recipe. The research community
has responded by using distillation from black-box models to label training data, achieving strong
benchmark results, at the cost of measurable scientific progress. However, without knowing the details
of the teacher model and its data sources, scientific progress remains difficult to measure. In this
paper, we study building a Perception Language Model (PLM) in a fully open and reproducible
framework for transparent research in image and video understanding. We analyze standard training
pipelines without distillation from proprietary models and explore large-scale synthetic data to identify
critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M
human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded
video captions. Additionally, we introduce PLMVideoBench, a suite for evaluating challenging video
understanding tasks focusing on the ability to reason about what”, where”, when”, and how of a
video. We make our work fully reproducible by providing data, training recipes, code & models.*
This model was contributed by [shumingh](https://huggingface.co/shumingh).
The original code can be found [here](https://github.com/facebookresearch/perception_models).
## PerceptionLMConfig
[[autodoc]] PerceptionLMConfig
## PerceptionLMProcessor
[[autodoc]] PerceptionLMProcessor
## PerceptionLMImageProcessorFast
[[autodoc]] PerceptionLMImageProcessorFast
## PerceptionLMVideoProcessor
[[autodoc]] PerceptionLMVideoProcessor
## PerceptionLMModel
[[autodoc]] PerceptionLMModel
## PerceptionLMForConditionalGeneration
[[autodoc]] PerceptionLMForConditionalGeneration
- forward

View File

@ -9,44 +9,53 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
# Phi4 Multimodal
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-EE4C2C?logo=pytorch&logoColor=white&style=flat">
</div>
</div>
## Overview
## Phi4 Multimodal
Phi4 Multimodal is a lightweight open multimodal foundation model that leverages the language, vision, and speech research and datasets used for Phi-3.5 and 4.0 models. The model processes text, image, and audio inputs, generating text outputs, and comes with 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning, direct preference optimization and RLHF (Reinforcement Learning from Human Feedback) to support precise instruction adherence and safety measures. The languages that each modal supports are the following:
[Phi4 Multimodal](https://huggingface.co/papers/2503.01743) is a multimodal model capable of text, image, and speech and audio inputs or any combination of these. It features a mixture of LoRA adapters for handling different inputs, and each input is routed to the appropriate encoder.
- Text: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian
- Vision: English
- Audio: English, Chinese, German, French, Italian, Japanese, Spanish, Portuguese
You can find all the original Phi4 Multimodal checkpoints under the [Phi4](https://huggingface.co/collections/microsoft/phi-4-677e9380e514feb5577a40e4) collection.
This model was contributed by [Cyril Vallez](https://huggingface.co/cyrilvallez). The most recent code can be
found [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/phi4_multimodal/modeling_phi4_multimodal.py).
> [!TIP]
> This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez).
>
> Click on the Phi-4 Multimodal in the right sidebar for more examples of how to apply Phi-4 Multimodal to different tasks.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
`Phi4-multimodal-instruct` can be found on the [Huggingface Hub](https://huggingface.co/microsoft/Phi-4-multimodal-instruct)
```python
from transformers import pipeline
generator = pipeline("text-generation", model="microsoft/Phi-4-multimodal-instruct", torch_dtype="auto", device=0)
In the following, we demonstrate how to use it for inference depending on the input modalities (text, image, audio).
prompt = "Explain the concept of multimodal AI in simple terms."
result = generator(prompt, max_length=50)
print(result[0]['generated_text'])
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
# Define model path
model_path = "microsoft/Phi-4-multimodal-instruct"
device = "cuda:0"
# Load model and processor
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
# Optional: load the adapters (note that without them, the base model will very likely not work well)
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
model.load_adapter(model_path, adapter_name="vision", device_map=device, adapter_kwargs={"subfolder": 'vision-lora'})
# Part : Image Processing
messages = [
{
"role": "user",
@ -57,7 +66,7 @@ messages = [
},
]
model.set_adapter("vision") # if loaded, activate the vision adapter
model.set_adapter("vision")
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
@ -66,7 +75,6 @@ inputs = processor.apply_chat_template(
return_tensors="pt",
).to(device)
# Generate response
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
@ -77,10 +85,27 @@ response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
```
</hfoption>
</hfoptions>
# Part 2: Audio Processing
model.set_adapter("speech") # if loaded, activate the speech adapter
## Notes
The example below demonstrates inference with an audio and text input.
```py
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
model_path = "microsoft/Phi-4-multimodal-instruct"
device = "cuda:0"
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
model.set_adapter("speech")
audio_url = "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac"
messages = [
{
@ -110,6 +135,7 @@ response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
```
## Phi4MultimodalFeatureExtractor

View File

@ -86,6 +86,10 @@ output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up
[[autodoc]] PixtralVisionConfig
## MistralCommonTokenizer
[[autodoc]] MistralCommonTokenizer
## PixtralVisionModel
[[autodoc]] PixtralVisionModel

View File

@ -61,19 +61,16 @@ predicted token ids.
- Step-by-step Speech Translation
```python
>>> import torch
>>> from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> def map_to_array(example):
... example["speech"] = example["audio"]["array"]
... return example
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

View File

@ -14,35 +14,90 @@ rendered properly in your Markdown viewer.
-->
# SwitchTransformers
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Switch Transformers
The SwitchTransformers model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://huggingface.co/papers/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
[Switch Transformers](https://huggingface.co/papers/2101.03961) is a sparse T5 model where the MLP layer is replaced by a Mixture-of-Experts (MoE). A routing mechanism associates each token with an expert and each expert is a dense MLP. Sparsity enables better scaling and the routing mechanism allows the model to select relevant weights on the fly which increases model capacity.
The Switch Transformer model uses a sparse T5 encoder-decoder architecture, where the MLP are replaced by a Mixture of Experts (MoE). A routing mechanism (top 1 in this case) associates each token to one of the expert, where each expert is a dense MLP. While switch transformers have a lot more weights than their equivalent dense models, the sparsity allows better scaling and better finetuning performance at scale.
During a forward pass, only a fraction of the weights are used. The routing mechanism allows the model to select relevant weights on the fly which increases the model capacity without increasing the number of operations.
You can find all the original Switch Transformers checkpoints under the [Switch Transformer](https://huggingface.co/collections/google/switch-transformers-release-6548c35c6507968374b56d1f) collection.
The abstract from the paper is the following:
*In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model.*
> [!TIP]
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
>
> Click on the Switch Transformers models in the right sidebar for more examples of how to apply Switch Transformers to different natural language tasks.
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ).
The original code can be found [here](https://github.com/google/flaxformer/tree/main/flaxformer/architectures/moe).
The example below demonstrates how to predict the masked token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- SwitchTransformers uses the [`T5Tokenizer`], which can be loaded directly from each model's repository.
- The released weights are pretrained on English [Masked Language Modeling](https://moon-ci-docs.huggingface.co/docs/transformers/pr_19323/en/glossary#general-terms) task, and should be finetuned.
```python
import torch
from transformers import pipeline
## Resources
pipeline = pipeline(
task="text2text-generation",
model="google/switch-base-8",
torch_dtype=torch.float16,
device=0
)
print(pipeline("The capital of France is <extra_id_0>."))
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", torch_dtype=torch.float16)
input_text = "The capital of France is <extra_id_0>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "The capital of France is <extra_id_0>." | transformers run --task text2text-generation --model google/switch-base-8 --device 0
# [{'generated_text': 'Paris.'}]
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes/) to only quantize the weights to 8-bits.
```py
# pip install bitsandbytes
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForSeq2SeqLM.from_pretrained("google/switch-base-8", device_map="auto", quantization_config=quantization_config)
input_text = "The capital of France is <extra_id_0>."
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0)
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## SwitchTransformersConfig

View File

@ -14,16 +14,25 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# T5Gemma
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large langauge models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
T5Gemma (aka encoder-decoder Gemma) was proposed in a [research paper](https://arxiv.org/abs/2504.06225) by Google. It is a family of encoder-decoder large language models, developed by adapting pretrained decoder-only models into encoder-decoder. T5Gemma includes pretrained and instruction-tuned variants. The architecture is based on transformer encoder-decoder design following T5, with improvements from Gemma 2: GQA, RoPE, GeGLU activation, RMSNorm, and interleaved local/global attention.
T5Gemma has two groups of model sizes: 1) [Gemma 2](https://ai.google.dev/gemma/docs/core/model_card_2) sizes (2B-2B, 9B-2B, and 9B-9B), which are based on the offical Gemma 2 models (2B and 9B); and 2) [T5](https://arxiv.org/abs/1910.10683) sizes (Small, Base, Large, and XL), where are pretrained under the Gemma 2 framework following T5 configuration. In addition, we also provide a model at ML size (medium large, ~2B in total), which is in-between T5 Large and T5 XL.
The pretrained varaints are trained with two objectives: prefix language modeling with knowledge distillation (PrefixLM) and UL2, separately. We release both variants for each model size. The instruction-turned varaints was post-trained with supervised fine-tuning and reinforcement learning.
> [!TIP]
> Click on the T5Gemma models in the right sidebar for more examples of how to apply T5Gemma to different language tasks.
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
@ -35,43 +44,52 @@ import torch
from transformers import pipeline
pipe = pipeline(
task="text2text-generation",
model="google/t5gemma-placeholder",
"text2text-generation",
model="google/t5gemma-2b-2b-prefixlm-it",
torch_dtype=torch.bfloat16,
device="cuda",
device="cuda", # replace with "mps" to run on a Mac device
)
pipe("Question: Why is the sky blue?\nAnswer:", max_new_tokens=50)
messages = [
{"role": "user", "content": "Tell me an unknown interesting biology fact about the brain."},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipe(prompt, max_new_tokens=32)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-placeholder")
tokenizer = AutoTokenizer.from_pretrained("google/t5gemma-2b-2b-prefixlm-it")
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/t5gemma-placeholder",
"google/t5gemma-2b-2b-prefixlm-it",
device_map="auto",
torch_dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Question: Why is the sky blue?\nAnswer:"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
messages = [
{"role": "user", "content": "Tell me an unknown interesting biology fact about the brain."},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True, add_generation_prompt=True).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
print(tokenizer.decode(outputs[0]))
```
</hfoption>
<hfoption id="transformers CLI">
```
echo -e "Question: Why is the sky blue? Answer:" | transformers run --task text2text-generation --model google/t5gemma-placeholder --device 0
echo -e "Write me a poem about Machine Learning. Answer:" | transformers run --task text2text-generation --model google/t5gemma-2b-2b-prefixlm --device 0
```
</hfoption>
</hfoptions>
## T5GemmaConfig

View File

@ -10,52 +10,39 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# ViTPose
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ViTPose
The ViTPose model was proposed in [ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation](https://huggingface.co/papers/2204.12484) by Yufei Xu, Jing Zhang, Qiming Zhang, Dacheng Tao. ViTPose employs a standard, non-hierarchical [Vision Transformer](vit) as backbone for the task of keypoint estimation. A simple decoder head is added on top to predict the heatmaps from a given image. Despite its simplicity, the model gets state-of-the-art results on the challenging MS COCO Keypoint Detection benchmark. The model was further improved in [ViTPose++: Vision Transformer for Generic Body Pose Estimation](https://huggingface.co/papers/2212.04246) where the authors employ
a mixture-of-experts (MoE) module in the ViT backbone along with pre-training on more data, which further enhances the performance.
[ViTPose](https://huggingface.co/papers/2204.12484) is a vision transformer-based model for keypoint (pose) estimation. It uses a simple, non-hierarchical [ViT](./vit) backbone and a lightweight decoder head. This architecture simplifies model design, takes advantage of transformer scalability, and can be adapted to different training strategies.
The abstract from the paper is the following:
*Although no specific domain knowledge is considered in the design, plain vision transformers have shown excellent performance in visual recognition tasks. However, little effort has been made to reveal the potential of such simple structures for pose estimation tasks. In this paper, we show the surprisingly good capabilities of plain vision transformers for pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model called ViTPose. Specifically, ViTPose employs plain and non-hierarchical vision transformers as backbones to extract features for a given person instance and a lightweight decoder for pose estimation. It can be scaled up from 100M to 1B parameters by taking the advantages of the scalable model capacity and high parallelism of transformers, setting a new Pareto front between throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, pre-training and finetuning strategy, as well as dealing with multiple pose tasks. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our basic ViTPose model outperforms representative methods on the challenging MS COCO Keypoint Detection benchmark, while the largest model sets a new state-of-the-art.*
[ViTPose++](https://huggingface.co/papers/2212.04246) improves on ViTPose by incorporating a mixture-of-experts (MoE) module in the backbone and using more diverse pretraining data.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose-architecture.png"
alt="drawing" width="600"/>
<small> ViTPose architecture. Taken from the <a href="https://huggingface.co/papers/2204.12484">original paper.</a> </small>
You can find all ViTPose and ViTPose++ checkpoints under the [ViTPose collection](https://huggingface.co/collections/usyd-community/vitpose-677fcfd0a0b2b5c8f79c4335).
This model was contributed by [nielsr](https://huggingface.co/nielsr) and [sangbumchoi](https://github.com/SangbumChoi).
The original code can be found [here](https://github.com/ViTAE-Transformer/ViTPose).
## Usage Tips
ViTPose is a so-called top-down keypoint detection model. This means that one first uses an object detector, like [RT-DETR](rt_detr.md), to detect people (or other instances) in an image. Next, ViTPose takes the cropped images as input and predicts the keypoints for each of them.
The example below demonstrates pose estimation with the [`VitPoseForPoseEstimation`] class.
```py
import torch
import requests
import numpy as np
import supervision as sv
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
device = "cuda" if torch.cuda.is_available() else "cpu"
url = "http://images.cocodataset.org/val2017/000000000139.jpg"
url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)
# ------------------------------------------------------------------------
# Stage 1. Detect humans on the image
# ------------------------------------------------------------------------
# You can choose any detector of your choice
# Detect humans in the image
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
@ -67,7 +54,7 @@ with torch.no_grad():
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
result = results[0]
# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
@ -77,10 +64,7 @@ person_boxes = person_boxes.cpu().numpy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
# ------------------------------------------------------------------------
# Stage 2. Detect keypoints for each person found
# ------------------------------------------------------------------------
# Detect keypoints for each person found
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-base-simple")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=device)
@ -90,54 +74,7 @@ with torch.no_grad():
outputs = model(**inputs)
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0] # results for first image
```
### ViTPose++ models
The best [checkpoints](https://huggingface.co/collections/usyd-community/vitpose-677fcfd0a0b2b5c8f79c4335) are those of the [ViTPose++ paper](https://huggingface.co/papers/2212.04246). ViTPose++ models employ a so-called [Mixture-of-Experts (MoE)](https://huggingface.co/blog/moe) architecture for the ViT backbone, resulting in better performance.
The ViTPose+ checkpoints use 6 experts, hence 6 different dataset indices can be passed.
An overview of the various dataset indices is provided below:
- 0: [COCO validation 2017](https://cocodataset.org/#overview) dataset, using an object detector that gets 56 AP on the "person" class
- 1: [AiC](https://github.com/fabbrimatteo/AiC-Dataset) dataset
- 2: [MPII](https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset) dataset
- 3: [AP-10K](https://github.com/AlexTheBad/AP-10K) dataset
- 4: [APT-36K](https://github.com/pandorgan/APT-36K) dataset
- 5: [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) dataset
Pass the `dataset_index` argument in the forward of the model to indicate which experts to use for each example in the batch. Example usage is shown below:
```python
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)
with torch.no_grad():
outputs = model(**inputs, dataset_index=dataset_index)
```
The ViTPose+ checkpoints use 6 experts, hence 6 different dataset indices can be passed.
An overview of the various dataset indices is provided below:
- 0: [COCO validation 2017](https://cocodataset.org/#overview) dataset, using an object detector that gets 56 AP on the "person" class
- 1: [AiC](https://github.com/fabbrimatteo/AiC-Dataset) dataset
- 2: [MPII](https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/software-and-datasets/mpii-human-pose-dataset) dataset
- 3: [AP-10K](https://github.com/AlexTheBad/AP-10K) dataset
- 4: [APT-36K](https://github.com/pandorgan/APT-36K) dataset
- 5: [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) dataset
### Visualization
To visualize the various keypoints, one can either leverage the `supervision` [library](https://github.com/roboflow/supervision (requires `pip install supervision`):
```python
import supervision as sv
image_pose_result = pose_results[0]
xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()
@ -162,119 +99,192 @@ annotated_frame = vertex_annotator.annotate(
scene=annotated_frame,
key_points=key_points
)
annotated_frame
```
Alternatively, one can also visualize the keypoints using [OpenCV](https://opencv.org/) (requires `pip install opencv-python`):
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose.png"/>
</div>
```python
import math
import cv2
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
if pose_keypoint_color is not None:
assert len(pose_keypoint_color) == len(keypoints)
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
x_coord, y_coord = int(kpt[0]), int(kpt[1])
if kpt_score > keypoint_score_threshold:
color = tuple(int(c) for c in pose_keypoint_color[kid])
if show_keypoint_weight:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
height, width, _ = image.shape
if keypoint_edges is not None and link_colors is not None:
assert len(link_colors) == len(keypoint_edges)
for sk_id, sk in enumerate(keypoint_edges):
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
if (
x1 > 0
and x1 < width
and y1 > 0
and y1 < height
and x2 > 0
and x2 < width
and y2 > 0
and y2 < height
and score1 > keypoint_score_threshold
and score2 > keypoint_score_threshold
):
color = tuple(int(c) for c in link_colors[sk_id])
```py
# pip install torchao
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation, TorchAoConfig
url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-huge")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-huge", device_map=device, quantization_config=quantization_config)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]
```
## Notes
- Use [`AutoProcessor`] to automatically prepare bounding box and image inputs.
- ViTPose is a top-down pose estimator. It uses a object detector to detect individuals first before keypoint prediction.
- ViTPose++ has 6 different MoE expert heads (COCO validation `0`, AiC `1`, MPII `2`, AP-10K `3`, APT-36K `4`, COCO-WholeBody `5`) which supports 6 different datasets. Pass a specific value corresponding to the dataset to the `dataset_index` to indicate which expert to use.
```py
from transformers import AutoProcessor, VitPoseForPoseEstimation
device = "cuda" if torch.cuda.is_available() else "cpu"
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)
inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)
dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)
with torch.no_grad():
outputs = model(**inputs, dataset_index=dataset_index)
```
- [OpenCV](https://opencv.org/) is an alternative option for visualizing the estimated pose.
```py
# pip install opencv-python
import math
import cv2
def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
if pose_keypoint_color is not None:
assert len(pose_keypoint_color) == len(keypoints)
for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
x_coord, y_coord = int(kpt[0]), int(kpt[1])
if kpt_score > keypoint_score_threshold:
color = tuple(int(c) for c in pose_keypoint_color[kid])
if show_keypoint_weight:
X = (x1, x2)
Y = (y1, y2)
mean_x = np.mean(X)
mean_y = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
polygon = cv2.ellipse2Poly(
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(image, polygon, color)
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
transparency = max(0, min(1, kpt_score))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
height, width, _ = image.shape
if keypoint_edges is not None and link_colors is not None:
assert len(link_colors) == len(keypoint_edges)
for sk_id, sk in enumerate(keypoint_edges):
x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
if (
x1 > 0
and x1 < width
and y1 > 0
and y1 < height
and x2 > 0
and x2 < width
and y2 > 0
and y2 < height
and score1 > keypoint_score_threshold
and score2 > keypoint_score_threshold
):
color = tuple(int(c) for c in link_colors[sk_id])
if show_keypoint_weight:
X = (x1, x2)
Y = (y1, y2)
mean_x = np.mean(X)
mean_y = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
polygon = cv2.ellipse2Poly(
(int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(image, polygon, color)
transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
else:
cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)
# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges
# Note: keypoint_edges and color palette are dataset-specific
keypoint_edges = model.config.edges
palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
]
)
palette = np.array(
[
[255, 128, 0],
[255, 153, 51],
[255, 178, 102],
[230, 230, 0],
[255, 153, 255],
[153, 204, 255],
[255, 102, 255],
[255, 51, 255],
[102, 178, 255],
[51, 153, 255],
[255, 153, 153],
[255, 102, 102],
[255, 51, 51],
[153, 255, 153],
[102, 255, 102],
[51, 255, 51],
[0, 255, 0],
[0, 0, 255],
[255, 0, 0],
[255, 255, 255],
]
)
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]
link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]
numpy_image = np.array(image)
numpy_image = np.array(image)
for pose_result in image_pose_result:
scores = np.array(pose_result["scores"])
keypoints = np.array(pose_result["keypoints"])
for pose_result in image_pose_result:
scores = np.array(pose_result["scores"])
keypoints = np.array(pose_result["keypoints"])
# draw each point on image
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)
# draw each point on image
draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)
# draw links
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
# draw links
draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)
pose_image = Image.fromarray(numpy_image)
pose_image
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose-coco.jpg" alt="drawing" width="600"/>
pose_image = Image.fromarray(numpy_image)
pose_image
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViTPose. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Refer to resources below to learn more about using ViTPose.
- A demo of ViTPose on images and video can be found [here](https://huggingface.co/spaces/hysts/ViTPose-transformers).
- A notebook illustrating inference and visualization can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTPose/Inference_with_ViTPose_for_human_pose_estimation.ipynb).
- This [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTPose/Inference_with_ViTPose_for_body_pose_estimation.ipynb) demonstrates inference and visualization.
- This [Space](https://huggingface.co/spaces/hysts/ViTPose-transformers) demonstrates ViTPose on images and video.
## VitPoseImageProcessor

