mirror of
https://github.com/huggingface/transformers.git
synced 2025-11-06 21:44:36 +08:00
Compare commits
1 Commits
feat/conti
...
better_los
| Author | SHA1 | Date | |
|---|---|---|---|
| 9d0c37f9d4 |
@ -110,6 +110,7 @@ class CircleCIJob:
|
||||
print(f"Using {self.docker_image} docker image")
|
||||
if self.install_steps is None:
|
||||
self.install_steps = ["uv venv && uv pip install ."]
|
||||
self.install_steps.append("uv venv && uv pip install git+https://github.com/ydshieh/pytest.git@8.3.5-ydshieh git+https://github.com/ydshieh/pluggy.git@1.5.0-ydshieh")
|
||||
if self.pytest_options is None:
|
||||
self.pytest_options = {}
|
||||
if isinstance(self.tests_to_run, str):
|
||||
@ -213,7 +214,7 @@ generate_job = CircleCIJob(
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
# networkx==3.3 (after #36957) cause some issues
|
||||
# TODO: remove this once it works directly
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
|
||||
marker="generate",
|
||||
parallelism=6,
|
||||
)
|
||||
@ -309,7 +310,7 @@ onnx_job = CircleCIJob(
|
||||
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
|
||||
install_steps=[
|
||||
"uv venv",
|
||||
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
|
||||
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
|
||||
],
|
||||
pytest_options={"k onnx": None},
|
||||
pytest_num_workers=1,
|
||||
@ -338,7 +339,7 @@ non_model_job = CircleCIJob(
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
# networkx==3.3 (after #36957) cause some issues
|
||||
# TODO: remove this once it works directly
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
|
||||
marker="not generate",
|
||||
parallelism=6,
|
||||
)
|
||||
|
||||
2
.github/workflows/benchmark.yml
vendored
2
.github/workflows/benchmark.yml
vendored
@ -64,7 +64,7 @@ jobs:
|
||||
commit_id=$GITHUB_SHA
|
||||
fi
|
||||
commit_msg=$(git show -s --format=%s | cut -c1-70)
|
||||
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
|
||||
python3 benchmark/benchmarks_entrypoint.py "$BRANCH_NAME" "$commit_id" "$commit_msg"
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
# Enable this to see debug logs
|
||||
|
||||
40
.github/workflows/build-docker-images.yml
vendored
40
.github/workflows/build-docker-images.yml
vendored
@ -19,7 +19,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
latest-docker:
|
||||
name: "Latest PyTorch [dev]"
|
||||
name: "Latest PyTorch + TensorFlow [dev]"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
@ -267,6 +267,44 @@ jobs:
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-tensorflow:
|
||||
name: "Latest TensorFlow [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-tensorflow-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-tensorflow-gpu
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-pytorch-deepspeed-amd:
|
||||
name: "PyTorch + DeepSpeed (AMD) [dev]"
|
||||
runs-on:
|
||||
|
||||
12
.github/workflows/self-scheduled-caller.yml
vendored
12
.github/workflows/self-scheduled-caller.yml
vendored
@ -69,6 +69,18 @@ jobs:
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
tf-pipeline:
|
||||
name: TF pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_pipelines_tf_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-tensorflow-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
|
||||
70
.github/workflows/self-scheduled.yml
vendored
70
.github/workflows/self-scheduled.yml
vendored
@ -209,6 +209,75 @@ jobs:
|
||||
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
|
||||
run_pipelines_tf_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
|
||||
name: TensorFlow pipelines
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-tensorflow-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
cat /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
|
||||
|
||||
run_examples_gpu:
|
||||
if: ${{ inputs.job == 'run_examples_gpu' }}
|
||||
name: Examples directory
|
||||
@ -502,6 +571,7 @@ jobs:
|
||||
run_models_gpu,
|
||||
run_trainer_and_fsdp_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_pipelines_tf_gpu,
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_quantization_torch_gpu,
|
||||
|
||||
@ -2,11 +2,11 @@ import argparse
|
||||
import importlib.util
|
||||
import logging
|
||||
import os
|
||||
from typing import Dict
|
||||
import sys
|
||||
from typing import Dict, Tuple
|
||||
|
||||
from psycopg2.extensions import register_adapter
|
||||
from psycopg2.extras import Json
|
||||
from psycopg2.extensions import register_adapter
|
||||
|
||||
|
||||
register_adapter(dict, Json)
|
||||
@ -17,13 +17,10 @@ class ImportModuleException(Exception):
|
||||
|
||||
|
||||
class MetricsRecorder:
|
||||
def __init__(
|
||||
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str
|
||||
):
|
||||
def __init__(self, connection, logger: logging.Logger, branch: str, commit_id: str, commit_msg: str):
|
||||
self.conn = connection
|
||||
self.conn.autocommit = True
|
||||
self.logger = logger
|
||||
self.repository = repository
|
||||
self.branch = branch
|
||||
self.commit_id = commit_id
|
||||
self.commit_msg = commit_msg
|
||||
@ -35,8 +32,8 @@ class MetricsRecorder:
|
||||
# gpu_name: str, model_id: str
|
||||
with self.conn.cursor() as cur:
|
||||
cur.execute(
|
||||
"INSERT INTO benchmarks (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
|
||||
(self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
|
||||
"INSERT INTO benchmarks (branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
|
||||
(self.branch, self.commit_id, self.commit_msg, metadata),
|
||||
)
|
||||
benchmark_id = cur.fetchone()[0]
|
||||
logger.debug(f"initialised benchmark #{benchmark_id}")
|
||||
@ -85,18 +82,12 @@ handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
|
||||
|
||||
def parse_arguments() -> Tuple[str, str, str, str]:
|
||||
def parse_arguments():
|
||||
"""
|
||||
Parse command line arguments for the benchmarking CLI.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
|
||||
|
||||
parser.add_argument(
|
||||
"repository",
|
||||
type=str,
|
||||
help="The repository name on which the benchmarking is performed.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"branch",
|
||||
type=str,
|
||||
@ -117,7 +108,7 @@ def parse_arguments() -> Tuple[str, str, str, str]:
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return args.repository, args.branch, args.commit_id, args.commit_msg
|
||||
return args.branch, args.commit_id, args.commit_msg
|
||||
|
||||
|
||||
def import_from_path(module_name, file_path):
|
||||
@ -134,7 +125,7 @@ def import_from_path(module_name, file_path):
|
||||
if __name__ == "__main__":
|
||||
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
repository, branch, commit_id, commit_msg = parse_arguments()
|
||||
branch, commit_id, commit_msg = parse_arguments()
|
||||
|
||||
for entry in os.scandir(benchmarks_folder_path):
|
||||
try:
|
||||
@ -145,7 +136,7 @@ if __name__ == "__main__":
|
||||
logger.debug(f"loading: {entry.name}")
|
||||
module = import_from_path(entry.name.split(".")[0], entry.path)
|
||||
logger.info(f"running benchmarks in: {entry.name}")
|
||||
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
|
||||
module.run_benchmark(logger, branch, commit_id, commit_msg)
|
||||
except ImportModuleException as e:
|
||||
logger.error(e)
|
||||
except Exception as e:
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
CREATE TABLE IF NOT EXISTS benchmarks (
|
||||
benchmark_id SERIAL PRIMARY KEY,
|
||||
repository VARCHAR(255),
|
||||
branch VARCHAR(255),
|
||||
commit_id VARCHAR(72),
|
||||
commit_message VARCHAR(70),
|
||||
|
||||
@ -33,15 +33,11 @@ def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
|
||||
sleep(0.01)
|
||||
|
||||
|
||||
def run_benchmark(
|
||||
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100
|
||||
):
|
||||
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
|
||||
continue_metric_collection = Event()
|
||||
metrics_thread = None
|
||||
model_id = "meta-llama/Llama-2-7b-hf"
|
||||
metrics_recorder = MetricsRecorder(
|
||||
psycopg2.connect("dbname=metrics"), logger, repository, branch, commit_id, commit_msg
|
||||
)
|
||||
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
|
||||
try:
|
||||
gpu_stats = gpustat.GPUStatCollection.new_query()
|
||||
gpu_name = gpu_stats[0]["name"]
|
||||
|
||||
@ -5,7 +5,7 @@ ARG REF=main
|
||||
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
# tensorflow pin matching setup.py
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
|
||||
|
||||
@ -16,7 +16,7 @@ RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
|
||||
RUN make install -j 10
|
||||
|
||||
|
||||
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache --upgrade 'torch==2.6.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
# spacy is not used so not tested. Causes to failures. TODO fix later
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
RUN uv pip uninstall transformers
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps timm accelerate
|
||||
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
RUN uv pip uninstall transformers
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
RUN uv pip uninstall transformers
|
||||
|
||||
@ -7,7 +7,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN git lfs install
|
||||
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
|
||||
@ -28,7 +28,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 "tensorflow_text<2.16" "tensorflow_probability<0.22" && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
@ -45,7 +45,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
|
||||
# For video model testing
|
||||
RUN python3 -m pip install --no-cache-dir av
|
||||
RUN python3 -m pip install --no-cache-dir av==9.2.0
|
||||
|
||||
# Some slow tests require bnb
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
@ -555,8 +555,6 @@
|
||||
title: MegatronBERT
|
||||
- local: model_doc/megatron_gpt2
|
||||
title: MegatronGPT2
|
||||
- local: model_doc/minimax
|
||||
title: MiniMax
|
||||
- local: model_doc/mistral
|
||||
title: Mistral
|
||||
- local: model_doc/mixtral
|
||||
|
||||
@ -56,10 +56,10 @@ Attention is calculated independently in each layer of the model, and caching is
|
||||
|
||||
Refer to the table below to compare how caching improves efficiency.
