Compare commits

...

176 Commits

Author SHA1 Message Date
6bdd4ec952 Add kyutai stt (#38909)
* first draft

* cleaner version

* udpate tests + modeling

* add tests

* init

* udpate test_modeling_common

* fix tests

* csm Processor draft

* convertion update

* mimi cache padding convolutions draft

* mimi streaming udpates

* update mimi padding cache test

* udpate cache padding mimi test

* make style mimi

* updates generate moshi asr

* moshi asr integration tests (single + batched)

* update tests

* update conversion script

* good default sliding window value

* udpdate generate

* update test checkpoint

* nit

* fix mimi

* fix codec prefix

* revert

* revert

* update config

* update config

* unnecessary mimi input restriction

* remove delay in tokens

* remove _prepare_4d_causal_attention_mask_with_cache_position and _update_causal_mask

* test update

* modular update

* make style

* nit

* rename

* create codec model generation config at init

* remove delay

* max_new_tokens/length warning

* correct conv1 padding cache import for modular

* nit

* fix on encoder_past_key_values

* convert modular

* move frame_size to config

* move frame_size to config

* update test name

* handle first token is bos

* better handling of max_new_tokens

* fix

* fix batch size in test input prep

* update docstring

* convert modular

* make style

* make style

* add feature extractor

* correct modular convention name for feature_extraction file

* update convertion script

* doc processor

* update doc

* udpate init

* update model type

* fixes

* update tests

* fix

* make

* add doc

* nit

* fix

* doc

* auto mappings

* doc

* nit

* convert modular

* doc

* nit

* extend _keep_in_fp32_modules to enforce fp32

* renaming to stt

* doc update + test update

* doc fixes

* doc fix

* doc fix

* fix musicgen tests

* fix musicgen tests

* make style

* fix musicgen tests

* correct frame_rate config param for mimi

* update mimi test

* revert update mimi test

* enforce cpu test

* move cache init in cache class

* convert modular

* docstring update

* update model id

* feature_extractor -> feature_extraction (SEW)

* convert modular

* update model id
2025-06-24 18:01:15 +02:00
08bf7f1afe Add kernelize to transformers (#38205)
* fix

* fix

* fix flow

* remove non compiling path

* change

* style

* fix

* update

* update pin

* revert
2025-06-24 17:38:54 +02:00
be10d4df60 Granite speech - minor fixes to support training with the HF trainer (#38833)
* ensure the query is updated during training

avoid unused parameters that DDP does not like

* avoid a crash when `kwargs` contain `padding=True`

trainers often pass this argument automatically

* minor

* Remove mel_spec lazy init, and rename to mel_filters.
this ensures save_pretrained will not crash when saving the processor during training
d5d007a1a0/src/transformers/feature_extraction_utils.py (L595)

* minor - most feature extractors has a `sampling_rate` property
2025-06-24 17:06:52 +02:00
e1e11b0299 Fix undeterministic order in modular dependencies (#39005)
* sort correctly

* Update modeling_minimax.py

* Update modular_model_converter.py
2025-06-24 17:04:33 +02:00
bdf5fb70aa Skip non-selected experts for qwen3_moe (#38133)
* fix(qwen3moe): skip experts with no workload

* avoid tolist and also update other moe models

* fix: should squeeze 0-dim only
2025-06-24 16:33:48 +02:00
719058c625 Update attention_visualizer.py (#37860) 2025-06-24 16:21:36 +02:00
9f42c1f192 Added scikit-learn to the example image-classification requirements.txt (#37506)
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-06-24 15:24:02 +02:00
1636a7bcb9 Fixes for Arcee model (#39001)
* fix modular

* Update modular_arcee.py

* fix
2025-06-24 15:23:52 +02:00
71de20b818 Add Arcee model support (#38621)
* Add Arcee model support to transformers

- Add ArceeConfig and model mappings for all task types (CausalLM, SequenceClassification, QuestionAnswering, TokenClassification)
- Add auto-loading support through AutoModel, AutoConfig, and AutoTokenizer
- Use LlamaTokenizer for tokenization
- Add FX graph support for Arcee models
- Create lazy loading module structure for Arcee

* feat: update YARN scaling and RoPE validation for Arcee model

* feat: add auto_docstring checkpoint config to Arcee model classes

* docs: add pre-trained model weights reference to Arcee configuration files

* refactor: move RoPE utilities to dedicated modeling_rope_utils module

* Add comprehensive test suite for Arcee model

- Add test_modeling_arcee.py following standard transformers test patterns
- Include tests for all model variants (CausalLM, SequenceClassification, QuestionAnswering, TokenClassification)
- Add specific test for ReLU² activation in ArceeMLP
- Add RoPE scaling tests including YARN support
- Follow CausalLMModelTest pattern used by similar models

* Add documentation for Arcee model

- Add comprehensive model documentation with usage examples
- Include all model variants in autodoc
- Add to table of contents in proper alphabetical order
- Fixes documentation coverage for Arcee model classes

* Make style/fixup

* fix copyright year

* Sync modular conversion

* revert in legacy supported models in src/transformers/utils/fx

* cleaned redundant code in modular_arcee.py

* cleaned testing

* removed pretraining tp

* fix styles

* integration testing

---------

Co-authored-by: Pranav <veldurthipranav@gmail.com>
Co-authored-by: Pranav <56645758+pranav4501@users.noreply.github.com>
2025-06-24 15:05:29 +02:00
23c89a6732 [Attention] Small fix on output attentions (#38948)
small fix
2025-06-24 14:42:10 +02:00
4f650040a6 Removing extra space in large command for speech-pretraining example (#38705)
Removing extra space in Large command
2025-06-24 12:24:56 +00:00
d3d835d4fc [qwen] refactor attentions for vision/audio (#38930)
* refactor attentions in vision/audio

* remove fa2 import

* make config the only args

* pass along kwargs from modality encoders

* style
2025-06-24 10:53:52 +02:00
vb
2e4c045540 🔴 Update default dtype for pipelines to auto (#38882)
* check typing

* Fallback to fp32 if auto not supported.

* up.

* feedback from review.

* make style.
2025-06-24 10:39:18 +02:00
21cb353b7b [docs] Typos - Single GPU efficient training features (#38964)
* Typos

- corrected bf16 training argument
- corrected header for SDPA

* improved readability for SDPA suggested by @stevhliu

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-23 12:33:10 -07:00
f9be71b34d Fix rag (#38585)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-23 17:42:46 +02:00
9eac19eb59 [Feature] Support is_split_into_words in the TokenClassificationPipeline. (#38818)
* some fixes

* some fixes

* now the pipeline can take list of tokens as input and is_split_into_words argument

* now the pipeline can take list of tokens as input and is_split_into_words argument

* now the pipeline can take list of tokens as input and is_split_into_words argument and we can handle batches of tokenized input

* now the pipeline can take list of tokens as input and is_split_into_words argument and we can handle batches of tokenized input

* solving test problems

* some fixes

* some fixes

* modify tests

* aligning start and end correctly

* adding tests

* some formatting

* some formatting

* some fixes

* some fixes

* some fixes

* resolve conflicts

* removing unimportant lines

* removing unimportant lines

* generalize to other languages

* generalize to other languages

* generalize to other languages

* generalize to other languages
2025-06-23 15:31:32 +00:00
2ce02b98bf fix mistral and mistral3 tests (#38978)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-23 17:07:18 +02:00
b6b4d43d6d Add support for auto_docstring with model outputs (#38242)
* experiment auto_docstring model outputs

* Fix PatchTSMixer

* Add check model output docstring to check_auto_docstring and fix all model outputs docstring

* add reordering of docstring in check_docstrings

* add check for redundant docstring in check_docstrings, remove redundant docstrings

* refactor check_auto_docstring

* make style

* fix copies

* remove commented code

* change List-> list Tuple-> tuple in docstrings

* fix modular

* make style

* Fix modular vipllava

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-06-23 10:39:41 -04:00
0c98f24889 fix: add __bool__ operator to tokenizer to avoid bloated asserts (#38899)
* fix: add __bool__ operator to tokenizer to avoid bloated asserts

When a user does 'assert tokenizer' to ensure that the tokenizer is not None, they inadvertently set off a rather expensive process in the '__len__()' operator. This fix adds a trivial '__bool__()' that returns True, so that a None tokenizer asserts and an actual tokenizer returns True when asserted, without calling length op.

* typo
2025-06-23 14:32:16 +00:00
d29482cc91 Add Idefics2/3 and SmolVLM Fast image processors + improvements for fast image processors (#38157)
* add working idefics2 fast and improvements for fast nested images processing

* add fast image processors idefics 3 and smolvlm

* cleanup tests

* fic doc idefics2

* PR review and fix issues after merge

* Force providing disable_grouping to group_images_by_shape

* simplify group_images_by_shape

* fix modular

* Fix nits after review
2025-06-23 14:17:25 +00:00
1a96127e46 Break tie in Expectations and gemma3 fixes (#38943)
* Added major / minor version to Expectations ordering

* Added fixes to gemma3

* Style
2025-06-23 15:13:27 +02:00
84d19be41e Apply GradientCheckpointingLayer to the whole repo (#38913)
* first batch (4)

* align

* altclip

* beit

* bert

* yolos

* dino, pvt_v2

* bark, bart, bert_generation

* big_bird, biogpt

* blnderbot, bloom

* bridgetower

* camambert, canine, chameleon

* chinese clip, clap, clip

* codegen, conditional detr, convbert

* dab_detr, data2vec

* dbrx, deberta

* deberta, decicion_tranformer, deformable_detr

* deit, deta, mctct

* detr, dinov2, distilbert

* donut, dpt, electra

* ernie, esm, falcon

* flava, fnet, falcon_mamba

* focalnet, git, gpt2

* gpt - bigcode, neo, neox

* gptj, groupvit

* idefics2, idefics3

* ijepa, imagegpt, internvl

* jetmoe, kosmos2, layoutlm

* layoutlm2-3, led

* lilt, longformer, longt5, luke

* m2m, mamba1-2

* marian, markuplm, mask2former

* maskformer

* mbart, megatron_bert, mimi

* mixtral, mlcd

* mobilevit1-2, modernbert

* moshi, mpt, mra

* mt5, musicgen

* mvp, nemotron

* nllb_moe

* nystromformer, omdet_turbo

* opt, owlvit, owlv2

* pegasus, pegasus_x, presimmon

* phimoe, pix2struct, pixtral

* plbart, pop2piano, prophetnet

* qwen2*

* qwen2, qwen3 moe,  rec gemma

* rembert

* roberta

* roberta prelayernorm

* roc_bert, roformer, rwkv

* sam, sam_hq

* seggpt, smolvlm, speech_to_text

* splinter, stablelm, swin

* swin2sr, switch_transformer, t5, table_transformer

* tapas, time_series_tranformer, timesformer

* trocr, tvp, umt5

* videomae, vilt, visual_bert

* vit, vit_mae, vit_msn

* vitpose_backbone, vits, vivit

* whisper. x_clip, xglm

* xlm_roberta, xmod

* yoso

* zamba

* vitdet, wav2vec2, wav2vec2_bert

* unispeech, wav2vec_conformer

* wavlm

* speecht5

* swinv2

* sew / _d

* seamless_mt4 / _v2

* deprecated models update

* bros

* gemma2, gemma3

* got, hiera, hubert, llama4, mllama, oneformer, phi, olmoe, informer

* fixup

* Add use_cache=False and past_key_value=None to  GradientCheckpointingLayer

* fixup

* fix prophetnet

* fix bigbird_pegasus

* fix blenderbot

* fix mbart

* fix mvp

* fix zamba2

* fix bart

* fix blenderbot_small

* fix codegen

* Update gradient checkpointing layer to support more past_key_values arg names

* fix data2vec vision

* fix deformable_detr

* fix gptj

* fix led

* fix m2m_100

* add comment

* fix nnlb_moe

* Fix pegasus_x

* fix plbart

* udop

* fix-copies: beit, wav2vec2

* fix gpt_bigcode

* fixup

* fix t5

* fix switch_transformers

* fix longt5

* fix mt5

* update tapas

* fix blip2

* update blip

* fix musicgen

* fix gpt2, trocr

* fix copies

* !!! Revert zamba, mllama

* update autoformer

* update bros

* update args / kwargs for BERT and copies

* 2nd round of updates

* update conditional detr

* Pass encoder_hidden_states as positional arg

* Update to pass encoder_decoder_position_bias as positional arg

* fixup

* biogpt modular

* modular gemma2

* modular gemma3

* modular gpt_neox

* modular informer

* modular internvl

* modular mixtral

* modular mlcd

* modular modernbert

* modular phi

* modular qwen2_5_omni

* modular qwen2_5_vl

* modular sam_hq

* modular sew

* wav2vec2_bert

* modular wav2vec2_conformer

* modular wavlm

* fixup

* Update by modular instructblipvideo

* modular data2vec_audio

* nit modular mistral

* apply modular minimax

* fix modular moonshine

* revert zamba2

* fix mask2former

* refactor idefics
2025-06-23 14:24:48 +02:00
07aab1af1e Remove dead protected imports (#38980)
* remove them

* more
2025-06-23 13:44:50 +02:00
74f5e4a1fa [modular] CLI allows positional arguments, and more defaults names for the optional arg (#38979)
* More defaults

* Update modular_model_converter.py
2025-06-23 12:40:01 +02:00
334bf913dc Fix(informer): Correct tensor shape for input_size=1 (#38856)
* Fix(time_series): Correct scaler tensor shape in base model

The create_network_inputs function in TimeSeriesTransformerModel
handled the scaler's loc and scale tensors inconsistently.
When input_size=1, the tensors were not squeezed, leading to
downstream dimension errors for models like Informer.

This commit refactors the logic to unconditionally apply .squeeze(1),
which correctly handles all input_size cases and fixes the bug at its source.

Fixes #38745

* Fix(time_series): Correct scaler tensor shape in base model

The create_network_inputs function in TimeSeriesTransformerModel
handled the scaler's loc and scale tensors inconsistently.
When input_size=1, the tensors were not squeezed, leading to
downstream dimension errors for models like Informer.

This commit refactors the logic to unconditionally apply .squeeze(1),
which correctly handles all input_size cases and fixes the bug at its source.

Fixes #38745

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2025-06-23 11:50:51 +02:00
c184550daf Fix DTensor import compatibility for PyTorch < 2.5 (#38836) 2025-06-23 11:25:56 +02:00
984ff89e73 Gaudi3 CI (#38790) 2025-06-23 10:56:51 +02:00
2166b6b4ff Update blip model card (#38513)
* Update docs/source/en/model_doc/blip.md

* fix(docs/source/en/model_doc/blip.md): fix redundent typo error

* fix (docs/source/en/model_doc/blip.md): modify of review contents

* fix(docs/source/en/model_doc/blip.md): modify code block

* Update blip.md

---------

Co-authored-by: devkade <mouseku@moana-master>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-20 13:46:19 -07:00
166e823f77 Fix custom generate from local directory (#38916)
Fix custom generate from local directory:
1. Create parent dirs before copying files (custom_generate dir)
2. Correctly copy relative imports to the submodule file.
3. Update docs.
2025-06-20 17:36:57 +01:00
3d34b92116 Switch to use A10 progressively (#38936)
* try

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-20 16:10:35 +00:00
b8059e1f8f Fix more flaky test_initialization (#38932)
* try

* try

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-20 17:28:32 +02:00
5ee60f970a Correctly raise error for awq quantization (#38945)
fix warning
2025-06-20 17:18:06 +02:00
8ac2d75353 Pin PyTorch extras for AMD containers (#38941)
* Pin additional Torch packages

* Remove unused def

---------

Co-authored-by: ivarflakstad <69173633+ivarflakstad@users.noreply.github.com>
2025-06-20 12:17:21 +00:00
9120567b02 Add kwargs for timm.create_model in TimmWrapper (#38860)
* Add init kwargs for timm wrapper

* model_init_kwargs -> model_args

* add save-load test

* fixup
2025-06-20 12:00:09 +00:00
ff95974bc6 [static cache] fix device map per layer in VLMs (#38488)
return lm as decoder
2025-06-20 13:49:29 +02:00
aa42987c1e Remove ALL_LAYERNORM_LAYERS (#38922)
* remove it everywhere

* Update trainer_pt_utils.py

* Update trainer_pt_utils.py

* style

* sort list in test

* CIs

* use recursion same way as before (for intermediate layer names)
2025-06-20 12:06:48 +02:00
38a9b70786 add pytorch-xpu Dockerfile (#38875)
* first commit

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* use rls pytorch

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-20 11:42:44 +02:00
9bcdd5cde9 Modernbert fixes (#38912)
* Removed deprecated argument in modernbert RotaryEmbedding

* Skip test_sdpa_can_dispatch_on_flash for modernbert

---------

Co-authored-by: ivarflakstad <69173633+ivarflakstad@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-06-20 11:22:32 +02:00
31d30b7224 Skip some tests for now (#38931)
* try

* [test all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-20 11:05:49 +02:00
0725cd6953 Remove deprecated classes in modeling_utils.py (#38919)
* remove deprecated classes

* style
2025-06-19 19:25:20 +02:00
797860c68c feat: add flexible Liger Kernel configuration to TrainingArguments (#38911)
* feat: add flexible Liger Kernel configuration to TrainingArguments

Add support for granular Liger Kernel configuration through a new
`liger_kernel_config` parameter in TrainingArguments. This allows users
to selectively enable/disable specific kernels (rope, swiglu, cross_entropy,
etc.) instead of the current approach that rely on default configuration.

Features:
- Add `liger_kernel_config` dict parameter to TrainingArguments
- Support selective kernel application for all supported models
- Maintain full backward compatibility with existing `use_liger_kernel` flag