View File

@ -172,9 +172,9 @@ Otherwise, [`~Wav2Vec2ProcessorWithLM.batch_decode`] performance will be slower
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> def map_to_array(batch):
... batch["speech"] = batch["audio"]["array"]
... return batch
>>> def map_to_array(example):
... example["speech"] = example["audio"]["array"]
... return example
>>> # prepare speech data for batch inference

View File

@ -1,355 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TPU
TPU (Tensor Processing Unit) is a type of hardware designed to accelerate tensor computations for training and inference. TPUs are generally accessed through Google cloud services, but smaller TPUs are also available for free from [Google Colab](https://colab.research.google.com/notebooks/tpu.ipynb) or [Kaggle](https://www.kaggle.com/docs/tpu).
This guide focuses on training a Keras model for sequence classification on a TPU from Google Colab. Make sure the TPU runtime is enabled by going to **Runtime > Change runtime type** and selecting a TPU.
Run the command below to install the latest version of Transformers and [Datasets](https://huggingface.co/docs/datasets).
```py
!pip install --U transformers datasets
```
Create an instance of [tf.distribute.cluster_resolver.TPUClusterResolver](https://www.tensorflow.org/api_docs/python/tf/distribute/cluster_resolver/TPUClusterResolver), and then connect to the remote cluster and initialize the TPUs.
```py
import tensorflow as tf
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
```
There are various distribution strategies for running your model on multiple TPUs. The [tpu.distribute.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/TPUStrategy) offers synchronized distributed training.
```py
strategy = tf.distribute.TPUStrategy(resolver)
```
Load and tokenize a dataset - this example uses [CoLA](https://huggingface.co/datasets/nyu-mll/glue/viewer/cola) from the GLUE benchmark - and pad all samples to the maximum length so it is easier to load as an array and to avoid [XLA compilation issues](#xla).
```py
from transformers import AutoTokenizer
from datasets import load_dataset
import numpy as np
dataset = load_dataset("glue", "cola")["train"]
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
train_data = tokenizer(
dataset["sentence"],
padding="max_length",
truncation=True,
max_length=128,
return_tensors="np",
)
train_data = dict(train_data)
train_labels = np.array(dataset["label"])
```
The model **must** be created inside [Strategy.scope](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy#scope) in order to replicate the model layers on each TPU device.
```py
from transformers import TFAutoModelForSequenceClassification
with strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
model.compile(optimizer="adam")
```
TPUs only accept [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) inputs unlike the Keras [fit](https://keras.io/api/models/model_training_apis/#fit-method) method which accepts a broader range of inputs.
```py
BATCH_SIZE = 8 * strategy.num_replicas_in_sync
tf_dataset = tf.data.Dataset.from_tensor_slices((train_data, train_labels))
tf_dataset = tf_dataset.shuffle(len(tf_dataset))
tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True)
```
Finally, call [fit](https://keras.io/api/models/model_training_apis/#fit-method) to start training.
```py
model.fit(tf_dataset)
```
## Large datasets
The dataset created above pads every sample to the maximum length and loads the whole dataset into memory. This may not be possible if you're working with larger datasets. When training on large datasets, you may want to create a [tf.TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) or stream the data.
### tf.TFRecord
[tf.TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) is the standard [tf.data](https://www.tensorflow.org/guide/data) format for storing training data. For very large training jobs, it's worth preprocessing your data and storing it in the `tf.TFRecord` format and building a `tf.data` pipeline on top. Refer to the table below to help you decide whether `tf.TFRecord` is helpful for you.
| pros | cons |
|---|---|
| works on all TPU instances | costs associated with cloud storage |
| supports huge datasets and massive throughput | some data types (images) can take a lot of space to store |
| suitable for training on entire TPU pods | |
| preprocessing is done in advance, maximizing training speed | |
Preprocess and tokenize the dataset before writing it to a `tf.TFRecord` to avoid writing every time the data is loaded.
An exception is made for *train-time augmentations*, because augmentations applied after writing to a `tf.TFRecord` results in the same augmentation for each epoch. Instead, apply augmentations in the `tf.data` pipeline that loads the data.
> [!TIP]
> In practice, you probably won't be able to load the entire dataset in memory. Load a chunk of the dataset at a time and convert it to `TFRecord`, and repeat until the entire dataset is in the `TFRecord` format. Then you can use a list of all the files to create a `TFRecordDataset`. The example below demonstrates a single file for simplicity.
```py
tokenized_data = tokenizer(
dataset["sentence"],
padding="max_length",
truncation=True,
max_length=128,
return_tensors="np",
)
labels = dataset["label"]
with tf.io.TFRecordWriter("dataset.tfrecords") as file_writer:
for i in range(len(labels)):
features = {
"input_ids": tf.train.Feature(
int64_list=tf.train.Int64List(value=tokenized_data["input_ids"][i])
),
"attention_mask": tf.train.Feature(
int64_list=tf.train.Int64List(value=tokenized_data["attention_mask"][i])
),
"labels": tf.train.Feature(
int64_list=tf.train.Int64List(value=[labels[i]])
),
}
features = tf.train.Features(feature=features)
example = tf.train.Example(features=features)
record_bytes = example.SerializeToString()
file_writer.write(record_bytes)
```
Build a [TFRecordDataset](https://www.tensorflow.org/api_docs/python/tf/data/TFRecordDataset) using the saved filename to load it.
```py
def decode_fn(sample):
features = {
"input_ids": tf.io.FixedLenFeature((128,), dtype=tf.int64),
"attention_mask": tf.io.FixedLenFeature((128,), dtype=tf.int64),
"labels": tf.io.FixedLenFeature((1,), dtype=tf.int64),
}
return tf.io.parse_example(sample, features)
# TFRecordDataset can handle gs:// paths
tf_dataset = tf.data.TFRecordDataset(["gs://matt-tf-tpu-tutorial-datasets/cola/dataset.tfrecords"])
tf_dataset = tf_dataset.map(decode_fn)
tf_dataset = tf_dataset.shuffle(len(dataset)).batch(BATCH_SIZE, drop_remainder=True)
tf_dataset = tf_dataset.apply(
tf.data.experimental.assert_cardinality(len(labels) // BATCH_SIZE)
)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
model.fit(tf_dataset)
```
### Stream from raw data
Data can be stored in its native format and preprocessed in a [tf.data](https://www.tensorflow.org/guide/data) pipeline as the data is loaded. This approach isn't supported for many models with complex tokenization schemes, but some models like BERT are supported because their tokenization can be compiled. Refer to the table below to help you decide whether this approach is helpful for you.
| pros | cons |
|---|---|
| suitable for highly compressed big data in native format (images, audio) | requires writing a full preprocessing pipeline |
| convenient if raw data is available in a public cloud bucket | complex preprocessing on-the-fly can hurt throughput |
| works on all TPU instances if data is stored in Google Cloud | must place data in cloud storage if not already there |
| | not as suitable for text data because writing a tokenization pipeline is hard (use `TFRecord` for text) |
The example below demonstrates streaming data for an image model.
Load an image dataset and get a list of the underlying image file paths and labels.
```py
from datasets import load_dataset
image_dataset = load_dataset("beans", split="train")
filenames = image_dataset["image_file_path"]
labels = image_dataset["labels"]
```
Convert the local filenames in the dataset into `gs://` paths in Google Cloud Storage.
```py
# strip everything but the category directory and filenames
base_filenames = ['/'.join(filename.split('/')[-2:]) for filename in filenames]
# prepend the Google Cloud base path to everything instead
gs_paths = ["gs://matt-tf-tpu-tutorial-datasets/beans/"+filename for filename in base_filenames]
# create tf_dataset
tf_dataset = tf.data.Dataset.from_tensor_slices(
{"filename": gs_paths, "labels": labels}
)
tf_dataset = tf_dataset.shuffle(len(tf_dataset))
```
Transformers preprocessing classes like [`AutoImageProcessor`] are framework-agnostic and can't be compiled into a pipeline by `tf.data`. To get around this, get the normalization values (`mean` and `std`) from the [`AutoImageProcessor`] and use them in the `tf.data` pipeline.
```py
from transformers import AutoImageProcessor
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
image_size = (processor.size["height"], processor.size["width"])
image_mean = processor.image_mean
image_std = processor.image_std
```
Use these normalization values to create a function to load and preprocess the images.
```py
BATCH_SIZE = 8 * strategy.num_replicas_in_sync
def decode_fn(sample):
image_data = tf.io.read_file(sample["filename"])
image = tf.io.decode_jpeg(image_data, channels=3)
image = tf.image.resize(image, image_size)
array = tf.cast(image, tf.float32)
array /= 255.0
array = (array - image_mean) / image_std
array = tf.transpose(array, perm=[2, 0, 1])
return {"pixel_values": array, "labels": sample["labels"]}
tf_dataset = tf_dataset.map(decode_fn)
tf_dataset = tf_dataset.batch(BATCH_SIZE, drop_remainder=True)
print(tf_dataset.element_spec)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
from transformers import TFAutoModelForImageClassification
with strategy.scope():
model = TFAutoModelForImageClassification.from_pretrained(image_model_checkpoint)
model.compile(optimizer="adam")
model.fit(tf_dataset)
```
### Stream with prepare_tf_dataset
[`~TFPreTrainedModel.prepare_tf_dataset`] creates a `tf.data` pipeline that loads samples from [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). The pipeline uses [tf.numpy_function]() or [`~datasets.Dataset.from_generator`], which can't be compiled by TensorFlow, to access the underlying `tf.data.Dataset`. It also won't work on a Colab TPU or TPU Nodes because the pipeline streams data from a local disk. Refer to the table below to help you decide whether this approach is helpful for you.
| pros | cons |
|---|---|
| simple code | only works on TPU VM |
| same approach on TPU/GPU | data must be available as a Hugging Face Dataset |
| dataset doesn't have to fit in memory | data must fit on local storage |
| supports variable padding | data loading may be a bottleneck on a big TPU pod slice |
[`~TFPreTrainedModel.prepare_tf_dataset`] only works on [TPU VM](#tpu-types). Add the tokenizer output as columns in the dataset since the dataset is stored on disk, which means it can handle data larger than the available memory. Use [`~TFPreTrainedModel.prepare_tf_dataset`] to stream data from the dataset by wrapping it with a `tf.data` pipeline.
```py
def tokenize_function(examples):
return tokenizer(
examples["sentence"], padding="max_length", truncation=True, max_length=128
)
# add the tokenizer output to the dataset as new columns
dataset = dataset.map(tokenize_function)
# prepare_tf_dataset() chooses columns that match the models input names
tf_dataset = model.prepare_tf_dataset(
dataset, batch_size=BATCH_SIZE, shuffle=True, tokenizer=tokenizer
)
```
The dataset can now be passed to the [fit](https://keras.io/api/models/model_training_apis/#fit-method) method.
```py
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
with strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)
model.compile(optimizer="adam")
model.fit(tf_dataset)
```
## TPU types
There are two types of TPUs, a TPU Node and a TPU VM.
A TPU Node indirectly accesses a remote TPU. It requires a separate VM to initialize your network and data pipeline, and then forwards it to the remote node. Google Colab TPUs are an example of a TPU Node. You can't use local data because the TPU is remotely located, and data must be stored in Google Cloud Storage where the data pipeline can access it.
TPU VM are connected directly to the machine the TPU is located on, and they are generally easier to work with, especially when it comes to your data pipeline.
> [!TIP]
> We recommend avoiding TPU Nodes if possible because it is more difficult to debug than TPU VMs. TPU Nodes may also be unsupported in the future and become a legacy access method.
A single TPU (v2-8, v3-8, v4-8) runs 8 replicas. TPUs can exist in **pods** which run hundreds or even thousands of replicas simultaneously. When you only use a portion of a pod, it is referred to as a **pod slice**. On Google Colab, you'll typically get a single v2-8 TPU.
## XLA
[XLA](https://openxla.org/xla) is a linear algebra compiler for high-performance execution and it is used by default to improve performance on TPUs.
Before executing your code on a TPU, it's a good idea to try it first on a CPU or GPU because it is easier to debug. You can train for a few steps to make sure the model and data pipeline work as expected. Set `jit_compile=True` in the [compile](https://keras.io/api/models/model_training_apis/#compile-method) method to enable XLA compilation (but remember to remove this line of code before running on a TPU).
The section below outlines three rules for making your code XLA-compatible. Transformers enforce the first two rules for models and loss functions by default, but don't forget about them if you're writing your own models and loss functions.
### Data dependent conditionals
Any `if` statements cannot depend on values inside a [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor). The code below can't be compiled by XLA.
```py
if tf.reduce_sum(tensor) > 10:
tensor = tensor / 2.0
```
To compile with XLA, use [tf.cond](https://www.tensorflow.org/api_docs/python/tf/cond) or remove the conditional and use indicator variables instead as shown below.
```py
sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32)
tensor = tensor / (1.0 + sum_over_10)
```
### Data dependent shapes
The shape of a [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor) cannot depend on their values. For example, [tf.unique](https://www.tensorflow.org/api_docs/python/tf/unique) can't be compiled because it returns a tensor containing an instance of each unique value in the input. The shape of this output depends on how repetitive the input [tf.Tensor](https://www.tensorflow.org/api_docs/python/tf/Tensor) is.
This is an issue during **label masking**, where labels are set to a negative value to indicate they should be ignored when computing the loss. The code below can't be compiled by XLA because the shape of `masked_outputs` and `masked_labels` depend on how many positions are masked.
```py
label_mask = labels >= 0
masked_outputs = outputs[label_mask]
masked_labels = labels[label_mask]
loss = compute_loss(masked_outputs, masked_labels)
mean_loss = torch.mean(loss)
```
To compile with XLA, avoid the data-dependent shapes by computing the loss for every position and zeroing out the masked positions in both the numerator and denominator when calculating the mean. Convert `tf.bool` to `tf.float32` as an indicator variable to make your code XLA-compatible.
```py
label_mask = tf.cast(labels >= 0, tf.float32)
loss = compute_loss(outputs, labels)
loss = loss * label_mask
mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask)
```
### Recompile different input shapes
XLA recompiles your model if input shapes are variable which create huge performance problems. It is especially common in text models because input texts have variable lengths after tokenization.
> [!WARNING]
> Execessive padding can also severely slow down training because requires more compute and memory to process.
To avoid different shapes, use padding to pad all your inputs to the same length and use an `attention_mask`. Try padding batches of samples to a multiple of 32 or 64 tokens. Use the parameters `padding="max_length"`, `padding="longest"`, or `pad_to_multiple_of` to help with padding. This often increases the number of tokens by a small amount, but it significantly reduces the number of unique input shapes because every input shape is a multiple of 32 or 64. Fewer unique input shapes requires fewer recompilation.