|
||||
|
||||
| without caching | with caching |
|
||||
|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V`
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) |
|
||||
| without caching | with caching | | | |
|
||||
|---|---|---|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` | | | |
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) | | | |
|
||||
|
||||
|
||||
|
||||
|
||||
@ -19,9 +19,6 @@ Hyperparameter search discovers an optimal set of hyperparameters that produces
|
||||
|
||||
This guide will go over how to set up a hyperparameter search for each of the backends.
|
||||
|
||||
> [!WARNING]
|
||||
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
|
||||
|
||||
```bash
|
||||
pip install optuna/sigopt/wandb/ray[tune]
|
||||
```
|
||||
|
||||
@ -14,71 +14,60 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Aria
|
||||
|
||||
[Aria](https://huggingface.co/papers/2410.05993) is a multimodal mixture-of-experts (MoE) model. The goal of this model is to open-source a training recipe for creating a multimodal native model from scratch. Aria has 3.9B and 3.5B activated parameters per visual and text token respectively. Text is handled by a MoE decoder and visual inputs are handled by a lightweight visual encoder. It is trained in 4 stages, language pretraining, multimodal pretraining, multimodal long-context pretraining, and multimodal post-training.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original Aria checkpoints under the [Aria](https://huggingface.co/rhymes-ai?search_models=aria) organization.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Aria models in the right sidebar for more examples of how to apply Aria to different multimodal tasks.
|
||||
The Aria model was proposed in [Aria: An Open Multimodal Native Mixture-of-Experts Model](https://huggingface.co/papers/2410.05993) by Li et al. from the Rhymes.AI team.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
Aria is an open multimodal-native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. It has a Mixture-of-Experts architecture, with respectively 3.9B and 3.5B activated parameters per visual token and text token.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.*
|
||||
|
||||
This model was contributed by [m-ric](https://huggingface.co/m-ric).
|
||||
The original code can be found [here](https://github.com/rhymes-ai/Aria).
|
||||
|
||||
## Usage tips
|
||||
|
||||
Here's how to use the model for vision tasks:
|
||||
```python
|
||||
import requests
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from PIL import Image
|
||||
|
||||
pipeline = pipeline(
|
||||
"image-to-text",
|
||||
model="rhymes-ai/Aria",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipeline(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
text="What is shown in this image?"
|
||||
)
|
||||
```
|
||||
from transformers import AriaProcessor, AriaForConditionalGeneration
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
model_id_or_path = "rhymes-ai/Aria"
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"rhymes-ai/Aria",
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="sdpa"
|
||||
model = AriaForConditionalGeneration.from_pretrained(
|
||||
model_id_or_path, device_map="auto"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
|
||||
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"text": "what is the image?", "type": "text"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
|
||||
ipnuts = inputs.to(model.device, torch.bfloat16)
|
||||
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
||||
inputs = processor(text=text, images=image, return_tensors="pt")
|
||||
inputs.to(model.device)
|
||||
|
||||
output = model.generate(
|
||||
**inputs,
|
||||
@ -90,55 +79,6 @@ output = model.generate(
|
||||
)
|
||||
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
||||
response = processor.decode(output_ids, skip_special_tokens=True)
|
||||
print(response)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4 and the [rhymes-ai/Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) checkpoint. This checkpoint replaces grouped GEMM with `torch.nn.Linear` layers for easier quantization.
|
||||
|
||||
```py
|
||||
# pip install torchao
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"rhymes-ai/Aria-sequential_mlp",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"rhymes-ai/Aria-sequential_mlp",
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
|
||||
inputs = inputs.to(model.device, torch.bfloat16)
|
||||
|
||||
output = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=15,
|
||||
stop_strings=["<|im_end|>"],
|
||||
tokenizer=processor.tokenizer,
|
||||
do_sample=True,
|
||||
temperature=0.9,
|
||||
)
|
||||
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
||||
response = processor.decode(output_ids, skip_special_tokens=True)
|
||||
print(response)
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -14,94 +14,93 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
# GPT Neo
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The GPTNeo model was released in the [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) repository by Sid
|
||||
Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. It is a GPT2 like causal language model trained on the
|
||||
[Pile](https://pile.eleuther.ai/) dataset.
|
||||
|
||||
The architecture is similar to GPT2 except that GPT Neo uses local attention in every other layer with a window size of
|
||||
256 tokens.
|
||||
|
||||
This model was contributed by [valhalla](https://huggingface.co/valhalla).
|
||||
|
||||
## Usage example
|
||||
|
||||
The `generate()` method can be used to generate text using GPT Neo model.
|
||||
|
||||
```python
|
||||
>>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
||||
|
||||
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
||||
|
||||
>>> prompt = (
|
||||
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
|
||||
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
|
||||
... "researchers was the fact that the unicorns spoke perfect English."
|
||||
... )
|
||||
|
||||
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
>>> gen_tokens = model.generate(
|
||||
... input_ids,
|
||||
... do_sample=True,
|
||||
... temperature=0.9,
|
||||
... max_length=100,
|
||||
... )
|
||||
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
||||
```
|
||||
|
||||
## Combining GPT-Neo and Flash Attention 2
|
||||
|
||||
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature, and make sure your hardware is compatible with Flash-Attention 2. More details are available [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2) concerning the installation.
|
||||
|
||||
Make sure as well to load your model in half-precision (e.g. `torch.float16`).
|
||||
|
||||
To load and run a model using Flash Attention 2, refer to the snippet below:
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> device = "cuda" # the device to load the model onto
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
||||
|
||||
>>> prompt = "def hello_world():"
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
||||
>>> model.to(device)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>"
|
||||
```
|
||||
|
||||
### Expected speedups
|
||||
|
||||
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `EleutherAI/gpt-neo-2.7B` checkpoint and the Flash Attention 2 version of the model.
|
||||
Note that for GPT-Neo it is not possible to train / run on very long context as the max [position embeddings](https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/config.json#L58 ) is limited to 2048 - but this is applicable to all gpt-neo models and not specific to FA-2
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://user-images.githubusercontent.com/49240599/272241893-b1c66b75-3a48-4265-bc47-688448568b3d.png">
|
||||
</div>
|
||||
|
||||
|
||||
## GPT-Neo
|
||||
## Resources
|
||||
|
||||
[GPT-Neo](https://zenodo.org/records/5297715) is an open-source alternative to GPT-2 and GPT-3 models, built with Mesh TensorFlow for TPUs. GPT-Neo uses local attention in every other layer for more efficiency. It is trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), a diverse dataset consisting of 22 smaller high-quality datasets.
|
||||
|
||||
|
||||
You can find all the original GPT-Neo checkpoints under the [EleutherAI](https://huggingface.co/EleutherAI?search_models=gpt-neo) organization.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the GPT-Neo models in the right sidebar for more examples of how to apply GPT Neo to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(task="text-generation", model="EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Hello, I'm a language model")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2")
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
||||
|
||||
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model EleutherAI/gpt-neo-1.3B --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype="float16",
|
||||
bnb_4bit_use_double_quant=True
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"EleutherAI/gpt-neo-2.7B",
|
||||
quantization_config=quantization_config,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
||||
inputs = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Pad inputs on the right because GPT-Neo uses absolute position embeddings.
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
||||
## GPTNeoConfig
|
||||
|
||||
|
||||
@ -216,12 +216,12 @@ processor.batch_decode(generate_ids, skip_special_tokens=True)
|
||||
|
||||
## Note regarding reproducing original implementation
|
||||
|
||||
In order to match the logits of the [original implementation](https://github.com/haotian-liu/LLaVA/tree/main), one needs to additionally specify `do_pad=True` when instantiating `LlavaImageProcessor`:
|
||||
In order to match the logits of the [original implementation](https://github.com/haotian-liu/LLaVA/tree/main), one needs to additionally specify `do_pad=True` when instantiating `LLavaImageProcessor`:
|
||||
|
||||
```python
|
||||
from transformers import LlavaImageProcessor
|
||||
from transformers import LLavaImageProcessor
|
||||
|
||||
image_processor = LlavaImageProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf", do_pad=True)
|
||||
image_processor = LLavaImageProcessor.from_pretrained("https://huggingface.co/llava-hf/llava-1.5-7b-hf", do_pad=True)
|
||||
```
|
||||
|
||||
### Using Flash Attention 2
|
||||
|
||||
@ -1,189 +0,0 @@
|
||||
<!--Copyright 2025 MiniMaxAI and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# MiniMax
|
||||
|
||||
## Overview
|
||||
|
||||
The MiniMax-Text-01 model was proposed in [MiniMax-01: Scaling Foundation Models with Lightning Attention](https://arxiv.org/abs/2501.08313) by MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window.*
|
||||
|
||||
### Architectural details
|
||||
|
||||
MiniMax is a powerful language model with 456 billion total parameters, of which 45.9 billion are activated per token. To better unlock the long context capabilities of the model, MiniMax adopts a hybrid architecture that combines Lightning Attention, Softmax Attention and Mixture-of-Experts (MoE). Leveraging advanced parallel strategies and innovative compute-communication overlap methods—such as Linear Attention Sequence Parallelism Plus (LASP+), varlen ring attention, Expert Tensor Parallel (ETP), etc., MiniMax's training context length is extended to 1 million tokens, and it can handle a context of up to 4 million tokens during the inference. On various academic benchmarks, MiniMax also demonstrates the performance of a top-tier model.
