mirror of
https://github.com/huggingface/transformers.git
synced 2025-11-19 17:54:41 +08:00
Compare commits
10 Commits
dynamic-ti
...
remove-use
| Author | SHA1 | Date | |
|---|---|---|---|
| e1f5ad7297 | |||
| 22137bf322 | |||
| 61560b295a | |||
| 74410d8c78 | |||
| 863cc2e234 | |||
| a2eab57312 | |||
| de014f92c2 | |||
| 16a25c15ff | |||
| 0911196aa6 | |||
| 19166645f3 |
@ -46,8 +46,8 @@ jobs:
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt || true
|
||||
- run: python utils/tests_fetcher.py --filter_tests || true
|
||||
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
|
||||
- run: python utils/tests_fetcher.py --filter_tests
|
||||
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
|
||||
- run: |
|
||||
if [ ! -s test_preparation/generated_config.yml ]; then
|
||||
@ -98,8 +98,8 @@ jobs:
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt || true
|
||||
- run: python utils/tests_fetcher.py --filter_tests || true
|
||||
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt
|
||||
- run: python utils/tests_fetcher.py --filter_tests
|
||||
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
|
||||
- run: |
|
||||
if [ ! -s test_preparation/generated_config.yml ]; then
|
||||
|
||||
1
.github/scripts/codeowners_for_review_action
vendored
1
.github/scripts/codeowners_for_review_action
vendored
@ -22,6 +22,7 @@ tests/generation/ @gante
|
||||
/src/transformers/models/auto/ @ArthurZucker
|
||||
/src/transformers/utils/ @ArthurZucker @Rocketknight1
|
||||
/src/transformers/loss/ @ArthurZucker
|
||||
/src/transformers/onnx/ @michaelbenayoun
|
||||
|
||||
# Specific files come after the sections/globs, so they take priority
|
||||
/.circleci/config.yml @ArthurZucker @ydshieh
|
||||
|
||||
36
.github/workflows/benchmark.yml
vendored
36
.github/workflows/benchmark.yml
vendored
@ -1,10 +1,7 @@
|
||||
name: Self-hosted runner (benchmark)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
types: [ opened, labeled, reopened, synchronize ]
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
@ -12,8 +9,6 @@ concurrency:
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
DATASET_ID: hf-benchmarks/transformers
|
||||
MODEL_ID: meta-llama/Llama-3.1-8B-Instruct
|
||||
|
||||
jobs:
|
||||
benchmark:
|
||||
@ -28,20 +23,35 @@ jobs:
|
||||
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
|
||||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --privileged --ipc host
|
||||
steps:
|
||||
- name: Get repo
|
||||
uses: actions/checkout@v5
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
ref: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
|
||||
- name: Install libpq-dev & psql
|
||||
run: |
|
||||
apt update
|
||||
apt install -y libpq-dev postgresql-client
|
||||
|
||||
- name: Install benchmark script dependencies
|
||||
run: python3 -m pip install -r benchmark_v2/requirements.txt kernels
|
||||
run: python3 -m pip install -r benchmark/requirements.txt
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
|
||||
|
||||
- name: Run database init script
|
||||
run: |
|
||||
psql -f benchmark/utils/init_db.sql
|
||||
env:
|
||||
PGDATABASE: metrics
|
||||
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
|
||||
PGUSER: transformers_benchmarks
|
||||
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
|
||||
|
||||
- name: Run benchmark
|
||||
run: |
|
||||
git config --global --add safe.directory /__w/transformers/transformers
|
||||
@ -51,11 +61,13 @@ jobs:
|
||||
commit_id=$GITHUB_SHA
|
||||
fi
|
||||
commit_msg=$(git show -s --format=%s | cut -c1-70)
|
||||
python3 benchmark_v2/run_benchmarks.py -b 32 -s 128 -n 256 --level 2 --branch-name "$BRANCH_NAME" --commit-id "$commit_id" --commit-message "$commit_msg" --model-id "$MODEL_ID" --log-level INFO --push-result-to-dataset "$DATASET_ID"
|
||||
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
PUSH_TO_HUB_TOKEN: ${{ secrets.PUSH_TO_HUB_TOKEN }}
|
||||
# Enable this to see debug logs
|
||||
# HF_HUB_VERBOSITY: debug
|
||||
# TRANSFORMERS_VERBOSITY: debug
|
||||
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
|
||||
PGUSER: transformers_benchmarks
|
||||
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
|
||||
@ -9,7 +9,7 @@ jobs:
|
||||
uses: ./.github/workflows/benchmark_v2.yml
|
||||
with:
|
||||
runner: aws-g5-4xlarge-cache-use1-public-80
|
||||
container_image: huggingface/transformers-all-latest-gpu
|
||||
container_image: huggingface/transformers-pytorch-gpu
|
||||
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
|
||||
184
.github/workflows/build-docker-images.yml
vendored
184
.github/workflows/build-docker-images.yml
vendored
@ -45,59 +45,33 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-all-latest-gpu docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
flash-attn-ci-image:
|
||||
name: "PyTorch with Flash Attn [dev]"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-all-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
PYTORCH=2.8.0
|
||||
TORCHCODEC=0.7.0
|
||||
FLASH_ATTN=yes
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}:flash-attn
|
||||
tags: huggingface/transformers-all-latest-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-all-latest-gpu docker build
|
||||
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-torch-deepspeed-docker:
|
||||
name: "Latest PyTorch + DeepSpeed"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -130,8 +104,51 @@ jobs:
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
|
||||
latest-torch-deepspeed-docker-for-push-ci-daily-build:
|
||||
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
doc-builder:
|
||||
name: "Doc builder"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
@ -164,6 +181,44 @@ jobs:
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-pytorch:
|
||||
name: "Latest PyTorch [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-gpu
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on:
|
||||
@ -190,47 +245,29 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu build
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
cache-latest-pytorch-amd:
|
||||
name: "Cache Latest Pytorch (AMD) Image"
|
||||
needs: latest-pytorch-amd
|
||||
runs-on:
|
||||
group: amd-mi325-1gpu
|
||||
steps:
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
-
|
||||
name: Pull and save docker image to cache
|
||||
run: |
|
||||
image="huggingface/transformers-pytorch-amd-gpu"
|
||||
final_path="/mnt/image-cache/transformers-pytorch-amd-gpu.tar"
|
||||
tmp_path="${final_path}.tmp"
|
||||
|
||||
echo "Pulling image: ${image}"
|
||||
docker pull "${image}"
|
||||
|
||||
echo "Saving to temp file: ${tmp_path}"
|
||||
docker save "${image}" -o "${tmp_path}"
|
||||
|
||||
echo "Moving to final path: ${final_path}"
|
||||
mv -f "${tmp_path}" "${final_path}"
|
||||
|
||||
echo "Cache populated successfully at ${final_path}"
|
||||
|
||||
latest-pytorch-deepspeed-amd:
|
||||
name: "PyTorch + DeepSpeed (AMD) [dev]"
|
||||
runs-on:
|
||||
@ -257,6 +294,19 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
@ -269,6 +319,8 @@ jobs:
|
||||
|
||||
latest-quantization-torch-docker:
|
||||
name: "Latest Pytorch + Quantization [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
|
||||
23
.github/workflows/check-workflow-permissions.yml
vendored
23
.github/workflows/check-workflow-permissions.yml
vendored
@ -1,23 +0,0 @@
|
||||
---
|
||||
name: Check Permissions Advisor
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
workflow_name:
|
||||
description: 'Workflow file name'
|
||||
type: string
|
||||
run_count:
|
||||
description: 'Number of runs to analyze'
|
||||
type: string
|
||||
default: "10"
|
||||
|
||||
jobs:
|
||||
advisor:
|
||||
uses: huggingface/security-workflows/.github/workflows/permissions-advisor-reusable.yml@main
|
||||
permissions:
|
||||
actions: read
|
||||
contents: read
|
||||
with:
|
||||
workflow_name: ${{ inputs.workflow_name }}
|
||||
run_count: ${{ fromJSON(inputs.run_count) }}
|
||||
204
.github/workflows/check_failed_tests.yml
vendored
204
.github/workflows/check_failed_tests.yml
vendored
@ -6,6 +6,9 @@ on:
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
@ -21,13 +24,7 @@ on:
|
||||
commit_sha:
|
||||
required: false
|
||||
type: string
|
||||
pr_number:
|
||||
required: false
|
||||
type: string
|
||||
outputs:
|
||||
report:
|
||||
description: "Content of the report of new failures"
|
||||
value: ${{ jobs.process_new_failures_with_commit_info.outputs.report }}
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -44,14 +41,9 @@ env:
|
||||
|
||||
jobs:
|
||||
check_new_failures:
|
||||
name: "Find commits for new failing tests"
|
||||
strategy:
|
||||
matrix:
|
||||
run_idx: [1]
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
outputs:
|
||||
process: ${{ steps.check_file.outputs.process }}
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -62,19 +54,14 @@ jobs:
|
||||
path: /transformers/ci_results_${{ inputs.job }}
|
||||
|
||||
- name: Check file
|
||||
id: check_file
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
if [ -f "ci_results_${job}/new_failures.json" ]; then
|
||||
echo "\`ci_results_${job}/new_failures.json\` exists, continue ..."
|
||||
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
|
||||
echo "process=true" >> $GITHUB_ENV
|
||||
echo "process=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "\`ci_results_${job}/new_failures.json\` doesn't exist, abort."
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
|
||||
echo "process=false" >> $GITHUB_ENV
|
||||
echo "process=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
@ -93,62 +80,27 @@ jobs:
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Get `START_SHA`
|
||||
- name: Get target commit
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
echo "START_SHA=$commit_sha" >> $GITHUB_ENV
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
# This is used if the CI is triggered from a pull request `self-comment-ci.yml` (after security check is verified)
|
||||
- name: Extract the base commit on `main` (of the merge commit created by Github) if it is a PR
|
||||
id: pr_info
|
||||
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const { data: pr } = await github.rest.pulls.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: ${{ inputs.pr_number }}
|
||||
});
|
||||
|
||||
const { data: merge_commit } = await github.rest.repos.getCommit({
|
||||
owner: pr.base.repo.owner.login,
|
||||
repo: pr.base.repo.name,
|
||||
ref: '${{ inputs.commit_sha }}',
|
||||
});
|
||||
|
||||
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
|
||||
|
||||
# Usually, `END_SHA` should be the commit of the last previous workflow run of the **SAME** (scheduled) workflow.
|
||||
# (This is why we don't need to specify `workflow_id` which would be fetched automatically in the python script.)
|
||||
- name: Get `END_SHA` from previous CI runs of the same workflow
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' && inputs.pr_number == '' }}
|
||||
env:
|
||||
ACCESS_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
run: |
|
||||
echo "END_SHA=$(TOKEN="$ACCESS_TOKEN" python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
# However, for workflow runs triggered by `issue_comment` (for pull requests), we want to check against the
|
||||
# parent commit (on `main`) of the `merge_commit` (dynamically created by GitHub). In this case, the goal is to
|
||||
# see if a reported failing test is actually ONLY failing on the `merge_commit`.
|
||||
- name: Set `END_SHA`
|
||||
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
|
||||
env:
|
||||
merge_commit_base_sha: ${{ steps.pr_info.outputs.merge_commit_base_sha }}
|
||||
run: |
|
||||
echo "END_SHA=$merge_commit_base_sha" >> $GITHUB_ENV
|
||||
- name: Checkout to `start_sha`
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -166,10 +118,6 @@ jobs:
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Install pytest-flakefinder
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 -m pip install pytest-flakefinder
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
@ -178,78 +126,37 @@ jobs:
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run_idx: ${{ matrix.run_idx }}
|
||||
run: python3 utils/check_bad_commit.py --start_commit "$START_SHA" --end_commit "$END_SHA" --file "ci_results_${job}/new_failures.json" --output_file "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run_idx: ${{ matrix.run_idx }}
|
||||
run: |
|
||||
ls -l "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
cat "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}
|
||||
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
|
||||
|
||||
process_new_failures_with_commit_info:
|
||||
name: "process bad commit reports"
|
||||
needs: check_new_failures
|
||||
if: needs.check_new_failures.outputs.process == 'true'
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
outputs:
|
||||
report: ${{ steps.set_output.outputs.report }}
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: /transformers/ci_results_${{ inputs.job }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: new_failures_with_bad_commit_${{ inputs.job }}*
|
||||
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}
|
||||
merge-multiple: true
|
||||
|
||||
- name: Check files
|
||||
- name: Checkout back
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
ls -la /transformers
|
||||
ls -la "/transformers/new_failures_with_bad_commit_${job}"
|
||||
|
||||
# Currently, we only run with a single runner by using `run_idx: [1]`. We might try to run with multiple runners
|
||||
# to further reduce the false positive caused by flaky tests, which requires further processing to merge reports.
|
||||
- name: Merge files
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
cp "/transformers/new_failures_with_bad_commit_${job}/new_failures_with_bad_commit_${job}_1.json" new_failures_with_bad_commit.json
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
@ -262,40 +169,15 @@ jobs:
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
# The output is useful if a caller needs more processing, for example, we have a chain
|
||||
# self-comment-ci.yml -> self-scheduled.yml -> this one (check_failed_tests.yml),
|
||||
# and `self-comment-ci.yml` needs further processing before sending a GitHub comment to the pull request page.
|
||||
- name: Show results & Set outputs
|
||||
id: set_output
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
{
|
||||
echo 'report<<EOF'
|
||||
cat new_failures_with_bad_commit.json
|
||||
echo '' # Force a newline
|
||||
echo EOF
|
||||
} >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: new_failures_with_bad_commit_${{ inputs.job }}
|
||||
path: /transformers/new_failures_with_bad_commit.json
|
||||
|
||||
- name: Prepare Slack report title
|
||||
working-directory: /transformers
|
||||
env:
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
job: ${{ inputs.job }}
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
echo "title=$(python3 -c 'import sys; import os; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = os.environ["ci_event"]; job = os.environ["job"]; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
|
||||
22
.github/workflows/codeql.yml
vendored
22
.github/workflows/codeql.yml
vendored
@ -1,22 +0,0 @@
|
||||
---
|
||||
name: CodeQL Security Analysis
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: ["main", "fix_security_issue_*"]
|
||||
# pull_request:
|
||||
# branches: ["main"]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
codeql:
|
||||
name: CodeQL Analysis
|
||||
uses: huggingface/security-workflows/.github/workflows/codeql-reusable.yml@main
|
||||
permissions:
|
||||
security-events: write
|
||||
packages: read
|
||||
actions: read
|
||||
contents: read
|
||||
with:
|
||||
languages: '["actions"]'
|
||||
queries: 'security-extended,security-and-quality'
|
||||
24
.github/workflows/get-pr-info.yml
vendored
24
.github/workflows/get-pr-info.yml
vendored
@ -39,9 +39,6 @@ on:
|
||||
PR_MERGE_COMMIT_SHA:
|
||||
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
|
||||
PR_MERGE_COMMIT_BASE_SHA:
|
||||
description: "The sha of the parent commit of the the merge commit on the target branch in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_BASE_SHA }}
|
||||
PR_HEAD_COMMIT_DATE:
|
||||
description: "The date of the head sha of the pull request branch in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
|
||||
@ -77,7 +74,6 @@ jobs:
|
||||
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
|
||||
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
|
||||
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
|
||||
PR_MERGE_COMMIT_BASE_SHA: ${{ steps.pr_info.outputs.merge_commit_base_sha }}
|
||||
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
|
||||
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
@ -126,7 +122,6 @@ jobs:
|
||||
core.setOutput('base_ref', pr.base.ref);
|
||||
core.setOutput('head_sha', pr.head.sha);
|
||||
core.setOutput('base_sha', pr.base.sha);
|
||||
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
|
||||
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
|
||||
core.setOutput('pr', pr);
|
||||
|
||||
@ -147,21 +142,16 @@ jobs:
|
||||
date: merge_commit.commit.committer.date
|
||||
});
|
||||
|
||||
console.log('PR Info:', {
|
||||
pr_info: pr
|
||||
});
|
||||
|
||||
- name: Convert dates to timestamps
|
||||
id: get_timestamps
|
||||
env:
|
||||
head_commit_date: ${{ steps.pr_info.outputs.head_commit_date }}
|
||||
merge_commit_date: ${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
run: |
|
||||
echo "$head_commit_date"
|
||||
echo "$merge_commit_date"
|
||||
head_commit_date=${{ steps.pr_info.outputs.head_commit_date }}
|
||||
merge_commit_date=${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
echo $head_commit_date
|
||||
echo $merge_commit_date
|
||||
head_commit_timestamp=$(date -d "$head_commit_date" +%s)
|
||||
merge_commit_timestamp=$(date -d "$merge_commit_date" +%s)
|
||||
echo "$head_commit_timestamp"
|
||||
echo "$merge_commit_timestamp"
|
||||
echo $head_commit_timestamp
|
||||
echo $merge_commit_timestamp
|
||||
echo "head_commit_timestamp=$head_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
|
||||
22
.github/workflows/get-pr-number.yml
vendored
22
.github/workflows/get-pr-number.yml
vendored
@ -15,19 +15,13 @@ jobs:
|
||||
steps:
|
||||
- name: Get PR number
|
||||
shell: bash
|
||||
env:
|
||||
issue_number: ${{ github.event.issue.number }}
|
||||
is_pull_request_issue: ${{ github.event.issue.pull_request != null }}
|
||||
pr_number: ${{ github.event.pull_request.number }}
|
||||
is_pull_request: ${{ github.event.pull_request != null }}
|
||||
event_number: ${{ github.event.number }}
|
||||
run: |
|
||||
if [[ "$issue_number" != "" && "$is_pull_request_issue" == "true" ]]; then
|
||||
echo "PR_NUMBER=$issue_number" >> $GITHUB_ENV
|
||||
elif [[ "$pr_number" != "" ]]; then
|
||||
echo "PR_NUMBER=$pr_number" >> $GITHUB_ENV
|
||||
elif [[ "$is_pull_request" == "true" ]]; then
|
||||
echo "PR_NUMBER=$event_number" >> $GITHUB_ENV
|
||||
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request.number }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.pull_request.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.number }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PR_NUMBER=" >> $GITHUB_ENV
|
||||
fi
|
||||
@ -35,8 +29,8 @@ jobs:
|
||||
- name: Check PR number
|
||||
shell: bash
|
||||
run: |
|
||||
echo "$PR_NUMBER"
|
||||
echo "${{ env.PR_NUMBER }}"
|
||||
|
||||
- name: Set PR number
|
||||
id: set_pr_number
|
||||
run: echo "PR_NUMBER=$PR_NUMBER" >> "$GITHUB_OUTPUT"
|
||||
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
63
.github/workflows/model_jobs.yml
vendored
63
.github/workflows/model_jobs.yml
vendored
@ -28,9 +28,6 @@ on:
|
||||
report_repo_id:
|
||||
required: false
|
||||
type: string
|
||||
pytest_marker:
|
||||
required: false
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -62,33 +59,25 @@ jobs:
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
env:
|
||||
folder_slices: ${{ inputs.folder_slices }}
|
||||
matrix_folders: ${{ matrix.folders }}
|
||||
slice_data: ${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}
|
||||
run: |
|
||||
echo "$folder_slices"
|
||||
echo "$matrix_folders"
|
||||
echo "$slice_data"
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
env:
|
||||
matrix_folders_raw: ${{ matrix.folders }}
|
||||
run: |
|
||||
echo "$matrix_folders_raw"
|
||||
matrix_folders="${matrix_folders_raw/'models/'/'models_'}"
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -123,17 +112,15 @@ jobs:
|
||||
id: set_machine_type
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
input_machine_type: ${{ inputs.machine_type }}
|
||||
run: |
|
||||
echo "$input_machine_type"
|
||||
echo "${{ inputs.machine_type }}"
|
||||
|
||||
if [ "$input_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ inputs.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$input_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ inputs.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$input_machine_type"
|
||||
machine_type=${{ inputs.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -142,21 +129,15 @@ jobs:
|
||||
|
||||
- name: Create report directory if it doesn't exist
|
||||
shell: bash
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
mkdir -p "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
echo "dummy" > "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/dummy.txt"
|
||||
ls -la "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
echo "dummy" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/dummy.txt
|
||||
ls -la /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
pytest_marker: ${{ inputs.pytest_marker }}
|
||||
model: ${{ matrix.folders }}
|
||||
run: |
|
||||
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports python3 -m pytest -rsfE -v -m '${pytest_marker}' --make-reports=${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports tests/${model}" test_outputs.txt
|
||||
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
|
||||
ls -la
|
||||
# Extract the exit code from the output file
|
||||
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
|
||||
@ -167,25 +148,19 @@ jobs:
|
||||
# This step is only to show information on Github Actions log.
|
||||
# Always mark this step as successful, even if the report directory or the file `failures_short.txt` in it doesn't exist
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: cat "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Captured information
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
cat "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/captured_info.txt"
|
||||
cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/captured_info.txt
|
||||
|
||||
- name: Copy test_outputs.txt
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
cp /transformers/test_outputs.txt "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
cp /transformers/test_outputs.txt /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -196,7 +171,7 @@ jobs:
|
||||
|
||||
collated_reports:
|
||||
name: Collated Reports
|
||||
if: ${{ always() && inputs.runner_type != '' }}
|
||||
if: ${{ always() }}
|
||||
needs: run_models_gpu
|
||||
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
|
||||
with:
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
name: PR slow CI - Suggestion
|
||||
name: PR slow CI
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
@ -23,28 +23,11 @@ jobs:
|
||||
outputs:
|
||||
jobs: ${{ steps.get_jobs.outputs.jobs_to_run }}
|
||||
steps:
|
||||
# This checkout to the main branch
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
|
||||
# We need to use `${{ ... }}` here to avoid `Argument list too long` error when a PR changes a lot of files.
|
||||
# (We could also try to use artifact approach, but it's more involved).
|
||||
# `CodeQL` doesn't identify any security issue here. Also `PR_FILES` is from `get-pr-info.yml` by using an api
|
||||
# `github.rest.pulls.listFiles`, which is fine.
|
||||
- name: Write pr_files file
|
||||
run: |
|
||||
cat > pr_files.txt << 'EOF'
|
||||
${{ needs.get-pr-info.outputs.PR_FILES }}
|
||||
EOF
|
||||
|
||||
- name: Get repository content
|
||||
id: repo_content
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const fs = require('node:fs');
|
||||
|
||||
const { data: tests_dir } = await github.rest.repos.getContent({
|
||||
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
|
||||
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
|
||||
@ -66,10 +49,38 @@ jobs:
|
||||
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
|
||||
});
|
||||
|
||||
// Write to files instead of outputs
|
||||
fs.writeFileSync('tests_dir.txt', JSON.stringify(tests_dir, null, 2));
|
||||
fs.writeFileSync('tests_models_dir.txt', JSON.stringify(tests_models_dir, null, 2));
|
||||
fs.writeFileSync('tests_quantization_dir.txt', JSON.stringify(tests_quantization_dir, null, 2));
|
||||
core.setOutput('tests_dir', tests_dir);
|
||||
core.setOutput('tests_models_dir', tests_models_dir);
|
||||
core.setOutput('tests_quantization_dir', tests_quantization_dir);
|
||||
|
||||
# This checkout to the main branch
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
|
||||
- name: Write pr_files file
|
||||
run: |
|
||||
cat > pr_files.txt << 'EOF'
|
||||
${{ needs.get-pr-info.outputs.PR_FILES }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_dir file
|
||||
run: |
|
||||
cat > tests_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_models_dir file
|
||||
run: |
|
||||
cat > tests_models_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_models_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_quantization_dir file
|
||||
run: |
|
||||
cat > tests_quantization_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_quantization_dir }}
|
||||
EOF
|
||||
|
||||
- name: Run script to get jobs to run
|
||||
id: get_jobs
|
||||
4
.github/workflows/push-important-models.yml
vendored
4
.github/workflows/push-important-models.yml
vendored
@ -149,9 +149,9 @@ jobs:
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-push"
|
||||
docker: huggingface/transformers-all-latest-gpu:flash-attn
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: push
|
||||
report_repo_id: hf-internal-testing/transformers_ci_push
|
||||
commit_sha: ${{ github.sha }}
|
||||
subdirs: ${{ needs.get_modified_models.outputs.matrix }}
|
||||
models: ${{ needs.get_modified_models.outputs.matrix }}
|
||||
secrets: inherit
|
||||
|
||||
505
.github/workflows/self-comment-ci.yml
vendored
505
.github/workflows/self-comment-ci.yml
vendored
@ -23,34 +23,62 @@ env:
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
||||
jobs:
|
||||
get-pr-number:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
- name: Get PR number
|
||||
shell: bash
|
||||
run: |
|
||||
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PR_NUMBER=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
get-pr-info:
|
||||
name: Get PR commit SHA
|
||||
- name: Check PR number
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ env.PR_NUMBER }}"
|
||||
|
||||
- name: Set PR number
|
||||
id: set_pr_number
|
||||
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
get-sha:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-number
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
uses: ./.github/workflows/get-pr-info.yml
|
||||
with:
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
check-timestamps:
|
||||
name: Check timestamps (security check)
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-info
|
||||
outputs:
|
||||
PR_HEAD_SHA: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
|
||||
PR_MERGE_SHA: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
|
||||
PR_HEAD_SHA: ${{ steps.get_sha.outputs.PR_HEAD_SHA }}
|
||||
PR_MERGE_SHA: ${{ steps.get_sha.outputs.PR_MERGE_SHA }}
|
||||
steps:
|
||||
- name: Verify `merge_commit` timestamp is older than the issue comment timestamp
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
|
||||
|
||||
- name: Get SHA (and verify timestamps against the issue comment date)
|
||||
id: get_sha
|
||||
env:
|
||||
PR_NUMBER: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
COMMENT_DATE: ${{ github.event.comment.created_at }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
run: |
|
||||
git fetch origin refs/pull/$PR_NUMBER/head:refs/remotes/pull/$PR_NUMBER/head
|
||||
git checkout refs/remotes/pull/$PR_NUMBER/head
|
||||
echo "PR_HEAD_SHA: $(git log -1 --format=%H)"
|
||||
echo "PR_HEAD_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
|
||||
git fetch origin refs/pull/$PR_NUMBER/merge:refs/remotes/pull/$PR_NUMBER/merge
|
||||
git checkout refs/remotes/pull/$PR_NUMBER/merge
|
||||
echo "PR_MERGE_SHA: $(git log -1 --format=%H)"
|
||||
echo "PR_MERGE_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
|
||||
PR_MERGE_COMMIT_TIMESTAMP=$(git log -1 --date=unix --format=%cd)
|
||||
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
|
||||
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
|
||||
echo "COMMENT_DATE: $COMMENT_DATE"
|
||||
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
|
||||
@ -59,10 +87,13 @@ jobs:
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
# use a python script to handle this complex logic.
|
||||
# use a python script to handle this complex logic
|
||||
# case 1: `run-slow` (auto. infer with limited number of models, but in particular, new model)
|
||||
# case 2: `run-slow model_1, model_2`
|
||||
get-tests:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [get-pr-number, check-timestamps]
|
||||
needs: [get-pr-number, get-sha]
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
outputs:
|
||||
models: ${{ steps.models_to_run.outputs.models }}
|
||||
quantizations: ${{ steps.models_to_run.outputs.quantizations }}
|
||||
@ -70,11 +101,11 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
ref: "refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge"
|
||||
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
@ -95,33 +126,11 @@ jobs:
|
||||
- name: Show models to test
|
||||
id: models_to_run
|
||||
run: |
|
||||
echo "$models"
|
||||
echo "models=$models" >> $GITHUB_OUTPUT
|
||||
echo "$quantizations"
|
||||
echo "quantizations=$quantizations" >> $GITHUB_OUTPUT
|
||||
|
||||
# Report back if we are not able to get the tests (for example, security check is failing)
|
||||
report_error_earlier:
|
||||
name: Report error earlier
|
||||
if: ${{ always() && needs.get-pr-info.result == 'success' && needs.get-tests.result != 'success' }}
|
||||
needs: [get-pr-number, get-pr-info, get-tests]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Reply to the comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-f body="💔 This comment contains \`run-slow\`, but unknown error occurred and [the workflow run]($GITHUB_RUN_URL) aborted!"
|
||||
echo "${{ env.models }}"
|
||||
echo "models=${{ env.models }}" >> $GITHUB_ENV
|
||||
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
|
||||
echo "${{ env.quantizations }}"
|
||||
echo "quantizations=${{ env.quantizations }}" >> $GITHUB_OUTPUT
|
||||
|
||||
reply_to_comment:
|
||||
name: Reply to the comment
|
||||
@ -134,20 +143,20 @@ jobs:
|
||||
- name: Reply to the comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
BODY: '\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}'
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
MODELS: ${{ needs.get-tests.outputs.models }}
|
||||
BODY: "\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-f body="This comment contains \`run-slow\`, running the specified jobs: $(echo -e "$BODY")"
|
||||
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
|
||||
-f "body=This comment contains run-slow, running the specified jobs: ${{ env.BODY }} ..."
|
||||
|
||||
create_run:
|
||||
name: Create run
|
||||
needs: [check-timestamps, reply_to_comment]
|
||||
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
|
||||
needs: [get-sha, get-tests, reply_to_comment]
|
||||
permissions:
|
||||
statuses: write
|
||||
runs-on: ubuntu-22.04
|
||||
@ -159,196 +168,248 @@ jobs:
|
||||
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
|
||||
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_head_sha: ${{ needs.check-timestamps.outputs.PR_HEAD_SHA }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/statuses/${pr_head_sha}" \
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
run_models_gpu:
|
||||
name: Run all tests for the model
|
||||
if: ${{ needs.get-tests.outputs.models != '[]' }}
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
needs: [get-pr-number, check-timestamps, get-tests, create_run]
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-pr"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: PR Comment CI
|
||||
report_repo_id: hf-internal-testing/transformers_pr_ci
|
||||
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
subdirs: ${{ needs.get-tests.outputs.models }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
secrets: inherit
|
||||
needs: [get-pr-number, get-sha, get-tests, create_run]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
|
||||
quantization-ci:
|
||||
name: Quantization CI
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout to PR merge commit
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git log -1 --format=%H
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
|
||||
echo $CUDA_VISIBLE_DEVICES
|
||||
python3 -m pytest -v -rsfE --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_quantization_torch_gpu:
|
||||
name: Run all tests for a quantization
|
||||
if: ${{ needs.get-tests.outputs.quantizations != '[]' }}
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
needs: [get-pr-number, check-timestamps, get-tests, create_run]
|
||||
with:
|
||||
job: run_quantization_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-pr"
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: PR Comment CI
|
||||
report_repo_id: hf-internal-testing/transformers_pr_ci
|
||||
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
subdirs: ${{ needs.get-tests.outputs.quantizations }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
secrets: inherit
|
||||
needs: [get-pr-number, get-sha, get-tests, create_run]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-quantization-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
report:
|
||||
name: Check & Report
|
||||
needs: [get-pr-number, check-timestamps, create_run, model-ci, quantization-ci]
|
||||
- name: Checkout to PR merge commit
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git log -1 --format=%H
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
update_run_status:
|
||||
name: Update Check Run Status
|
||||
needs: [get-sha, create_run, run_models_gpu, run_quantization_torch_gpu]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
statuses: write
|
||||
if: ${{ always() && needs.create_run.result == 'success' }}
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.run_models_gpu.result) && contains(fromJSON('["skipped", "success"]'), needs.run_quantization_torch_gpu.result) }}
|
||||
steps:
|
||||
- name: Show reports from jobs
|
||||
env:
|
||||
MODEL_REPORT: ${{ needs.model-ci.outputs.report }}
|
||||
QUANT_REPORT: ${{ needs.quantization-ci.outputs.report }}
|
||||
- name: Get `run_models_gpu` job status
|
||||
run: |
|
||||
echo "$MODEL_REPORT"
|
||||
echo "$QUANT_REPORT"
|
||||
|
||||
- name: Process and filter reports
|
||||
env:
|
||||
MODEL_REPORT: ${{ needs.model-ci.outputs.report }}
|
||||
QUANT_REPORT: ${{ needs.quantization-ci.outputs.report }}
|
||||
run: |
|
||||
# Preprocess with Python
|
||||
python3 << 'PYTHON_SCRIPT'
|
||||
import json
|
||||
import os
|
||||
|
||||
def filter_and_format_report(data):
|
||||
"""
|
||||
Filter out entries where commit is `None` (failing tests who status is not certain) and format as text
|
||||
"""
|
||||
lines = []
|
||||
|
||||
for model, model_result in data.items():
|
||||
model_lines = []
|
||||
for device, failures in model_result.items():
|
||||
|
||||
# Filter out None commits and extract just the test names
|
||||
test_names = [
|
||||
failure['test']
|
||||
for failure in failures
|
||||
if isinstance(failure, dict) and failure.get('commit') is not None
|
||||
]
|
||||
|
||||
# Add tests to model lines
|
||||
for idx, test_name in enumerate(test_names):
|
||||
if idx == 0:
|
||||
job_link = failures[idx]['job_link']
|
||||
model_lines.append(f"- [{model}]({job_link}):")
|
||||
|
||||
model_lines.append(f" {test_name}")
|
||||
|
||||
# Only add model section if it has tests
|
||||
if len(model_lines) > 0:
|
||||
lines.extend(model_lines)
|
||||
lines.append("") # Empty line between models
|
||||
|
||||
return "\n".join(lines).strip()
|
||||
|
||||
# Load and filter reports
|
||||
model_report_str = os.environ.get('MODEL_REPORT', '{}')
|
||||
quant_report_str = os.environ.get('QUANT_REPORT', '{}')
|
||||
|
||||
model_report = json.loads(model_report_str) if model_report_str else {}
|
||||
quant_report = json.loads(quant_report_str) if quant_report_str else {}
|
||||
|
||||
formatted_model = filter_and_format_report(model_report)
|
||||
formatted_quant = filter_and_format_report(quant_report)
|
||||
|
||||
# Write to files
|
||||
with open('model_ci.txt', 'w') as f:
|
||||
f.write(formatted_model)
|
||||
if formatted_model:
|
||||
f.write('\n')
|
||||
|
||||
with open('quantization_ci.txt', 'w') as f:
|
||||
f.write(formatted_quant)
|
||||
if formatted_quant:
|
||||
f.write('\n')
|
||||
PYTHON_SCRIPT
|
||||
|
||||
- name: Post results as PR comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
model_ci_result: ${{ needs.model-ci.result }}
|
||||
quantization_ci_result: ${{ needs.quantization-ci.result }}
|
||||
run: |
|
||||
{
|
||||
echo '## CI Results'
|
||||
echo "[Workflow Run ⚙️]($GITHUB_RUN_URL)"
|
||||
echo ''
|
||||
|
||||
# Check if both jobs were skipped or cancelled
|
||||
if [[ "$model_ci_result" == "skipped" || "$model_ci_result" == "cancelled" ]] && \
|
||||
[[ "$quantization_ci_result" == "skipped" || "$quantization_ci_result" == "cancelled" ]]; then
|
||||
echo '⚠️ No test being reported (jobs are skipped or cancelled)!'
|
||||
echo "STATUS=error" >> $GITHUB_ENV
|
||||
|
||||
# Check if either file has content
|
||||
elif [ -s model_ci.txt ] || [ -s quantization_ci.txt ]; then
|
||||
echo "STATUS=failure" >> $GITHUB_ENV
|
||||
|
||||
# Check if model_ci.txt has content
|
||||
if [ -s model_ci.txt ]; then
|
||||
echo '### Model CI Report'
|
||||
echo ''
|
||||
echo '#### ❌ Failed tests'
|
||||
echo ''
|
||||
cat model_ci.txt
|
||||
echo ''
|
||||
fi
|
||||
|
||||
# Check if quantization_ci.txt has content
|
||||
if [ -s quantization_ci.txt ]; then
|
||||
echo '### Quantization CI Report'
|
||||
echo ''
|
||||
echo '#### ❌ Failed tests'
|
||||
echo ''
|
||||
cat quantization_ci.txt
|
||||
echo ''
|
||||
fi
|
||||
else
|
||||
echo "STATUS=success" >> $GITHUB_ENV
|
||||
echo '✅ No failing test specific to this PR 🎉 !'