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
HQQ further supports fine-tuning with [PEFT](https://huggingface.co/docs/peft) and is fully compatible with [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) for even faster inference and training.
Install HQQ with the following command to get the latest version and to build its corresponding CUDA kernels.
Install HQQ with the following command to get the latest version and to build its corresponding CUDA kernels if you are using a cuda device. It also support Intel XPU with pure pytorch implementation.
```bash
pip install hqq
@ -34,13 +34,14 @@ You can choose to either replace all the linear layers in a model with the same
Quantize a model by creating a [`HqqConfig`] and specifying the `nbits` and `group_size` to replace for all the linear layers ([torch.nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html)) of the model.
``` py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
quant_config = HqqConfig(nbits=8, group_size=64)
model = transformers.AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.float16,
device_map="cuda",
device_map="auto",
quantization_config=quant_config
)
```
@ -67,7 +68,7 @@ quant_config = HqqConfig(dynamic_config={
model = transformers.AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
torch_dtype=torch.float16,
device_map="cuda",
device_map="auto",
quantization_config=quant_config
)
```

View File

@ -16,7 +16,9 @@ rendered properly in your Markdown viewer.
# Serving
Transformer models can be served for inference with specialized libraries such as Text Generation Inference (TGI) and vLLM. These libraries are specifically designed to optimize performance with LLMs and include many unique optimization features that may not be included in Transformers.
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users.
You can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
## TGI
@ -61,4 +63,165 @@ vllm serve Qwen/Qwen2.5-1.5B-Instruct \
--task generate \
--model-impl transformers \
--trust-remote-code
```
```
## Serve CLI
> [!WARNING]
> This section is experimental and subject to change in future versions
<!-- TODO: LLMs -> models, after we add audio/image input/output support -->
You can serve LLMs supported by `transformers` with the `transformers serve` CLI. It spawns a local server that offers a chat Completions API compatible with the OpenAI SDK, which is the _de facto_ standard for LLM conversations. This way, you can use the server from many third party applications, or test it using the `transformers chat` CLI ([docs](conversations.md#chat-cli)).
To launch a server, simply use the `transformers serve` CLI command:
```shell
transformers serve
```
The simplest way to interact with the server is through our `transformers chat` CLI
```shell
transformers chat localhost:8000 --model-name-or-path Qwen/Qwen3-4B
```
or by sending an HTTP request with `cURL`, e.g.
```shell
curl -X POST http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-Instruct"}'
```
from which you'll receive multiple chunks in the Completions API format
```shell
data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863, "model": "Qwen/Qwen2.5-0.5B-Instruct", "system_fingerprint": "", "choices": [{"delta": {"role": "assistant", "content": "", "tool_call_id": null, "tool_calls": null}, "index": 0, "finish_reason": null, "logprobs": null}]}
data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863, "model": "Qwen/Qwen2.5-0.5B-Instruct", "system_fingerprint": "", "choices": [{"delta": {"role": "assistant", "content": "", "tool_call_id": null, "tool_calls": null}, "index": 0, "finish_reason": null, "logprobs": null}]}
(...)
```
The server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
> [!TIP]
> At the moment, MCP tool usage in `transformers` is limited to the `qwen` family of models.
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
### Usage example 1: apps with local requests (feat. Jan)
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
### Usage example 2: apps with external requests (feat. Cursor)
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch our server with CORS enabled, run
```shell
transformers serve --enable-cors
```
We'll also need to expose our server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see an https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
We're now ready to set things up on the app side! In Cursor, while we can't set a new provider, we can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set our `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>
### Usage example 3: `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```