|
||||
|
||||
The architecture of MiniMax is briefly described as follows:
|
||||
|
||||
- Total Parameters: 456B
|
||||
- Activated Parameters per Token: 45.9B
|
||||
- Number Layers: 80
|
||||
- Hybrid Attention: a softmax attention is positioned after every 7 lightning attention.
|
||||
- Number of attention heads: 64
|
||||
- Attention head dimension: 128
|
||||
- Mixture of Experts:
|
||||
- Number of experts: 32
|
||||
- Expert hidden dimension: 9216
|
||||
- Top-2 routing strategy
|
||||
- Positional Encoding: Rotary Position Embedding (RoPE) applied to half of the attention head dimension with a base frequency of 10,000,000
|
||||
- Hidden Size: 6144
|
||||
- Vocab Size: 200,064
|
||||
|
||||
For more details refer to the [release blog post](https://www.minimaxi.com/en/news/minimax-01-series-2).
|
||||
|
||||
### License
|
||||
|
||||
`MiniMax` is released under the MINIMAX MODEL LICENSE AGREEMENT.
|
||||
|
||||
## Usage tips
|
||||
|
||||
The pre-trained model can be used as follows:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
|
||||
|
||||
>>> messages = [
|
||||
... {"role": "user", "content": "What is your favourite condiment?"},
|
||||
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
||||
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
||||
... ]
|
||||
|
||||
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
||||
|
||||
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"Mayonnaise can be made as follows: (...)"
|
||||
```
|
||||
|
||||
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
|
||||
|
||||
## Speeding up MiniMax by using Flash Attention
|
||||
|
||||
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
|
||||
|
||||
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
|
||||
|
||||
```bash
|
||||
pip install -U flash-attn --no-build-isolation
|
||||
```
|
||||
|
||||
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
|
||||
|
||||
To load and run a model using Flash Attention-2, refer to the snippet below:
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
|
||||
|
||||
>>> prompt = "My favourite condiment is"
|
||||
|
||||
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
||||
>>> model.to(device)
|
||||
|
||||
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"The expected output"
|
||||
```
|
||||
|
||||
### Sliding window Attention
|
||||
|
||||
The current implementation supports the sliding window attention mechanism and memory efficient cache management.
|
||||
To enable sliding window attention, just make sure to have a `flash-attn` version that is compatible with sliding window attention (`>=2.3.0`).
|
||||
|
||||
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
|
||||
|
||||
## Shrinking down MiniMax using quantization
|
||||
|
||||
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
|
||||
|
||||
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
>>> # specify how to quantize the model
|
||||
>>> quantization_config = BitsAndBytesConfig(
|
||||
... load_in_4bit=True,
|
||||
... bnb_4bit_quant_type="nf4",
|
||||
... bnb_4bit_compute_dtype="torch.float16",
|
||||
... )
|
||||
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", quantization_config=True, device_map="auto")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
|
||||
|
||||
>>> prompt = "My favourite condiment is"
|
||||
|
||||
>>> messages = [
|
||||
... {"role": "user", "content": "What is your favourite condiment?"},
|
||||
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
||||
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
||||
... ]
|
||||
|
||||
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
||||
|
||||
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
||||
>>> tokenizer.batch_decode(generated_ids)[0]
|
||||
"The expected output"
|
||||
```
|
||||
|
||||
This model was contributed by [geetu040](https://github.com/geetu040) and [Shakib-IO](https://github.com/Shakib-IO).
|
||||
The original code can be found [here](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/modeling_minimax_text_01.py).
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MiniMax. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
<PipelineTag pipeline="text-generation"/>
|
||||
|
||||
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
||||
## MiniMaxConfig
|
||||
|
||||
[[autodoc]] MiniMaxConfig
|
||||
|
||||
## MiniMaxModel
|
||||
|
||||
[[autodoc]] MiniMaxModel
|
||||
- forward
|
||||
|
||||
## MiniMaxForCausalLM
|
||||
|
||||
[[autodoc]] MiniMaxForCausalLM
|
||||
- forward
|
||||
|
||||
## MiniMaxForSequenceClassification
|
||||
|
||||
[[autodoc]] MiniMaxForSequenceClassification
|
||||
- forward
|
||||
|
||||
## MiniMaxForTokenClassification
|
||||
|
||||
[[autodoc]] MiniMaxForTokenClassification
|
||||
- forward
|
||||
|
||||
## MiniMaxForQuestionAnswering
|
||||
[[autodoc]] MiniMaxForQuestionAnswering
|
||||
- forward
|
||||
@ -119,11 +119,6 @@ Image.fromarray(depth.astype("uint8"))
|
||||
[[autodoc]] ZoeDepthImageProcessor
|
||||
- preprocess
|
||||
|
||||
## ZoeDepthImageProcessorFast
|
||||
|
||||
[[autodoc]] ZoeDepthImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## ZoeDepthForDepthEstimation
|
||||
|
||||
[[autodoc]] ZoeDepthForDepthEstimation
|
||||
|
||||
@ -62,17 +62,16 @@ Install torchao from PyPi or the PyTorch index with the following commands.
|
||||
# Stable release from Pypi which will default to CUDA 12.6
|
||||
pip install --upgrade torchao transformers
|
||||
```
|
||||
</hfoption>
|
||||
</hfoption>
|
||||
<hfoption id="PyTorch Index">
|
||||
Stable Release from the PyTorch index
|
||||
|
||||
```bash
|
||||
pip install torchao --index-url https://download.pytorch.org/whl/cu126 # options are cpu/cu118/cu126/cu128
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
If your torchao version is below 0.10.0, you need to upgrade it, please refer to the [deprecation notice](#deprecation-notice) for more details.
|
||||
If your torcha version is below 0.10.0, you need to upgrade it, please refer to the [deprecation notice](#deprecation-notice) for more details.
|
||||
|
||||
## Quantization examples
|
||||
|
||||
@ -89,7 +88,6 @@ We'll show examples for recommended quantization methods based on hardwares, e.g
|
||||
### H100 GPU
|
||||
<hfoptions id="examples-H100-GPU">
|
||||
<hfoption id="float8-dynamic-and-weight-only">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
@ -150,7 +148,6 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
### A100 GPU
|
||||
<hfoptions id="examples-A100-GPU">
|
||||
<hfoption id="int8-dynamic-and-weight-only">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
@ -218,7 +215,6 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
### CPU
|
||||
<hfoptions id="examples-CPU">
|
||||
<hfoption id="int8-dynamic-and-weight-only">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
@ -280,18 +276,18 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
### Per Module Quantization
|
||||
#### 1. Skip quantization for certain layers
|
||||
With `ModuleFqnToConfig` we can specify a default configuration for all layers while skipping quantization for certain layers.
|
||||
With `AOPerModuleConfig` we can specify a default configuration for all layers while skipping quantization for certain layers.