Example usage:
```python
TrainingArguments(
    use_liger_kernel=True,
    liger_kernel_config={
        "rope": True,
        "swiglu": True,
        "cross_entropy": False,
        "fused_linear_cross_entropy": True
    }
)
Closes #38905

* Address comments and update Liger section in Trainer docs
2025-06-19 15:54:08 +00:00
89b35be618 Allow make-fixup on main branch, albeit slowly (#38892)
* Allow make-fixup on main branch, albeit slowly

* Make the other style checks work correctly on main too

* More update

* More makefile update
2025-06-19 15:22:59 +01:00
9a02e7602d feat: Add granite architectures to auto tokenizer name mappings (#38802)
Branch: GraniteTokenizerMapping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-06-19 15:20:42 +01:00
54a02160eb Fix ReDOS in tokenizer digit substitution (#38844)
* Fix regexes vulnerable to ReDOS

* Let's just use regex

* Import regex/re correctly
2025-06-19 14:53:52 +01:00
af6120b3eb Skip sdpa tests if submodule does not support sdpa (#38907) 2025-06-19 13:11:01 +00:00
5d26a38735 Fix FalconMambaIntegrationTests (#38566)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-19 13:50:33 +02:00
a9ce8c69c9 align xpu's autocast behavior w/ cuda by using device agnostic torch APIs (#38284)
* siwtch to device agnostic autocast in nemotron to align xpu behavior w/
cuda

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix issue

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* use torch.cast as other modeling code for decision_transformer&gpt2&imagegpt

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* refine

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update get_autocast_gpu_dtype to device agnostic one

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-06-19 11:48:23 +00:00
0a53df1a77 Fix unnecessary super calls (#38897)
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-19 11:45:51 +00:00
b949747b54 Fix fsmt tests (#38904)
* fix 1

* fix 2

* fix 3

* fix 4

* fix 5

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-19 10:56:34 +02:00
11738f8537 [phi-4] use mel filters from audio utils (#36966)
* use mel_filter_bank from audio utils

* Apply style fixes

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-19 12:35:32 +09:00
f7b21822e3 Use raise from e in hub.py utility (#37241)
Use raise from e

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-06-19 03:06:25 +00:00
3756bf192c Add support for specifying revisions when pushing to Hub via internal Trainer call (#36852)
* Update training_args.py

* Update trainer.py

* fixes

* fix

* remove extraneous comments

* explicit revision arg

* add msg

* fixup

* fix field name

* rename field revision to hub_revision

* restore gradient_checkpointing doc

* fix ws

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-06-19 02:35:33 +00:00
458e0b376c Update bamba model card (#38853)
* Update bamba model card

* Update the doc for bamba

* Update docs/source/en/model_doc/bamba.md

Bamba paragraph

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

Bamba collection url

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

Update Padding-Free Training to Notes heading

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

update examples

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

Update additional info

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

consistent casing

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

simplify sentences

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Include pipeline and cli examples + fix formatting

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bamba.md

update cli id

* Update quantization example

* Fix auto code formatter changes

* Update cli command + include BambaModel

* Update docs/source/en/model_doc/bamba.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-18 16:01:25 -07:00
ea01334873 [video processor] fix slow tests (#38881)
* we need to check against mapping to be safe

* need to check only when inferring from image type, otherwise messes custom code

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-06-18 22:39:56 +02:00
b922b22ec2 36978 | Fast image processor for DPT model (#37481)
* chore: ran codegen script

* test: test_image_processor_properties

* test: test_image_processor_from_dict_with_kwargs

* test: wip - test_padding

* test: test_padding

* test: test_keep_aspect_ratio

* wip

* test

* test: wip

* test: wip

* test: test_call_segmentation_maps, wip

* chore: tidy up

* test: test_call_segmentation_maps

* fix: test_save_load_fast_slow

* test: reduce labels

* chore: make fixup

* chore: rm comment

* chore: tidy

* chore remove comment

* refactor: no need to infer channel dimesnion

* refactor: encapsulate logic for preparing segmentation maps

* refactor: improve readability of segmentation_map preparation

* improvement: batched version of pad_image

* chore: fixup

* docs

* chore: make quality

* chore: remove unecessary comment

* fix: add SemanticSegmentationMixin

* feat: add post_process_depth_estimation to fast dpt image processor

* chore: fix formatting

* remove max_height, max_width

* fix: better way of processin segmentation maps
- copied from Beit Fast processor

* chore: formatting + remove TODO

* chore: fixup styles

* chore: remove unecessary line break

* chore: core review suggestion to remove autodocstring

* fix: add do_reduce_labels logic + refactor
- refactor preprocess logic to make it consistent with other processors
- add missing reduce labels logic

* refactor: remove deprecated mixin

* chore: fixup

* use modular for dpt + final nit changes

* fix style

---------

Co-authored-by: Samuel Rae <samuelrae@Samuels-Air.fritz.box>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-06-18 17:33:29 +00:00
c27f628e98 Docs: Add custom fine-tuning tutorial to TrOCR model page (#38847)
* Update trocr.md

Docs: add community fine‑tuning notebook link to TrOCR page

* apply suggested changes from PR review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/trocr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-18 09:38:58 -07:00
0a289d1630 log: Add logging when using split_batches and per_device_train_batch_size (#38633)
* log: Add logging when user uses split_batches and per_device_train_batch_size

* refactor: remove whitespace from blank line

* Update src/transformers/training_args.py

Change logging level to info

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-18 16:26:46 +00:00
c55d806355 [bugfix] fix ATTN_MASK_NPU device mismatch error on multi-device NPU … (#38876)
[bugfix] fix ATTN_MASK_NPU device mismatch error on multi-device NPU setups
2025-06-18 16:26:22 +00:00
9cd7570f34 Fix loop var naming (#38885) 2025-06-18 13:45:01 +00:00
1fc67a25c6 More PYUP fixes (#38883)
More pyup fixes

Signed-off-by: cyy <cyyever@outlook.com>
2025-06-18 14:38:08 +01:00
12d4c5b66f null deepspeed_plugin in args for wandb callback fake trainer (#38867) 2025-06-18 13:10:22 +00:00
3620b32cc8 Fixed markdown for BertTokenizer's '[CLS]' token. (#38506) 2025-06-18 13:09:58 +00:00
cb0f604192 Fix HQQ model param device transfer issue (#38466)
* Fix HQQ model param device transfer issue

* modify a comment

* clear the code and add test for hqq device/dtype

* fix test hqq code quality of imports

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-18 15:09:00 +02:00
c77bcd889f Fix qwen3_moe tests (#38865)
* try 1

* try 2

* try 3

* try 4

* try 5

* try 6

* try 7

* try 8

* try 9

* try 10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-18 14:36:03 +02:00
5a95ed5ca0 🚨🚨 Fix initialization of Mask2Former (#38864)
* Correctly fix init

Co-authored-by: BUI Van Tuan <buivantuan07@gmail.com>

* add back the block, breaking BC but this is correct author's code

* override the test for params needing it

---------

Co-authored-by: BUI Van Tuan <buivantuan07@gmail.com>
2025-06-18 09:46:22 +02:00
309e8c96f2 Fix phi4_multimodal tests (#38816)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-18 09:39:17 +02:00
3526e25d3d enable misc test cases on XPU (#38852)
* enable misc test cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* tweak bamba ground truth on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* remove print

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-18 09:20:49 +02:00
d058f81e5b Post-PR fixes! (#38868)
* Post-PR fixes!

* make fix-copies
2025-06-17 19:58:47 +01:00
508a704055 No more Tuple, List, Dict (#38797)
* No more Tuple, List, Dict

* make fixup

* More style fixes

* Docstring fixes with regex replacement

* Trigger tests

* Redo fixes after rebase

* Fix copies

* [test all]

* update

* [test all]

* update

* [test all]

* make style after rebase

* Patch the hf_argparser test

* Patch the hf_argparser test

* style fixes

* style fixes

* style fixes

* Fix docstrings in Cohere test

* [test all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-17 19:37:18 +01:00
a396f4324b Update roc bert docs (#38835)
* Moved the sources to the right

* small Changes

* Some Changes to moonshine

* Added the install to pipline

* updated the monshine model card

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated Documentation According to changes

* Fixed the model with the commits

* Changes to the roc_bert

* Final Update to the branch

* Adds Quantizaiton to the model

* Finsihed Fixing the Roc_bert docs

* Fixed Moshi

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Fixed Problems

* Added the install to pipline

* updated the monshine model card

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated Documentation According to changes

* Fixed the model with the commits

* Fixed the problems

* Final Fix

* Final Fix

* Final Fix

* Update roc_bert.md

---------

Co-authored-by: Your Name <sohamprabhu@Mac.fios-router.home>
Co-authored-by: Your Name <sohamprabhu@Sohams-MacBook-Air.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-17 11:02:18 -07:00
3ae52cc312 Update CvT documentation with improved usage examples and additional … (#38731)
* Update CvT documentation with improved usage examples and additional notes

* initial update

* cvt

* Update docs/source/en/model_doc/cvt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update cvt.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-17 10:30:03 -07:00
e5a9ce48f7 Add LightGlue model (#31718)
* init

* chore: various changes to LightGlue

* chore: various changes to LightGlue

* chore: various changes to LightGlue

* chore: various changes to LightGlue

* Fixed dynamo bug and image padding tests

* refactor: applied refactoring changes from SuperGlue's concat, batch and stack functions to LightGlue file

* tests: removed sdpa support and changed expected values

* chore: added some docs and refactoring

* chore: fixed copy to superpoint.image_processing_superpoint.convert_to_grayscale

* feat: adding batch implementation

* feat: added validation for preprocess and post process method to LightGlueImageProcessor

* chore: changed convert_lightglue_to_hf script to comply with new standard

* chore: changed lightglue test values to match new lightglue config pushed to hub

* chore: simplified convert_lightglue_to_hf conversion map

* feat: adding batching implementation

* chore: make style

* feat: added threshold to post_process_keypoint_matching method

* fix: added missing instructions that turns keypoints back to absolute coordinate before matching forward

* fix: added typehint and docs

* chore: make style

* [run-slow] lightglue

* fix: add matches different from -1 to compute valid matches in post_process_keypoint_matching

* tests: added CUDA proof tests similar to SuperGlue

* chore: various changes to modeling_lightglue.py

- Added "Copies from" statements for copied functions from modeling_superglue.py
- Added missing docstrings
- Removed unused functions or classes
- Removed unnecessary statements
- Added missing typehints
- Added comments to the main forward method

* chore: various changes to convert_lightglue_to_hf.py

- Added model saving
- Added model reloading

* chore: fixed imports in lightglue files

* [run-slow] lightglue

* chore: make style

* [run-slow] lightglue

* Apply suggestions from code review

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* [run-slow] lightglue

* chore: Applied some suggestions from review

- Added missing typehints
- Refactor "cuda" to device variable
- Variable renaming
- LightGlue output order changed
- Make style

* fix: added missing grayscale argument in image processor in case use of SuperPoint keypoint detector

* fix: changed lightglue HF repo to lightglue_superpoint with grayscale default to True

* refactor: make keypoints `(batch_size, num_keypoints, keypoint_dim)` through forward and unsqueeze only before attention layer

* refactor: refactor do_layer_keypoint_pruning

* tests: added tests with no early stop and keypoint pruning

* refactor: various refactoring to modeling_lightglue.py

- Removed unused functions
- Renamed variables for consistency
- Added comments for clarity
- Set methods to private in LightGlueForKeypointMatching
- Replaced tensor initialization to list then concatenation
- Used more pythonic list comprehension for repetitive instructions

* refactor: added comments and renamed filter_matches to get_matches_from_scores

* tests: added copied from statement with superglue tests

* docs: added comment to prepare_keypoint_matching_output function in tests

* [run-slow] lightglue

* refactor: reordered _concat_early_stopped_outputs in LightGlue class

* [run-slow] lightglue

* docs: added lightglue.md model doc

* docs: added Optional typehint to LightGlueKeypointMatchingOutput

* chore: removed pad_images function

* chore: set do_grayscale default value to True in LightGlueImageProcessor

* Apply suggestions from code review

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Apply suggestions from code review

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* docs: added missing LightGlueConfig typehint in nn.Module __init__ methods

* docs: removed unnecessary code in docs

* docs: import SuperPointConfig only from a TYPE_CHECKING context

* chore: use PretrainedConfig arguments `num_hidden_layers` and `num_attention_heads` instead of `num_layers` and `num_heads`

* chore: added organization as arg in convert_lightglue_to_hf.py script

* refactor: set device variable

* chore: added "gelu" in LightGlueConfig as hidden_act parameter

* docs: added comments to reshape.flip.reshape instruction to perform cross attention

* refactor: used batched inference for keypoint detector forward pass

* fix: added fix for SDPA tests

* docs: fixed docstring for LightGlueImageProcessor

* [run-slow] lightglue

* refactor: removed unused line

* refactor: added missing arguments in LightGlueConfig init method

* docs: added missing LightGlueConfig typehint in init methods

* refactor: added checkpoint url as default variable to verify models output only if it is the default url

* fix: moved print message inside if statement

* fix: added log assignment r removal in convert script

* fix: got rid of confidence_thresholds as registered buffers

* refactor: applied suggestions from SuperGlue PR

* docs: changed copyright to 2025

* refactor: modular LightGlue

* fix: removed unnecessary import

* feat: added plot_keypoint_matching method to LightGlueImageProcessor with matplotlib soft dependency

* fix: added missing import error for matplotlib

* Updated convert script to push on ETH org

* fix: added missing licence

* fix: make fix-copies

* refactor: use cohere apply_rotary_pos_emb function

* fix: update model references to use ETH-CVG/lightglue_superpoint

* refactor: add and use intermediate_size attribute in config to inherit CLIPMLP for LightGlueMLP

* refactor: explicit variables instead of slicing

* refactor: use can_return_tuple decorator in LightGlue model

* fix: make fix-copies

* docs: Update model references in `lightglue.md` to use the correct pretrained model from ETH-CVG

* Refactor LightGlue configuration and processing classes

- Updated type hints for `keypoint_detector_config` in `LightGlueConfig` to use `SuperPointConfig` directly.
- Changed `size` parameter in `LightGlueImageProcessor` to be optional.
- Modified `position_embeddings` in `LightGlueAttention` and `LightGlueAttentionBlock` to be optional tuples.
- Cleaned up import statements across multiple files for better readability and consistency.

* refactor: Update LightGlue configuration to enforce eager attention implementation

- Added `attn_implementation="eager"` to `keypoint_detector_config` in `LightGlueConfig` and `LightGlueAttention` classes.
- Removed unnecessary logging related to attention implementation fallback.
- Cleaned up import statements for better readability.

* refactor: renamed message into attention_output

* fix: ensure device compatibility in LightGlueMatchAssignmentLayer descriptor normalization

- Updated the normalization of `m_descriptors` to use the correct device for the tensor, ensuring compatibility across different hardware setups.

* refactor: removed Conv layers from init_weights since LightGlue doesn't have any

* refactor: replace add_start_docstrings with auto_docstring in LightGlue models

- Updated LightGlue model classes to utilize the new auto_docstring utility for automatic documentation generation.
- Removed legacy docstring handling to streamline the code and improve maintainability.

* refactor: simplify LightGlue image processing tests by inheriting from SuperGlue

- Refactored `LightGlueImageProcessingTester` and `LightGlueImageProcessingTest` to inherit from their SuperGlue counterparts, reducing code duplication.
- Removed redundant methods and properties, streamlining the test setup and improving maintainability.

* test: forced eager attention implementation to LightGlue model tests

- Updated `LightGlueModelTester` to include `attn_implementation="eager"` in the model configuration.
- This change aligns the test setup with the recent updates in LightGlue configuration for eager attention.

* refactor: update LightGlue model references

* fix: import error

* test: enhance LightGlue image processing tests with setup method

- Added a setup method in `LightGlueImageProcessingTest` to initialize `LightGlueImageProcessingTester`.
- Included a docstring for `LightGlueImageProcessingTester` to clarify its purpose.

* refactor: added LightGlue image processing implementation to modular file

* refactor: moved attention blocks into the transformer layer

* fix: added missing import

* fix: added missing import in __all__ variable

* doc: added comment about enforcing eager attention because of SuperPoint

* refactor: added SuperPoint eager attention comment and moved functions to the closest they are used

---------

Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-06-17 18:10:23 +02:00
2507169bf6 Fix qwen3 tests (#38862)
* fix

* update

* update

* update

* update

* update

* update

* format

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-17 15:21:36 +02:00
41e0c921cb Improve auxiliary_in_channels default behavior in UperNet (#37540)
Improve auxiliary_in_channels behavior in UperNet

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-06-17 12:56:46 +00:00
c61ca64aaa Fix qwen2_5_vl tests (#38845)
* fix

* breakpoint()

* breakpoint()

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-17 10:55:24 +02:00
37367c7d9f Allow customization of sdpa in executorch.py (#38827)
Earlier PR put executorch specific sdpa and mask function in the export function. This prevent any customization that can be done to sdpa, prior to export. By moving this to __init__, we still keep the original behavior but allow users like optimum-executorch to override sdpa by setting model.config._attn_implementation.
2025-06-17 10:38:20 +02:00
9c878d2f64 Fix incorrect width ratio calculation in Llama4 image processor (#38842) 2025-06-17 07:33:36 +00:00
bf370e446b [video processor] fix BC when no video config if found (#38840)
fix auto video processor
2025-06-17 09:20:16 +02:00
e61160c5db Remove merge conflict artifacts in Albert model doc (#38849) 2025-06-16 14:21:18 -07:00
64e9b049d9 Updated aya_vision.md (#38749)
* Update aya_vision.md

* Suggested changes made to aya_vision.md

* Quantization Example added - aya_vision.md

* Polished - aya_vision.md

* Update aya_vision.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-16 10:46:30 -07:00
5ab0f447ab GraniteMoeHybrid: Allow for only shared expert case. (#38801)
* Allow for only shared expert case.

* Style
2025-06-16 16:15:42 +01:00
a7593a1d1f [BugFix] QA pipeline edge case: align_to_words=True in QuestionAnsweringPipeline can lead to duplicate answers (#38761)
* fixing the problem align_to_words=True leading to duplicate solutions

* adding tests

* some fixes

* some fixes

* changing the handle_duplicate_answers=False by default

* some fixese

* some fixes

* make the duplicate handling the default behaviour and merge duplicates

* make the duplicate handling the default behaviour
2025-06-16 15:01:22 +00:00
18c7f32daa Fix broken tag in Longformer model card (#38828) 2025-06-16 07:44:40 -07:00
b44b04ee9a Fix broken notebooks link in Italian training docs (#38834) 2025-06-16 07:38:51 -07:00
9300728665 Fix peft integration (#38841)
Update peft.py
2025-06-16 10:39:25 +02:00
608884960e add default mapping to peft integration 2025-06-16 10:23:51 +02:00
ce6ac53ac1 bugfix: propage weight key_mapping to peft to fix 3.52 VLM renaming (#38627)
* propage key mapping to peft

* propage key mapping to peft

* make requested changes

* revert
2025-06-16 10:10:23 +02:00
925da8ac56 Fix redundant code in Janus (#38826)
* minor mistake

* modify return statements
2025-06-16 06:53:59 +00:00
d2fd3868bb [internvl] fix video inference (#38811)
fix
2025-06-16 08:37:30 +02:00
d5d007a1a0 Updated Albert model Card (#37753)
* Updated Albert model Card

* Update docs/source/en/model_doc/albert.md

added the quotes in <hfoption id="Pipeline">

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

updated checkpoints

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

changed !Tips description

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

updated text

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

updated transformer-cli implementation

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

changed text

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

removed repeated description

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update albert.md

removed lines

* Update albert.md

updated pipeline code

* Update albert.md

updated auto model code, removed quantization as model size is not large, removed the attention visualizer part

* Update docs/source/en/model_doc/albert.md

updated notes

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update albert.md

reduced a  repeating point in notes

* Update docs/source/en/model_doc/albert.md

updated transformer-CLI

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

removed extra notes

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-13 14:58:06 -07:00
443aafd3d6 [docs] updated roberta model card (#38777)
* updated roberta model card

* fixes suggested after reviewing

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-13 12:02:44 -07:00
fdb5da59dd [docs] Update docs moved to the course (#38800)
* update

* update

* update not_doctested.txt

* slow_documentation_tests.txt
2025-06-13 12:02:27 -07:00
8b73799500 fixed docstring in modular_qwen2_5_vl.py (#38798)
* fixed docstring in modular_qwen2_5_vl.py

* Regenerate file to match docstring update
2025-06-13 11:09:51 -07:00
9bec2654ed Add V-JEPA for video classification model (#38788)
* adding model and conversion scripts

* add imports to test vjepa conversion

* fix imports and make conversion work

* fix computation for short side

* replace attention with library attention function

* cleanup more attention classes

* remove config overrides

* add test cases, fix some of the failing ones

* fix the model outputs

* fix outputs of the model per review

* fix too big model test case

* fix styling __init__.py

* fix initialization test

* remove all asserts per review

* update sorting unsorting logic as per feedback

* remove is_video per review

* remove another is_video segment

* remove unwanted stuff

* small fixes

* add docstrings for the model

* revert adding vjepa2 config here

* update styling

* add config docstrings (wip)

* fix dpr issue

* removed test failing issues

* update styles

* merge predictor configs into main config

* remove processing code, add video processor

* remove permute which is not necessary now

* fix styles

* updated vjepa2 to be in video_processing_auto

* update comment for preprocessing

* test integration test and fix the outputs

* update test values, change test to look at repeated frames for a given image

* add a simple video processing test

* refactoring pixel_values_videos and upload ckpts to original

* fix torch_fx test cases

* remove unused config

* add all config docstrings

* add more integration tests

* add basic doc

* revert unwanted styling changes

* working make fixup

* Fix model_type in config

* Add ForVideoClassification model

* update attention implementation to fit new hf standards

* fix the preprocessing logic, ensure it matches the original model

* remove use_rope logic, cleanup

* fix docstrings

* Further cleanup, update doc

* Fix model prefix

* fix get_vision_features

* VJEPA2Embeddings style refactor

* nit, style comment

* change modules default values

* Only `str` activation in config

* GradientCheckpointingLayer

* fixup

* fix conversion script

* Remove return_dict

* remove None return typehint

* Refactor VJEPA2Layer, remove use_SiLU

* Fix fx tests

* dpr -> drop_path_rates

* move *ModelOutput on top

* format docs bit

* update docs

* update docs

* update doc example

* remove prune_heads from model

* remove unused config params

* refactor embed signature

* Add vjepa to docs

* Fix config docstring

* attention head

* update defaults

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix import

* Min refactoring

* Update HUB_SOURCE and HUB_REPO in conversion script

* Add missing headers

* VJEPA -> V-JEPA in docs

* Add image to doc

* fix style

* fix init weights

* change checkpoint name in modeling tests

* Initial cls head setup

* remove rop attention from head (not needed)

* remove swigluffn - not needed

* Add siglip layer

* Replace with siglip layer

* Rename Siglip - VJEPA2

* remove unused modules

* remove siglip mlp

* nit

* remove MLP

* Refactor head cross attention

* refactor VJEPA2HeadCrossAttentionLayer

* nit renaming

* fixup

* remove commented code

* Add cls head params to config

* depth from config

* move pooler + classifier  to the model

* Update for cls model signature

* move layers, rename a bit

* fix docs

* update weights init

* remove typehint for init

* add to auto-mapping

* enable tests

* Add conversion script

* fixup

* add to docs

* fix docs

* nit

* refactor for mapping

* clean

* Add integration test

* Fixing multi gpu test

* update not-split-modules

* update video cls test tolerance

* Increase test_inference_image tolerance

* Update no-split modules for multi gpu

* Apply suggestions from code review

* fixing multi-gpu

* fix docstring

* Add cls snippet to docs

* Update checkpoint
2025-06-13 17:56:15 +01:00
2ff964bcb4 Fix trainer.py not showing signature columns (#38465)
Fix trainer.py not showing signature columns
2025-06-13 15:39:29 +00:00
4c3c177ecf Fix a minor security issue (#38815)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-13 17:37:46 +02:00
93445aed06 change fsdp_strategy to fsdp in TrainingArguments in accelerate doc (#38807) 2025-06-13 15:32:40 +00:00
b82a45b3b4 Refactor DBRX tests to use CausalLMModelTest base classes (#38475)
* Refactor DBRX tests to use CausalLMModelTest base classes

- Changed DbrxModelTester to inherit from CausalLMModelTester
- Changed DbrxModelTest to inherit from CausalLMModelTest
- Removed duplicate methods that are already in base classes
- Added required class attributes for model classes
- Updated pipeline_model_mapping to include feature-extraction
- Kept DBRX-specific configuration and test methods
- Disabled RoPE tests as DBRX's rotary embedding doesn't accept config parameter

This refactoring reduces code duplication and follows the pattern established
in other causal LM model tests like Gemma.

* Apply style fixes

* Trigger tests

* Refactor DBRX test

* Make sure the DBRX-specific settings are handled

* Use the attribute_map

* Fix attribute map

---------

Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-13 16:22:12 +01:00
64041694a8 Use wandb.run.url instead of wandb.run.get_url() (deprecated) (#38817) 2025-06-13 15:20:04 +00:00
9ff246db00 Expectation fixes and added AMD expectations (#38729) 2025-06-13 16:14:58 +02:00
e39172ecab Fix llava_next tests (#38813)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-13 15:19:41 +02:00
b3b7789cbc Better pipeline type hints (#38049)
* image-classification

* depth-estimation

* zero-shot-image-classification

* image-feature-extraction

* image-segmentation

* mask-generation

* object-detection

* zero-shot-object-detection

* image-to-image

* image-text-to-text

* image-to-text

* text-classification

* text-generation

* text-to-audio

* text2text_generation

* fixup

* token-classification

* document-qa

* video-classification

* audio-classification

* automatic-speech-recognition

* feature-extraction

* fill-mask

* zero-shot-audio-classification

* Add pipeline function typing

* Add code generator and checker for pipeline types

* Add to makefile

* style

* Add to CI

* Style
2025-06-13 13:44:07 +01:00
c989ddd294 Simplify and update trl examples (#38772)
* Simplify and update trl examples

* Remove optim_args from SFTConfig in Trainer documentation

* Update docs/source/en/trainer.md

* Apply suggestions from code review

* Update docs/source/en/trainer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <qgallouedec@Quentins-MacBook-Pro.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-13 12:03:49 +00:00
de24fb63ed Use HF papers (#38184)
* Use hf papers

* Hugging Face papers

* doi to hf papers

* style
2025-06-13 11:07:09 +00:00
1031ed5166 Disable custom MRA kernels for ROCm (#38738)
* Disable custom MRA kernels for ROCm

* Move platform check code to utils

* Ruff

* Ruff again

* Fix querying HIP version

* Revert some changes

* Add missing return statement

---------

Co-authored-by: ivarflakstad <69173633+ivarflakstad@users.noreply.github.com>
2025-06-13 12:25:28 +02:00
7f00b325f8 Unbreak optimum-executorch (#38646)
* Unbreak optimum-executorch

* use static cache if has layer_types but no sliding_window

* revert view on kv_arange

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
2025-06-13 11:13:32 +02:00
5f59a9b439 Fix configs and doc for the Qwens (#38808)
fix doc and configs
2025-06-13 11:10:55 +02:00
8222a9325d Fix erroneous docstring for the ordering of SWA layers (#38794) 2025-06-13 10:46:44 +02:00
e26ae89281 [docs] update cache docs with new info (#38775)
* update docs with new info

* Update docs/source/en/kv_cache.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-13 07:10:56 +00:00
324cc77dc3 refactor create_token_type_ids_from_sequences (#37681)
* rm build_input.. from old file

* refactor create_token_type_ids_from_sequences

* handle when cls_token_id is None

* updated fix

* markuplm

* refactoring rest of models

* copies

* revert funnel

* rm incorrect file

* ruff

* ruff
2025-06-12 23:24:43 +02:00
85f060e9b0 Updated moonshine modelcard (#38711)
* Moved the sources to the right

* small Changes

* Some Changes to moonshine

* Added the install to pipline

* updated the monshine model card

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated Documentation According to changes

* Fixed the model with the commits

* Update moonshine.md

* Update moshi.md

---------

Co-authored-by: Your Name <sohamprabhu@Mac.fios-router.home>
Co-authored-by: Your Name <sohamprabhu@Sohams-MacBook-Air.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-12 10:27:17 -07:00
645cf297cc Add missing div in Pegasus model card (#38773)
Add missing div
2025-06-12 10:27:07 -07:00
346f341630 [Docs] New DiT model card (#38721)
* documenation finished

* Update dit.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-12 10:26:50 -07:00
4b8ec667e9 Remove all traces of low_cpu_mem_usage (#38792)
* remove it from all py files

* remove it from the doc

* remove it from examples

* style

* remove traces of _fast_init

* Update test_peft_integration.py

* CIs
2025-06-12 16:39:33 +02:00
3542e0b844 build: 📌 Remove upper bound on PyTorch (#38789)
build: 📌 remove upper bound on torch dependency as issue which originally resulted in the pin has been released in torch 2.7.1
2025-06-12 16:34:13 +02:00
eea35a15b0 Fix mllama (#38704)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 16:15:35 +02:00
038a59e2cd Initialize flash attn flag (#38768)
_flash_supports_window_size is used further down in this file and relied on by e.g. [ring-flash-attention](https://github.com/zhuzilin/ring-flash-attention/blob/123f924/ring_flash_attn/adapters/hf_adapter.py#L9-L11). Even though it is an unexported name, it still makes sense to keep the state of `globals()` in this file consistent.
2025-06-12 14:06:13 +00:00
910355a010 Fix Typos in Comments: "quantitation" → "quantization", "averege" → "average" (#38766)
* Update convert_llama4_weights_to_hf.py

* Update modeling_visual_bert.py
2025-06-12 14:04:39 +00:00
6a5fd0c6d2 Reword README in light of model definitions (#38762)
* Slight readme reword

* reword

* reword

* reword

* Slight readme reword
2025-06-12 14:43:31 +01:00
c87058beb8 Fix llava_onevision tests (#38791)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 15:06:49 +02:00
d4e7aa5526 Fix qwen_2_5 omni (#38658)
* fix

* fix

* break style

* break style

* Apply style fixes

* break style

* Apply style fixes

* fix modular

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-12 14:43:54 +02:00
e1812864ab [docs] Add int4wo + 2:4 sparsity example to TorchAO README (#38592)
* update quantization readme

* update

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-06-12 12:17:07 +00:00
bc68defcac Update PULL_REQUEST_TEMPLATE.md (#38770) 2025-06-12 14:03:33 +02:00
960fda25d1 Reduce verbosity for average_tokens_across_devices=True and world size = 1 (#38785)
* Warning to info for average_tokens_across_devices and world size = 1

* Update src/transformers/training_args.py
2025-06-12 14:02:53 +02:00
89c46b648d Skip some export tests on torch 2.7 (#38677)
* skip

* fix

* better check

* Update import_utils.py

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-06-12 12:47:15 +02:00
27459025b8 [video processors] support frame sampling within processors (#38105)
* apply updates smolVLM (still needs workaround for chat template)

* add other models

* dump qwen omni for now, come back later

* port qwen omni from their impl

* wait, all qwens sample videos in same way!

* clean up

* make smolvlm backwards compatible and fix padding

* dix some tests

* fox smolvlm tests

* more clean up and test fixing

* delete unused arg

* fix

* address comments

* style

* fix test
2025-06-12 09:34:30 +00:00
887054c714 Fix masking utils (#38783)
* fix

* Update masking_utils.py

* Update masking_utils.py
2025-06-12 11:00:46 +02:00
7c58336949 [Hotfix] Fix style bot (#38779)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-12 10:20:36 +02:00
7c6b1707c3 [masking utils] check None instead of try/except (#38561)
* fix vllm's compile backend

* fix the test

* apply the same changes in other masking strategies
2025-06-12 06:50:28 +00:00
9487765f07 Add Qwen2 MoE model card (#38649)
* Add Qwen2 MoE model card

* Revisions to qwen2 moe model card

* Add Qwen2 MoE model card
2025-06-11 15:14:01 -07:00
32dbf4bddb Update altCLIP model card (#38306)
* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

* Rename altclip.md to altclip.mdx

* Rename altclip.mdx to altclip.md

* Update altclip.md

* Update altclip.md

* Update altclip.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-11 14:48:34 -07:00
1dcb022e8f chore(pixtral): emit block attention mask when using flash attention (#38741)
* chore(pixtral): emit block attention mask when using flash attention

Since flash_attention_2 relies solely on position_ids, emitting the block attention mask avoids unnecessary memory usage and prevents OOM on large inputs.

* remove unnecessary attention_mask assignment
2025-06-11 18:55:23 +00:00
60d4b35b20 Make style bot trigger CI after push (#38754)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-11 20:40:04 +02:00
bb44d2a0f6 Update pegasus model card (#38675)
* Update Pegasus model card

* Fix transformers-cli command

* Update code examples to use bfloat16

* Reverted code examples to use float16

* Fix typo, update checkpoints link

* Update str formatting in code examples

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix typo

* Remove inaccurate badges

* Revert badge removal

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Include cache_implementation argument in quantization example

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-11 10:56:25 -07:00
L
b84ebb7f3c fix(qwen3_moe): pass kwargs to self_attn (#38691)
This is needed to avoid `.item()` calls in `_flash_attention_forward`.
2025-06-11 19:26:08 +02:00
9f563ada70 Deprecate TF + JAX (#38758)
* Scatter deprecation warnings around

* Delete the tests

* Make logging work properly!
2025-06-11 17:28:06 +01:00
337757cbd5 Update repo consistency check (#38763) 2025-06-11 17:02:03 +01:00
e2bdc13375 Remove IPEX requirement for bitsandbytes on CPU (#38594)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 17:46:34 +02:00
063bef0865 Prepare for TF+Jax deprecation (#38760)
* Prepare for TF+Jax deprecation

* Remove .circleci jobs
2025-06-11 16:03:31 +01:00
11ad9be153 Better typing for num_items_in_batch (#38728)
* fix

* style

* type checking ?

* maybe this ?

* fix

* can't be an int anymore

* fix
2025-06-11 16:26:41 +02:00
84710a4291 Add V-JEPA 2 (#38746)
* adding model and conversion scripts

* add imports to test vjepa conversion

* fix imports and make conversion work

* fix computation for short side

* replace attention with library attention function

* cleanup more attention classes

* remove config overrides

* add test cases, fix some of the failing ones

* fix the model outputs

* fix outputs of the model per review

* fix too big model test case

* fix styling __init__.py

* fix initialization test

* remove all asserts per review

* update sorting unsorting logic as per feedback

* remove is_video per review

* remove another is_video segment

* remove unwanted stuff

* small fixes

* add docstrings for the model

* revert adding vjepa2 config here

* update styling

* add config docstrings (wip)

* fix dpr issue

* removed test failing issues

* update styles

* merge predictor configs into main config

* remove processing code, add video processor

* remove permute which is not necessary now

* fix styles

* updated vjepa2 to be in video_processing_auto

* update comment for preprocessing

* test integration test and fix the outputs

* update test values, change test to look at repeated frames for a given image

* add a simple video processing test

* refactoring pixel_values_videos and upload ckpts to original

* fix torch_fx test cases

* remove unused config

* add all config docstrings

* add more integration tests

* add basic doc

* revert unwanted styling changes

* working make fixup

* Fix model_type in config

* update attention implementation to fit new hf standards

* fix the preprocessing logic, ensure it matches the original model

* remove use_rope logic, cleanup

* fix docstrings

* Further cleanup, update doc

* Fix model prefix

* fix get_vision_features

* VJEPA2Embeddings style refactor

* nit, style comment

* change modules default values

* Only `str` activation in config

* GradientCheckpointingLayer

* fixup

* fix conversion script

* Remove return_dict

* remove None return typehint

* Refactor VJEPA2Layer, remove use_SiLU

* Fix fx tests

* dpr -> drop_path_rates

* move *ModelOutput on top

* format docs bit

* update docs

* update docs

* update doc example

* remove prune_heads from model

* remove unused config params

* refactor embed signature

* Add vjepa to docs

* Fix config docstring

* update defaults

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/vjepa2.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix import

* Min refactoring

* Update HUB_SOURCE and HUB_REPO in conversion script

* Add missing headers

* VJEPA -> V-JEPA in docs

* Add image to doc

* fix style

* fix init weights

* change checkpoint name in modeling tests

---------

Co-authored-by: Koustuv Sinha <koustuv.sinha@mail.mcgill.ca>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: Koustuv Sinha <koustuvsinha@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-06-11 15:00:08 +01:00
a6f0e2b64a Add z-loss to Bamba for v2 (#37842)
* Remove const

* Fix arg ref

* Sharded save

* Add z_loss flag

* Add modeling zloss

* Demodularize clm forward for zloss

* Also demodularize init for z_loss flag

* PR comments (mostly modularizing right)

* Demodularize forward

* Better name zloss and explain typematch

* Fully propagate coeff name

* style fixes

* zloss default float

* Remove conflicting annotations

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-06-11 15:29:17 +02:00
6b610d89f1 Revert "Trigger doc-builder job after style bot" (#38735)
Revert "Trigger doc-builder job after style bot (#38398)"

This reverts commit 51e0fac29fc3994d49dfbfd1c8d085d29360d393.
2025-06-11 14:56:39 +02:00
0bf53e69e2 [DeepSeek-V3] implement when q_lora_rank is None (#38743)
* implement when q_lora_rank is None

* make style and quality
2025-06-11 13:35:10 +01:00
ye
b426c2b313 fix: bf16 with TPU is allowed in configuration (#38670)
* fix: tpu bf16

* fix: style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 12:35:01 +00:00
c8c1e525ed from 1.11.0, torchao.prototype.low_bit_optim is promoted to torchao.optim (#38689)
* since 1.11.0, torchao.prototype.low_bit_optim is promoted to
torchao.optim

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-11 12:16:25 +00:00
56a7cf5546 fix: Add method to get image features in PaliGemmaForConditionalGeneration (#38730)
* fix: Add method to retrieve image features in PaliGemmaForConditionalGeneration

* feat: Add get_image_features method to multiple models for image feature extraction

* fix: reformat the files with ruff.

* feat: Add methods for packing and retrieving image and video features across multiple models

modified:
- modeling_chameleon.py
- modeling_llava_next.py
- modular_llava_next_video.py
- modeling_qwen2_vl.py

and generate the:
- modeling_llava_next_video.py
- modeling_llava_onevision.py
- modeling_qwen2_5_vl.py

* feat: Implement get_image_features method in Aria, Mistral3, and VipLlava models with updated parameters

* fix: reformatted the code with fix-style
2025-06-11 10:26:31 +00:00
380e6ea406 [llava] fix integration tests with Siglip (#38732)
fix llava siglip test
2025-06-11 08:09:16 +00:00
f1849eab22 Fixed a multiple-devices issue in SmolVLM model (#38736)
Fixed a multiple-devices issue in SmolVLMModel (#38557)

* Fixed a multiple-devices issue in SmolVLMModel

* Changed the modular to reflect changes
2025-06-11 10:08:01 +02:00
aa798b7ac9 New canine model card (#38631)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Commit for new_gpt_model_card.

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* commit for new canine model card.

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* implemented suggestion by @stevhliu.

* Update canine.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-10 09:30:05 -07:00
e28fb26e7d Add AGENTS.md (#38734)
* More name sync

* repeatedly underlining "WRITE LESS, ROBOT"

* fewer, commas, please

* Clarify "copied from"

* Clarify "copied from"

* Mention test dependencies

* Added a line on preferring `modular` style
2025-06-10 16:27:37 +00:00
cb4c56ce0d Fix typo in Language Modeling example scripts and update TPU type (#38652)
* Fix typo that prevents the examples to be run correctly

* return .TPU in accelerator.distributedtype comparison
2025-06-10 13:43:35 +00:00
8ff22e9d3b [add-new-model-like] Robust search & proper outer '),' in tokenizer mapping (#38703)
* [add-new-model-like] Robust search & proper outer '),' in tokenizer mapping

* code-style: arrange the importation in add_new_model_like.py

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-10 12:25:12 +00:00
8340e8746e Use OSError (#38712)
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-10 12:13:49 +00:00
8257734b5f Fix llava tests (#38722)
* update

* fix 1

* fix 2

* fix 3

* fix 4

* fix 5

* fix 6

* fix 7

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-10 13:53:17 +02:00
71f7385942 Logging message for `` is_bitsandbytes_available() `` (#38528)
* bnb import log

* bnb import log

* log mesage change

* moved error issue in qunatizer_bnb_4_bit.py

* ruff

* arg added for bnb check

* required changes

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-10 10:15:01 +00:00
04cdf83244 Update some tests for torch 2.7.1 (#38701)
* fix 1

* fix 2

* fix 3

* fix 4

* fp16

* break

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-10 11:46:52 +02:00
afdb821318 Fix smart resize (#38706)
* Fix smart_resize bug

* Add smart_resize test

* Remove unnecessary error checking

* Fix smart_resize tests

---------

Co-authored-by: Richard Dong <rdong@rdong.c.groq-143208.internal>
2025-06-10 08:59:22 +00:00
81799d8b55 Standardize ByT5 model card format (#38699)
* Standardize ByT5 model card format

* Apply review feedback from @stevhliu

* Fix Notes formatting and wording

* Fix `aya_vision` test (#38674)

* fix 1: load_in_4bit=True,

* fix 2: decorateor

* fixfix 2: breakpoint

* fixfix 3: update

* fixfix 4: fast

* fixfix 5: cond

* fixfix 5: cond

* fixfix 6: cuda 8

* ruff

* breakpoint

* dtype

* a10

* a10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fix autodoc formatting for ByT5Tokenizer

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-09 15:02:50 -07:00
e55983e2b9 Fix aya_vision test (#38674)
* fix 1: load_in_4bit=True,

* fix 2: decorateor

* fixfix 2: breakpoint

* fixfix 3: update

* fixfix 4: fast

* fixfix 5: cond

* fixfix 5: cond

* fixfix 6: cuda 8

* ruff

* breakpoint

* dtype

* a10

* a10

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-09 22:18:52 +02:00
b61c47f5a5 Created model card for xlm-roberta-xl (#38597)
* Created model card for xlm-roberta-xl

* Update XLM-RoBERTa-XL model card with improved descriptions and usage examples

* Minor option labeling fix

* Added MaskedLM version of XLM RoBERTa XL to model card

* Added quantization example for XLM RoBERTa XL model card

* minor fixes to xlm roberta xl model card

* Minor fixes to mask format in xlm roberta xl model card
2025-06-09 13:00:38 -07:00
e594e75f1b Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout (#38596)
* Update XLM-RoBERTa model documentation with enhanced usage examples and improved layout

* Added CLI command example and quantization example for XLM RoBERTa model card.

* Minor change to transformers CLI and quantization example for XLM roberta model card
2025-06-09 12:26:31 -07:00
29ca043856 Created model card for XLM model (#38595)
* Created model card for XLM model

* Revised model card structure and content of XLM model

* Update XLM model documentation with improved examples and code snippets for predicting <mask> tokens using Pipeline and AutoModel.
2025-06-09 12:26:23 -07:00
25f711aa89 Drop as_target_processor from the _call_ and pad methods (#38642)
Drop as_target_processor from _call_ and pad methods; reformat docstrings for readability
2025-06-09 12:26:09 -07:00
837ddac1ec Docs: update bitsandbytes torch.compile compatibility (#38651) 2025-06-09 14:51:57 -04:00
b9faf2f930 Fix TypeError: 'NoneType' object is not iterable for esm (#38667) (#38668)
Add post_init() calls to EsmForMaskedLM, EsmForTokenClassification and EsmForSequenceClassification.
2025-06-09 15:23:20 +00:00
11dca07a10 Fix retrieve function signature and remove faiss requirement (#38624)
Signed-off-by: Fiona Waters <fiwaters6@gmail.com>
2025-06-09 15:17:33 +00:00
b31d462c61 Fix some models import (#38694)
Fix models import
2025-06-09 16:09:24 +01:00
282d6684dc Fix attention mask expansion when converting to executorch (#38637) 2025-06-09 15:00:55 +00:00
19224c3642 fix: "check out" as verb (#38678)
"check out" as verb
2025-06-09 14:07:31 +00:00
237ff80387 Fixed modeling_auto.py MODEL_FOR_MASK_GENERATION_MAPPING_NAMES variable (#38664)
fix: grouped the two MODEL_FOR_MASK_GENERATION_MAPPING_NAMES variables
2025-06-09 13:40:46 +00:00
d7b87b415a Fix qwen2-audio chat template audio placeholder insertion (#38640)
* fix qwen2-audio template

Signed-off-by: Isotr0py <2037008807@qq.com>

* add message['type'] back

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-09 09:56:42 +00:00
10627c1a0f Use torch 2.7.1 on daily CI (#38620)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-08 14:37:45 +02:00
ebeec13609 Fix InternVL integration test (#38612)
* fix

* fix

* fix OOM

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-07 08:30:47 +02:00
3fb7e7bc01 Skip torchscript tests for 2 models (#38643)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 20:17:37 +02:00
dc76eff12b remove ipex_optimize_model usage (#38632)
* remove ipex_optimize_model usage

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update Dockerfile

Signed-off-by: root <root@a4bf01945cfe.jf.intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: root <root@a4bf01945cfe.jf.intel.com>
Co-authored-by: root <root@a4bf01945cfe.jf.intel.com>
2025-06-06 20:04:44 +02:00
2241 changed files with 49151 additions and 92532 deletions

View File

@ -184,6 +184,7 @@ jobs:
- run: python utils/check_dummies.py
- run: python utils/check_repo.py
- run: python utils/check_inits.py
- run: python utils/check_pipeline_typing.py
- run: python utils/check_config_docstrings.py
- run: python utils/check_config_attributes.py
- run: python utils/check_doctest_list.py

View File

@ -230,22 +230,6 @@ processor_job = CircleCIJob(
parallelism=8,
)
tf_job = CircleCIJob(
"tf",
docker_image=[{"image":"huggingface/transformers-tf-light"}],
parallelism=6,
)
flax_job = CircleCIJob(
"flax",
docker_image=[{"image":"huggingface/transformers-jax-light"}],
parallelism=6,
pytest_num_workers=16,
resource_class="2xlarge",
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
@ -254,16 +238,6 @@ pipelines_torch_job = CircleCIJob(
parallelism=4,
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-tf-light"}],
marker="is_pipeline_test",
parallelism=4,
)
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
@ -280,15 +254,6 @@ examples_torch_job = CircleCIJob(
pytest_num_workers=4,
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
additional_env={"OMP_NUM_THREADS": 8},
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
pytest_num_workers=2,
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
@ -368,7 +333,7 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
REGULAR_TESTS = [torch_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job]
PIPELINE_TESTS = [pipelines_torch_job]
REPO_UTIL_TESTS = [repo_utils_job]

View File

@ -51,7 +51,7 @@ Library:
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @zach-huggingface and @SunMarc
- trainer: @zach-huggingface, @SunMarc and @qgallouedec
- chat templates: @Rocketknight1
Integrations:

View File

@ -2,15 +2,6 @@ name: Build PR Documentation
on:
pull_request:
workflow_call:
inputs:
pr_number:
type: string
required: true
commit_sha:
type: string
required: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -18,9 +9,9 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
pr_number: ${{ inputs.pr_number || github.event.number }}
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: en

View File

@ -12,8 +12,8 @@ on:
slice_id:
required: true
type: number
runner:
required: true
runner_map:
required: false
type: string
docker:
required: true
@ -45,7 +45,7 @@ jobs:
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on:
group: '${{ inputs.machine_type }}'
group: ${{ fromJson(inputs.runner_map)[matrix.folders][inputs.machine_type] }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/

View File

@ -1,128 +0,0 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
machine_type:
required: true
type: string
slice_id:
required: true
type: number
runner:
required: true
type: string
docker:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
run_models_gpu:
name: " "
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') }}
working-directory: /transformers
run: |
python3 -m pip install -U datasets
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -0,0 +1,121 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
slice_id:
required: true
type: number
runner:
required: true
type: string
machine_type:
required: true
type: string
report_name_prefix:
required: false
default: run_models_gpu
type: string
env:
RUN_SLOW: yes
PT_HPU_LAZY_MODE: 0
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:
run_models_gpu:
name: " "
strategy:
max-parallel: 8
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on:
group: ${{ inputs.runner }}
container:
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
options: --runtime=habana
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
--env HABANA_VISIBLE_DEVICES
--env HABANA_VISIBLE_MODULES
--cap-add=sys_nice
--shm-size=64G
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install dependencies
run: |
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn
- name: HL-SMI
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Environment
run: python3 utils/print_env.py
- name: Show installed libraries and their versions
run: pip freeze
- name: Set `machine_type` for report and artifact names
shell: bash
run: |
if [ "${{ inputs.machine_type }}" = "1gaudi" ]; then
machine_type=single-gpu
elif [ "${{ inputs.machine_type }}" = "2gaudi" ]; then
machine_type=multi-gpu
else
machine_type=${{ inputs.machine_type }}
fi
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all tests on Gaudi
run: python3 -m pytest -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
echo "hello" > reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
path: reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports

View File

@ -6,29 +6,13 @@ on:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
with:
python_quality_dependencies: "[quality]"
style_command_type: "default"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}
check-outputs:
runs-on: ubuntu-latest
needs: style
steps:
- run: echo ${{ needs.style.outputs.pr_number }}
- run: echo ${{ needs.style.outputs.new_commit_sha }}
trigger:
needs: style
if: needs.style.outputs.new_commit_sha != ''
uses: "./.github/workflows/build_pr_documentation.yml"
with:
pr_number: ${{ needs.style.outputs.pr_number }}
commit_sha: ${{ needs.style.outputs.new_commit_sha }}
bot_token: ${{ secrets.HF_STYLE_BOT_ACTION }}

View File

@ -22,7 +22,7 @@ on:
default: ""
# Used for `push` to easily modiffy the target workflow runs to compare against
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
@ -51,7 +51,6 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-models"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
@ -63,7 +62,6 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
@ -75,7 +73,6 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
@ -87,7 +84,6 @@ jobs:
with:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
@ -99,7 +95,6 @@ jobs:
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-training"
runner: daily-ci
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
@ -112,7 +107,6 @@ jobs:
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci

View File

@ -0,0 +1,345 @@
name: Self-hosted runner (scheduled-intel-gaudi)
on:
workflow_call:
inputs:
job:
required: true
type: string
slack_report_channel:
required: true
type: string
runner_scale_set:
required: true
type: string
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
NUM_SLICES: 2
RUN_SLOW: yes
PT_HPU_LAZY_MODE: 0
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:
setup:
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
name: Setup
runs-on: ubuntu-latest
outputs:
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
quantization_matrix: ${{ steps.set-matrix.outputs.quantization_matrix }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
- id: set-matrix
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
name: Identify models to test
working-directory: tests
run: |
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
fi
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: Identify quantization method to test
working-directory: tests
run: |
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
run_models_gpu:
if: ${{ inputs.job == 'run_models_gpu' }}
name: " "
needs: setup
strategy:
fail-fast: false
matrix:
machine_type: [1gaudi, 2gaudi]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs_intel_gaudi.yml
with:
slice_id: ${{ matrix.slice_id }}
machine_type: ${{ matrix.machine_type }}
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_models_gpu
secrets: inherit
run_trainer_and_fsdp_gpu:
if: ${{ inputs.job == 'run_trainer_and_fsdp_gpu' }}
name: " "
needs: setup
strategy:
fail-fast: false
matrix:
machine_type: [1gaudi, 2gaudi]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs_intel_gaudi.yml
with:
slice_id: ${{ matrix.slice_id }}
machine_type: ${{ matrix.machine_type }}
folder_slices: ${{ needs.setup.outputs.folder_slices }}
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
run_pipelines_gpu:
if: ${{ inputs.job == 'run_pipelines_gpu' }}
name: Pipelines
strategy:
fail-fast: false
matrix:
machine_type: [1gaudi, 2gaudi]
runs-on:
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
container:
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
options: --runtime=habana
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
--env HABANA_VISIBLE_DEVICES
--env HABANA_VISIBLE_MODULES
--cap-add=sys_nice
--shm-size=64G
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install dependencies
run: |
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
- name: HL-SMI
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Environment
run: python3 utils/print_env.py
- name: Show installed libraries and their versions
run: pip freeze
- name: Set `machine_type` for report and artifact names
shell: bash
run: |
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all pipeline tests on Intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_gpu_test_reports
path: reports/${{ env.machine_type }}_run_pipelines_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
strategy:
fail-fast: false
matrix:
machine_type: [1gaudi]
runs-on:
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
container:
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
options: --runtime=habana
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
--env HABANA_VISIBLE_DEVICES
--env HABANA_VISIBLE_MODULES
--cap-add=sys_nice
--shm-size=64G
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install dependencies
run: |
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
- name: HL-SMI
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Environment
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
run: |
pip freeze
- name: Set `machine_type` for report and artifact names
shell: bash
run: |
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run examples tests on Intel Gaudi
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
path: reports/${{ env.machine_type }}_run_examples_gpu_test_reports
run_deepspeed_gpu:
if: ${{ inputs.job == 'run_deepspeed_gpu' }}
name: Intel Gaudi deepspeed tests
strategy:
fail-fast: false
matrix:
machine_type: [1gaudi, 2gaudi]
runs-on:
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
container:
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
options: --runtime=habana
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
--env HABANA_VISIBLE_DEVICES
--env HABANA_VISIBLE_MODULES
--cap-add=sys_nice
--shm-size=64G
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install dependencies
run: |
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
pip install git+https://github.com/HabanaAI/DeepSpeed.git@1.20.0
- name: HL-SMI
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Environment
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
run: |
pip freeze
- name: Set `machine_type` for report and artifact names
shell: bash
run: |
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all deepspeed tests on intel Gaudi
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_deepspeed_gpu_test_reports tests/deepspeed -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: |
cat reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_deepspeed_gpu_test_reports
path: reports/${{ env.machine_type }}_run_deepspeed_gpu_test_reports
send_results:
name: Slack Report
needs:
[
setup,
run_models_gpu,
run_examples_gpu,
run_pipelines_gpu,
run_deepspeed_gpu,
run_trainer_and_fsdp_gpu,
]
if: ${{ always() }}
uses: ./.github/workflows/slack-report.yml
with:
job: ${{ inputs.job }}
setup_status: ${{ needs.setup.result }}
slack_report_channel: ${{ inputs.slack_report_channel }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
folder_slices: ${{ needs.setup.outputs.folder_slices }}
report_repo_id: ${{ inputs.report_repo_id }}
ci_event: ${{ inputs.ci_event }}
secrets: inherit

View File

@ -0,0 +1,67 @@
name: Self-hosted runner (Intel Gaudi3 scheduled CI caller)
on:
repository_dispatch:
workflow_dispatch:
schedule:
- cron: "17 2 * * *"
jobs:
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_models_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
secrets: inherit
pipeline-ci:
name: Pipeline CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_pipelines_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_examples_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_deepspeed_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
secrets: inherit
trainer-fsdp-ci:
name: Trainer/FSDP CI
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
with:
job: run_trainer_and_fsdp_gpu
ci_event: Scheduled CI (Intel) - Gaudi3
runner_scale_set: itac-bm-emr-gaudi3-dell
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
secrets: inherit

View File

@ -15,9 +15,6 @@ on:
slack_report_channel:
required: true
type: string
runner:
required: true
type: string
docker:
required: true
type: string
@ -62,6 +59,7 @@ jobs:
outputs:
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
runner_map: ${{ steps.set-matrix.outputs.runner_map }}
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
steps:
- name: Update clone
@ -88,6 +86,7 @@ jobs:
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
echo "runner_map=$(python3 ../utils/get_runner_map.py)" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
@ -111,14 +110,14 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
runner_map: ${{ needs.setup.outputs.runner_map }}
docker: ${{ inputs.docker }}
secrets: inherit
@ -136,7 +135,6 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
docker: ${{ inputs.docker }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit

39
AGENTS.md Normal file
View File

@ -0,0 +1,39 @@
# AGENTS.md Guide for Hugging Face Transformers
This AGENTS.md file provides guidance for code agents working with this codebase.
## Core Project Structure
- `/src/transformers`: This contains the core source code for the library
- `/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
- `/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
- `/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
- `/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
## Coding Conventions for Hugging Face Transformers
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
We use two mechanisms to keep this code in sync:
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
When adding new models, you should prefer `modular` style.
## Testing
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -8,13 +8,19 @@ check_dirs := examples tests src utils
exclude_folders := ""
modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
ruff format $(modified_py_files) --exclude $(exclude_folders);\
@current_branch=$$(git branch --show-current); \
if [ "$$current_branch" = "main" ]; then \
echo "On main branch, running 'style' target instead..."; \
$(MAKE) style; \
else \
echo "No library .py files were modified"; \
modified_py_files=$$(python utils/get_modified_files.py $(check_dirs)); \
if [ -n "$$modified_py_files" ]; then \
echo "Checking/fixing files: $${modified_py_files}"; \
ruff check $${modified_py_files} --fix --exclude $(exclude_folders); \
ruff format $${modified_py_files} --exclude $(exclude_folders); \
else \
echo "No library .py files were modified"; \
fi; \
fi
# Update src/transformers/dependency_versions_table.py
@ -40,6 +46,7 @@ repo-consistency:
python utils/check_dummies.py
python utils/check_repo.py
python utils/check_inits.py
python utils/check_pipeline_typing.py
python utils/check_config_docstrings.py
python utils/check_config_attributes.py
python utils/check_doctest_list.py
@ -81,6 +88,7 @@ fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_modular_conversion.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_pipeline_typing.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_docstrings.py --fix_and_overwrite

View File

@ -59,12 +59,22 @@ limitations under the License.
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers is a library of pretrained text, computer vision, audio, video, and multimodal models for inference and training. Use Transformers to fine-tune models on your data, build inference applications, and for generative AI use cases across multiple modalities.
There are over 500K+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
We pledge to help support new state-of-the-art models and democratize their usage by having their model definition be
simple, customizable, and efficient.
There are over 1M+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Explore the [Hub](https://huggingface.com/) today to find a model and use Transformers to help you get started right away.

View File

@ -28,7 +28,7 @@ class MetricsRecorder:
self.commit_id = commit_id
self.commit_msg = commit_msg
def initialise_benchmark(self, metadata: Dict[str, str]) -> int:
def initialise_benchmark(self, metadata: dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id
"""
@ -55,7 +55,7 @@ class MetricsRecorder:
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: int, measurements: Dict[str, float]):
def collect_model_measurements(self, benchmark_id: int, measurements: dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
@ -85,7 +85,7 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments() -> Tuple[str, str, str, str]:
def parse_arguments() -> tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,11 +9,9 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.6.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.3.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
# Disable kernel mapping for now until all tests pass
ENV DISABLE_KERNEL_MAPPING=1
@ -32,8 +30,6 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] &&
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -3,6 +3,9 @@ LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG TORCH_VISION='0.21.0'
ARG TORCH_AUDIO='2.6.0'
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \
apt clean && \
@ -20,6 +23,7 @@ WORKDIR /
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax

View File

@ -4,7 +4,7 @@ LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.7.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,18 +11,20 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.7.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# Install torch stuff after ./transformers[dev-torch,testing,video], otherwise torch may be resolved to a previous
# version.
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract

View File

@ -0,0 +1,93 @@
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu22.04 AS base
LABEL maintainer="Hugging Face"
SHELL ["/bin/bash", "-c"]
ARG PYTHON_VER=3.11
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get remove -y python3.10 && apt-get autoremove -y
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
apt-get update && \
apt-get install -y python$PYTHON_VER python$PYTHON_VER-dev python3-pip && \
ln -sf /usr/bin/python$PYTHON_VER /usr/bin/python3 && \
ln -sf /usr/bin/python3 /usr/bin/python && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get update && \
apt-get -y install \
apt-utils \
build-essential \
ca-certificates \
clinfo \
curl \
git \
git-lfs \
vim \
numactl \
gnupg2 \
gpg-agent \
zlib1g-dev \
rsync \
sudo \
libnl-genl-3-200 \
xpu-smi \
unzip \
ffmpeg \
tesseract-ocr \
espeak-ng \
wget \
ncurses-term && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get update && \
apt-get install -y \
linux-headers-$(uname -r) \
linux-modules-extra-$(uname -r) \
flex bison \
intel-fw-gpu intel-i915-dkms xpu-smi \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc \
libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN pip install --upgrade pip
RUN pip install triton==3.3.0
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
RUN pip install evaluate torchdata pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree
RUN pip install gguf hqq compressed_tensors gptqmodel mergekit autoawq deepspeed torchao onnx
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft
RUN pip install git+https://github.com/linkedin/Liger-Kernel.git --extra-index-url https://download.pytorch.org/whl/test/xpu
# install bitsandbytes
RUN pip install git+https://github.com/bitsandbytes-foundation/bitsandbytes.git
ENV OCL_ICD_VENDORS=/etc/OpenCL/vendors
ENV FI_PROVIDER_PATH=${I_MPI_ROOT}/lib/libfabric/prov:/usr/lib/x86_64-linux-gnu/libfabric
ENV CCL_ROOT=/usr/local
ENV CCL_ATL_TRANSPORT=ofi
ENV I_MPI_ROOT=/usr/local
ENV CLASSPATH=${I_MPI_ROOT}/lib/mpi.jar
ENV PATH=${I_MPI_ROOT}/bin/libfabric:${PATH}
ENV LD_LIBRARY_PATH=${I_MPI_ROOT}/lib/libfabric:${LD_LIBRARY_PATH}
RUN touch /entrypoint.sh
RUN chmod +x /entrypoint.sh
RUN echo "#!/bin/bash" >> /entrypoint.sh
RUN echo "source /opt/intel/oneapi/setvars.sh --force && /bin/bash" >> /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -278,7 +278,7 @@ Here's an example of a single value return:
```python
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
`list[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:

View File

@ -3,16 +3,16 @@
يُشهد في الآونة الأخيرة نمو مجال دراسي يُعنى باستكشاف آلية عمل نماذج المحولات الضخمة مثل BERT (والذي يُطلق عليها البعض اسم "BERTology"). ومن الأمثلة البارزة على هذا المجال ما يلي:
- BERT Rediscovers the Classical NLP Pipeline بواسطة Ian Tenney و Dipanjan Das و Ellie Pavlick:
https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? بواسطة Paul Michel و Omer Levy و Graham Neubig: https://arxiv.org/abs/1905.10650
https://huggingface.co/papers/1905.05950
- Are Sixteen Heads Really Better than One? بواسطة Paul Michel و Omer Levy و Graham Neubig: https://huggingface.co/papers/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention بواسطة Kevin Clark و Urvashi Khandelwal و Omer Levy و Christopher D.
Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
Manning: https://huggingface.co/papers/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://huggingface.co/papers/2210.04633
لإثراء هذا المجال الناشئ، قمنا بتضمين بعض الميزات الإضافية في نماذج BERT/GPT/GPT-2 للسماح للناس بالوصول إلى التمثيلات الداخلية، والتي تم تكييفها بشكل أساسي من العمل الرائد لـ Paul Michel (https://arxiv.org/abs/1905.10650):
لإثراء هذا المجال الناشئ، قمنا بتضمين بعض الميزات الإضافية في نماذج BERT/GPT/GPT-2 للسماح للناس بالوصول إلى التمثيلات الداخلية، والتي تم تكييفها بشكل أساسي من العمل الرائد لـ Paul Michel (https://huggingface.co/papers/1905.10650):
- الوصول إلى جميع الحالات المخفية في BERT/GPT/GPT-2،
- الوصول إلى جميع أوزان الانتباه لكل رأس في BERT/GPT/GPT-2،
- استرجاع قيم ومشتقات مخرجات الرأس لحساب درجة أهمية الرأس وحذفه كما هو موضح في https://arxiv.org/abs/1905.10650.
- استرجاع قيم ومشتقات مخرجات الرأس لحساب درجة أهمية الرأس وحذفه كما هو موضح في https://huggingface.co/papers/1905.10650.
ولمساعدتك على فهم واستخدام هذه الميزات بسهولة، أضفنا مثالًا برمجيًا محددًا: [bertology.py](https://github.com/huggingface/transformers-research-projects/tree/main/bertology/run_bertology.py) أثناء استخراج المعلومات وتقليص من نموذج تم تدريبه مسبقًا على GLUE.