View File

@ -1,129 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# XLA
[[open-in-colab]]
[Accelerated Linear Algebra (XLA)](https://openxla.org/xla) is a linear algebra compiler that optimizes model runtime across different hardware and frameworks.
This guide will look specifically at how to accelerate *TensorFlow* models with XLA.
## TensorFlow
XLA can potentially accelerate a TensorFlow model without making any source code changes. It is already packaged with the TensorFlow library, and it is triggered with `jit_compile` in any graph creating function such as [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
If you're using Keras methods like [fit](https://keras.io/api/models/model_training_apis/#fit-method) and [predict](https://keras.io/api/models/model_training_apis/#predict-method), enable XLA by passing `jit_compile=True` to [compile](https://keras.io/api/models/model_training_apis/#compile-method).
```py
model.compile(jit_compile=True)
```
XLA can be used to accelerate any arbitrary [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
Models with a TensorFlow implementation like [GPT2](./model_doc/gpt2), [T5](./model_doc/t5), [OPT](./model_doc/opt), and [Whisper](./model_doc/whisper) are XLA compatible. The speed up depends on a model, but in general, TensorFlow models in Transformers get a ~100x speed up.
### Functions
A typical forward pass in a TensorFlow model is shown below. To run a forward pass with XLA, wrap the model with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function) and set `jit_compile=True`.
```diff
import tensorflow as tf
model = tf.keras.Sequential(
[tf.keras.layers.Dense(10, input_shape=(10,), activation="relu"), tf.keras.layers.Dense(5, activation="softmax")]
)
# Generate random inputs for the model.
batch_size = 16
input_vector_dim = 10
random_inputs = tf.random.normal((batch_size, input_vector_dim))
# Run a forward pass.
- _ = model(random_inputs)
+ xla_fn = tf.function(model, jit_compile=True)
+ _ = xla_fn(random_inputs)
```
The default `call` function of the model is used to compile the XLA graph. But if there's any other model function you want to compile with XLA, wrap them with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
```py
my_xla_fn = tf.function(model.my_xla_fn, jit_compile=True)
```
### Text generation
You could also compile other model functions with XLA. For example, enable XLA for text generation by wrapping [`~TFGenerationMixin.generate`] with [tf.function](https://www.tensorflow.org/api_docs/python/tf/function).
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
# Will error if the minimal version of Transformers is not installed.
from transformers.utils import check_min_version
check_min_version("4.21.0")
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2")
input_string = ["TensorFlow is"]
xla_generate = tf.function(model.generate, jit_compile=True)
tokenized_input = tokenizer(input_string, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
"Generated -- TensorFlow is an open-source, open-source, distributed-source application framework for the"
```
## Tracing
When executing an XLA-enabled function for the first time, it tries to infer the computation graph in a process known as *tracing*. This is a time-consuming step, but any consecutive calls to the function will be much faster because it won't have to trace the computation graph again.
To ensure a function is only traced once, the inputs must have the same shape as when the graph was built. This usually isn't an issue for fixed input shapes like images, but it can be an issue for inputs with variable shapes like text.
One way to handle this is to pad your text so it always has the same shape. Configure padding options such as [pad_to_multiple_of](https://hf.co/docs/transformers/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.pad.pad_to_multiple_of) in the tokenizer.
```py
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", padding_side="left", pad_token="</s>")
model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2")
input_string = ["TensorFlow is"]
xla_generate = tf.function(model.generate, jit_compile=True)
# Call tokenizer with padding options.
tokenized_input = tokenizer(input_string, pad_to_multiple_of=8, padding=True, return_tensors="tf")
generated_tokens = xla_generate(**tokenized_input, num_beams=2)
decoded_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated -- {decoded_text}")
```
In addition to the input shape, any changes to the generation options at any point also triggers tracing.
## Resources
Learn more about XLA with the following resources.
- A [notebook](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/91_tf_xla_generate.ipynb) demonstrating XLA-compatible encoder-decoder and decoder-only text generation models.
- The [Faster Text Generation with TensorFlow and XLA](https://hf.co/blog/tf-xla-generate) blog post compares benchmarks for XLA-compatible models and provides a friendly introduction to XLA in TensorFlow.
- The [How Hugging Face improved Text Generation performance with XLA](https://blog.tensorflow.org/2022/11/how-hugging-face-improved-text-generation-performance-with-xla.html) blog post discusses the design philosophy behind adding XLA to TensorFlow models in Transformers.
- The [Introduction to graphs and tf.function](https://www.tensorflow.org/guide/intro_to_graphs) guide.
- The [Better performance with tf.function](https://www.tensorflow.org/guide/function) guide.
- The [XLA](https://openxla.org/xla) documentation.

View File

@ -14,5 +14,9 @@ rendered properly in your Markdown viewer.
-->
# Tools
(deprecated)
> [!WARNING]
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

View File

@ -187,13 +187,13 @@ from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_losss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
labels = inputs.pop("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss for 3 labels with different weights
reduction = "mean" if num_items_in_batch is not None else "sum"
reduction = "sum" if num_items_in_batch is not None else "mean"
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device, reduction=reduction))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
if num_items_in_batch is not None:

View File

@ -7,6 +7,7 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

View File

@ -157,6 +157,8 @@
title: (번역중) VPTQ
- local: quantization/quanto
title: Quanto
- local: quantization/quark
title: Quark
- local: quantization/eetq
title: EETQ
- local: in_translation
@ -225,7 +227,7 @@
- sections:
- local: philosophy
title: 이념과 목표
- local: in_translation
- local: glossary
title: (번역중) Glossary
- local: task_summary
title: 🤗 Transformers로 할 수 있는 작업

454
docs/source/ko/glossary.md Normal file
View File

@ -0,0 +1,454 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 용어집(Glossary)
이 용어집은 전반적인 머신러닝 및 🤗 Transformers 관련 용어를 정의하여 문서를 더 잘 이해하는 데 도움을 줍니다.
## A
### 어텐션 마스크 (attention mask)
어텐션 마스크(attention mask)는 여러 시퀀스를 배치(batch)로 처리할 때 사용되는 선택적 인자입니다.
<Youtube id="M6adb1j2jPI"/>
이 인자는 모델에게 어떤 토큰에 주의를 기울여야 하는지, 그리고 어떤 토큰은 무시해야 하는지를 알려줍니다.
예를 들어, 다음 두 개의 시퀀스가 있다고 가정해 봅시다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
인코딩된 버전들의 길이가 다릅니다:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
따라서 이 두 시퀀스를 그대로 하나의 텐서에 넣을 수는 없습니다. 첫 번째 시퀀스를 두 번째 길이에 맞춰 패딩 하거나, 반대로 두 번째 시퀀스를 첫 번째 길이에 맞춰 잘라내야 합니다.
첫 번째 경우에는 ID 목록이 패딩 인덱스로 확장됩니다. 이렇게 패딩을 적용하려면 토크나이저에 리스트를 전달하고 다음과 같이 요청할 수 있습니다:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
첫 번째 문장 오른쪽에 0이 추가되어 두 번째 문장과 길이가 같아진 것을 볼 수 있습니다:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
이것은 PyTorch나 TensorFlow의 텐서로 변환될 수 있습니다. 어텐션 마스크는 모델이 패딩 된 인덱스를 참조하지 않도록 해당 위치를 나타내는 이진 텐서입니다. [`BertTokenizer`]의 경우, `1`은 어텐션이 필요한 값을 나타내고, `0`은 패딩 된 값을 나타냅니다. 이 어텐션 마스크는 토크나이저가 반환되는 딕셔너리의 "attention_mask" 키 아래에 포함되어 있습니다:
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
### 오토인코딩 모델 (autoencoding models)
[인코더 모델](#encoder-models)과 [마스킹된 언어 모델링](#masked-language-modeling-mlm)을 참고하세요.
### 자기회귀 모델 (autoregressive models)
[인과적 언어 모델링](#causal-language-modeling)과 [디코더 모델](#decoder-models)을 참고하세요.
## B
### 백본 (backbone)
백본(backbone)은 원시(hidden) 은닉 상태(hidden state) 또는 특징(feature)을 출력하는 네트워크(임베딩과 레이어)입니다. 일반적으로 이 백본은 해당 특징을 입력으로 받아 예측을 수행하는 [헤드](#head)와 연결됩니다. 예를 들어, [`ViTModel`]은 특정 헤드가 없는 백본입니다. 다른 모델들도[`VitModel`]을 백본으로 사용할 수 있으며, [DPT](model_doc/dpt)등이 그 예시입니다.
## C
### 인과적 언어 모델링 (causal language modeling)
모델이 텍스트를 순서대로 읽으며 다음 단어를 예측해야 하는 사전 학습(pretraining) 작업입니다. 일반적으로 문장을 전체로 읽되, 모델 내부에서 특징 시점 이후의 토큰을 마스킹(masking)하여 다음 단어를 예측하게 됩니다.
### 채널 (channel)
컬러 이미지는 빨간색(R), 초록색(G), 파란색(B)의 세 채널 값을 조합하여 구성되며, 흑백 이미지는 단일 채널만을 가집니다. 🤗 Transformers에서는 이미지 텐서의 채널이 첫 번째 또는 마지막 차원에 위치할 수 있습니다:[`n_channels`, `height`, `width`] 또는 [`height`, `width`, `n_channels`]와 같은 형식입니다.
### 연결 시간분류(connectionist temporal classification, CTC)
입력과 출력의 정렬 상태를 정확히 몰라도 모델이 학습할 수 있도록 돕는 알고리즘입니다. CTC는 주어진 입력에 대해 가능한 모든 출력의 확률 분포를 계산하고, 그중 가장 가능성이 높은 출력을 선택합니다. CTC는 말하는 속도의 차이 등 여러 이유로 음성과 텍스트가 항상 정확하게 일치하지 않기 때문에 음성 인식 작업에서 자주 사용됩니다.
### 컨볼루션 (convolution)
신경망에서 사용되는 레이어의 한 종류로, 입력 행렬에 대해 더 작은 행렬(커널 또는 필터)을 원소별로 곱한 뒤 그 값을 합산해 새로운 행렬을 만드는 연산입니다. 이 연산을 컨볼루션 연산이라고 하며, 입력 행렬 전체에 걸쳐 반복적으로 수행됩니다. 각 연산은 입력 행렬의 서로 다른 구간에 적용됩니다. 컨볼루션 신경망(CNN)은 컴퓨터 비전 분야에서 널리 사용됩니다.
## D
### 데이터 병렬화 (DataParallel)
여러 개의 GPU에서 훈련을 수행할 때 사용하는 병렬화 기법으로, 동일한 모델 구성이 여러 번 복제되며 각 인스턴스는 서로 다른 데이터 조각을 받습니다. 모든 인스턴스는 병렬로 처리를 수행하며, 각 훈련 단계가 끝난 후 결과를 동기화합니다.
DataParallel 방식에 대해 더 알아보려면 [여기](perf_train_gpu_many#dataparallel-vs-distributeddataparallel)를 참고하세요.
### 디코더 입력 ID (decoder input IDs)
이 입력은 인코더-디코더 모델에 특화된 것으로, 디코더에 전달될 input ID 들을 포함합니다. 이러한 입력은 번역이나 요약과 같은 시퀀스-투-시퀀스(sequence-to-sequence) 작업에 사용되며, 일반적으로 모델마다 고유한 방식으로 구성됩니다.
대부분의 인코더-디코더 모델(BART, T5 등)은 `labels`로부터 자동으로 `decoder_input_ids`를 생성합니다. 이러한 모델에서는 학습 시 `labels`를 전달하는 것이 일반적으로 권장됩니다.
시퀀스-투-시퀀스 학습에서 각 모델이 이러한 input ID를 어떻게 처리하는지는 모델 문서를 참고하시기를 바랍니다.
### 디코더 모델 (decoder models)
자기회귀 모델(Autoregressive models)이라고도 불리는 디코더 모델은 인과 언어 모델링(causal language modeling)이라 불리는 사전 학습 작업을 수행합니다. 이 작업에서는 모델이 텍스트를 순서대로 읽고 다음 단어를 예측해야 합니다. 일반적으로 문장의 전체를 읽되, 특정 시점 이후의 토큰은 마스크로 가려 예측하게 합니다.
<Youtube id="d_ixlCubqQw"/>
### 딥러닝 (deep learning)
여러 층의 신경망(neural network)을 사용하는 머신러닝 알고리즘입니다.
## E
### 인코더 모델 (encoder models)
자동 인코딩 모델(Autoencoding models)이라고도 불리는 인코더 모델은 텍스트나 이미지와 같은 입력을 받아 임베딩이라 불리는 압축된 수치 표현으로 반환합니다. 일반적으로 인코더 모델은 입력 시퀀스의 일부를 마스킹하고 더 의미 있는 표현을 생성하도록 학습하는 [masked language modeling](#masked-language-modeling-mlm)과 같은 기술을 사용하여 사전 학습됩니다.
<Youtube id="H39Z_720T5s"/>
## F
### 특징 추출 (feature extraction)
머신러닝 알고리즘이 더 효과적으로 학습할 수 있도록, 원시 데이터를 선택하고 변환하여 더 유용한 특징(feature) 집합으로 만드는 과정입니다. 예를 들어, 원시 텍스트를 워드 임베딩으로 변환하거나 이미지나 비디오 데이터에서 윤곽선이나 형태와 같은 중요한 특징을 추출하는 것이 있습니다.
### 피드 포워드 청킹 (feed forward chunking)
트랜스포머의 각 residual attention Block에서는 self-Attention Layer 다음에 보통 두 개의 Feed Forward Layer가 이어집니다. 이 Feed Forward Layers의 중간 임베딩 크기는 종종 모델의 히든 사이즈(hidden size)보다 큽니다(예:
`google-bert/bert-base-uncased` 모델의 경우).
입력 크기가 `[batch_size, sequence_length]`일 경우, 중간 Feed Forward 임베딩
`[batch_size, sequence_length, config.intermediate_size]`을 저장하는 데 필요한 메모리는 전체 메모리 사용량의 큰 부분을 차지할 수 있습니다.
[Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문의 저자들은 이 연산이 `sequence_length` 차원에 대해 독립적이기 때문에,토큰마다 Feed Forward Layer의 출력 임베딩을 각 토큰별로 `[batch_size, config.hidden_size]`을 개별적으로 계산한 뒤, 이를 이어 붙여 `[batch_size, sequence_length, config.hidden_size]` 형태로 만들 수 있습니다.`n = sequence_length`. 이 방식은 계산 시간은 늘어나지만, 메모리 사용량은 줄어들게 됩니다.
[`apply_chunking_to_forward`] 함수를 사용하는 모델의 경우, `chunk_size`는 병렬로 계산되는 출력 임베딩의 개수를 정의하며, 이는 메모리 사용량과 계산 시간 간의 트레이드오프를 결정합니다.
`chunk_size`가 0으로 설정되면, 피드 포워드 청킹(Feed Forward Chunking)은 수행되지 않습니다.
### 파인튜닝 모델 (finetuned models)
파인튜닝(Finetuning)은 전이 학습(transfer learning)의 한 형태로, 사전 학습된 (pretrained) 모델을 사용하여 가중치를 고정(freeze)하고, 출력층을 새롭게 추가된 [모델 헤드](#head)로 교체한 뒤, 해당 모델 헤드를 목표 데이터셋에 맞게 학습시키는 방식입니다.
자세한 내용은 [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) 튜토리얼을 참고하시고, 🤗 Transformers를 사용해 모델을 파인 튜닝하는 방법도 함께 확인해 보세요.
## H
### 헤드 (head)
모델 헤드(model head)란 신경망의 마지막 층을 의미하며, 이 층은 이전 층에서 나온 히든 상태(hidden states)를 받아 다른 차원으로 변환합니다. 각 작업(task)에 따라 서로 다른 모델 헤드가 사용됩니다. 예를 들어:
* [`GPT2ForSequenceClassification`]은 기본 [`GPT2Model`] 위에 시퀀스 분류를 위한 선형계층(linear layer)을 추가한 모델 헤드입니다.
* [`ViTForImageClassification`]은 이미지 분류를 위한 모델 헤드로, 기본 [`ViTModel`] 위에 `CLS` 토큰의 마지막 히든 상태에 선형 계층(linear layer)을 추가한 구조입니다.
* [`Wav2Vec2ForCTC`]는 기본 [`Wav2Vec2Model`] 위에 [CTC](#connectionist-temporal-classification-ctc)를 적용한 언어 모델링 헤드입니다.
## I
### 이미지 패치 (image patch)
비전 기반 Transformer 모델은 이미지를 작은 패치로 분할한 후, 각 패치를 선형 임베딩하여 시퀀스로 모델에 입력합니다. 모델의 구성 파일에서 `patch_size`(또는 해상도)를 확인할 수 있습니다.
### 인퍼런스 (inference)
인퍼런스는 학습이 완료된 모델에 새로운 데이터를 입력하여 예측을 수행하는 과정입니다. 🤗 Transformer에서 인퍼런스를 수행하는 방법은 [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) 튜토리얼을 참고하세요.
### 입력 ID (input IDs)
입력 ID는 종종 모델에 입력으로 전달해야 하는 유일한 필수 파라미터입니다. 이들은 토큰의 인덱스로, 모델이 입력으로 사용할 시퀀스를 구성하는 토큰들의 숫자 표현입니다.
<Youtube id="VFp38yj8h3A"/>
토크나이저마다 작동 방식은 다르지만, 기본 메커니즘은 동일합니다. 다음은 [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) 토크나이저인 BERT 토크나이저를 사용한 예시입니다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
토크나이저는 시퀀스를 토크나이저의 토큰 목록에 있는 항목으로 분리합니다.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
토큰은 단어이거나 서브 워드(subword)입니다. 예를 들어, "VRAM"은 모델의 어휘 사전에 없는 단어이기 때문에 "V", "RA", "M"으로 나뉘었습니다. 이 토큰들이 개별 단어가 아니라 같은 단어의 일부임을 나타내기 위해 "RA"와 "M" 앞에 더블 해시(`##`)가 추가 됩니다.
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
이러한 토큰들은 모델이 이해할 수 있는 ID로 변환될 수 있습니다. 이 과정은 문장을 바로 토크나이저에 입력함으로써 수행되며, 성능 최적화를 위해 [🤗 Tokenizers](https://github.com/huggingface/tokenizers)의 Rust 구현을 활용합니다.
```python
>>> inputs = tokenizer(sequence)
```
토크나이저는 해당 모델이 올바르게 작동하는 데 필요한 모든 인자를 포함한 딕셔너리를 반환합니다. 토큰 인덱스는 `input_ids`라는 키에 저장됩니다.
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
```
토크나이저는 (연결된 모델이 이를 사용하는 경우) 자동으로 "특수 토큰"을 추가합니다. 이들은 모델이 특정 상황에서 사용하는 특별한 ID입니다.
이전의 ID 시퀀스를 디코딩하면,
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
우리는 다음과 같은 결과를 보게 될 것입니다.
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
이는 [`BertModel`]이 입력값을 기대하는 방식이기 때문입니다.
## L
### 레이블 (labels)
레이블은 모델이 손실(loss)을 직접 계산할 수 있도록 전달되는 선택적 인자입니다. 이 레이블은 모델이 예측해야 할 정답 값을 의미하며, 모델은 예측값과 이 정답(label) 사이의 차이를 표준 손실 함수를 이용해 계산하게 됩니다.
이 레이블(label)의 형태는 모델 헤드(model head)의 종류에 따라 달라집니다. 예를 들어:
- 시퀀스 분류 모델([`BertForSequenceClassification`] 등)의 경우, 모델은
`(batch_size)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 전체 시퀀스에 대한 예상 레이블을 나타냅니다.
- 토큰 분류 모델([`BertForTokenClassification`] 등)의 경우, 모델은 `(batch_size, seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다.
- 마스킹 언어 모델([`BertForMaskedLM`])의 경우, 모델은 `(batch_size,seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다. 레이블은 마스킹 된 토큰의 토큰 ID이며, 나머지 토큰에 대해서는 무시할 값을 사용합니다(일반적으로 -100).
- 시퀀스 투 시퀀스 작업([`BartForConditionalGeneration`], [`MBartForConditionalGeneration`]등)의 경우, 모델은 `(batch_size, tgt_seq_length)` 차원의 텐서를 입력으로 받으며, 각 값은 입력 시퀀스에 대응하는 타겟 시퀀스를 나타냅니다. 학습 중에는 BART와 T5가 적절한 `decoder_input_ids`와 디코더 attention 마스크를 내부적으로 생성하므로, 일반적으로 따로 제공할 필요가 없습니다. 단, 이는 Encoder-Decoder 프레임워크를 직접 활용하는 모델에는 적용되지 않습니다.
- 이미지 분류 모델([`ViTForImageClassification`] 등)의 경우, 모델은 `(batch_size)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 개별 이미지에 대한 예상 레이블을 나타냅니다.
- 시멘틱 세그멘테이션 모델([`SegformerForSemanticSegmentation`] 등)의 경우, 모델은 `(batch_size, height, width)` 차원의 텐서를 입력으로 받으며, 배치의 각 값은 개별 픽셀에 대한 예상 레이블을 나타냅니다.
- 객체 탐지 모델([`DetrForObjectDetection`] 등)의 경우, 모델은 `class_labels``boxes` 키를 포함하는 딕셔너리들의 리스트를 입력으로 받습니다. 배치의 각 값은 개별 이미지에 대한 예상 클래스 레이블과 바운딩 박스 정보를 나타냅니다.
- 자동 음성 인식 모델([`Wav2Vec2ForCTC`] 등)의 경우 모델은 `(batch_size,target_length)` 차원의 텐서를 입력으로 받으며, 각 값은 개별 토큰에 대한 예상 레이블을 나타냅니다.
<Tip>
모델마다 요구하는 레이블 형식이 다를 수 있으므로, 각 모델의 문서를 확인하여 해당 모델에 맞는 레이블 형식을 반드시 확인하세요!
</Tip>
기본 모델([`BertModel`] 등)은 레이블을 입력으로 받지 않습니다. 이러한 모델은 단순히 특징(feature)을 출력하는 기본 트랜스포머 모델이기 때문입니다.
### 대규모 언어 모델 (LLM)
대규모 데이터로 학습된 트랜스포머 언어 모델(GPT-3, BLOOM, OPT 등)을 지칭하는 일반적인 용어입니다. 이러한 모델은 학습할 수 있는 파라미터(parameter)의 수가 매우 많으며, 예를 들어 GPT-3는 약 1,750억 개의 파라미터를 가지고 있습니다.
## M
### 마스킹된 언어 모델링 (MLM)
사전 학습 단계 중 하나로, 모델은 일부 토큰이 무작위로 마스킹 된 손상된 문장을 입력받고, 원래의 문장을 예측해야 합니다.
### 멀티모달 (multimodal)
텍스트와 이미지와 같은 다른 형태의 입력을 함께 사용하는 작업입니다.
## N
### 자연어 생성 (NLG)
텍스트를 생성하는 모든 작업을 의미합니다. (예: [Write With Transformers](https://transformer.huggingface.co/), 번역 등).
### 자연어 처리 (NLP)
텍스트를 다루는 작업 전반을 지칭하는 일반적인 용어입니다.
### 자연어 이해 (NLU)
텍스트에 담긴 의미를 이해하는 모든 작업을 포함합니다. (예: 전체 문서 분류, 개별 단어 분류 등).
## P
### 파이프라인 (pipeline)
🤗 Transformers에서 파이프라인은 데이터를 전처리하고 변환한 후, 모델을 통해 예측값을 반환하는 일련의 단계를 순차적으로 수행하는 추상화된 개념입니다. 파이프라인에 포함될 수 있는 단계로는 데이터 전처리, 특징 추출(feature extraction), 정규화(normalization) 등이 있습니다.
자세한 내용은 [Pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) 문서를 참고하세요.
### 파이프라인 병렬화 (PP)
모델을 수직 방향(레이어 단위)으로 여러 GPU에 분할하여 병렬로 처리하는 병렬화 기법입니다. 각 GPU는 모델의 하나 또는 여러 개의 레이어만을 담당하며, 전체 파이프라인의 서로 다른 단계를 병렬로 처리하게 됩니다. 또한 각 GPU는 배치(batch)의 일부 작은 조각만 처리합니다. Pipeline Parallel 방식에 대해 더 알아보려면 [이 문서](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism)를 참고하세요.
### 픽셀 값 (pixel values)
이미지를 수치상으로 표현한 텐서로, 모델에 입력으로 전달됩니다. 이 텐서는 이미지 프로세서를 통해 생성되면, 값은 [`batch_size`, `num_channels`, `height`, `width`] 형태의 차원을 가집니다.
### 풀링 (pooling)
행렬의 특정 차원에서 최댓값이나 평균값을 취하여 더 작은 행렬로 줄이는 연산입니다. 풀링 계층은 주로 합성곱 계층 사이에 위치하여 특징 표현을 다운샘플링 하는 데 사용됩니다.
### 포지션 ID (position IDs)
RNN 모델과 달리 트랜스포머는 각 토큰의 위치 정보를 내부적으로 가지고 있지 않습니다. 따라서 모델은 `position_ids`를 사용하여 각 토큰이 시퀀스 내에서 어느 위치에 있는지를 인식합니다. 이 값은 선택적인 파라미터입니다. 모델에 `position_ids`를 전달하지 않으면, 절대 위치 임베딩 방식으로 자동 생성됩니다. 절대 위치 임베딩은 `[0, config.max_position_embeddings - 1]` 범위 내에서 선택됩니다. 일부 모델은 사인파 형태의 위치 임베딩(sinusoidal position embeddings) 또는 상대 위치 임베딩(relative position embeddings)과 같은 다른 유형의 위치 임베딩을 사용하기도 합니다.
### 전처리 (preprocessing)
머신러닝 모델이 쉽게 처리할 수 있도록 가공되지 않은 데이터를 정제하는 작업입니다. 예를 들어, 텍스트는 일반적으로 토큰화(tokenization) 과정을 거칩니다. 다른 입력 유형에 대한 전처리 방식이 궁금하다면 [Preprocess](https://huggingface.co/docs/transformers/preprocessing) 튜토리얼을 참고해 보세요.
### 사전 학습된 모델 (pretrained model)
일부 데이터(예: 위키피디아 전체)로 사전 학습(pretraining)된 모델입니다. 사전 학습은 자기 지도 학습(self-supervised learning)의 목표를 포함하며, 예를 들어 문장을 읽고 다음 단어를 예측하거나 ([causal language modeling](#causal-language-modeling)) 참고, 일부 단어를 마스킹하고 이를 예측하는 방식([masked language modeling](#masked-language-modeling-mlm))이 있습니다.
음성 및 비전 모델은 고유의 사전 학습 목표를 가지고 있습니다. 예를 들어, Wav2Vec2는 음성 표현 중 "진짜"를 "가짜" 중에서 구분하는 대조 학습(contrastive learning) 방식으로 사전 학습된 음성 모델입니다. 반면, BEiT는 이미지 패치 중 일부를 마스킹하고 이를 예측하는 마스킹 이미지 모델링 방식으로 사전 학습된 비전 모델입니다. 이는 마스킹 언어 모델링과 유사한 방식입니다.
## R
### 순환 신경망 (RNN)
텍스트와 같은 시퀀스 데이터를 처리하기 위해 레이어에 반복 구조(루프)를 사용하는 신경망 모델의 한 종류입니다.
### 표현학습 (representation learning)
머신러닝의 하위 분야로, 원시 데이터로부터 의미 있는 표현을 학습하는 데 중점을 둡니다. 대표적인 기법으로는 단어 임베딩, 오토인코더(autoencoder), 생성적 적대 신경망(GAN) 등이 있습니다.
## S
### 샘플링 속도 (sampling rate)
샘플링 속도는 1초에 추출하는 (오디오 신호) 샘플의 개수를 헤르츠(Hz) 단위로 나타낸 측정값입니다. 이는 음성처럼 연속적인 신호를 디지털화하여 이산적인 형태로 만드는 결과입니다.
### 셀프 어텐션 (self-attention)
입력의 각 요소가 다른 어떤 요소에 주목해야 하는지를 스스로 판단하는 메커니즘입니다. 이는 모델이 문장에서 특정 단어만을 보는 것이 아니라, 다른 단어들과의 관계를 고려하여 어떤 정보에 더 집중해야 할지를 학습하게 합니다.
### 자기지도 학습 (self-supervised learning)
레이블이 없는 데이터로부터 모델이 스스로 학습 목표를 정의하여 학습하는 머신러닝 기법의 한 종류입니다. [비지도 학습](#unsupervised-learning)이나 [지도 학습](#supervised-learning)과 달리, 학습 과정 자체는 감독 방식 되지만, 라벨이 명시적으로 주어지는 것은 아닙니다.
예시로는 [마스크 언어 모델링](#masked-language-modeling-mlm)이 있으며, 이는 문장의 일부 토큰을 제거한 상태로 모델에 입력하고, 모델이 해당 토큰을 예측하도록 학습하는 방식입니다.
### 준지도 학습 (semi-supervised learning)
소량의 라벨이 달린 데이터와 대량의 라벨이 없는 데이터를 함께 사용하여 모델의 정확도를 높이는 머신러닝 훈련 기법의 넓은 범주입니다. 이는 [지도 학습](#supervised-learning)이나 [비지도 학습](#unsupervised-learning)과는 다른 방식입니다.
준지도 학습 기법의 예로는 "자기 학습(self-training)"이 있습니다. 이 방식은 먼저 라벨이 있는 데이터로 모델을 학습시키고, 그 모델을 사용해 라벨이 없는 데이터에 대한 예측을 수행합니다. 모델이 가장 높은 확신을 가지고 예측한 라벨이 없는 데이터 일부를 라벨이 있는 데이터로 추가하고, 이를 통해 모델을 다시 학습시킵니다.
### 시퀀스 투 시퀀스 (seq2seq)
입력으로부터 새로운 시퀀스를 생성하는 모델입니다. 예를 들어 번역 모델이나 요약 모델이 이에 해당하며, 대표적인 예로는 [Bart](model_doc/bart)나[T5](model_doc/t5) 모델이 있습니다.
### 분할 DDP (Sharded DDP)
[ZeRO](#zero-redundancy-optimizer-zero) 개념을 기반으로 다양한 구현에서 사용되는 다른 이름으로 불립니다.
### 스트라이드 (stride)
[convolution](#convolution) 또는 [pooling](#pooling)에서 스트라이드(stride)는 커널이 행렬 위를 이동하는 간격을 의미합니다. 스트라이드가 1이면 커널이 한 픽셀씩 이동하고, 2이면 두 픽셀씩 이동합니다.
### 지도학습 (supervised learning)
정답이 포함된 라벨링된 데이터를 직접 사용하여 모델의 성능을 개선하는 학습 방식입니다. 학습 중인 모델에 데이터를 입력하고, 예측 결과를 정답과 비교하여 오차를 계산합니다. 모델은 이 오차를 기반으로 가중치를 업데이트하며, 이러한 과정을 반복하여 성능을 최적화합니다.
## T
### 텐서 병렬화 (TP)
여러 GPU에서 훈련하기 위한 병렬화 기법으로, 각 텐서를 여러 덩어리(chunk)로 나눕니다. 따라서 전체 텐서가 단일 GPU에 상주하는 대신, 텐서의 각 조각(shard)이 지정된 GPU에 상주하게 됩니다. 이 조각들은 각각 다른 GPU에서 개별적으로 병렬 처리되며, 처리 단계가 끝날 때 결과가 동기화됩니다. 이러한 분할이 수평 방향으로 일어나기 때문에, 이는 때때로 수평적 병렬화라고 불립니다. Tensor Parallelism에 대해 더 알아보려면 [여기](perf_train_gpu_many#tensor-parallelism)를 참고하세요.
### 토큰 (token)
일반적인 단어 단위이지만, 때에 따라 서브 워드(자주 사용되지 않는 단어는 서브 워드로 분리됨)나 문장 부호도 포함될 수 있는 문장의 구성 요소입니다.
### 토큰 타입 ID (token type IDs)
일부 모델은 문장 쌍 분류나 질의 응답 작업을 수행하는 데 사용됩니다.
<Youtube id="0u3ioSwev3s"/>
이러한 작업에서는 두 개의 서로 다른 시퀀스를 하나의 "input_ids" 항목으로 결합해야 하며, 일반적으로 `[CLS]` 분류용 및 `[SEP]` 구분용과 같은 특수 토큰을 사용하여 처리합니다. 예를 들어, BERT 모델은 두 개의 시퀀스를 다음과 같은 방식으로 구성합니다:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
두 개의 시퀀스를 `tokenizer`에 리스트가 아닌 개별 인자로 전달하면, 토크나이저가 자동으로 이러한 문장을 생성해 줍니다. 예시는 다음과 같습니다:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a, sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
결과는 아래와 같습니다:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP]
```
이 코드는 일부 모델이 두 개의 시퀀스를 어떻게 구분하는지 이해하는 데 충분합니다. 그러나 BERT와 같은 다른 모델은 토큰 타입 ID(또는 세그먼트 ID)를 추가로 사용합니다. 이 ID는 0과 1로 구성된 이진 마스크로, 두 시퀀스를 구분하는 역할을 합니다.
토크나이저는 이 마스크를 "token_type_id" 항목으로 반환합니다:
```python
>>> encoded_dict["token_type_ids"]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
질문에 사용되는 첫 번째 시퀀스인 "context"는 모든 토큰이 `0`으로 표시됩니다. 반면 두 번째 시퀀스인 "question"은 모든 토큰이 `1`로 표시됩니다.
일부 모델(예: [`XLNetModel`])은 `2`로 표시되는 추가 토큰을 사용하기도 합니다.
### 전이학습 (transfer learning)
사전 학습된(pretrained) 모델을 가져와 특정 작업에 맞는 데이터셋에 대해 추가 학습하는 기술입니다. 모델을 처음부터 학습시키는 대신, 기존 모델이 학습한 지식을 출발점으로 삼아 더욱 빠르게 학습할 수 있습니다. 이를 통해 학습 속도를 높이고 필요한 데이터양도 줄일 수 있습니다.
### 트랜스포머 (transformer)
셀프 어텐션 메커니즘을 기반으로 한 딥러닝 모델 아키텍처입니다.
## U
### 비지도 학습 (unsupervised learning)
정답(레이블)이 포함되지 않은 데이터를 이용해 모델을 학습시키는 방식입니다. 비지도 학습은 데이터 분포의 통계적 특성을 활용해 유용한 패턴을 찾아냅니다.
## Z
### Zero Redundancy Optimizer (ZeRO)
[TensorParallel](#tensor-parallelism-tp)과 유사하게 텐서를 샤딩(sharding)하는 병렬 처리 기법이지만, 순전파(forward)나 역전파(backward) 계산 시점에 전체 텐서를 다시 복원한다는 점에서 차이가 있습니다. 따라서 모델 자체를 수정할 필요가 없습니다. 이 방법은 GPU 메모리가 부족할 경우 이를 보완하기 위한 다양한 오프로딩 (offloading) 기법도 지원합니다.
ZeRO에 대해 더 알아보려면 [이 문서](perf_train_gpu_many#zero-data-parallelism)를 참고하세요.