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
model_id = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
from torchao.quantization import Int4WeightOnlyConfig, ModuleFqnToConfig
|
||||
from torchao.quantization import Int4WeightOnlyConfig, AOPerModuleConfig
|
||||
config = Int4WeightOnlyConfig(group_size=128)
|
||||
|
||||
# set default to int4 (for linears), and skip quantizing `model.layers.0.self_attn.q_proj`
|
||||
quant_config = ModuleFqnToConfig({"_default": config, "model.layers.0.self_attn.q_proj": None})
|
||||
quant_config = AOPerModuleConfig({"_default": config, "model.layers.0.self_attn.q_proj": None})
|
||||
quantization_config = TorchAoConfig(quant_type=quant_config)
|
||||
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
|
||||
# lm_head is not quantized and model.layers.0.self_attn.q_proj is not quantized
|
||||
@ -315,7 +311,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
model_id = "facebook/opt-125m"
|
||||
|
||||
from torchao.quantization import Int4WeightOnlyConfig, ModuleFqnToConfig, Int8DynamicActivationInt4WeightConfig, IntxWeightOnlyConfig, PerAxis, MappingType
|
||||
from torchao.quantization import Int4WeightOnlyConfig, AOPerModuleConfig, Int8DynamicActivationInt4WeightConfig, IntxWeightOnlyConfig, PerAxis, MappingType
|
||||
|
||||
weight_dtype = torch.int8
|
||||
granularity = PerAxis(0)
|
||||
@ -326,7 +322,7 @@ embedding_config = IntxWeightOnlyConfig(
|
||||
mapping_type=mapping_type,
|
||||
)
|
||||
linear_config = Int8DynamicActivationInt4WeightConfig(group_size=128)
|
||||
quant_config = ModuleFqnToConfig({"_default": linear_config, "model.decoder.embed_tokens": embedding_config, "model.decoder.embed_positions": None})
|
||||
quant_config = AOPerModuleConfig({"_default": linear_config, "model.decoder.embed_tokens": embedding_config, "model.decoder.embed_positions": None})
|
||||
# set `include_embedding` to True in order to include embedding in quantization
|
||||
# when `include_embedding` is True, we'll remove input embedding from `modules_not_to_convert` as well
|
||||
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True)
|
||||
@ -389,7 +385,6 @@ To avoid arbitrary user code execution, torchao sets `weights_only=True` in [tor
|
||||
|
||||
<hfoptions id="serialization-examples">
|
||||
<hfoption id="save-locally">
|
||||
|
||||
```py
|
||||
# don't serialize model with Safetensors
|
||||
output_dir = "llama3-8b-int4wo-128"
|
||||
@ -397,7 +392,6 @@ quantized_model.save_pretrained("llama3-8b-int4wo-128", safe_serialization=False
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="push-to-huggingface-hub">
|
||||
|
||||
```py
|
||||
# don't serialize model with Safetensors
|
||||
USER_ID = "your_huggingface_user_id"
|
||||
@ -433,8 +427,8 @@ quantized_model.save_pretrained(output_dir, safe_serialization=False)
|
||||
|
||||
# reload the quantized model
|
||||
reloaded_model = AutoModelForCausalLM.from_pretrained(
|
||||
output_dir,
|
||||
device_map="auto",
|
||||
output_dir,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
|
||||
@ -469,8 +463,8 @@ quantized_model.save_pretrained(output_dir, safe_serialization=False)
|
||||
|
||||
# reload the quantized model
|
||||
reloaded_model = AutoModelForCausalLM.from_pretrained(
|
||||
output_dir,
|
||||
device_map="cpu",
|
||||
output_dir,
|
||||
device_map="cpu",
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
|
||||
|
||||
@ -32,8 +32,8 @@ ocalhost:29504 test_train.py
|
||||
|
||||
import logging
|
||||
import os
|
||||
from collections.abc import Iterable
|
||||
from contextlib import nullcontext
|
||||
from typing import Iterable
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
@ -1,42 +0,0 @@
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-3b-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map=0
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=512,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
use_cache=False,
|
||||
num_blocks=2048,
|
||||
block_size=128,
|
||||
do_sample=True,
|
||||
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
|
||||
scheduler="prefill_first",
|
||||
)
|
||||
|
||||
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["question"])
|
||||
|
||||
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
progress_bar=False,
|
||||
enable_visualizer=True,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
@ -3,6 +3,6 @@ jaxlib>=0.1.59
|
||||
flax>=0.3.5
|
||||
optax>=0.0.8
|
||||
-f https://download.pytorch.org/whl/torch_stable.html
|
||||
torch==2.7.1
|
||||
torch==2.6.0
|
||||
-f https://download.pytorch.org/whl/torch_stable.html
|
||||
torchvision==0.12.0+cpu
|
||||
|
||||
@ -12,52 +12,24 @@ from torch import nn
|
||||
|
||||
from ...cache_utils import Cache, HybridCache, StaticCache
|
||||
from ...generation import GenerationMixin
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_outputs import BaseModelOutputWithPast
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...processing_utils import Unpack
|
||||
from ...utils import ModelOutput, auto_docstring, can_return_tuple, is_torchdynamo_compiling
|
||||
from ..auto import AutoModel
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from ..auto import AutoModel, AutoModelForCausalLM
|
||||
from .configuration_new_task_model import NewTaskModelConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelModelOutputWithPast(BaseModelOutputWithPast):
|
||||
"""
|
||||
Base class for NewTaskModel outputs, with hidden states and attentions.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||
sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
image_hidden_states (`torch.FloatTensor`, *optional*):
|
||||
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
||||
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
||||
"""
|
||||
|
||||
image_hidden_states: Optional[torch.FloatTensor] = None
|
||||
_CONFIG_FOR_DOC = "NewTaskModelConfig"
|
||||
|
||||
|
||||
@dataclass
|
||||
class NewTaskModelCausalLMOutputWithPast(ModelOutput):
|
||||
"""
|
||||
Base class for NewTaskModel causal language model (or autoregressive) outputs.
|
||||
Base class for NewTaskModelcausal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
@ -105,10 +77,30 @@ class NewTaskModelMultiModalProjector(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
@auto_docstring
|
||||
NEW_TASK_MODEL_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`NewTaskModelConfig`] or [`NewTaskModelVisionConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||||
NEW_TASK_MODEL_START_DOCSTRING,
|
||||
)
|
||||
class NewTaskModelPreTrainedModel(PreTrainedModel):
|
||||
config_class = NewTaskModelConfig
|
||||
base_model_prefix = ""
|
||||
base_model_prefix = "model"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["NewTaskModelMultiModalProjector"]
|
||||
_skip_keys_device_placement = "past_key_values"
|
||||
@ -117,8 +109,6 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
|
||||
_supports_static_cache = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_sdpa = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
# important: this ported version of NewTaskModelisn't meant for training from scratch - only
|
||||
@ -131,24 +121,102 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The Base NewTaskModel model which consists of a vision backbone and a language model withou language modeling head.,
|
||||
"""
|
||||
)
|
||||
class NewTaskModelModel(NewTaskModelPreTrainedModel):
|
||||
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
||||
NEW_TASK_MODEL_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
def __init__(self, config: NewTaskModelConfig):
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
||||
The tensors corresponding to the input images. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`NewTaskModelProcessor`] uses
|
||||
[`SiglipImageProcessor`] for processing images).
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||||
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||||
information on the default strategy.
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||||
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||||
the complete sequence length.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""The NEW_TASK_MODEL model which consists of a vision backbone and a language model.""",
|
||||
NEW_TASK_MODEL_START_DOCSTRING,
|
||||
)
|
||||
class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
||||
self.multi_modal_projector = NewTaskModelMultiModalProjector(config)
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
|
||||
language_model = AutoModel.from_config(config=config.text_config)
|
||||
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
|
||||
|
||||
if language_model._tied_weights_keys is not None:
|
||||
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
||||
self.language_model = language_model
|
||||
|
||||
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
||||
|
||||
self.embedding_dim = self.config.embedding_dim
|
||||
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
|
||||
|
||||
if self.language_model._tied_weights_keys is not None:
|
||||
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
@ -157,6 +225,18 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
|
||||
def set_input_embeddings(self, value):
|
||||
self.language_model.set_input_embeddings(value)
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.language_model.get_output_embeddings()
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.language_model.set_output_embeddings(new_embeddings)
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.language_model.set_decoder(decoder)
|
||||
|
||||
def get_decoder(self):
|
||||
return self.language_model.get_decoder()
|
||||
|
||||
def _update_causal_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
@ -241,191 +321,8 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
|
||||
image_features = image_features / (self.config.text_config.hidden_size**0.5)
|
||||
return image_features
|
||||
|
||||
@can_return_tuple
|
||||
@auto_docstring
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
**kwargs: Unpack[FlashAttentionKwargs],
|
||||
) -> Union[Tuple, NewTaskModelModelOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
>>> from transformers import AutoProcessor, NewTaskModelForConditionalGeneration
|
||||
|
||||
>>> model = NewTaskModelForConditionalGeneration.from_pretrained("google/new_task_model2-3b-mix-224")
|
||||
>>> processor = AutoProcessor.from_pretrained("google/new_task_model2-3b-mix-224")
|
||||
|
||||
>>> prompt = "Where is the cat standing?"
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(**inputs,)
|
||||
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"Where is the cat standing?\nsnow"
|
||||
```"""
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
is_training = token_type_ids is not None and labels is not None
|
||||
|
||||
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
||||
if input_ids is not None and self.config.image_token_id >= self.vocab_size:
|
||||
special_image_mask = input_ids == self.config.image_token_id
|
||||
llm_input_ids = input_ids.clone()
|
||||
llm_input_ids[special_image_mask] = 0
|
||||
else:
|
||||
llm_input_ids = input_ids
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
|
||||
|
||||
if cache_position is None:
|
||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
cache_position = torch.arange(
|
||||
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||||
)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0) + 1 # NewTaskModel positions are 1-indexed
|
||||
|
||||
# Merge text and images
|
||||
if pixel_values is not None:
|
||||
image_features = self.get_image_features(pixel_values)
|
||||
|
||||
if input_ids is None:
|
||||
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
||||
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
||||
)
|
||||
else:
|
||||
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
|
||||
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
||||
|
||||
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
||||
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
|
||||
raise ValueError(
|
||||
f"Number of images does not match number of special image tokens in the input text. "
|
||||
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
||||
"tokens from image embeddings."
