Compare commits

..

64 Commits

Author SHA1 Message Date
f3b0005790 No more Tuple, List, Dict 2025-06-12 17:08:32 +01:00
4b8ec667e9 Remove all traces of low_cpu_mem_usage (#38792)
* remove it from all py files

* remove it from the doc

* remove it from examples

* style

* remove traces of _fast_init

* Update test_peft_integration.py

* CIs
2025-06-12 16:39:33 +02:00
3542e0b844 build: 📌 Remove upper bound on PyTorch (#38789)
build: 📌 remove upper bound on torch dependency as issue which originally resulted in the pin has been released in torch 2.7.1
2025-06-12 16:34:13 +02:00
eea35a15b0 Fix mllama (#38704)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 16:15:35 +02:00
038a59e2cd Initialize flash attn flag (#38768)
_flash_supports_window_size is used further down in this file and relied on by e.g. [ring-flash-attention](https://github.com/zhuzilin/ring-flash-attention/blob/123f924/ring_flash_attn/adapters/hf_adapter.py#L9-L11). Even though it is an unexported name, it still makes sense to keep the state of `globals()` in this file consistent.
2025-06-12 14:06:13 +00:00
910355a010 Fix Typos in Comments: "quantitation" → "quantization", "averege" → "average" (#38766)
* Update convert_llama4_weights_to_hf.py

* Update modeling_visual_bert.py
2025-06-12 14:04:39 +00:00
6a5fd0c6d2 Reword README in light of model definitions (#38762)
* Slight readme reword

* reword

* reword

* reword

* Slight readme reword
2025-06-12 14:43:31 +01:00
c87058beb8 Fix llava_onevision tests (#38791)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 15:06:49 +02:00
d4e7aa5526 Fix qwen_2_5 omni (#38658)
* fix

* fix

* break style

* break style

* Apply style fixes

* break style

* Apply style fixes

* fix modular

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-12 14:43:54 +02:00
e1812864ab [docs] Add int4wo + 2:4 sparsity example to TorchAO README (#38592)
* update quantization readme

* update

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-06-12 12:17:07 +00:00
bc68defcac Update PULL_REQUEST_TEMPLATE.md (#38770) 2025-06-12 14:03:33 +02:00
960fda25d1 Reduce verbosity for average_tokens_across_devices=True and world size = 1 (#38785)
* Warning to info for average_tokens_across_devices and world size = 1

* Update src/transformers/training_args.py
2025-06-12 14:02:53 +02:00
89c46b648d Skip some export tests on torch 2.7 (#38677)
* skip

* fix

* better check

* Update import_utils.py

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-06-12 12:47:15 +02:00
27459025b8 [video processors] support frame sampling within processors (#38105)
* apply updates smolVLM (still needs workaround for chat template)

* add other models

* dump qwen omni for now, come back later

* port qwen omni from their impl

* wait, all qwens sample videos in same way!

* clean up

* make smolvlm backwards compatible and fix padding

* dix some tests

* fox smolvlm tests

* more clean up and test fixing

* delete unused arg

* fix

* address comments

* style

* fix test
2025-06-12 09:34:30 +00:00
887054c714 Fix masking utils (#38783)
* fix

* Update masking_utils.py

* Update masking_utils.py
2025-06-12 11:00:46 +02:00
7c58336949 [Hotfix] Fix style bot (#38779)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 10:20:36 +02:00
7c6b1707c3 [masking utils] check None instead of try/except (#38561)
* fix vllm's compile backend

* fix the test

* apply the same changes in other masking strategies
2025-06-12 06:50:28 +00:00
9487765f07 Add Qwen2 MoE model card (#38649)
* Add Qwen2 MoE model card

* Revisions to qwen2 moe model card

* Add Qwen2 MoE model card
2025-06-11 15:14:01 -07:00
32dbf4bddb Update altCLIP model card (#38306)
* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Rename altclip.md to altclip.mdx

* Rename altclip.mdx to altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-11 14:48:34 -07:00
1dcb022e8f chore(pixtral): emit block attention mask when using flash attention (#38741)
* chore(pixtral): emit block attention mask when using flash attention

Since flash_attention_2 relies solely on position_ids, emitting the block attention mask avoids unnecessary memory usage and prevents OOM on large inputs.

* remove unnecessary attention_mask assignment
2025-06-11 18:55:23 +00:00
60d4b35b20 Make style bot trigger CI after push (#38754)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-11 20:40:04 +02:00
bb44d2a0f6 Update pegasus model card (#38675)
* Update Pegasus model card

* Fix transformers-cli command

* Update code examples to use bfloat16

* Reverted code examples to use float16

* Fix typo, update checkpoints link

* Update str formatting in code examples

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix typo

* Remove inaccurate badges

* Revert badge removal

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Include cache_implementation argument in quantization example

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-11 10:56:25 -07:00
L
b84ebb7f3c fix(qwen3_moe): pass kwargs to self_attn (#38691)
This is needed to avoid `.item()` calls in `_flash_attention_forward`.
2025-06-11 19:26:08 +02:00
9f563ada70 Deprecate TF + JAX (#38758)
* Scatter deprecation warnings around

* Delete the tests

* Make logging work properly!
2025-06-11 17:28:06 +01:00
337757cbd5 Update repo consistency check (#38763) 2025-06-11 17:02:03 +01:00
e2bdc13375 Remove IPEX requirement for bitsandbytes on CPU (#38594)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 17:46:34 +02:00
063bef0865 Prepare for TF+Jax deprecation (#38760)
* Prepare for TF+Jax deprecation

* Remove .circleci jobs
2025-06-11 16:03:31 +01:00
11ad9be153 Better typing for num_items_in_batch (#38728)
* fix

* style

* type checking ?

* maybe this ?

* fix

* can't be an int anymore

* fix
2025-06-11 16:26:41 +02:00
84710a4291 Add V-JEPA 2 (#38746)
* adding model and conversion scripts

* add imports to test vjepa conversion

* fix imports and make conversion work

* fix computation for short side

* replace attention with library attention function

* cleanup more attention classes

* remove config overrides

* add test cases, fix some of the failing ones

* fix the model outputs

* fix outputs of the model per review

* fix too big model test case

* fix styling __init__.py

* fix initialization test

* remove all asserts per review

* update sorting unsorting logic as per feedback

* remove is_video per review

* remove another is_video segment

* remove unwanted stuff

* small fixes

* add docstrings for the model

* revert adding vjepa2 config here

* update styling

* add config docstrings (wip)

* fix dpr issue

* removed test failing issues

* update styles

* merge predictor configs into main config

* remove processing code, add video processor

* remove permute which is not necessary now

* fix styles

* updated vjepa2 to be in video_processing_auto

* update comment for preprocessing

* test integration test and fix the outputs

* update test values, change test to look at repeated frames for a given image

* add a simple video processing test

* refactoring pixel_values_videos and upload ckpts to original

* fix torch_fx test cases

* remove unused config

* add all config docstrings

* add more integration tests

* add basic doc

* revert unwanted styling changes

* working make fixup

* Fix model_type in config

* update attention implementation to fit new hf standards

* fix the preprocessing logic, ensure it matches the original model

* remove use_rope logic, cleanup

* fix docstrings

* Further cleanup, update doc

* Fix model prefix

* fix get_vision_features

* VJEPA2Embeddings style refactor

* nit, style comment

* change modules default values

* Only `str` activation in config

* GradientCheckpointingLayer

* fixup

* fix conversion script

* Remove return_dict

* remove None return typehint

* Refactor VJEPA2Layer, remove use_SiLU

* Fix fx tests

* dpr -> drop_path_rates

* move *ModelOutput on top

* format docs bit

* update docs

* update docs

* update doc example

* remove prune_heads from model

* remove unused config params

* refactor embed signature

* Add vjepa to docs

* Fix config docstring

* update defaults

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix import

* Min refactoring

* Update HUB_SOURCE and HUB_REPO in conversion script

* Add missing headers

* VJEPA -> V-JEPA in docs

* Add image to doc

* fix style

* fix init weights

* change checkpoint name in modeling tests

---------

Co-authored-by: Koustuv Sinha <koustuv.sinha@mail.mcgill.ca>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: Koustuv Sinha <koustuvsinha@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-06-11 15:00:08 +01:00
a6f0e2b64a Add z-loss to Bamba for v2 (#37842)
* Remove const

* Fix arg ref

* Sharded save

* Add z_loss flag

* Add modeling zloss

* Demodularize clm forward for zloss

* Also demodularize init for z_loss flag

* PR comments (mostly modularizing right)

* Demodularize forward

* Better name zloss and explain typematch

* Fully propagate coeff name

* style fixes

* zloss default float

* Remove conflicting annotations

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-06-11 15:29:17 +02:00
6b610d89f1 Revert "Trigger doc-builder job after style bot" (#38735)
Revert "Trigger doc-builder job after style bot (#38398)"

This reverts commit 51e0fac29fc3994d49dfbfd1c8d085d29360d393.
2025-06-11 14:56:39 +02:00
0bf53e69e2 [DeepSeek-V3] implement when q_lora_rank is None (#38743)
* implement when q_lora_rank is None

* make style and quality
2025-06-11 13:35:10 +01:00
ye
b426c2b313 fix: bf16 with TPU is allowed in configuration (#38670)
* fix: tpu bf16

* fix: style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 12:35:01 +00:00
c8c1e525ed from 1.11.0, torchao.prototype.low_bit_optim is promoted to torchao.optim (#38689)
* since 1.11.0, torchao.prototype.low_bit_optim is promoted to
torchao.optim

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 12:16:25 +00:00
56a7cf5546 fix: Add method to get image features in PaliGemmaForConditionalGeneration (#38730)
* fix: Add method to retrieve image features in PaliGemmaForConditionalGeneration

* feat: Add get_image_features method to multiple models for image feature extraction

* fix: reformat the files with ruff.

* feat: Add methods for packing and retrieving image and video features across multiple models

modified:
- modeling_chameleon.py
- modeling_llava_next.py
- modular_llava_next_video.py
- modeling_qwen2_vl.py

and generate the:
- modeling_llava_next_video.py
- modeling_llava_onevision.py
- modeling_qwen2_5_vl.py

* feat: Implement get_image_features method in Aria, Mistral3, and VipLlava models with updated parameters

* fix: reformatted the code with fix-style
2025-06-11 10:26:31 +00:00
380e6ea406 [llava] fix integration tests with Siglip (#38732)
fix llava siglip test
2025-06-11 08:09:16 +00:00
f1849eab22 Fixed a multiple-devices issue in SmolVLM model (#38736)
Fixed a multiple-devices issue in SmolVLMModel (#38557)

* Fixed a multiple-devices issue in SmolVLMModel

* Changed the modular to reflect changes
2025-06-11 10:08:01 +02:00
aa798b7ac9 New canine model card (#38631)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Commit for new_gpt_model_card.

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* commit for new canine model card.

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* implemented suggestion by @stevhliu.