View File

@ -30,7 +30,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -135,7 +135,7 @@
في كل وحدة الانتباه الباقية في المحولات، تلي طبقة الاهتمام الانتباه عادة طبقتان للتغذية الأمامية.
حجم تضمين الطبقة الأمامية الوسيطة أكبر عادة من حجم المخفي للنموذج (على سبيل المثال، لـ
`google-bert/bert-base-uncased`).
بالنسبة لإدخال بحجم `[batch_size, sequence_length]`، يمكن أن تمثل الذاكرة المطلوبة لتخزين التضمينات الأمامية الوسيطة `[batch_size، sequence_length, config.intermediate_size]` جزءًا كبيرًا من استخدام الذاكرة. لاحظ مؤلفو (https://arxiv.org/abs/2001.04451)[Reformer: The Efficient Transformer] أنه نظرًا لأن الحساب مستقل عن بعد `sequence_length`، فإنه من المكافئ رياضيًا حساب تضمينات الإخراج الأمامية `[batch_size، config.hidden_size]_0, ..., [batch_size، `config_size]_n
بالنسبة لإدخال بحجم `[batch_size, sequence_length]`، يمكن أن تمثل الذاكرة المطلوبة لتخزين التضمينات الأمامية الوسيطة `[batch_size، sequence_length, config.intermediate_size]` جزءًا كبيرًا من استخدام الذاكرة. لاحظ مؤلفو (https://huggingface.co/papers/2001.04451)[Reformer: The Efficient Transformer] أنه نظرًا لأن الحساب مستقل عن بعد `sequence_length`، فإنه من المكافئ رياضيًا حساب تضمينات الإخراج الأمامية `[batch_size، config.hidden_size]_0, ..., [batch_size، `config_size]_n
فردياً والتوصيل بها لاحقًا إلى `[batch_size, sequence_length, config.hidden_size]` مع `n = sequence_length`، والذي يتداول زيادة وقت الحساب مقابل تقليل استخدام الذاكرة، ولكنه ينتج عنه نتيجة مكافئة رياضيا.
بالنسبة للنماذج التي تستخدم الدالة `[apply_chunking_to_forward]`، يحدد `chunk_size` عدد التضمينات يتم حساب الإخراج بالتوازي وبالتالي يحدد المقايضة بين حجم الذاكرة والتعقيد الوقت. إذا تم تعيين `chunk_size` إلى `0`، فلن يتم إجراء تجزئة التغذية الأمامية.
@ -173,7 +173,7 @@
<Youtube id="VFp38yj8h3A"/>
يعمل كل محلل لغوي بشكل مختلف ولكن الآلية الأساسية تبقى كما هي. إليك مثال باستخدام محلل BERT اللغوي، والذي يعد محلل لغوي [WordPiece](https://arxiv.org/pdf/1609.08144.pdf):
يعمل كل محلل لغوي بشكل مختلف ولكن الآلية الأساسية تبقى كما هي. إليك مثال باستخدام محلل BERT اللغوي، والذي يعد محلل لغوي [WordPiece](https://huggingface.co/papers/1609.08144):
```python
>>> from transformers import BertTokenizer

View File

@ -6,7 +6,7 @@
تحقق نماذج اللغة الكبيرة (LLMs) مثل GPT3/4، [Falcon](https://huggingface.co/tiiuae/falcon-40b)، و [Llama](https://huggingface.co/meta-llama/Llama-2-70b-hf) تقدمًا سريعًا في قدرتها على معالجة المهام التي تركز على الإنسان، مما يجعلها أدوات أساسية في الصناعات القائمة على المعرفة الحديثة.
لا يزال نشر هذه النماذج في المهام الواقعية يمثل تحديًا، ومع ذلك:
- لكي تظهر نماذج اللغة الكبيرة قدرات فهم وتوليد النصوص قريبة من قدرات الإنسان، فإنها تتطلب حاليًا إلى تكوينها من مليارات المعلمات (انظر [كابلان وآخرون](https://arxiv.org/abs/2001.08361)، [وي وآخرون](https://arxiv.org/abs/2206.07682)). وهذا بدوره يزيد من متطلبات الذاكرة للاستدلال.
- لكي تظهر نماذج اللغة الكبيرة قدرات فهم وتوليد النصوص قريبة من قدرات الإنسان، فإنها تتطلب حاليًا إلى تكوينها من مليارات المعلمات (انظر [كابلان وآخرون](https://huggingface.co/papers/2001.08361)، [وي وآخرون](https://huggingface.co/papers/2206.07682)). وهذا بدوره يزيد من متطلبات الذاكرة للاستدلال.
- في العديد من المهام الواقعية، تحتاج نماذج اللغة الكبيرة إلى معلومات سياقية شاملة. يتطلب ذلك قدرة النموذج على إدارة تسلسلات إدخال طويلة للغاية أثناء الاستدلال.
يكمن جوهر صعوبة هذه التحديات في تعزيز القدرات الحسابية والذاكرة لنماذج اللغة الكبيرة، خاصة عند التعامل مع تسلسلات الإدخال الضخمة.
@ -17,7 +17,7 @@
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://arxiv.org/abs/2108.12409)، [الترميز الدوار](https://arxiv.org/abs/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://arxiv.org/abs/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://arxiv.org/abs/2305.13245)).
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://huggingface.co/papers/2305.13245)).
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.
@ -152,8 +152,8 @@ from accelerate.utils import release_memory
release_memory(model)
```
والآن ماذا لو لم يكن لدى وحدة معالجة الرسومات (GPU) لديك 32 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM)؟ لقد وجد أن أوزان النماذج يمكن تحويلها إلى 8 بتات أو 4 بتات دون خسارة كبيرة في الأداء (انظر [Dettmers et al.](https://arxiv.org/abs/2208.07339)).
يمكن تحويل النموذج إلى 3 بتات أو 2 بتات مع فقدان مقبول في الأداء كما هو موضح في ورقة [GPTQ](https://arxiv.org/abs/2210.17323) 🤯.
والآن ماذا لو لم يكن لدى وحدة معالجة الرسومات (GPU) لديك 32 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM)؟ لقد وجد أن أوزان النماذج يمكن تحويلها إلى 8 بتات أو 4 بتات دون خسارة كبيرة في الأداء (انظر [Dettmers et al.](https://huggingface.co/papers/2208.07339)).
يمكن تحويل النموذج إلى 3 بتات أو 2 بتات مع فقدان مقبول في الأداء كما هو موضح في ورقة [GPTQ](https://huggingface.co/papers/2210.17323) 🤯.
دون الدخول في الكثير من التفاصيل، تهدف مخططات التكميم إلى تخفيض دقة الأوزان مع محاولة الحفاظ على دقة نتائج النموذج كما هي (*أي* أقرب ما يمكن إلى bfloat16).
لاحظ أن التكميم يعمل بشكل خاص جيدًا لتوليد النص حيث كل ما نهتم به هو اختيار *مجموعة الرموز الأكثر احتمالًا التالية* ولا نهتم حقًا بالقيم الدقيقة لتوزيع الرمز التالي *logit*.
@ -231,7 +231,7 @@ flush()
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -304,7 +304,7 @@ $$ \textbf{O} = \text{Attn}(\mathbf{X}) = \mathbf{V} \times \text{Softmax}(\math
مع تحسن LLMs في فهم النص وتوليد النص، يتم تطبيقها على مهام متزايدة التعقيد. في حين أن النماذج كانت تتعامل سابقًا مع ترجمة أو تلخيص بضع جمل، فإنها الآن تدير صفحات كاملة، مما يتطلب القدرة على معالجة أطوال إدخال واسعة.
كيف يمكننا التخلص من متطلبات الذاكرة الباهظة للتطويلات المدخلة الكبيرة؟ نحن بحاجة إلى طريقة جديدة لحساب آلية الاهتمام الذاتي التي تتخلص من مصفوفة \\( QK^T \\). [طريقه داو وآخرون.](Https://arxiv.org/abs/2205.14135) طوروا بالضبط مثل هذا الخوارزمية الجديدة وأطلقوا عليها اسم **Flash Attention**.
كيف يمكننا التخلص من متطلبات الذاكرة الباهظة للتطويلات المدخلة الكبيرة؟ نحن بحاجة إلى طريقة جديدة لحساب آلية الاهتمام الذاتي التي تتخلص من مصفوفة \\( QK^T \\). [طريقه داو وآخرون.](https://huggingface.co/papers/2205.14135) طوروا بالضبط مثل هذا الخوارزمية الجديدة وأطلقوا عليها اسم **Flash Attention**.
باختصار، يكسر الاهتمام الفلاشي حساب \\( \mathbf{V} \times \operatorname{Softmax}(\mathbf{QK}^T\\)) ويحسب بدلاً من ذلك قطعًا أصغر من الإخراج عن طريق التكرار عبر العديد من خطوات حساب Softmax:
@ -318,7 +318,7 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
> من خلال تتبع إحصائيات التطبيع softmax واستخدام بعض الرياضيات الذكية، يعطي Flash Attention **مخرجات متطابقة رقميًا** مقارنة بطبقة الاهتمام الذاتي الافتراضية بتكلفة ذاكرة لا تزيد خطيًا مع \\( N \\).
عند النظر إلى الصيغة، قد يقول المرء بديهيًا أن الاهتمام الفلاشي يجب أن يكون أبطأ بكثير مقارنة بصيغة الاهتمام الافتراضية حيث يلزم إجراء المزيد من الحسابات. في الواقع، يتطلب Flash Attention المزيد من عمليات الفاصلة العائمة مقارنة بالاهتمام العادي حيث يجب إعادة حساب إحصائيات التطبيع softmax باستمرار (راجع [الورقة](https://arxiv.org/abs/2205.14135) لمزيد من التفاصيل إذا كنت مهتمًا)
عند النظر إلى الصيغة، قد يقول المرء بديهيًا أن الاهتمام الفلاشي يجب أن يكون أبطأ بكثير مقارنة بصيغة الاهتمام الافتراضية حيث يلزم إجراء المزيد من الحسابات. في الواقع، يتطلب Flash Attention المزيد من عمليات الفاصلة العائمة مقارنة بالاهتمام العادي حيث يجب إعادة حساب إحصائيات التطبيع softmax باستمرار (راجع [الورقة](https://huggingface.co/papers/2205.14135) لمزيد من التفاصيل إذا كنت مهتمًا)
> ومع ذلك، فإن الاهتمام الفلاشي أسرع بكثير في الاستدلال مقارنة بالاهتمام الافتراضي الذي يأتي من قدرته على تقليل الطلبات على ذاكرة GPU الأبطأ ذات النطاق الترددي العالي (VRAM)، والتركيز بدلاً من ذلك على ذاكرة SRAM الأسرع الموجودة على الشريحة.
@ -535,20 +535,20 @@ flush()
لكي يفهم LLM ترتيب الجملة، يلزم وجود *إشارة* إضافية ويتم تطبيقها عادةً في شكل *الترميزات الموضعية* (أو ما يُطلق عليه أيضًا *الترميزات الموضعية*).
لم يتم ترجمة النص الخاص والروابط وأكواد HTML وCSS بناءً على طلبك.
قدم مؤلفو الورقة البحثية [*Attention Is All You Need*](https://arxiv.org/abs/1706.03762) تضمينات موضعية جيبية مثلثية \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) حيث يتم حساب كل متجه \\( \mathbf{p}_i \\) كدالة جيبية لموضعه \\( i \\) .
قدم مؤلفو الورقة البحثية [*Attention Is All You Need*](https://huggingface.co/papers/1706.03762) تضمينات موضعية جيبية مثلثية \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) حيث يتم حساب كل متجه \\( \mathbf{p}_i \\) كدالة جيبية لموضعه \\( i \\) .
بعد ذلك يتم ببساطة إضافة التضمينات الموضعية إلى متجهات تسلسل الإدخال \\( \mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N \\) = \\( \mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N \\) وبالتالي توجيه النموذج لتعلم ترتيب الجملة بشكل أفضل.
بدلاً من استخدام التضمينات الموضعية الثابتة، استخدم آخرون (مثل [Devlin et al.](https://arxiv.org/abs/1810.04805)) تضمينات موضعية مكتسبة يتم من خلالها تعلم التضمينات الموضعية \\( \mathbf{P} \\) أثناء التدريب.
بدلاً من استخدام التضمينات الموضعية الثابتة، استخدم آخرون (مثل [Devlin et al.](https://huggingface.co/papers/1810.04805)) تضمينات موضعية مكتسبة يتم من خلالها تعلم التضمينات الموضعية \\( \mathbf{P} \\) أثناء التدريب.
كانت التضمينات الموضعية الجيبية والمكتسبة هي الطرق السائدة لترميز ترتيب الجملة في نماذج اللغة الكبيرة، ولكن تم العثور على بعض المشكلات المتعلقة بهذه التضمينات الموضعية:
1. التضمينات الموضعية الجيبية والمكتسبة هي تضمينات موضعية مطلقة، أي ترميز تضمين فريد لكل معرف موضعي: \\( 0, \ldots, N \\) . كما أظهر [Huang et al.](https://arxiv.org/abs/2009.13658) و [Su et al.](https://arxiv.org/abs/2104.09864)، تؤدي التضمينات الموضعية المطلقة إلى أداء ضعيف لنماذج اللغة الكبيرة للمدخلات النصية الطويلة. بالنسبة للمدخلات النصية الطويلة، يكون من المفيد إذا تعلم النموذج المسافة الموضعية النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض بدلاً من موضعها المطلق.
1. التضمينات الموضعية الجيبية والمكتسبة هي تضمينات موضعية مطلقة، أي ترميز تضمين فريد لكل معرف موضعي: \\( 0, \ldots, N \\) . كما أظهر [Huang et al.](https://huggingface.co/papers/2009.13658) و [Su et al.](https://huggingface.co/papers/2104.09864)، تؤدي التضمينات الموضعية المطلقة إلى أداء ضعيف لنماذج اللغة الكبيرة للمدخلات النصية الطويلة. بالنسبة للمدخلات النصية الطويلة، يكون من المفيد إذا تعلم النموذج المسافة الموضعية النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض بدلاً من موضعها المطلق.
2. عند استخدام التضمينات الموضعية المكتسبة، يجب تدريب نموذج اللغة الكبيرة على طول إدخال ثابت \\( N \\)، مما يجعل من الصعب الاستقراء إلى طول إدخال أطول مما تم تدريبه عليه.
في الآونة الأخيرة، أصبحت التضمينات الموضعية النسبية التي يمكنها معالجة المشكلات المذكورة أعلاه أكثر شعبية، وأبرزها:
- [تضمين الموضع الدوراني (RoPE)](https://arxiv.org/abs/2104.09864)
- [ALiBi](https://arxiv.org/abs/2108.12409)
- [تضمين الموضع الدوراني (RoPE)](https://huggingface.co/papers/2104.09864)
- [ALiBi](https://huggingface.co/papers/2108.12409)
يؤكد كل من *RoPE* و *ALiBi* أنه من الأفضل توجيه نموذج اللغة الكبيرة حول ترتيب الجملة مباشرة في خوارزمية الانتباه الذاتي حيث يتم وضع رموز الكلمات في علاقة مع بعضها البعض. على وجه التحديد، يجب توجيه ترتيب الجملة عن طريق تعديل عملية \\( \mathbf{QK}^T \\) .
@ -563,14 +563,14 @@ $$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta
يستخدم *RoPE* في العديد من نماذج اللغة الكبيرة الأكثر أهمية اليوم، مثل:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**Llama**](https://arxiv.org/abs/2302.13971)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
- [**Llama**](https://huggingface.co/papers/2302.13971)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
كبديل، يقترح *ALiBi* مخطط ترميز موضعي نسبي أبسط بكثير. يتم إضافة المسافة النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض كعدد صحيح سلبي مقياس بقيمة محددة مسبقًا `m` إلى كل إدخال استعلام-مفتاح لمصفوفة \\( \mathbf{QK}^T \\) مباشرة قبل حساب softmax.
![](/blog/assets/163_optimize_llm/alibi.png)
كما هو موضح في ورقة [ALiBi](https://arxiv.org/abs/2108.12409)، يسمح هذا الترميز الموضعي النسبي البسيط للنموذج بالحفاظ على أداء عالٍ حتى في تسلسلات المدخلات النصية الطويلة جدًا.
كما هو موضح في ورقة [ALiBi](https://huggingface.co/papers/2108.12409)، يسمح هذا الترميز الموضعي النسبي البسيط للنموذج بالحفاظ على أداء عالٍ حتى في تسلسلات المدخلات النصية الطويلة جدًا.
يُستخدم *ALiBi* في العديد من أهم نماذج اللغة الكبيرة المستخدمة اليوم، مثل:
@ -579,7 +579,7 @@ $$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta
يمكن لكل من ترميزات الموضع *RoPE* و *ALiBi* الاستقراء إلى أطوال إدخال لم يتم ملاحظتها أثناء التدريب، في حين ثبت أن الاستقراء يعمل بشكل أفضل بكثير خارج الصندوق لـ *ALiBi* مقارنة بـ *RoPE*.
بالنسبة لـ ALiBi، ما عليك سوى زيادة قيم مصفوفة الموضع المثلث السفلي لمطابقة طول تسلسل الإدخال.
بالنسبة لـ *RoPE*، يؤدي الحفاظ على نفس \\( \theta \\) الذي تم استخدامه أثناء التدريب إلى نتائج سيئة عند تمرير إدخالات نصية أطول بكثير من تلك التي شوهدت أثناء التدريب، راجع [Press et al.](https://arxiv.org/abs/2108.12409). ومع ذلك، وجد المجتمع بعض الحيل الفعالة التي تقوم بتعديل \\( \theta \\)، مما يسمح لترميزات الموضع *RoPE* بالعمل بشكل جيد لتسلسلات إدخال النص المستقرئة (راجع [هنا](https://github.com/huggingface/transformers/pull/24653)).
بالنسبة لـ *RoPE*، يؤدي الحفاظ على نفس \\( \theta \\) الذي تم استخدامه أثناء التدريب إلى نتائج سيئة عند تمرير إدخالات نصية أطول بكثير من تلك التي شوهدت أثناء التدريب، راجع [Press et al.](https://huggingface.co/papers/2108.12409). ومع ذلك، وجد المجتمع بعض الحيل الفعالة التي تقوم بتعديل \\( \theta \\)، مما يسمح لترميزات الموضع *RoPE* بالعمل بشكل جيد لتسلسلات إدخال النص المستقرئة (راجع [هنا](https://github.com/huggingface/transformers/pull/24653)).
> كل من RoPE و ALiBi عبارة عن ترميزات موضع نسبي *لا* يتم تعلمها أثناء التدريب، ولكن بدلاً من ذلك تستند إلى الحدس التالي:
- يجب إعطاء الإشارات الموضعية حول إدخالات النص مباشرة إلى مصفوفة \\( QK^T \\) لطبقة الاهتمام الذاتي
@ -755,21 +755,21 @@ Roughly 8 مليار قيمة عائمة! يتطلب تخزين 8 مليارات
#### 3.2.2 Multi-Query-Attention (MQA)
[Multi-Query-Attention](https://arxiv.org/abs/1911.02150) اقترحها Noam Shazeer في ورقته *Fast Transformer Decoding: One Write-Head is All You Need*. كما يقول العنوان، اكتشف Noam أنه بدلاً من استخدام `n_head` من أوزان إسقاط القيمة الرئيسية، يمكن استخدام زوج واحد من أوزان إسقاط رأس القيمة التي يتم مشاركتها عبر جميع رؤوس الاهتمام دون أن يتدهور أداء النموذج بشكل كبير.
[Multi-Query-Attention](https://huggingface.co/papers/1911.02150) اقترحها Noam Shazeer في ورقته *Fast Transformer Decoding: One Write-Head is All You Need*. كما يقول العنوان، اكتشف Noam أنه بدلاً من استخدام `n_head` من أوزان إسقاط القيمة الرئيسية، يمكن استخدام زوج واحد من أوزان إسقاط رأس القيمة التي يتم مشاركتها عبر جميع رؤوس الاهتمام دون أن يتدهور أداء النموذج بشكل كبير.
> باستخدام زوج واحد من أوزان إسقاط رأس القيمة، يجب أن تكون متجهات القيمة الرئيسية \\( \mathbf{k}_i، \mathbf{v}_i \\) متطابقة عبر جميع رؤوس الاهتمام والتي بدورها تعني أننا بحاجة فقط إلى تخزين زوج إسقاط قيمة رئيسي واحد في ذاكرة التخزين المؤقت بدلاً من `n_head` منها.
نظرًا لأن معظم LLMs تستخدم ما بين 20 و100 رأس اهتمام، فإن MQA يقلل بشكل كبير من استهلاك الذاكرة لذاكرة التخزين المؤقت key-value. بالنسبة إلى LLM المستخدم في هذا الدفتر، يمكننا تقليل استهلاك الذاكرة المطلوبة من 15 جيجابايت إلى أقل من 400 ميجابايت عند طول تسلسل الإدخال 16000.
بالإضافة إلى توفير الذاكرة، يؤدي MQA أيضًا إلى تحسين الكفاءة الحسابية كما هو موضح في ما يلي.
في فك التشفير التلقائي، يجب إعادة تحميل متجهات القيمة الرئيسية الكبيرة، ودمجها مع زوج متجه القيمة الحالي، ثم إدخالها في \\( \mathbf{q}_c\mathbf{K}^T \\) الحساب في كل خطوة. بالنسبة لفك التشفير التلقائي، يمكن أن تصبح عرض النطاق الترددي للذاكرة المطلوبة لإعادة التحميل المستمر عنق زجاجة زمنيًا خطيرًا. من خلال تقليل حجم متجهات القيمة الرئيسية، يجب الوصول إلى ذاكرة أقل، وبالتالي تقليل عنق الزجاجة في عرض النطاق الترددي للذاكرة. لمزيد من التفاصيل، يرجى إلقاء نظرة على [ورقة Noam](https://arxiv.org/abs/1911.02150).
في فك التشفير التلقائي، يجب إعادة تحميل متجهات القيمة الرئيسية الكبيرة، ودمجها مع زوج متجه القيمة الحالي، ثم إدخالها في \\( \mathbf{q}_c\mathbf{K}^T \\) الحساب في كل خطوة. بالنسبة لفك التشفير التلقائي، يمكن أن تصبح عرض النطاق الترددي للذاكرة المطلوبة لإعادة التحميل المستمر عنق زجاجة زمنيًا خطيرًا. من خلال تقليل حجم متجهات القيمة الرئيسية، يجب الوصول إلى ذاكرة أقل، وبالتالي تقليل عنق الزجاجة في عرض النطاق الترددي للذاكرة. لمزيد من التفاصيل، يرجى إلقاء نظرة على [ورقة Noam](https://huggingface.co/papers/1911.02150).
الجزء المهم الذي يجب فهمه هنا هو أن تقليل عدد رؤوس الاهتمام بالقيمة الرئيسية إلى 1 لا معنى له إلا إذا تم استخدام ذاكرة التخزين المؤقت للقيمة الرئيسية. يظل الاستهلاك الذروي لذاكرة النموذج لمرور واحد للأمام بدون ذاكرة التخزين المؤقت للقيمة الرئيسية دون تغيير لأن كل رأس اهتمام لا يزال لديه متجه استعلام فريد بحيث يكون لكل رأس اهتمام مصفوفة \\( \mathbf{QK}^T \\) مختلفة.
شهدت MQA اعتمادًا واسع النطاق من قبل المجتمع ويتم استخدامها الآن بواسطة العديد من LLMs الأكثر شهرة:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
@ -777,7 +777,7 @@ Roughly 8 مليار قيمة عائمة! يتطلب تخزين 8 مليارات
#### 3.2.3 مجموعة الاستعلام الاهتمام (GQA)
[مجموعة الاستعلام الاهتمام](https://arxiv.org/abs/2305.13245)، كما اقترح Ainslie et al. من Google، وجد أن استخدام MQA يمكن أن يؤدي غالبًا إلى تدهور الجودة مقارنة باستخدام إسقاطات رأس القيمة الرئيسية المتعددة. تجادل الورقة بأنه يمكن الحفاظ على أداء النموذج بشكل أكبر عن طريق تقليل عدد أوزان إسقاط رأس الاستعلام بشكل أقل حدة. بدلاً من استخدام وزن إسقاط قيمة رئيسية واحدة فقط، يجب استخدام `n <n_head` أوزان إسقاط قيمة رئيسية. من خلال اختيار `n` إلى قيمة أقل بكثير من `n_head مثل 2 أو 4 أو 8، يمكن الاحتفاظ بمعظم مكاسب الذاكرة والسرعة من MQA مع التضحية بقدر أقل من سعة النموذج وبالتالي، من المفترض، أقل أداء.
[مجموعة الاستعلام الاهتمام](https://huggingface.co/papers/2305.13245)، كما اقترح Ainslie et al. من Google، وجد أن استخدام MQA يمكن أن يؤدي غالبًا إلى تدهور الجودة مقارنة باستخدام إسقاطات رأس القيمة الرئيسية المتعددة. تجادل الورقة بأنه يمكن الحفاظ على أداء النموذج بشكل أكبر عن طريق تقليل عدد أوزان إسقاط رأس الاستعلام بشكل أقل حدة. بدلاً من استخدام وزن إسقاط قيمة رئيسية واحدة فقط، يجب استخدام `n <n_head` أوزان إسقاط قيمة رئيسية. من خلال اختيار `n` إلى قيمة أقل بكثير من `n_head مثل 2 أو 4 أو 8، يمكن الاحتفاظ بمعظم مكاسب الذاكرة والسرعة من MQA مع التضحية بقدر أقل من سعة النموذج وبالتالي، من المفترض، أقل أداء.
علاوة على ذلك، اكتشف مؤلفو GQA أنه يمكن *تدريب* نقاط تفتيش النموذج الموجودة ليكون لها بنية GQA باستخدام 5% فقط من الحوسبة الأصلية للتعليم المسبق. في حين أن 5% من الحوسبة الأصلية للتعليم المسبق يمكن أن تكون كمية هائلة، يسمح GQA *uptraining* بنقاط تفتيش موجودة للاستفادة من تسلسلات الإدخال الأطول.
@ -789,7 +789,7 @@ Roughly 8 مليار قيمة عائمة! يتطلب تخزين 8 مليارات
## الخاتمة
مجتمع البحث يأتي باستمرار بطرق جديدة ومبتكرة لتسريع وقت الاستدلال للنماذج اللغوية الكبيرة على الإطلاق. كمثال، أحد اتجاهات البحث الواعدة هو [فك التشفير التخميني](https://arxiv.org/abs/2211.17192) حيث تقوم "الرموز السهلة" بإنشائها نماذج اللغة الأصغر والأسرع ويتم إنشاء "الرموز الصعبة" فقط بواسطة LLM نفسه. إن التعمق في التفاصيل يتجاوز نطاق هذا الدفتر، ولكن يمكن قراءته في هذه [تدوينة المدونة اللطيفة](https://huggingface.co/blog/assisted-generation).
مجتمع البحث يأتي باستمرار بطرق جديدة ومبتكرة لتسريع وقت الاستدلال للنماذج اللغوية الكبيرة على الإطلاق. كمثال، أحد اتجاهات البحث الواعدة هو [فك التشفير التخميني](https://huggingface.co/papers/2211.17192) حيث تقوم "الرموز السهلة" بإنشائها نماذج اللغة الأصغر والأسرع ويتم إنشاء "الرموز الصعبة" فقط بواسطة LLM نفسه. إن التعمق في التفاصيل يتجاوز نطاق هذا الدفتر، ولكن يمكن قراءته في هذه [تدوينة المدونة اللطيفة](https://huggingface.co/blog/assisted-generation).
السبب في أن LLMs الضخمة مثل GPT3/4، وLlama-2-70b، وClaude، وPaLM يمكن أن تعمل بسرعة كبيرة في واجهات الدردشة مثل [Hugging Face Chat](https://huggingface.co/chat/) أو ChatGPT يرجع إلى حد كبير إلى التحسينات المذكورة أعلاه في الدقة والخوارزميات والهندسة المعمارية.
في المستقبل، ستكون أجهزة التسريع مثل وحدات معالجة الرسومات (GPUs) ووحدات معالجة الرسومات (TPUs وما إلى ذلك... ستكون أسرع فقط وستسمح بمزيد من الذاكرة، ولكن يجب دائمًا التأكد من استخدام أفضل الخوارزميات والهندسة المعمارية المتاحة للحصول على أكبر قدر من المال

View File

@ -165,7 +165,7 @@ default_args = {
يمكن أن تكون هذه المعرفة مفيدة لمعرفة عند تحليل اختناقات الأداء.
هذا الملخص مُشتق من [نقل البيانات هو كل ما تحتاجه: دراسة حالة حول تحسين المحولات 2020](https://arxiv.org/abs/2007.00072)
هذا الملخص مُشتق من [نقل البيانات هو كل ما تحتاجه: دراسة حالة حول تحسين المحولات 2020](https://huggingface.co/papers/2007.00072)
## تشريح ذاكرة النموذج