View File

@ -0,0 +1,85 @@
<!--Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quark[[quark]]
[Quark](https://quark.docs.amd.com/latest/)는 특정 데이터 타입, 알고리즘, 하드웨어에 구애받지 않도록 설계된 딥러닝 양자화 툴킷입니다. Quark에서는 다양한 전처리 전략, 알고리즘, 데이터 타입을 조합하여 사용할 수 있습니다.
🤗 Transformers를 통해 통합된 PyTorch 지원은 주로 AMD CPU 및 GPU를 대상으로 하며, 주로 평가 목적으로 사용됩니다. 예를 들어, [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)를 🤗 Transformers 백엔드와 함께 사용하여 Quark로 양자화된 다양한 모델을 원활하게 평가할 수 있습니다.
Quark에 관심이 있는 사용자는 [문서](https://quark.docs.amd.com/latest/)를 참고하여 모델 양자화를 시작하고 지원되는 오픈 소스 라이브러리에서 사용할 수 있습니다!
Quark는 자체 체크포인트/[설정 포맷](https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV-Quark-test/blob/main/config.json#L26)를 가지고 있지만, 다른 양자화/런타임 구현체 ([AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq), [네이티브 fp8](https://huggingface.co/docs/transformers/quantization/finegrained_fp8))와 호환되는 직렬화 레이아웃으로 모델을 생성하는 것도 지원합니다.
Transformer에서 Quark 양자화 모델을 로드하려면 먼저 라이브러리를 설치해야 합니다:
```bash
pip install amd-quark
```
## 지원 매트릭스[[Support matrix]]
Quark를 통해 양자화된 모델은 함께 조합할 수 있는 광범위한 기능을 지원합니다. 구성에 관계없이 모든 양자화된 모델은 `PretrainedModel.from_pretrained`를 통해 원활하게 다시 로드할 수 있습니다.
아래 표는 Quark에서 지원하는 몇 가지 기능을 보여줍니다:
| **기능** | **Quark에서 지원하는 항목** | |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|---|
| 데이터 타입 | int8, int4, int2, bfloat16, float16, fp8_e5m2, fp8_e4m3, fp6_e3m2, fp6_e2m3, fp4, OCP MX, MX6, MX9, bfp16 | |
| 양자화 전 모델 변환 | SmoothQuant, QuaRot, SpinQuant, AWQ | |
| 양자화 알고리즘 | GPTQ | |
| 지원 연산자 | ``nn.Linear``, ``nn.Conv2d``, ``nn.ConvTranspose2d``, ``nn.Embedding``, ``nn.EmbeddingBag`` | |
| 세분성(Granularity) | per-tensor, per-channel, per-block, per-layer, per-layer type | |
| KV 캐시 | fp8 | |
| 활성화 캘리브레이션 | MinMax / Percentile / MSE | |
| 양자화 전략 | weight-only, static, dynamic, with or without output quantization | |
## Hugging Face Hub의 모델[[Models on Hugging Face Hub]]
Quark 네이티브 직렬화를 사용하는 공개 모델은 https://huggingface.co/models?other=quark 에서 찾을 수 있습니다.
Quark는 [`quant_method="fp8"`을 이용하는 모델](https://huggingface.co/models?other=fp8)과 [`quant_method="awq"`을 사용하는 모델](https://huggingface.co/models?other=awq)도 지원하지만, Transformers는 이러한 모델을 [AutoAWQ](https://huggingface.co/docs/transformers/quantization/awq)를 통해 불러오거나
[🤗 Transformers의 네이티브 fp8 지원](https://huggingface.co/docs/transformers/quantization/finegrained_fp8)을 사용합니다.
## Transformers에서 Quark모델 사용하기[[Using Quark models in Transformers]]
다음은 Transformers에서 Quark 모델을 불러오는 방법의 예시입니다:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "EmbeddedLLM/Llama-3.1-8B-Instruct-w_fp8_per_channel_sym"
model = AutoModelForCausalLM.from_pretrained(model_id)
model = model.to("cuda")
print(model.model.layers[0].self_attn.q_proj)
# QParamsLinear(
# (weight_quantizer): ScaledRealQuantizer()
# (input_quantizer): ScaledRealQuantizer()
# (output_quantizer): ScaledRealQuantizer()
# )
tokenizer = AutoTokenizer.from_pretrained(model_id)
inp = tokenizer("Where is a good place to cycle around Tokyo?", return_tensors="pt")
inp = inp.to("cuda")
res = model.generate(**inp, min_new_tokens=50, max_new_tokens=100)
print(tokenizer.batch_decode(res)[0])
# <|begin_of_text|>Where is a good place to cycle around Tokyo? There are several places in Tokyo that are suitable for cycling, depending on your skill level and interests. Here are a few suggestions:
# 1. Yoyogi Park: This park is a popular spot for cycling and has a wide, flat path that's perfect for beginners. You can also visit the Meiji Shrine, a famous Shinto shrine located in the park.
# 2. Imperial Palace East Garden: This beautiful garden has a large, flat path that's perfect for cycling. You can also visit the
```

View File

@ -0,0 +1,216 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_duplicated_method.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_duplicated_method.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DuplicatedMethodConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DuplicatedMethodModel`]. It is used to instantiate an DuplicatedMethod
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DuplicatedMethod-7B.
e.g. [meta-duplicated_method/DuplicatedMethod-2-7b-hf](https://huggingface.co/meta-duplicated_method/DuplicatedMethod-2-7b-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DuplicatedMethod model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DuplicatedMethodModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. DuplicatedMethod 1 supports up to 2048 tokens,
DuplicatedMethod 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'duplicated_method3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'duplicated_method3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'duplicated_method3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import DuplicatedMethodModel, DuplicatedMethodConfig
>>> # Initializing a DuplicatedMethod duplicated_method-7b style configuration
>>> configuration = DuplicatedMethodConfig()
>>> # Initializing a model from the duplicated_method-7b style configuration
>>> model = DuplicatedMethodModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "duplicated_method"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `DuplicatedMethodModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def vocab_size(self):
return 45
@vocab_size.setter
def vocab_size(self, value):
self.vocab_size = value

View File

@ -125,8 +125,6 @@ class MyNewModelConfig(PretrainedConfig):
>>> # Accessing the model configuration
>>> configuration = model.config
```
new_param (`int`, *optional*, defaults to `False`):
A fun new parameter
"""
model_type = "my_new_model"

View File

@ -1,446 +0,0 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_dummy.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_dummy.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging
from .configuration_dummy import DummyConfig
logger = logging.get_logger(__name__)
@use_kernel_forward_from_hub("RMSNorm")
class DummyRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DummyRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class DummyRotaryEmbedding(nn.Module):
def __init__(self, config: DummyConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class DummyMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 4]
x2 = x[..., x.shape[-1] // 4 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class DummyAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DummyConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DummyDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: DummyConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DummyAttention(config=config, layer_idx=layer_idx)
self.mlp = DummyMLP(config)
self.input_layernorm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class DummyPreTrainedModel(PreTrainedModel):
config_class = DummyConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DummyDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, DummyRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class DummyModel(DummyPreTrainedModel):
def __init__(self, config: DummyConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DummyDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DummyRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DummyRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)

View File

@ -0,0 +1,169 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_global_indexing.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_global_indexing.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional
import torch
from torch import nn
from transformers.modeling_utils import AttentionInterface
from ...cache_utils import Cache
from ...processing_utils import Unpack
from ...utils import TransformersKwargs
from .configuration_global_indexing import GlobalIndexingConfig
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def custom_flex(x, **kwargs):
"""Dummy function."""
return x
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
# This indexing statement and associated function should be exported correctly!
ALL_ATTENTION_FUNCTIONS["flex_attention"] = custom_flex
class GlobalIndexingAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlobalIndexingConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights

View File

@ -1,446 +0,0 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_multimodal1.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_multimodal1.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging
from .configuration_multimodal1 import Multimodal1TextConfig
logger = logging.get_logger(__name__)
@use_kernel_forward_from_hub("RMSNorm")
class Multimodal1TextRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Multimodal1TextRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Multimodal1TextRotaryEmbedding(nn.Module):
def __init__(self, config: Multimodal1TextConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Multimodal1TextMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Multimodal1TextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Multimodal1TextConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Multimodal1TextConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Multimodal1TextAttention(config=config, layer_idx=layer_idx)
self.mlp = Multimodal1TextMLP(config)
self.input_layernorm = Multimodal1TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Multimodal1TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class Multimodal1TextPreTrainedModel(PreTrainedModel):
config_class = Multimodal1TextConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Multimodal1TextDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Multimodal1TextRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class Multimodal1TextModel(Multimodal1TextPreTrainedModel):
def __init__(self, config: Multimodal1TextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Multimodal1TextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Multimodal1TextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Multimodal1TextRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)

View File

@ -289,7 +289,6 @@ class Multimodal2VisionEncoder(nn.Module):
self.layers = nn.ModuleList([Multimodal2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
@can_return_tuple
def forward(
self,
inputs_embeds,
@ -455,7 +454,6 @@ class Multimodal2VisionTransformer(nn.Module):
self.encoder = Multimodal2VisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@can_return_tuple
@auto_docstring
def forward(
self,
@ -500,6 +498,7 @@ class Multimodal2VisionPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_flex_attn = True
_supports_attention_backend = True

View File

@ -12,13 +12,13 @@ from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, logging
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ...utils.generic import check_model_inputs
from .configuration_my_new_model2 import MyNewModel2Config
@ -65,7 +65,7 @@ class MyNewModel2RotaryEmbedding(nn.Module):
def __init__(self, config: MyNewModel2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -149,7 +149,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -200,8 +200,8 @@ class MyNewModel2Attention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -254,22 +254,19 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
@ -282,12 +279,7 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
return hidden_states
@auto_docstring
@ -298,12 +290,17 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
_no_split_modules = ["MyNewModel2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": MyNewModel2DecoderLayer,
"attentions": MyNewModel2Attention,
}
def _init_weights(self, module):
std = self.config.initializer_range
@ -343,7 +340,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@check_model_inputs
@auto_docstring
def forward(
self,
@ -353,26 +350,12 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
@ -394,6 +377,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
# embed positions
@ -408,42 +392,21 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@ -488,8 +451,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -505,8 +467,7 @@ class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)

View File

@ -96,6 +96,7 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
_supports_quantized_cache = True
_supports_static_cache = True
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_attention_backend = True
@ -118,6 +119,8 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
)
class NewTaskModelModel(NewTaskModelPreTrainedModel):
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
# we are filtering the logits/labels so we shouldn't divide the loss based on num_items_in_batch
accepts_loss_kwargs = False
def __init__(self, config: NewTaskModelConfig):
super().__init__(config)
@ -313,9 +316,11 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
special_image_mask = input_ids == self.config.image_token_id
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
@ -433,32 +438,6 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
num_logits_to_keep: int = 0,
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, NewTaskModelForNewTask
>>> model = NewTaskModelForNewTask.from_pretrained("google/new_task_model2-3b-mix-224")
>>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224")
>>> prompt = "Where is the cat standing?"
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs,)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Where is the cat standing?\nsnow"
```
Returns:
"""
vlm_outputs = super().forward(

View File

@ -14,12 +14,12 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...integrations import use_kernel_forward_from_hub
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple
from ...utils import TransformersKwargs, auto_docstring
from ...utils.generic import check_model_inputs
from .configuration_super import SuperConfig
@ -48,7 +48,7 @@ class SuperRotaryEmbedding(nn.Module):
def __init__(self, config: SuperConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
@ -148,7 +148,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -199,8 +199,8 @@ class SuperAttention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -253,22 +253,19 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
@ -281,12 +278,7 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
return hidden_states
@auto_docstring
@ -297,12 +289,17 @@ class SuperPreTrainedModel(PreTrainedModel):
_no_split_modules = ["SuperDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_flash_attn_3 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": SuperDecoderLayer,
"attentions": SuperAttention,
}
def _init_weights(self, module):
std = self.config.initializer_range
@ -342,7 +339,7 @@ class SuperModel(SuperPreTrainedModel):
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@check_model_inputs
@auto_docstring
def forward(
self,

View File

@ -11,9 +11,9 @@ import torch
from torch import nn
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs
from .configuration_switch_function import SwitchFunctionConfig
@ -72,7 +72,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
@ -123,8 +123,8 @@ class SwitchFunctionAttention(nn.Module):
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)

View File

@ -1,15 +0,0 @@
import torch
from transformers.models.llama.modeling_llama import LlamaModel
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 4]
x2 = x[..., x.shape[-1] // 4 :]
return torch.cat((-x2, x1), dim=-1)
# example where we need some deps and some functions
class DummyModel(LlamaModel):
pass

View File

@ -0,0 +1,11 @@
from transformers.models.llama.configuration_llama import LlamaConfig
class DuplicatedMethodConfig(LlamaConfig):
@property
def vocab_size(self):
return 45
@vocab_size.setter
def vocab_size(self, value):
self.vocab_size = value

View File

@ -0,0 +1,16 @@
from transformers.modeling_utils import AttentionInterface
from transformers.models.llama.modeling_llama import LlamaAttention
def custom_flex(x, **kwargs):
"""Dummy function."""
return x
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
# This indexing statement and associated function should be exported correctly!
ALL_ATTENTION_FUNCTIONS["flex_attention"] = custom_flex
class GlobalIndexingAttention(LlamaAttention):
pass

View File

@ -1,6 +0,0 @@
from transformers.models.llama.modeling_llama import LlamaModel
# Check that we can correctly change the prefix (here add Text part at the end of the name)
class Multimodal1TextModel(LlamaModel):
pass

View File

@ -2,11 +2,122 @@ from transformers.models.llama.configuration_llama import LlamaConfig
# Example where we only want to only add a new config argument and new arg doc
# here there is no `ARG` so we are gonna take parent doc
class MyNewModelConfig(LlamaConfig):
r"""
new_param (`int`, *optional*, defaults to `False`):
A fun new parameter
This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MyNewModel-7B.
e.g. [meta-my_new_model/MyNewModel-2-7b-hf](https://huggingface.co/meta-my_new_model/MyNewModel-2-7b-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MyNewModel model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MyNewModelModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. MyNewModel 1 supports up to 2048 tokens,
MyNewModel 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'my_new_model3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'my_new_model3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'my_new_model3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'my_new_model3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import MyNewModelModel, MyNewModelConfig
>>> # Initializing a MyNewModel my_new_model-7b style configuration
>>> configuration = MyNewModelConfig()
>>> # Initializing a model from the my_new_model-7b style configuration
>>> model = MyNewModelModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
def __init__(self, mlp_bias=True, new_param=0, **super_kwargs):

View File

@ -65,7 +65,7 @@ examples/pytorch/token-classification/run_ner.py \
Most example scripts should have the first two command line arguments and some have the third one. You can quickly check if a given example supports any of these by passing a `-h` option, e.g.:
```bash
examples/pytorch/token-classification/run_ner.py -h
token-classification/run_ner.py -h
```
## Resuming training
@ -110,7 +110,7 @@ classification MNLI task using the `run_glue` script, with 8 GPUs:
```bash
torchrun \
--nproc_per_node 8 pytorch/text-classification/run_glue.py \
--nproc_per_node 8 text-classification/run_glue.py \
--model_name_or_path google-bert/bert-large-uncased-whole-word-masking \
--task_name mnli \
--do_train \

View File

@ -22,6 +22,7 @@ protobuf
torch
torchvision
torchaudio
torchcodec
jiwer
librosa
evaluate >= 0.2.0

View File

@ -84,7 +84,7 @@ loaded using the pre-trained weights.
Finally, we can run the example script to train the model:
```bash
python examples/pytorch/contrastive-image-text/run_clip.py \
python run_clip.py \
--output_dir ./clip-roberta-finetuned \
--model_name_or_path ./clip-roberta \
--data_dir $PWD/data \

View File

@ -21,7 +21,7 @@ limitations under the License.
`run_swag` allows you to fine-tune any model from our [hub](https://huggingface.co/models) (as long as its architecture as a `ForMultipleChoice` version in the library) on the SWAG dataset or your own csv/jsonlines files as long as they are structured the same way. To make it works on another dataset, you will need to tweak the `preprocess_function` inside the script.
```bash
python examples/pytorch/multiple-choice/run_swag.py \
python run_swag.py \
--model_name_or_path FacebookAI/roberta-base \
--do_train \
--do_eval \

View File

@ -1,5 +1,5 @@
albumentations >= 1.4.16
timm
datasets
datasets>=4.0
torchmetrics
pycocotools

View File

@ -399,7 +399,10 @@ def main():
dataset["validation"] = split["test"]
# Get dataset categories and prepare mappings for label_name <-> label_id
categories = dataset["train"].features["objects"].feature["category"].names
if isinstance(dataset["train"].features["objects"], dict):
categories = dataset["train"].features["objects"]["category"].feature.names
else: # (for old versions of `datasets` that used Sequence({...}) of the objects)
categories = dataset["train"].features["objects"].feature["category"].names
id2label = dict(enumerate(categories))
label2id = {v: k for k, v in id2label.items()}

View File

@ -460,7 +460,10 @@ def main():
dataset["validation"] = split["test"]
# Get dataset categories and prepare mappings for label_name <-> label_id
categories = dataset["train"].features["objects"].feature["category"].names
if isinstance(dataset["train"].features["objects"], dict):
categories = dataset["train"].features["objects"]["category"].feature.names
else: # (for old versions of `datasets` that used Sequence({...}) of the objects)
categories = dataset["train"].features["objects"].feature["category"].names
id2label = dict(enumerate(categories))
label2id = {v: k for k, v in id2label.items()}

View File

@ -324,13 +324,12 @@ def main():
args.model_name_or_path, id2label=id2label, label2id=label2id, trust_remote_code=args.trust_remote_code
)
image_processor = AutoImageProcessor.from_pretrained(
args.model_name_or_path, trust_remote_code=args.trust_remote_code
args.model_name_or_path, trust_remote_code=args.trust_remote_code, do_reduce_labels=args.do_reduce_labels
)
model = AutoModelForSemanticSegmentation.from_pretrained(
args.model_name_or_path,
config=config,
trust_remote_code=args.trust_remote_code,
do_reduce_labels=args.do_reduce_labels,
)
# Define transforms to be applied to each image and target.