|
||||
)
|
||||
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
||||
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
|
||||
)
|
||||
outputs = self.language_model(
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=True,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return NewTaskModelModelOutputWithPast(
|
||||
last_hidden_state=outputs.last_hidden_state,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
image_hidden_states=image_features if pixel_values is not None else None,
|
||||
)
|
||||
|
||||
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
The Base NewTaskModel model which consists of a vision backbone and a language model without language modeling head.,
|
||||
"""
|
||||
)
|
||||
class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
_checkpoint_conversion_mapping = {
|
||||
"^language_model.model": "model.language_model",
|
||||
"^vision_tower": "model.vision_tower",
|
||||
"^multi_modal_projector": "model.multi_modal_projector",
|
||||
"^language_model.lm_head": "lm_head",
|
||||
}
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = NewTaskModelModel(config)
|
||||
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
||||
|
||||
self.embedding_dim = self.config.embedding_dim
|
||||
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
|
||||
|
||||
if self.language_model._tied_weights_keys is not None:
|
||||
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.set_input_embeddings(value)
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
# Make modules available throught conditional class for BC
|
||||
@property
|
||||
def language_model(self):
|
||||
return self.model.language_model
|
||||
|
||||
@property
|
||||
def vision_tower(self):
|
||||
return self.model.vision_tower
|
||||
|
||||
@property
|
||||
def multi_modal_projector(self):
|
||||
return self.model.multi_modal_projector
|
||||
|
||||
@can_return_tuple
|
||||
@auto_docstring
|
||||
@add_start_docstrings_to_model_forward(NEW_TASK_MODEL_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=NewTaskModelCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
@ -444,10 +341,19 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
num_logits_to_keep: int = 0,
|
||||
) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
||||
|
||||
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
||||
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
||||
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
||||
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
||||
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
||||
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
@ -494,8 +400,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
# L2 normalization
|
||||
embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
|
||||
return (embeddings,) + vlm_outputs
|
||||
|
||||
@ -515,7 +420,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
**kwargs,
|
||||
):
|
||||
# Overwritten -- custom `position_ids` and `pixel_values` handling
|
||||
model_inputs = super().prepare_inputs_for_generation(
|
||||
model_inputs = self.language_model.prepare_inputs_for_generation(
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
@ -538,68 +443,13 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
|
||||
is_training = token_type_ids is not None and labels is not None
|
||||
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
|
||||
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
|
||||
causal_mask = self.model._update_causal_mask(
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
|
||||
)
|
||||
model_inputs["attention_mask"] = causal_mask
|
||||
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||||
`(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
min_dtype = torch.finfo(dtype).min
|
||||
causal_mask = torch.full(
|
||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
||||
)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
||||
causal_mask.device
|
||||
)
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
||||
def resize_token_embeddings(
|
||||
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None, mean_resizing=True
|
||||
) -> nn.Embedding:
|
||||
|
||||
@ -65,8 +65,7 @@ class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration):
|
||||
# L2 normalization
|
||||
embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
|
||||
return (embeddings,) + vlm_outputs
|
||||
|
||||
|
||||
@ -31,9 +31,8 @@ ocalhost:29504 test_train.py
|
||||
|
||||
import logging
|
||||
import os
|
||||
from collections.abc import Iterable
|
||||
from contextlib import nullcontext
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Iterable, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
@ -11,7 +11,7 @@ torch.set_float32_matmul_precision("high")
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-3b-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map=0
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
||||
|
||||
|
||||
@ -15,15 +15,10 @@ limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
|
||||
|
||||
@ -40,15 +40,10 @@ checkpoint: जाँच बिंदु
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
|
||||
|
||||
@ -50,15 +50,10 @@ user: ユーザ
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
|
||||
|
||||
@ -40,15 +40,10 @@ checkpoint: 检查点
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
|
||||
|
||||
@ -52,15 +52,10 @@ user: 使用者
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
|
||||
|
||||
7
setup.py
7
setup.py
@ -120,6 +120,7 @@ _deps = [
|
||||
"huggingface-hub>=0.30.0,<1.0",
|
||||
"importlib_metadata",
|
||||
"ipadic>=1.0.0,<2.0",
|
||||
"isort>=5.5.4",
|
||||
"jax>=0.4.1,<=0.4.13",
|
||||
"jaxlib>=0.4.1,<=0.4.13",
|
||||
"jieba",
|
||||
@ -141,7 +142,6 @@ _deps = [
|
||||
"optimum-benchmark>=0.3.0",
|
||||
"optuna",
|
||||
"optax>=0.0.8,<=0.1.4",
|
||||
"pandas<2.3.0", # `datasets` requires `pandas` while `pandas==2.3.0` has issues with CircleCI on 2025/06/05
|
||||
"packaging>=20.0",
|
||||
"parameterized",
|
||||
"phonemizer",
|
||||
@ -204,7 +204,6 @@ _deps = [
|
||||
"opentelemetry-api",
|
||||
"opentelemetry-exporter-otlp",
|
||||
"opentelemetry-sdk",
|
||||
"textual",
|
||||
]
|
||||
|
||||
|
||||
@ -368,7 +367,7 @@ extras["testing"] = (
|
||||
|
||||
extras["deepspeed-testing"] = extras["deepspeed"] + extras["testing"] + extras["optuna"] + extras["sentencepiece"]
|
||||
extras["ruff"] = deps_list("ruff")
|
||||
extras["quality"] = deps_list("datasets", "ruff", "GitPython", "urllib3", "libcst", "rich", "pandas")
|
||||
extras["quality"] = deps_list("datasets", "isort", "ruff", "GitPython", "urllib3", "libcst", "rich")
|
||||
|
||||
extras["all"] = (
|
||||
extras["tf"]
|
||||
@ -442,8 +441,6 @@ extras["benchmark"] = deps_list("optimum-benchmark")
|
||||
# OpenTelemetry dependencies for metrics collection in continuous batching
|
||||
extras["open-telemetry"] = deps_list("opentelemetry-api", "opentelemetry-exporter-otlp", "opentelemetry-sdk")
|
||||
|
||||
extras["continuous-batching-visualizer"] = deps_list("rich", "textual")
|
||||
|
||||
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
|
||||
install_requires = [
|
||||
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads
|
||||
|
||||
@ -2,9 +2,8 @@ import copy
|
||||
import importlib.metadata
|
||||
import json
|
||||
import os
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
@ -21,8 +21,7 @@ from dataclasses import dataclass
|
||||
from datetime import date
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from re import Pattern
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Pattern, Tuple, Union
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
@ -1218,7 +1218,6 @@ ALLOWED_LAYER_TYPES = (
|
||||
"full_attention",
|
||||
"sliding_attention",
|
||||
"chunked_attention",
|
||||
"linear_attention", # used in minimax
|
||||
)
|
||||
|
||||
|
||||
|
||||
@ -824,7 +824,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
|
||||
|
||||
tokenizer: PreTrainedTokenizerBase
|
||||
mlm: bool = True
|
||||
mlm_probability: Optional[float] = 0.15
|
||||
mlm_probability: float = 0.15
|
||||
mask_replace_prob: float = 0.8
|
||||
random_replace_prob: float = 0.1
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
@ -833,15 +833,13 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
|
||||
seed: Optional[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mlm:
|
||||
if self.tokenizer.mask_token is None:
|
||||
raise ValueError(
|
||||
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
||||
"You should pass `mlm=False` to train on causal language modeling instead."
|
||||
)
|
||||
if self.mlm_probability is None or self.mlm_probability < 0 or self.mlm_probability > 1:
|
||||
raise ValueError("mlm_probability should be between 0 and 1.")
|
||||
self.mlm_probability = float(self.mlm_probability)
|
||||
if self.mlm and self.tokenizer.mask_token is None:
|
||||
raise ValueError(
|
||||
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
||||
"You should pass `mlm=False` to train on causal language modeling instead."
|
||||
)
|
||||
if self.mlm_probability < 0 or self.mlm_probability > 1:
|
||||
raise ValueError("mlm_probability should be between 0 and 1.")
|
||||
if self.mask_replace_prob + self.random_replace_prob > 1:
|
||||
raise ValueError("The sum of mask_replace_prob and random_replace_prob should not exceed 1")
|
||||
if self.mask_replace_prob < 0 or self.mask_replace_prob > 1:
|
||||
@ -849,6 +847,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
|
||||
if self.random_replace_prob < 0 or self.random_replace_prob > 1:
|
||||
raise ValueError("random_replace_prob should be between 0 and 1.")