* Update canine.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-10 09:30:05 -07:00
e28fb26e7d Add AGENTS.md (#38734)
* More name sync

* repeatedly underlining "WRITE LESS, ROBOT"

* fewer, commas, please

* Clarify "copied from"

* Clarify "copied from"

* Mention test dependencies

* Added a line on preferring `modular` style
2025-06-10 16:27:37 +00:00
cb4c56ce0d Fix typo in Language Modeling example scripts and update TPU type (#38652)
* Fix typo that prevents the examples to be run correctly

* return .TPU in accelerator.distributedtype comparison
2025-06-10 13:43:35 +00:00
8ff22e9d3b [add-new-model-like] Robust search & proper outer '),' in tokenizer mapping (#38703)
* [add-new-model-like] Robust search & proper outer '),' in tokenizer mapping

* code-style: arrange the importation in add_new_model_like.py

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-10 12:25:12 +00:00
8340e8746e Use OSError (#38712)
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-10 12:13:49 +00:00
8257734b5f Fix llava tests (#38722)
* update

* fix 1

* fix 2

* fix 3

* fix 4

* fix 5

* fix 6

* fix 7

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-10 13:53:17 +02:00
71f7385942 Logging message for `` is_bitsandbytes_available() `` (#38528)
* bnb import log

* bnb import log

* log mesage change

* moved error issue in qunatizer_bnb_4_bit.py

* ruff

* arg added for bnb check

* required changes

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-10 10:15:01 +00:00
04cdf83244 Update some tests for torch 2.7.1 (#38701)
* fix 1

* fix 2

* fix 3

* fix 4

* fp16

* break

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-10 11:46:52 +02:00
afdb821318 Fix smart resize (#38706)
* Fix smart_resize bug

* Add smart_resize test

* Remove unnecessary error checking

* Fix smart_resize tests

---------

Co-authored-by: Richard Dong <rdong@rdong.c.groq-143208.internal>
2025-06-10 08:59:22 +00:00
81799d8b55 Standardize ByT5 model card format (#38699)
* Standardize ByT5 model card format

* Apply review feedback from @stevhliu

* Fix Notes formatting and wording

* Fix `aya_vision` test (#38674)

* fix 1: load_in_4bit=True,

* fix 2: decorateor

* fixfix 2: breakpoint

* fixfix 3: update

* fixfix 4: fast

* fixfix 5: cond

* fixfix 5: cond

* fixfix 6: cuda 8

* ruff

* breakpoint

* dtype

* a10

* a10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix autodoc formatting for ByT5Tokenizer

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-09 15:02:50 -07:00
e55983e2b9 Fix aya_vision test (#38674)
* fix 1: load_in_4bit=True,

* fix 2: decorateor

* fixfix 2: breakpoint

* fixfix 3: update

* fixfix 4: fast

* fixfix 5: cond

* fixfix 5: cond

* fixfix 6: cuda 8

* ruff

* breakpoint

* dtype

* a10

* a10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-09 22:18:52 +02:00
b61c47f5a5 Created model card for xlm-roberta-xl (#38597)
* Created model card for xlm-roberta-xl

* Update XLM-RoBERTa-XL model card with improved descriptions and usage examples

* Minor option labeling fix

* Added MaskedLM version of XLM RoBERTa XL to model card

* Added quantization example for XLM RoBERTa XL model card

* minor fixes to xlm roberta xl model card

* Minor fixes to mask format in xlm roberta xl model card
2025-06-09 13:00:38 -07:00
e594e75f1b Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout (#38596)
* Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout

* Added CLI command example and quantization example for XLM RoBERTa model card.

* Minor change to transformers CLI and quantization example for XLM roberta model card
2025-06-09 12:26:31 -07:00
29ca043856 Created model card for XLM model (#38595)
* Created model card for XLM model

* Revised model card structure and content of XLM model

* Update XLM model documentation with improved examples and code snippets for predicting <mask> tokens using Pipeline and AutoModel.
2025-06-09 12:26:23 -07:00
25f711aa89 Drop as_target_processor from the _call_ and pad methods (#38642)
Drop as_target_processor from _call_ and pad methods; reformat docstrings for readability
2025-06-09 12:26:09 -07:00
837ddac1ec Docs: update bitsandbytes torch.compile compatibility (#38651) 2025-06-09 14:51:57 -04:00
b9faf2f930 Fix TypeError: 'NoneType' object is not iterable for esm (#38667) (#38668)
Add post_init() calls to EsmForMaskedLM, EsmForTokenClassification and EsmForSequenceClassification.
2025-06-09 15:23:20 +00:00
11dca07a10 Fix retrieve function signature and remove faiss requirement (#38624)
Signed-off-by: Fiona Waters <fiwaters6@gmail.com>
2025-06-09 15:17:33 +00:00
b31d462c61 Fix some models import (#38694)
Fix models import
2025-06-09 16:09:24 +01:00
282d6684dc Fix attention mask expansion when converting to executorch (#38637) 2025-06-09 15:00:55 +00:00
19224c3642 fix: "check out" as verb (#38678)
"check out" as verb
2025-06-09 14:07:31 +00:00
237ff80387 Fixed modeling_auto.py MODEL_FOR_MASK_GENERATION_MAPPING_NAMES variable (#38664)
fix: grouped the two MODEL_FOR_MASK_GENERATION_MAPPING_NAMES variables
2025-06-09 13:40:46 +00:00
d7b87b415a Fix qwen2-audio chat template audio placeholder insertion (#38640)
* fix qwen2-audio template

Signed-off-by: Isotr0py <2037008807@qq.com>

* add message['type'] back

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-09 09:56:42 +00:00
10627c1a0f Use torch 2.7.1 on daily CI (#38620)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-08 14:37:45 +02:00
ebeec13609 Fix InternVL integration test (#38612)
* fix

* fix

* fix OOM

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-07 08:30:47 +02:00
3fb7e7bc01 Skip torchscript tests for 2 models (#38643)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 20:17:37 +02:00
dc76eff12b remove ipex_optimize_model usage (#38632)
* remove ipex_optimize_model usage

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update Dockerfile

Signed-off-by: root <root@a4bf01945cfe.jf.intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: root <root@a4bf01945cfe.jf.intel.com>
Co-authored-by: root <root@a4bf01945cfe.jf.intel.com>
2025-06-06 20:04:44 +02:00
1602 changed files with 20278 additions and 69215 deletions

View File

@ -230,22 +230,6 @@ processor_job = CircleCIJob(
parallelism=8,
)
tf_job = CircleCIJob(
"tf",
docker_image=[{"image":"huggingface/transformers-tf-light"}],
parallelism=6,
)
flax_job = CircleCIJob(
"flax",
docker_image=[{"image":"huggingface/transformers-jax-light"}],
parallelism=6,
pytest_num_workers=16,
resource_class="2xlarge",
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
@ -254,16 +238,6 @@ pipelines_torch_job = CircleCIJob(
parallelism=4,
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-tf-light"}],
marker="is_pipeline_test",
parallelism=4,
)
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
@ -280,15 +254,6 @@ examples_torch_job = CircleCIJob(
pytest_num_workers=4,
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
additional_env={"OMP_NUM_THREADS": 8},
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
pytest_num_workers=2,
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
@ -368,7 +333,7 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
REGULAR_TESTS = [torch_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job]
PIPELINE_TESTS = [pipelines_torch_job]
REPO_UTIL_TESTS = [repo_utils_job]

View File

@ -51,7 +51,7 @@ Library:
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @zach-huggingface and @SunMarc
- trainer: @zach-huggingface, @SunMarc and @qgallouedec
- chat templates: @Rocketknight1
Integrations:

View File

@ -2,15 +2,6 @@ name: Build PR Documentation
on:
pull_request:
workflow_call:
inputs:
pr_number:
type: string
required: true
commit_sha:
type: string
required: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -18,9 +9,9 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
pr_number: ${{ inputs.pr_number || github.event.number }}
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: en

View File

@ -6,29 +6,13 @@ on:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
with:
python_quality_dependencies: "[quality]"
style_command_type: "default"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}
check-outputs:
runs-on: ubuntu-latest
needs: style
steps:
- run: echo ${{ needs.style.outputs.pr_number }}
- run: echo ${{ needs.style.outputs.new_commit_sha }}
trigger:
needs: style
if: needs.style.outputs.new_commit_sha != ''
uses: "./.github/workflows/build_pr_documentation.yml"
with:
pr_number: ${{ needs.style.outputs.pr_number }}
commit_sha: ${{ needs.style.outputs.new_commit_sha }}
bot_token: ${{ secrets.HF_STYLE_BOT_ACTION }}

39
AGENTS.md Normal file
View File

@ -0,0 +1,39 @@
# AGENTS.md Guide for Hugging Face Transformers
This AGENTS.md file provides guidance for code agents working with this codebase.
## Core Project Structure
- `/src/transformers`: This contains the core source code for the library
- `/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
- `/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
- `/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
- `/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
## Coding Conventions for Hugging Face Transformers
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
We use two mechanisms to keep this code in sync:
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
When adding new models, you should prefer `modular` style.
## Testing
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -59,12 +59,22 @@ limitations under the License.
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers is a library of pretrained text, computer vision, audio, video, and multimodal models for inference and training. Use Transformers to fine-tune models on your data, build inference applications, and for generative AI use cases across multiple modalities.
There are over 500K+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
We pledge to help support new state-of-the-art models and democratize their usage by having their model definition be
simple, customizable, and efficient.
There are over 1M+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Explore the [Hub](https://huggingface.com/) today to find a model and use Transformers to help you get started right away.

View File

@ -28,7 +28,7 @@ class MetricsRecorder:
self.commit_id = commit_id
self.commit_msg = commit_msg
def initialise_benchmark(self, metadata: Dict[str, str]) -> int:
def initialise_benchmark(self, metadata:dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id
"""
@ -55,7 +55,7 @@ class MetricsRecorder:
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: int, measurements: Dict[str, float]):
def collect_model_measurements(self, benchmark_id: int, measurements:dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
@ -85,7 +85,7 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments() -> Tuple[str, str, str, str]:
def parse_arguments() ->tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,11 +9,9 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.6.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.3.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
# Disable kernel mapping for now until all tests pass
ENV DISABLE_KERNEL_MAPPING=1
@ -32,8 +30,6 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] &&
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -4,7 +4,7 @@ LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,18 +11,20 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.7.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# Install torch stuff after ./transformers[dev-torch,testing,video], otherwise torch may be resolved to a previous
# version.
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract

View File

@ -278,7 +278,7 @@ Here's an example of a single value return:
```python
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
list[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:

View File

@ -30,7 +30,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -231,7 +231,7 @@ flush()
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

View File

@ -459,7 +459,7 @@ args = TrainingArguments(
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id، low_cpu_mem_usage=True).to(0)
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
trainer = trl.SFTTrainer(
model=model،
@ -503,7 +503,7 @@ args = TrainingArguments(
# تحميل النموذج والمجزىء اللغوي
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
# تهيئة المدرب
trainer = Trainer(
@ -547,7 +547,7 @@ args = TrainingArguments(
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
trainer = trl.SFTTrainer(
model=model,

View File

@ -905,6 +905,8 @@
- sections:
- local: model_doc/timesformer
title: TimeSformer
- local: model_doc/vjepa2
title: V-JEPA 2
- local: model_doc/videomae
title: VideoMAE
- local: model_doc/vivit

View File

@ -571,7 +571,7 @@ The processor should call the appropriate modality-specific processors within it
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text: Union[TextInput, PreTokenizedInput,list[TextInput],list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[YourModelProcessorKwargs],

View File

@ -92,7 +92,7 @@ def custom_attention(
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]
) ->tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -15,9 +15,25 @@ rendered properly in your Markdown viewer.
# Transformers
Transformers is a library of pretrained natural language processing, computer vision, audio, and multimodal models for inference and training. Use Transformers to train models on your data, build inference applications, and generate text with large language models.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Explore the [Hugging Face Hub](https://huggingface.com) today to find a model and use Transformers to help you get started right away.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
We pledge to help support new state-of-the-art models and democratize their usage by having their model definition be
simple, customizable, and efficient.
There are over 1M+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Explore the [Hub](https://huggingface.com/) today to find a model and use Transformers to help you get started right away.
## Features

View File

@ -38,7 +38,7 @@ However, no method can be called on that object:
```python
>>> DetrImageProcessorFast.from_pretrained()
ImportError:
DetrImageProcessorFast requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
DetrImageProcessorFast requires the Torchvision library but it was not found in your environment. Check out the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
```

View File

@ -51,7 +51,7 @@ torch.random.manual_seed(673)
# load pretrained model and processor
model_id = "llava-hf/llava-1.5-7b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
# create random image input
random_image = Image.fromarray(torch.randint(0, 256, (224, 224, 3), dtype=torch.uint8).numpy())

View File

@ -152,7 +152,7 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
| `eos_token_id` | list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
## Pitfalls

View File

@ -236,7 +236,7 @@ flush()
Let's see what peak GPU memory consumption 4-bit quantization gives. Quantizing the model to 4-bit can be done with the same API as before - this time by passing `load_in_4bit=True` instead of `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

View File

@ -14,103 +14,107 @@ rendered properly in your Markdown viewer.
-->
# AltCLIP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# AltCLIP
The AltCLIP model was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679v2) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu. AltCLIP
(Altering the Language Encoder in CLIP) is a neural network trained on a variety of image-text and text-text pairs. By switching CLIP's
text encoder with a pretrained multilingual text encoder XLM-R, we could obtain very close performances with CLIP on almost all tasks, and extended original CLIP's capabilities such as multilingual understanding.
[AltCLIP](https://huggingface.co/papers/2211.06679v2) replaces the [CLIP](./clip) text encoder with a multilingual XLM-R encoder and aligns image and text representations with teacher learning and contrastive learning.
The abstract from the paper is the following:
You can find all the original AltCLIP checkpoints under the [AltClip](https://huggingface.co/collections/BAAI/alt-clip-diffusion-66987a97de8525205f1221bf) collection.
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model.
Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained
multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of
teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art
performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with
CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
> [!TIP]
> Click on the AltCLIP models in the right sidebar for more examples of how to apply AltCLIP to different tasks.
This model was contributed by [jongjyh](https://huggingface.co/jongjyh).
The examples below demonstrates how to calculate similarity scores between an image and one or more captions with the [`AutoModel`] class.
## Usage tips and example
The usage of AltCLIP is very similar to the CLIP. the difference between CLIP is the text encoder. Note that we use bidirectional attention instead of casual attention
and we take the [CLS] token in XLM-R to represent text embedding.
AltCLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image
classification. AltCLIP uses a ViT like transformer to get visual features and a bidirectional language model to get the text
features. Both the text and visual features are then projected to a latent space with identical dimension. The dot
product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors
also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model.
The [`AltCLIPProcessor`] wraps a [`CLIPImageProcessor`] and a [`XLMRobertaTokenizer`] into a single instance to both
encode the text and prepare the images. The following example shows how to get the image-text similarity scores using
[`AltCLIPProcessor`] and [`AltCLIPModel`].
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
>>> from PIL import Image
>>> import requests
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AltCLIPProcessor
>>> from transformers import AltCLIPModel, AltCLIPProcessor
model = AltCLIPModel.from_pretrained("BAAI/AltCLIP", torch_dtype=torch.bfloat16)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
print(f"{label}: {prob.item():.4f}")
```
<Tip>
</hfoption>
</hfoptions>
This model is based on `CLIPModel`, use it like you would use the original [CLIP](clip).
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
</Tip>
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
# !pip install torchao
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AltCLIPProcessor, TorchAoConfig
model = AltCLIPModel.from_pretrained(
"BAAI/AltCLIP",
quantization_config=TorchAoConfig("int4_weight_only", group_size=128),
torch_dtype=torch.bfloat16,
)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
print(f"{label}: {prob.item():.4f}")
```
## Notes
- AltCLIP uses bidirectional attention instead of causal attention and it uses the `[CLS]` token in XLM-R to represent a text embedding.
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalize images for the model.
- [`AltCLIPProcessor`] combines [`CLIPImageProcessor`] and [`XLMRobertaTokenizer`] into a single instance to encode text and prepare images.
## AltCLIPConfig
[[autodoc]] AltCLIPConfig
- from_text_vision_configs
## AltCLIPTextConfig
[[autodoc]] AltCLIPTextConfig
## AltCLIPVisionConfig
[[autodoc]] AltCLIPVisionConfig
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor
## AltCLIPModel
[[autodoc]] AltCLIPModel
- forward
- get_text_features
- get_image_features
## AltCLIPTextModel
[[autodoc]] AltCLIPTextModel
- forward
## AltCLIPVisionModel
[[autodoc]] AltCLIPVisionModel
- forward
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor

View File

@ -62,11 +62,11 @@ def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (List[str])
input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# encode(tokenize) each word from words list[str])
input_ids_list:list[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: List[int] = [len(l) for l in input_ids_list]
tokens_length_list:list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)

View File

@ -13,150 +13,128 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=flax&logoColor=white">
</div>
</div>
# ByT5
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
[ByT5](https://huggingface.co/papers/2105.13626) is tokenizer-free version of the [T5](./t5) model designed to works directly on raw UTF-8 bytes. This means it can process any language, more robust to noise like typos, and simpler to use because it doesn't require a preprocessing pipeline.
## Overview
You can find all the original ByT5 checkpoints under the [Google](https://huggingface.co/google?search_models=byt5) organization.
The ByT5 model was presented in [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir
Kale, Adam Roberts, Colin Raffel.
> [!TIP]
> Refer to the [T5](./t5) docs for more examples of how to apply ByT5 to different language tasks.
The abstract from the paper is the following:
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
*Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units.
Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from
the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they
can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by
removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token
sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of
operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with
minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count,
training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level
counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on
tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of
pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our
experiments.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/byt5).
<Tip>
ByT5's architecture is based on the T5v1.1 model, refer to [T5v1.1's documentation page](t5v1.1) for the API reference. They
only differ in how inputs should be prepared for the model, see the code examples below.
</Tip>
Since ByT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
## Usage example
ByT5 works on raw UTF-8 bytes, so it can be used without a tokenizer:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import T5ForConditionalGeneration
>>> import torch
import torch
from transformers import pipeline
>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
>>> num_special_tokens = 3
>>> # Model has 3 special tokens which take up the input ids 0,1,2 of ByT5.
>>> # => Need to shift utf-8 character encodings by 3 before passing ids to model.
>>> input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + num_special_tokens
>>> labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + num_special_tokens
>>> loss = model(input_ids, labels=labels).loss
>>> loss.item()
2.66
pipeline = pipeline(
task="text2text-generation",
model="google/byt5-small",
torch_dtype=torch.float16,
device=0
)
pipeline("translate English to French: The weather is nice today")
```
For batched inference and training it is however recommended to make use of the tokenizer:
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-small")
tokenizer = AutoTokenizer.from_pretrained(
"google/byt5-small"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-small",
torch_dtype=torch.float16,
device_map="auto"
)
>>> model_inputs = tokenizer(
... ["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt"
... )
>>> labels_dict = tokenizer(
... ["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt"
... )
>>> labels = labels_dict.input_ids
input_ids = tokenizer("summarize: Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy.", return_tensors="pt").to("cuda")
>>> loss = model(**model_inputs, labels=labels).loss
>>> loss.item()
17.9
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Similar to [T5](t5), ByT5 was trained on the span-mask denoising task. However,
since the model works directly on characters, the pretraining task is a bit
different. Let's corrupt some characters of the
input sentence `"The dog chases a ball in the park."` and ask ByT5 to predict them
for us.
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "translate English to French: Life is beautiful." | transformers-cli run --task text2text-generation --model google/byt5-small --device 0
```
</hfoption>
</hfoptions>
## Quantization
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-base")
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
>>> input_ids_prompt = "The dog chases a ball in the park."
>>> input_ids = tokenizer(input_ids_prompt).input_ids
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-xl",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
>>> # Note that we cannot add "{extra_id_...}" to the string directly
>>> # as the Byte tokenizer would incorrectly merge the tokens
>>> # For ByT5, we need to work directly on the character level
>>> # Contrary to T5, ByT5 does not use sentinel tokens for masking, but instead
>>> # uses final utf character ids.
>>> # UTF-8 is represented by 8 bits and ByT5 has 3 special tokens.
>>> # => There are 2**8+2 = 259 input ids and mask tokens count down from index 258.
>>> # => mask to "The dog [258]a ball [257]park."
tokenizer = AutoTokenizer.from_pretrained("google/byt5-xl")
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
>>> input_ids = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]])
>>> input_ids
tensor([[ 87, 107, 104, 35, 103, 114, 106, 35, 258, 35, 100, 35, 101, 100, 111, 111, 257, 35, 115, 100, 117, 110, 49, 1]])
>>> # ByT5 produces only one char at a time so we need to produce many more output characters here -> set `max_length=100`.
>>> output_ids = model.generate(input_ids, max_length=100)[0].tolist()
>>> output_ids
[0, 258, 108, 118, 35, 119, 107, 104, 35, 114, 113, 104, 35, 122, 107, 114, 35, 103, 114, 104, 118, 257, 35, 108, 113, 35, 119, 107, 104, 35, 103, 108, 118, 102, 114, 256, 108, 113, 35, 119, 107, 104, 35, 115, 100, 117, 110, 49, 35, 87, 107, 104, 35, 103, 114, 106, 35, 108, 118, 35, 119, 107, 104, 35, 114, 113, 104, 35, 122, 107, 114, 35, 103, 114, 104, 118, 35, 100, 35, 101, 100, 111, 111, 35, 108, 113, 255, 35, 108, 113, 35, 119, 107, 104, 35, 115, 100, 117, 110, 49]
>>> # ^- Note how 258 descends to 257, 256, 255
>>> # Now we need to split on the sentinel tokens, let's write a short loop for this
>>> output_ids_list = []
>>> start_token = 0
>>> sentinel_token = 258
>>> while sentinel_token in output_ids:
... split_idx = output_ids.index(sentinel_token)
... output_ids_list.append(output_ids[start_token:split_idx])
... start_token = split_idx
... sentinel_token -= 1
>>> output_ids_list.append(output_ids[start_token:])
>>> output_string = tokenizer.batch_decode(output_ids_list)
>>> output_string
['<pad>', 'is the one who does', ' in the disco', 'in the park. The dog is the one who does a ball in', ' in the park.']
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- It is recommended to use the tokenizer for batched inference and training.
- The example below shows how to use the model without a tokenizer.
```python
import torch
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small")
num_special_tokens = 3
input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + num_special_tokens
labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + num_special_tokens
loss = model(input_ids, labels=labels).loss
loss.item()
```
- ByT5 uses the top byte values (258, 257, etc.) for masking instead of sentinel tokens like `{extra_id_0}`.
```python
# Example: character-level denoising with mask tokens
input_ids = tokenizer("The dog chases a ball in the park.").input_ids
masked_input = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]])
output = model.generate(masked_input, max_length=100)
```
## ByT5Tokenizer
[[autodoc]] ByT5Tokenizer
See [`ByT5Tokenizer`] for all details.

View File

@ -14,99 +14,78 @@ rendered properly in your Markdown viewer.
-->
# CANINE
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CANINE
The CANINE model was proposed in [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language
Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. It's
among the first papers that trains a Transformer without using an explicit tokenization step (such as Byte Pair
Encoding (BPE), WordPiece or SentencePiece). Instead, the model is trained directly at a Unicode character-level.
Training at a character-level inevitably comes with a longer sequence length, which CANINE solves with an efficient
downsampling strategy, before applying a deep Transformer encoder.
[CANINE](https://huggingface.co/papers/2103.06874) is a tokenization-free Transformer. It skips the usual step of splitting text into subwords or wordpieces and processes text character by character. That means it works directly with raw Unicode, making it especially useful for languages with complex or inconsistent tokenization rules and even noisy inputs like typos. Since working with characters means handling longer sequences, CANINE uses a smart trick. The model compresses the input early on (called downsampling) so the transformer doesnt have to process every character individually. This keeps things fast and efficient.
The abstract from the paper is the following:
You can find all the original CANINE checkpoints under the [Google](https://huggingface.co/google?search_models=canine) organization.
*Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly-used models
still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword
lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all
languages, and the use of any fixed vocabulary may limit a model's ability to adapt. In this paper, we present CANINE,
a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a
pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias.
To use its finer-grained input effectively and efficiently, CANINE combines downsampling, which reduces the input
sequence length, with a deep transformer stack, which encodes context. CANINE outperforms a comparable mBERT model by
2.8 F1 on TyDi QA, a challenging multilingual benchmark, despite having 28% fewer model parameters.*
> [!TIP]
> Click on the CANINE models in the right sidebar for more examples of how to apply CANINE to different language tasks.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/google-research/language/tree/master/language/canine).
The example below demonstrates how to generate embeddings with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- CANINE uses no less than 3 Transformer encoders internally: 2 "shallow" encoders (which only consist of a single
layer) and 1 "deep" encoder (which is a regular BERT encoder). First, a "shallow" encoder is used to contextualize
the character embeddings, using local attention. Next, after downsampling, a "deep" encoder is applied. Finally,
after upsampling, a "shallow" encoder is used to create the final character embeddings. Details regarding up- and
downsampling can be found in the paper.
- CANINE uses a max sequence length of 2048 characters by default. One can use [`CanineTokenizer`]
to prepare text for the model.
- Classification can be done by placing a linear layer on top of the final hidden state of the special [CLS] token
(which has a predefined Unicode code point). For token classification tasks however, the downsampled sequence of
tokens needs to be upsampled again to match the length of the original character sequence (which is 2048). The
details for this can be found in the paper.
```py
import torch
from transformers import pipeline
Model checkpoints:
pipeline = pipeline(
task="feature-extraction",
model="google/canine-c",
device=0,
)
- [google/canine-c](https://huggingface.co/google/canine-c): Pre-trained with autoregressive character loss,
12-layer, 768-hidden, 12-heads, 121M parameters (size ~500 MB).
- [google/canine-s](https://huggingface.co/google/canine-s): Pre-trained with subword loss, 12-layer,
768-hidden, 12-heads, 121M parameters (size ~500 MB).
## Usage example
CANINE works on raw characters, so it can be used **without a tokenizer**:
```python
>>> from transformers import CanineModel
>>> import torch
>>> model = CanineModel.from_pretrained("google/canine-c") # model pre-trained with autoregressive character loss
>>> text = "hello world"
>>> # use Python's built-in ord() function to turn each character into its unicode code point id
>>> input_ids = torch.tensor([[ord(char) for char in text]])
>>> outputs = model(input_ids) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
pipeline("Plant create energy through a process known as photosynthesis.")
```
For batched inference and training, it is however recommended to make use of the tokenizer (to pad/truncate all
sequences to the same length):
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import CanineTokenizer, CanineModel
```py
import torch
from transformers import AutoModel
>>> model = CanineModel.from_pretrained("google/canine-c")
>>> tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
model = AutoModel.from_pretrained("google/canine-c")
>>> inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
>>> encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
text = "Plant create energy through a process known as photosynthesis."
input_ids = torch.tensor([[ord(char) for char in text]])
>>> outputs = model(**encoding) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
outputs = model(input_ids)
pooled_output = outputs.pooler_output
sequence_output = outputs.last_hidden_state
```
## Resources
</hfoption>
<hfoption id="transformers CLI">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Multiple choice task guide](../tasks/multiple_choice)
```bash
echo -e "Plant create energy through a process known as photosynthesis." | transformers-cli run --task feature-extraction --model google/canine-c --device 0
```
</hfoption>
</hfoptions>
## Notes
- CANINE skips tokenization entirely — it works directly on raw characters, not subwords. You can use it with or without a tokenizer. For batched inference and training, it is recommended to use the tokenizer to pad and truncate all sequences to the same length.
```py
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer("google/canine-c")
inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
```
- CANINE is primarily designed to be fine-tuned on a downstream task. The pretrained model can be used for either masked language modeling or next sentence prediction.
## CanineConfig