View File

@ -40,7 +40,7 @@ and you also will find examples of these below.
Here is an example on a summarization task:
```bash
python examples/pytorch/summarization/run_summarization.py \
python run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
@ -64,7 +64,7 @@ And here is how you would use it on your own files, after adjusting the values f
`--train_file`, `--validation_file`, `--text_column` and `--summary_column` to match your setup:
```bash
python examples/pytorch/summarization/run_summarization.py \
python run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \

View File

@ -42,7 +42,7 @@ and you also will find examples of these below.
Here is an example of a translation fine-tuning with a MarianMT model:
```bash
python examples/pytorch/translation/run_translation.py \
python run_translation.py \
--model_name_or_path Helsinki-NLP/opus-mt-en-ro \
--do_train \
--do_eval \
@ -62,7 +62,7 @@ MBart and some T5 models require special handling.
T5 models `google-t5/t5-small`, `google-t5/t5-base`, `google-t5/t5-large`, `google-t5/t5-3b` and `google-t5/t5-11b` must use an additional argument: `--source_prefix "translate {source_lang} to {target_lang}"`. For example:
```bash
python examples/pytorch/translation/run_translation.py \
python run_translation.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
@ -85,7 +85,7 @@ For the aforementioned group of T5 models it's important to remember that if you
MBart models require a different format for `--source_lang` and `--target_lang` values, e.g. instead of `en` it expects `en_XX`, for `ro` it expects `ro_RO`. The full MBart specification for language codes can be found [here](https://huggingface.co/facebook/mbart-large-cc25). For example:
```bash
python examples/pytorch/translation/run_translation.py \
python run_translation.py \
--model_name_or_path facebook/mbart-large-en-ro \
--do_train \
--do_eval \
@ -104,7 +104,7 @@ And here is how you would use the translation finetuning on your own files, afte
values for the arguments `--train_file`, `--validation_file` to match your setup:
```bash
python examples/pytorch/translation/run_translation.py \
python run_translation.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
@ -133,7 +133,7 @@ Here the languages are Romanian (`ro`) and English (`en`).
If you want to use a pre-processed dataset that leads to high BLEU scores, but for the `en-de` language pair, you can use `--dataset_name stas/wmt14-en-de-pre-processed`, as following:
```bash
python examples/pytorch/translation/run_translation.py \
python run_translation.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \

View File

@ -52,7 +52,7 @@ To create the package for pypi.
twine upload dist/* -r testpypi --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi transformers
pip install -i https://test.pypi.org/simple/ transformers
Check you can run the following commands:
python -c "from transformers import pipeline; classifier = pipeline('text-classification'); print(classifier('What a nice release'))"
@ -204,6 +204,7 @@ _deps = [
"opentelemetry-api",
"opentelemetry-exporter-otlp",
"opentelemetry-sdk",
"mistral-common[opencv]>=1.6.3",
]
@ -313,7 +314,7 @@ extras["hub-kernels"] = deps_list("kernels")
extras["integrations"] = extras["hub-kernels"] + extras["optuna"] + extras["ray"] + extras["sigopt"]
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette")
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette") + extras["torch"]
extras["audio"] = deps_list(
"librosa",
"pyctcdecode",
@ -334,6 +335,7 @@ extras["video"] = deps_list("av")
extras["num2words"] = deps_list("num2words")
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
extras["tiktoken"] = deps_list("tiktoken", "blobfile")
extras["mistral-common"] = deps_list("mistral-common[opencv]")
extras["testing"] = (
deps_list(
"pytest",
@ -363,6 +365,7 @@ extras["testing"] = (
)
+ extras["retrieval"]
+ extras["modelcreation"]
+ extras["mistral-common"]
)
extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"]
@ -384,6 +387,7 @@ extras["all"] = (
+ extras["accelerate"]
+ extras["video"]
+ extras["num2words"]
+ extras["mistral-common"]
)

View File

@ -34,6 +34,7 @@ from .utils import (
is_g2p_en_available,
is_keras_nlp_available,
is_librosa_available,
is_mistral_common_available,
is_pretty_midi_available,
is_scipy_available,
is_sentencepiece_available,
@ -310,6 +311,18 @@ else:
"convert_slow_tokenizer",
]
try:
if not (is_mistral_common_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils import dummy_mistral_common_objects
_import_structure["utils.dummy_mistral_common_objects"] = [
name for name in dir(dummy_mistral_common_objects) if not name.startswith("_")
]
else:
_import_structure["tokenization_mistral_common"] = ["MistralCommonTokenizer"]
# Vision-specific objects
try:
if not is_vision_available():

View File

@ -1157,9 +1157,7 @@ def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int =
frame = waveform[i : i + fft_window_size]
frame_width = frame.shape[0]
if frame_width < waveform.shape[0]:
frame = np.lib.pad(
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
)
frame = np.pad(frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0)
frames.append(frame)
frames = np.stack(frames, 0)

View File

@ -185,17 +185,6 @@ class Cache:
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
@property
def seen_tokens(self):
logger.warning_once(
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
"model input instead."
)
if hasattr(self, "_seen_tokens"):
return self._seen_tokens
else:
return None
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
@ -472,7 +461,6 @@ class DynamicCache(Cache):
def __init__(self, _distributed_cache_data: Optional[Iterable] = None) -> None:
super().__init__()
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
@ -535,10 +523,6 @@ class DynamicCache(Cache):
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if key_states is not None:
if len(self.key_cache) <= layer_idx:
@ -605,7 +589,6 @@ class DynamicCache(Cache):
if self.get_seq_length() <= max_length:
return
self._seen_tokens = max_length
for idx in range(len(self.key_cache)):
if self.key_cache[idx].numel():
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
@ -617,7 +600,6 @@ class DynamicCache(Cache):
out = []
for i in range(0, full_batch_size, split_size):
current_split = DynamicCache()
current_split._seen_tokens = self._seen_tokens
current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
out.append(current_split)
@ -815,10 +797,6 @@ class OffloadedCache(DynamicCache):
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) < layer_idx:
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.")
@ -857,6 +835,9 @@ class QuantizedCache(DynamicCache):
def __init__(self, cache_config: QuantizedCacheConfig) -> None:
super().__init__()
# Used only for QuantCache where the seq-length can't be inferred easily from cache contents
self._seen_tokens = 0
self._quantized_key_cache: list[torch.Tensor] = []
self._quantized_value_cache: list[torch.Tensor] = []
@ -1098,6 +1079,10 @@ class StaticCache(Cache):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
tp_size (`Optional[int]`, *optional*):
The tensor parallel size of the model. This is used to adjust the number of key/value heads in the cache
if the model is using tensor parallelism. If not provided, it defaults to `None`, which means that the
number of key/value heads will not be adjusted.
Example:
@ -1130,6 +1115,7 @@ class StaticCache(Cache):
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.float32,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
tp_size: Optional[int] = None,
) -> None:
super().__init__()
self.max_batch_size = max_batch_size
@ -1144,6 +1130,13 @@ class StaticCache(Cache):
if getattr(config, "num_key_value_heads", None) is None
else config.num_key_value_heads
)
if tp_size is not None and tp_size > 1:
if self.num_key_value_heads % tp_size != 0:
raise ValueError(
f"Number of key value heads {self.num_key_value_heads} must be divisible by tensor parallel size {tp_size}."
)
# If the model is using tensor parallelism, we need to adjust the number of heads accordingly.
self.num_key_value_heads //= tp_size
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
@ -1400,6 +1393,19 @@ class EncoderDecoderCache(Cache):
for layer_idx in range(len(cross_attention_cache.key_cache)):
self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (
self.self_attention_cache.key_cache[layer_idx],
self.self_attention_cache.value_cache[layer_idx],
self.cross_attention_cache.key_cache[layer_idx],
self.cross_attention_cache.value_cache[layer_idx],
)
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
@ -1573,6 +1579,10 @@ class HybridCache(Cache):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
tp_size (`Optional[int]`, *optional*):
The tensor parallel size of the model. This is used to adjust the number of key/value heads in the cache
if the model is using tensor parallelism. If not provided, it defaults to `None`, which means that the
number of key/value heads will not be adjusted.
Example:
@ -1604,6 +1614,7 @@ class HybridCache(Cache):
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.float32,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
tp_size: Optional[int] = None,
) -> None:
super().__init__()
if not hasattr(config, "sliding_window") or config.sliding_window is None:
@ -1627,6 +1638,13 @@ class HybridCache(Cache):
if getattr(config, "num_key_value_heads", None) is None
else config.num_key_value_heads
)
if tp_size is not None and tp_size > 1:
if self.num_key_value_heads % tp_size != 0:
raise ValueError(
f"Number of key value heads {self.num_key_value_heads} must be divisible by tensor parallel size {tp_size}."
)
# If the model is using tensor parallelism, we need to adjust the number of heads accordingly.
self.num_key_value_heads //= tp_size
# If the attribute does not exist in the config, fallback to a simple StaticCache
if hasattr(config, "layer_types"):
@ -2197,6 +2215,10 @@ class OffloadedStaticCache(StaticCache):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
tp_size (`Optional[int]`, *optional*):
The tensor parallel size of the model. This is used to adjust the number of key/value heads in the cache
if the model is using tensor parallelism. If not provided, it defaults to `None`, which means that the
number of key/value heads will not be adjusted.
Example:
@ -2228,6 +2250,7 @@ class OffloadedStaticCache(StaticCache):
dtype: Optional[torch.dtype] = None,
offload_device: Union[str, torch.device] = torch.device("cpu"),
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
tp_size: Optional[int] = None,
) -> None:
super(Cache, self).__init__()
@ -2251,6 +2274,13 @@ class OffloadedStaticCache(StaticCache):
if getattr(config, "num_key_value_heads", None) is None
else config.num_key_value_heads
)
if tp_size is not None and tp_size > 1:
if num_key_value_heads % tp_size != 0:
raise ValueError(
f"Number of key value heads {num_key_value_heads} must be divisible by tensor parallel size {tp_size}."
)
# If the model is using tensor parallelism, we need to adjust the number of heads accordingly.
num_key_value_heads //= tp_size
cache_shape = (max_batch_size, num_key_value_heads, self.max_cache_len, head_dim)
@ -2277,10 +2307,6 @@ class OffloadedStaticCache(StaticCache):
self._device_key_cache.append(key_cache)
self._device_value_cache.append(value_cache)
# For backwards compatibility.
# TODO(gante): Remove this.
self._seen_tokens = 0
# Create new CUDA stream for parallel prefetching.
self._prefetch_stream = torch.cuda.Stream() if self.device.type == "cuda" else None
@ -2314,10 +2340,6 @@ class OffloadedStaticCache(StaticCache):
value_states = value_states.to(self.value_cache[layer_idx].dtype)
if layer_idx == 0:
# Update seen tokens.
# TODO(gante): Remove this.
self._seen_tokens += key_states.shape[-2]
# Always there.
k_out = self.key_cache[0]
v_out = self.value_cache[0]
@ -2371,10 +2393,14 @@ class OffloadedStaticCache(StaticCache):
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model."""
# TODO(gante): Remove this.
return self._seen_tokens
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
is_empty_layer = (
len(self.key_cache) == 0 # no cache in any layer
or len(self.key_cache) <= layer_idx # hasn't run a layer with cache after it
or not self.key_cache[layer_idx].numel() # the layer has no cache
)
layer_seq_length = self.key_cache[layer_idx].shape[-2] if not is_empty_layer else 0
return layer_seq_length
def get_max_cache_shape(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
@ -2384,22 +2410,12 @@ class OffloadedStaticCache(StaticCache):
def reset(self) -> None:
"""Resets the cache values while preserving the objects."""
# For backwards compatibility.
# TODO(gante): Remove this.
self._seen_tokens = 0
# Zero out cache.
for layer_idx in range(len(self.key_cache)):
# In-place ops prevent breaking the static address.
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
@property
def seen_tokens(self) -> int:
# For backwards compatibility.
# TODO(gante): Remove this.
return self._seen_tokens
def _create_key_value_cache_tensors(
self, shape: tuple[int, ...], device: torch.device
) -> tuple[torch.Tensor, torch.Tensor]:

View File

@ -14,6 +14,7 @@
import asyncio
import copy
import json
import os
import platform
@ -333,6 +334,11 @@ class ChatCommand(BaseTransformersCLICommand):
)
args.host, args.port = args.model_name_or_path_or_address.rsplit(":", 1)
if args.model_name_or_path is None:
raise ValueError(
"When connecting to a server, please specify a model name with the --model_name_or_path flag."
)
else:
self.spawn_backend = True
args.model_name_or_path = args.model_name_or_path_or_address
@ -446,11 +452,13 @@ class ChatCommand(BaseTransformersCLICommand):
)
return processed_generate_flags
def get_generation_parameterization(self, args: ChatArguments) -> tuple[GenerationConfig, dict]:
def get_generation_parameterization(
self, args: ChatArguments, model_generation_config: GenerationConfig
) -> tuple[GenerationConfig, dict]:
"""
Returns a GenerationConfig object holding the generation parameters for the CLI command.
"""
# No generation config arg provided -> use base generation config, apply CLI defaults
# No generation config arg provided -> use model's default generation config, then apply CLI defaults
if args.generation_config is not None:
if ".json" in args.generation_config: # is a local file
dirname = os.path.dirname(args.generation_config)
@ -462,7 +470,8 @@ class ChatCommand(BaseTransformersCLICommand):
# !!!!!!!!!
# This is a chat session, so we have a few non-standard defaults
# !!!!!!!!!
generation_config = GenerationConfig(do_sample=True, max_new_tokens=256)
generation_config = copy.deepcopy(model_generation_config)
generation_config.update({"do_sample": True, "max_new_tokens": 256})
# Finally: parse and apply `generate_flags`
parsed_generate_flags = self.parse_generate_flags(args.generate_flags)
@ -670,7 +679,8 @@ class ChatCommand(BaseTransformersCLICommand):
else:
user = args.user
generation_config, model_kwargs = self.get_generation_parameterization(args)
model_generation_config = GenerationConfig.from_pretrained(args.model_name_or_path)
generation_config, model_kwargs = self.get_generation_parameterization(args, model_generation_config)
interface = RichInterface(model_name=args.model_name_or_path, user_name=user)
interface.clear()
@ -710,7 +720,7 @@ class ChatCommand(BaseTransformersCLICommand):
stream=True,
extra_body={
"request_id": request_id,
"generation_config": {**generation_config.to_dict()},
"generation_config": generation_config.to_json_string(),
"model": model,
},
)

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import functools
import json
import re
@ -20,18 +21,11 @@ from dataclasses import dataclass, field
from threading import Thread
from typing import Any, Optional
from huggingface_hub import (
ChatCompletionStreamOutputChoice,
ChatCompletionStreamOutputDelta,
ChatCompletionStreamOutputDeltaToolCall,
ChatCompletionStreamOutputFunction,
ModelInfo,
model_info,
)
from huggingface_hub import ModelInfo, model_info
from transformers.utils.import_utils import is_fastapi_available, is_pydantic_available, is_uvicorn_available
from .. import PreTrainedTokenizerFast, TextIteratorStreamer
from .. import LogitsProcessorList, PreTrainedTokenizerFast, TextIteratorStreamer
from ..generation.continuous_batching import ContinuousBatchingManager, RequestStatus
from ..utils import is_torch_available, logging
from . import BaseTransformersCLICommand
@ -52,6 +46,7 @@ if is_torch_available():
if is_pydantic_available() and is_fastapi_available() and is_uvicorn_available():
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
@ -87,6 +82,9 @@ if is_pydantic_available() and is_fastapi_available() and is_uvicorn_available()
# tool_prompt: Optional[str] = None
# top_logprobs: Optional[int] = None
# transformers-specific request fields
generation_config: Optional[str] = None
logger = logging.get_logger(__name__)
@ -111,37 +109,48 @@ def serve_command_factory(args: Namespace):
return ServeCommand(args)
def create_generation_config_from_req(req: "ChatCompletionInput") -> "GenerationConfig":
def create_generation_config_from_req(
req: "ChatCompletionInput", model_generation_config: "GenerationConfig", **kwargs
) -> "GenerationConfig":
"""
Creates a generation config from the parameters of the request. Note that we can pass a `GenerationConfig`
(serialized into a `dict`) in `extra_body`, for full `generate` parameterization.
Creates a generation config from the parameters of the request. If a generation config is passed in the request,
it will be used as a baseline for parameterization. Otherwise, we will use the model's default generation config.
Other parameters in the request will be applied on top of the baseline.
Args:
req (`ChatCompletionInput`): The request which may optionally contain generation parameters.
req (`ChatCompletionInput`):
The request which may optionally contain generation parameters.
model_generation_config (`GenerationConfig`):
The model's default generation config.
Returns:
The prepared `GenerationConfig` object.
"""
if req.extra_body is not None and "generation_config" in req.extra_body:
for key in req.extra_body["generation_config"].keys():
if key in ChatCompletionInput.base_field_names.keys():
return {"error": "Duplicated key in the root request and in the passed generation config."}
if req.extra_body is not None and "generation_config" in req.extra_body:
generation_config = GenerationConfig(**(req.extra_body["generation_config"]))
# If there is a generation config in the request, it is a json string serialization from a `GenerationConfig`
# object. For simplicity, flags set here take precedence over all other flags.
if req.generation_config is not None:
generation_config = GenerationConfig(**json.loads(req.generation_config))
else:
generation_config = GenerationConfig()
generation_config = copy.deepcopy(model_generation_config)
non_standard_kwargs = generation_config.update(**kwargs)
# Set extra kwargs that are not in the `GenerationConfig` class (e.g. continuous batching flags)
for k, v in non_standard_kwargs.items():
if v is not None:
setattr(generation_config, k, v)
if req.frequency_penalty is not None:
generation_config.repetition_penalty = req.frequency_penalty
generation_config.repetition_penalty = float(req.frequency_penalty)
if req.logit_bias is not None:
generation_config.sequence_bias = req.logit_bias
if req.stop is not None:
generation_config.stop_strings = req.stop
if req.temperature is not None:
generation_config.temperature = req.temperature
generation_config.temperature = float(req.temperature)
if float(req.temperature) == 0.0:
generation_config.do_sample = False
if req.top_p is not None:
generation_config.top_p = req.top_p
generation_config.top_p = float(req.top_p)
if req.seed is not None:
torch.manual_seed(req.seed)
@ -202,17 +211,28 @@ class ServeArguments:
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "Whether to use nested quantization."})
# Serving settings
host: str = field(default="localhost", metadata={"help": "Interface the server will listen to.."})