|
||||
fi
|
||||
} > comment_body.txt
|
||||
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-F body=@comment_body.txt
|
||||
echo "${{ needs.run_models_gpu.result }}"
|
||||
echo "${{ needs.run_quantization_torch_gpu.result }}"
|
||||
echo $STATUS_OK
|
||||
if [ "$STATUS_OK" = "true" ]; then
|
||||
echo "STATUS=success" >> $GITHUB_ENV
|
||||
else
|
||||
echo "STATUS=failure" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update PR commit statuses
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_head_sha: ${{ needs.check-timestamps.outputs.PR_HEAD_SHA }}
|
||||
# The env. variable `STATUS` used here is set in the previous step
|
||||
run: |
|
||||
echo "${{ needs.run_models_gpu.result }}"
|
||||
echo "${{ env.STATUS }}"
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/statuses/${pr_head_sha}" \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=$STATUS" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
|
||||
1
.github/workflows/self-nightly-caller.yml
vendored
1
.github/workflows/self-nightly-caller.yml
vendored
@ -51,7 +51,6 @@ jobs:
|
||||
slack_report_channel: "#transformers-ci-past-future"
|
||||
docker: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
ci_event: Nightly CI
|
||||
runner_type: "a10"
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci_with_torch_nightly
|
||||
commit_sha: ${{ github.event.workflow_run.head_sha || github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
Normal file
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
name: Self-hosted runner (AMD mi210 CI caller)
|
||||
|
||||
on:
|
||||
#workflow_run:
|
||||
# workflows: ["Self-hosted runner (push-caller)"]
|
||||
# branches: ["main"]
|
||||
# types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi210
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi210
|
||||
secrets: inherit
|
||||
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
Normal file
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
name: Self-hosted runner (AMD mi250 CI caller)
|
||||
|
||||
on:
|
||||
#workflow_run:
|
||||
# workflows: ["Self-hosted runner (push-caller)"]
|
||||
# branches: ["main"]
|
||||
# types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi250
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi250
|
||||
secrets: inherit
|
||||
334
.github/workflows/self-push-amd.yml
vendored
Normal file
334
.github/workflows/self-push-amd.yml
vendored
Normal file
@ -0,0 +1,334 @@
|
||||
name: Self-hosted runner AMD GPU (push)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
gpu_flavor:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
setup_gpu:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_models_gpu:
|
||||
name: Model tests
|
||||
needs: setup_gpu
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup_gpu,
|
||||
run_models_gpu,
|
||||
# run_tests_torch_cuda_extensions_single_gpu,
|
||||
# run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Setup status: ${{ needs.setup_gpu.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup_gpu.result }}
|
||||
|
||||
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"
|
||||
54
.github/workflows/self-push-caller.yml
vendored
Normal file
54
.github/workflows/self-push-caller.yml
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
# Used to trigger self-push CI
|
||||
name: Self-hosted runner (push-caller)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
check-for-setup:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Check if setup was changed
|
||||
outputs:
|
||||
changed: ${{ steps.was_changed.outputs.changed }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "2"
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
|
||||
|
||||
- name: Was setup changed
|
||||
id: was_changed
|
||||
run: |
|
||||
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
|
||||
if [ `basename "${file}"` = "setup.py" ]; then
|
||||
echo "changed=1" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
done
|
||||
|
||||
build-docker-containers:
|
||||
needs: check-for-setup
|
||||
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
|
||||
uses: ./.github/workflows/build-docker-images.yml
|
||||
with:
|
||||
image_postfix: "-push-ci"
|
||||
secrets: inherit
|
||||
|
||||
run_push_ci:
|
||||
name: Trigger Push CI
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ always() }}
|
||||
needs: build-docker-containers
|
||||
steps:
|
||||
- name: Trigger push CI via workflow_run
|
||||
run: echo "Trigger push CI via workflow_run"
|
||||
652
.github/workflows/self-push.yml
vendored
Normal file
652
.github/workflows/self-push.yml
vendored
Normal file
@ -0,0 +1,652 @@
|
||||
name: Self-hosted runner (push)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (push-caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- ci_*
|
||||
- ci-*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
repository_dispatch:
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
env:
|
||||
MKL_SERVICE_FORCE_INTEL: 1
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_torch_cuda_extensions_single_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
run_tests_torch_cuda_extensions_multi_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_tests_torch_cuda_extensions_single_gpu,
|
||||
run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: push
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
@ -2,7 +2,7 @@ name: Self-hosted runner (AMD scheduled CI caller)
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "17 5 * * *"
|
||||
- cron: "17 2 * * *"
|
||||
|
||||
jobs:
|
||||
run_scheduled_amd_ci:
|
||||
|
||||
@ -21,7 +21,7 @@ jobs:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
@ -33,7 +33,7 @@ jobs:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
@ -45,7 +45,7 @@ jobs:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
|
||||
21
.github/workflows/self-scheduled-caller.yml
vendored
21
.github/workflows/self-scheduled-caller.yml
vendored
@ -33,13 +33,10 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
env:
|
||||
prev_workflow_run_id: ${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}
|
||||
other_workflow_run_id: ${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "$prev_workflow_run_id" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "$other_workflow_run_id" > "setup_values/other_workflow_run_id.txt"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@ -66,7 +63,7 @@ jobs:
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
@ -121,15 +118,3 @@ jobs:
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
kernels-ci:
|
||||
name: Kernels CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_kernels_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-kernels"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
@ -1,60 +0,0 @@
|
||||
name: Nvidia CI - Flash Attn
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
push:
|
||||
branches:
|
||||
- run_nvidia_ci_flash_attn*
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
prev_workflow_run_id:
|
||||
description: 'previous workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
other_workflow_run_id:
|
||||
description: 'other workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
|
||||
# Used for `push` to easily modify the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: setup_values
|
||||
path: setup_values
|
||||
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-flash-attn"
|
||||
docker: huggingface/transformers-all-latest-gpu:flash-attn
|
||||
ci_event: Daily CI
|
||||
runner_type: "a10"
|
||||
report_repo_id: hf-internal-testing/transformers_flash_attn_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
pytest_marker: "flash_attn_test or flash_attn_3_test"
|
||||
secrets: inherit
|
||||
220
.github/workflows/self-scheduled.yml
vendored
220
.github/workflows/self-scheduled.yml
vendored
@ -34,20 +34,10 @@ on:
|
||||
runner_type:
|
||||
required: false
|
||||
type: string
|
||||
subdirs:
|
||||
models:
|
||||
default: ""
|
||||
required: false
|
||||
type: string
|
||||
pytest_marker:
|
||||
required: false
|
||||
type: string
|
||||
pr_number:
|
||||
required: false
|
||||
type: string
|
||||
outputs:
|
||||
report:
|
||||
description: "Content of the report of new failures"
|
||||
value: ${{ jobs.check_new_failures.outputs.report }}
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -60,6 +50,7 @@ env:
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
NUM_SLICES: 2
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
@ -80,11 +71,8 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin $commit_sha
|
||||
git fetch && git checkout $commit_sha
|
||||
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
@ -101,17 +89,11 @@ jobs:
|
||||
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
subdirs: ${{ inputs.subdirs }}
|
||||
NUM_SLICES: 2
|
||||
run: |
|
||||
if [ "$job" = "run_models_gpu" ]; then
|
||||
python3 ../utils/split_model_tests.py --subdirs "$subdirs" --num_splits "$NUM_SLICES" > folder_slices.txt
|
||||
echo "folder_slices=$(cat folder_slices.txt)" >> $GITHUB_OUTPUT
|
||||
python3 -c "import ast; folder_slices = ast.literal_eval(open('folder_slices.txt').read()); open('slice_ids.txt', 'w').write(str(list(range(len(folder_slices)))))"
|
||||
echo "slice_ids=$(cat slice_ids.txt)" >> $GITHUB_OUTPUT
|
||||
elif [ "$job" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
@ -120,10 +102,8 @@ jobs:
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
name: Identify quantization method to test
|
||||
working-directory: /transformers/tests
|
||||
env:
|
||||
subdirs: ${{ inputs.subdirs || 'None' }}
|
||||
run: |
|
||||
echo "quantization_matrix=$(python3 -c 'import ast; import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); subdirs = ast.literal_eval(os.environ["subdirs"]); quantization_tests = [x.removeprefix("quantization/") for x in subdirs] if subdirs is not None else quantization_tests; d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))); print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -147,7 +127,6 @@ jobs:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
runner_type: ${{ inputs.runner_type }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
pytest_marker: ${{ inputs.pytest_marker }}
|
||||
secrets: inherit
|
||||
|
||||
run_trainer_and_fsdp_gpu:
|
||||
@ -181,14 +160,12 @@ jobs:
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -210,17 +187,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -229,12 +204,12 @@ jobs:
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports="${machine_type}_run_pipelines_torch_gpu_test_reports" tests/pipelines
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_pipelines_torch_gpu_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -258,9 +233,7 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -282,17 +255,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -302,12 +273,12 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_examples_gpu_test_reports" examples/pytorch
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_examples_gpu_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -331,9 +302,7 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
@ -355,7 +324,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again* (for nightly & Past CI)
|
||||
@ -365,7 +334,7 @@ jobs:
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
rm -rf DeepSpeed
|
||||
git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -383,17 +352,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -402,14 +369,12 @@ jobs:
|
||||
- name: Run all tests on GPU
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_torch_cuda_extensions_gpu_test_reports" tests/deepspeed tests/extended
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
working_directory_prefix: ${{ inputs.working-directory-prefix }}
|
||||
run: cat "${working_directory_prefix}/transformers/reports/${machine_type}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt"
|
||||
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -436,19 +401,16 @@ jobs:
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
env:
|
||||
matrix_folders_raw: ${{ matrix.folders }}
|
||||
run: |
|
||||
echo "$matrix_folders_raw"
|
||||
matrix_folders="${matrix_folders_raw/'quantization/'/'quantization_'}"
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -470,17 +432,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -488,96 +448,20 @@ jobs:
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
folders: ${{ matrix.folders }}
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_quantization_torch_gpu_${matrix_folders}_test_reports" tests/${folders}
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_quantization_torch_gpu_${matrix_folders}_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
run_kernels_gpu:
|
||||
if: ${{ inputs.job == 'run_kernels_gpu' }}
|
||||
name: Kernel tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
|
||||
- name: Reinstall transformers in edit mode
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[testing]
|
||||
|
||||
- name: Install kernels
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip install -U kernels
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run kernel tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_kernels_gpu_test_reports" tests/kernels/test_kernels.py
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_kernels_gpu_test_reports/failures_short.txt"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_kernels_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_kernels_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_kernels_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_extract_warnings:
|
||||
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
|
||||
@ -586,10 +470,11 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [setup, run_models_gpu]
|
||||
steps:
|
||||
# Checkout in order to run `utils/extract_warnings.py`. Avoid **explicit** checkout (i.e. don't specify `ref`) for
|
||||
# security reason.
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
ref: ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Install transformers
|
||||
run: pip install transformers
|
||||
@ -609,12 +494,9 @@ jobs:
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
env:
|
||||
github_run_id: ${{ github.run_id }}
|
||||
access_token: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id "$github_run_id" --output_dir warnings_in_ci --token "$access_token" --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d); print(d)')"
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
@ -633,7 +515,6 @@ jobs:
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_quantization_torch_gpu,
|
||||
run_kernels_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
if: always() && !cancelled()
|
||||
@ -653,17 +534,16 @@ jobs:
|
||||
secrets: inherit
|
||||
|
||||
check_new_failures:
|
||||
if: ${{ always() && needs.send_results.result == 'success' }}
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
start_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
pr_number: ${{ inputs.pr_number }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
15
.github/workflows/slack-report.yml
vendored
15
.github/workflows/slack-report.yml
vendored
@ -41,16 +41,13 @@ jobs:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
env:
|
||||
setup_status: ${{ inputs.setup_status }}
|
||||
run: |
|
||||
echo "Setup status: $setup_status"
|
||||
echo "Setup status: ${{ inputs.setup_status }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
# Security: checkout to the `main` branch for untrusted triggers (issue_comment, pull_request_target), otherwise use the specified ref
|
||||
ref: ${{ (github.event_name == 'issue_comment' || github.event_name == 'pull_request_target') && 'main' || (inputs.commit_sha || github.sha) }}
|
||||
ref: ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
|
||||
@ -84,8 +81,6 @@ jobs:
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
quantization_matrix: ${{ inputs.quantization_matrix }}
|
||||
folder_slices: ${{ inputs.folder_slices }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
@ -94,10 +89,10 @@ jobs:
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
if [ "$quantization_matrix" != "" ]; then
|
||||
python utils/notification_service.py "$quantization_matrix"
|
||||
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "$folder_slices"
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
|
||||
35
.github/workflows/ssh-runner.yml
vendored
35
.github/workflows/ssh-runner.yml
vendored
@ -4,7 +4,7 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
runner_type:
|
||||
description: 'Type of runner to test (a10)'
|
||||
description: 'Type of runner to test (a10 or t4)'
|
||||
required: true
|
||||
docker_image:
|
||||
description: 'Name of the Docker image'
|
||||
@ -36,10 +36,14 @@ jobs:
|
||||
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
|
||||
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
|
||||
run: |
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache-ssh" >> $GITHUB_ENV
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-12xlarge-cache-ssh" >> $GITHUB_ENV
|
||||
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
|
||||
else
|
||||
echo "RUNNER=" >> $GITHUB_ENV
|
||||
fi
|
||||
@ -47,8 +51,8 @@ jobs:
|
||||
- name: Set runner to use
|
||||
id: set_runner
|
||||
run: |
|
||||
echo "$RUNNER"
|
||||
echo "RUNNER=$RUNNER" >> $GITHUB_OUTPUT
|
||||
echo ${{ env.RUNNER }}
|
||||
echo "RUNNER=${{ env.RUNNER }}" >> $GITHUB_OUTPUT
|
||||
|
||||
ssh_runner:
|
||||
name: "SSH"
|
||||
@ -57,13 +61,13 @@ jobs:
|
||||
group: ${{ needs.get_runner.outputs.RUNNER }}
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ github.sha }}
|
||||
run: |
|
||||
git fetch && git checkout "$commit_sha"
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
@ -95,17 +99,14 @@ jobs:
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
env:
|
||||
user_slack_id: ${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}
|
||||
default_slack_channel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
run: |
|
||||
echo "$github_actor"
|
||||
if [ "$user_slack_id" != "" ]; then
|
||||
echo "SLACKCHANNEL=$user_slack_id" >> $GITHUB_ENV
|
||||
echo "${{ env.github_actor }}"
|
||||
if [ "${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" != "" ]; then
|
||||
echo "SLACKCHANNEL=${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "SLACKCHANNEL=$default_slack_channel" >> $GITHUB_ENV
|
||||
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
|
||||
- name: Tailscale # In order to be able to SSH when a test fails
|
||||
uses: huggingface/tailscale-action@main
|
||||
with:
|
||||
|
||||
@ -14,7 +14,7 @@ This AGENTS.md file provides guidance for code agents working with this codebase
|
||||
|
||||
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
|
||||
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
|
||||
- Code style is enforced in the CI. You can install the style tools with `pip install -e ".[quality]"`. You can then run `make fixup` to apply style and consistency fixes to your code.
|
||||
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
|
||||
|
||||
## Copying and inheritance
|
||||
|
||||
@ -36,4 +36,4 @@ After making changes, you should usually run `make fixup` to ensure any copies a
|
||||
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
|
||||
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
|
||||
|
||||
In order to run tests, you may need to install dependencies. You can do this with `pip install -e ".[testing]"`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
|
||||
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
|
||||
121
CONTRIBUTING.md
121
CONTRIBUTING.md
@ -112,126 +112,7 @@ New models are constantly released and if you want to implement a new model, ple
|
||||
|
||||
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
|
||||
|
||||
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/modular_transformers).
|
||||
|
||||
### Vision-Language Model Contribution Checklist
|
||||
|
||||
If you're contributing a **vision-language model** (or any multimodal model that processes images/videos), please follow this checklist. Maintainers will use this to review your PR, and completing these steps will significantly increase the likelihood of your PR being merged quickly.
|
||||
|
||||
**Required checklist for all vision-language model contributions:**
|
||||
|
||||
☐ **1. Implement a modular file**
|
||||
|
||||
All new models should use the modular architecture pattern. Create a `modular_<model_name>.py` file using the modular model converter:
|
||||
|
||||
- Use the CLI, [`transformers add-new-model-like`](https://github.com/huggingface/transformers/blob/main/src/transformers/cli/add_new_model_like.py) to generate a modular skeleton and get started
|
||||
- All code should be in the modular file if possible. Modeling must be in it, it's better if configuration is in it as well. [Modular guide](./modular_transformers#implementing-a-modular-file) shows a quick way to set up a modular file.
|
||||
- Reuse existing patterns from similar models as much as possible
|
||||
- You can make the model compatible with inference engines such as vLLM or SGLang, and enable zero-effort integration. See specific requirements for model implementation in ["Transformers modeling backend"](./transformers_as_backend#multimodal-models)
|
||||
|
||||
To verify your modular file is correct, run:
|
||||
|
||||
```bash
|
||||
python utils/modular_model_converter.py <model_name>
|
||||
```
|
||||
|
||||
This will generate the separate files (`modeling_*.py`, `configuration_*.py`, etc.) from your modular file. The CI will enforce that these generated files match your modular file.
|
||||
|
||||
☐ **2. Add a fast image processor (for image models)**
|
||||
|
||||
If your model processes images, implement a fast image processor that uses `torch` and `torchvision` instead of PIL/numpy for better inference performance:
|
||||
|
||||
- See the detailed guide in [#36978](https://github.com/huggingface/transformers/issues/36978)
|
||||
- Fast processors inherit from `BaseImageProcessorFast`
|
||||
- Examples: `LlavaOnevisionImageProcessorFast`, `Idefics2ImageProcessorFast`
|
||||
|
||||
☐ **3. Create a weight conversion script**
|
||||
|
||||
Add a `convert_<model_name>_to_hf.py` script that converts the original model weights to the HuggingFace format:
|
||||
|
||||
- Script should handle checkpoint loading, key mapping, and saving in HF format
|
||||
- Include usage examples and documentation in the script
|
||||
- Examples: [`convert_llava_onevision_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py), [`convert_idefics2_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py)
|
||||
|
||||
☐ **4. Add integration tests with exact output matching**
|
||||
|
||||
At minimum, add an `IntegrationTest` class that tests end-to-end generation (processing and modelling) with **exact** output matching:
|
||||
|
||||
- For generative models: test that generated text matches expected output exactly
|
||||
- For non-generative models: test that output logits match expected values
|
||||
- Tests should use real checkpoints (load in 4-bit or half precision if the checkpoint is too big to fit in our CI runners) and real inputs
|
||||
- Example pattern:
|
||||
|
||||
```python
|
||||
class MyModelIntegrationTest(unittest.TestCase):
|
||||
@slow
|
||||
def test_model_integration(self):
|
||||
model = MyModelForConditionalGeneration.from_pretrained("org/model-name")
|
||||
processor = AutoProcessor.from_pretrained("org/model-name")
|
||||
|
||||
inputs = processor(images=image, text=prompt, return_tensors="pt")
|
||||
output = model.generate(**inputs, max_new_tokens=20)
|
||||
|
||||
EXPECTED_TEXT = "exact expected output"
|
||||
self.assertEqual(processor.decode(output[0]), EXPECTED_TEXT)
|
||||
```
|
||||
|
||||
See `tests/models/llava_onevision/test_modeling_llava_onevision.py` for complete examples.
|
||||
|
||||
☐ **5. Update documentation**
|
||||
|
||||
Add or update model documentation:
|
||||
|
||||
- Create if the cli hasn't `docs/source/en/model_doc/<model_name>.md` with usage examples
|
||||
- Include model description, paper link, and basic usage with `Pipeline` and `AutoModel`
|
||||
- Add the model to the appropriate TOC files
|
||||
|
||||
☐ **6. Look for reusable patterns**
|
||||
|
||||
The library has 400+ models with many established patterns:
|
||||
|
||||
- Search for similar models (e.g., other vision-language models)
|
||||
- Reuse attention mechanisms, layer implementations, and processing patterns
|
||||
- Check models like LLaVA, Idefics2, Fuyu for vision-language patterns
|
||||
- Use provided decorators like (`auto_docstring`, `can_return_tuple`, `check_model_inputs` and `_can_record_outputs`) where relevant.
|
||||
- Don't reinvent the wheel
|
||||
|
||||
☐ **7. Run quality checks and read the output**
|
||||
|
||||
Before submitting your PR, install quality dependencies and run the full check suite:
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
make fixup
|
||||
```
|
||||
|
||||
**Important**: Take time to read the output of `make fixup`. It will:
|
||||
- Lint and format your code automatically
|
||||
- Run consistency checks (imports, docstrings, etc.)
|
||||
- Show any remaining issues that need manual fixes
|
||||
|
||||
All checks must pass before your PR can be merged.
|
||||
|
||||
**If this checklist is complete, your PR has a very high likelihood of being merged!** Following these steps makes the maintainers' work much easier and will reduce the number of review iterations, getting your important work out there faster.
|
||||
|
||||
#### Copy-pastable checklist for maintainers
|
||||
|
||||
Here's a condensed version maintainers can copy into PRs:
|
||||
|
||||
```markdown
|
||||
## Multimodal Model Addition Checklist
|
||||
|
||||
Please ensure your PR completes all following items. See the [full checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#vision-language-model-contribution-checklist) for details.
|
||||
|
||||
- [ ] **Modular file**: `modular_<model_name>.py` implemented and verified with `python utils/modular_model_converter.py <model_name>`
|
||||
- [ ] **Fast image processor**: Implemented using `BaseImageProcessorFast` (see [#36978](https://github.com/huggingface/transformers/issues/36978))
|
||||
- [ ] **Conversion script**: `convert_<model_name>_to_hf.py` added with usage examples
|
||||
- [ ] **Integration tests**: End-to-end tests with exact output matching (text or logits)
|
||||
- [ ] **Documentation**: Model docs added/updated in `docs/source/en/model_doc/`
|
||||
- [ ] **Pattern reuse**: Verified against similar models (LLaVA, Idefics2, etc.)
|
||||
- [ ] **Quality checks**: `make fixup` passes with no errors
|
||||
|
||||
```
|
||||
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
|
||||
|
||||
## Do you want to add documentation?
|
||||
|
||||
|
||||
1
Makefile
1
Makefile
@ -45,7 +45,6 @@ repo-consistency:
|
||||
python utils/check_modular_conversion.py
|
||||
python utils/check_dummies.py
|
||||
python utils/check_repo.py
|
||||
python utils/check_init_weights_data.py
|
||||
python utils/check_inits.py
|
||||
python utils/check_pipeline_typing.py
|
||||
python utils/check_config_docstrings.py
|
||||
|
||||
@ -64,8 +64,8 @@ limitations under the License.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
|
||||
</h3>
|
||||
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning with text, computer
|
||||
vision, audio, video, and multimodal models, for both inference and training.