View File

@ -170,7 +170,6 @@ model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
```

View File

@ -149,7 +149,7 @@ As a summary, consider the following table:
| **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': list[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': list[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': list[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': list[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |

View File

@ -157,7 +157,7 @@ import requests
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16)
model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
@ -292,7 +292,6 @@ from transformers import AutoModelForImageTextToText
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_flash_attention_2=True
).to(0)
```

View File

@ -121,7 +121,6 @@ processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
"llava-hf/llava-onevision-qwen2-7b-ov-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="cuda:0"
)
@ -286,7 +285,6 @@ from transformers import LlavaOnevisionForConditionalGeneration
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_flash_attention_2=True
).to(0)
```

View File

@ -14,95 +14,116 @@ rendered properly in your Markdown viewer.
-->
# Pegasus
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# Pegasus
The Pegasus model was proposed in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.
[Pegasus](https://huggingface.co/papers/1912.08777) is an encoder-decoder (sequence-to-sequence) transformer model pretrained on unlabeled text to perform abstractive summarization. Pegasus is trained jointly on two self-supervised objective functions, masked language modeling (MLM) and gap sentence generation (GSG). Whole sentences are masked and the model has to fill in the gaps in the document. It can be fine-tuned with good performance even on small datasets with only 1000 examples.
According to the abstract,
You can find all the original Pegasus checkpoints under the [Google](https://huggingface.co/google?search_models=pegasus) organization.
- Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an
input document and are generated together as one output sequence from the remaining sentences, similar to an
extractive summary.
- Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval.
> [!TIP]
> Click on the Pegasus models in the right sidebar for more examples of how to apply Pegasus to different language tasks.
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The Authors' code can be found [here](https://github.com/google-research/pegasus).
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- Sequence-to-sequence model with the same encoder-decoder model architecture as BART. Pegasus is pre-trained jointly on two self-supervised objective functions: Masked Language Modeling (MLM) and a novel summarization specific pretraining objective, called Gap Sentence Generation (GSG).
```py
import torch
from transformers import pipeline
* MLM: encoder input tokens are randomly replaced by a mask tokens and have to be predicted by the encoder (like in BERT)
* GSG: whole encoder input sentences are replaced by a second mask token and fed to the decoder, but which has a causal mask to hide the future words like a regular auto-regressive transformer decoder.
- FP16 is not supported (help/ideas on this appreciated!).
- The adafactor optimizer is recommended for pegasus fine-tuning.
## Checkpoints
All the [checkpoints](https://huggingface.co/models?search=pegasus) are fine-tuned for summarization, besides
*pegasus-large*, whence the other checkpoints are fine-tuned:
- Each checkpoint is 2.2 GB on disk and 568M parameters.
- FP16 is not supported (help/ideas on this appreciated!).
- Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU.
- Full replication results and correctly pre-processed data can be found in this [Issue](https://github.com/huggingface/transformers/issues/6844#issue-689259666).
- [Distilled checkpoints](https://huggingface.co/models?search=distill-pegasus) are described in this [paper](https://arxiv.org/abs/2010.13002).
## Implementation Notes
- All models are transformer encoder-decoders with 16 layers in each component.
- The implementation is completely inherited from [`BartForConditionalGeneration`]
- Some key configuration differences:
- static, sinusoidal position embeddings
- the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix.
- more beams are used (`num_beams=8`)
- All pretrained pegasus checkpoints are the same besides three attributes: `tokenizer.model_max_length` (maximum
input size), `max_length` (the maximum number of tokens to generate) and `length_penalty`.
- The code to convert checkpoints trained in the author's [repo](https://github.com/google-research/pegasus) can be
found in `convert_pegasus_tf_to_pytorch.py`.
## Usage Example
```python
>>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer
>>> import torch
>>> src_text = [
... """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
... ]
... model_name = "google/pegasus-xsum"
... device = "cuda" if torch.cuda.is_available() else "cpu"
... tokenizer = PegasusTokenizer.from_pretrained(model_name)
... model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
... batch = tokenizer(src_text, truncation=True, padding="longest", return_tensors="pt").to(device)
... translated = model.generate(**batch)
... tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
... assert (
... tgt_text[0]
... == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
... )
pipeline = pipeline(
task="summarization",
model="google/pegasus-xsum",
torch_dtype=torch.float16,
device=0
)
pipeline("""Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems.""")
```
## Resources
</hfoption>
<hfoption id="AutoModel">
- [Script](https://github.com/huggingface/transformers-research-projects/tree/main/seq2seq-distillation/finetune_pegasus_xsum.sh) to fine-tune pegasus
on the XSUM dataset. Data download instructions at [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/pegasus-xsum"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/pegasus-xsum",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants are remarkable organisms that produce their own food using a method called photosynthesis. This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth. Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems." | transformers-cli run --task summarization --model google/pegasus-xsum --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```py
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/pegasus-xsum",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"google/pegasus-xsum"
)
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- [`AdaFactor`] is the recommended optimizer for fine-tuning Pegasus.
- This implementation of Pegasus inherits from [`BartForConditionalGeneration`] but it uses static/sinusoidal positional embeddings instead. Pegasus also starts generating with `pad_token_id` as the prefix and uses `num_beams=8`.
## PegasusConfig