|
||||
|
||||
self.mlm_probability = float(self.mlm_probability)
|
||||
self.mask_replace_prob = float(self.mask_replace_prob)
|
||||
self.random_replace_prob = float(self.random_replace_prob)
|
||||
|
||||
|
||||
@ -27,6 +27,7 @@ deps = {
|
||||
"huggingface-hub": "huggingface-hub>=0.30.0,<1.0",
|
||||
"importlib_metadata": "importlib_metadata",
|
||||
"ipadic": "ipadic>=1.0.0,<2.0",
|
||||
"isort": "isort>=5.5.4",
|
||||
"jax": "jax>=0.4.1,<=0.4.13",
|
||||
"jaxlib": "jaxlib>=0.4.1,<=0.4.13",
|
||||
"jieba": "jieba",
|
||||
@ -47,7 +48,6 @@ deps = {
|
||||
"optimum-benchmark": "optimum-benchmark>=0.3.0",
|
||||
"optuna": "optuna",
|
||||
"optax": "optax>=0.0.8,<=0.1.4",
|
||||
"pandas": "pandas<2.3.0",
|
||||
"packaging": "packaging>=20.0",
|
||||
"parameterized": "parameterized",
|
||||
"phonemizer": "phonemizer",
|
||||
|
||||
@ -25,7 +25,6 @@ from enum import Enum
|
||||
from functools import partial
|
||||
from typing import Deque, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
from tokenizers import Tokenizer
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.profiler import profile, schedule, tensorboard_trace_handler
|
||||
@ -34,7 +33,6 @@ from tqdm import tqdm
|
||||
from ..cache_utils import Cache
|
||||
from ..configuration_utils import PretrainedConfig
|
||||
from ..generation.configuration_utils import GenerationConfig
|
||||
from ..utils.continuous_batching_visualizer import ContinuousBatchingVisualizer
|
||||
from ..utils.metrics import ContinuousBatchProcessorMetrics, attach_tracer, traced
|
||||
|
||||
|
||||
@ -1104,7 +1102,6 @@ class ContinuousBatchingManager:
|
||||
self.profile = getattr(generation_config, "profile", False)
|
||||
self.manual_eviction = manual_eviction
|
||||
self.batch_processor: Optional[ContinuousBatchProcessor] = None
|
||||
self.visualizer = None
|
||||
|
||||
@traced
|
||||
def start(self):
|
||||
@ -1154,12 +1151,6 @@ class ContinuousBatchingManager:
|
||||
logger.info("Continuous Batching Manager stopped.")
|
||||
self._generation_thread = None
|
||||
|
||||
def set_tokenizer(self, tokenizer: Tokenizer):
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
def set_visualizer(self, visualizer: ContinuousBatchingVisualizer):
|
||||
self.visualizer = visualizer
|
||||
|
||||
def add_request(
|
||||
self, input_ids: List[int], request_id: Optional[str] = None, max_new_tokens: Optional[int] = None
|
||||
) -> str:
|
||||
@ -1321,13 +1312,13 @@ class ContinuousBatchingManager:
|
||||
record_shapes=False,
|
||||
with_stack=True,
|
||||
) as prof:
|
||||
while not self.stop_event.is_set():
|
||||
while not self.stop_event.is_set() or batch_processor.has_pending_requests():
|
||||
self._inner_generation_loop(batch_processor, is_first)
|
||||
if is_first:
|
||||
is_first = False
|
||||
prof.step()
|
||||
else:
|
||||
while not self.stop_event.is_set():
|
||||
while not self.stop_event.is_set() or batch_processor.has_pending_requests():
|
||||
self._inner_generation_loop(batch_processor, is_first)
|
||||
if is_first:
|
||||
is_first = False
|
||||
@ -1343,10 +1334,6 @@ class ContinuousBatchingManager:
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
batch_processor.prepare_next_batch()
|
||||
if self.visualizer is not None:
|
||||
viz_data = self._collect_visualization_data(batch_processor)
|
||||
self.visualizer.draw(viz_data)
|
||||
self.visualizer.wait_for_input()
|
||||
if torch.cuda.is_available() and self.use_cuda_graph:
|
||||
if is_first:
|
||||
self.warmup(batch_processor)
|
||||
@ -1396,51 +1383,6 @@ class ContinuousBatchingManager:
|
||||
if self.batch_processor is not None:
|
||||
self.batch_processor.scheduler.finish_request(request_id)
|
||||
|
||||
def _collect_visualization_data(self, batch_processor: ContinuousBatchProcessor) -> Dict:
|
||||
"""Collect data for visualization."""
|
||||
data = {
|
||||
"batch_contents": [],
|
||||
"words": [],
|
||||
"request_ids_per_token": [],
|
||||
}
|
||||
data["attention_mask"] = batch_processor.attention_mask.clone()
|
||||
|
||||
# Collect all tokens and map them to request IDs
|
||||
all_tokens = []
|
||||
all_request_ids = []
|
||||
|
||||
for req in batch_processor.requests_in_batch:
|
||||
if self.tokenizer is not None:
|
||||
decoded = self.tokenizer.decode(req.prompt_ids)
|
||||
decoded_tokens_list = self.tokenizer.convert_ids_to_tokens(req.prompt_ids)
|
||||
data["batch_contents"].append({"request_id": req.request_id, "decoded": decoded, "decoded_tokens": decoded_tokens_list})
|
||||
all_tokens.extend(decoded_tokens_list)
|
||||
else:
|
||||
data["batch_contents"].append({"request_id": req.request_id, "tokens": req.prompt_ids})
|
||||
# Convert token IDs to strings when no tokenizer is available
|
||||
all_tokens.extend([str(token_id) for token_id in req.prompt_ids])
|
||||
|
||||
# Map each token to its request ID
|
||||
all_request_ids.extend([req.request_id] * len(req.prompt_ids))
|
||||
|
||||
data["words"] = all_tokens
|
||||
data["request_ids_per_token"] = all_request_ids
|
||||
|
||||
# Add cache statistics if available
|
||||
if hasattr(batch_processor, 'cache'):
|
||||
cache = batch_processor.cache
|
||||
data["paged_attention_cache"] = {
|
||||
"total_blocks": cache.num_blocks,
|
||||
"used_blocks": cache.num_blocks - len(cache._free_blocks),
|
||||
"free_blocks": len(cache._free_blocks),
|
||||
"block_size": cache.block_size,
|
||||
"num_heads": cache.num_key_value_heads,
|
||||
"head_dim": cache.head_dim,
|
||||
"utilization": (cache.num_blocks - len(cache._free_blocks)) / cache.num_blocks if cache.num_blocks > 0 else 0.0
|
||||
}
|
||||
|
||||
return data
|
||||
|
||||
|
||||
class ContinuousMixin:
|
||||
"""Mixin class for models to add continuous batching capabilities."""
|
||||
@ -1489,8 +1431,6 @@ class ContinuousMixin:
|
||||
inputs: List[List[int]],
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
progress_bar: bool = True,
|
||||
enable_visualizer: bool = False,
|
||||
tokenizer: Optional[Tokenizer] = None,
|
||||
**kwargs,
|
||||
) -> List[List[int]]:
|
||||
"""Generate sequences for a batch of prompts using continuous batching.
|
||||
@ -1498,8 +1438,6 @@ class ContinuousMixin:
|
||||
Args:
|
||||
inputs: List of input token sequences (prompts)
|
||||
generation_config: Optional generation configuration
|
||||
progress_bar: Whether to show a progress bar during generation
|
||||
visualizer: Whether to visualize the continuous batching process
|
||||
**kwargs: Additional generation parameters
|
||||
|
||||
Returns:
|
||||
@ -1516,37 +1454,29 @@ class ContinuousMixin:
|
||||
results = {}
|
||||
num_requests = len(inputs)
|
||||
try:
|
||||
if enable_visualizer:
|
||||
manager.add_requests(inputs, **kwargs)
|
||||
visualizer = ContinuousBatchingVisualizer()
|
||||
if tokenizer is not None:
|
||||
manager.set_tokenizer(tokenizer)
|
||||
manager.set_visualizer(visualizer)
|
||||
visualizer.run()
|
||||
else:
|
||||
from tqdm.contrib.logging import logging_redirect_tqdm
|
||||
from tqdm.contrib.logging import logging_redirect_tqdm
|
||||
|
||||
with logging_redirect_tqdm([logger]):
|
||||
with tqdm(
|
||||
total=num_requests,
|
||||
disable=(not progress_bar),
|
||||
desc=f"Solving {num_requests} requests",
|
||||
unit="request",
|
||||
) as pbar:
|
||||
manager.add_requests(inputs, **kwargs)
|
||||
finished_count = 0
|
||||
while finished_count < num_requests:
|
||||
result = manager.get_result(timeout=1)
|
||||
if result:
|
||||
req_id = result.request_id
|
||||
if result.status == RequestStatus.FINISHED:
|
||||
results[req_id] = result
|
||||
finished_count += 1
|
||||
pbar.update(1)
|
||||
else:
|
||||
if not manager.is_running():
|
||||
logger.error("Generation thread terminated unexpectedly.")
|
||||
break
|
||||
with logging_redirect_tqdm([logger]):
|
||||
with tqdm(
|
||||
total=num_requests,
|
||||
disable=(not progress_bar),
|
||||
desc=f"Solving {num_requests} requests",
|
||||
unit="request",
|
||||
) as pbar:
|
||||
manager.add_requests(inputs, **kwargs)
|
||||
finished_count = 0
|
||||
while finished_count < num_requests:
|
||||
result = manager.get_result(timeout=1)
|
||||
if result:
|
||||
req_id = result.request_id
|
||||
if result.status == RequestStatus.FINISHED:
|
||||
results[req_id] = result
|
||||
finished_count += 1
|
||||
pbar.update(1)
|
||||
else:
|
||||
if not manager.is_running():
|
||||
logger.error("Generation thread terminated unexpectedly.")