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
|
||||
vision, audio, video, and multimodal model, for both inference and training.
|
||||
|
||||
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
|
||||
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
|
||||
|
||||
@ -9,12 +9,6 @@ In this list, we showcase incredibly impactful and novel projects that have push
|
||||
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
|
||||
to add it.
|
||||
|
||||
## [◉ Universal Intelligence](https://github.com/blueraai/universal-intelligence)
|
||||
|
||||
[Universal Intelligence](https://github.com/blueraai/universal-intelligence) aims to standardize models, tools, and agents —transforming them into simple, composable, portable, interoperable, framework-agnostic, hardware-agnostic interfaces (through auto-negotiation and resource sharing); for fast and accessible development of AI applications.
|
||||
|
||||
Keywords: Protocol, Open-source, LLMs, Large Language Models, Agents, Low-code
|
||||
|
||||
## [gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
gpustat==1.1.1
|
||||
psutil==6.0.0
|
||||
psycopg2==2.9.9
|
||||
torch>=2.4.0
|
||||
hf_xet
|
||||
pandas>=1.5.0
|
||||
pandas>=1.5.0
|
||||
@ -1,11 +1,8 @@
|
||||
import hashlib
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
|
||||
KERNELIZATION_AVAILABLE = False
|
||||
try:
|
||||
@ -21,22 +18,11 @@ logger = logging.getLogger(__name__)
|
||||
class BenchmarkConfig:
|
||||
"""Configuration for a single benchmark scenario."""
|
||||
|
||||
all_attn_implementations = [
|
||||
("flash_attention_2", None),
|
||||
("eager", None),
|
||||
("sdpa", "math"),
|
||||
("sdpa", "flash_attention"),
|
||||
("flex_attention", None),
|
||||
]
|
||||
|
||||
all_compiled_modes = [None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
gpu_monitoring: bool = True, # NOTE: you may want to disable this at times as we have obsvered it could heavily slow down benchmarks on AMD
|
||||
continuous_batching: bool = False,
|
||||
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
@ -52,7 +38,6 @@ class BenchmarkConfig:
|
||||
self.warmup_iterations = warmup_iterations
|
||||
self.measurement_iterations = measurement_iterations
|
||||
self.gpu_monitoring = gpu_monitoring
|
||||
self.continuous_batching = continuous_batching
|
||||
# Input parameters
|
||||
self.batch_size = batch_size
|
||||
self.sequence_length = sequence_length
|
||||
@ -74,35 +59,12 @@ class BenchmarkConfig:
|
||||
def check_validity(self, skip_validity_check: bool = False) -> None:
|
||||
if skip_validity_check:
|
||||
return
|
||||
# Check FA is installed
|
||||
if self.attn_implementation == "flash_attention_2" and not is_flash_attn_2_available():
|
||||
logger.warning(
|
||||
"Flash attention does not support compile mode. Defaulting to SDPA w/ flash attention backend."
|
||||
)
|
||||
self.attn_implementation = "sdpa"
|
||||
self.sdpa_backend = "flash_attention"
|
||||
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
|
||||
is_fa = self.attn_implementation == "flash_attention_2"
|
||||
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
|
||||
if is_fa:
|
||||
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
|
||||
self.compile_mode = None
|
||||
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
|
||||
if self.attn_implementation == "sdpa" and self.sdpa_backend is None:
|
||||
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
|
||||
logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
|
||||
self.sdpa_backend = default_backend
|
||||
if self.continuous_batching:
|
||||
if self.attn_implementation == "flex_attention":
|
||||
logger.error(
|
||||
"disabling continuous batching because of invalid configuration: flex attention is not supported"
|
||||
)
|
||||
self.continuous_batching = False
|
||||
elif self.attn_implementation == "sdpa" and self.sdpa_backend is not None:
|
||||
logger.warning(
|
||||
"when continuous batching is enabled, sdpa_backend must be None because of the attention mask, setting it to None"
|
||||
)
|
||||
self.sdpa_backend = "math"
|
||||
|
||||
@property
|
||||
def hash(self) -> str:
|
||||
@ -118,7 +80,6 @@ class BenchmarkConfig:
|
||||
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
|
||||
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
|
||||
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
|
||||
continuous_batching_str = "cb" if self.continuous_batching else "generate"
|
||||
sep = "-"
|
||||
else:
|
||||
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
|
||||
@ -128,11 +89,8 @@ class BenchmarkConfig:
|
||||
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
|
||||
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
|
||||
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
|
||||
continuous_batching_str = "continuous batching" if self.continuous_batching else "regular generate"
|
||||
sep = ", "
|
||||
return sep.join(
|
||||
[iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str, continuous_batching_str]
|
||||
)
|
||||
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
@ -140,7 +98,6 @@ class BenchmarkConfig:
|
||||
"warmup_iterations": self.warmup_iterations,
|
||||
"measurement_iterations": self.measurement_iterations,
|
||||
"gpu_monitoring": self.gpu_monitoring,
|
||||
"continuous_batching": self.continuous_batching,
|
||||
"batch_size": self.batch_size,
|
||||
"sequence_length": self.sequence_length,
|
||||
"num_tokens_to_generate": self.num_tokens_to_generate,
|
||||
@ -157,7 +114,6 @@ class BenchmarkConfig:
|
||||
warmup_iterations=data.get("warmup_iterations", 5),
|
||||
measurement_iterations=data.get("measurement_iterations", 20),
|
||||
gpu_monitoring=data.get("gpu_monitoring", False),
|
||||
continuous_batching=data.get("continuous_batching", False),
|
||||
batch_size=data.get("batch_size", 1),
|
||||
sequence_length=data.get("sequence_length", 128),
|
||||
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
|
||||
@ -171,72 +127,89 @@ class BenchmarkConfig:
|
||||
)
|
||||
|
||||
|
||||
def adapt_configs(
|
||||
configs: list[BenchmarkConfig],
|
||||
warmup_iterations: int | list[int] = 5,
|
||||
measurement_iterations: int | list[int] = 20,
|
||||
batch_size: int | list[int] = 1,
|
||||
sequence_length: int | list[int] = 128,
|
||||
num_tokens_to_generate: int | list[int] = 128,
|
||||
gpu_monitoring: bool | list[bool] = True,
|
||||
def cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
|
||||
compiled_mode: list[str | None],
|
||||
kernelized: list[bool],
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
|
||||
) -> list[BenchmarkConfig]:
|
||||
parameters = (
|
||||
x if isinstance(x, list) else [x]
|
||||
for x in [
|
||||
warmup_iterations,
|
||||
measurement_iterations,
|
||||
batch_size,
|
||||
sequence_length,
|
||||
num_tokens_to_generate,
|
||||
gpu_monitoring,
|
||||
]
|
||||
)
|
||||
iterator = itertools.product(*parameters)
|
||||
|
||||
adapted_configs = []
|
||||
for warmup_iters, measurement_iters, bs, seqlen, ntok, monitor in iterator:
|
||||
for config in configs:
|
||||
config = config.to_dict()
|
||||
config["warmup_iterations"] = warmup_iters
|
||||
config["measurement_iterations"] = measurement_iters
|
||||
config["batch_size"] = bs
|
||||
config["sequence_length"] = seqlen
|
||||
config["num_tokens_to_generate"] = ntok
|
||||
config["gpu_monitoring"] = monitor
|
||||
adapted_configs.append(BenchmarkConfig.from_dict(config))
|
||||
return adapted_configs
|
||||
|
||||
|
||||
def get_config_by_level(level: int) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
"gpu_monitoring": gpu_monitoring,
|
||||
}
|
||||
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
|
||||
configs = []
|
||||
# Early return if level is greater than 3: we generate all combinations of configs, maybe even w/ all compile modes
|
||||
if level >= 3:
|
||||
for attn_implementation, sdpa_backend in BenchmarkConfig.all_attn_implementations:
|
||||
# Usually there is not much to gain by compiling with other modes, but we allow it for level 4
|
||||
compile_modes = BenchmarkConfig.all_compiled_modes if level >= 4 else [None, "default"]
|
||||
for cm in compile_modes:
|
||||
for kernelize_on in {False, KERNELIZATION_AVAILABLE}:
|
||||
for cb_on in [False, True]:
|
||||
configs.append(
|
||||
BenchmarkConfig(
|
||||
attn_implementation=attn_implementation,
|
||||
sdpa_backend=sdpa_backend,
|
||||
compile_mode=cm,
|
||||
kernelize=kernelize_on,
|
||||
continuous_batching=cb_on,
|
||||
)
|
||||
)
|
||||
return configs
|
||||
# Otherwise, we add the configs for the given level
|
||||
if level >= 0:
|
||||
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default"))
|
||||
if level >= 1:
|
||||
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2"))
|
||||
configs.append(BenchmarkConfig(attn_implementation="eager", compile_mode="default"))
|
||||
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", continuous_batching=True))
|
||||
if level >= 2:
|
||||
configs.append(BenchmarkConfig(attn_implementation="sdpa", compile_mode="default"))
|
||||
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", kernelize=True))
|
||||
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", kernelize=True))
|
||||
configs.append(BenchmarkConfig(attn_implementation="paged|sdpa", continuous_batching=True))
|
||||
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
|
||||
for cm in list(dict.fromkeys(compiled_mode)):
|
||||
for kernelize_on in list(dict.fromkeys(kernelized)):
|
||||
config = BenchmarkConfig(
|
||||
attn_implementation=attn_implementation,
|
||||
sdpa_backend=sdpa_backend,
|
||||
compile_mode=cm,
|
||||
kernelize=kernelize_on,
|
||||
**kwargs,
|
||||
)
|
||||
configs.append(config)
|
||||
return configs
|
||||
|
||||
|
||||
def generate_all_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False,
|
||||
) -> list[BenchmarkConfig]:
|
||||
all_attn_implementations = [
|
||||
("flash_attention_2", None),
|
||||
("eager", None),
|
||||
("sdpa", "math"),
|
||||
("sdpa", "flash_attention"),
|
||||
("flex_attention", None),
|
||||
]
|
||||
return cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend=all_attn_implementations,
|
||||
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
|
||||
kernelized=[False, KERNELIZATION_AVAILABLE],
|
||||
warmup_iterations=warmup_iterations,
|
||||
measurement_iterations=measurement_iterations,
|
||||
batch_size=batch_size,
|
||||
sequence_length=sequence_length,
|
||||
num_tokens_to_generate=num_tokens_to_generate,
|
||||
gpu_monitoring=gpu_monitoring,
|
||||
)
|
||||
|
||||
|
||||
def generate_main_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = False,
|
||||
) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
"gpu_monitoring": gpu_monitoring,
|
||||
}
|
||||
return [ # TODO: test max-autotune instead of default
|
||||
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", **kwargs),
|
||||
BenchmarkConfig(attn_implementation="eager", compile_mode="default", **kwargs),
|
||||
BenchmarkConfig(attn_implementation="flash_attention_2", **kwargs),
|
||||
]
|
||||
|
||||
@ -4,7 +4,6 @@ import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
import tempfile
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
from datetime import datetime
|
||||
@ -12,8 +11,6 @@ from queue import Queue
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from datasets import Dataset
|
||||
from huggingface_hub import HfApi
|
||||
from tqdm import trange
|
||||
|
||||
from transformers import (
|
||||
@ -53,8 +50,6 @@ DEFAULT_PROMPT = "\n".join([
|
||||
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
|
||||
]) # fmt: skip
|
||||
|
||||
PUSH_TO_HUB_TOKEN = os.getenv("PUSH_TO_HUB_TOKEN", None)
|
||||
|
||||
|
||||
def compact_json_numeric_arrays(data: dict):
|
||||
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
|
||||
@ -117,25 +112,23 @@ def flush_memory():
|
||||
# Clear CUDA cache
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_max_memory_allocated()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
gc.collect()
|
||||
|
||||
|
||||
class BenchmarkStreamer(BaseStreamer):
|
||||
def __init__(self, **kwargs) -> None:
|
||||
self.timeout = kwargs.pop("timeout", 10)
|
||||
self.timestamps = []
|
||||
self.text_queue = Queue()
|
||||
self.stop_signal = None
|
||||
|
||||
def put(self, value):
|
||||
"""Receives tokens and logs the timestamp of the generation."""
|
||||
self.timestamps.append(time.perf_counter())
|
||||
self.text_queue.put(value)
|
||||
|
||||
def end(self):
|
||||
self.timestamps.append(time.perf_counter())
|
||||
self.text_queue.put(self.stop_signal)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
@ -151,22 +144,13 @@ class BenchmarkStreamer(BaseStreamer):
|
||||
class BenchmarkRunner:
|
||||
"""Main benchmark runner that coordinates benchmark execution."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
logger: logging.Logger,
|
||||
output_dir: str | None = None,
|
||||
branch_name: str | None = None,
|
||||
commit_id: str | None = None,
|
||||
commit_message: str | None = None,
|
||||
) -> None:
|
||||
def __init__(self, logger: logging.Logger, output_dir: str | None = None, commit_id: str | None = None) -> None:
|
||||
# Those stay constant for the whole run
|
||||
self.logger = logger
|
||||
if output_dir is None:
|
||||
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
|
||||
self.output_dir = output_dir
|
||||
self.branch_name = branch_name
|
||||
self.commit_id = get_git_revision() if commit_id is None else commit_id
|
||||
self.commit_message = commit_message
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
self.profile_dir = None
|
||||
# Attributes that are reset for each model
|
||||
@ -179,7 +163,7 @@ class BenchmarkRunner:
|
||||
self.model = None
|
||||
flush_memory()
|
||||
|
||||
def setup_benchmark(self, model_id: str, config: BenchmarkConfig) -> None:
|
||||
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
|
||||
# Some attributes only need to be set once per model
|
||||
if self._setup_for != model_id:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
@ -216,13 +200,10 @@ class BenchmarkRunner:
|
||||
self.model = self.model.eval().to(config.device)
|
||||
|
||||
# Kernelize the model if needed
|
||||
if config.kernelize and kernelize is not None and Mode is not None:
|
||||
if config.kernelize:
|
||||
self.model = kernelize(self.model, mode=Mode.INFERENCE)
|
||||
|
||||
def run_benchmark(
|
||||
self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0
|
||||
) -> dict[str, Any] | None:
|
||||
"""Run a single benchmark with the given model ID and config."""
|
||||
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
|
||||
sdpa_ctx = nullcontext()
|
||||
if config.attn_implementation == "sdpa":
|
||||
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
|
||||
@ -232,9 +213,8 @@ class BenchmarkRunner:
|
||||
self.logger.info(f"Running benchmark scenario: {config.name}")
|
||||
|
||||
# Quick validation: try one measurement first to see if this scenario works
|
||||
generate_fn = self.time_generate_batch if config.continuous_batching else self.time_generate
|
||||
flush_memory()
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
|
||||
max_new_tokens=1, gpu_monitor=None
|
||||
)
|
||||
if e2e_latency < 0:
|
||||
@ -244,14 +224,14 @@ class BenchmarkRunner:
|
||||
# Warmup runs
|
||||
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
|
||||
for _ in trange(config.warmup_iterations):
|
||||
_ = generate_fn(max_new_tokens=config.num_tokens_to_generate)
|
||||
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
|
||||
self.logger.info("Warmup over.")
|
||||
|
||||
# Measurement runs
|
||||
result = BenchmarkResult()
|
||||
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
|
||||
for _ in trange(config.measurement_iterations):
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
|
||||
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
|
||||
max_new_tokens=config.num_tokens_to_generate,
|
||||
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
|
||||
)
|
||||
@ -263,68 +243,11 @@ class BenchmarkRunner:
|
||||
self.profile_generate(num_tokens_to_profile, config.name)
|
||||
|
||||
return {
|
||||
"metadata": BenchmarkMetadata(
|
||||
model_id=model_id,
|
||||
branch_name=self.branch_name,
|
||||
commit_id=self.commit_id,
|
||||
commit_message=self.commit_message,
|
||||
),
|
||||
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
|
||||
"measurements": result,
|
||||
"config": config,
|
||||
}
|
||||
|
||||
# TODO: refactor `generate_batch` to handle streaming so we can use it here
|
||||
def time_generate_batch(
|
||||
self,
|
||||
max_new_tokens: int,
|
||||
gpu_monitor: GPUMonitor | None = None,
|
||||
) -> tuple[float, list[float], str, GPURawMetrics | None]:
|
||||
if gpu_monitor is not None:
|
||||
gpu_monitor.start()
|
||||
config = GenerationConfig(
|
||||
max_new_tokens=max_new_tokens,
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
do_sample=True,
|
||||
)
|
||||
manager = self.model.init_continuous_batching(config)
|
||||
manager.start()
|
||||
try:
|
||||
first_req_results = []
|
||||
timestamps = []
|
||||
wall_time_0 = time.perf_counter()
|
||||
inputs = self.inputs["input_ids"].tolist()
|
||||
manager.add_requests(inputs, max_new_tokens=max_new_tokens, streaming=True)
|
||||
first_req_id = None
|
||||
num_requests = len(inputs)
|
||||
finished_requests = 0
|
||||
while finished_requests < num_requests:
|
||||
# NOTE: I don't like having the extra if stmt here, but hopefully won't degrade perf too much
|
||||
result = manager.get_result()
|
||||
if result:
|
||||
timestamps.append(time.perf_counter() - wall_time_0)
|
||||
if result.is_finished():
|
||||
finished_requests += 1
|
||||
if first_req_id is None:
|
||||
first_req_id = result.request_id
|
||||
if result.request_id == first_req_id:
|
||||
first_req_results.append(result)
|
||||
else:
|
||||
if not manager.is_running():
|
||||
raise RuntimeError("Generation thread exited unexpectedly")
|
||||
wall_time_1 = time.perf_counter()
|
||||
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
|
||||
decoded_output = self.tokenizer.decode(
|
||||
[res.generated_tokens[0] for res in first_req_results], skip_special_tokens=True
|
||||
)
|
||||
shape_and_decoded_output = f"{(1, len(first_req_results))} | {decoded_output}"
|
||||
e2e_latency = wall_time_1 - wall_time_0
|
||||
return e2e_latency, timestamps, shape_and_decoded_output, gpu_metrics
|
||||
except Exception as e:
|
||||
raise e
|
||||
finally:
|
||||
manager.stop()
|
||||
|
||||
def time_generate(
|
||||
self,
|
||||
max_new_tokens: int,
|
||||
@ -382,28 +305,33 @@ class BenchmarkRunner:
|
||||
benchmark_configs: list[BenchmarkConfig],
|
||||
num_tokens_to_profile: int = 0,
|
||||
pretty_print_summary: bool = True,
|
||||
) -> tuple[str, dict[str, Any]]:
|
||||
"""Run multiple benchmarks for the given model ID and list of benchmark configs."""