View File

@ -14,53 +14,124 @@ rendered properly in your Markdown viewer.
-->
# Qwen2MoE
<div class="flex flex-wrap space-x-1">
<div style="float: right;">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# Qwen2MoE
Qwen2MoE is the new model series of large language models from the Qwen team. Previously, we released the Qwen series, including Qwen-72B, Qwen-1.8B, Qwen-VL, Qwen-Audio, etc.
### Model Details
[Qwen2MoE]((https://huggingface.co/papers/2407.10671) ) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
Qwen2MoE is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. Qwen2MoE has the following architectural choices:
The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.
- Qwen2MoE is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
- Qwen2MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, `Qwen1.5-MoE-A2.7B` is upcycled from `Qwen-1.8B`. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while it achieves comparable performance with `Qwen1.5-7B`, with only 25% of the training resources.
You can find all the original checkpoints in the [Qwen1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) collection.
For more details refer to the [release blog post](https://qwenlm.github.io/blog/qwen-moe/).
> [!TIP]
> Click on the Qwen2MoE models in the right sidebar for more examples of how to apply Qwen2MoE to different language tasks.
## Usage tips
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
`Qwen1.5-MoE-A2.7B` and `Qwen1.5-MoE-A2.7B-Chat` can be found on the [Huggingface Hub](https://huggingface.co/Qwen)
<hfoptions id="usage">
<hfoption id="Pipeline">
In the following, we demonstrate how to use `Qwen1.5-MoE-A2.7B-Chat` for the inference. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose.
```py
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="Qwen/Qwen1.5-MoE-A2.7B",
torch_dtype=torch.bfloat16,
device_map=0
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me about the Qwen2 model family."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-MoE-A2.7B-Chat",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
model_inputs.input_ids,
cache_implementation="static",
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
</hfoption>
<hfoption id="transformers CLI">
```bash
transformers chat Qwen/Qwen1.5-MoE-A2.7B-Chat --torch_dtype auto --attn_implementation flash_attention_2
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 8-bits.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
quantization_config = BitsAndBytesConfig(
load_in_8bit=True
)
>>> prompt = "Give me a short introduction to large language model."
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-MoE-A2.7B-Chat",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
)
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
inputs = tokenizer("The Qwen2 model family is", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Qwen2MoeConfig

View File

@ -83,7 +83,7 @@ def read_video_pyav(container, indices):
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
indices (list[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''

View File

@ -0,0 +1,82 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
# V-JEPA 2
V-JEPA 2 is a self-supervised approach to training video encoders developed by FAIR, Meta. Using internet-scale video data, V-JEPA 2 attains state-of-the-art performance on motion understanding and human action anticipation tasks. V-JEPA 2-AC is a latent action-conditioned world model post-trained from V-JEPA 2 (using a small amount of robot trajectory interaction data) that solves robot manipulation tasks without environment-specific data collection or task-specific training or calibration.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vjepa.gif" alt="drawing" width="600"/>
</div>
You can find all original V-JEPA2 checkpoints under the [V-JEPA 2](https://huggingface.co/collections/facebook/v-jepa-2-6841bad8413014e185b497a6) collection.
This model was contributed by [koustuvs](https://huggingface.co/koustuvs), [yonigozlan](https://huggingface.co/yonigozlan) and [qubvel](https://huggingface.co/qubvel-hf). The original code can be found [here](https://github.com/facebookresearch/vjepa2).
## Usage example
The snippet below shows how to load the V-JEPA 2 model using the `AutoModel` class.
```py
import torch
from torchcodec.decoders import VideoDecoder
import numpy as np
processor = AutoVideoProcessor.from_pretrained("facebook/vjepa2-vitl-fpc64-256")
model = AutoModel.from_pretrained(
"facebook/vjepa2-vitl-fpc64-256",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
video_url = "https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/archery/-Qz25rXdMjE_000014_000024.mp4"
vr = VideoDecoder(video_url)
frame_idx = np.arange(0, 64) # choosing some frames. here, you can define more complex sampling strategy
video = vr.get_frames_at(indices=frame_idx).data # T x C x H x W
video = processor(video, return_tensors="pt").to(model.device)
outputs = model(**video)
# V-JEPA 2 encoder outputs, same as calling `model.get_vision_features()`
encoder_outputs = outputs.last_hidden_state
# V-JEPA 2 predictor outputs
predictor_outputs = outputs.predictor_output.last_hidden_state
```
## VJEPA2Config
[[autodoc]] VJEPA2Config
## VJEPA2Model
[[autodoc]] VJEPA2Model
- forward
## VJEPA2VideoProcessor
[[autodoc]] VJEPA2VideoProcessor

View File

@ -14,37 +14,113 @@ rendered properly in your Markdown viewer.
-->
# XLM-RoBERTa-XL
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# XLM-RoBERTa-XL
The XLM-RoBERTa-XL model was proposed in [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
[XLM-RoBERTa-XL](https://huggingface.co/papers/2105.00572) is a 3.5B parameter multilingual masked language model pretrained on 100 languages. It shows that by scaling model capacity, multilingual models demonstrates strong performance on high-resource languages and can even zero-shot low-resource languages.
The abstract from the paper is the following:
You can find all the original XLM-RoBERTa-XL checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=xlm) organization.
*Recent work has demonstrated the effectiveness of cross-lingual language model pretraining for cross-lingual understanding. In this study, we present the results of two larger multilingual masked language models, with 3.5B and 10.7B parameters. Our two new models dubbed XLM-R XL and XLM-R XXL outperform XLM-R by 1.8% and 2.4% average accuracy on XNLI. Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE benchmark by 0.3% on average while handling 99 more languages. This suggests pretrained models with larger capacity may obtain both strong performance on high-resource languages while greatly improving low-resource languages. We make our code and models publicly available.*
> [!TIP]
> Click on the XLM-RoBERTa-XL models in the right sidebar for more examples of how to apply XLM-RoBERTa-XL to different cross-lingual tasks like classification, translation, and question answering.
This model was contributed by [Soonhwan-Kwon](https://github.com/Soonhwan-Kwon) and [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
XLM-RoBERTa-XL is a multilingual model trained on 100 different languages. Unlike some XLM multilingual models, it does
not require `lang` tensors to understand which language is used, and should be able to determine the correct
language from the input ids.
```python
import torch
from transformers import pipeline
## Resources
pipeline = pipeline(
task="fill-mask",
model="facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device=0
)
pipeline("Bonjour, je suis un modèle <mask>.")
```
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/xlm-roberta-xl --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
## Notes
- Unlike some XLM models, XLM-RoBERTa-XL doesn't require `lang` tensors to understand which language is used. It automatically determines the language from the input ids.
## XLMRobertaXLConfig

View File

@ -14,45 +14,113 @@ rendered properly in your Markdown viewer.
-->
# XLM-RoBERTa
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# XLM-RoBERTa
The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's
RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl
data.
[XLM-RoBERTa](https://huggingface.co/papers/1911.02116) is a large multilingual masked language model trained on 2.5TB of filtered CommonCrawl data across 100 languages. It shows that scaling the model provides strong performance gains on high-resource and low-resource languages. The model uses the [RoBERTa](./roberta) pretraining objectives on the [XLM](./xlm) model.
The abstract from the paper is the following:
You can find all the original XLM-RoBERTa checkpoints under the [Facebook AI community](https://huggingface.co/FacebookAI) organization.
*This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a
wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred
languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly
outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy on
XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on
low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model. We
also present a detailed empirical evaluation of the key factors that are required to achieve these gains, including the
trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource
languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing
per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We
will make XLM-R code, data, and models publicly available.*
> [!TIP]
> Click on the XLM-RoBERTa models in the right sidebar for more examples of how to apply XLM-RoBERTa to different cross-lingual tasks like classification, translation, and question answering.
This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM multilingual models, it does
not require `lang` tensors to understand which language is used, and should be able to determine the correct
language from the input ids.
- Uses RoBERTa tricks on the XLM approach, but does not use the translation language modeling objective. It only uses masked language modeling on sentences coming from one language.
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="FacebookAI/xlm-roberta-base",
torch_dtype=torch.float16,
device=0
)
# Example in French
pipeline("Bonjour, je suis un modèle <mask>.")
</hfoption>
<hfoption id="AutoModel">
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained(
"FacebookAI/xlm-roberta-base"
)
model = AutoModelForMaskedLM.from_pretrained(
"FacebookAI/xlm-roberta-base",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
# Prepare input
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/xlm-roberta-base --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [quantization guide](../quantization) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) the quantive the weights to 4 bits
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
bnb_4bit_quant_type="nf4", # or "fp4" for float 4-bit quantization
bnb_4bit_use_double_quant=True, # use double quantization for better performance
)
tokenizer = AutoTokenizer.from_pretrained("facebook/xlm-roberta-large")
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-large",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
quantization_config=quantization_config
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- Unlike some XLM models, XLM-RoBERTa doesn't require `lang` tensors to understand what language is being used. It automatically determines the language from the input IDs
## Resources