host: str = field(default="localhost", metadata={"help": "Interface the server will listen to."})
port: int = field(default=8000, metadata={"help": "Port the server will listen to."})
# Other settings
log_level: str = field(
default="info", metadata={"help": "Logging level as a string. Example: 'info' or 'warning'."}
)
enable_cors: bool = field(
default=False,
metadata={
"help": (
"Whether to enable CORS. Some apps that make requests from external domains (e.g. Cursor) require "
"CORS to be enabled."
),
},
)
class ServeCommand(BaseTransformersCLICommand):
loaded_model: Optional[str] = None
running_continuous_batching_manager: Optional[ContinuousBatchingManager] = None
model: PreTrainedModel
tokenizer: PreTrainedTokenizerFast
@ -236,6 +256,7 @@ class ServeCommand(BaseTransformersCLICommand):
self.args = args
self.use_continuous_batching = self.args.attn_implementation == "sdpa_paged"
self.enable_cors = self.args.enable_cors
# State: preserves information about the last call and last KV cache, to determine whether we can reuse the KV
# cache and avoid re-running prefil
@ -250,36 +271,66 @@ class ServeCommand(BaseTransformersCLICommand):
def build_chunk(
self,
content: str,
request_id: str,
content: Optional[str] = None,
role: Optional[str] = None,
finish_reason: Optional[str] = None,
tool_calls: Optional[list[ChatCompletionStreamOutputDeltaToolCall]] = None,
tool_calls: Optional[list[dict]] = None,
) -> str:
"""
Builds a chunk of a streaming response.
IMPORTANT: The built chunk won't contain empty fields (fields with `None`). Some downstream apps, like Cursor,
assume that when the field exists, it has data.
Args:
request_id (`str`):
The request ID.
content (`str`, *optional*):
Content of the response from the model.
role (`str`, *optional*):
The role of the next content, until a new role is defined.
finish_reason (`str`, *optional*):
The reason the generation by the model has finished.
tool_calls (`list[dict]`, *optional*):
Data about the tool calls, when they are triggered.
Returns:
`str`: The built chunk, a string containing a JSON string with the payload.
"""
payload = {
"object": "chat.completion.chunk",
"id": request_id,
"created": int(time.time()),
"model": self.loaded_model,
"choices": [{"delta": {}, "index": 0}],
"system_fingerprint": "",
"choices": [
ChatCompletionStreamOutputChoice(
delta=ChatCompletionStreamOutputDelta(
role=role,
content=content,
tool_calls=tool_calls,
),
index=0,
logprobs=None,
finish_reason=finish_reason,
),
],
}
if content is not None:
payload["choices"][0]["delta"]["content"] = content
if role is not None:
payload["choices"][0]["delta"]["role"] = role
if tool_calls is not None:
payload["choices"][0]["delta"]["tool_calls"] = tool_calls
if finish_reason is not None:
payload["choices"][0]["finish_reason"] = finish_reason
return f"data: {json.dumps(payload)}\n\n"
def run(self):
app = FastAPI()
# Some apps that make requests from external domains (e.g. Cursor) require CORS to be enabled. However, for
# security purposes, it's disabled by default
if self.enable_cors:
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
if self.use_continuous_batching:
self.continuous_batching(app)
else:
@ -315,7 +366,7 @@ class ServeCommand(BaseTransformersCLICommand):
{
"id": model.id,
"object": "model",
"crated": model.created_at.timestamp(),
"created": model.created_at.timestamp(),
"owned_by": model.author,
}
for model in get_text_gen_models()
@ -326,46 +377,59 @@ class ServeCommand(BaseTransformersCLICommand):
uvicorn.run(app, host=self.args.host, port=self.args.port, log_level=self.args.log_level)
def continuous_batching(self, app):
generation_config = GenerationConfig(
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=False,
num_blocks=1,
block_size=1024,
do_sample=False,
max_batch_tokens=10,
scheduler="fifo",
)
manager: ContinuousBatchingManager = self.model.init_continuous_batching(
generation_config=generation_config, streaming=True
)
manager.start()
@app.post("/v1/chat/completions")
def _serve(req: "ChatCompletionInput"):
if not req.stream:
return {"error": "Only streaming mode is supported."}
update_model = req.model != self.loaded_model
update_model = self.canonicalized_model_name(req.model) != self.loaded_model
if update_model:
self.model, self.tokenizer = self.load_model_and_tokenizer(req.model, self.args)
chat = req.messages
inputs = self.tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
self.model.device
generation_config = create_generation_config_from_req(
req,
model_generation_config=self.model.generation_config,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=False,
num_blocks=1,
block_size=1024,
do_sample=False,
max_batch_tokens=10,
scheduler="fifo",
)
generation_config = create_generation_config_from_req(req)
if self.running_continuous_batching_manager is None or update_model:
self.running_continuous_batching_manager = self.model.init_continuous_batching(
generation_config=generation_config, streaming=True
)
# TODO (Joao, Lysandre): the logits processors should be fixed in continuous batching
# and correctly applied in non-cb
self.running_continuous_batching_manager.logit_processor = LogitsProcessorList()
self.running_continuous_batching_manager.start()
# TODO (Joao, Lysandre): this should also work with tool support
inputs = self.tokenizer.apply_chat_template(
req.messages, return_tensors="pt", add_generation_prompt=True
).to(self.model.device)
def stream_response(_inputs):
try:
max_new_tokens = req.max_tokens or generation_config.max_new_tokens or 256
request_id = manager.add_request(_inputs, request_id=req.request_id, max_new_tokens=max_new_tokens)
max_new_tokens = req.max_tokens or generation_config.max_new_tokens or 1024
request_id = self.running_continuous_batching_manager.add_request(
_inputs, request_id=req.request_id, max_new_tokens=max_new_tokens
)
queue_is_flushed = False
for result in manager:
# Emit the assistant role to start the stream. Other chunks won't have a role, as it is implicit
# they come from the assistant.
yield self.build_chunk(request_id, role="assistant")
for result in self.running_continuous_batching_manager:
if result.request_id != request_id:
continue
if req.request_id is not None and not queue_is_flushed:
if result.status == RequestStatus.FINISHED:
continue
@ -373,12 +437,12 @@ class ServeCommand(BaseTransformersCLICommand):
queue_is_flushed = True
finish_reason = "stop" if result.status == RequestStatus.FINISHED else None
yield self.build_chunk(result.next_token, request_id=request_id, finish_reason=finish_reason)
if result.status == RequestStatus.FINISHED:
yield self.build_chunk(request_id, finish_reason=finish_reason)
break
else:
yield self.build_chunk(request_id=request_id, content=result.next_token)
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(str(e))
yield f'data: {{"error": "{str(e)}"}}'
@ -401,8 +465,8 @@ class ServeCommand(BaseTransformersCLICommand):
# No cached messages: this is a new request
if self.last_messages is None:
req_continues_last_messages = False
# The new request has fewer rounds of conversation: this is a new request
elif len(self.last_messages) > len(req.messages):
# The new request has no new rounds of conversation: this is a new request
elif len(self.last_messages) >= len(req.messages):
req_continues_last_messages = False
# Otherwise, check that the last messages are a subset of the new request
else:
@ -417,7 +481,8 @@ class ServeCommand(BaseTransformersCLICommand):
def generate(self, app):
@app.post("/v1/chat/completions")
def _serve(req: "ChatCompletionInput"):
update_model = req.model != self.loaded_model
logger.debug(f"Received request: {req}")
update_model = self.canonicalized_model_name(req.model) != self.loaded_model
if update_model:
self.model, self.tokenizer = self.load_model_and_tokenizer(req.model, self.args)
@ -453,8 +518,11 @@ class ServeCommand(BaseTransformersCLICommand):
generation_streamer = TextIteratorStreamer(self.tokenizer, skip_special_tokens=True, skip_prompt=True)
generation_config = create_generation_config_from_req(req)
max_new_tokens = req.max_tokens or generation_config.max_new_tokens or 256
generation_config = create_generation_config_from_req(
req,
model_generation_config=self.model.generation_config,
)
max_new_tokens = req.max_tokens or generation_config.max_new_tokens or 1024
generation_config.max_new_tokens = max_new_tokens
last_kv_cache = None
@ -482,7 +550,14 @@ class ServeCommand(BaseTransformersCLICommand):
thread.start()
tool_state = ToolState()
# Emit the assistant role to start the stream. Other chunks won't have a role, as it is implicit
# they come from the assistant.
logger.debug("Starting model output")
yield self.build_chunk(_request_id, role="assistant")
for result in streamer:
logger.debug(f"Model output: {result}")
# ====== TOOL CALL LOGIC ======
if tool_model_family is not None:
# Start of a tool call: reset state variables, set `inside_tool_call`
@ -493,7 +568,7 @@ class ServeCommand(BaseTransformersCLICommand):
# End of tool call: reset `inside_tool_call`, emit a `finish_reason`
if result.strip() == _TOOL_CALL_TOKENS[tool_model_family]["end"]:
tool_state.reset()
yield self.build_chunk("", _request_id, role=None, finish_reason="tool_calls")
yield self.build_chunk(_request_id, finish_reason="tool_calls")
continue
# Inside a tool call
@ -509,15 +584,12 @@ class ServeCommand(BaseTransformersCLICommand):
else:
tool_name = tool_name.group(1)
tool_state.has_tool_name_defined = True
tool = ChatCompletionStreamOutputDeltaToolCall(
function=ChatCompletionStreamOutputFunction(
name=tool_name,
arguments=None,
),
index=0,
type="function",
id=_request_id + "_tool_call", # Only the first tool call delta has an id
)
tool = {
"function": {"name": tool_name},
"index": 0,
"type": "function",
"id": _request_id + "_tool_call", # Only the first tool call delta has an id
}
# Second step: extract tool arguments. The tool arguments can be seen as a json string
# within the tool json string. We emit a delta for the arguments.
@ -537,22 +609,20 @@ class ServeCommand(BaseTransformersCLICommand):
if tool_state.arg_nesting_level < 0:
result = "".join(result.split("}")[:-2]) + "}" # e.g. "4}}\n" -> "4}"
tool = ChatCompletionStreamOutputDeltaToolCall(
function=ChatCompletionStreamOutputFunction(
arguments=result,
),
index=0,
type="function",
id=None,
)
tool = {
"function": {"arguments": result},
"index": 0,
"type": "function",
}
yield self.build_chunk(None, _request_id, role=None, tool_calls=[tool])
yield self.build_chunk(_request_id, tool_calls=[tool])
continue
# ====== END OF TOOL CALL LOGIC ======
# All non-tool related tokens are emitted as assistant messages
yield self.build_chunk(result, _request_id, role="assistant")
yield self.build_chunk(None, _request_id, role=None, finish_reason="stop")
# All non-tool related tokens are emitted as assistant messages. Empty text is skipped.
if result != "":
yield self.build_chunk(_request_id, content=result)
yield self.build_chunk(_request_id, finish_reason="stop")
thread.join()
except Exception as e:
@ -585,6 +655,11 @@ class ServeCommand(BaseTransformersCLICommand):
return quantization_config
def canonicalized_model_name(self, model_id: str) -> str:
if "@" in model_id:
return model_id
return f"{model_id}@main"
def load_model_and_tokenizer(
self, model_id_and_revision: str, args: ServeArguments
) -> tuple[PreTrainedModel, PreTrainedTokenizerFast]:
@ -615,15 +690,15 @@ class ServeCommand(BaseTransformersCLICommand):
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
if model.generation_config.max_new_tokens is not None and model.generation_config.max_new_tokens < 256:
model.generation_config.max_new_tokens = 256
if model.generation_config.max_new_tokens is not None and model.generation_config.max_new_tokens < 1024:
model.generation_config.max_new_tokens = 1024
if getattr(model, "hf_device_map", None) is None:
model = model.to(args.device)
self.loaded_model = model_id_and_revision
self.loaded_model = f"{model_id}@{revision}"
print("Loaded model", model_id_and_revision)
logger.warning(f"Loaded model {self.loaded_model}")
return model, tokenizer

View File

@ -18,7 +18,7 @@ import copy
import json
import os
import warnings
from typing import Any, Optional, Union
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
from packaging import version
@ -39,9 +39,17 @@ from .utils import (
from .utils.generic import is_timm_config_dict
if TYPE_CHECKING:
import torch
logger = logging.get_logger(__name__)
# type hinting: specifying the type of config class that inherits from PretrainedConfig
SpecificPretrainedConfigType = TypeVar("SpecificPretrainedConfigType", bound="PretrainedConfig")
class PretrainedConfig(PushToHubMixin):
# no-format
r"""
@ -104,8 +112,9 @@ class PretrainedConfig(PushToHubMixin):
is_encoder_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as an encoder/decoder or not.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether to only use the decoder in an encoder-decoder architecture, otherwise it has no effect on decoder-only or encoder-only architectures.
cross_attention_hidden_size** (`bool`, *optional*):
Whether to only use the decoder in an encoder-decoder architecture, otherwise it has no effect on
decoder-only or encoder-only architectures.
cross_attention_hidden_size (`bool`, *optional*):
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`.
add_cross_attention (`bool`, *optional*, defaults to `False`):
@ -135,7 +144,8 @@ class PretrainedConfig(PushToHubMixin):
or PyTorch) checkpoint.
id2label (`dict[int, str]`, *optional*):
A map from index (for instance prediction index, or target index) to label.
label2id (`dict[str, int]`, *optional*): A map from label to index for the model.
label2id (`dict[str, int]`, *optional*):
A map from label to index for the model.
num_labels (`int`, *optional*):
Number of labels to use in the last layer added to the model, typically for a classification task.
task_specific_params (`dict[str, Any]`, *optional*):
@ -151,12 +161,16 @@ class PretrainedConfig(PushToHubMixin):
model by default).
prefix (`str`, *optional*):
A specific prompt that should be added at the beginning of each text before calling the model.
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token.
pad_token_id (`int`, *optional*): The id of the _padding_ token.
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token.
bos_token_id (`int`, *optional*):
The id of the _beginning-of-stream_ token.
pad_token_id (`int`, *optional*):
The id of the _padding_ token.
eos_token_id (`int`, *optional*):
The id of the _end-of-stream_ token.
decoder_start_token_id (`int`, *optional*):
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token.
sep_token_id (`int`, *optional*): The id of the _separation_ token.
sep_token_id (`int`, *optional*):
The id of the _separation_ token.
> PyTorch specific parameters
@ -175,23 +189,11 @@ class PretrainedConfig(PushToHubMixin):
This attribute is currently not being used during model loading time, but this may change in the future
versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
> TensorFlow specific parameters
use_bfloat16 (`bool`, *optional*, defaults to `False`):
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models).
tf_legacy_loss (`bool`, *optional*, defaults to `False`):
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers
v5.
loss_type (`str`, *optional*):
The type of loss that the model should use. It should be in `LOSS_MAPPING`'s keys, otherwise the loss will
be automatically inferred from the model architecture.
"""
model_type: str = ""
base_config_key: str = ""
sub_configs: dict[str, "PretrainedConfig"] = {}
sub_configs: dict[str, type["PretrainedConfig"]] = {}
has_no_defaults_at_init: bool = False
attribute_map: dict[str, str] = {}
base_model_tp_plan: Optional[dict[str, Any]] = None
@ -208,93 +210,117 @@ class PretrainedConfig(PushToHubMixin):
key = super().__getattribute__("attribute_map")[key]
return super().__getattribute__(key)
def __init__(self, **kwargs):
# Attributes with defaults
self.return_dict = kwargs.pop("return_dict", True)
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
self._output_attentions = kwargs.pop("output_attentions", False)
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) # Only used by TensorFlow models
self.pruned_heads = kwargs.pop("pruned_heads", {})
self.tie_word_embeddings = kwargs.pop(
"tie_word_embeddings", True
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
def __init__(
self,
*,
# All models common arguments
output_hidden_states: bool = False,
output_attentions: bool = False,
return_dict: bool = True,
torchscript: bool = False,
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
# Common arguments
pruned_heads: Optional[dict[int, list[int]]] = None,
tie_word_embeddings: bool = True,
chunk_size_feed_forward: int = 0,
is_encoder_decoder: bool = False,
is_decoder: bool = False,
cross_attention_hidden_size: Optional[int] = None,
add_cross_attention: bool = False,
tie_encoder_decoder: bool = False,
# Fine-tuning task arguments
architectures: Optional[list[str]] = None,
finetuning_task: Optional[str] = None,
id2label: Optional[dict[int, str]] = None,
label2id: Optional[dict[str, int]] = None,
num_labels: Optional[int] = None,
task_specific_params: Optional[dict[str, Any]] = None,
problem_type: Optional[str] = None,
# Tokenizer kwargs
tokenizer_class: Optional[str] = None,
prefix: Optional[str] = None,
bos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
sep_token_id: Optional[int] = None,
decoder_start_token_id: Optional[int] = None,
**kwargs,
):
# Validation for some arguments
if label2id is not None and not isinstance(label2id, dict):
raise ValueError("Argument label2id should be a dictionary.")
if id2label is not None and not isinstance(id2label, dict):
raise ValueError("Argument id2label should be a dictionary.")
if num_labels is not None and id2label is not None and len(id2label) != num_labels:
logger.warning(
f"You passed `num_labels={num_labels}` which is incompatible to "
f"the `id2label` map of length `{len(id2label)}`."
)
if problem_type is not None and problem_type not in (
"regression",
"single_label_classification",
"multi_label_classification",
):
raise ValueError(
f"The config parameter `problem_type` was not understood: received {problem_type} "
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
)
if torch_dtype is not None and isinstance(torch_dtype, str) and is_torch_available():
# we will start using self.torch_dtype in v5, but to be consistent with
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
import torch
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
self.is_decoder = kwargs.pop("is_decoder", False)
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None)
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
torch_dtype = getattr(torch, torch_dtype)
# Attributes common for all models
self.return_dict = return_dict
self.output_hidden_states = output_hidden_states
self.torchscript = torchscript
self.torch_dtype = torch_dtype
self._output_attentions = output_attentions # has public property
# Less common kwargs, only used by some models
self.pruned_heads = pruned_heads if pruned_heads is not None else {}
self.tie_word_embeddings = tie_word_embeddings
self.chunk_size_feed_forward = chunk_size_feed_forward
# Encoder-decoder models attributes
self.is_encoder_decoder = is_encoder_decoder
self.is_decoder = is_decoder # used in encoder-decoder models to differentiate encoder from decoder
self.cross_attention_hidden_size = cross_attention_hidden_size
self.add_cross_attention = add_cross_attention
self.tie_encoder_decoder = tie_encoder_decoder
# Fine-tuning task attributes
self.architectures = architectures
self.finetuning_task = finetuning_task
self.id2label = id2label
self.label2id = label2id
self.task_specific_params = task_specific_params
self.problem_type = problem_type
if self.id2label is None:
self._create_id_label_maps(num_labels if num_labels is not None else 2)
else:
# Keys are always strings in JSON so convert ids to int here.
self.id2label = {int(key): value for key, value in self.id2label.items()}