|
||||
) -> dict[str, Any]:
|
||||
all_results = {}
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
start_time = time.perf_counter()
|
||||
|
||||
n_configs = len(benchmark_configs)
|
||||
for i, config in enumerate(benchmark_configs):
|
||||
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
|
||||
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
|
||||
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
|
||||
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
|
||||
config.sdpa_backend = default_backend
|
||||
|
||||
# Skip if already run
|
||||
if config.hash in all_results:
|
||||
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
|
||||
continue
|
||||
|
||||
# Otherwise, run the benchmark
|
||||
self.setup_benchmark(model_id, config)
|
||||
self.setup_one_run(model_id, config)
|
||||
self.logger.info(
|
||||
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
|
||||
)
|
||||
|
||||
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
|
||||
try:
|
||||
results = self.run_benchmark(model_id, config, num_tokens_to_profile)
|
||||
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
|
||||
if results is not None:
|
||||
all_results[config.hash] = results
|
||||
|
||||
@ -413,30 +341,24 @@ class BenchmarkRunner:
|
||||
self.cleanup()
|
||||
self.save_results(model_id, all_results, timestamp=timestamp)
|
||||
|
||||
if len(all_results) < 1:
|
||||
raise RuntimeError("No benchmark was run succesfully")
|
||||
|
||||
if pretty_print_summary:
|
||||
print()
|
||||
print("=" * 100)
|
||||
print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
|
||||
print(f"Total number of benchmarks: {len(all_results)}")
|
||||
print("First run metadata:")
|
||||
first_key = list(all_results.keys())[0]
|
||||
first_metadata = all_results[first_key]["metadata"].to_dict()
|
||||
hardware_info = first_metadata.pop("hardware_info")
|
||||
pretty_print_dict(first_metadata | hardware_info, tabs=1)
|
||||
if len(all_results) > 0:
|
||||
print("First run metadata:")
|
||||
first_key = list(all_results.keys())[0]
|
||||
first_metadata = all_results[first_key]["metadata"].to_dict()
|
||||
hardware_info = first_metadata.pop("hardware_info")
|
||||
pretty_print_dict(first_metadata | hardware_info, tabs=1)
|
||||
for result in all_results.values():
|
||||
print("=" * 100)
|
||||
print(f"Config: {result['config'].infer_name(compact=False)}\n")
|
||||
result["measurements"].pprint(
|
||||
batch_size=result["config"].batch_size,
|
||||
num_generated_tokens=result["config"].num_tokens_to_generate,
|
||||
tabs=1,
|
||||
)
|
||||
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
|
||||
print("=" * 100)
|
||||
|
||||
return (timestamp, all_results)
|
||||
return all_results
|
||||
|
||||
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
|
||||
"""Save benchmark results to JSON file."""
|
||||
@ -465,43 +387,3 @@ class BenchmarkRunner:
|
||||
|
||||
self.logger.info(f"Results saved to {filepath}")
|
||||
return filepath
|
||||
|
||||
def push_results_to_hub(self, dataset_id: str, results: dict[Any, Any], timestamp: str) -> None:
|
||||
if PUSH_TO_HUB_TOKEN is None:
|
||||
raise ValueError(
|
||||
"PUSH_TO_HUB_TOKEN is not set, cannot push results to the Hub. When setting dataset_id, please also set the PUSH_TO_HUB_TOKEN environment variable."
|
||||
)
|
||||
|
||||
n_results = len(results)
|
||||
self.logger.info(f"Pushing {n_results} results to: {dataset_id}")
|
||||
rows = []
|
||||
for cfg_hash, entry in results.items():
|
||||
row = {
|
||||
"benchmark_config_hash": cfg_hash,
|
||||
"config": entry["config"].to_dict(),
|
||||
"measurements": entry["measurements"].to_dict(),
|
||||
"metadata": entry["metadata"].to_dict(),
|
||||
}
|
||||
rows.append(row)
|
||||
|
||||
ds = Dataset.from_list(rows)
|
||||
with tempfile.TemporaryDirectory() as tmp:
|
||||
jsonl_path = os.path.join(tmp, "data.jsonl")
|
||||
with open(jsonl_path, "w") as f:
|
||||
json_lines = []
|
||||
for ex in ds:
|
||||
json_lines.append(json.dumps(ex, ensure_ascii=False))
|
||||
f.write("\n".join(json_lines))
|
||||
|
||||
api = HfApi()
|
||||
# NOTE: we expect the repository to already exist
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
|
||||
file_name = f"benchmark_run_{timestamp}.jsonl"
|
||||
api.upload_file(
|
||||
path_or_fileobj=jsonl_path,
|
||||
path_in_repo=file_name,
|
||||
repo_id=dataset_id,
|
||||
repo_type="dataset",
|
||||
token=PUSH_TO_HUB_TOKEN,
|
||||
)
|
||||
self.logger.info(f"Succesfully uploaded results to: {dataset_id}")
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
@ -36,17 +36,16 @@ def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
|
||||
return stats
|
||||
|
||||
|
||||
def equalize_lengths_and_collate(stats: dict[str, dict[str, str]]) -> dict[str, str]:
|
||||
"""Note: This operation is destructive as it will update values in place before returning a new correctly formatted dict"""
|
||||
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
|
||||
keys = ["avg", "std", "min", "med", "max", "p95"]
|
||||
for key in keys:
|
||||
max_length = max(len(stat[key]) for stat in stats.values())
|
||||
for stat in stats.values():
|
||||
max_length = max(len(stat[key]) for stat in stats)
|
||||
for stat in stats:
|
||||
stat[key] = stat[key].ljust(max_length, " ")
|
||||
return {name: " ".join([f"{key}={stat[key]}" for key in keys]) for name, stat in stats.items()}
|
||||
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
|
||||
|
||||
|
||||
def pretty_print_dict(data: dict[str, str], tabs: int = 0) -> None:
|
||||
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
|
||||
max_key_length = max([len(key) for key in data.keys()])
|
||||
for key, value in data.items():
|
||||
tabs_str = " " * tabs
|
||||
@ -60,26 +59,19 @@ class BenchmarkMetadata:
|
||||
|
||||
model_id: str
|
||||
timestamp: str
|
||||
branch_name: str
|
||||
commit_id: str
|
||||
commit_message: str
|
||||
hardware_info: HardwareInfo
|
||||
|
||||
def __init__(self, model_id: str, commit_id: str, branch_name: str = "main", commit_message: str = "") -> None:
|
||||
def __init__(self, model_id: str, commit_id: str):
|
||||
self.model_id = model_id
|
||||
self.timestamp = datetime.now(timezone.utc).isoformat()
|
||||
self.branch_name = branch_name
|
||||
self.timestamp = datetime.utcnow().isoformat()
|
||||
self.commit_id = commit_id
|
||||
self.commit_message = commit_message
|
||||
self.hardware_info = HardwareInfo()
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {
|
||||
"model_id": self.model_id,
|
||||
"timestamp": self.timestamp,
|
||||
"branch_name": self.branch_name,
|
||||
"commit_id": self.commit_id,
|
||||
"commit_message": self.commit_message,
|
||||
"hardware_info": self.hardware_info.to_dict(),
|
||||
}
|
||||
|
||||
@ -142,19 +134,27 @@ class BenchmarkResult:
|
||||
def get_measured_itl(self) -> list[float]:
|
||||
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
|
||||
|
||||
def get_throughput(self, total_generated_tokens: int) -> list[float]:
|
||||
return [total_generated_tokens / e2e_latency for e2e_latency in self.e2e_latency]
|
||||
def get_throughput(self, batch_size: int) -> float:
|
||||
return [
|
||||
batch_size * len(dt) / e2e_latency
|
||||
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
|
||||
]
|
||||
|
||||
def pprint(self, batch_size: int = 0, num_generated_tokens: int = 0, tabs: int = 0) -> None:
|
||||
measurements = {
|
||||
"E2E Latency": add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
|
||||
"Time to First Token": add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
|
||||
}
|
||||
itl_values = self.get_measured_itl()
|
||||
if len(itl_values) > 0:
|
||||
measurements["Inter-Token Latency"] = add_unit_to_duration(compute_basic_statistics(itl_values))
|
||||
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
|
||||
stats_to_collate = [
|
||||
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
|
||||
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
|
||||
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
|
||||
]
|
||||
if batch_size > 0:
|
||||
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size * num_generated_tokens))
|
||||
measurements["Throughput"] = {key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()}
|
||||
dict_to_pprint = equalize_lengths_and_collate(measurements)
|
||||
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
|
||||
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
|
||||
collated_stats = equalize_lengths_and_collate(stats_to_collate)
|
||||
dict_to_pprint = {
|
||||
"E2E Latency": collated_stats[0],
|
||||
"Time to First Token": collated_stats[1],
|
||||
"Inter-Token Latency": collated_stats[2],
|
||||
}
|
||||
if batch_size > 0:
|
||||
dict_to_pprint["Throughput"] = collated_stats[3]
|
||||
pretty_print_dict(dict_to_pprint, tabs=tabs)
|
||||
|
||||
@ -2,5 +2,6 @@ numpy>=1.21.0
|
||||
psutil>=5.8.0
|
||||
gpustat>=1.0.0
|
||||
torch>=2.0.0
|
||||
transformers>=4.30.0
|
||||
datasets>=2.10.0
|
||||
huggingface_hub>=0.16.0
|
||||
huggingface_hub>=0.16.0
|
||||
@ -23,7 +23,7 @@ import logging
|
||||
import sys
|
||||
import uuid
|
||||
|
||||
from framework.benchmark_config import adapt_configs, get_config_by_level
|
||||
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
|
||||
from framework.benchmark_runner import BenchmarkRunner
|
||||
|
||||
|
||||
@ -33,37 +33,18 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
|
||||
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
|
||||
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
|
||||
parser.add_argument("--warmup", "-w", type=int, default=3, help="Number of warmup iterations")
|
||||
parser.add_argument("--iterations", "-i", type=int, default=10, help="Number of measurement iterations")
|
||||
|
||||
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations")
|
||||
parser.add_argument("--iterations", type=int, default=10, help="Number of measurement iterations")
|
||||
|
||||
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
|
||||
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
|
||||
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
|
||||
|
||||
parser.add_argument(
|
||||
"--level",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Level of coverage for the benchmark. 0: only the main config, 1: a few important configs, 2: a config for"
|
||||
" each attn implementation an option, 3: cross-generate all combinations of configs, 4: cross-generate all"
|
||||
" combinations of configs w/ all compile modes",
|
||||
)
|
||||
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
|
||||
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
|
||||
|
||||
parser.add_argument("--branch-name", type=str, help="Git branch name")
|
||||
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
|
||||
parser.add_argument("--commit-message", type=str, help="Git commit message")
|
||||
|
||||
parser.add_argument(
|
||||
"--no-gpu-monitoring", action="store_true", help="Disables GPU monitoring during benchmark runs"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--push-result-to-dataset",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Name of the dataset to push results to. If not provided, results are not pushed to the Hub.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Setup logging
|
||||
@ -80,34 +61,56 @@ if __name__ == "__main__":
|
||||
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
|
||||
logger.info(f"Output directory: {args.output_dir}")
|
||||
|
||||
# We cannot compute ITL if we don't have at least two measurements
|
||||
if any(n <= 1 for n in args.num_tokens_to_generate):
|
||||
raise ValueError("--num_tokens_to_generate arguments should be larger than 1")
|
||||
|
||||
# Error out if one of the arguments is not provided
|
||||
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
|
||||
raise ValueError(
|
||||
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
|
||||
)
|
||||
|
||||
# Get the configs for the given coverage level
|
||||
configs = get_config_by_level(args.level)
|
||||
# Adapt the configs to the given arguments
|
||||
configs = adapt_configs(
|
||||
configs,
|
||||
args.warmup,
|
||||
args.iterations,
|
||||
args.batch_size,
|
||||
args.sequence_length,
|
||||
args.num_tokens_to_generate,
|
||||
not args.no_gpu_monitoring,
|
||||
)
|
||||
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
|
||||
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
|
||||
if args.cross_generate:
|
||||
benchmark_configs = generate_all_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)
|
||||
else:
|
||||
benchmark_configs = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)
|
||||
|
||||
runner = BenchmarkRunner(logger, args.output_dir, args.branch_name, args.commit_id, args.commit_message)
|
||||
timestamp, results = runner.run_benchmarks(
|
||||
args.model_id, configs, args.num_tokens_to_profile, pretty_print_summary=True
|
||||
)
|
||||
# Otherwise, we benchmark across all combinations of dimensions
|
||||
else:
|
||||
main_config = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)[0]
|
||||
benchmark_configs = []
|
||||
for num_tokens_to_generate in args.num_tokens_to_generate:
|
||||
for sequence_length in args.sequence_length:
|
||||
for batch_size in args.batch_size:
|
||||
cfg_dict = main_config.to_dict()
|
||||
cfg_dict["batch_size"] = batch_size
|
||||
cfg_dict["sequence_length"] = sequence_length
|
||||
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
|
||||
cfg_dict.pop("name")
|
||||
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
|
||||
|
||||
dataset_id = args.push_result_to_dataset
|
||||
if dataset_id is not None and len(results) > 0:
|
||||
runner.push_results_to_hub(dataset_id, results, timestamp)
|
||||
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
|
||||
results = runner.run_benchmarks(
|
||||
args.model_id,
|
||||
benchmark_configs,
|
||||
args.num_tokens_to_profile,
|
||||
pretty_print_summary=True,
|
||||
)
|
||||
# runner.save_results(args.model_id, results)
|
||||
|
||||
@ -58,6 +58,7 @@ NOT_DEVICE_TESTS = {
|
||||
"test_model_get_set_embeddings",
|
||||
"test_model_main_input_name",
|
||||
"test_correct_missing_keys",
|
||||
"test_tie_model_weights",
|
||||
"test_can_use_safetensors",
|
||||
"test_load_save_without_tied_weights",
|
||||
"test_tied_weights_keys",
|
||||
@ -87,8 +88,6 @@ def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
|
||||
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
|
||||
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
|
||||
config.addinivalue_line("markers", "flash_attn_test: mark test which tests flash attention functionality")
|
||||
config.addinivalue_line("markers", "flash_attn_3_test: mark test which tests flash attention 3 functionality")
|
||||
|
||||
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ ARG REF=main
|
||||
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
|
||||
RUN git lfs install
|
||||
|
||||
@ -17,7 +17,7 @@ RUN make install -j 10
|
||||
|
||||
WORKDIR /
|
||||
|
||||
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
# spacy is not used so not tested. Causes to failures. TODO fix later
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps timm accelerate
|
||||
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
|
||||
|
||||
@ -9,15 +9,10 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.9.0'
|
||||
ARG PYTORCH='2.8.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
|
||||
# This needs to be compatible with the above `PYTORCH`.
|
||||
ARG TORCHCODEC='0.8.0'
|
||||
|
||||
ARG FLASH_ATTN='false'
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
|
||||
RUN git lfs install
|
||||
@ -26,48 +21,14 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev]
|
||||
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. For `torchcodec`, use `cpu` as we don't have `libnvcuvid.so` on the host runner. See https://github.com/meta-pytorch/torchcodec/issues/912
|
||||
# **Important**: We need to specify `torchcodec` version if the torch version is not the latest stable one.
|
||||
# 3. `set -e` means "exit immediately if any command fails".
|
||||
RUN set -e; \
|
||||
# Determine torch version
|
||||
if [ ${#PYTORCH} -gt 0 ] && [ "$PYTORCH" != "pre" ]; then \
|
||||
VERSION="torch==${PYTORCH}.*"; \
|
||||
TORCHCODEC_VERSION="torchcodec==${TORCHCODEC}.*"; \
|
||||
else \
|
||||
VERSION="torch"; \
|
||||
TORCHCODEC_VERSION="torchcodec"; \
|
||||
fi; \
|
||||
\
|
||||
# Log the version being installed
|
||||
echo "Installing torch version: $VERSION"; \
|
||||
\
|
||||
# Install PyTorch packages
|
||||
if [ "$PYTORCH" != "pre" ]; then \
|
||||
python3 -m pip install --no-cache-dir -U \
|
||||
$VERSION \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/$CUDA; \
|
||||
# We need to specify the version if the torch version is not the latest stable one.
|
||||
python3 -m pip install --no-cache-dir -U \
|
||||
$TORCHCODEC_VERSION --extra-index-url https://download.pytorch.org/whl/cpu; \
|
||||
else \
|
||||
python3 -m pip install --no-cache-dir -U --pre \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/$CUDA; \
|
||||
python3 -m pip install --no-cache-dir -U --pre \
|
||||
torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/cpu; \
|
||||
fi
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U timm
|
||||
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir pytesseract
|
||||
|
||||
@ -92,7 +53,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
RUN python3 -m pip install --no-cache-dir quanto
|
||||
|
||||
# After using A10 as CI runner, let's run FA2 tests
|
||||
RUN [ "$FLASH_ATTN" != "false" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
|
||||
|
||||
# TODO (ydshieh): check this again
|
||||
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
|
||||
|
||||
@ -10,7 +10,7 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
|
||||
# Torch needs to be installed before deepspeed
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# Test if the image could successfully build the doc. before publishing the image
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM rocm/pytorch:rocm7.1_ubuntu22.04_py3.10_pytorch_release_2.8.0
|
||||
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -10,8 +10,8 @@ RUN apt update && \
|
||||
|
||||
RUN git lfs install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy importlib-metadata setuptools wheel ninja pytesseract "itsdangerous<2.1.0"
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
WORKDIR /
|
||||
@ -39,7 +39,6 @@ RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
|
||||
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
|
||||
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
|
||||
cd flash-attention && \
|
||||
GPU_ARCHS="gfx942" python setup.py install
|
||||
# GPU_ARCHS builds for MI300, MI325 but not MI355: we would need to add `;gfx950` but it takes too long to build.
|
||||
GPU_ARCHS="gfx942" python setup.py install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
@ -29,7 +29,7 @@ RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
|
||||
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir
|
||||
|
||||
# Pre-build DeepSpeed, so it's be ready for testing (to avoid timeout)
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache-dir -v --disable-pip-version-check 2>&1
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache-dir -v --disable-pip-version-check 2>&1
|
||||
|
||||
ARG REF=main
|
||||
WORKDIR /
|
||||
|
||||
@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
|
||||
# Install latest release PyTorch
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio torchcodec && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
@ -43,7 +43,7 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run (again) inside the GPU VMs running the tests.
|
||||
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
@ -3,10 +3,11 @@ LABEL maintainer="Hugging Face"
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
ARG PYTHON_VER=3.12
|
||||
ARG PYTHON_VER=3.11
|
||||
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get remove -y python3.10 && apt-get autoremove -y
|
||||
RUN apt-get update && \
|
||||
apt-get install -y software-properties-common && \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && \
|
||||
@ -22,6 +23,7 @@ RUN apt-get update && \
|
||||
apt-utils \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
clinfo \
|
||||
curl \
|
||||
git \
|
||||
git-lfs \
|
||||
@ -33,6 +35,7 @@ RUN apt-get update && \
|
||||
rsync \
|
||||
sudo \
|
||||
libnl-genl-3-200 \
|
||||
xpu-smi \
|
||||
unzip \
|
||||
ffmpeg \
|
||||
tesseract-ocr \
|
||||
@ -42,47 +45,34 @@ RUN apt-get update && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
linux-headers-$(uname -r) linux-modules-extra-$(uname -r) \
|
||||
linux-headers-$(uname -r) \
|
||||
linux-modules-extra-$(uname -r) \
|
||||
flex bison \
|
||||
intel-fw-gpu intel-i915-dkms xpu-smi intel-ocloc clinfo\
|
||||
intel-fw-gpu intel-i915-dkms xpu-smi \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc \
|
||||
libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Use virtual env because Ubuntu-24 does not allowed pip on original python
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VER} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
RUN pip install --upgrade pip
|
||||
RUN pip install triton==3.3.0
|
||||
|
||||
RUN pip install --upgrade pip wheel
|
||||
RUN pip install triton==3.4.0
|
||||
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
|
||||
|
||||
RUN pip install torch==2.8.0+xpu torchvision==0.23.0+xpu torchaudio==2.8.0+xpu --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
|
||||
RUN pip install evaluate torchdata pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
|
||||
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree
|
||||
RUN pip install gguf hqq compressed_tensors gptqmodel mergekit autoawq deepspeed torchao onnx
|
||||
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft
|
||||
|
||||
RUN pip install torchcodec torchdata --no-cache-dir
|
||||
|
||||
RUN pip install evaluate pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
|
||||
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree setuptools
|
||||
RUN pip install gptqmodel --no-build-isolation
|
||||
RUN pip install gguf hqq compressed_tensors autoawq deepspeed torchao onnx auto_round
|
||||
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft diffusers trl kernels
|
||||
|
||||
# install liger-kernel
|
||||
RUN pip install git+https://github.com/linkedin/Liger-Kernel.git --extra-index-url https://download.pytorch.org/whl/test/xpu
|
||||
|
||||
# install mergekit
|
||||
RUN pip install --break-system-packages git+https://github.com/arcee-ai/mergekit.git@v0.1.3
|
||||
|
||||
# install bitsandbytes
|
||||
RUN pip install git+https://github.com/bitsandbytes-foundation/bitsandbytes.git
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
|
||||
RUN echo torch=$VERSION
|
||||
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
|
||||
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
@ -50,7 +50,7 @@ RUN python3 -m pip install --no-cache-dir hqq
|
||||
RUN python3 -m pip install --no-cache-dir gguf
|
||||
|
||||
# Add autoawq for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation autoawq[kernels]
|
||||
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
|
||||
|
||||
# Add quanto for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir optimum-quanto
|
||||
@ -81,7 +81,7 @@ RUN python3 -m pip uninstall -y flash-attn
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.3.2"
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.2.0"
|
||||
|
||||
# Low usage or incompatible lib, will enable later on
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to work around it.
|
||||
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
|
||||
|
||||
Then you need to install our special tool that builds the documentation:
|
||||
|
||||
@ -38,7 +38,7 @@ pip install git+https://github.com/huggingface/doc-builder
|
||||
|
||||
## Building the documentation
|
||||
|
||||
Once you have set up the `doc-builder` and additional packages, you can generate the documentation by
|
||||
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
|
||||
typing the following command:
|
||||
|
||||
```bash
|
||||
@ -295,11 +295,12 @@ Here's an example of a tuple return, comprising several objects:
|
||||
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
|
||||
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate them to this dataset.