View File

@ -14,55 +14,73 @@ rendered properly in your Markdown viewer.
-->
# XLM
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# XLM
The XLM model was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by
Guillaume Lample, Alexis Conneau. It's a transformer pretrained using one of the following objectives:
[XLM](https://huggingface.co/papers/1901.07291) demonstrates cross-lingual pretraining with two approaches, unsupervised training on a single language and supervised training on more than one language with a cross-lingual language model objective. The XLM model supports the causal language modeling objective, masked language modeling, and translation language modeling (an extension of the [BERT](./bert)) masked language modeling objective to multiple language inputs).
- a causal language modeling (CLM) objective (next token prediction),
- a masked language modeling (MLM) objective (BERT-like), or
- a Translation Language Modeling (TLM) object (extension of BERT's MLM to multiple language inputs)
You can find all the original XLM checkpoints under the [Facebook AI community](https://huggingface.co/FacebookAI?search_models=xlm-mlm) organization.
The abstract from the paper is the following:
> [!TIP]
> Click on the XLM models in the right sidebar for more examples of how to apply XLM to different cross-lingual tasks like classification, translation, and question answering.
*Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding.
In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We
propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual
data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain
state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our
approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we
obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised
machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming the
previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.*
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`] and from the command line.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/facebookresearch/XLM/).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage tips
```python
import torch
from transformers import pipeline
- XLM has many different checkpoints, which were trained using different objectives: CLM, MLM or TLM. Make sure to
select the correct objective for your task (e.g. MLM checkpoints are not suitable for generation).
- XLM has multilingual checkpoints which leverage a specific `lang` parameter. Check out the [multi-lingual](../multilingual) page for more information.
- A transformer model trained on several languages. There are three different type of training for this model and the library provides checkpoints for all of them:
pipeline = pipeline(
task="fill-mask",
model="facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device=0
)
pipeline("Bonjour, je suis un modèle <mask>.")
```
* Causal language modeling (CLM) which is the traditional autoregressive training (so this model could be in the previous section as well). One of the languages is selected for each training sample, and the model input is a sentence of 256 tokens, that may span over several documents in one of those languages.
* Masked language modeling (MLM) which is like RoBERTa. One of the languages is selected for each training sample, and the model input is a sentence of 256 tokens, that may span over several documents in one of those languages, with dynamic masking of the tokens.
* A combination of MLM and translation language modeling (TLM). This consists of concatenating a sentence in two different languages, with random masking. To predict one of the masked tokens, the model can use both, the surrounding context in language 1 and the context given by language 2.
</hfoption>
<hfoption id="AutoModel">
## Resources
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
tokenizer = AutoTokenizer.from_pretrained(
"FacebookAI/xlm-mlm-en-2048",
)
model = AutoModelForMaskedLM.from_pretrained(
"FacebookAI/xlm-mlm-en-2048",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Hello, I'm a <mask> model.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
predicted_token = tokenizer.decode(predictions[0][inputs["input_ids"][0] == tokenizer.mask_token_id])
print(f"Predicted token: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/xlm-mlm-en-2048 --device 0
```
</hfoption>
</hfoptions>
## XLMConfig

View File

@ -148,11 +148,6 @@ You need enough memory to hold two copies of the model weights (random and pretr
Transformers reduces some of these memory-related challenges with fast initialization, sharded checkpoints, Accelerate's [Big Model Inference](https://hf.co/docs/accelerate/usage_guides/big_modeling) feature, and supporting lower bit data types.
### Fast initialization
A PyTorch model is instantiated with random weights, or "empty" tensors, that take up space in memory without filling it.
Transformers boosts loading speed by skipping random weight initialization with the [_fast_init](https://github.com/huggingface/transformers/blob/c9f6e5e35156e068b227dd9b15521767f6afd4d2/src/transformers/modeling_utils.py#L2710) parameter if the pretrained weights are correctly initialized. This parameter is set to `True` by default.
### Sharded checkpoints
@ -245,7 +240,7 @@ Big Model Inference's second feature relates to how weights are loaded and dispa
Both features combined reduces memory usage and loading times for big pretrained models.
Set [device_map](https://github.com/huggingface/transformers/blob/026a173a64372e9602a16523b8fae9de4b0ff428/src/transformers/modeling_utils.py#L3061) to `"auto"` to enable Big Model Inference. This also sets the [low_cpu_mem_usage](https://github.com/huggingface/transformers/blob/026a173a64372e9602a16523b8fae9de4b0ff428/src/transformers/modeling_utils.py#L3028) parameter to `True`, such that not more than 1x the model size is used in CPU memory.
Set [device_map](https://github.com/huggingface/transformers/blob/026a173a64372e9602a16523b8fae9de4b0ff428/src/transformers/modeling_utils.py#L3061) to `"auto"` to enable Big Model Inference.
```py
from transformers import AutoModelForCausalLM

View File

@ -216,12 +216,12 @@ class Olmo2Attention(OlmoAttention):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings:tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) ->tuple[torch.Tensor, Optional[torch.Tensor], Optionaltuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -294,9 +294,9 @@ class Olmo2DecoderLayer(OlmoDecoderLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optionaltuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) ->tuple[torch.FloatTensor, Optionaltuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
@ -494,7 +494,7 @@ class LlamaForCausalLM(nn.Module):
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[Cache,list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
@ -520,7 +520,7 @@ class NewModelForCausalLM(LlamaForCausalLM): | class LlamaForCausalLM(nn.M
| input_ids: torch.LongTensor = None,
| attention_mask: Optional[torch.Tensor] = None,
| position_ids: Optional[torch.LongTensor] = None,
| past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = |None,
| past_key_values: Optional[Union[Cache,list[torch.FloatTensor]]] = |None,
| inputs_embeds: Optional[torch.FloatTensor] = None,
| labels: Optional[torch.LongTensor] = None,
| use_cache: Optional[bool] = None,

View File

@ -78,26 +78,3 @@ python examples/pytorch/question-answering/run_qa.py \
--no_cuda \
--jit_mode_eval
```
## IPEX
[Intel Extension for PyTorch](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/getting_started.html) (IPEX) offers additional optimizations for PyTorch on Intel CPUs. IPEX further optimizes TorchScript with [graph optimization](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/graph_optimization.html) which fuses operations like Multi-head attention, Concat Linear, Linear + Add, Linear + Gelu, Add + LayerNorm, and more, into single kernels for faster execution.
Make sure IPEX is installed, and set the `--use_opex` and `--jit_mode_eval` flags in [`Trainer`] to enable IPEX graph optimization and TorchScript.
```bash
!pip install intel_extension_for_pytorch
```
```bash
python examples/pytorch/question-answering/run_qa.py \
--model_name_or_path csarron/bert-base-uncased-squad-v1 \
--dataset_name squad \
--do_eval \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/ \
--no_cuda \
--use_ipex \
--jit_mode_eval
```

View File

@ -17,30 +17,9 @@ rendered properly in your Markdown viewer.
A modern CPU is capable of efficiently training large models by leveraging the underlying optimizations built into the hardware and training on fp16 or bf16 data types.
This guide focuses on how to train large models on an Intel CPU using mixed precision and the [Intel Extension for PyTorch (IPEX)](https://intel.github.io/intel-extension-for-pytorch/index.html) library.
This guide focuses on how to train large models on an Intel CPU using mixed precision. AMP is enabled for CPU backends training with PyTorch.
You can Find your PyTorch version by running the command below.
```bash
pip list | grep torch
```
Install IPEX with the PyTorch version from above.
```bash
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
> [!TIP]
> Refer to the IPEX [installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation) guide for more details.
IPEX provides additional performance optimizations for Intel CPUs. These include additional CPU instruction level architecture (ISA) support such as [Intel AVX512-VNNI](https://en.wikichip.org/wiki/x86/avx512_vnni) and [Intel AMX](https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html). Both of these features are designed to accelerate matrix multiplication. Older AMD and Intel CPUs with only Intel AVX2, however, aren't guaranteed better performance with IPEX.
IPEX also supports [Auto Mixed Precision (AMP)](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/amp.html) training with the fp16 and bf16 data types. Reducing precision speeds up training and reduces memory usage because it requires less computation. The loss in accuracy from using full-precision is minimal. 3rd, 4th, and 5th generation Intel Xeon Scalable processors natively support bf16, and the 6th generation processor also natively supports fp16 in addition to bf16.
AMP is enabled for CPU backends training with PyTorch.
[`Trainer`] supports AMP training with a CPU by adding the `--use_cpu`, `--use_ipex`, and `--bf16` parameters. The example below demonstrates the [run_qa.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) script.
[`Trainer`] supports AMP training with CPU by adding the `--use_cpu`, and `--bf16` parameters. The example below demonstrates the [run_qa.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) script.
```bash
python run_qa.py \
@ -54,7 +33,6 @@ python run_qa.py \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/debug_squad/ \
--use_ipex \
--bf16 \
--use_cpu
```
@ -65,7 +43,6 @@ These parameters can also be added to [`TrainingArguments`] as shown below.
training_args = TrainingArguments(
output_dir="./outputs",
bf16=True,
use_ipex=True,
use_cpu=True,
)
```

View File

@ -75,8 +75,7 @@ python3 run_qa.py \
--doc_stride 128 \
--output_dir /tmp/debug_squad/ \
--no_cuda \
--ddp_backend ccl \
--use_ipex
--ddp_backend ccl
```
</hfoption>
@ -115,7 +114,6 @@ python3 run_qa.py \
--output_dir /tmp/debug_squad/ \
--no_cuda \
--ddp_backend ccl \
--use_ipex \
--bf16
```
@ -201,8 +199,7 @@ spec:
--output_dir /tmp/pvc-mount/output_$(date +%Y%m%d_%H%M%S) \
--no_cuda \
--ddp_backend ccl \
--bf16 \
--use_ipex;
--bf16;
env:
- name: LD_PRELOAD
value: "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4.5.9:/usr/local/lib/libiomp5.so"

View File

@ -27,7 +27,7 @@ Use the Space below to help you pick a quantization method depending on your har
| [AQLM](./aqlm) | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 1/2 | 🟢 | 🟢 | 🟢 | https://github.com/Vahe1994/AQLM |
| [AutoRound](./auto_round) | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🟢 | 🔴 | 2/3/4/8 | 🔴 | 🟢 | 🟢 | https://github.com/intel/auto-round |
| [AWQ](./awq) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | ? | 4 | 🟢 | 🟢 | 🟢 | https://github.com/casper-hansen/AutoAWQ |
| [bitsandbytes](./bitsandbytes) | 🟢 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | 🔴 | 4/8 | 🟢 | 🟢 | 🟢 | https://github.com/bitsandbytes-foundation/bitsandbytes |
| [bitsandbytes](./bitsandbytes) | 🟢 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | 🟢 | 4/8 | 🟢 | 🟢 | 🟢 | https://github.com/bitsandbytes-foundation/bitsandbytes |
| [compressed-tensors](./compressed_tensors) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 1/8 | 🟢 | 🟢 | 🟢 | https://github.com/neuralmagic/compressed-tensors |
| [EETQ](./eetq) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | ? | 8 | 🟢 | 🟢 | 🟢 | https://github.com/NetEase-FuXi/EETQ |
| [GGUF / GGML (llama.cpp)](../gguf) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 1/8 | 🔴 | [See Notes](../gguf) | [See Notes](../gguf) | https://github.com/ggerganov/llama.cpp |

View File

@ -38,6 +38,7 @@ torchao supports the [quantization techniques](https://github.com/pytorch/ao/blo
- A8W8 Int8 Dynamic Quantization
- A16W8 Int8 Weight Only Quantization
- A16W4 Int4 Weight Only Quantization
- A16W4 Int4 Weight Only Quantization + 2:4 Sparsity
- Autoquantization
torchao also supports module level configuration by specifying a dictionary from fully qualified name of module and its corresponding quantization config. This allows skip quantizing certain layers and using different quantization config for different modules.
@ -147,6 +148,37 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
</hfoption>
</hfoptions>
</hfoption>
<hfoption id="int4-weight-only-24sparse">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.dtypes import MarlinSparseLayout
quant_config = Int4WeightOnlyConfig(layout=MarlinSparseLayout())
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model with sparsity. A sparse checkpoint is needed to accelerate without accuraccy loss
quantized_model = AutoModelForCausalLM.from_pretrained(
"RedHatAI/Sparse-Llama-3.1-8B-2of4",
torch_dtype=torch.float16,
device_map="cuda",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("RedHatAI/Sparse-Llama-3.1-8B-2of4")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### A100 GPU
<hfoptions id="examples-A100-GPU">
<hfoption id="int8-dynamic-and-weight-only">
@ -215,6 +247,37 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
</hfoption>
</hfoptions>
</hfoption>
<hfoption id="int4-weight-only-24sparse">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.dtypes import MarlinSparseLayout
quant_config = Int4WeightOnlyConfig(layout=MarlinSparseLayout())
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model with sparsity. A sparse checkpoint is needed to accelerate without accuraccy loss
quantized_model = AutoModelForCausalLM.from_pretrained(
"RedHatAI/Sparse-Llama-3.1-8B-2of4",
torch_dtype=torch.float16,
device_map="cuda",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("RedHatAI/Sparse-Llama-3.1-8B-2of4")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### CPU
<hfoptions id="examples-CPU">
<hfoption id="int8-dynamic-and-weight-only">

View File

@ -170,7 +170,7 @@ Unlike other data collators, this specific data collator needs to apply a differ
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -243,7 +243,7 @@ and it uses the exact same dataset as an example. Apply some geometric and color
... )
```
The `image_processor` expects the annotations to be in the following format: `{'image_id': int, 'annotations': List[Dict]}`,
The `image_processor` expects the annotations to be in the following format: `{'image_id': int, 'annotations':list[Dict]}`,
where each dictionary is a COCO object annotation. Let's add a function to reformat annotations for a single example:
```py
@ -252,9 +252,9 @@ The `image_processor` expects the annotations to be in the following format: `{'
... Args:
... image_id (str): image id. e.g. "0001"
... categories (List[int]): list of categories/class labels corresponding to provided bounding boxes
... areas (List[float]): list of corresponding areas to provided bounding boxes
... bboxes (List[Tuple[float]]): list of bounding boxes provided in COCO format
... categories list[int]): list of categories/class labels corresponding to provided bounding boxes
... areas list[float]): list of corresponding areas to provided bounding boxes
... bboxes (Listtuple[float]]): list of bounding boxes provided in COCO format
... ([center_x, center_y, width, height] in absolute coordinates)
... Returns:
@ -397,7 +397,7 @@ Intermediate format of boxes used for training is `YOLO` (normalized) but we wil
... Args:
... boxes (torch.Tensor): Bounding boxes in YOLO format
... image_size (Tuple[int, int]): Image size in format (height, width)
... image_size tuple[int, int]): Image size in format (height, width)
... Returns:
... torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)

View File

@ -408,7 +408,7 @@ instructs the model to ignore that part of the spectrogram when calculating the
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]

View File

@ -187,14 +187,17 @@ from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
def compute_losss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
labels = inputs.pop("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss for 3 labels with different weights
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device))
reduction = "mean" if num_items_in_batch is not None else "sum"
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device, reduction=reduction))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
if num_items_in_batch is not None:
loss = loss / num_items_in_batch
return (loss, outputs) if return_outputs else loss
```