# Tokenizer attributes
self.tokenizer_class = tokenizer_class
self.prefix = prefix
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.eos_token_id = eos_token_id
self.sep_token_id = sep_token_id
self.decoder_start_token_id = decoder_start_token_id
# Retrocompatibility: Parameters for sequence generation. While we will keep the ability to load these
# parameters, saving them will be deprecated. In a distant future, we won't need to load them.
for parameter_name, default_value in self._get_global_generation_defaults().items():
setattr(self, parameter_name, kwargs.pop(parameter_name, default_value))
# Fine-tuning task arguments
self.architectures = kwargs.pop("architectures", None)
self.finetuning_task = kwargs.pop("finetuning_task", None)
self.id2label = kwargs.pop("id2label", None)
self.label2id = kwargs.pop("label2id", None)
if self.label2id is not None and not isinstance(self.label2id, dict):
raise ValueError("Argument label2id should be a dictionary.")
if self.id2label is not None:
if not isinstance(self.id2label, dict):
raise ValueError("Argument id2label should be a dictionary.")
num_labels = kwargs.pop("num_labels", None)
if num_labels is not None and len(self.id2label) != num_labels:
logger.warning(
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: "
f"{self.id2label}. The number of labels will be overwritten to {self.num_labels}."
)
self.id2label = {int(key): value for key, value in self.id2label.items()}
# Keys are always strings in JSON so convert ids to int here.
else:
self.num_labels = kwargs.pop("num_labels", 2)
if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
# we will start using self.torch_dtype in v5, but to be consistent with
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
if is_torch_available():
import torch
self.torch_dtype = getattr(torch, self.torch_dtype)
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
self.prefix = kwargs.pop("prefix", None)
self.bos_token_id = kwargs.pop("bos_token_id", None)
self.pad_token_id = kwargs.pop("pad_token_id", None)
self.eos_token_id = kwargs.pop("eos_token_id", None)
self.sep_token_id = kwargs.pop("sep_token_id", None)
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
# task specific arguments
self.task_specific_params = kwargs.pop("task_specific_params", None)
# regression / multi-label classification
self.problem_type = kwargs.pop("problem_type", None)
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
if self.problem_type is not None and self.problem_type not in allowed_problem_types:
raise ValueError(
f"The config parameter `problem_type` was not understood: received {self.problem_type} "
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
)
# TPU arguments
if kwargs.pop("xla_device", None) is not None:
logger.warning(
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
"safely remove it from your `config.json` file."
)
# Name or path to the pretrained checkpoint
self._name_or_path = str(kwargs.pop("name_or_path", ""))
# Config hash
self._commit_hash = kwargs.pop("_commit_hash", None)
# Attention implementation to use, if relevant.
@ -320,8 +346,16 @@ class PretrainedConfig(PushToHubMixin):
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
# TODO: remove later, deprecated arguments for TF models
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False)
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
def _create_id_label_maps(self, num_labels: int):
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
@property
def name_or_path(self) -> str:
def name_or_path(self) -> Optional[str]:
return getattr(self, "_name_or_path", None)
@name_or_path.setter
@ -361,9 +395,10 @@ class PretrainedConfig(PushToHubMixin):
@num_labels.setter
def num_labels(self, num_labels: int):
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
# we do not store `num_labels` attribute in config, but instead
# compute it based on the length of the `id2label` map
if self.id2label is None or self.num_labels != num_labels:
self._create_id_label_maps(num_labels)
@property
def _attn_implementation(self):
@ -474,7 +509,7 @@ class PretrainedConfig(PushToHubMixin):
@classmethod
def from_pretrained(
cls,
cls: type[SpecificPretrainedConfigType],
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
@ -482,7 +517,7 @@ class PretrainedConfig(PushToHubMixin):
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
) -> "PretrainedConfig":
) -> SpecificPretrainedConfigType:
r"""
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration.
@ -717,7 +752,9 @@ class PretrainedConfig(PushToHubMixin):
return config_dict, kwargs
@classmethod
def from_dict(cls, config_dict: dict[str, Any], **kwargs) -> "PretrainedConfig":
def from_dict(
cls: type[SpecificPretrainedConfigType], config_dict: dict[str, Any], **kwargs
) -> SpecificPretrainedConfigType:
"""
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.
@ -778,7 +815,9 @@ class PretrainedConfig(PushToHubMixin):
return config
@classmethod
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
def from_json_file(
cls: type[SpecificPretrainedConfigType], json_file: Union[str, os.PathLike]
) -> SpecificPretrainedConfigType:
"""
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.

View File

@ -106,4 +106,5 @@ deps = {
"opentelemetry-api": "opentelemetry-api",
"opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp",
"opentelemetry-sdk": "opentelemetry-sdk",
"mistral-common[opencv]": "mistral-common[opencv]>=1.6.3",
}

View File

@ -20,7 +20,7 @@ import json
import os
import warnings
from collections import UserDict
from typing import TYPE_CHECKING, Any, Optional, Union
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
import numpy as np
@ -55,6 +55,9 @@ logger = logging.get_logger(__name__)
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821
# type hinting: specifying the type of feature extractor class that inherits from FeatureExtractionMixin
SpecificFeatureExtractorType = TypeVar("SpecificFeatureExtractorType", bound="FeatureExtractionMixin")
class BatchFeature(UserDict):
r"""
@ -270,7 +273,7 @@ class FeatureExtractionMixin(PushToHubMixin):
@classmethod
def from_pretrained(
cls,
cls: type[SpecificFeatureExtractorType],
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
@ -278,7 +281,7 @@ class FeatureExtractionMixin(PushToHubMixin):
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
):
) -> SpecificFeatureExtractorType:
r"""
Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a
derived class of [`SequenceFeatureExtractor`].

View File

@ -126,6 +126,11 @@ class RequestState:
is_eos = token_id == self.eos_token_id and self.eos_token_id != -1
is_max_len = self.generated_len() >= self.max_new_tokens
# Only add the token if we're not finishing due to max length
# (EOS tokens should still be added to the output)
if not (is_max_len and not is_eos):
self.static_outputs.extend([token_id])
if is_eos or is_max_len:
self.status = RequestStatus.FINISHED
return True
@ -157,6 +162,7 @@ class PagedAttentionCache(Cache):
dtype: torch.dtype = torch.float16,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
initial_prompt_shapes: Optional[list[list[int]]] = None,
tp_size: Optional[int] = None,
) -> None:
"""Initialize a paged attention cache for efficient memory usage.
@ -191,7 +197,16 @@ class PagedAttentionCache(Cache):
self.block_size = block_size
self.num_blocks = num_blocks
self.cache_shape = (self.num_key_value_heads, num_blocks, self.block_size, self.head_dim)
num_key_value_heads = self.num_key_value_heads
if tp_size is not None and tp_size > 1:
if num_key_value_heads % tp_size != 0:
raise ValueError(
f"Number of key value heads {num_key_value_heads} must be divisible by tensor parallel size {tp_size}."
)
# If the model is using tensor parallelism, we need to adjust the number of heads accordingly.
num_key_value_heads //= tp_size
self.cache_shape = (num_key_value_heads, num_blocks, self.block_size, self.head_dim)
self.dtype = dtype
self.device = device
@ -635,7 +650,7 @@ def compute_optimal_blocks(
memory_per_token = 2 * num_kv_heads * head_dim * dtype_size * num_hidden_layers # For K and V caches
# Estimate sequence length requirements
tokens_to_generate = getattr(generation_config, "max_new_tokens", 20)
tokens_to_generate = getattr(generation_config, "max_new_tokens") or 20
if median_prefill_length is None and inputs:
non_empty_inputs = [len(seq) for seq in inputs if seq]
@ -1019,7 +1034,6 @@ class ContinuousBatchProcessor:
self.metrics.record_ttft_metric(state.created_time, state.request_id)
state.status = RequestStatus.DECODING
token = out_tokens[self.logits_indices[i]]
state.static_outputs.extend([token])
state.prompt_ids = [token]
if state.update_with_token(token):
self.metrics.record_request_completion(state.created_time, state.request_id)
@ -1277,6 +1291,7 @@ class ContinuousBatchingManager:
self.generation_config,
self.model.device,
self.model.dtype,
tp_size=getattr(self.model, "tp_size"),
)
scheduler = None

View File

@ -656,6 +656,7 @@ class GenerationMixin(ContinuousMixin):
# If it's not defined, it means the model uses the new general mask API
if causal_mask_creation_function is None: # can't be found
token_type_ids = getattr(model_input, "token_type_ids", None)
position_ids = getattr(model_input, position_ids_key, None)
# Some models may overwrite the general one
causal_mask_creation_function = getattr(self, "create_masks_for_generate", create_masks_for_generate)
attention_mask = causal_mask_creation_function(
@ -665,6 +666,7 @@ class GenerationMixin(ContinuousMixin):
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
token_type_ids=token_type_ids,
)
else:
@ -733,7 +735,9 @@ class GenerationMixin(ContinuousMixin):
# - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
# pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
if not self.config.is_encoder_decoder:
if model_kwargs["inputs_embeds"] is None:
model_kwargs.pop("inputs_embeds")
elif not self.config.is_encoder_decoder:
has_inputs_embeds_forwarding = "inputs_embeds" in set(
inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
)
@ -748,10 +752,11 @@ class GenerationMixin(ContinuousMixin):
model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
inputs, bos_token_id, model_kwargs=model_kwargs
)
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
else:
if inputs is not None:
raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
# 4. if `inputs` is still None, try to create `input_ids` from BOS token
inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
@ -1773,6 +1778,10 @@ class GenerationMixin(ContinuousMixin):
):
modified_values[key] = model_gen_config_value
setattr(generation_config, key, model_gen_config_value)
# edge case: we may set `temperature=0.0` and `do_sample=False`, but the model defaults to
# `do_sample=True`
if generation_config.temperature == 0.0:
generation_config.do_sample = False
if use_model_defaults is None and len(modified_values) > 0:
logger.warning_once(
f"`generation_config` default values have been modified to match model-specific defaults: "
@ -1954,6 +1963,9 @@ class GenerationMixin(ContinuousMixin):
"device": device,
"layer_device_map": layer_device_map,
}
if cache_implementation in ["static", "hybrid", "offloaded_static"]:
cache_kwargs.update({"tp_size": self.tp_size})
self._cache = cache_cls(**cache_kwargs)
if requires_cross_attention_cache:
encoder_kwargs = cache_kwargs.copy()
@ -1977,6 +1989,7 @@ class GenerationMixin(ContinuousMixin):
and "zamba" not in self.__class__.__name__.lower()
and "bamba" not in self.__class__.__name__.lower()
and "minimax" not in self.__class__.__name__.lower()
and "lfm2" not in self.__class__.__name__.lower()
)
def _prepare_cache_for_generation(
@ -3755,11 +3768,11 @@ class GenerationMixin(ContinuousMixin):
return gathered_tensor
@staticmethod
def _beam_search_has_unfinished_sequences(
def _check_early_stop_heuristic(
is_early_stop_heuristic_unsatisfied: torch.Tensor,
running_beam_scores: torch.Tensor,
beam_scores: torch.Tensor,
is_sent_finished: torch.Tensor,
next_token_hits_stopping_criteria: torch.Tensor,
cur_len: int,
max_length: int,
decoder_prompt_len: int,
@ -3767,22 +3780,52 @@ class GenerationMixin(ContinuousMixin):
length_penalty: float,
):
"""
Beam Search stopping condition -- halts the generation loop if any of these conditions becomes False
Determine whether early stopping is possible by checking if the best possible score of running beams
could still improve upon the finished ones.
Mechanism:
- Without a length penalty, beam scores typically decrease as more tokens are generated.
So, if the *best possible* score from any running beam is already worse than the *worst* finished beam,
we can safely stop early.
- With a length penalty, scores may increase with longer sequences. In this case, we use heuristics
to estimate the best possible score — though this estimate may not always be correct — and stop
if no further improvement seems likely.
We apply different heuristics depending on the value of `early_stopping`:
1. `early_stopping == False`:
-> Use a heuristic that assumes the best score comes from the current length minus the decoder prompt length.
-> See detailed discussion: https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
2. `early_stopping == "never"`:
-> Estimate the best score using either `max_length` or `cur_len`, depending on the sign of `length_penalty`.
-> A positive length penalty favors longer sequences, so we use `max_length` in that case.
NOTE: the canonical beam search implementation can be replicated with `early_stopping="never"` and
`length_penalty=0.0`, which are NOT the default flags. The default behavior was empirically found to produce
better sequences (prior to 2022), and changing it is BC breaking.
"""
# a. Can the open beams improve the top completed scores?
# early_stopping == False -> apply heuristic = always get the best score from
# `cur_len - decoder_prompt_len`. See the discussion below for more details.
# https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
# early_stopping == "never" -> compute the best score from `max_length` or `cur_len`, depending on the
# sign of `length_penalty`. Positive `length_penalty` favors longer sequences, thus we use
# `max_length` there.
if early_stopping == "never" and length_penalty > 0.0:
best_hypothetical_length = max_length - decoder_prompt_len
else:
best_hypothetical_length = cur_len - decoder_prompt_len
best_possible_running_score = running_beam_scores[:, :1] / (best_hypothetical_length**length_penalty)
worst_finished_score = torch.where(is_sent_finished, torch.min(beam_scores, dim=1, keepdim=True)[0], -1.0e9)
improvement_possible = torch.any(best_possible_running_score > worst_finished_score)
return is_early_stop_heuristic_unsatisfied & torch.any(
best_possible_running_score > worst_finished_score, dim=-1, keepdim=True
)
@staticmethod
def _beam_search_has_unfinished_sequences(
is_early_stop_heuristic_unsatisfied: torch.Tensor,
is_sent_finished: torch.Tensor,
next_token_hits_stopping_criteria: torch.Tensor,
early_stopping: Union[bool, str],
):
"""
Beam Search stopping condition -- halts the generation loop if any of these conditions becomes False
"""
# a. Can the open beams improve the top completed scores?
improvement_possible = torch.any(is_early_stop_heuristic_unsatisfied)
# b. Is there still a beam without fully completed sequences? This is only relevant if early_stopping is
# enabled, where we want to finish as soon as all beams have a completed sequence.
@ -3878,6 +3921,7 @@ class GenerationMixin(ContinuousMixin):
topk_log_probs: torch.Tensor,
beam_indices: torch.Tensor,
topk_running_beam_indices: torch.Tensor,
is_early_stop_heuristic_unsatisfied: torch.Tensor,
is_sent_finished: torch.Tensor,
next_token_hits_stopping_criteria: torch.Tensor,
top_num_beam_mask: torch.Tensor,
@ -3902,6 +3946,9 @@ class GenerationMixin(ContinuousMixin):
# - make sure no scores can be added anymore if beam is full and early stopping is on
beams_in_batch_are_full = torch.all(is_sent_finished, axis=-1, keepdims=True) & (early_stopping is True)
topk_log_probs += beams_in_batch_are_full.to(torch.float32) * -1.0e9
# - make sure no scores can be added anymore if improvement is not possible
topk_log_probs += (~is_early_stop_heuristic_unsatisfied).to(torch.float32) * -1.0e9
# - make sure still running sequences cannot be chosen as finalized beam
topk_log_probs += (~did_top_num_beams_just_finished) * -1.0e9
@ -4053,6 +4100,9 @@ class GenerationMixin(ContinuousMixin):
# per batch, beam-item state bit indicating if sentence has finished.
is_sent_finished = torch.zeros((batch_size, num_beams), dtype=torch.bool, device=input_ids.device)
# per batch state bit indicating if there is a possibility to improve the best finished sentence.
is_early_stop_heuristic_unsatisfied = torch.ones((batch_size, 1), dtype=torch.bool, device=input_ids.device)
# per batch, beam-item state bit indicating if there are valid continuations.
next_token_hits_stopping_criteria = torch.zeros(
(batch_size, num_beams), dtype=torch.bool, device=input_ids.device
@ -4165,6 +4215,7 @@ class GenerationMixin(ContinuousMixin):
topk_log_probs=topk_log_probs,
beam_indices=beam_indices,
topk_running_beam_indices=topk_running_beam_indices,
is_early_stop_heuristic_unsatisfied=is_early_stop_heuristic_unsatisfied,
is_sent_finished=is_sent_finished,
next_token_hits_stopping_criteria=next_token_hits_stopping_criteria,
top_num_beam_mask=top_num_beam_mask,
@ -4186,16 +4237,22 @@ class GenerationMixin(ContinuousMixin):
)
cur_len = cur_len + 1
is_early_stop_heuristic_unsatisfied = self._check_early_stop_heuristic(
is_early_stop_heuristic_unsatisfied=is_early_stop_heuristic_unsatisfied,
running_beam_scores=running_beam_scores,
beam_scores=beam_scores,
is_sent_finished=is_sent_finished,
cur_len=cur_len,
max_length=max_length,
decoder_prompt_len=decoder_prompt_len,
early_stopping=early_stopping,
length_penalty=length_penalty,
)
this_peer_finished = not self._beam_search_has_unfinished_sequences(
running_beam_scores,
beam_scores,
is_early_stop_heuristic_unsatisfied,
is_sent_finished,
next_token_hits_stopping_criteria,
cur_len,
max_length,
decoder_prompt_len,
early_stopping,
length_penalty,
)
# 5. prepare outputs

View File

@ -13,6 +13,7 @@
# limitations under the License.
from collections.abc import Iterable
from copy import deepcopy
from functools import lru_cache, partial
from typing import Any, Optional, TypedDict, Union
@ -229,7 +230,7 @@ class BaseImageProcessorFast(BaseImageProcessor):
if kwarg is not None:
setattr(self, key, kwarg)
else:
setattr(self, key, getattr(self, key, None))
setattr(self, key, deepcopy(getattr(self, key, None)))
# get valid kwargs names
self._valid_kwargs_names = list(self.valid_kwargs.__annotations__.keys())

View File

@ -15,7 +15,7 @@ from typing import Callable, Optional
import torch
from ..cache_utils import DynamicCache, HybridCache, StaticCache
from ..cache_utils import DynamicCache, EncoderDecoderCache, HybridCache, StaticCache
from ..generation.configuration_utils import GenerationConfig
from ..masking_utils import (
ALL_MASK_ATTENTION_FUNCTIONS,
@ -548,7 +548,7 @@ class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module):
self.lm_head = model.lm_head
self.config = model.config
# Initialize static cache
# Initialize static cache for decoder and DynamicCache for encoder
self.static_cache = StaticCache(
config=self.config,
max_batch_size=batch_size,
@ -556,6 +556,7 @@ class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module):
device="cpu",
dtype=torch.float32,
)
self.cache = EncoderDecoderCache(self.static_cache, DynamicCache())
# Register cache buffers to make them exportable
for i in range(len(self.static_cache.key_cache)):
@ -567,7 +568,7 @@ class Seq2SeqLMDecoderExportableModuleWithStaticCache(torch.nn.Module):
outputs = self.decoder(
input_ids=decoder_input_ids,
encoder_hidden_states=encoder_hidden_states,
past_key_values=self.static_cache,
past_key_values=self.cache,
use_cache=True,
cache_position=cache_position,
)

Some files were not shown because too many files have changed in this diff Show More