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
to this dataset.
|
||||
|
||||
## Styling the docstring
|
||||
|
||||
We have an automatic script running with the `make style` command that will make sure that:
|
||||
We have an automatic script running with the `make style` comment that will make sure that:
|
||||
- the docstrings fully take advantage of the line width
|
||||
- all code examples are formatted using black, like the code of the Transformers library
|
||||
|
||||
|
||||
@ -123,6 +123,8 @@
|
||||
title: تشغيل التدريب على Amazon SageMaker
|
||||
- local: serialization
|
||||
title: التصدير إلى ONNX
|
||||
- local: torchscript
|
||||
title: التصدير إلى TorchScript
|
||||
- local: notebooks
|
||||
title: دفاتر الملاحظات مع الأمثلة
|
||||
- local: community
|
||||
@ -258,6 +260,8 @@
|
||||
# title: النماذج
|
||||
# - local: main_classes/text_generation
|
||||
# title: توليد النصوص
|
||||
# - local: main_classes/onnx
|
||||
# title: ONNX
|
||||
# - local: main_classes/optimizer_schedules
|
||||
# title: التحسين
|
||||
# - local: main_classes/output
|
||||
|
||||
@ -32,7 +32,7 @@
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
|
||||
@ -111,3 +111,60 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
|
||||
### تصدير نموذج لهندسة غير مدعومة
|
||||
|
||||
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
|
||||
|
||||
### تصدير نموذج باستخدام `transformers.onnx`
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
|
||||
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
||||
```
|
||||
|
||||
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
154
docs/source/ar/torchscript.md
Normal file
154
docs/source/ar/torchscript.md
Normal file
@ -0,0 +1,154 @@
|
||||
# التصدير إلى TorchScript
|
||||
|
||||
<Tip>
|
||||
|
||||
هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
|
||||
|
||||
</Tip>
|
||||
|
||||
وفقًا لـ [وثائق TorchScript](https://pytorch.org/docs/stable/jit.html):
|
||||
|
||||
> TorchScript هي طريقة لإنشاء نماذج قابلة للتسلسل والتحسين من تعليمات PyTorch البرمجية.
|
||||
|
||||
هناك وحدتان من PyTorch، [JIT and TRACE](https://pytorch.org/docs/stable/jit.html)، تتيحان للمطورين تصدير نماذجهم لإعادة استخدامها في برامج أخرى مثل برامج C++ المُحسّنة للأداء.
|
||||
|
||||
نقدم واجهة تتيح لك تصدير نماذج 🤗 Transformers إلى TorchScript بحيث يمكن إعادة استخدامها في بيئة مختلفة عن برامج Python القائمة إلى PyTorch. هنا نشرح كيفية تصدير نماذجنا واستخدامها باستخدام TorchScript.
|
||||
|
||||
يتطلب تصدير نموذج أمرين:
|
||||
|
||||
- تهيئة مثيل للنموذج باستخدام علامة `torchscript`
|
||||
- تمرير مُدخلات وهمية (dummy inputs) خلال النموذج
|
||||
|
||||
تنطوي هذه الضرورات على عدة أمور يجب على المطورين توخي الحذر بشأنها كما هو مفصل أدناه.
|
||||
|
||||
## علامة TorchScript والأوزان المرتبطة
|
||||
|
||||
علامة `torchscript` ضرورية لأن معظم نماذج اللغة 🤗 Transformers لها أوزان مرتبطة بين طبقة `Embedding` وطبقة `Decoding`. لا يسمح لك TorchScript بتصدير النماذج ذات الأوزان المرتبطة، لذلك من الضروري فصل الأوزان ونسخها مسبقًا.
|
||||
|
||||
النماذج المُهيأة باستخدام علامة `torchscript` لها طبقة `Embedding` وطبقة`Decoding` منفصلتين، مما يعني أنه لا ينبغي تدريبها لاحقًا. سيؤدي التدريب إلى عدم تزامن الطبقتين، مما يؤدي إلى نتائج غير متوقعة.
|
||||
|
||||
هذا لا ينطبق على النماذج التي لا تحتوي على رأس نموذج اللغة، حيث لا تملك أوزانًا مرتبطة. يمكن تصدير هذه النماذج بأمان دون علامة `torchscript`.
|
||||
|
||||
## المدخلات الوهمية والأطوال القياسية
|
||||
|
||||
تُستخدم المُدخلات الوهمية لتمرير أمامي خلال النموذج. أثناء انتشار قيم المُدخلات عبر الطبقات، يتتبع PyTorch العمليات المختلفة التي يتم تنفيذها على كل مصفوفة(tensor). ثم يتم استخدام هذه العمليات المُسجلة بعد ذلك لإنشاء *أثر* النموذج.
|
||||
|
||||
يتم إنشاء التتبع بالنسبة لأبعاد المُدخلات. وبالتالي، فهو مُقيّد بأبعاد المُدخلات الوهمية، ولن يعمل لأي طول تسلسل أو حجم دفعة مختلف. عند المحاولة بحجم مختلف، يتم رفع الخطأ التالي:
|
||||
|
||||
```
|
||||
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
|
||||
```
|
||||
|
||||
نوصي بتتبع النموذج باستخدام حجم مُدخلات وهمية لا يقل عن أكبر مُدخل سيتم تقديمه للنموذج أثناء الاستدلال. يمكن أن تساعد الحشوة(padding) في ملء القيم المفقودة. ومع ذلك، نظرًا لتتبع النموذج بحجم مُدخل أكبر، ستكون أبعاد المصفوفة ستكون كبيرة أيضًا، مما يؤدي عنه المزيد من الحسابات.
|
||||
|
||||
انتبه إلى إجمالي عدد العمليات المُنفذة على كل مُدخل وتابع الأداء عن كثب عند تصدير نماذج متغيرة طول التسلسل.
|
||||
|
||||
## استخدام TorchScript في Python
|
||||
|
||||
يوضح هذا القسم كيفية حفظ النماذج وتحميلها، بالإضافة إلى كيفية استخدام التتبع للاستدلال.
|
||||
|
||||
### حفظ نموذج
|
||||
|
||||
لتصدير `BertModel` باستخدام TorchScript، قم بتهيئة ـ `BertModel` من فئة `BertConfig` ثم احفظه على القرص تحت اسم الملف `traced_bert.pt`:
|
||||
|
||||
```python
|
||||
from transformers import BertModel, BertTokenizer, BertConfig
|
||||
import torch
|
||||
|
||||
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
# Tokenizing input text
|
||||
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
|
||||
tokenized_text = enc.tokenize(text)
|
||||
|
||||
# Masking one of the input tokens
|
||||
masked_index = 8
|
||||
tokenized_text[masked_index] = "[MASK]"
|
||||
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
|
||||
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
|
||||
|
||||
# Creating a dummy input
|
||||
tokens_tensor = torch.tensor([indexed_tokens])
|
||||
segments_tensors = torch.tensor([segments_ids])
|
||||
dummy_input = [tokens_tensor, segments_tensors]
|
||||
|
||||
# Initializing the model with the torchscript flag
|
||||
# Flag set to True even though it is not necessary as this model does not have an LM Head.
|
||||
config = BertConfig(
|
||||
vocab_size_or_config_json_file=32000,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
# Instantiating the model
|
||||
model = BertModel(config)
|
||||
|
||||
# The model needs to be in evaluation mode
|
||||
model.eval()
|
||||
|
||||
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
|
||||
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
|
||||
|
||||
# Creating the trace
|
||||
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
|
||||
torch.jit.save(traced_model, "traced_bert.pt")
|
||||
```
|
||||
|
||||
### تحميل نموذج
|
||||
|
||||
يمكنك الآن تحميل `BertModel` المُحفظ سابقًا، `traced_bert.pt`، من القرص واستخدامه على `dummy_input` المُهيأ سابقًا:
|
||||
|
||||
```python
|
||||
loaded_model = torch.jit.load("traced_bert.pt")
|
||||
loaded_model.eval()
|
||||
|
||||
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
|
||||
```
|
||||
|
||||
### استخدام نموذج مُتتبع للاستدلال
|
||||
|
||||
استخدم النموذج المُتتبع للاستدلال باستخدام أسلوب `__call__` الخاص به:
|
||||
|
||||
```python
|
||||
traced_model(tokens_tensor, segments_tensors)
|
||||
```
|
||||
|
||||
## نشر نماذج Hugging Face TorchScript على AWS باستخدام Neuron SDK
|
||||
|
||||
قدمت AWS عائلة [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) من اﻷجهزة لخفض التكلفة وأداء التعلم الآلي عالي الأداء في البيئة السحابية. تعمل أجهزة Inf1 بواسطة شريحة Inferentia من AWS، وهي مُسرّع أجهزة مُخصص، متخصص في أعباء عمل الاستدلال للتعلم العميق. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) هي SDK لـ Inferentia التي تدعم تتبع نماذج المحولات وتحسينها للنشر على Inf1. توفر Neuron SDK ما يلي:
|
||||
|
||||
1. واجهة برمجة تطبيقات سهلة الاستخدام مع تغيير سطر واحد من التعليمات البرمجية لتتبع نموذج TorchScript وتحسينه للاستدلال في البيئة السحابية.
|
||||
2. تحسينات الأداء الجاهزة للاستخدام [تحسين التكلفة والأداء](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>).
|
||||
3. دعم نماذج Hugging Face المحولات المبنية باستخدام إما [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) أو [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
|
||||
|
||||
### الآثار المترتبة
|
||||
|
||||
تعمل نماذج المحولات المستندة إلى بنية [BERT (تمثيلات الترميز ثنائية الاتجاه من المحولات)](https://huggingface.co/docs/transformers/main/model_doc/bert) أو متغيراتها مثل [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) و [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) بشكل أفضل على Inf1 للمهام غير التوليدية مثل الإجابة على الأسئلة الاستخراجية، وتصنيف التسلسلات، وتصنيف الرموز (tokens). ومع ذلك، يمكن تكييف مهام توليد النصوص للعمل على Inf1 وفقًا لهذا [برنامج تعليمي AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). يمكن العثور على مزيد من المعلومات حول النماذج التي يمكن تحويلها جاهزة على Inferentia في قسم [ملاءمة بنية النموذج](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) من وثائق Neuron.
|
||||
|
||||
### التبعيات (Dependencies)
|
||||
|
||||
يتطلب استخدام AWS Neuron لتحويل النماذج [بيئة SDK Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) والتي تأتي مسبقًا على [AMI للتعلم العميق من AWS](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
|
||||
|
||||
### تحويل نموذج لـ AWS Neuron
|
||||
|
||||
قم بتحويل نموذج لـ AWS NEURON باستخدام نفس التعليمات البرمجية من [استخدام TorchScript في Python](torchscript#using-torchscript-in-python) لتتبع `BertModel`. قم باستيراد امتداد إطار عمل `torch.neuron` للوصول إلى مكونات Neuron SDK من خلال واجهة برمجة تطبيقات Python:
|
||||
|
||||
```python
|
||||
from transformers import BertModel, BertTokenizer, BertConfig
|
||||
import torch
|
||||
import torch.neuron
|
||||
```
|
||||
|
||||
كل ما عليك فعله هو تعديل السطر التالي:
|
||||
|
||||
```diff
|
||||
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
|
||||
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
|
||||
```
|
||||
|
||||
يتيح ذلك لـ Neuron SDK تتبع النموذج وتحسينه لمثيلات Inf1.
|
||||
|
||||
لمعرفة المزيد حول ميزات AWS Neuron SDK والأدوات ودروس البرامج التعليمية والتحديثات الأخيرة، يرجى الاطلاع على [وثائق AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).