View File

@ -48,7 +48,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -166,7 +166,7 @@ A diferencia de otros collators de datos, este tiene que aplicarle un método de
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... # particiona las entradas y las etiquetas ya que tienen que tener longitudes distintas y
... # requieren métodos de padding diferentes
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -39,7 +39,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -56,7 +56,7 @@ Optunaに関しては、[object_parameter](https://optuna.readthedocs.io/en/stab
... }
```
Optunaは、多目的のハイパーパラメータ最適化HPOを提供しています。 `hyperparameter_search``direction` を渡し、複数の目的関数値を返すための独自の `compute_objective` を定義することができます。 Pareto Front`List[BestRun]`)は `hyperparameter_search` で返され、[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py) のテストケース `TrainerHyperParameterMultiObjectOptunaIntegrationTest` を参照する必要があります。これは以下のようになります。
Optunaは、多目的のハイパーパラメータ最適化HPOを提供しています。 `hyperparameter_search``direction` を渡し、複数の目的関数値を返すための独自の `compute_objective` を定義することができます。 Pareto Frontlist[BestRun]`)は `hyperparameter_search` で返され、[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py) のテストケース `TrainerHyperParameterMultiObjectOptunaIntegrationTest` を参照する必要があります。これは以下のようになります。
```py

View File

@ -39,19 +39,8 @@ rendered properly in your Markdown viewer.
Transformers 4.20.0では、[`~PreTrainedModel.from_pretrained`] メソッドが再設計され、[Accelerate](https://huggingface.co/docs/accelerate/big_modeling) を使用して大規模モデルを扱うことが可能になりました。これには Accelerate >= 0.9.0 と PyTorch >= 1.9.0 が必要です。以前の方法でフルモデルを作成し、その後事前学習の重みを読み込む代わりにこれにはメモリ内のモデルサイズが2倍必要で、ランダムに初期化されたモデル用と重み用の2つが必要でした、モデルを空の外殻として作成し、事前学習の重みが読み込まれるときにパラメーターを実体化するオプションが追加されました。
このオプションは `low_cpu_mem_usage=True` で有効にできます。モデルはまず空の重みを持つメタデバイス上に作成され、その後状態辞書が内部に読み込まれますシャードされたチェックポイントの場合、シャードごとに読み込まれます。この方法で使用される最大RAMは、モデルの完全なサイズだけです。
```py
from transformers import AutoModelForSeq2SeqLM
t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", low_cpu_mem_usage=True)
```
さらに、モデルが完全にRAMに収まらない場合現時点では推論のみ有効、異なるデバイスにモデルを直接配置できます。`device_map="auto"` を使用すると、Accelerateは各レイヤーをどのデバイスに配置するかを決定し、最速のデバイスGPUを最大限に活用し、残りの部分をCPU、あるいはGPU RAMが不足している場合はハードドライブにオフロードします。モデルが複数のデバイスに分割されていても、通常どおり実行されます。
`device_map` を渡す際、`low_cpu_mem_usage` は自動的に `True` に設定されるため、それを指定する必要はありません。
```py
from transformers import AutoModelForSeq2SeqLM

View File

@ -57,11 +57,11 @@ def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (List[str])
input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# encode(tokenize) each word from words list[str])
input_ids_list:list[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: List[int] = [len(l) for l in input_ids_list]
tokens_length_list:list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)

View File

@ -149,7 +149,7 @@ DETR モデルをインスタンス化するには 3 つの方法があります
| **Description** |画像内のオブジェクトの周囲の境界ボックスとクラス ラベルを予測する | 画像内のオブジェクト (つまりインスタンス) の周囲のマスクを予測する | 画像内のオブジェクト (インスタンス) と「もの」 (木や道路などの背景) の両方の周囲のマスクを予測します |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': list[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': list[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': list[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': list[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |

View File

@ -170,7 +170,7 @@ MInDS-14 データセットのサンプリング レートは 8000kHz です (
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -208,7 +208,7 @@ DETR モデルをトレーニングできる「ラベル」。画像プロセッ
... )
```
`image_processor` は、注釈が次の形式であることを期待します: `{'image_id': int, 'annotations': List[Dict]}`,
`image_processor` は、注釈が次の形式であることを期待します: `{'image_id': int, 'annotations':list[Dict]}`,
ここで、各辞書は COCO オブジェクトの注釈です。 1 つの例として、注釈を再フォーマットする関数を追加してみましょう。
```py

View File

@ -408,7 +408,7 @@ Y 軸が反転され、スペクトログラムが上下逆に表示されます
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]

View File

@ -46,7 +46,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -227,7 +227,7 @@ flush()
이제 4비트 양자화가 제공하는 최대 GPU 메모리 사용량을 확인해 봅시다. 4비트로 모델을 양자화하려면 이전과 동일한 API를 사용하되 이번에는 `load_in_8bit=True` 대신 `load_in_4bit=True`를 전달하면 됩니다.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

View File

@ -148,7 +148,6 @@ model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
```

View File

@ -172,7 +172,7 @@ MInDS-14 데이터 세트의 샘플링 레이트는 8000kHz이므로([데이터
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... # 입력과 레이블을 분할합니다
... # 길이가 다르고, 각각 다른 패딩 방법을 사용해야 하기 때문입니다
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -201,7 +201,7 @@ DatasetDict({
... )
```
이미지 프로세서는 어노테이션이 다음과 같은 형식일 것으로 예상합니다: `{'image_id': int, 'annotations': List[Dict]}`, 여기서 각 딕셔너리는 COCO 객체 어노테이션입니다. 단일 예제에 대해 어노테이션의 형식을 다시 지정하는 함수를 추가해 보겠습니다:
이미지 프로세서는 어노테이션이 다음과 같은 형식일 것으로 예상합니다: `{'image_id': int, 'annotations':list[Dict]}`, 여기서 각 딕셔너리는 COCO 객체 어노테이션입니다. 단일 예제에 대해 어노테이션의 형식을 다시 지정하는 함수를 추가해 보겠습니다:
```py
>>> def formatted_anns(image_id, category, area, bbox):

View File

@ -421,7 +421,7 @@ args = TrainingArguments(
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
trainer = trl.SFTTrainer(
model=model,

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -39,7 +39,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers:list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -56,7 +56,7 @@ pip install optuna/sigopt/wandb/ray[tune]
... }
```
Optuna提供了多目标HPO。您可以在`hyperparameter_search`中传递`direction`参数,并定义自己的`compute_objective`以返回多个目标值。在`hyperparameter_search`中将返回Pareto Front`List[BestRun]`),您应该参考[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py)中的测试用例`TrainerHyperParameterMultiObjectOptunaIntegrationTest`。它类似于以下内容:
Optuna提供了多目标HPO。您可以在`hyperparameter_search`中传递`direction`参数,并定义自己的`compute_objective`以返回多个目标值。在`hyperparameter_search`中将返回Pareto Frontlist[BestRun]`),您应该参考[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py)中的测试用例`TrainerHyperParameterMultiObjectOptunaIntegrationTest`。它类似于以下内容:
```py
>>> best_trials = trainer.hyperparameter_search(