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during batch generation: {e}", exc_info=True)
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from collections.abc import Iterable
|
||||
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Callable, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
@ -1976,7 +1976,6 @@ class GenerationMixin(ContinuousMixin):
|
||||
and "jamba" not in self.__class__.__name__.lower()
|
||||
and "zamba" not in self.__class__.__name__.lower()
|
||||
and "bamba" not in self.__class__.__name__.lower()
|
||||
and "minimax" not in self.__class__.__name__.lower()
|
||||
)
|
||||
|
||||
def _prepare_cache_for_generation(
|
||||
|
||||
@ -458,16 +458,11 @@ def deepspeed_init(trainer, num_training_steps, inference=False):
|
||||
model_parameters = None
|
||||
else:
|
||||
trainer.optimizer = None # important for when deepspeed_init is used as re-init
|
||||
deepspeed_tp_size = hf_deepspeed_config.config.get("tensor_parallel", {}).get("autotp_size", 1)
|
||||
if deepspeed_tp_size > 1:
|
||||
tp_size = hf_deepspeed_config.config.get("tensor_parallel", {}).get("autotp_size", 0)
|
||||
if tp_size > 1:
|
||||
import deepspeed
|
||||
|
||||
model = deepspeed.tp_model_init(
|
||||
model=model,
|
||||
tp_size=deepspeed_tp_size,
|
||||
dtype=hf_deepspeed_config.dtype(),
|
||||
config=hf_deepspeed_config.config,
|
||||
)
|
||||
model = deepspeed.tp_model_init(model=model, tp_size=tp_size, dtype=hf_deepspeed_config.dtype())
|
||||
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
|
||||
optimizer, lr_scheduler = deepspeed_optim_sched(
|
||||
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
|
||||
|
||||
@ -23,7 +23,6 @@ if is_torch_npu_available():
|
||||
|
||||
import torch_npu
|
||||
from einops import rearrange, repeat
|
||||
from torch_npu import npu_rotary_mul
|
||||
|
||||
|
||||
# FlashAttention2 is supported on Ascend NPU with down-right aligned causal mask by default.
|
||||
@ -248,19 +247,3 @@ def npu_flash_attn_varlen_func(
|
||||
)[0]
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def npu_apply_rotary_emb(x, cos, sin, **kwargs):
|
||||
# cos tensor after chunk should be repeated through chunked dimension to original shape on Ascend NPU
|
||||
if len(cos.shape) == 2 and cos.shape[-1] == x.shape[-1] // 2:
|
||||
cos = cos.repeat(1, 2)
|
||||
# cos tensor with [S,D] shape should be unsqueezed to 4-d tensor with shape [1,S,1,D]
|
||||
cos = cos.unsqueeze(0).unsqueeze(2)
|
||||
|
||||
# sin tensor after chunk should be repeated through chunked dimension to original shape on Ascend NPU
|
||||
if len(sin.shape) == 2 and sin.shape[-1] == x.shape[-1] // 2:
|
||||
sin = sin.repeat(1, 2)
|
||||
# sin tensor with [S,D] shape should be unsqueezed to 4-d tensor with shape [1,S,1,D]
|
||||
sin = sin.unsqueeze(0).unsqueeze(2)
|
||||
|
||||
return npu_rotary_mul(x, cos, sin)
|
||||
|
||||
@ -53,6 +53,10 @@ def ForCausalLMLoss(
|
||||
shift_labels: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
|
||||
if labels is None and shift_labels is None:
|
||||
return None
|
||||
|
||||
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
||||
logits = logits.float()
|
||||
|
||||
|
||||
@ -40,8 +40,9 @@ if is_flash_attn_2_available():
|
||||
|
||||
# patch functions in package `flash-attn` when using flash-attention on Ascend NPU.
|
||||
if is_torch_npu_available():
|
||||
from torch_npu import npu_rotary_mul as apply_rotary_emb # noqa
|
||||
|
||||
from .integrations.npu_flash_attention import index_first_axis, pad_input, unpad_input
|
||||
from .integrations.npu_flash_attention import npu_apply_rotary_emb as apply_rotary_emb # noqa
|
||||
from .integrations.npu_flash_attention import npu_flash_attn_func as flash_attn_func
|
||||
from .integrations.npu_flash_attention import npu_flash_attn_varlen_func as flash_attn_varlen_func
|
||||
|
||||
|
||||
@ -2277,13 +2277,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
if not isinstance(requested_attn_implementation, dict)
|
||||
else requested_attn_implementation.get(key, None)
|
||||
)
|
||||
# For models with backbone sub-config might be not initialized. Set the requested att
|
||||
# if the config hasn't got any attn pre-set and the requested attn in not `None` (i.e not the default attn)
|
||||
if (
|
||||
sub_config is not None
|
||||
and sub_config._attn_implementation_internal is None
|
||||
and curr_attn_implementation is not None
|
||||
):
|
||||
# For models with backbone sub-config might be not initialized
|
||||
if sub_config is not None:
|
||||
sub_config._attn_implementation_internal = curr_attn_implementation
|
||||
|
||||
if config._attn_implementation == "flash_attention_2":
|
||||
@ -3755,7 +3750,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
index = None
|
||||
if state_dict_split.is_sharded:
|
||||
index = {
|
||||
"metadata": {"total_parameters": self.num_parameters(), **state_dict_split.metadata},
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
|
||||
|
||||
@ -185,7 +185,6 @@ if TYPE_CHECKING:
|
||||
from .megatron_gpt2 import *
|
||||
from .mgp_str import *
|
||||
from .mimi import *
|
||||
from .minimax import *
|
||||
from .mistral import *
|
||||
from .mistral3 import *
|
||||
from .mixtral import *
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
"""ALBERT model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -18,8 +18,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from collections.abc import Iterable
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -12,8 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from collections.abc import Iterable
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -384,8 +384,6 @@ class ASTPreTrainedModel(PreTrainedModel):
|
||||
supports_gradient_checkpointing = True
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||||
"""Initialize the weights"""
|
||||
|
||||
@ -442,12 +442,8 @@ class _BaseAutoModelClass:
|
||||
else:
|
||||
repo_id = config.name_or_path
|
||||
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
|
||||
# This block handles the case where the user is loading a model with `trust_remote_code=True`
|
||||
# but a library model exists with the same name. We don't want to override the autoclass
|
||||
# mappings in this case, or all future loads of that model will be the remote code model.
|
||||
if not has_local_code:
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
model_class = add_generation_mixin_to_remote_model(model_class)
|
||||
return model_class._from_config(config, **kwargs)
|
||||
@ -583,12 +579,8 @@ class _BaseAutoModelClass:
|
||||
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs
|
||||
)
|
||||
_ = hub_kwargs.pop("code_revision", None)