|
||||
@ -508,16 +508,16 @@ BERT `_init_weights` Methode:
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.zero_()
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.zero_()
|
||||
module.weight.fill_(1.0)
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
```
|
||||
|
||||
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
|
||||
@ -533,9 +533,9 @@ def _init_weights(self, module):
|
||||
module.project_hid._is_hf_initialized = True
|
||||
module.project_q._is_hf_initialized = True
|
||||
elif isinstance(module, nn.Linear):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.zero_()
|
||||
module.bias.data.zero_()
|
||||
```
|
||||
|
||||
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf
|
||||
|
||||
@ -88,8 +88,6 @@
|
||||
title: Tool use
|
||||
- local: chat_templating_writing
|
||||
title: Writing a chat template
|
||||
- local: chat_response_parsing
|
||||
title: Response parsing
|
||||
title: Chat with models
|
||||
- sections:
|
||||
- local: serving
|
||||
@ -118,9 +116,7 @@
|
||||
- local: tools
|
||||
title: Tools
|
||||
- local: transformers_as_backend
|
||||
title: Transformers as modeling backend
|
||||
- local: continuous_batching
|
||||
title: Continuous Batching
|
||||
title: Inference server backends
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -231,6 +227,8 @@
|
||||
title: ONNX
|
||||
- local: executorch
|
||||
title: ExecuTorch
|
||||
- local: torchscript
|
||||
title: TorchScript
|
||||
title: Export to production
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -420,6 +418,8 @@
|
||||
title: BLOOM
|
||||
- local: model_doc/blt
|
||||
title: BLT
|
||||
- local: model_doc/bort
|
||||
title: BORT
|
||||
- local: model_doc/byt5
|
||||
title: ByT5
|
||||
- local: model_doc/camembert
|
||||
@ -474,6 +474,8 @@
|
||||
title: Ernie4_5
|
||||
- local: model_doc/ernie4_5_moe
|
||||
title: Ernie4_5_MoE
|
||||
- local: model_doc/ernie_m
|
||||
title: ErnieM
|
||||
- local: model_doc/esm
|
||||
title: ESM
|
||||
- local: model_doc/exaone4
|
||||
@ -528,6 +530,8 @@
|
||||
title: GPTBigCode
|
||||
- local: model_doc/gpt_oss
|
||||
title: GptOss
|
||||
- local: model_doc/gptsan-japanese
|
||||
title: GPTSAN Japanese
|
||||
- local: model_doc/gpt-sw3
|
||||
title: GPTSw3
|
||||
- local: model_doc/granite
|
||||
@ -552,6 +556,8 @@
|
||||
title: Jamba
|
||||
- local: model_doc/jetmoe
|
||||
title: JetMoe
|
||||
- local: model_doc/jukebox
|
||||
title: Jukebox
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/lfm2
|
||||
@ -586,6 +592,8 @@
|
||||
title: MarkupLM
|
||||
- local: model_doc/mbart
|
||||
title: MBart and MBart-50
|
||||
- local: model_doc/mega
|
||||
title: MEGA
|
||||
- local: model_doc/megatron-bert
|
||||
title: MegatronBERT
|
||||
- local: model_doc/megatron_gpt2
|
||||
@ -620,6 +628,8 @@
|
||||
title: myt5
|
||||
- local: model_doc/nemotron
|
||||
title: Nemotron
|
||||
- local: model_doc/nezha
|
||||
title: NEZHA
|
||||
- local: model_doc/nllb
|
||||
title: NLLB
|
||||
- local: model_doc/nllb-moe
|
||||
@ -634,6 +644,8 @@
|
||||
title: Olmo3
|
||||
- local: model_doc/olmoe
|
||||
title: OLMoE
|
||||
- local: model_doc/open-llama
|
||||
title: Open-Llama
|
||||
- local: model_doc/opt
|
||||
title: OPT
|
||||
- local: model_doc/pegasus
|
||||
@ -654,6 +666,8 @@
|
||||
title: PLBart
|
||||
- local: model_doc/prophetnet
|
||||
title: ProphetNet
|
||||
- local: model_doc/qdqbert
|
||||
title: QDQBert
|
||||
- local: model_doc/qwen2
|
||||
title: Qwen2
|
||||
- local: model_doc/qwen2_moe
|
||||
@ -666,12 +680,16 @@
|
||||
title: Qwen3Next
|
||||
- local: model_doc/rag
|
||||
title: RAG
|
||||
- local: model_doc/realm
|
||||
title: REALM
|
||||
- local: model_doc/recurrent_gemma
|
||||
title: RecurrentGemma
|
||||
- local: model_doc/reformer
|
||||
title: Reformer
|
||||
- local: model_doc/rembert
|
||||
title: RemBERT
|
||||
- local: model_doc/retribert
|
||||
title: RetriBERT
|
||||
- local: model_doc/roberta
|
||||
title: RoBERTa
|
||||
- local: model_doc/roberta-prelayernorm
|
||||
@ -700,6 +718,10 @@
|
||||
title: T5Gemma
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapex
|
||||
title: TAPEX
|
||||
- local: model_doc/transfo-xl
|
||||
title: Transformer XL
|
||||
- local: model_doc/ul2
|
||||
title: UL2
|
||||
- local: model_doc/umt5
|
||||
@ -712,6 +734,8 @@
|
||||
title: XGLM
|
||||
- local: model_doc/xlm
|
||||
title: XLM
|
||||
- local: model_doc/xlm-prophetnet
|
||||
title: XLM-ProphetNet
|
||||
- local: model_doc/xlm-roberta
|
||||
title: XLM-RoBERTa
|
||||
- local: model_doc/xlm-roberta-xl
|
||||
@ -758,6 +782,8 @@
|
||||
title: Depth Anything V2
|
||||
- local: model_doc/depth_pro
|
||||
title: DepthPro
|
||||
- local: model_doc/deta
|
||||
title: DETA
|
||||
- local: model_doc/detr
|
||||
title: DETR
|
||||
- local: model_doc/dinat
|
||||
@ -772,6 +798,8 @@
|
||||
title: DiT
|
||||
- local: model_doc/dpt
|
||||
title: DPT
|
||||
- local: model_doc/efficientformer
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientloftr
|
||||
title: EfficientLoFTR
|
||||
- local: model_doc/efficientnet
|
||||
@ -808,6 +836,8 @@
|
||||
title: MobileViT
|
||||
- local: model_doc/mobilevitv2
|
||||
title: MobileViTV2
|
||||
- local: model_doc/nat
|
||||
title: NAT
|
||||
- local: model_doc/poolformer
|
||||
title: PoolFormer
|
||||
- local: model_doc/prompt_depth_anything
|
||||
@ -854,8 +884,12 @@
|
||||
title: Timm Wrapper
|
||||
- local: model_doc/upernet
|
||||
title: UperNet
|
||||
- local: model_doc/van
|
||||
title: VAN
|
||||
- local: model_doc/vit
|
||||
title: Vision Transformer (ViT)
|
||||
- local: model_doc/vit_hybrid
|
||||
title: ViT Hybrid
|
||||
- local: model_doc/vitdet
|
||||
title: ViTDet
|
||||
- local: model_doc/vit_mae
|
||||
@ -894,6 +928,8 @@
|
||||
title: Hubert
|
||||
- local: model_doc/kyutai_speech_to_text
|
||||
title: Kyutai Speech-To-Text
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/mimi
|
||||
title: Mimi
|
||||
- local: model_doc/mms
|
||||
@ -920,6 +956,8 @@
|
||||
title: SEW-D
|
||||
- local: model_doc/speech_to_text
|
||||
title: Speech2Text
|
||||
- local: model_doc/speech_to_text_2
|
||||
title: Speech2Text2
|
||||
- local: model_doc/speecht5
|
||||
title: SpeechT5
|
||||
- local: model_doc/unispeech
|
||||
@ -968,8 +1006,6 @@
|
||||
title: AltCLIP
|
||||
- local: model_doc/aria
|
||||
title: Aria
|
||||
- local: model_doc/audioflamingo3
|
||||
title: AudioFlamingo3
|
||||
- local: model_doc/aya_vision
|
||||
title: AyaVision
|
||||
- local: model_doc/blip
|
||||
@ -1026,8 +1062,6 @@
|
||||
title: Gemma3n
|
||||
- local: model_doc/git
|
||||
title: GIT
|
||||
- local: model_doc/glm46v
|
||||
title: Glm46V
|
||||
- local: model_doc/glm4v
|
||||
title: glm4v
|
||||
- local: model_doc/glm4v_moe
|
||||
@ -1148,6 +1182,8 @@
|
||||
title: TAPAS
|
||||
- local: model_doc/trocr
|
||||
title: TrOCR
|
||||
- local: model_doc/tvlt
|
||||
title: TVLT
|
||||
- local: model_doc/tvp
|
||||
title: TVP
|
||||
- local: model_doc/udop
|
||||
@ -1174,6 +1210,8 @@
|
||||
- sections:
|
||||
- local: model_doc/decision_transformer
|
||||
title: Decision Transformer
|
||||
- local: model_doc/trajectory_transformer
|
||||
title: Trajectory Transformer
|
||||
title: Reinforcement learning models
|
||||
- sections:
|
||||
- local: model_doc/autoformer
|
||||
@ -1189,6 +1227,10 @@
|
||||
- local: model_doc/timesfm
|
||||
title: TimesFM
|
||||
title: Time series models
|
||||
- sections:
|
||||
- local: model_doc/graphormer
|
||||
title: Graphormer
|
||||
title: Graph models
|
||||
title: Models
|
||||
- sections:
|
||||
- local: internal/modeling_utils
|
||||
@ -1213,8 +1255,6 @@
|
||||
title: Importing Utilities
|
||||
- local: internal/time_series_utils
|
||||
title: Utilities for Time Series
|
||||
- local: internal/rope_utils
|
||||
title: Rotary Embeddings Utilities
|
||||
title: Internal helpers
|
||||
- sections:
|
||||
- local: reference/environment_variables
|
||||
|
||||
@ -314,16 +314,16 @@ Random initialization occurs in the `_init_weights` method of `BrandNewLlamaPreT
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.zero_()
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.zero_()
|
||||
module.weight.fill_(1.0)
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
```
|
||||
|
||||
The initialization scheme can look different if you need to adapt it to your model. For example, [`Wav2Vec2ForPreTraining`] initializes [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) in its last two linear layers.
|
||||
@ -339,9 +339,9 @@ def _init_weights(self, module):
|
||||
module.project_hid._is_hf_initialized = True
|
||||
module.project_q._is_hf_initialized = True
|
||||
elif isinstance(module, nn.Linear):
|
||||
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.zero_()
|
||||
module.bias.data.zero_()
|
||||
```
|
||||
|
||||
### Convert checkpoints to Transformers
|
||||
|
||||
@ -95,12 +95,9 @@ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):]))
|
||||
|
||||
The chat model called the `get_current_temperature` tool with the correct parameters from the docstring. It inferred France as the location based on Paris, and that it should use Celsius for the units of temperature.
|
||||
|
||||
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history. For
|
||||
models that support [response parsing](./chat_response_parsing), the response parsing will be handled automatically, and you can just use
|
||||
[`~PreTrainedTokenizer.parse_response] to extract the tool call. For other models, you'll need to manually translate the output
|
||||
string into a tool call dict.
|
||||
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history.
|
||||
|
||||
Regardless of the approach you use, the tool call should go in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
|
||||
Hold the call in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
|
||||
|
||||
> [!WARNING]
|
||||
> Although `tool_calls` is similar to the OpenAI API, the OpenAI API uses a JSON string as its `tool_calls` format. This may cause errors or strange model behavior if used in Transformers, which expects a dict.
|
||||
|
||||
@ -1,233 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Response Parsing
|
||||
|
||||
It is increasingly common for chat models to generate structured outputs, rather than just a single reply string.
|
||||
The most common uses for structured outputs are [tool calling](./chat_extras) and [reasoning models](https://huggingface.co/reasoning-course).
|
||||
Tool calling models can output tool calls, containing the name of the tool to call and any arguments to be passed to it,
|
||||
while reasoning models often output reasoning steps as a "chain of thought". Some recent models even use both of these,
|
||||
and may output reasoning and/or one or more tool calls before their final answer.
|
||||
|
||||
Models with structured outputs pose a challenge for chat templating, because the output needs to be parsed before it
|
||||
can be appended to the chat. For a concrete example, let's say we ask [GPT-OSS](https://huggingface.co/openai/gpt-oss-120b)
|
||||
what the weather is like, and it thinks and decides to call a tool. Here's what the raw model output might look like:
|
||||
|
||||
```txt
|
||||
<|start|>analysis<|message|>The user asks: "What is the weather like in SF?" We need to get the location of the user? The user explicitly asks about SF (San Francisco).
|
||||
So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data.
|
||||
So we should call get_current_weather with location "San Francisco, CA". Let's do that.
|
||||
We will call function get_current_weather.<|end|><|start|>commentary to=functions.get_current_weather<|channel|>commentary <|constrain|>json<|message|>{"location":"San Francisco, CA"}<|call|>
|
||||
}
|
||||
```
|
||||
|
||||
But if you want to append this to a chat, you'll need to format it as a chat message dict, like this:
|
||||
|
||||
```json
|
||||
{
|
||||
"role": "assistant",
|
||||
"thinking": "The user asks: \"What is the weather like in SF?\" We need to get the location of the user? The user explicitly asks about SF (San Francisco). So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data. So we should call get_current_weather with location \"San Francisco, CA\". Let's do that.",
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"arguments": {
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Chat **templates** give us a way to turn messages into formatted input for a model, but we need something else to
|
||||
parse model output back into a standard message dict. This is what chat **parsing** is for.
|
||||
|
||||
## The [parse_response](~PreTrainedTokenizerBase.parse_response) method
|
||||
|
||||
Parsing a chat response on a model that supports it is straightforward. Simply take the raw, decoded output from
|
||||
[generate](`~generation.GenerationMixin.generate`), and pass it to the tokenizer's [parse_response](~PreTrainedTokenizerBase.parse_response) method:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
checkpoint = "HuggingFaceTB/SmolLM3-3B"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype="auto", device_map="auto")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hey! Can you summarize the end of the Cold War as briefly as possible? Like, comically briefly. It should really leave out almost most of the relevant information."
|
||||
}
|
||||
]
|
||||
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
|
||||
out_text = tokenizer.decode(outputs)
|
||||
parsed = tokenizer.parse_response(out_text)
|
||||
print(parsed.keys())
|
||||
```
|
||||
|
||||
And you should get:
|
||||
|
||||
```text
|
||||
dict_keys(['thinking', 'content'])
|
||||
```
|
||||
|
||||
And that's all you need to start using response parsing! `parse_response` should return a complete message dict that is ready to be appended to the chat history.
|
||||
When the tokenizer does not support response parsing, `parse_response` will throw an error. We hope to add support
|
||||
to more tokenizers over time.
|
||||
|
||||
## Developers: Understanding a simple response schema
|
||||
|
||||
Under the hood, `parse_response` uses a **JSON schema** to parse the model output. A JSON schema represents
|
||||
the structure of the output message dict. The schema is augmented with additional fields that indicate how the
|
||||
output message string should be parsed into the expected format. Let's take a look at the schema for a SmolLM response,
|
||||
excluding tool calls for now:
|
||||
|
||||
```python
|
||||
{
|
||||
"x-regex": "(?:<think>\n?(?P<thinking>.+?)\n?</think>)?\s*(?P<content>.+?)?\s*(?:<\|im_end\|>|$)",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"role": {"const": "assistant"},
|
||||
"content": {"type": "string"},
|
||||
"thinking": {"type": "string"}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
We can see that the schema describes a JSON "object" (a `dict`, in other words) with three keys: `role`, `content`, and `thinking`.
|
||||
Because all assistant responses have the role "assistant", the `role` key is a `const`(ant). The other two keys are strings, extracted
|
||||
from the named groups in the regex in the `x-regex` field.
|
||||
|
||||
Like chat templates, response schemas are set as a property of the tokenizer. To enable response parsing, all you need
|
||||
to do is set `tokenizer.response_schema` to a valid schema dict, and `tokenizer.parse_response()` will work! Again, like
|
||||
chat templates, this schema will be saved with the processor, so once you set it, you can use `save_pretrained()` or `push_to_hub()` to
|
||||
save and share the schema.
|
||||
|
||||
## Developers: Complex schemas
|
||||
|
||||
Now, let's look at a more complex schema, which includes tool calls, to gain more of an understanding of the parser
|
||||
internals. For this, we'll use the `GPT-OSS` schema. GPT-OSS emits both tool calls and thinking blocks, and it uses
|
||||
an unusual format where model responses are tagged with one of three "channels": `commentary` for things like
|
||||
tool calls, `analysis` for chain of thought blocks, and `final` for messages intended to be sent to the user.
|
||||
A full message where the model calls a tool named `get_current_weather` might look like this, with some extra linebreaks added for clarity:
|
||||
|
||||
```text
|
||||
<|channel|>analysis<|message|>
|
||||
The user asks: "What is the weather like in SF?" So we need to get the current weather in San Francisco, CA.
|
||||
We need to call get_current_weather function. So we should call get_current_weather with location "San Francisco, CA".
|
||||
<|end|>
|
||||
<|start|>assistant<|channel|>commentary
|
||||
to=functions.get_current_weather <|constrain|>json<|message|>
|
||||
{
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
<|call|>
|
||||
```
|
||||
|
||||
Parsing proceeds recursively; the output of a regex (or other parser) at one level becomes the input to the nodes below it.
|
||||
In other words, don't feel like you have to parse the entire output in one enormous regex! Instead, start with the schema,
|
||||
and then add regexes to extract the relevant chunks as you go. Here's a schema that will parse it, with some
|
||||
explanatory comments:
|
||||
|
||||
```python
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"role": {"const": "assistant"},
|
||||
# "content" and "thinking" are both similar to the previous example, and just extract a single string
|
||||
# However, rather than using a single regex with named groups to extract both, we use a regex in each subkey.
|
||||
# When an object node has no parser/regex, the entire input string is passed to all of its children, so
|
||||
# parsing can either be done with named groups at the object level, or with separate regexes at the property level.
|
||||
"content": {"type": "string", "x-regex": r"<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"},
|
||||
"thinking": {"type": "string", "x-regex": r"<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"},
|
||||
"tool_calls": {
|
||||
# "x-regex-iterator" uses re.findall to find multiple possible manages, and returns them as an
|
||||
# array/list. You don't need to worry about array handling, though - each item in the array will be
|
||||
# parsed by the `items` schema, so just write the schema for a single item.
|
||||
"x-regex-iterator": r"<\|channel\|>commentary (to=functions\..*?<\|message\|>.*?)(?:<\|call\|>|$)",
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
# A const property is a fixed value, and the input has no effect on it.
|
||||
"type": {"const": "function"},
|
||||
# Here, we wrap the entire tool call dict in a `{"function": ...}` block. The input string is passed through to it unchanged.
|
||||
"function": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string", "x-regex": r"^to=functions\.(\w+)"},
|
||||
"arguments": {
|
||||
"type": "object",
|
||||
"x-regex": "<\|message\|>(.*)",
|
||||
# The "x-parser" field indicates that the extracted string should be parsed as JSON.
|
||||
# The output is then passed to the schema nodes below and recursive parsing continues.
|
||||
"x-parser": "json",
|
||||
"additionalProperties": {"type": "any"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
## Developers: Understanding the parser logic
|
||||
|
||||
The parser follows a few simple rules:
|
||||
|
||||
1. Each level of the schema receives input from the level above, applies any regex or parser it has, and then passes the output to its children.
|
||||
2. The root level receives the entire decoded model output string as input.
|
||||
3. If a node has structured content after parsing (for example, if the regex has named groups and returns a dict, or if the parser returns a dict or list),
|
||||
then that structured content is mapped to the node's children, and each child node receives its corresponding value as input.
|
||||
4. If an `object` (dict) node has unstructured (string) output, then the entire string is passed to all of its children. This allows child nodes
|
||||
to handle parsing individually rather than requiring a single parent regex to extract all keys at once.
|
||||
5. If an `array` (list) node has unstructured (string) output, then this throws an error.
|
||||
|
||||
There is a small set of allowable `x-` keys that indicate how parsing should be done at each node:
|
||||
- `x-regex`: A regex string to apply to the input. If the regex has named groups, the output is a dict of group names to values. Named groups should only be used in `object` nodes.
|
||||
Otherwise, the regex must have exactly one unnamed capturing group, and the output is the value of that group as a string.
|
||||
- `x-regex-iterator`: A regex string to apply to the input using `re.findall()`. The output is a list of all matches.
|
||||
This should only be used in `array` nodes, and the regex must have exactly one unnamed capturing group. The output is distributed to
|
||||
the node's `items` schema.
|
||||
- `x-parser`: Calls a built-in parser to apply to the input. Currently, the only supported parser is `json`, which parses the input string as JSON.
|
||||
The output is passed to the child nodes for further parsing. Note that the `json` parser can return deeply nested output - in this case, the output
|
||||
will be progressively unwrapped as it is passed through child nodes. The child nodes do not need additional `x-parser` or `x-regex` fields in this case,
|
||||
but their structure must match the structure of the parsed JSON.
|
||||
- `x-parser-args`: Only allowed in conjunction with `x-parser`. This is a dict of additional arguments that control parsing. Right now, the only supported
|
||||
argument is `transform`, which specifies a `jmespath` transformation to apply to the output. This is useful when the JSON parser returns a structure
|
||||
that needs to be modified to match the schema.
|
||||
- `x-regex-key-value`: This is rarely necessary, but it can be useful when parsing key-value pairs in non-JSON format where the names of the keys are not known
|
||||
in advance, such as when a model emits XML tool calls with arbitrary argument names. The regex must have exactly two named capturing groups,
|
||||
`key` and `value`, and the output is a dict mapping keys to values. This should only be used in `object` nodes.
|
||||
|
||||
In general, multiple regexes/parsers cannot be combined at the same level. The exception is that `x-regex`, returning a single string, can be combined with the other parsers. In this case,
|
||||
`x-regex` is applied first, and then the output is passed to the other parser, either `x-regex-iterator`, `x-parser`, or `x-regex-key-value`.
|
||||
|
||||
Putting these ideas together, you can see that the input flows through the schema, being parsed at each level and then distributed to child nodes. Each level
|
||||
only needs to extract the input content that is relevant for that part of the schema, and can then let its child nodes handle the rest. Internally, this is handled
|
||||
with a parser function that receives input, applies any regexes/parsers at the current level, then maps the result to its child nodes before recursively calling itself on each of them.
|
||||
Recursion terminates when it reaches leaf nodes, usually primitive types like `string` or `number`, which simply return the input they receive.
|
||||
@ -1,194 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Continuous Batching
|
||||
|
||||
Continuous Batching (CB) is an advanced technique to optimize the inference of transformer models by dynamically grouping multiple requests into batches. This approach maximizes GPU utilization and throughput, specifically for workloads with many variable-length inputs.
|
||||
|
||||
We are particularly interested in having Continuous Batching in transformers for the following use cases:
|
||||
- Evaluation of models on large datasets with variable-length inputs
|
||||
- Generating outputs for multiple sequences for GRPO policies
|
||||
|
||||
CB is what makes inference engines like vLLM or SGLang efficient. That being said, transformers does not aim to be a production-ready inference engine, but a complete framework for model development. For this reason, CB is available in `transformers serve`.
|
||||
|
||||
If you are not familiar with some of the core concepts CB is built upon, we invite you to read the associated blog post: [Continuous Batching: Efficient Inference for Large Language Models](https://huggingface.co/blog/continuous-batching). _broken link for now_
|
||||
|
||||
## API Reference
|
||||
|
||||
## Usage Examples
|
||||
|
||||
The main way to use CB in transformers is via the `generate_batch` method.
|
||||
|
||||
Unlike `generate`, CB takes already tokenized inputs, known as input IDs. Each sequence of input IDs is represented as a list of integers, in python: `list[int]`. Since
|
||||
|
||||
For a more detailed example, please refer to: [examples/continuous_batching](./path/to/example)
|
||||
|
||||
### `generate_batch` example
|
||||
|
||||
We have created a `ContinuousMixin` that is inherited by the `GenerationMixin` so that all auto regressive text models support CB.
|
||||
|
||||
This adds the `generate_batch` method to all models that inherit from `GenerationMixin`.