View File

@ -29,18 +29,8 @@ http://www.apache.org/licenses/LICENSE-2.0
在 Transformers 4.20.0 中,[`~PreTrainedModel.from_pretrained`] 方法已重新设计,以适应使用 [Accelerate](https://huggingface.co/docs/accelerate/big_modeling) 加载大型模型的场景。这需要您使用的 Accelerate 和 PyTorch 版本满足: Accelerate >= 0.9.0 PyTorch >= 1.9.0。除了创建完整模型,然后在其中加载预训练权重(这会占用两倍于模型大小的内存空间,一个用于随机初始化模型,一个用于预训练权重),我们提供了一种选项,将模型创建为空壳,然后只有在加载预训练权重时才实例化其参数。
您可以使用 `low_cpu_mem_usage=True` 激活此选项。首先,在 Meta 设备上创建模型(带有空权重),然后将状态字典加载到其中(在分片检查点的情况下逐片加载)。这样,最大使用的内存占用仅为模型的完整大小。
```python
from transformers import AutoModelForSeq2SeqLM
t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", low_cpu_mem_usage=True)
```
此外,如果内存不足以放下加载整个模型(目前仅适用于推理),您可以直接将模型放置在不同的设备上。使用 `device_map="auto"`Accelerate 将确定将每一层放置在哪个设备上以最大化使用最快的设备GPU并将其余部分卸载到 CPU甚至硬盘上如果您没有足够的 GPU 内存 或 CPU 内存)。即使模型分布在几个设备上,它也将像您通常期望的那样运行。
在传递 `device_map` 时,`low_cpu_mem_usage` 会自动设置为 `True`,因此您不需要指定它:
```python
from transformers import AutoModelForSeq2SeqLM

View File

@ -181,7 +181,7 @@ Wav2Vec2 分词器仅训练了大写字符,因此您需要确保文本与分
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: Listdict[str, Unionlist[int], torch.Tensor]]]) ->dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -1,42 +0,0 @@
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
torch.set_float32_matmul_precision("high")
model_id = "meta-llama/Llama-3.2-3b-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map=0
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
generation_config = GenerationConfig(
max_new_tokens=512,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=False,
num_blocks=2048,
block_size=128,
do_sample=True,
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
scheduler="prefill_first",
)
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
def tokenize_function(examples):
return tokenizer(examples["question"])
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
batch_outputs = model.generate_batch(
inputs=simple_batch_inputs,
generation_config=generation_config,
progress_bar=False,
enable_visualizer=True,
tokenizer=tokenizer,
)

View File

@ -546,7 +546,7 @@ def main():
# region Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
"This example script only works for models that have a fast tokenizer. Check out the big table of models at"
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
" this requirement"
)

View File

@ -47,7 +47,7 @@ def postprocess_qa_predictions(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
@ -270,7 +270,7 @@ def postprocess_qa_predictions_with_beam_search(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):

View File

@ -184,7 +184,7 @@ class Seq2SeqTrainer(Trainer):
Args:
model (:obj:`nn.Module`):
The model to evaluate.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
inputs (:obj:dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
@ -193,7 +193,7 @@ class Seq2SeqTrainer(Trainer):
Whether or not to return the loss only.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
A tuple with the loss, logits and labels (each being optional).
"""
inputs = self._prepare_inputs(inputs)

View File

@ -530,7 +530,7 @@ def calculate_rouge(
on multi sentence summaries (CNN/DM dataset).
Returns:
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
"""
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)

View File

@ -36,7 +36,7 @@ class MyNewModelConfig(PretrainedConfig):
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
@ -91,11 +91,11 @@ class MyNewModelConfig(PretrainedConfig):
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
`short_factor` (list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
`long_factor` (list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2

View File

@ -34,7 +34,7 @@ class NewModelConfig(PretrainedConfig):
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_new_imgproc_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Dict, List, Optional, Union
from typing import Optional, Union
import numpy as np
import torch
@ -57,11 +57,11 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
image_mean (`float` or list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
image_std (`float` or list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
@ -74,13 +74,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
size: Optional[dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
@ -101,7 +101,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
size: dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
@ -113,7 +113,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
size (dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
@ -151,13 +151,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
size: Optional[dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: Optional[bool] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
@ -172,7 +172,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
size (dict[str, int]`, *optional*, defaults to `self.size`):
Controls the size of the image after `resize`. The shortest edge of the image is resized to
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
@ -185,9 +185,9 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
image_mean (`float` or list[float]`, *optional*, defaults to `self.image_mean`):
Image mean to normalize the image by if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
image_std (`float` or list[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.

View File

@ -5,7 +5,7 @@
# modular_add_function.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Note that zamba does not have the `apply_rotary_pos_emb` function!
from typing import Optional, Tuple
from typing import Optional
import torch
from torch import nn
@ -62,5 +62,5 @@ class TestAttention(nn.Module):
def __init__(self):
pass
def forward(self) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
_ = apply_rotary_pos_emb(1, 1, 1, 1)

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_dummy.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -210,12 +210,12 @@ class DummyAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -278,9 +278,9 @@ class DummyDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -6,7 +6,7 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import math
import os
from typing import Optional, Tuple, Union
from typing import Optional, Union
import torch
from packaging import version
@ -136,9 +136,9 @@ class DummyBertSelfAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
@ -245,9 +245,9 @@ class DummyBertSdpaSelfAttention(DummyBertSelfAttention):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
logger.warning_once(
@ -386,9 +386,9 @@ class DummyBertAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
@ -454,9 +454,9 @@ class DummyBertLayer(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
@ -532,12 +532,12 @@ class DummyBertEncoder(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_from_uppercase_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -71,7 +71,7 @@ class FromUppercaseModelAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -153,7 +153,7 @@ class FromUppercaseModelEncoderLayer(nn.Module):
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_multimodal1.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -210,12 +210,12 @@ class Multimodal1TextAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -278,9 +278,9 @@ class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -5,7 +5,7 @@
# modular_multimodal2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -81,7 +81,7 @@ class Multimodal2VisionAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -177,7 +177,7 @@ class Multimodal2Attention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -244,7 +244,7 @@ class Multimodal2VisionEncoderLayer(nn.Module):
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_my_new_model2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, List, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -208,12 +208,12 @@ class MyNewModel2Attention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -276,9 +276,9 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
@ -469,7 +469,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,

View File

@ -5,7 +5,7 @@
# modular_new_task_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from dataclasses import dataclass
from typing import ClassVar, List, Optional, Tuple, Union
from typing import ClassVar, Optional, Union
import torch
from torch import nn
@ -88,9 +88,9 @@ class NewTaskModelCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
@ -249,7 +249,7 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
@ -259,7 +259,7 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, NewTaskModelModelOutputWithPast]:
) -> Union[tuple, NewTaskModelModelOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@ -442,7 +442,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]:
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

View File

@ -6,7 +6,7 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import math
import os
from typing import List, Optional, Tuple, Union
from typing import Optional, Union
import torch
import torch.nn as nn
@ -139,9 +139,9 @@ class RobertaSelfAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
@ -248,9 +248,9 @@ class RobertaSdpaSelfAttention(RobertaSelfAttention):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
logger.warning_once(
@ -389,9 +389,9 @@ class RobertaAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
@ -457,9 +457,9 @@ class RobertaLayer(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
@ -535,12 +535,12 @@ class RobertaEncoder(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
@ -903,12 +903,12 @@ class RobertaModel(RobertaPreTrainedModel):
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_super.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -211,12 +211,12 @@ class SuperAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -279,9 +279,9 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -5,7 +5,7 @@
# modular_switch_function.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Note that llama and cohere have different definitions for rotate_half
from typing import Callable, Optional, Tuple
from typing import Callable, Optional
import torch
from torch import nn
@ -123,12 +123,12 @@ class SwitchFunctionAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)

View File

@ -7,7 +7,7 @@
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
from typing import Optional, Union
import torch
import torch.nn.functional as F
@ -43,7 +43,7 @@ class MultiScaleDeformableAttention(nn.Module):
self,
value: Tensor,
value_spatial_shapes: Tensor,
value_spatial_shapes_list: List[Tuple],
value_spatial_shapes_list: list[tuple],
level_start_index: Tensor,
sampling_locations: Tensor,
attention_weights: Tensor,
@ -124,9 +124,9 @@ class TestDetrDecoderOutput(ModelOutput):
last_hidden_state: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
cross_attentions: Optional[tuple[torch.FloatTensor]] = None
@dataclass
@ -177,12 +177,12 @@ class TestDetrModelOutput(ModelOutput):
last_hidden_state: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[tuple[torch.FloatTensor]] = None
cross_attentions: Optional[tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[tuple[torch.FloatTensor]] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
@ -557,7 +557,7 @@ class TestDetrMultiheadAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, target_len, embed_dim = hidden_states.size()
@ -1431,7 +1431,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
Args:
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
spatial_shapes (List[Tuple[int, int]]): Spatial shapes of the feature maps.
spatial_shapes (Listtuple[int, int]]): Spatial shapes of the feature maps.
Returns:
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
@ -1499,7 +1499,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TestDetrModelOutput]:
) -> Union[tuple[torch.FloatTensor], TestDetrModelOutput]:
r"""
Returns:

View File

@ -33,7 +33,7 @@ import logging
import os
from collections.abc import Iterable
from contextlib import nullcontext
from typing import Dict, Optional
from typing import Optional
import torch
import torch.distributed as dist
@ -589,7 +589,7 @@ class ContextParallelCollator:
def __init__(self, cp_mesh: Optional[DeviceMesh] = None):
self.cp_mesh = cp_mesh
def __call__(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
def __call__(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
batch = default_collate(batch)
if self.cp_mesh is not None and self.cp_mesh.size() > 1:
# Get sequence length from the input batch

View File

@ -11,7 +11,7 @@ torch.set_float32_matmul_precision("high")
model_id = "meta-llama/Llama-3.2-3b-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map=0
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")

View File

@ -229,10 +229,6 @@ sure all your batches have the same length.
To use the streaming dataset mode which can be very useful for large datasets, add `--streaming` to the command line. This is supported by `run_mlm.py`, `run_clm.py` and `run_fim.py`. Make sure to adapt the other scripts to your use case by taking inspiration from them.
## Low Cpu Memory Usage
To use low cpu memory mode which can be very useful for LLM, add `--low_cpu_mem_usage` to the command line. This is currently supported by `run_clm.py`,`run_mlm.py`, `run_plm.py`, `run_fim.py`, `run_mlm_no_trainer.py`, `run_clm_no_trainer.py` and `run_fim_no_trainer.py`.
## Creating a model on the fly
When training a model from scratch, configuration values may be overridden with the help of `--config_overrides`:

View File

@ -139,15 +139,6 @@ class ModelArguments:
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
"help": (
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"set True will benefit LLM loading time and RAM consumption."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
@ -432,7 +423,6 @@ def main():
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
else:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)

View File

@ -228,14 +228,6 @@ def parse_args():
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--low_cpu_mem_usage",
action="store_true",
help=(
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"If passed, LLM loading time and RAM consumption will be benefited."
),
)
args = parser.parse_args()
# Sanity checks
@ -409,7 +401,6 @@ def main():
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
)
else:

View File

@ -142,15 +142,6 @@ class ModelArguments:
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
"help": (
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"set True will benefit LLM loading time and RAM consumption."
)
},
)
pad_to_multiple_of: bool = field(
default=False,
metadata={
@ -501,7 +492,6 @@ def main():
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
attn_implementation=model_args.attn_implementation,
)
@ -521,7 +511,7 @@ def main():
# Get the factor by which the embedding layer should be padded based on the device
pad_factor = 1
if torch.cuda.is_availble():
if torch.cuda.is_available():
pad_factor = 8
elif is_torch_xla_available(check_is_tpu=True):

View File

@ -288,14 +288,6 @@ def parse_args():
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--low_cpu_mem_usage",
action="store_true",
help=(
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"If passed, LLM loading time and RAM consumption will be benefited."
),
)
args = parser.parse_args()
# Sanity checks
@ -474,7 +466,6 @@ def main():
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
)
else:
@ -488,7 +479,7 @@ def main():
# Get the factor by which the embedding layer should be padded based on the device
pad_factor = 1
if torch.cuda.is_availble():
if torch.cuda.is_available():
pad_factor = 8
elif is_torch_xla_available(check_is_tpu=True):

View File

@ -136,15 +136,6 @@ class ModelArguments:
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
"help": (
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"set True will benefit LLM loading time and RAM consumption."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
@ -436,7 +427,6 @@ def main():
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
else:
logger.info("Training new model from scratch")

View File

@ -235,14 +235,6 @@ def parse_args():
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--low_cpu_mem_usage",
action="store_true",
help=(
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"If passed, LLM loading time and RAM consumption will be benefited."
),
)
args = parser.parse_args()
# Sanity checks
@ -406,7 +398,6 @@ def main():
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
)
else:

Some files were not shown because too many files have changed in this diff Show More