View File

@ -1,6 +1,6 @@
# عائلة نماذج المحول
منذ إطلاقه في عام 2017، ألهم نموذج [المحول الأصلي](https://arxiv.org/abs/1706.03762) (راجع مدونة [المحول المشروح](http://nlp.seas.harvard.edu/2018/04/03/attention.html) لمقدمة تقنية مبسطة)، ألهم العديد من النماذج الجديدة والمبتكرة التي تتجاوز مهام معالجة اللغات الطبيعية (NLP). هناك نماذج للتنبؤ [بالبنية البروتينات المطوية](https://huggingface.co/blog/deep-learning-with-proteins)، و[تدريب على اتخاذ القرار](https://huggingface.co/blog/train-decision-transformers)، و[التنبؤ بالسلاسل الزمنية](https://huggingface.co/blog/time-series-transformers). مع وجود العديد من متغيرات المحول المتاحة، قد يكون من السهل أن تفوتك الصورة الأكبر. ما تشترك فيه جميع هذه النماذج هو أنها تستند إلى بنية المحول الأصلية. تستخدم بعض النماذج فقط الترميز أو فك الترميز، بينما تستخدم نماذج أخرى كليهما. يوفر هذا تصنيفًا مفيدًا لتصنيف واستعراض الفروقات الرئيسية بين نماذج عائلة المحولات، وسيساعدك على فهم النماذج التي لم تصادفها من قبل.
منذ إطلاقه في عام 2017، ألهم نموذج [المحول الأصلي](https://huggingface.co/papers/1706.03762) (راجع مدونة [المحول المشروح](http://nlp.seas.harvard.edu/2018/04/03/attention.html) لمقدمة تقنية مبسطة)، ألهم العديد من النماذج الجديدة والمبتكرة التي تتجاوز مهام معالجة اللغات الطبيعية (NLP). هناك نماذج للتنبؤ [بالبنية البروتينات المطوية](https://huggingface.co/blog/deep-learning-with-proteins)، و[تدريب على اتخاذ القرار](https://huggingface.co/blog/train-decision-transformers)، و[التنبؤ بالسلاسل الزمنية](https://huggingface.co/blog/time-series-transformers). مع وجود العديد من متغيرات المحول المتاحة، قد يكون من السهل أن تفوتك الصورة الأكبر. ما تشترك فيه جميع هذه النماذج هو أنها تستند إلى بنية المحول الأصلية. تستخدم بعض النماذج فقط الترميز أو فك الترميز، بينما تستخدم نماذج أخرى كليهما. يوفر هذا تصنيفًا مفيدًا لتصنيف واستعراض الفروقات الرئيسية بين نماذج عائلة المحولات، وسيساعدك على فهم النماذج التي لم تصادفها من قبل.
إذا لم تكن على دراية بنموذج المحول الأصلي أو تحتاج إلى تذكير، فراجع الفصل الخاص بـ [كيف تعمل المحولات](https://huggingface.co/course/chapter1/4؟fw=pt) من دورة Hugging Face.
@ -14,7 +14,7 @@
### الشبكة التلافيفية (Convolutional network)
لطالما كانت الشبكات التلافيفية (CNNs) الطريقة السائدة لمهام رؤية الحاسب حتى برز [محول الرؤية](https://arxiv.org/abs/2010.11929) قابليته للتطوير وكفاءته العالية. وحتى بعد ذلك، لا تزال بعض أفضل صفات CNN، مثل ثبات الإزاحة، قوية جدًا (خاصة بالنسبة لمهام معينة) لدرجة أن بعض المحولات تدمج التلافيف في بنيتها. قلب [ConvNeXt](model_doc/convnext) هذا التبادل رأسًا على عقب وأدرج خيارات التصميم من المحولات لتحديث CNN. على سبيل المثال، يستخدم ConvNeXt نوافذ منزلقة غير متداخلة لتقسيم الصورة إلى رقع وزيادة حقل مجال العام الخاص بها. كما يقوم ConvNeXt بعدة خيارات مثل تصميم الطبقة لتكون أكثر كفاءة في الذاكرة وتحسين الأداء، مما يجعله منافسًا قويًا للمحولات!
لطالما كانت الشبكات التلافيفية (CNNs) الطريقة السائدة لمهام رؤية الحاسب حتى برز [محول الرؤية](https://huggingface.co/papers/2010.11929) قابليته للتطوير وكفاءته العالية. وحتى بعد ذلك، لا تزال بعض أفضل صفات CNN، مثل ثبات الإزاحة، قوية جدًا (خاصة بالنسبة لمهام معينة) لدرجة أن بعض المحولات تدمج التلافيف في بنيتها. قلب [ConvNeXt](model_doc/convnext) هذا التبادل رأسًا على عقب وأدرج خيارات التصميم من المحولات لتحديث CNN. على سبيل المثال، يستخدم ConvNeXt نوافذ منزلقة غير متداخلة لتقسيم الصورة إلى رقع وزيادة حقل مجال العام الخاص بها. كما يقوم ConvNeXt بعدة خيارات مثل تصميم الطبقة لتكون أكثر كفاءة في الذاكرة وتحسين الأداء، مما يجعله منافسًا قويًا للمحولات!
### الترميز[[cv-encoder]] (Encoder)
@ -40,7 +40,7 @@
نموذج [BERT](model_doc/bert) هو محوّل (Transformer) يعتمد على الترميز فقط يقوم بشكل عشوائي بإخفاء رموز معينة في المدخلات لتجنب رؤية باقى الرموز الأخرى، مما يسمح له "بالغش". يتمثل هدف التدريب المسبق في التنبؤ بالرمز المخفي بناءً على السياق. يسمح هذا لـ BERT باستخدام السياقات اليمنى واليسرى بالكامل لمساعدته في تعلم تمثيل أعمق وأغنى للبيانات المدخلة. ومع ذلك، كان هناك مجال للتحسين في استراتيجية التدريب المسبق لـ BERT. نموذج [RoBERTa](model_doc/roberta) اضاف تحسين من خلال تقديم وصفة تدريب مسبق جديدة تشمل التدريب لفترة أطول وعلى دفعات أكبر، وإخفاء الرموز عشوائيًا في كل حقبة بدلاً من مرة واحدة فقط أثناء المعالجة المسبقة، وإزالة هدف التنبؤ بالجملة التالية.
تتمثل الاستراتيجية السائدة لتحسين الأداء في زيادة حجم النموذج. ولكن تدريب النماذج الكبيرة مكلف من الناحية الحسابية. إحدى طرق تقليل التكاليف الحسابية هي استخدام نموذج أصغر مثل [DistilBERT](model_doc/distilbert). يستخدم DistilBERT [ تقنية تقطير المعرفة](https://arxiv.org/abs/1503.02531) - وهي تقنية ضغط - لإنشاء نموذج أصغر من BERT مع الحفاظ على معظم قدراته على فهم اللغةا.
تتمثل الاستراتيجية السائدة لتحسين الأداء في زيادة حجم النموذج. ولكن تدريب النماذج الكبيرة مكلف من الناحية الحسابية. إحدى طرق تقليل التكاليف الحسابية هي استخدام نموذج أصغر مثل [DistilBERT](model_doc/distilbert). يستخدم DistilBERT [ تقنية تقطير المعرفة](https://huggingface.co/papers/1503.02531) - وهي تقنية ضغط - لإنشاء نموذج أصغر من BERT مع الحفاظ على معظم قدراته على فهم اللغةا.
مرت معظم نماذج المحول في الاتجاه نحو المزيد من المعلمات، مما أدى إلى ظهور نماذج جديدة تركز على تحسين كفاءة التدريب. يقلّل [ALBERT](model_doc/albert) من استهلاك الذاكرة عن طريق تقليل عدد المعلمات بطريقتين: فصل تضمين المفردات الأكبر إلى مصفوفتين أصغر والسماح للمستويات بمشاركة المعلمات. أضاف [DeBERTa](model_doc/deberta) آلية انتباه منفصلة حيث يتم ترميز الكلمة وموضعها بشكل منفصل في متجهين. يتم حساب الانتباه من هذه المتجهات المنفصلة بدلاً من متجه واحد يحتوي على تضمين الكلمة والموقع. ركز [Longformer](model_doc/longformer) أيضًا على جعل الانتباه أكثر كفاءة، خاصة لمعالجة المستندات ذات تسلسلات أطولل. فهو يستخدم مزيجًا من انتباه النوافذ المحلية (يتم حساب الانتباه فقط ن نافذة ذات حجم ثابت حول كل رمز) والانتباه العام (فقط لرموز مهمة محددة مثل `[CLS]` للتصنيف) لإنشاء مصفوفة انتباه متفرقة بدلاً من مصفوفة انتباه كاملة.

View File

@ -33,7 +33,7 @@ pip install git+https://github.com/huggingface/peft.git
- [محولات الرتبة المنخفضة](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
- [AdaLoRA](https://huggingface.co/papers/2303.10512)
إذا كنت تريد استخدام طرق PEFT الأخرى، مثل تعلم المحث أو ضبط المحث، أو حول مكتبة 🤗 PEFT بشكل عام، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/peft/index).

View File

@ -103,7 +103,7 @@
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convolution.gif"/>
</div>
<small>عملية التفاف أساسية بدون حشو أو خطو خطوة واسعة، مأخوذة من <a href="https://arxiv.org/abs/1603.07285">دليل لحساب الالتفاف للتعلم العميق.</a></small>
<small>عملية التفاف أساسية بدون حشو أو خطو خطوة واسعة، مأخوذة من <a href="https://huggingface.co/papers/1603.07285">دليل لحساب الالتفاف للتعلم العميق.</a></small>
يمكنك تغذية هذا الناتج إلى طبقة التفاف أخرى، ومع كل طبقة متتالية، تتعلم الشبكة أشياء أكثر تعقيدًا وتجريدية مثل النقانق أو الصواريخ. بين طبقات الالتفاف، من الشائع إضافة طبقة تجميع لتقليل الأبعاد وجعل النموذج أكثر قوة للتغيرات في موضع الميزة.

View File

@ -94,7 +94,7 @@
### ترميز الأزواج البايتية (BPE)
تم تقديم رميز أزواج البايت (BPE) في ورقة بحثية بعنوان [الترجمة الآلية العصبية للكلمات النادرة باستخدام وحدات subword (Sennrich et al.، 2015)](https://arxiv.org/abs/1508.07909). يعتمد BPE على مُجزّئ أولي يقسم بيانات التدريب إلى
تم تقديم رميز أزواج البايت (BPE) في ورقة بحثية بعنوان [الترجمة الآلية العصبية للكلمات النادرة باستخدام وحدات subword (Sennrich et al.، 2015)](https://huggingface.co/papers/1508.07909). يعتمد BPE على مُجزّئ أولي يقسم بيانات التدريب إلى
كلمات. يمكن أن يكون التحليل المسبق بسيطًا مثل التقسيم المكاني، على سبيل المثال [GPT-2](model_doc/gpt2)، [RoBERTa](model_doc/roberta). تشمل التقسيم الأكثر تقدمًا معتمد على التحليل القائم على القواعد، على سبيل المثال [XLM](model_doc/xlm)، [FlauBERT](model_doc/flaubert) الذي يستخدم Moses لمعظم اللغات، أو [GPT](model_doc/openai-gpt) الذي يستخدم spaCy و ftfy، لحساب تكرار كل كلمة في مجموعة بيانات التدريب.
بعد التحليل المسبق، يتم إنشاء مجموعة من الكلمات الفريدة وقد تم تحديد تكرار كل كلمة في تم تحديد بيانات التدريب. بعد ذلك، يقوم BPE بإنشاء مفردات أساسية تتكون من جميع الرموز التي تحدث في مجموعة الكلمات الفريدة ويتعلم قواعد الدمج لتشكيل رمز جديد من رمزين من المفردات الأساسية. إنه يفعل ذلك حتى تصل المفردات إلى حجم المفردات المطلوب. لاحظ أن حجم المفردات هو فرط معلمة لتحديد قبل تدريب مُجزّئ النصوص.
@ -158,7 +158,7 @@ BPE. أولاً، يقوم WordPiece بتكوين المفردات لتضمين
### Unigram
Unigram هو خوارزمية توكنيز subword التي تم تقديمها في [تنظيم subword: تحسين نماذج الترجمة الشبكة العصبية
نماذج مع مرشحين subword متعددة (Kudo، 2018)](https://arxiv.org/pdf/1804.10959.pdf). على عكس BPE أو
نماذج مع مرشحين subword متعددة (Kudo، 2018)](https://huggingface.co/papers/1804.10959). على عكس BPE أو
WordPiece، يقوم Unigram بتكوين مفرداته الأساسية إلى عدد كبير من الرموز ويقللها تدريجياً للحصول على مفردات أصغر. يمكن أن تتوافق المفردات الأساسية على سبيل المثال مع جميع الكلمات المسبقة التوكنز والسلاسل الفرعية الأكثر شيوعًا. لا يتم استخدام Unigram مباشرة لأي من النماذج في المحولات، ولكنه يستخدم بالاقتران مع [SentencePiece](#sentencepiece).
في كل خطوة تدريب، يحدد خوارزمية Unigram خسارة (غالبًا ما يتم تعريفها على أنها اللوغاريتم) عبر بيانات التدريب بالنظر إلى المفردات الحالية ونموذج اللغة unigram. بعد ذلك، بالنسبة لكل رمز في المفردات، يحسب الخوارزمية مقدار زيادة الخسارة الإجمالية إذا تم إزالة الرمز من المفردات. ثم يقوم Unigram بإزالة p (مع p عادة ما تكون 10% أو 20%) في المائة من الرموز التي تكون زيادة الخسارة فيها هي الأدنى، *أي* تلك
@ -188,7 +188,7 @@ $$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )
تحتوي جميع خوارزميات توكنز الموصوفة حتى الآن على نفس المشكلة: من المفترض أن النص المدخل يستخدم المسافات لفصل الكلمات. ومع ذلك، لا تستخدم جميع اللغات المسافات لفصل الكلمات. أحد الحلول الممكنة هو استخداممعالج مسبق للغة محدد، *مثال* [XLM](model_doc/xlm) يلذي يستخدم معالجات مسبقة محددة للصينية واليابانية والتايلاندية.
لحل هذه المشكلة بشكل أعم، [SentencePiece: A simple and language independent subword tokenizer and
detokenizer for Neural Text Processing (Kudo et al.، 2018)](https://arxiv.org/pdf/1808.06226.pdf) يتعامل مع المدخلات
detokenizer for Neural Text Processing (Kudo et al.، 2018)](https://huggingface.co/papers/1808.06226) يتعامل مع المدخلات
كتدفق بيانات خام، وبالتالي يشمل المسافة في مجموعة الأحرف التي سيتم استخدامها. ثم يستخدم خوارزمية BPE أو unigram
لبناء المفردات المناسبة.

View File

@ -306,78 +306,48 @@ pip install galore-torch
ثم أضف ببساطة أحد `["galore_adamw"، "galore_adafactor"، "galore_adamw_8bit"]` في `optim` جنبًا إلى جنب مع `optim_target_modules`، والتي يمكن أن تكون قائمة من السلاسل أو التعبيرات النمطية regex أو المسار الكامل المطابق لأسماء الوحدات المستهدفة التي تريد تكييفها. فيما يلي مثال على النص البرمجي كامل(تأكد من `pip install trl datasets`):
```python
import torch
import datasets
import trl
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
from trl import SFTConfig, SFTTrainer
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore"،
args = SFTConfig(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw"،
optim_target_modules=[r".*.attn.*"، r".*.mlp.*"]
optim="galore_adamw",
optim_target_modules=[r".*.attn.*", r".*.mlp.*"],
gradient_checkpointing=True,
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
trainer = SFTTrainer(
model="google/gemma-2b",
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train()
```
لتمرير معامﻻت إضافية يدعمها GaLore، يجب عليك تمرير `optim_args` بشكل صحيح، على سبيل المثال:
```python
import torch
import datasets
import trl
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
from trl import SFTConfig, SFTTrainer
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
args = SFTConfig(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw",
optim_target_modules=[r".*.attn.*", r".*.mlp.*"],
optim_args="rank=64, update_proj_gap=100, scale=0.10",
gradient_checkpointing=True,
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
trainer = SFTTrainer(
model="google/gemma-2b",
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train()
```
يمكنك قراءة المزيد حول الطريقة في [المستودع الأصلي](https://github.com/jiaweizzhao/GaLore) أو [الورقة البحثية](https://arxiv.org/abs/2403.03507).
يمكنك قراءة المزيد حول الطريقة في [المستودع الأصلي](https://github.com/jiaweizzhao/GaLore) أو [الورقة البحثية](https://huggingface.co/papers/2403.03507).
حاليًا، يمكنك فقط تدريب الطبقات الخطية التي تعتبر طبقات GaLore وستستخدم التحلل ذو الرتبة المنخفضة للتدريب بينما سيتم تحسين الطبقات المتبقية بالطريقة التقليدية.
@ -386,37 +356,22 @@ trainer.train()
يمكنك أيضًا إجراء تحسين طبقة تلو الأخرى عن طريق إضافة `layerwise` إلى اسم المُحسِّن كما هو موضح أدناه:
```python
import torch
import datasets
import trl
from trl import SFTConfig, SFTTrainer
from transformers import TrainingArguments، AutoConfig، AutoTokenizer، AutoModelForCausalLM
train_dataset = datasets.load_dataset('imdb'، split='train')
args = TrainingArguments(
output_dir="./test-galore"،
max_steps=100،
per_device_train_batch_size=2،
optim="galore_adamw_layerwise"،
optim_target_modules=[r".*.attn.*"، r".*.mlp.*"]
train_dataset = datasets.load_dataset('imdb', split='train')
args = SFTConfig(
output_dir="./test-galore",
max_steps=100,
optim="galore_adamw_layerwise",
optim_target_modules=[r".*.attn.*", r".*.mlp.*"],
gradient_checkpointing=True,
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model،
args=args،
train_dataset=train_dataset،
dataset_text_field='text'،
max_seq_length=512،
trainer = SFTTrainer(
model="google/gemma-2b",
args=args,
train_dataset=train_dataset,
)
trainer.train()
```
@ -436,39 +391,21 @@ trainer.train()
فيما يلي نص برمجي بسيط يوضح كيفية ضبط نموذج [google/gemma-2b](https://huggingface.co/google/gemma-2b) على مجموعة بيانات IMDB في الدقة الكاملة:
```python
import torch
import datasets
from transformers import TrainingArguments، AutoTokenizer، AutoModelForCausalLM
import trl
from trl import SFTConfig, SFTTrainer
train_dataset = datasets.load_dataset('imdb'، split='train')
args = TrainingArguments(
output_dir="./test-lomo"،
max_steps=100،
per_device_train_batch_size=4،
optim="adalomo"،
gradient_checkpointing=True،
logging_strategy="steps"،
logging_steps=1،
learning_rate=2e-6،
save_strategy="no"،
run_name="lomo-imdb"،
train_dataset = datasets.load_dataset('imdb', split='train')
args = SFTConfig(
output_dir="./test-lomo",
max_steps=100,
optim="adalomo",
gradient_checkpointing=True,
)
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id، low_cpu_mem_usage=True).to(0)
trainer = trl.SFTTrainer(
model=model،
args=args،
train_dataset=train_dataset،
dataset_text_field='text'،
max_seq_length=1024،
trainer = SFTTrainer(
model="google/gemma-2b",
args=args,
train_dataset=train_dataset,
)
trainer.train()
```
@ -503,7 +440,7 @@ args = TrainingArguments(
# تحميل النموذج والمجزىء اللغوي
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
# تهيئة المدرب
trainer = Trainer(
@ -524,39 +461,21 @@ trainer.train()
فيما يلي نص برمجى بسيط لشرح كيفية ضبط [google/gemma-2b](https://huggingface.co/google/gemma-2b) بدقة على مجموعة بيانات IMDB بدقة كاملة:
```python
import torch
import datasets
from transformers import TrainingArguments, AutoTokenizer, AutoModelForCausalLM
import trl
from trl import SFTConfig, SFTTrainer
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-schedulefree",
max_steps=1000,
per_device_train_batch_size=4,
args = SFTConfig(
output_dir="./test-galore",
max_steps=100,
optim="schedule_free_adamw",
gradient_checkpointing=True,
logging_strategy="steps",
logging_steps=1,
learning_rate=2e-6,
save_strategy="no",
run_name="sfo-imdb",
)
model_id = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(0)
trainer = trl.SFTTrainer(
model=model,
trainer = SFTTrainer(
model="google/gemma-2b",
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=1024,
)
trainer.train()
```
## تسريع ومدرب

View File

@ -55,148 +55,148 @@ Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen,
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://huggingface.co/papers/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://huggingface.co/papers/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://huggingface.co/papers/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://huggingface.co/papers/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://huggingface.co/papers/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://huggingface.co/papers/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://huggingface.co/papers/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers-research-projects/tree/main/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers-research-projects/tree/main/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers-research-projects/tree/main/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientNet](model_doc/efficientnet)** (from Google Research) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan and Quoc V. Le.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://huggingface.co/papers/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://huggingface.co/papers/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://huggingface.co/papers/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://huggingface.co/papers/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://huggingface.co/papers/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://huggingface.co/papers/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://huggingface.co/papers/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://huggingface.co/papers/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://huggingface.co/papers/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://huggingface.co/papers/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://huggingface.co/papers/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://huggingface.co/papers/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://huggingface.co/papers/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://huggingface.co/papers/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://huggingface.co/papers/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://huggingface.co/papers/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://huggingface.co/papers/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers-research-projects/tree/main/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers-research-projects/tree/main/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers-research-projects/tree/main/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://huggingface.co/papers/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://huggingface.co/papers/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://huggingface.co/papers/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientNet](model_doc/efficientnet)** (from Google Research) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://huggingface.co/papers/1905.11946) by Mingxing Tan and Quoc V. Le.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://huggingface.co/papers/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://huggingface.co/papers/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://huggingface.co/papers/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://huggingface.co/papers/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://huggingface.co/papers/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://huggingface.co/papers/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://huggingface.co/papers/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPTSAN-japanese](model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://huggingface.co/papers/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://huggingface.co/papers/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://huggingface.co/papers/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://huggingface.co/papers/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://huggingface.co/papers/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://huggingface.co/papers/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://huggingface.co/papers/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://huggingface.co/papers/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://huggingface.co/papers/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://huggingface.co/papers/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://huggingface.co/papers/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://huggingface.co/papers/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://huggingface.co/papers/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Mask2Former](model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://huggingface.co/papers/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://huggingface.co/papers/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://huggingface.co/papers/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://huggingface.co/papers/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://huggingface.co/papers/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://huggingface.co/papers/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://huggingface.co/papers/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://huggingface.co/papers/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://huggingface.co/papers/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://huggingface.co/papers/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://huggingface.co/papers/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://huggingface.co/papers/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://huggingface.co/papers/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://huggingface.co/papers/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://huggingface.co/papers/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://huggingface.co/papers/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://huggingface.co/papers/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://huggingface.co/papers/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://huggingface.co/papers/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://huggingface.co/papers/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://huggingface.co/papers/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://huggingface.co/papers/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://huggingface.co/papers/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://huggingface.co/papers/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://huggingface.co/papers/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://huggingface.co/papers/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://huggingface.co/papers/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://huggingface.co/papers/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://huggingface.co/papers/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://huggingface.co/papers/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://huggingface.co/papers/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://huggingface.co/papers/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://huggingface.co/papers/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://huggingface.co/papers/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://huggingface.co/papers/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://huggingface.co/papers/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://huggingface.co/papers/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://huggingface.co/papers/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://huggingface.co/papers/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://huggingface.co/papers/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://huggingface.co/papers/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://huggingface.co/papers/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://huggingface.co/papers/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://huggingface.co/papers/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://huggingface.co/papers/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://huggingface.co/papers/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://huggingface.co/papers/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://huggingface.co/papers/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://huggingface.co/papers/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://huggingface.co/papers/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://huggingface.co/papers/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://huggingface.co/papers/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://huggingface.co/papers/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://huggingface.co/papers/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://huggingface.co/papers/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://huggingface.co/papers/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://huggingface.co/papers/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://huggingface.co/papers/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://huggingface.co/papers/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://huggingface.co/papers/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://huggingface.co/papers/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://huggingface.co/papers/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://huggingface.co/papers/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://huggingface.co/papers/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://huggingface.co/papers/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://huggingface.co/papers/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://huggingface.co/papers/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://huggingface.co/papers/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://huggingface.co/papers/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://huggingface.co/papers/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://huggingface.co/papers/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Unterstützte Frameworks

View File

@ -44,7 +44,7 @@ Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal ode
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
- [AdaLoRA](https://huggingface.co/papers/2303.10512)
Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index).

View File

@ -23,14 +23,6 @@
title: Modular Transformers
- local: auto_docstring
title: Document your models
- local: task_summary
title: What 🤗 Transformers can do
- local: tasks_explained
title: How 🤗 Transformers solve tasks
- local: model_summary
title: The Transformer model family
- local: attention
title: Attention mechanisms
- local: attention_interface
title: Customizing attention function
title: Models
@ -371,6 +363,8 @@
- sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/arcee
title: Arcee
- local: model_doc/bamba
title: Bamba
- local: model_doc/bart
@ -751,6 +745,8 @@
title: ImageGPT
- local: model_doc/levit
title: LeViT
- local: model_doc/lightglue
title: LightGlue
- local: model_doc/mask2former
title: Mask2Former
- local: model_doc/maskformer
@ -847,6 +843,8 @@
title: GraniteSpeech
- local: model_doc/hubert
title: Hubert
- local: model_doc/stt
title: Kyutai Speech-To-Text
- local: model_doc/mctct
title: MCTCT
- local: model_doc/mimi
@ -905,6 +903,8 @@
- sections:
- local: model_doc/timesformer
title: TimeSformer
- local: model_doc/vjepa2
title: V-JEPA 2
- local: model_doc/videomae
title: VideoMAE
- local: model_doc/vivit

View File

@ -75,7 +75,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=16,
num_train_epochs=2,
fsdp_config="path/to/fsdp_config",
fsdp_strategy="full_shard",
fsdp="full_shard",
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",

View File

@ -571,7 +571,7 @@ The processor should call the appropriate modality-specific processors within it
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[YourModelProcessorKwargs],

View File

@ -1,61 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention mechanisms
Most transformer models use full attention in the sense that the attention matrix is square. It can be a big
computational bottleneck when you have long texts. Longformer and reformer are models that try to be more efficient and
use a sparse version of the attention matrix to speed up training.
## LSH attention
[Reformer](model_doc/reformer) uses LSH attention. In the softmax(QK^t), only the biggest elements (in the softmax
dimension) of the matrix QK^t are going to give useful contributions. So for each query q in Q, we can consider only
the keys k in K that are close to q. A hash function is used to determine if q and k are close. The attention mask is
modified to mask the current token (except at the first position), because it will give a query and a key equal (so
very similar to each other). Since the hash can be a bit random, several hash functions are used in practice
(determined by a n_rounds parameter) and then are averaged together.
## Local attention
[Longformer](model_doc/longformer) uses local attention: often, the local context (e.g., what are the two tokens to the
left and right?) is enough to take action for a given token. Also, by stacking attention layers that have a small
window, the last layer will have a receptive field of more than just the tokens in the window, allowing them to build a
representation of the whole sentence.
Some preselected input tokens are also given global attention: for those few tokens, the attention matrix can access
all tokens and this process is symmetric: all other tokens have access to those specific tokens (on top of the ones in
their local window). This is shown in Figure 2d of the paper, see below for a sample attention mask:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
Using those attention matrices with less parameters then allows the model to have inputs having a bigger sequence
length.
## Other tricks
### Axial positional encodings
[Reformer](model_doc/reformer) uses axial positional encodings: in traditional transformer models, the positional encoding
E is a matrix of size \\(l\\) by \\(d\\), \\(l\\) being the sequence length and \\(d\\) the dimension of the
hidden state. If you have very long texts, this matrix can be huge and take way too much space on the GPU. To alleviate
that, axial positional encodings consist of factorizing that big matrix E in two smaller matrices E1 and E2, with
dimensions \\(l_{1} \times d_{1}\\) and \\(l_{2} \times d_{2}\\), such that \\(l_{1} \times l_{2} = l\\) and
\\(d_{1} + d_{2} = d\\) (with the product for the lengths, this ends up being way smaller). The embedding for time
step \\(j\\) in E is obtained by concatenating the embeddings for timestep \\(j \% l1\\) in E1 and \\(j // l1\\)
in E2.