|
||||
# This block handles the case where the user is loading a model with `trust_remote_code=True`
|
||||
# but a library model exists with the same name. We don't want to override the autoclass
|
||||
# mappings in this case, or all future loads of that model will be the remote code model.
|
||||
if not has_local_code:
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
model_class = add_generation_mixin_to_remote_model(model_class)
|
||||
return model_class.from_pretrained(
|
||||
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
|
||||
|
||||
@ -211,7 +211,6 @@ CONFIG_MAPPING_NAMES = OrderedDict[str, str](
|
||||
("megatron-bert", "MegatronBertConfig"),
|
||||
("mgp-str", "MgpstrConfig"),
|
||||
("mimi", "MimiConfig"),
|
||||
("minimax", "MiniMaxConfig"),
|
||||
("mistral", "MistralConfig"),
|
||||
("mistral3", "Mistral3Config"),
|
||||
("mixtral", "MixtralConfig"),
|
||||
@ -587,7 +586,6 @@ MODEL_NAMES_MAPPING = OrderedDict[str, str](
|
||||
("megatron_gpt2", "Megatron-GPT2"),
|
||||
("mgp-str", "MGP-STR"),
|
||||
("mimi", "Mimi"),
|
||||
("minimax", "MiniMax"),
|
||||
("mistral", "Mistral"),
|
||||
("mistral3", "Mistral3"),
|
||||
("mixtral", "Mixtral"),
|
||||
|
||||
@ -170,7 +170,7 @@ else:
|
||||
("vitmatte", ("VitMatteImageProcessor", "VitMatteImageProcessorFast")),
|
||||
("xclip", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
|
||||
("yolos", ("YolosImageProcessor", "YolosImageProcessorFast")),
|
||||
("zoedepth", ("ZoeDepthImageProcessor", "ZoeDepthImageProcessorFast")),
|
||||
("zoedepth", ("ZoeDepthImageProcessor",)),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@ -201,7 +201,6 @@ MODEL_MAPPING_NAMES = OrderedDict(
|
||||
("megatron-bert", "MegatronBertModel"),
|
||||
("mgp-str", "MgpstrForSceneTextRecognition"),
|
||||
("mimi", "MimiModel"),
|
||||
("minimax", "MiniMaxModel"),
|
||||
("mistral", "MistralModel"),
|
||||
("mistral3", "Mistral3Model"),
|
||||
("mixtral", "MixtralModel"),
|
||||
@ -595,7 +594,6 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
|
||||
("mbart", "MBartForCausalLM"),
|
||||
("mega", "MegaForCausalLM"),
|
||||
("megatron-bert", "MegatronBertForCausalLM"),
|
||||
("minimax", "MiniMaxForCausalLM"),
|
||||
("mistral", "MistralForCausalLM"),
|
||||
("mixtral", "MixtralForCausalLM"),
|
||||
("mllama", "MllamaForCausalLM"),
|
||||
@ -1108,7 +1106,6 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
|
||||
("mbart", "MBartForSequenceClassification"),
|
||||
("mega", "MegaForSequenceClassification"),
|
||||
("megatron-bert", "MegatronBertForSequenceClassification"),
|
||||
("minimax", "MiniMaxForSequenceClassification"),
|
||||
("mistral", "MistralForSequenceClassification"),
|
||||
("mixtral", "MixtralForSequenceClassification"),
|
||||
("mobilebert", "MobileBertForSequenceClassification"),
|
||||
@ -1200,7 +1197,6 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
|
||||
("mbart", "MBartForQuestionAnswering"),
|
||||
("mega", "MegaForQuestionAnswering"),
|
||||
("megatron-bert", "MegatronBertForQuestionAnswering"),
|
||||
("minimax", "MiniMaxForQuestionAnswering"),
|
||||
("mistral", "MistralForQuestionAnswering"),
|
||||
("mixtral", "MixtralForQuestionAnswering"),
|
||||
("mobilebert", "MobileBertForQuestionAnswering"),
|
||||
@ -1307,7 +1303,6 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
|
||||
("markuplm", "MarkupLMForTokenClassification"),
|
||||
("mega", "MegaForTokenClassification"),
|
||||
("megatron-bert", "MegatronBertForTokenClassification"),
|
||||
("minimax", "MiniMaxForTokenClassification"),
|
||||
("mistral", "MistralForTokenClassification"),
|
||||
("mixtral", "MixtralForTokenClassification"),
|
||||
("mobilebert", "MobileBertForTokenClassification"),
|
||||
|
||||
@ -342,13 +342,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
|
||||
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
|
||||
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
|
||||
("mgp-str", ("MgpstrTokenizer", None)),
|
||||
(
|
||||
"minimax",
|
||||
(
|
||||
"GPT2Tokenizer" if is_sentencepiece_available() else None,
|
||||
"GPT2TokenizerFast" if is_tokenizers_available() else None,
|
||||
),
|
||||
),
|
||||
(
|
||||
"mistral",
|
||||
(
|
||||
|
||||
@ -97,7 +97,6 @@ class AyaVisionPreTrainedModel(PreTrainedModel):
|
||||
_supports_sdpa = True
|
||||
_supports_quantized_cache = False
|
||||
_supports_static_cache = False
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
|
||||
@ -16,8 +16,7 @@
|
||||
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Mapping, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
"""BERT model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""BigBird model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""BigBirdPegasus model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Mapping, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""Blenderbot model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Mapping, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""BlenderbotSmall model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Mapping, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
@ -1196,8 +1196,6 @@ class Blip2QFormerModel(Blip2PreTrainedModel):
|
||||
query_length if query_length is not None else query_embeds.shape[1] if query_embeds is not None else 0
|
||||
)
|
||||
|
||||
# `Blip2QFormerModel` is kept as fp32
|
||||
query_embeds = query_embeds.to(self.layernorm.weight.dtype)
|
||||
embedding_output = self.layernorm(query_embeds)
|
||||
embedding_output = self.dropout(embedding_output)
|
||||
|
||||
@ -1739,7 +1737,6 @@ class Blip2TextModelWithProjection(Blip2PreTrainedModel):
|
||||
)
|
||||
|
||||
pooled_output = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
|
||||
pooled_output = pooled_output.to(dtype=self.text_projection.weight.dtype)
|
||||
|
||||
text_embeds = self.text_projection(pooled_output)
|
||||
text_embeds = nn.functional.normalize(text_embeds, dim=-1)
|
||||
@ -1840,7 +1837,6 @@ class Blip2VisionModelWithProjection(Blip2PreTrainedModel):
|
||||
)
|
||||
|
||||
embeds = query_outputs[0] if not return_dict else query_outputs.last_hidden_state
|
||||
embeds = embeds.to(dtype=self.vision_projection.weight.dtype)
|
||||
image_embeds = self.vision_projection(embeds)
|
||||
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
|
||||
|
||||
@ -2399,7 +2395,6 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
|
||||
return_dict=return_dict,
|
||||
)
|
||||
text_embeds = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
|
||||
text_embeds = text_embeds.to(dtype=self.itm_head.weight.dtype)
|
||||
|
||||
output = self.itm_head(text_embeds[:, : query_tokens.size(1), :])
|
||||
logits_per_image = output.mean(dim=1)
|
||||
@ -2413,7 +2408,6 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
|
||||
return_dict=return_dict,
|
||||
)
|
||||
image_embeds = query_outputs[0] if not return_dict else query_outputs.last_hidden_state
|
||||
image_embeds = image_embeds.to(dtype=self.vision_projection.weight.dtype)
|
||||
|
||||
query_embeds = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
@ -2425,7 +2419,6 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
|
||||
return_dict=return_dict,
|
||||
)
|
||||
question_embeds = text_outputs[0] if not return_dict else text_outputs.last_hidden_state
|
||||
question_embeds = question_embeds.to(dtype=self.text_projection.weight.dtype)
|
||||
|
||||
# normalized features
|
||||
image_embeds = nn.functional.normalize(self.vision_projection(image_embeds), dim=-1)
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""Bloom configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, List, Optional
|
||||
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -14,8 +14,7 @@
|
||||
# limitations under the License.
|
||||
"""Image processor class for BridgeTower."""
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -14,8 +14,7 @@
|
||||
# limitations under the License.
|
||||
"""Fast Image processor class for BridgeTower."""
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Dict, Iterable, Optional, Tuple, Union
|
||||
|
||||
from ...image_processing_utils_fast import (
|
||||
BaseImageProcessorFast,
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
"""CamemBERT configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -830,7 +830,6 @@ class ChameleonPreTrainedModel(PreTrainedModel):
|
||||
_supports_cache_class = True
|
||||
_supports_static_cache = True
|
||||
_supports_param_buffer_assignment = False
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
@ -1243,6 +1242,7 @@ class ChameleonForConditionalGeneration(ChameleonPreTrainedModel, GenerationMixi
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs: Unpack[KwargsForCausalLM],
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
@ -1276,6 +1276,7 @@ class ChameleonForConditionalGeneration(ChameleonPreTrainedModel, GenerationMixi
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
@ -1288,7 +1289,7 @@ class ChameleonForConditionalGeneration(ChameleonPreTrainedModel, GenerationMixi
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=True,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""Chinese-CLIP model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
from typing import TYPE_CHECKING, Any, Mapping, Optional
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""CLIP model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
from typing import TYPE_CHECKING, Any, Mapping, Optional
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
@ -450,8 +450,6 @@ class CLIPPreTrainedModel(PreTrainedModel):
|
||||
supports_gradient_checkpointing = True
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""CodeGen model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, List, Optional
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
|
||||
@ -162,8 +162,7 @@ class ColPaliForRetrieval(ColPaliPreTrainedModel):
|
||||
# L2 normalization
|
||||
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
||||
|
||||
return ColPaliForRetrievalOutput(
|
||||
embeddings=embeddings,
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""Conditional DETR model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -17,8 +17,7 @@
|
||||
import io
|
||||
import pathlib
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""ConvBERT model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""ConvNeXT model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""Data2VecText configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""Data2VecVision model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""DeBERTa model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -17,8 +17,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from collections.abc import Sequence
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Dict, Optional, Sequence, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""DeBERTa-v2 model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...onnx import OnnxConfig
|
||||
|
||||
@ -17,8 +17,7 @@
|
||||
import io
|
||||
import pathlib
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""DeiT model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -450,8 +450,6 @@ class DeiTPreTrainedModel(PreTrainedModel):
|
||||
_no_split_modules = ["DeiTLayer"]
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||||
"""Initialize the weights"""
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""Image processor class for Deformable DETR."""
|
||||
|
||||
import pathlib
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -1,8 +1,7 @@
|
||||
# Copyright (c) Microsoft Corporation and HuggingFace
|
||||
# Licensed under the MIT License.
|
||||
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Mapping
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
@ -15,8 +15,7 @@
|
||||
"""PyTorch Graphormer model."""
|
||||
|
||||
import math
|
||||
from collections.abc import Iterable, Iterator
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import Iterable, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""MEGA configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from ....configuration_utils import PretrainedConfig
|
||||
from ....onnx import OnnxConfig
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""DETR model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -17,8 +17,7 @@
|
||||
import io
|
||||
import pathlib
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@
|
||||
"""DINOv2 model configuration"""
|
||||
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Mapping
|
||||
from typing import Mapping
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
@ -491,11 +491,9 @@ class Dinov2PreTrainedModel(PreTrainedModel):
|
||||
base_model_prefix = "dinov2"
|
||||
main_input_name = "pixel_values"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["Dinov2Layer"]
|
||||
_no_split_modules = ["Dinov2SwiGLUFFN"]
|
||||
_supports_sdpa = True
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_flex_attn = True
|
||||
_supports_attention_backend = True
|
||||
|
||||
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||||
"""Initialize the weights"""
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user