View File

@ -92,7 +92,7 @@ def custom_attention(
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]
) -> tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -468,9 +468,17 @@ def generate(model, input_ids, generation_config=None, left_padding=None, **kwar
Follow the recommended practices below to ensure your custom decoding method works as expected.
- Feel free to reuse the logic for validation and input preparation in the original [`~GenerationMixin.generate`].
- Pin the `transformers` version in the requirements if you use any private method/attribute in `model`.
- You can add other files in the `custom_generate` folder, and use relative imports.
- Consider adding model validation, input validation, or even a separate test file to help users sanity-check your code in their environment.
Your custom `generate` method can relative import code from the `custom_generate` folder. For example, if you have a `utils.py` file, you can import it like this:
```py
from .utils import some_function
```
Only relative imports from the same-level `custom_generate` folder are supported. Parent/sibling folder imports are not valid. The `custom_generate` argument also works locally with any directory that contains a `custom_generate` structure. This is the recommended workflow for developing your custom decoding method.
#### requirements.txt
You can optionally specify additional Python requirements in a `requirements.txt` file inside the `custom_generate` folder. These are checked at runtime and an exception will be thrown if they're missing, nudging users to update their environment accordingly.

View File

@ -163,7 +163,7 @@ The intermediate embedding size of the feed forward layers is often bigger than
For an input of size `[batch_size, sequence_length]`, the memory required to store the intermediate feed forward
embeddings `[batch_size, sequence_length, config.intermediate_size]` can account for a large fraction of the memory
use. The authors of [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) noticed that since the
use. The authors of [Reformer: The Efficient Transformer](https://huggingface.co/papers/2001.04451) noticed that since the
computation is independent of the `sequence_length` dimension, it is mathematically equivalent to compute the output
embeddings of both feed forward layers `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n`
individually and concat them afterward to `[batch_size, sequence_length, config.hidden_size]` with `n = sequence_length`, which trades increased computation time against reduced memory use, but yields a mathematically
@ -207,7 +207,7 @@ numerical representations of tokens building the sequences that will be used as
<Youtube id="VFp38yj8h3A"/>
Each tokenizer works differently but the underlying mechanism remains the same. Here's an example using the BERT
tokenizer, which is a [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) tokenizer:
tokenizer, which is a [WordPiece](https://huggingface.co/papers/1609.08144) tokenizer:
```python
>>> from transformers import BertTokenizer

View File

@ -15,9 +15,25 @@ rendered properly in your Markdown viewer.
# Transformers
Transformers is a library of pretrained natural language processing, computer vision, audio, and multimodal models for inference and training. Use Transformers to train models on your data, build inference applications, and generate text with large language models.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Explore the [Hugging Face Hub](https://huggingface.com) today to find a model and use Transformers to help you get started right away.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
frameworks (Axolotl, Unsloth, DeepSpeed, FSDP, PyTorch-Lightning, ...), inference engines (vLLM, SGLang, TGI, ...),
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
We pledge to help support new state-of-the-art models and democratize their usage by having their model definition be
simple, customizable, and efficient.
There are over 1M+ Transformers [model checkpoints](https://huggingface.co/models?library=transformers&sort=trending) on the [Hugging Face Hub](https://huggingface.com/models) you can use.
Explore the [Hub](https://huggingface.com/) today to find a model and use Transformers to help you get started right away.
## Features
@ -43,3 +59,6 @@ Transformers is designed for developers and machine learning engineers and resea
</a>
</div>
## Learn
If you're new to Transformers or want to learn more about transformer models, we recommend starting with the [LLM course](https://huggingface.co/learn/llm-course/chapter1/1?fw=pt). This comprehensive course covers everything from the fundamentals of how transformer models work to practical applications across various tasks. You'll learn the complete workflow, from curating high-quality datasets to fine-tuning large language models and implementing reasoning capabilities. The course contains both theoretical and hands-on exercises to build a solid foundational knowledge of transformer models as you learn.

View File

@ -38,7 +38,7 @@ However, no method can be called on that object:
```python
>>> DetrImageProcessorFast.from_pretrained()
ImportError:
DetrImageProcessorFast requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
DetrImageProcessorFast requires the Torchvision library but it was not found in your environment. Check out the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
```

View File

@ -51,7 +51,7 @@ torch.random.manual_seed(673)
# load pretrained model and processor
model_id = "llava-hf/llava-1.5-7b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
# create random image input
random_image = Image.fromarray(torch.randint(0, 256, (224, 224, 3), dtype=torch.uint8).numpy())

View File

@ -261,7 +261,9 @@ A cache can also work in iterative generation settings where there is back-and-f
For iterative generation with a cache, start by initializing an empty cache class and then you can feed in your new prompts. Keep track of dialogue history with a [chat template](./chat_templating).
The example below demonstrates how to use a cache for iterative generation.
The following example demonstrates [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf). If youre using a different chat-style model, [`~PreTrainedTokenizer.apply_chat_template`] may process messages differently. It might cut out important tokens depending on how the Jinja template is written.
For example, some models use special `<think> ... </think>` tokens during reasoning. These could get lost during re-encoding, causing indexing issues. You might need to manually remove or adjust extra tokens from the completions to keep things stable.
```py
import torch
@ -281,7 +283,6 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
user_prompts = ["Hello, what's your name?", "Btw, yesterday I was on a rock concert."]
past_key_values = DynamicCache()
max_cache_length = past_key_values.get_max_length()
messages = []
for prompt in user_prompts:

View File

@ -152,7 +152,7 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
| `eos_token_id` | `list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
## Pitfalls

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
Large Language Models (LLMs) such as GPT3/4, [Falcon](https://huggingface.co/tiiuae/falcon-40b), and [Llama](https://huggingface.co/meta-llama/Llama-2-70b-hf) are rapidly advancing in their ability to tackle human-centric tasks, establishing themselves as essential tools in modern knowledge-based industries.
Deploying these models in real-world tasks remains challenging, however:
- To exhibit near-human text understanding and generation capabilities, LLMs currently require to be composed of billions of parameters (see [Kaplan et al](https://arxiv.org/abs/2001.08361), [Wei et. al](https://arxiv.org/abs/2206.07682)). This consequently amplifies the memory demands for inference.
- To exhibit near-human text understanding and generation capabilities, LLMs currently require to be composed of billions of parameters (see [Kaplan et al](https://huggingface.co/papers/2001.08361), [Wei et. al](https://huggingface.co/papers/2206.07682)). This consequently amplifies the memory demands for inference.
- In many real-world tasks, LLMs need to be given extensive contextual information. This necessitates the model's capability to manage very long input sequences during inference.
The crux of these challenges lies in augmenting the computational and memory capabilities of LLMs, especially when handling expansive input sequences.
@ -27,7 +27,7 @@ In this guide, we will go over the effective techniques for efficient LLM deploy
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://arxiv.org/abs/2108.12409), [Rotary embeddings](https://arxiv.org/abs/2104.09864), [Multi-Query Attention (MQA)](https://arxiv.org/abs/1911.02150) and [Grouped-Query-Attention (GQA)]((https://arxiv.org/abs/2305.13245)).
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245)).
Throughout this guide, we will offer an analysis of auto-regressive generation from a tensor's perspective. We delve into the pros and cons of adopting lower precision, provide a comprehensive exploration of the latest attention algorithms, and discuss improved LLM architectures. While doing so, we run practical examples showcasing each of the feature improvements.
@ -157,8 +157,8 @@ from accelerate.utils import release_memory
release_memory(model)
```
Now what if your GPU does not have 32 GB of VRAM? It has been found that model weights can be quantized to 8-bit or 4-bits without a significant loss in performance (see [Dettmers et al.](https://arxiv.org/abs/2208.07339)).
Model can be quantized to even 3 or 2 bits with an acceptable loss in performance as shown in the recent [GPTQ paper](https://arxiv.org/abs/2210.17323) 🤯.
Now what if your GPU does not have 32 GB of VRAM? It has been found that model weights can be quantized to 8-bit or 4-bits without a significant loss in performance (see [Dettmers et al.](https://huggingface.co/papers/2208.07339)).
Model can be quantized to even 3 or 2 bits with an acceptable loss in performance as shown in the recent [GPTQ paper](https://huggingface.co/papers/2210.17323) 🤯.
Without going into too many details, quantization schemes aim at reducing the precision of weights while trying to keep the model's inference results as accurate as possible (*a.k.a* as close as possible to bfloat16).
Note that quantization works especially well for text generation since all we care about is choosing the *set of most likely next tokens* and don't really care about the exact values of the next token *logit* distribution.
@ -236,7 +236,7 @@ flush()
Let's see what peak GPU memory consumption 4-bit quantization gives. Quantizing the model to 4-bit can be done with the same API as before - this time by passing `load_in_4bit=True` instead of `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -308,7 +308,7 @@ Long story short, the default self-attention algorithm quickly becomes prohibiti
As LLMs improve in text comprehension and generation, they are applied to increasingly complex tasks. While models once handled the translation or summarization of a few sentences, they now manage entire pages, demanding the capability to process extensive input lengths.
How can we get rid of the exorbitant memory requirements for large input lengths? We need a new way to compute the self-attention mechanism that gets rid of the \\( QK^T \\) matrix. [Tri Dao et al.](https://arxiv.org/abs/2205.14135) developed exactly such a new algorithm and called it **Flash Attention**.
How can we get rid of the exorbitant memory requirements for large input lengths? We need a new way to compute the self-attention mechanism that gets rid of the \\( QK^T \\) matrix. [Tri Dao et al.](https://huggingface.co/papers/2205.14135) developed exactly such a new algorithm and called it **Flash Attention**.
In a nutshell, Flash Attention breaks the \\(\mathbf{V} \times \text{Softmax}(\mathbf{QK}^T\\)) computation apart and instead computes smaller chunks of the output by iterating over multiple softmax computation steps:
@ -316,13 +316,13 @@ $$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \
with \\( s^a_{ij} \\) and \\( s^b_{ij} \\) being some softmax normalization statistics that need to be recomputed for every \\( i \\) and \\( j \\) .
Please note that the whole Flash Attention is a bit more complex and is greatly simplified here as going in too much depth is out of scope for this guide. The reader is invited to take a look at the well-written [Flash Attention paper](https://arxiv.org/abs/2205.14135) for more details.
Please note that the whole Flash Attention is a bit more complex and is greatly simplified here as going in too much depth is out of scope for this guide. The reader is invited to take a look at the well-written [Flash Attention paper](https://huggingface.co/papers/2205.14135) for more details.
The main takeaway here is:
> By keeping track of softmax normalization statistics and by using some smart mathematics, Flash Attention gives **numerical identical** outputs compared to the default self-attention layer at a memory cost that only increases linearly with \\( N \\) .
Looking at the formula, one would intuitively say that Flash Attention must be much slower compared to the default self-attention formula as more computation needs to be done. Indeed Flash Attention requires more FLOPs compared to normal attention as the softmax normalization statistics have to constantly be recomputed (see [paper](https://arxiv.org/abs/2205.14135) for more details if interested)
Looking at the formula, one would intuitively say that Flash Attention must be much slower compared to the default self-attention formula as more computation needs to be done. Indeed Flash Attention requires more FLOPs compared to normal attention as the softmax normalization statistics have to constantly be recomputed (see [paper](https://huggingface.co/papers/2205.14135) for more details if interested)
> However, Flash Attention is much faster in inference compared to default attention which comes from its ability to significantly reduce the demands on the slower, high-bandwidth memory of the GPU (VRAM), focusing instead on the faster on-chip memory (SRAM).
@ -526,22 +526,22 @@ Therefore, for the LLM without position embeddings each token appears to have th
For the LLM to understand sentence order, an additional *cue* is needed and is usually applied in the form of *positional encodings* (or also called *positional embeddings*).
Positional encodings, encode the position of each token into a numerical presentation that the LLM can leverage to better understand sentence order.
The authors of the [*Attention Is All You Need*](https://arxiv.org/abs/1706.03762) paper introduced sinusoidal positional embeddings \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) .
The authors of the [*Attention Is All You Need*](https://huggingface.co/papers/1706.03762) paper introduced sinusoidal positional embeddings \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) .
where each vector \\( \mathbf{p}_i \\) is computed as a sinusoidal function of its position \\( i \\) .
The positional encodings are then simply added to the input sequence vectors \\( \mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N \\) = \\( \mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N \\) thereby cueing the model to better learn sentence order.
Instead of using fixed position embeddings, others (such as [Devlin et al.](https://arxiv.org/abs/1810.04805)) used learned positional encodings for which the positional embeddings
Instead of using fixed position embeddings, others (such as [Devlin et al.](https://huggingface.co/papers/1810.04805)) used learned positional encodings for which the positional embeddings
\\( \mathbf{P} \\) are learned during training.
Sinusoidal and learned position embeddings used to be the predominant methods to encode sentence order into LLMs, but a couple of problems related to these positional encodings were found:
1. Sinusoidal and learned position embeddings are both absolute positional embeddings, *i.e.* encoding a unique embedding for each position id: \\( 0, \ldots, N \\) . As shown by [Huang et al.](https://arxiv.org/abs/2009.13658) and [Su et al.](https://arxiv.org/abs/2104.09864), absolute positional embeddings lead to poor LLM performance for long text inputs. For long text inputs, it is advantageous if the model learns the relative positional distance input tokens have to each other instead of their absolute position.
1. Sinusoidal and learned position embeddings are both absolute positional embeddings, *i.e.* encoding a unique embedding for each position id: \\( 0, \ldots, N \\) . As shown by [Huang et al.](https://huggingface.co/papers/2009.13658) and [Su et al.](https://huggingface.co/papers/2104.09864), absolute positional embeddings lead to poor LLM performance for long text inputs. For long text inputs, it is advantageous if the model learns the relative positional distance input tokens have to each other instead of their absolute position.
2. When using learned position embeddings, the LLM has to be trained on a fixed input length \\( N \\), which makes it difficult to extrapolate to an input length longer than what it was trained on.
Recently, relative positional embeddings that can tackle the above mentioned problems have become more popular, most notably:
- [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864)
- [ALiBi](https://arxiv.org/abs/2108.12409)
- [Rotary Position Embedding (RoPE)](https://huggingface.co/papers/2104.09864)
- [ALiBi](https://huggingface.co/papers/2108.12409)
Both *RoPE* and *ALiBi* argue that it's best to cue the LLM about sentence order directly in the self-attention algorithm as it's there that word tokens are put into relation with each other. More specifically, sentence order should be cued by modifying the \\( \mathbf{QK}^T \\) computation.
@ -556,14 +556,14 @@ $$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta
*RoPE* is used in multiple of today's most important LLMs, such as:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**Llama**](https://arxiv.org/abs/2302.13971)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
- [**Llama**](https://huggingface.co/papers/2302.13971)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
As an alternative, *ALiBi* proposes a much simpler relative position encoding scheme. The relative distance that input tokens have to each other is added as a negative integer scaled by a pre-defined value `m` to each query-key entry of the \\( \mathbf{QK}^T \\) matrix right before the softmax computation.
![](/blog/assets/163_optimize_llm/alibi.png)
As shown in the [ALiBi](https://arxiv.org/abs/2108.12409) paper, this simple relative positional encoding allows the model to retain a high performance even at very long text input sequences.
As shown in the [ALiBi](https://huggingface.co/papers/2108.12409) paper, this simple relative positional encoding allows the model to retain a high performance even at very long text input sequences.
*ALiBi* is used in multiple of today's most important LLMs, such as:
@ -572,7 +572,7 @@ As shown in the [ALiBi](https://arxiv.org/abs/2108.12409) paper, this simple rel
Both *RoPE* and *ALiBi* position encodings can extrapolate to input lengths not seen during training whereas it has been shown that extrapolation works much better out-of-the-box for *ALiBi* as compared to *RoPE*.
For ALiBi, one simply increases the values of the lower triangular position matrix to match the length of the input sequence.
For *RoPE*, keeping the same \\( \theta \\) that was used during training leads to poor results when passing text inputs much longer than those seen during training, *c.f* [Press et al.](https://arxiv.org/abs/2108.12409). However, the community has found a couple of effective tricks that adapt \\( \theta \\), thereby allowing *RoPE* position embeddings to work well for extrapolated text input sequences (see [here](https://github.com/huggingface/transformers/pull/24653)).
For *RoPE*, keeping the same \\( \theta \\) that was used during training leads to poor results when passing text inputs much longer than those seen during training, *c.f* [Press et al.](https://huggingface.co/papers/2108.12409). However, the community has found a couple of effective tricks that adapt \\( \theta \\), thereby allowing *RoPE* position embeddings to work well for extrapolated text input sequences (see [here](https://github.com/huggingface/transformers/pull/24653)).
> Both RoPE and ALiBi are relative positional embeddings that are *not* learned during training, but instead are based on the following intuitions:
- Positional cues about the text inputs should be given directly to the \\( QK^T \\) matrix of the self-attention layer
@ -742,21 +742,21 @@ Researchers have proposed two methods that allow to significantly reduce the mem
#### 3.2.2 Multi-Query-Attention (MQA)
[Multi-Query-Attention](https://arxiv.org/abs/1911.02150) was proposed in Noam Shazeer's *Fast Transformer Decoding: One Write-Head is All You Need* paper. As the title says, Noam found out that instead of using `n_head` key-value projections weights, one can use a single head-value projection weight pair that is shared across all attention heads without that the model's performance significantly degrades.
[Multi-Query-Attention](https://huggingface.co/papers/1911.02150) was proposed in Noam Shazeer's *Fast Transformer Decoding: One Write-Head is All You Need* paper. As the title says, Noam found out that instead of using `n_head` key-value projections weights, one can use a single head-value projection weight pair that is shared across all attention heads without that the model's performance significantly degrades.
> By using a single head-value projection weight pair, the key value vectors \\( \mathbf{k}_i, \mathbf{v}_i \\) have to be identical across all attention heads which in turn means that we only need to store 1 key-value projection pair in the cache instead of `n_head` ones.
As most LLMs use between 20 and 100 attention heads, MQA significantly reduces the memory consumption of the key-value cache. For the LLM used in this notebook we could therefore reduce the required memory consumption from 15 GB to less than 400 MB at an input sequence length of 16000.
In addition to memory savings, MQA also leads to improved computational efficiency as explained in the following.
In auto-regressive decoding, large key-value vectors need to be reloaded, concatenated with the current key-value vector pair to be then fed into the \\( \mathbf{q}_c\mathbf{K}^T \\) computation at every step. For auto-regressive decoding, the required memory bandwidth for the constant reloading can become a serious time bottleneck. By reducing the size of the key-value vectors less memory needs to be accessed, thus reducing the memory bandwidth bottleneck. For more detail, please have a look at [Noam's paper](https://arxiv.org/abs/1911.02150).
In auto-regressive decoding, large key-value vectors need to be reloaded, concatenated with the current key-value vector pair to be then fed into the \\( \mathbf{q}_c\mathbf{K}^T \\) computation at every step. For auto-regressive decoding, the required memory bandwidth for the constant reloading can become a serious time bottleneck. By reducing the size of the key-value vectors less memory needs to be accessed, thus reducing the memory bandwidth bottleneck. For more detail, please have a look at [Noam's paper](https://huggingface.co/papers/1911.02150).
The important part to understand here is that reducing the number of key-value attention heads to 1 only makes sense if a key-value cache is used. The peak memory consumption of the model for a single forward pass without key-value cache stays unchanged as every attention head still has a unique query vector so that each attention head still has a different \\( \mathbf{QK}^T \\) matrix.
MQA has seen wide adoption by the community and is now used by many of the most popular LLMs:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
@ -764,7 +764,7 @@ Also, the checkpoint used in this notebook - `bigcode/octocoder` - makes use of
#### 3.2.3 Grouped-Query-Attention (GQA)
[Grouped-Query-Attention](https://arxiv.org/abs/2305.13245), as proposed by Ainslie et al. from Google, found that using MQA can often lead to quality degradation compared to using vanilla multi-key-value head projections. The paper argues that more model performance can be kept by less drastically reducing the number of query head projection weights. Instead of using just a single key-value projection weight, `n < n_head` key-value projection weights should be used. By choosing `n` to a significantly smaller value than `n_head`, such as 2,4 or 8 almost all of the memory and speed gains from MQA can be kept while sacrificing less model capacity and thus arguably less performance.
[Grouped-Query-Attention](https://huggingface.co/papers/2305.13245), as proposed by Ainslie et al. from Google, found that using MQA can often lead to quality degradation compared to using vanilla multi-key-value head projections. The paper argues that more model performance can be kept by less drastically reducing the number of query head projection weights. Instead of using just a single key-value projection weight, `n < n_head` key-value projection weights should be used. By choosing `n` to a significantly smaller value than `n_head`, such as 2,4 or 8 almost all of the memory and speed gains from MQA can be kept while sacrificing less model capacity and thus arguably less performance.
Moreover, the authors of GQA found out that existing model checkpoints can be *uptrained* to have a GQA architecture with as little as 5% of the original pre-training compute. While 5% of the original pre-training compute can still be a massive amount, GQA *uptraining* allows existing checkpoints to be useful for longer input sequences.
@ -776,7 +776,7 @@ The most notable application of GQA is [Llama-v2](https://huggingface.co/meta-ll
## Conclusion
The research community is constantly coming up with new, nifty ways to speed up inference time for ever-larger LLMs. As an example, one such promising research direction is [speculative decoding](https://arxiv.org/abs/2211.17192) where "easy tokens" are generated by smaller, faster language models and only "hard tokens" are generated by the LLM itself. Going into more detail is out of the scope of this notebook, but can be read upon in this [nice blog post](https://huggingface.co/blog/assisted-generation).
The research community is constantly coming up with new, nifty ways to speed up inference time for ever-larger LLMs. As an example, one such promising research direction is [speculative decoding](https://huggingface.co/papers/2211.17192) where "easy tokens" are generated by smaller, faster language models and only "hard tokens" are generated by the LLM itself. Going into more detail is out of the scope of this notebook, but can be read upon in this [nice blog post](https://huggingface.co/blog/assisted-generation).
The reason massive LLMs such as GPT3/4, Llama-2-70b, Claude, PaLM can run so quickly in chat-interfaces such as [Hugging Face Chat](https://huggingface.co/chat/) or ChatGPT is to a big part thanks to the above-mentioned improvements in precision, algorithms, and architecture.
Going forward, accelerators such as GPUs, TPUs, etc... will only get faster and allow for more memory, but one should nevertheless always make sure to use the best available algorithms and architectures to get the most bang for your buck 🤗

View File

@ -78,7 +78,7 @@ Additionally, the following method can be used to load values from a data file a
quality of cross-lingual text representations. XNLI is crowd-sourced dataset based on [*MultiNLI*](http://www.nyu.edu/projects/bowman/multinli/): pairs of text are labeled with textual entailment annotations for 15
different languages (including both high-resource language such as English and low-resource languages such as Swahili).
It was released together with the paper [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053)
It was released together with the paper [XNLI: Evaluating Cross-lingual Sentence Representations](https://huggingface.co/papers/1809.05053)
This library hosts the processor to load the XNLI data:
@ -93,8 +93,8 @@ An example using these processors is given in the [run_xnli.py](https://github.c
[The Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer//) is a benchmark that
evaluates the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version
(v1.1) was released together with the paper [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250). The second version (v2.0) was released alongside the paper [Know What You Don't
Know: Unanswerable Questions for SQuAD](https://arxiv.org/abs/1806.03822).
(v1.1) was released together with the paper [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://huggingface.co/papers/1606.05250). The second version (v2.0) was released alongside the paper [Know What You Don't
Know: Unanswerable Questions for SQuAD](https://huggingface.co/papers/1806.03822).
This library hosts a processor for each of the two versions:

View File

@ -14,130 +14,112 @@ rendered properly in your Markdown viewer.
-->
# ALBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "TensorFlow" src= "https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style…Nu+W0m6K/I9gGPd/dfx/EN/wN62AhsBWuAAAAAElFTkSuQmCC">
<img alt="SDPA" src= "https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
## Overview
# ALBERT
The ALBERT model was proposed in [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
Radu Soricut. It presents two parameter-reduction techniques to lower memory consumption and increase the training
speed of BERT:
[ALBERT](https://huggingface.co/papers/1909.11942) is designed to address memory limitations of scaling and training of [BERT](./bert). It adds two parameter reduction techniques. The first, factorized embedding parametrization, splits the larger vocabulary embedding matrix into two smaller matrices so you can grow the hidden size without adding a lot more parameters. The second, cross-layer parameter sharing, allows layer to share parameters which keeps the number of learnable parameters lower.
- Splitting the embedding matrix into two smaller matrices.
- Using repeating layers split among groups.
ALBERT was created to address problems like -- GPU/TPU memory limitations, longer training times, and unexpected model degradation in BERT. ALBERT uses two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT:
The abstract from the paper is the following:
- **Factorized embedding parameterization:** The large vocabulary embedding matrix is decomposed into two smaller matrices, reducing memory consumption.
- **Cross-layer parameter sharing:** Instead of learning separate parameters for each transformer layer, ALBERT shares parameters across layers, further reducing the number of learnable weights.
*Increasing model size when pretraining natural language representations often results in improved performance on
downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations,
longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction
techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows
that our proposed methods lead to models that scale much better compared to the original BERT. We also use a
self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks
with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and
SQuAD benchmarks while having fewer parameters compared to BERT-large.*
ALBERT uses absolute position embeddings (like BERT) so padding is applied at right. Size of embeddings is 128 While BERT uses 768. ALBERT can processes maximum 512 token at a time.
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).
You can find all the original ALBERT checkpoints under the [ALBERT community](https://huggingface.co/albert) organization.
## Usage tips
> [!TIP]
> Click on the ALBERT models in the right sidebar for more examples of how to apply ALBERT to different language tasks.
- ALBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains
similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same
number of (repeating) layers.
- Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters.
- Layers are split in groups that share parameters (to save memory).
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
### Using Scaled Dot Product Attention (SDPA)
<hfoptions id="usage">
<hfoption id="Pipeline">
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
```py
import torch
from transformers import pipeline
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import AlbertModel
model = AlbertModel.from_pretrained("albert/albert-base-v1", torch_dtype=torch.float16, attn_implementation="sdpa")
...
pipeline = pipeline(
task="fill-mask",
model="albert-base-v2",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.", top_k=5)
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
</hfoption>
<hfoption id="AutoModel">
On a local benchmark (GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16`, we saw the
following speedups during training and inference.
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
#### Training for 100 iterations
tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
model = AutoModelForMaskedLM.from_pretrained(
"albert/albert-base-v2",
torch_dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto"
)
|batch_size|seq_len|Time per batch (eager - s)| Time per batch (sdpa - s)| Speedup (%)| Eager peak mem (MB)| sdpa peak mem (MB)| Mem saving (%)|
|----------|-------|--------------------------|--------------------------|------------|--------------------|-------------------|---------------|
|2 |256 |0.028 |0.024 |14.388 |358.411 |321.088 |11.624 |
|2 |512 |0.049 |0.041 |17.681 |753.458 |602.660 |25.022 |
|4 |256 |0.044 |0.039 |12.246 |679.534 |602.660 |12.756 |
|4 |512 |0.090 |0.076 |18.472 |1434.820 |1134.140 |26.512 |
|8 |256 |0.081 |0.072 |12.664 |1283.825 |1134.140 |13.198 |
|8 |512 |0.170 |0.143 |18.957 |2820.398 |2219.695 |27.062 |
prompt = "Plants create energy through a process known as [MASK]."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#### Inference with 50 batches
with torch.no_grad():
outputs = model(**inputs)
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predictions = outputs.logits[0, mask_token_index]
|batch_size|seq_len|Per token latency eager (ms)|Per token latency SDPA (ms)|Speedup (%) |Mem eager (MB)|Mem BT (MB)|Mem saved (%)|
|----------|-------|----------------------------|---------------------------|------------|--------------|-----------|-------------|
|4 |128 |0.083 |0.071 |16.967 |48.319 |48.45 |-0.268 |
|4 |256 |0.148 |0.127 |16.37 |63.4 |63.922 |-0.817 |
|4 |512 |0.31 |0.247 |25.473 |110.092 |94.343 |16.693 |
|8 |128 |0.137 |0.124 |11.102 |63.4 |63.66 |-0.409 |
|8 |256 |0.271 |0.231 |17.271 |91.202 |92.246 |-1.132 |
|8 |512 |0.602 |0.48 |25.47 |186.159 |152.564 |22.021 |
|16 |128 |0.252 |0.224 |12.506 |91.202 |91.722 |-0.567 |
|16 |256 |0.526 |0.448 |17.604 |148.378 |150.467 |-1.388 |
|16 |512 |1.203 |0.96 |25.365 |338.293 |271.102 |24.784 |
top_k = torch.topk(predictions, k=5).indices.tolist()
for token_id in top_k[0]:
print(f"Prediction: {tokenizer.decode([token_id])}")
```
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model albert-base-v2 --device 0
```
</hfoption>
</hfoptions>
## Notes
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The embedding size `E` is different from the hidden size `H` because the embeddings are context independent (one embedding vector represents one token) and the hidden states are context dependent (one hidden state represents a sequence of tokens). The embedding matrix is also larger because `V x E` where `V` is the vocabulary size. As a result, it's more logical if `H >> E`. If `E < H`, the model has less parameters.
## Resources
The resources provided in the following sections consist of a list of official Hugging Face and community (indicated by 🌎) resources to help you get started with AlBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- [`AlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification).
- [`TFAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification).
- [`FlaxAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- Check the [Text classification task guide](../tasks/sequence_classification) on how to use the model.
<PipelineTag pipeline="token-classification"/>
- [`AlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification).
- [`TFAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- Check the [Token classification task guide](../tasks/token_classification) on how to use the model.
@ -163,8 +145,7 @@ The resources provided in the following sections consist of a list of official H
- [`AlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFAlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model.
- Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model.
## AlbertConfig
@ -172,11 +153,7 @@ The resources provided in the following sections consist of a list of official H
## AlbertTokenizer
[[autodoc]] AlbertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
## AlbertTokenizerFast
@ -193,23 +170,19 @@ The resources provided in the following sections consist of a list of official H
## AlbertModel
[[autodoc]] AlbertModel
- forward
[[autodoc]] AlbertModel - forward
## AlbertForPreTraining
[[autodoc]] AlbertForPreTraining
- forward
[[autodoc]] AlbertForPreTraining - forward
## AlbertForMaskedLM
[[autodoc]] AlbertForMaskedLM
- forward
[[autodoc]] AlbertForMaskedLM - forward
## AlbertForSequenceClassification
[[autodoc]] AlbertForSequenceClassification
- forward
[[autodoc]] AlbertForSequenceClassification - forward
## AlbertForMultipleChoice
@ -217,13 +190,11 @@ The resources provided in the following sections consist of a list of official H
## AlbertForTokenClassification
[[autodoc]] AlbertForTokenClassification
- forward
[[autodoc]] AlbertForTokenClassification - forward
## AlbertForQuestionAnswering
[[autodoc]] AlbertForQuestionAnswering
- forward
[[autodoc]] AlbertForQuestionAnswering - forward
</pt>
@ -231,78 +202,62 @@ The resources provided in the following sections consist of a list of official H
## TFAlbertModel
[[autodoc]] TFAlbertModel
- call
[[autodoc]] TFAlbertModel - call
## TFAlbertForPreTraining
[[autodoc]] TFAlbertForPreTraining
- call
[[autodoc]] TFAlbertForPreTraining - call
## TFAlbertForMaskedLM
[[autodoc]] TFAlbertForMaskedLM
- call
[[autodoc]] TFAlbertForMaskedLM - call
## TFAlbertForSequenceClassification
[[autodoc]] TFAlbertForSequenceClassification
- call
[[autodoc]] TFAlbertForSequenceClassification - call
## TFAlbertForMultipleChoice
[[autodoc]] TFAlbertForMultipleChoice
- call
[[autodoc]] TFAlbertForMultipleChoice - call
## TFAlbertForTokenClassification
[[autodoc]] TFAlbertForTokenClassification
- call
[[autodoc]] TFAlbertForTokenClassification - call
## TFAlbertForQuestionAnswering
[[autodoc]] TFAlbertForQuestionAnswering
- call
[[autodoc]] TFAlbertForQuestionAnswering - call
</tf>
<jax>
## FlaxAlbertModel
[[autodoc]] FlaxAlbertModel
- __call__
[[autodoc]] FlaxAlbertModel - **call**
## FlaxAlbertForPreTraining
[[autodoc]] FlaxAlbertForPreTraining
- __call__
[[autodoc]] FlaxAlbertForPreTraining - **call**
## FlaxAlbertForMaskedLM
[[autodoc]] FlaxAlbertForMaskedLM
- __call__
[[autodoc]] FlaxAlbertForMaskedLM - **call**
## FlaxAlbertForSequenceClassification
[[autodoc]] FlaxAlbertForSequenceClassification
- __call__
[[autodoc]] FlaxAlbertForSequenceClassification - **call**
## FlaxAlbertForMultipleChoice
[[autodoc]] FlaxAlbertForMultipleChoice
- __call__
[[autodoc]] FlaxAlbertForMultipleChoice - **call**
## FlaxAlbertForTokenClassification
[[autodoc]] FlaxAlbertForTokenClassification
- __call__
[[autodoc]] FlaxAlbertForTokenClassification - **call**
## FlaxAlbertForQuestionAnswering
[[autodoc]] FlaxAlbertForQuestionAnswering
- __call__
[[autodoc]] FlaxAlbertForQuestionAnswering - **call**
</jax>
</frameworkcontent>

View File

@ -14,103 +14,107 @@ rendered properly in your Markdown viewer.
-->
# AltCLIP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# AltCLIP
The AltCLIP model was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679v2) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu. AltCLIP
(Altering the Language Encoder in CLIP) is a neural network trained on a variety of image-text and text-text pairs. By switching CLIP's
text encoder with a pretrained multilingual text encoder XLM-R, we could obtain very close performances with CLIP on almost all tasks, and extended original CLIP's capabilities such as multilingual understanding.
[AltCLIP](https://huggingface.co/papers/2211.06679) replaces the [CLIP](./clip) text encoder with a multilingual XLM-R encoder and aligns image and text representations with teacher learning and contrastive learning.
The abstract from the paper is the following:
You can find all the original AltCLIP checkpoints under the [AltClip](https://huggingface.co/collections/BAAI/alt-clip-diffusion-66987a97de8525205f1221bf) collection.
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model.
Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained
multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of
teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art
performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with
CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
> [!TIP]
> Click on the AltCLIP models in the right sidebar for more examples of how to apply AltCLIP to different tasks.
This model was contributed by [jongjyh](https://huggingface.co/jongjyh).
The examples below demonstrates how to calculate similarity scores between an image and one or more captions with the [`AutoModel`] class.
## Usage tips and example
The usage of AltCLIP is very similar to the CLIP. the difference between CLIP is the text encoder. Note that we use bidirectional attention instead of casual attention
and we take the [CLS] token in XLM-R to represent text embedding.
AltCLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image
classification. AltCLIP uses a ViT like transformer to get visual features and a bidirectional language model to get the text
features. Both the text and visual features are then projected to a latent space with identical dimension. The dot
product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors
also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model.
The [`AltCLIPProcessor`] wraps a [`CLIPImageProcessor`] and a [`XLMRobertaTokenizer`] into a single instance to both
encode the text and prepare the images. The following example shows how to get the image-text similarity scores using
[`AltCLIPProcessor`] and [`AltCLIPModel`].
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
>>> from PIL import Image
>>> import requests
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AltCLIPProcessor
>>> from transformers import AltCLIPModel, AltCLIPProcessor
model = AltCLIPModel.from_pretrained("BAAI/AltCLIP", torch_dtype=torch.bfloat16)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
print(f"{label}: {prob.item():.4f}")
```
<Tip>
</hfoption>
</hfoptions>
This model is based on `CLIPModel`, use it like you would use the original [CLIP](clip).
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
</Tip>
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
# !pip install torchao
import torch
import requests
from PIL import Image
from transformers import AltCLIPModel, AltCLIPProcessor, TorchAoConfig
model = AltCLIPModel.from_pretrained(
"BAAI/AltCLIP",
quantization_config=TorchAoConfig("int4_weight_only", group_size=128),
torch_dtype=torch.bfloat16,
)
processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
labels = ["a photo of a cat", "a photo of a dog"]
for label, prob in zip(labels, probs[0]):
print(f"{label}: {prob.item():.4f}")
```
## Notes
- AltCLIP uses bidirectional attention instead of causal attention and it uses the `[CLS]` token in XLM-R to represent a text embedding.
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalize images for the model.
- [`AltCLIPProcessor`] combines [`CLIPImageProcessor`] and [`XLMRobertaTokenizer`] into a single instance to encode text and prepare images.
## AltCLIPConfig
[[autodoc]] AltCLIPConfig
- from_text_vision_configs
## AltCLIPTextConfig
[[autodoc]] AltCLIPTextConfig
## AltCLIPVisionConfig
[[autodoc]] AltCLIPVisionConfig
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor
## AltCLIPModel
[[autodoc]] AltCLIPModel
- forward
- get_text_features
- get_image_features
## AltCLIPTextModel
[[autodoc]] AltCLIPTextModel
- forward
## AltCLIPVisionModel
[[autodoc]] AltCLIPVisionModel
- forward
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor

View File

@ -0,0 +1,104 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# Arcee
Arcee is a decoder-only transformer model based on the Llama architecture with a key modification: it uses ReLU² (ReLU-squared) activation in the MLP blocks instead of SiLU, following recent research showing improved training efficiency with squared activations. This architecture is designed for efficient training and inference while maintaining the proven stability of the Llama design.
The Arcee model is architecturally similar to Llama but uses `x * relu(x)` in MLP layers for improved gradient flow and is optimized for efficiency in both training and inference scenarios.
> [!TIP]
> The Arcee model supports extended context with RoPE scaling and all standard transformers features including Flash Attention 2, SDPA, gradient checkpointing, and quantization support.
The example below demonstrates how to generate text with Arcee using [`Pipeline`] or the [`AutoModel`].
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="arcee-ai/AFM-4.5B",
torch_dtype=torch.float16,
device=0
)
output = pipeline("The key innovation in Arcee is")
print(output[0]["generated_text"])
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoTokenizer, ArceeForCausalLM
tokenizer = AutoTokenizer.from_pretrained("arcee-ai/AFM-4.5B")
model = ArceeForCausalLM.from_pretrained(
"arcee-ai/AFM-4.5B",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("The key innovation in Arcee is", return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
## ArceeConfig
[[autodoc]] ArceeConfig
## ArceeModel
[[autodoc]] ArceeModel
- forward
## ArceeForCausalLM
[[autodoc]] ArceeForCausalLM
- forward
## ArceeForSequenceClassification
[[autodoc]] ArceeForSequenceClassification
- forward
## ArceeForQuestionAnswering
[[autodoc]] ArceeForQuestionAnswering
- forward
## ArceeForTokenClassification
[[autodoc]] ArceeForTokenClassification
- forward

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
## Overview
The Audio Spectrogram Transformer model was proposed in [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
The Audio Spectrogram Transformer model was proposed in [AST: Audio Spectrogram Transformer](https://huggingface.co/papers/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
The Audio Spectrogram Transformer applies a [Vision Transformer](vit) to audio, by turning audio into an image (spectrogram). The model obtains state-of-the-art results
for audio classification.
@ -35,7 +35,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/audio_spectogram_transformer_architecture.png"
alt="drawing" width="600"/>
<small> Audio Spectrogram Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2104.01778">original paper</a>.</small>
<small> Audio Spectrogram Transformer architecture. Taken from the <a href="https://huggingface.co/papers/2104.01778">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/YuanGongND/ast).
@ -47,7 +47,7 @@ sure the input has mean of 0 and std of 0.5). [`ASTFeatureExtractor`] takes care
mean and std by default. You can check [`ast/src/get_norm_stats.py`](https://github.com/YuanGongND/ast/blob/master/src/get_norm_stats.py) to see how
the authors compute the stats for a downstream dataset.
- Note that the AST needs a low learning rate (the authors use a 10 times smaller learning rate compared to their CNN model proposed in the
[PSLA paper](https://arxiv.org/abs/2102.01243)) and converges quickly, so please search for a suitable learning rate and learning rate scheduler for your task.
[PSLA paper](https://huggingface.co/papers/2102.01243)) and converges quickly, so please search for a suitable learning rate and learning rate scheduler for your task.
### Using Scaled Dot Product Attention (SDPA)

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The Autoformer model was proposed in [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
The Autoformer model was proposed in [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://huggingface.co/papers/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
This model augments the Transformer as a deep decomposition architecture, which can progressively decompose the trend and seasonal components during the forecasting process.

View File

@ -14,82 +14,32 @@ rendered properly in your Markdown viewer.
-->
# AyaVision
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Aya Vision
The Aya Vision 8B and 32B models is a state-of-the-art multilingual multimodal models developed by Cohere For AI. They build on the Aya Expanse recipe to handle both visual and textual information without compromising on the strong multilingual textual performance of the original model.
[Aya Vision](https://huggingface.co/papers/2505.08751) is a family of open-weight multimodal vision-language models from Cohere Labs. It is trained with a synthetic annotation framework that generates high-quality multilingual image captions, improving Aya Vision's generated responses. In addition, a cross-modal model merging technique is used to prevent the model from losing its text capabilities after adding vision capabilities. The model combines a CommandR-7B language model with a SigLIP vision encoder.
Aya Vision 8B combines the `Siglip2-so400-384-14` vision encoder with the Cohere CommandR-7B language model further post-trained with the Aya Expanse recipe, creating a powerful vision-language model capable of understanding images and generating text across 23 languages. Whereas, Aya Vision 32B uses Aya Expanse 32B as the language model.
You can find all the original Aya Vision checkpoints under the [Aya Vision](https://huggingface.co/collections/CohereLabs/cohere-labs-aya-vision-67c4ccd395ca064308ee1484) collection.
Key features of Aya Vision include:
- Multimodal capabilities in 23 languages
- Strong text-only multilingual capabilities inherited from CommandR-7B post-trained with the Aya Expanse recipe and Aya Expanse 32B
- High-quality visual understanding using the Siglip2-so400-384-14 vision encoder
- Seamless integration of visual and textual information in 23 languages.
> [!TIP]
> This model was contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).
>
> Click on the Aya Vision models in the right sidebar for more examples of how to apply Aya Vision to different image-to-text tasks.
<!-- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/aya_vision_architecture.webp"
alt="drawing" width="600"/>
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<small> Aya Vision architecture. </small> -->
Tips:
- Aya Vision is a multimodal model that takes images and text as input and produces text as output.
- Images are represented using the `<image>` tag in the templated input.
- For best results, use the `apply_chat_template` method of the processor to format your inputs correctly.
- The model can process multiple images in a single conversation.
- Aya Vision can understand and generate text in 23 languages, making it suitable for multilingual multimodal applications.
This model was contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).
## Usage
Here's how to use Aya Vision for inference:
```python
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
torch_device = "cuda:0"
# Use fast image processor
processor = AutoProcessor.from_pretrained(model_id, use_fast=True)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map=torch_device, torch_dtype=torch.float16
)
# Format message with the aya-vision chat template
messages = [
{"role": "user",
"content": [
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
]},
]
# Process image on CUDA
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", device=torch_device
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
gen_text = print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
```
### Pipeline
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
from transformers import pipeline
pipe = pipeline(model="CohereForAI/aya-vision-8b", task="image-text-to-text", device_map="auto")
pipe = pipeline(model="CohereLabs/aya-vision-8b", task="image-text-to-text", device_map="auto")
# Format message with the aya-vision chat template
messages = [
@ -104,84 +54,108 @@ outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
print(outputs)
```
### Multiple Images and Batched Inputs
Aya Vision can process multiple images in a single conversation. Here's how to use it with multiple images:
</hfoption>
<hfoption id="AutoModel">
```python
# pip install 'git+https://github.com/huggingface/transformers.git@v4.49.0-Aya Vision'
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
model_id = "CohereLabs/aya-vision-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="cuda:0", torch_dtype=torch.float16
model_id, device_map="auto", torch_dtype=torch.float16
)
# Example with multiple images in a single message
# Format message with the aya-vision chat template
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
]
{"role": "user",
"content": [
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
]},
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
gen_text = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text)
print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
```
For processing batched inputs (multiple conversations at once):
</hfoption>
</hfoptions>
Quantization reduces the memory footprint of large models by representing weights at lower precision. Refer to the [Quantization](../quantization/overview) overview for supported backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```python
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="cuda:0", torch_dtype=torch.float16
from transformers import (
AutoProcessor,
AutoModelForImageTextToText,
BitsAndBytesConfig
)
# Prepare two different conversations
batch_messages = [
# First conversation with a single image
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
processor = AutoProcessor.from_pretrained("CohereLabs/aya-vision-32b", use_fast=True)
model = AutoModelForImageTextToText.from_pretrained(
"CohereLabs/aya-vision-32b",
quantization_config=bnb_config,
device_map="auto"
)
inputs = processor.apply_chat_template(
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
{"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/roschmid/dog-races/resolve/main/images/Border_Collie.jpg"},
{"type": "text", "text":"Describe what you see."}
]}
],
# Second conversation with multiple images
[
padding=True,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to("cuda")
generated = model.generate(**inputs, max_new_tokens=50)
print(processor.tokenizer.decode(generated[0], skip_special_tokens=True))
```
## Notes
- Images are represented with the `<image>` tag in the chat template.
- Use the [`~ProcessorMixin.apply_chat_template`] method to correctly format inputs.
- The example below demonstrates inference with multiple images.
```py
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
processor = AutoProcessor.from_pretrained("CohereForAI/aya-vision-8b")
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="cuda", torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
@ -199,35 +173,88 @@ batch_messages = [
},
],
},
],
]
# Process each conversation separately and combine into a batch
batch_inputs = processor.apply_chat_template(
batch_messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Generate responses for the batch
batch_outputs = model.generate(
**batch_inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
# Decode the generated responses
for i, output in enumerate(batch_outputs):
response = processor.tokenizer.decode(
output[batch_inputs.input_ids.shape[1]:],
skip_special_tokens=True
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to("cuda")
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(f"Response {i+1}:\n{response}\n")
```
gen_text = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text)
```
- The example below demonstrates inference with batched inputs.
```py
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="cuda", torch_dtype=torch.float16
)
batch_messages = [
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
],
]
batch_inputs = processor.apply_chat_template(
batch_messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
batch_outputs = model.generate(
**batch_inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
for i, output in enumerate(batch_outputs):
response = processor.tokenizer.decode(
output[batch_inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
print(f"Response {i+1}:\n{response}\n")
```
## AyaVisionProcessor

View File

@ -14,84 +14,127 @@ rendered properly in your Markdown viewer.
-->
# Bamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Bamba
Bamba-9B is a decoder-only language model based on the [Mamba-2](https://github.com/state-spaces/mamba) architecture and is designed to handle a wide range of text generation tasks. It is trained from scratch using a two-stage training approach. In the first stage, the model is trained on 2 trillion tokens from the Dolma v1.7 dataset. In the second stage, it undergoes additional training on 200 billion tokens, leveraging a carefully curated blend of high-quality data to further refine its performance and enhance output quality.
[Bamba](https://huggingface.co/blog/bamba) is a 9B parameter decoder-only language model built on the [Mamba-2](./mamba2) architecture. It is pretrained in two stages - it starts by training on 2T tokens from the [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) dataset and then trained on an additional 200B tokens from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia).
Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-model-stack/bamba).
You can find all the original Bamba checkpoints under the [Bamba](https://huggingface.co/collections/ibm-ai-platform/bamba-674f1388b9bbc98b413c7bab) collection.
> [!TIP]
> This model was contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
>
> Click on the Bamba models in the right sidebar for more examples of how to apply Bamba to different text generation tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="ibm-ai-platform/Bamba-9B-v2",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained("ibm-ai-platform/Bamba-9B-v2", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ibm-ai-platform/Bamba-9B-v2 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained(
"ibm-ai-platform/Bamba-9B-v2",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- Bamba supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
- Each of the [`FlashAttentionKwargs`]
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
- `max_length_q: int`: the longest query length in the batch.
- `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
```python
from transformers import DataCollatorWithFlattening
# Example of using padding-free training
data_collator = DataCollatorWithFlattening(
tokenizer=tokenizer,
return_seq_idx=True,
return_flash_attn_kwargs=True
)
```
## BambaConfig
| Model | Params | # Layers | Hidden Dim. | Attention Heads | GQA | KV Heads | Context Length | Tied Embeddings |
|-------------------|--------------|----------|-------------|-----------------|-----|----------|----------------|------------------|
| Bamba | 9B (9.78B) | 32 | 4096 | 32 | Yes | 8 | 4096 | True |
[[autodoc]] BambaConfig
<!---
## Usage Tips
Tips:
- The architecture is based on Mamba-2 models.
## BambaModel
[[autodoc]] BambaModel
- forward
-->
## BambaForCausalLM
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B")
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")
message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
## Padding-Free Training
Bamba supports padding-free training in which distinct training examples can be concatenated
together while nevertheless processing the inputs as though they belonged to separate batches. When
the examples are of varying lengths, padding-free training can provide significant speed ups and
memory savings compared to batching the examples together and using padding, as the unnecessary
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
as the model and the data distribution, but throughput gains up to [~2x are commonly
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
packages, and the following arguments must be passed to the model in addition to `input_ids` and
`labels`:
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
* Each of the [`FlashAttentionKwargs`]
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
* `max_length_q: int`: the longest query length in the batch.
* `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
for additional information.
[[autodoc]] BambaForCausalLM
- forward
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).

View File

@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
## Overview
The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct,
The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://huggingface.co/papers/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct,
2020.
The abstract of the paper:

View File

@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
## Overview
The BARTpho model was proposed in [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
The BARTpho model was proposed in [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://huggingface.co/papers/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
The abstract from the paper is the following:

View File

@ -25,11 +25,11 @@ rendered properly in your Markdown viewer.
## Overview
The BEiT model was proposed in [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by
The BEiT model was proposed in [BEiT: BERT Pre-Training of Image Transformers](https://huggingface.co/papers/2106.08254) by
Hangbo Bao, Li Dong and Furu Wei. Inspired by BERT, BEiT is the first paper that makes self-supervised pre-training of
Vision Transformers (ViTs) outperform supervised pre-training. Rather than pre-training the model to predict the class
of an image (as done in the [original ViT paper](https://arxiv.org/abs/2010.11929)), BEiT models are pre-trained to
predict visual tokens from the codebook of OpenAI's [DALL-E model](https://arxiv.org/abs/2102.12092) given masked
of an image (as done in the [original ViT paper](https://huggingface.co/papers/2010.11929)), BEiT models are pre-trained to
predict visual tokens from the codebook of OpenAI's [DALL-E model](https://huggingface.co/papers/2102.12092) given masked
patches.
The abstract from the paper is the following:
@ -76,7 +76,7 @@ contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/beit_architecture.jpg"
alt="drawing" width="600"/>
<small> BEiT pre-training. Taken from the <a href="https://arxiv.org/abs/2106.08254">original paper.</a> </small>
<small> BEiT pre-training. Taken from the <a href="https://huggingface.co/papers/2106.08254">original paper.</a> </small>
### Using Scaled Dot Product Attention (SDPA)

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
The BertGeneration model is a BERT model that can be leveraged for sequence-to-sequence tasks using
[`EncoderDecoderModel`] as proposed in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
Tasks](https://huggingface.co/papers/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
The abstract from the paper is the following:

View File

@ -26,7 +26,6 @@ rendered properly in your Markdown viewer.
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesnt try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
> [!TIP]

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) by
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The BiT model was proposed in [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
The BiT model was proposed in [Big Transfer (BiT): General Visual Representation Learning](https://huggingface.co/papers/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
BiT is a simple recipe for scaling up pre-training of [ResNet](resnet)-like architectures (specifically, ResNetv2). The method results in significant improvements for transfer learning.
The abstract from the paper is the following:
@ -34,8 +34,8 @@ The original code can be found [here](https://github.com/google-research/big_tra
## Usage tips
- BiT models are equivalent to ResNetv2 in terms of architecture, except that: 1) all batch normalization layers are replaced by [group normalization](https://arxiv.org/abs/1803.08494),
2) [weight standardization](https://arxiv.org/abs/1903.10520) is used for convolutional layers. The authors show that the combination of both is useful for training with large batch sizes, and has a significant
- BiT models are equivalent to ResNetv2 in terms of architecture, except that: 1) all batch normalization layers are replaced by [group normalization](https://huggingface.co/papers/1803.08494),
2) [weight standardization](https://huggingface.co/papers/1903.10520) is used for convolutional layers. The authors show that the combination of both is useful for training with large batch sizes, and has a significant
impact on transfer learning.
## Resources

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
➡️ **Technical Report:** [BitNet b1.58 2B4T Technical Report](https://arxiv.org/abs/2504.12285)
➡️ **Technical Report:** [BitNet b1.58 2B4T Technical Report](https://huggingface.co/papers/2504.12285)
➡️ **Official Inference Code:** [microsoft/BitNet (bitnet.cpp)](https://github.com/microsoft/BitNet)

View File

@ -33,7 +33,7 @@ instead be used with [`BlenderbotModel`] and
## Overview
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://arxiv.org/pdf/2004.13637.pdf) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.
The abstract of the paper is the following:

View File

@ -27,7 +27,7 @@ rendered properly in your Markdown viewer.
## Overview
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://arxiv.org/pdf/2004.13637.pdf) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
The Blender chatbot model was proposed in [Recipes for building an open-domain chatbot](https://huggingface.co/papers/2004.13637) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.
The abstract of the paper is the following:
@ -67,7 +67,7 @@ An example:
## Implementation Notes
- Blenderbot uses a standard [seq2seq model transformer](https://arxiv.org/pdf/1706.03762.pdf) based architecture.
- Blenderbot uses a standard [seq2seq model transformer](https://huggingface.co/papers/1706.03762) based architecture.
- Available checkpoints can be found in the [model hub](https://huggingface.co/models?search=blenderbot).
- This is the *default* Blenderbot model class. However, some smaller checkpoints, such as
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with

View File

@ -22,9 +22,9 @@ rendered properly in your Markdown viewer.
## Overview
The BLIP-2 model was proposed in [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by
The BLIP-2 model was proposed in [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://huggingface.co/papers/2301.12597) by
Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. BLIP-2 leverages frozen pre-trained image encoders and large language models (LLMs) by training a lightweight, 12-layer Transformer
encoder in between them, achieving state-of-the-art performance on various vision-language tasks. Most notably, BLIP-2 improves upon [Flamingo](https://arxiv.org/abs/2204.14198), an 80 billion parameter model, by 8.7%
encoder in between them, achieving state-of-the-art performance on various vision-language tasks. Most notably, BLIP-2 improves upon [Flamingo](https://huggingface.co/papers/2204.14198), an 80 billion parameter model, by 8.7%
on zero-shot VQAv2 with 54x fewer trainable parameters.
The abstract from the paper is the following:
@ -34,7 +34,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg"
alt="drawing" width="600"/>
<small> BLIP-2 architecture. Taken from the <a href="https://arxiv.org/abs/2301.12597">original paper.</a> </small>
<small> BLIP-2 architecture. Taken from the <a href="https://huggingface.co/papers/2301.12597">original paper.</a> </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/salesforce/LAVIS/tree/5ee63d688ba4cebff63acee04adaef2dee9af207).

View File

@ -14,35 +14,76 @@ rendered properly in your Markdown viewer.
-->
# BLIP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# BLIP
The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
[BLIP](https://huggingface.co/papers/2201.12086) (Bootstrapped Language-Image Pretraining) is a vision-language pretraining (VLP) framework designed for *both* understanding and generation tasks. Most existing pretrained models are only good at one or the other. It uses a captioner to generate captions and a filter to remove the noisy captions. This increases training data quality and more effectively uses the messy web data.
BLIP is a model that is able to perform various multi-modal tasks including:
- Visual Question Answering
- Image-Text retrieval (Image-text matching)
- Image Captioning
The abstract from the paper is the following:
You can find all the original BLIP checkpoints under the [BLIP](https://huggingface.co/collections/Salesforce/blip-models-65242f40f1491fbf6a9e9472) collection.
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks.
However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
> [!TIP]
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
>
> Click on the BLIP models in the right sidebar for more examples of how to apply BLIP to different vision language tasks.
![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif)
The example below demonstrates how to visual question answering with [`Pipeline`] or the [`AutoModel`] class.
This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
The original code can be found [here](https://github.com/salesforce/BLIP).
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="visual-question-answering",
model="Salesforce/blip-vqa-base",
torch_dtype=torch.float16,
device=0
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipeline(question="What is the weather in this image?", image=url)
```
</hfoption>
<hfoption id="AutoModel">
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = AutoModelForVisualQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base",
torch_dtype=torch.float16,
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
question = "What is the weather in this image?"
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda", torch.float16)
output = model.generate(**inputs)
processor.batch_decode(output, skip_special_tokens=True)[0]
```
</hfoption>
</hfoptions>
## Resources
- [Jupyter notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) on how to fine-tune BLIP for image captioning on a custom dataset
Refer to this [notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) to learn how to fine-tune BLIP for image captioning on a custom dataset.
## BlipConfig

View File

@ -34,7 +34,7 @@ You can do so by running the following command: `pip install -U transformers==4.
## Overview
The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://arxiv.org/abs/2010.10499) by
The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://huggingface.co/papers/2010.10499) by
Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the
authors refer to as "Bort".

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The BridgeTower model was proposed in [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a
The BridgeTower model was proposed in [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://huggingface.co/papers/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a
bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder thus achieving remarkable performance on various downstream tasks with almost negligible additional performance and computational costs.
This paper has been accepted to the [AAAI'23](https://aaai.org/Conferences/AAAI-23/) conference.
@ -39,7 +39,7 @@ Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bridgetower_architecture%20.jpg"
alt="drawing" width="600"/>
<small> BridgeTower architecture. Taken from the <a href="https://arxiv.org/abs/2206.08657">original paper.</a> </small>
<small> BridgeTower architecture. Taken from the <a href="https://huggingface.co/papers/2206.08657">original paper.</a> </small>
This model was contributed by [Anahita Bhiwandiwalla](https://huggingface.co/anahita-b), [Tiep Le](https://huggingface.co/Tile) and [Shaoyen Tseng](https://huggingface.co/shaoyent). The original code can be found [here](https://github.com/microsoft/BridgeTower).
@ -126,7 +126,7 @@ Tips:
- This implementation of BridgeTower uses [`RobertaTokenizer`] to generate text embeddings and OpenAI's CLIP/ViT model to compute visual embeddings.
- Checkpoints for pre-trained [bridgeTower-base](https://huggingface.co/BridgeTower/bridgetower-base) and [bridgetower masked language modeling and image text matching](https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm) are released.
- Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other down stream tasks.
- Please refer to [Table 5](https://huggingface.co/papers/2206.08657) for BridgeTower's performance on Image Retrieval and other down stream tasks.
- The PyTorch version of this model is only available in torch 1.10 and higher.

View File

@ -18,7 +18,7 @@ specific language governing permissions and limitations under the License.
## Overview
The BROS model was proposed in [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
The BROS model was proposed in [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://huggingface.co/papers/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
BROS stands for *BERT Relying On Spatiality*. It is an encoder-only Transformer model that takes a sequence of tokens and their bounding boxes as inputs and outputs a sequence of hidden states. BROS encode relative spatial information instead of using absolute spatial information.
@ -62,11 +62,11 @@ def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (List[str])
input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# encode(tokenize) each word from words (list[str])
input_ids_list: list[list[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: List[int] = [len(l) for l in input_ids_list]
tokens_length_list: list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)

View File

@ -13,150 +13,128 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=flax&logoColor=white">
</div>
</div>
# ByT5
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
[ByT5](https://huggingface.co/papers/2105.13626) is tokenizer-free version of the [T5](./t5) model designed to works directly on raw UTF-8 bytes. This means it can process any language, more robust to noise like typos, and simpler to use because it doesn't require a preprocessing pipeline.
## Overview
You can find all the original ByT5 checkpoints under the [Google](https://huggingface.co/google?search_models=byt5) organization.
The ByT5 model was presented in [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir
Kale, Adam Roberts, Colin Raffel.
> [!TIP]
> Refer to the [T5](./t5) docs for more examples of how to apply ByT5 to different language tasks.
The abstract from the paper is the following:
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
*Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units.
Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from
the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they
can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by
removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token
sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of
operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with
minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count,
training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level
counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on
tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of
pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our
experiments.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/byt5).
<Tip>
ByT5's architecture is based on the T5v1.1 model, refer to [T5v1.1's documentation page](t5v1.1) for the API reference. They
only differ in how inputs should be prepared for the model, see the code examples below.
</Tip>
Since ByT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
## Usage example
ByT5 works on raw UTF-8 bytes, so it can be used without a tokenizer:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import T5ForConditionalGeneration
>>> import torch
import torch
from transformers import pipeline
>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
>>> num_special_tokens = 3
>>> # Model has 3 special tokens which take up the input ids 0,1,2 of ByT5.
>>> # => Need to shift utf-8 character encodings by 3 before passing ids to model.
>>> input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + num_special_tokens
>>> labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + num_special_tokens
>>> loss = model(input_ids, labels=labels).loss
>>> loss.item()
2.66
pipeline = pipeline(
task="text2text-generation",
model="google/byt5-small",
torch_dtype=torch.float16,
device=0
)
pipeline("translate English to French: The weather is nice today")
```
For batched inference and training it is however recommended to make use of the tokenizer:
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-small")
tokenizer = AutoTokenizer.from_pretrained(
"google/byt5-small"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-small",
torch_dtype=torch.float16,
device_map="auto"
)
>>> model_inputs = tokenizer(
... ["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt"
... )
>>> labels_dict = tokenizer(
... ["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt"
... )
>>> labels = labels_dict.input_ids
input_ids = tokenizer("summarize: Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy.", return_tensors="pt").to("cuda")
>>> loss = model(**model_inputs, labels=labels).loss
>>> loss.item()
17.9
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Similar to [T5](t5), ByT5 was trained on the span-mask denoising task. However,
since the model works directly on characters, the pretraining task is a bit
different. Let's corrupt some characters of the
input sentence `"The dog chases a ball in the park."` and ask ByT5 to predict them
for us.
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "translate English to French: Life is beautiful." | transformers-cli run --task text2text-generation --model google/byt5-small --device 0
```
</hfoption>
</hfoptions>
## Quantization
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google/byt5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-base")
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
>>> input_ids_prompt = "The dog chases a ball in the park."
>>> input_ids = tokenizer(input_ids_prompt).input_ids
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/byt5-xl",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
>>> # Note that we cannot add "{extra_id_...}" to the string directly
>>> # as the Byte tokenizer would incorrectly merge the tokens
>>> # For ByT5, we need to work directly on the character level
>>> # Contrary to T5, ByT5 does not use sentinel tokens for masking, but instead
>>> # uses final utf character ids.
>>> # UTF-8 is represented by 8 bits and ByT5 has 3 special tokens.
>>> # => There are 2**8+2 = 259 input ids and mask tokens count down from index 258.
>>> # => mask to "The dog [258]a ball [257]park."
tokenizer = AutoTokenizer.from_pretrained("google/byt5-xl")
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
>>> input_ids = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]])
>>> input_ids
tensor([[ 87, 107, 104, 35, 103, 114, 106, 35, 258, 35, 100, 35, 101, 100, 111, 111, 257, 35, 115, 100, 117, 110, 49, 1]])
>>> # ByT5 produces only one char at a time so we need to produce many more output characters here -> set `max_length=100`.
>>> output_ids = model.generate(input_ids, max_length=100)[0].tolist()
>>> output_ids
[0, 258, 108, 118, 35, 119, 107, 104, 35, 114, 113, 104, 35, 122, 107, 114, 35, 103, 114, 104, 118, 257, 35, 108, 113, 35, 119, 107, 104, 35, 103, 108, 118, 102, 114, 256, 108, 113, 35, 119, 107, 104, 35, 115, 100, 117, 110, 49, 35, 87, 107, 104, 35, 103, 114, 106, 35, 108, 118, 35, 119, 107, 104, 35, 114, 113, 104, 35, 122, 107, 114, 35, 103, 114, 104, 118, 35, 100, 35, 101, 100, 111, 111, 35, 108, 113, 255, 35, 108, 113, 35, 119, 107, 104, 35, 115, 100, 117, 110, 49]
>>> # ^- Note how 258 descends to 257, 256, 255
>>> # Now we need to split on the sentinel tokens, let's write a short loop for this
>>> output_ids_list = []
>>> start_token = 0
>>> sentinel_token = 258
>>> while sentinel_token in output_ids:
... split_idx = output_ids.index(sentinel_token)
... output_ids_list.append(output_ids[start_token:split_idx])
... start_token = split_idx
... sentinel_token -= 1
>>> output_ids_list.append(output_ids[start_token:])
>>> output_string = tokenizer.batch_decode(output_ids_list)
>>> output_string
['<pad>', 'is the one who does', ' in the disco', 'in the park. The dog is the one who does a ball in', ' in the park.']
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- It is recommended to use the tokenizer for batched inference and training.
- The example below shows how to use the model without a tokenizer.
```python
import torch
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small")
num_special_tokens = 3
input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + num_special_tokens
labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + num_special_tokens
loss = model(input_ids, labels=labels).loss
loss.item()
```
- ByT5 uses the top byte values (258, 257, etc.) for masking instead of sentinel tokens like `{extra_id_0}`.
```python
# Example: character-level denoising with mask tokens
input_ids = tokenizer("The dog chases a ball in the park.").input_ids
masked_input = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]])
output = model.generate(masked_input, max_length=100)
```
## ByT5Tokenizer
[[autodoc]] ByT5Tokenizer
See [`ByT5Tokenizer`] for all details.

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
## Overview
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by
[Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la
Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model
trained on 138GB of French text.

View File

@ -14,99 +14,78 @@ rendered properly in your Markdown viewer.
-->
# CANINE
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CANINE
The CANINE model was proposed in [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language
Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. It's
among the first papers that trains a Transformer without using an explicit tokenization step (such as Byte Pair
Encoding (BPE), WordPiece or SentencePiece). Instead, the model is trained directly at a Unicode character-level.
Training at a character-level inevitably comes with a longer sequence length, which CANINE solves with an efficient
downsampling strategy, before applying a deep Transformer encoder.
[CANINE](https://huggingface.co/papers/2103.06874) is a tokenization-free Transformer. It skips the usual step of splitting text into subwords or wordpieces and processes text character by character. That means it works directly with raw Unicode, making it especially useful for languages with complex or inconsistent tokenization rules and even noisy inputs like typos. Since working with characters means handling longer sequences, CANINE uses a smart trick. The model compresses the input early on (called downsampling) so the transformer doesnt have to process every character individually. This keeps things fast and efficient.
The abstract from the paper is the following:
You can find all the original CANINE checkpoints under the [Google](https://huggingface.co/google?search_models=canine) organization.
*Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly-used models
still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword
lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all
languages, and the use of any fixed vocabulary may limit a model's ability to adapt. In this paper, we present CANINE,
a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a
pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias.
To use its finer-grained input effectively and efficiently, CANINE combines downsampling, which reduces the input
sequence length, with a deep transformer stack, which encodes context. CANINE outperforms a comparable mBERT model by
2.8 F1 on TyDi QA, a challenging multilingual benchmark, despite having 28% fewer model parameters.*
> [!TIP]
> Click on the CANINE models in the right sidebar for more examples of how to apply CANINE to different language tasks.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/google-research/language/tree/master/language/canine).
The example below demonstrates how to generate embeddings with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- CANINE uses no less than 3 Transformer encoders internally: 2 "shallow" encoders (which only consist of a single
layer) and 1 "deep" encoder (which is a regular BERT encoder). First, a "shallow" encoder is used to contextualize
the character embeddings, using local attention. Next, after downsampling, a "deep" encoder is applied. Finally,
after upsampling, a "shallow" encoder is used to create the final character embeddings. Details regarding up- and
downsampling can be found in the paper.
- CANINE uses a max sequence length of 2048 characters by default. One can use [`CanineTokenizer`]
to prepare text for the model.
- Classification can be done by placing a linear layer on top of the final hidden state of the special [CLS] token
(which has a predefined Unicode code point). For token classification tasks however, the downsampled sequence of
tokens needs to be upsampled again to match the length of the original character sequence (which is 2048). The
details for this can be found in the paper.
```py
import torch
from transformers import pipeline
Model checkpoints:
pipeline = pipeline(
task="feature-extraction",
model="google/canine-c",
device=0,
)
- [google/canine-c](https://huggingface.co/google/canine-c): Pre-trained with autoregressive character loss,
12-layer, 768-hidden, 12-heads, 121M parameters (size ~500 MB).
- [google/canine-s](https://huggingface.co/google/canine-s): Pre-trained with subword loss, 12-layer,
768-hidden, 12-heads, 121M parameters (size ~500 MB).
## Usage example
CANINE works on raw characters, so it can be used **without a tokenizer**:
```python
>>> from transformers import CanineModel
>>> import torch
>>> model = CanineModel.from_pretrained("google/canine-c") # model pre-trained with autoregressive character loss
>>> text = "hello world"
>>> # use Python's built-in ord() function to turn each character into its unicode code point id
>>> input_ids = torch.tensor([[ord(char) for char in text]])
>>> outputs = model(input_ids) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
pipeline("Plant create energy through a process known as photosynthesis.")
```
For batched inference and training, it is however recommended to make use of the tokenizer (to pad/truncate all
sequences to the same length):
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import CanineTokenizer, CanineModel
```py
import torch
from transformers import AutoModel
>>> model = CanineModel.from_pretrained("google/canine-c")
>>> tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
model = AutoModel.from_pretrained("google/canine-c")
>>> inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
>>> encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
text = "Plant create energy through a process known as photosynthesis."
input_ids = torch.tensor([[ord(char) for char in text]])
>>> outputs = model(**encoding) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
outputs = model(input_ids)
pooled_output = outputs.pooler_output
sequence_output = outputs.last_hidden_state
```
## Resources
</hfoption>
<hfoption id="transformers CLI">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Multiple choice task guide](../tasks/multiple_choice)
```bash
echo -e "Plant create energy through a process known as photosynthesis." | transformers-cli run --task feature-extraction --model google/canine-c --device 0
```
</hfoption>
</hfoptions>
## Notes
- CANINE skips tokenization entirely — it works directly on raw characters, not subwords. You can use it with or without a tokenizer. For batched inference and training, it is recommended to use the tokenizer to pad and truncate all sequences to the same length.
```py
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer("google/canine-c")
inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
```
- CANINE is primarily designed to be fine-tuned on a downstream task. The pretrained model can be used for either masked language modeling or next sentence prediction.
## CanineConfig

View File

@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
## Overview
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models
](https://arxiv.org/abs/2405.09818v1) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
](https://huggingface.co/papers/2405.09818) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The abstract from the paper is the following:
@ -46,7 +46,7 @@ text. Chameleon marks a significant step forward in unified modeling of full mul
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/chameleon_arch.png"
alt="drawing" width="600"/>
<small> Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the <a href="https://arxiv.org/abs/2405.09818v1">original paper.</a> </small>
<small> Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the <a href="https://huggingface.co/papers/2405.09818">original paper.</a> </small>
This model was contributed by [joaogante](https://huggingface.co/joaogante) and [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/facebookresearch/chameleon).
@ -170,7 +170,6 @@ model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
```

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The Chinese-CLIP model was proposed in [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
The Chinese-CLIP model was proposed in [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://huggingface.co/papers/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
Chinese-CLIP is an implementation of CLIP (Radford et al., 2021) on a large-scale dataset of Chinese image-text pairs. It is capable of performing cross-modal retrieval and also playing as a vision backbone for vision tasks like zero-shot image classification, open-domain object detection, etc. The original Chinese-CLIP code is released [at this link](https://github.com/OFA-Sys/Chinese-CLIP).
The abstract from the paper is the following:

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The CLAP model was proposed in [Large Scale Contrastive Language-Audio pretraining with
feature fusion and keyword-to-caption augmentation](https://arxiv.org/pdf/2211.06687.pdf) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
feature fusion and keyword-to-caption augmentation](https://huggingface.co/papers/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
CLAP (Contrastive Language-Audio Pretraining) is a neural network trained on a variety of (audio, text) pairs. It can be instructed in to predict the most relevant text snippet, given an audio, without directly optimizing for the task. The CLAP model uses a SWINTransformer to get audio features from a log-Mel spectrogram input, and a RoBERTa model to get text features. Both the text and audio features are then projected to a latent space with identical dimension. The dot product between the projected audio and text features is then used as a similar score.

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The CLIPSeg model was proposed in [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke
The CLIPSeg model was proposed in [Image Segmentation Using Text and Image Prompts](https://huggingface.co/papers/2112.10003) by Timo Lüddecke
and Alexander Ecker. CLIPSeg adds a minimal decoder on top of a frozen [CLIP](clip) model for zero-shot and one-shot image segmentation.
The abstract from the paper is the following:
@ -48,7 +48,7 @@ to generalized queries involving affordances or properties*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/clipseg_architecture.png"
alt="drawing" width="600"/>
<small> CLIPSeg overview. Taken from the <a href="https://arxiv.org/abs/2112.10003">original paper.</a> </small>
<small> CLIPSeg overview. Taken from the <a href="https://huggingface.co/papers/2112.10003">original paper.</a> </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/timojl/clipseg).

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The CLVP (Contrastive Language-Voice Pretrained Transformer) model was proposed in [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
The CLVP (Contrastive Language-Voice Pretrained Transformer) model was proposed in [Better speech synthesis through scaling](https://huggingface.co/papers/2305.07243) by James Betker.
The abstract from the paper is the following:

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The CodeGen model was proposed in [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
The CodeGen model was proposed in [A Conversational Paradigm for Program Synthesis](https://huggingface.co/papers/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
CodeGen is an autoregressive language model for program synthesis trained sequentially on [The Pile](https://pile.eleuther.ai/), BigQuery, and BigPython.

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
# ColQwen2
[ColQwen2](https://doi.org/10.48550/arXiv.2407.01449) is a variant of the [ColPali](./colpali) model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColQwen2 treats each page as an image. It uses the [Qwen2-VL](./qwen2_vl) backbone to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
[ColQwen2](https://huggingface.co/papers/2407.01449) is a variant of the [ColPali](./colpali) model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColQwen2 treats each page as an image. It uses the [Qwen2-VL](./qwen2_vl) backbone to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) (ILLUIN Technology) and [@yonigozlan](https://huggingface.co/yonigozlan) (HuggingFace).

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The Conditional DETR model was proposed in [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. Conditional DETR presents a conditional cross-attention mechanism for fast DETR training. Conditional DETR converges 6.7× to 10× faster than DETR.
The Conditional DETR model was proposed in [Conditional DETR for Fast Training Convergence](https://huggingface.co/papers/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. Conditional DETR presents a conditional cross-attention mechanism for fast DETR training. Conditional DETR converges 6.7× to 10× faster than DETR.
The abstract from the paper is the following:
@ -31,7 +31,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/conditional_detr_curve.jpg"
alt="drawing" width="600"/>
<small> Conditional DETR shows much faster convergence compared to the original DETR. Taken from the <a href="https://arxiv.org/abs/2108.06152">original paper</a>.</small>
<small> Conditional DETR shows much faster convergence compared to the original DETR. Taken from the <a href="https://huggingface.co/papers/2108.06152">original paper</a>.</small>
This model was contributed by [DepuMeng](https://huggingface.co/DepuMeng). The original code can be found [here](https://github.com/Atten4Vis/ConditionalDETR).

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng
The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://huggingface.co/papers/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng
Yan.
The abstract from the paper is the following:

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The ConvNeXT model was proposed in [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
The ConvNeXT model was proposed in [A ConvNet for the 2020s](https://huggingface.co/papers/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them.
The abstract from the paper is the following:
@ -40,7 +40,7 @@ and outperforming Swin Transformers on COCO detection and ADE20K segmentation, w
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.jpg"
alt="drawing" width="600"/>
<small> ConvNeXT architecture. Taken from the <a href="https://arxiv.org/abs/2201.03545">original paper</a>.</small>
<small> ConvNeXT architecture. Taken from the <a href="https://huggingface.co/papers/2201.03545">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). TensorFlow version of the model was contributed by [ariG23498](https://github.com/ariG23498),
[gante](https://github.com/gante), and [sayakpaul](https://github.com/sayakpaul) (equal contribution). The original code can be found [here](https://github.com/facebookresearch/ConvNeXt).

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The ConvNeXt V2 model was proposed in [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
The ConvNeXt V2 model was proposed in [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://huggingface.co/papers/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
ConvNeXt V2 is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, and a successor of [ConvNeXT](convnext).
The abstract from the paper is the following:
@ -33,7 +33,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnextv2_architecture.png"
alt="drawing" width="600"/>
<small> ConvNeXt V2 architecture. Taken from the <a href="https://arxiv.org/abs/2301.00808">original paper</a>.</small>
<small> ConvNeXt V2 architecture. Taken from the <a href="https://huggingface.co/papers/2301.00808">original paper</a>.</small>
This model was contributed by [adirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/facebookresearch/ConvNeXt-V2).

View File

@ -25,7 +25,7 @@ rendered properly in your Markdown viewer.
## Overview
The CPM model was proposed in [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin,
The CPM model was proposed in [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://huggingface.co/papers/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin,
Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen,
Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and
CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://huggingface.co/papers/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and
Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus
of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).

View File

@ -14,49 +14,77 @@ rendered properly in your Markdown viewer.
-->
# Convolutional Vision Transformer (CvT)
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# Convolutional Vision Transformer (CvT)
The CvT model was proposed in [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan and Lei Zhang. The Convolutional vision Transformer (CvT) improves the [Vision Transformer (ViT)](vit) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.
Convolutional Vision Transformer (CvT) is a model that combines the strengths of convolutional neural networks (CNNs) and Vision transformers for the computer vision tasks. It introduces convolutional layers into the vision transformer architecture, allowing it to capture local patterns in images while maintaining the global context provided by self-attention mechanisms.
The abstract from the paper is the following:
You can find all the CvT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=cvt) organization.
*We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT)
in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through
two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer
block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs)
to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention,
global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves
state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition,
performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on
ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7\% on the ImageNet-1k val set. Finally, our results show that the positional encoding,
a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.*
> [!TIP]
> This model was contributed by [anujunj](https://huggingface.co/anugunj).
>
> Click on the CvT models in the right sidebar for more examples of how to apply CvT to different computer vision tasks.
This model was contributed by [anugunj](https://huggingface.co/anugunj). The original code can be found [here](https://github.com/microsoft/CvT).
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- CvT models are regular Vision Transformers, but trained with convolutions. They outperform the [original model (ViT)](vit) when fine-tuned on ImageNet-1K and CIFAR-100.
- You can check out demo notebooks regarding inference as well as fine-tuning on custom data [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (you can just replace [`ViTFeatureExtractor`] by [`AutoImageProcessor`] and [`ViTForImageClassification`] by [`CvtForImageClassification`]).
- The available checkpoints are either (1) pre-trained on [ImageNet-22k](http://www.image-net.org/) (a collection of 14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million
images and 1,000 classes).
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="image-classification",
model="microsoft/cvt-13",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
model = AutoModelForImageClassification.from_pretrained(
"microsoft/cvt-13",
torch_dtype=torch.float16,
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CvT.
<PipelineTag pipeline="image-classification"/>
- [`CvtForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Refer to this set of ViT [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) for examples of inference and fine-tuning on custom datasets. Replace [`ViTFeatureExtractor`] and [`ViTForImageClassification`] in these notebooks with [`AutoImageProcessor`] and [`CvtForImageClassification`].
## CvtConfig

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
## Overview
The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/2410.13842) by
The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://huggingface.co/papers/2410.13842) by
Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, Feng Wu
The abstract from the paper is the following:

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The DAB-DETR model was proposed in [DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR](https://arxiv.org/abs/2201.12329) by Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang.
The DAB-DETR model was proposed in [DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR](https://huggingface.co/papers/2201.12329) by Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang.
DAB-DETR is an enhanced variant of Conditional DETR. It utilizes dynamically updated anchor boxes to provide both a reference query point (x, y) and a reference anchor size (w, h), improving cross-attention computation. This new approach achieves 45.7% AP when trained for 50 epochs with a single ResNet-50 model as the backbone.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dab_detr_convergence_plot.png"

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The DAC model was proposed in [Descript Audio Codec: High-Fidelity Audio Compression with Improved RVQGAN](https://arxiv.org/abs/2306.06546) by Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, Kundan Kumar.
The DAC model was proposed in [Descript Audio Codec: High-Fidelity Audio Compression with Improved RVQGAN](https://huggingface.co/papers/2306.06546) by Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, Kundan Kumar.
The Descript Audio Codec (DAC) model is a powerful tool for compressing audio data, making it highly efficient for storage and transmission. By compressing 44.1 KHz audio into tokens at just 8kbps bandwidth, the DAC model enables high-quality audio processing while significantly reducing the data footprint. This is particularly useful in scenarios where bandwidth is limited or storage space is at a premium, such as in streaming applications, remote conferencing, and archiving large audio datasets.

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
## Overview
The Data2Vec model was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli.
The Data2Vec model was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://huggingface.co/papers/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli.
Data2Vec proposes a unified framework for self-supervised learning across different data modalities - text, audio and images.
Importantly, predicted targets for pre-training are contextualized latent representations of the inputs, rather than modality-specific, context-independent targets.

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in

View File

@ -23,7 +23,7 @@ rendered properly in your Markdown viewer.
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://huggingface.co/papers/2106.01345)
by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
The abstract from the paper is the following:

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
## Overview
The DeepSeek-V3 model was proposed in [DeepSeek-V3 Technical Report](https://arxiv.org/abs/2412.19437) by DeepSeek-AI Team.
The DeepSeek-V3 model was proposed in [DeepSeek-V3 Technical Report](https://huggingface.co/papers/2412.19437) by DeepSeek-AI Team.
The abstract from the paper is the following:
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://huggingface.co/papers/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
Deformable DETR mitigates the slow convergence issues and limited feature spatial resolution of the original [DETR](detr) by leveraging a new deformable attention module which only attends to a small set of key sampling points around a reference.
The abstract from the paper is the following:
@ -32,7 +32,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png"
alt="drawing" width="600"/>
<small> Deformable DETR architecture. Taken from the <a href="https://arxiv.org/abs/2010.04159">original paper</a>.</small>
<small> Deformable DETR architecture. Taken from the <a href="https://huggingface.co/papers/2010.04159">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/fundamentalvision/Deformable-DETR).

View File

@ -25,8 +25,8 @@ rendered properly in your Markdown viewer.
## Overview
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://arxiv.org/abs/2010.11929) has shown that one can match or even outperform existing convolutional neural
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://huggingface.co/papers/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://huggingface.co/papers/2010.11929) has shown that one can match or even outperform existing convolutional neural
networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on
expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more
efficiently trained transformers for image classification, requiring far less data and far less computing resources

View File

@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
## Overview
DePlot was proposed in the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) from Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
DePlot was proposed in the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://huggingface.co/papers/2212.10505) from Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
The abstract of the paper states the following:

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
## Overview
Depth Anything V2 was introduced in [the paper of the same name](https://arxiv.org/abs/2406.09414) by Lihe Yang et al. It uses the same architecture as the original [Depth Anything model](depth_anything), but uses synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
Depth Anything V2 was introduced in [the paper of the same name](https://huggingface.co/papers/2406.09414) by Lihe Yang et al. It uses the same architecture as the original [Depth Anything model](depth_anything), but uses synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
The abstract from the paper is the following:
@ -27,7 +27,7 @@ The abstract from the paper is the following:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg"
alt="drawing" width="600"/>
<small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small>
<small> Depth Anything overview. Taken from the <a href="https://huggingface.co/papers/2401.10891">original paper</a>.</small>
The Depth Anything models were contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/DepthAnything/Depth-Anything-V2).

Some files were not shown because too many files have changed in this diff Show More