|
||||
|
||||
You can use it as follows:
|
||||
|
||||
```py
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"Qwen/Qwen3-4B-Instruct-2507",
|
||||
attn_implementation="spda_paged",
|
||||
device_map="cuda", # if you need cuda
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
|
||||
|
||||
# prepare a batch of inputs
|
||||
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
dataset = dataset.select(range(args.samples))
|
||||
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=32,
|
||||
use_cuda_graph=False, # Not supported for simple version
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
do_sample=False,
|
||||
max_batch_tokens=512, # max number of tokens in a batch, this is just a default value you should tune based on your hardware
|
||||
)
|
||||
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
)
|
||||
|
||||
for request_id, output in batch_outputs.items():
|
||||
generated_text = tokenizer.decode(output.generated_tokens, skip_special_tokens=True)
|
||||
print(f"Request {request_id} output: {generated_text}")
|
||||
```
|
||||
|
||||
### `ContinuousBatchingManager` example
|
||||
|
||||
If you want more control w.r.t. how you want to schedule requests using CB, you can use the `ContinuousBatchingManager` class directly.
|
||||
|
||||
This is what we use in `transformers serve` because requests arrive asynchronously and we can leverage the asynchronous nature of the CB process to make things more efficient.
|
||||
|
||||
Under the hood, the `ContinuousBatchingManager` creates a background thread that receives inputs from a python `queue.Queue` which it uses to get requests to batch in each forward pass.
|
||||
|
||||
Note that the manager is thread safe!
|
||||
|
||||
```py
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
from transformers.generation.continuous_batching import RequestStatus
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"Qwen/Qwen3-4B-Instruct-2507",
|
||||
attn_implementation="spda_paged",
|
||||
device_map="cuda", # if you need cuda
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
|
||||
|
||||
# prepare a batch of inputs
|
||||
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
dataset = dataset.select(range(args.samples))
|
||||
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
# initialize the manager, available method thanks to the `ContinuousMixin`
|
||||
manager = model.init_continuous_batching(generation_config=generation_config)
|
||||
|
||||
# start the background thread
|
||||
manager.start()
|
||||
|
||||
# this is for demonstration purposes only, in practice this is most useful to do concurrently
|
||||
for i, input in enumerate(simple_batch_inputs):
|
||||
request_id = manager.add_request(input_ids=input, request_id=f"request_{i}") # if you do not specify a request_id, one will be generated for you
|
||||
|
||||
# Can be done in an other thread
|
||||
for id, request in manager.get_result():
|
||||
generated_text = tokenizer.decode(request.generated_tokens, skip_special_tokens=True)
|
||||
print(f"Request {id} output: {generated_text}")
|
||||
|
||||
# you can also get results for a specific request id
|
||||
result = manager.get_result(request_id="request_5") # this is blocking and will wait for the result to be ready
|
||||
|
||||
# or get results for a request that is streaming
|
||||
manager.add_request(
|
||||
input_ids=input,
|
||||
request_id="streaming_request",
|
||||
stream=True,
|
||||
)
|
||||
for chunk in manager.request_id_iter(request_id="streaming_request"):
|
||||
generated_text = tokenizer.decode(chunk.generated_tokens, skip_special_tokens=True)
|
||||
print(generated_text)
|
||||
# FIXME: stop iteration in `request_id_iter` when finished instead of doing it externally
|
||||
if chunk.status == RequestStatus.FINISHED:
|
||||
break
|
||||
|
||||
# stop the background thread before exiting the process
|
||||
manager.stop()
|
||||
```
|
||||
|
||||
## Supported & Unsupported Features
|
||||
|
||||
### Supported Features
|
||||
|
||||
- Dynamic scheduling of variable-length requests
|
||||
- Chunked prefill
|
||||
- Paged Attention Cache
|
||||
- Sliding window attention
|
||||
- Chat templates
|
||||
|
||||
### Unsupported Features
|
||||
|
||||
At the moment, the following features are not supported with CB. We plan to add support to the following:
|
||||
|
||||
- Prefix caching
|
||||
- Beam search
|
||||
- tool calling
|
||||
|
||||
The others are unplanned, but depending on community requests we might consider adding them:
|
||||
|
||||
- MTP (multi token prediction)
|
||||
- Medusa
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
|
||||
## Integration with Serving
|
||||
|
||||
You can use CB in `transformers serve` by passing the `--continuous-batching` flag when starting the server.
|
||||
|
||||
## Monitoring
|
||||
|
||||
We have added `opentelemetry` support to Continuous Batching to help you monitor its performance in production. To enable it, you need to install the `opentelemetry` extra when installing `transformers`:
|
||||
|
||||
```sh
|
||||
# this installs `opentelemetry-api`, `opentelemetry-sdk` and `opentelemetry-exporter-otlp`
|
||||
pip install transformers[open-telemetry]
|
||||
```
|
||||
|
||||
This will enable traces and metrics collection in CB. You will then have to setup the backend to collect and visualize the traces and metrics.
|
||||
|
||||
@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) runs PyTorch models on mobile and edge devices. Export your Transformers models to the ExecuTorch format with [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch) with the command below.
|
||||
|
||||
```bash
|
||||
```
|
||||
optimum-cli export executorch \
|
||||
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
|
||||
--task "text-generation" \
|
||||
@ -29,5 +29,4 @@ optimum-cli export executorch \
|
||||
--qembedding 8w \
|
||||
--output_dir="hf_smollm2"
|
||||
```
|
||||
|
||||
Run `optimum-cli export executorch --help` to see all export options. For detailed export instructions, check the [README](optimum/exporters/executorch/README.md).
|
||||
|
||||
@ -320,7 +320,7 @@ df.sort_values(by=['skipped_proportion'], ascending=False)
|
||||
You can focus on a specific test method using `--test_method_name`:
|
||||
|
||||
```bash
|
||||
python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).
|
||||
|
||||
@ -1,83 +0,0 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Utilities for Rotary Embedding
|
||||
|
||||
This page explains how the Rotary Embedding is computed and applied in Transformers and what types of RoPE are supported.
|
||||
|
||||
## Overview
|
||||
|
||||
Rotary Position Embeddings are a technique used to inject positional information into attention mechanisms without relying on explicit position encodings.
|
||||
Instead of adding position vectors to token embeddings, RoPE rotates query and key vectors in the complex plane according to their positions enabling relative positional awareness and better extrapolation to unseen sequence lengths.
|
||||
|
||||
The Transformers library provides a flexible and extensible implementation of various RoPE types defined in `[`~modeling_rope_utils.ROPE_VALIDATION_FUNCTIONS`]`, including both the default and scaled variants:
|
||||
|
||||
| Rope Type | Description |
|
||||
|------------|-------------|
|
||||
| `"default"` | Standard rotary embedding as in LLaMA. |
|
||||
| `"linear"` | Linear-scaled RoPE which allows longer context windows. |
|
||||
| `"dynamic"` | NTK-aware scaling computed by rescaling frequency base (`θ`) for longer context. |
|
||||
| `"yarn"` | YaRN scaling variant providing smoother extrapolation and stability. |
|
||||
| `"longrope"` | [LongRoPE](https://github.com/microsoft/LongRoPE) scaling as in Phi-2 model series. |
|
||||
| `"llama3"` | RoPE scaling as in Llama3.1. |
|
||||
|
||||
## Configuration in Model Configs
|
||||
|
||||
To enable and customize rotary embeddings, add a `rope_parameters` field to your model’s configuration file (`config.json`). This field controls the RoPE behavior across model layers. Note that each RoPE variant defines its own set of expected keys and missing keys will raise an error. See the example below which creates a llama config with default RoPE parameters:
|
||||
|
||||
```python
|
||||
from transformers import LlamaConfig
|
||||
|
||||
config = LlamaConfig()
|
||||
config.rope_parameters = {
|
||||
"rope_type": "default", # type of RoPE to use
|
||||
"rope_theta": 10000.0 # base frequency parameter
|
||||
}
|
||||
|
||||
# If we want to apply a scaled RoPE type, we need to pass extra parameters
|
||||
config.rope_parameters = {
|
||||
"rope_type": "linear",
|
||||
"rope_theta": 10000.0,
|
||||
"factor": 8.0 # scale factor for context extension
|
||||
}
|
||||
```
|
||||
|
||||
## Per-Layer-Type RoPE Configuration
|
||||
|
||||
Some models such as Gemma-3 use different layer types with different attention mechanisms, i.e. "full attention" in some blocks and "sliding-window attention" in others. Transformers supports specifying distinct RoPE parameters per layer type for these models. In this case, `rope_parameters` should be a nested dictionary, where top-level keys correspond to `config.layer_types` and values are per-type RoPE parameters. During model initialization, each decoder layer will automatically look up the matching RoPE configuration based on its declared layer type.
|
||||
|
||||
```python
|
||||
from transformers import Gemma3Config
|
||||
|
||||
config = Gemma3Config()
|
||||
config.rope_parameters = {
|
||||
"full_attention": {
|
||||
"rope_type": "dynamic",
|
||||
"rope_theta": 1000000.0,
|
||||
"factor": 8.0,
|
||||
"original_max_position_embeddings": 8096,
|
||||
},
|
||||
"sliding_attention": {
|
||||
"rope_type": "default",
|
||||
"rope_theta": 10000.0,
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Utilities
|
||||
|
||||
[[autodoc]] RopeParameters
|
||||
- __call__
|
||||
@ -1,3 +1,3 @@
|
||||
# Overview
|
||||
|
||||
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.
|
||||
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.
|
||||
@ -393,9 +393,3 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config, device_map="auto"
|
||||
)
|
||||
```
|
||||
|
||||
## Continuous Batching
|
||||
|
||||
When serving LLMs for inference, you may have multiple requests arriving at different times. Continuous Batching (CB) is a technique that groups incoming requests into batches to maximize GPU utilization and throughput.
|
||||
|
||||
See the [Continuous Batching](./continuous_batching) guide for more details on how to use CB in transformers.
|
||||
|
||||
@ -67,6 +67,6 @@ Examples of use can be found in the [example scripts](../examples) or [example n
|
||||
|
||||
[[autodoc]] data.data_collator.DataCollatorWithFlattening
|
||||
|
||||
## DataCollatorForMultipleChoice
|
||||
# DataCollatorForMultipleChoice
|
||||
|
||||
[[autodoc]] data.data_collator.DataCollatorForMultipleChoice
|
||||
|
||||
@ -267,7 +267,6 @@ about how many forward passes you inputs are actually going to trigger, you can
|
||||
independently of the inputs. The caveats from the previous section still apply.
|
||||
|
||||
## Pipeline FP16 inference
|
||||
|
||||
Models can be run in FP16 which can be significantly faster on GPU while saving memory. Most models will not suffer noticeable performance loss from this. The larger the model, the less likely that it will.
|
||||
|
||||
To enable FP16 inference, you can simply pass `dtype=torch.float16` or `dtype='float16'` to the pipeline constructor. Note that this only works for models with a PyTorch backend. Your inputs will be converted to FP16 internally.
|
||||
@ -335,7 +334,6 @@ Pipelines available for audio tasks include the following.
|
||||
Pipelines available for computer vision tasks include the following.
|
||||
|
||||
### DepthEstimationPipeline
|
||||
|
||||
[[autodoc]] DepthEstimationPipeline
|
||||
- __call__
|
||||
- all
|
||||
|
||||
@ -43,7 +43,6 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
|
||||
[[autodoc]] AwqConfig
|
||||
|
||||
## EetqConfig
|
||||
|
||||
[[autodoc]] EetqConfig
|
||||
|
||||
## GPTQConfig
|
||||
|
||||
@ -50,14 +50,14 @@ several advanced alignment methods which can be used to map between the original
|
||||
token space (e.g., getting the index of the token comprising a given character or the span of characters corresponding
|
||||
to a given token).
|
||||
|
||||
## Multimodal Tokenizer
|
||||
# Multimodal Tokenizer
|
||||
|
||||
Apart from that each tokenizer can be a "multimodal" tokenizer which means that the tokenizer will hold all relevant special tokens
|
||||
as part of tokenizer attributes for easier access. For example, if the tokenizer is loaded from a vision-language model like LLaVA, you will
|
||||
be able to access `tokenizer.image_token_id` to obtain the special image token used as a placeholder.
|
||||
|
||||
To enable extra special tokens for any type of tokenizer, you have to add the following lines and save the tokenizer. Extra special tokens do not
|
||||
have to be modality related and can be anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
|
||||
have to be modality related and can ne anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
|
||||
to three more special tokens.
|
||||
|
||||
```python
|
||||
|
||||
@ -23,7 +23,6 @@ The video processor extends the functionality of image processors by allowing Vi
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
|
||||
### Usage Example
|
||||
|
||||
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
|
||||
|
||||
```python
|
||||
|
||||
@ -1,402 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
*This model was released on 2025-07-10 and added to Hugging Face Transformers on 2025-11-11.*
|
||||
|
||||
# Audio Flamingo 3
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
Audio Flamingo 3 (AF3) is a fully open large audio–language model designed for robust understanding and reasoning over speech, environmental sounds, and music. AF3 pairs a Whisper-style audio encoder with a causal language model and performs replace-in-place audio–text fusion: the processor aligns post-pool audio frames to a dedicated placeholder token and the model replaces those token slots with projected audio embeddings during the forward pass.
|
||||
|
||||
The model checkpoint is available at: [nvidia/audio-flamingo-3-hf](https://huggingface.co/nvidia/audio-flamingo-3-hf)
|
||||
|
||||
Highlights:
|
||||
|
||||
- Unified audio encoder across speech, sound, and music.
|
||||
- **Long-audio support via windowing and post-pool alignment (up to 10 minutes maximum).** The model processes audio in 30-second windows with a hard limit of 20 windows (10 minutes total). Audio longer than 10 minutes will be truncated.
|
||||
- Deterministic fusion that preserves sequence length by replacing audio placeholder tokens with audio embeddings.
|
||||
|
||||
This model was contributed by [Lasha Koroshinadze](https://huggingface.co/lashahub) and [Eric Bezzam](https://huggingface.co/bezzam).
|
||||
|
||||
### Paper
|
||||
|
||||
[Audio Flamingo 3](https://huggingface.co/papers/2507.08128): Advancing Audio Intelligence with Fully Open Large Audio Language Models
|
||||
A. Goel, S. Ghosh, J. Kim, S. Kumar, Z. Kong, S. Lee, C.-H. H. Yang, R. Duraiswami, D. Manocha, R. Valle, B. Catanzaro
|
||||
NVIDIA and University of Maryland
|
||||
Project: https://research.nvidia.com/labs/adlr/AF3/
|
||||
|
||||
## Usage
|
||||
|
||||
### Audio Instruct Mode
|
||||
|
||||
The model supports audio-text instructions, including multi-turn interactions, all processed in batches.
|
||||
|
||||
➡️ audio + text instruction
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Transcribe the input speech."},
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversation,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
➡️ multi-turn:
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Instruction: How does the tone of female speech change throughout the audio? Choose the correct option among the options below: (A) Sad to happy (B) Happy to sad (C) Neutral to happy (D) Happy to neutral.",
|
||||
},
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/000000786159.31.wav"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "(A) Sad to happy"}],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Why do you think so?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversation,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
➡️ text only:
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is the capital of France?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversation,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
➡️ audio only:
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversation,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
➡️ batched inference!
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
conversations = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Transcribe the input speech."},
|
||||
{
|
||||
"type": "audio",
|
||||
"path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav",
|
||||
},
|
||||
],
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
|
||||
},
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
|
||||
],
|
||||
}
|
||||
],
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversations,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
➡️ Training:
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
model.train()
|
||||
|
||||
conversation = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Transcribe the input speech."},
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/WhDJDIviAOg_120_10.mp3"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "The transcription of the audio is 'summer follows spring the days grow longer and the nights are warm'."}],
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?",
|
||||
},
|
||||
{"type": "audio", "path": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/FPSbCAANfbJLVSwD.mp3"},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "text": "The transcription of the audio is 'some transcription of the audio'."}],
|
||||
}
|
||||
|
||||
]
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
conversation,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_dict=True,
|
||||
output_labels=True,
|
||||
).to(model.device)
|
||||
|
||||
loss = model(**inputs).loss
|
||||
loss.backward()
|
||||
```
|
||||
|
||||
➡️ transcription shortcut
|
||||
|
||||
```python
|
||||
from transformers import AudioFlamingo3ForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "nvidia/audio-flamingo-3-hf"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AudioFlamingo3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
|
||||
|
||||
inputs = processor.apply_transcription_request(audio="https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/t_837b89f2-26aa-4ee2-bdf6-f73f0dd59b26.wav").to(model.device)
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=500)
|
||||
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True, strip_prefix=True)
|
||||
|
||||
print(decoded_outputs)
|
||||
```
|
||||
|
||||
The model is trained to emit transcriptions prefixed with assistant framing such as `The spoken content of the audio is "<text>".`. Use `strip_prefix=True` (as shown above) to remove the fixed assistant sentence and surrounding quotes so that only the transcription remains.
|
||||
|
||||
## How the model works
|
||||
|
||||
### Architecture
|
||||
|
||||
* **AudioFlamingo3Encoder**
|
||||
Whisper-style feature extractor + encoder → average-pool over time (stride 2) → LayerNorm.
|
||||
Produces per-frame hidden states at the post-pool rate.
|
||||
|
||||
* **AudioFlamingo3MultiModalProjector**
|
||||
A small MLP that maps encoder features to the language model’s hidden size.
|
||||
|
||||
* **AudioFlamingo3ForConditionalGeneration**
|
||||
A causal language model that accepts text embeddings where each audio placeholder token slot is replaced, in place, by an audio frame embedding. No sequence-length change is introduced by fusion.
|
||||
|
||||
### Processor-level alignment
|
||||
|
||||
1. Each raw waveform is split into fixed-length windows based on the feature extractor’s `chunk_length` (seconds) and `sampling_rate` (Hz).
|
||||
2. For each window, the processor computes the number of post-pool frames `post_pool_len` that the encoder will output (matching the conv/pool schedule).
|
||||
3. The processor expands the audio placeholder token by the total number of post-pool frames across all windows.
|
||||
4. The model later replaces those token positions with the corresponding projected audio embeddings.
|
||||
|
||||
## Usage patterns
|
||||
|
||||
### Transcription shortcut
|
||||
|
||||
For automatic speech recognition you can skip writing the default instruction each time and call
|
||||
[`~transformers.AudioFlamingo3Processor.apply_transcription_request`]:
|
||||
|
||||
```python
|
||||
inputs = processor.apply_transcription_request(audio=audio_array)
|
||||
```
|
||||
|
||||
Pass `prompt="Transcribe the input speech."` (or a list of prompts for batch audio) to customize the instruction while
|
||||
keeping the audio placeholder handling.
|
||||
|
||||
`audio` accepts in-memory arrays, local file paths, or URLs. Any processor kwargs (`text_kwargs`, `audio_kwargs`, etc.)
|
||||
are forwarded, so you can tweak padding or tensor formats just like when calling `processor(...)`.
|
||||
|
||||
## Long audio and windowing
|
||||
|
||||
**Important: Maximum audio length is 10 minutes.** Audio longer than this will be truncated.
|
||||
|
||||
* The default setup processes 30-second windows at 16 kHz mono.
|
||||
* **The processor enforces a hard limit of 20 windows per sample, resulting in a maximum of 10 minutes of audio (20 windows × 30 seconds).**
|
||||
* For each window:
|
||||
|
||||
* `mel_len` is the padded mel length.
|
||||
* A conv stack reduces time as `conv_output_len = (mel_len - 1) // 2 + 1`.
|
||||
* Post-pool frames per window: `post_pool_len = (conv_output_len - 2) // 2 + 1`.
|
||||
* An audio placeholder token is expanded to the sum of `post_pool_len` across all windows.
|
||||
|
||||
## Padding, attention, and caching
|
||||
|
||||
* **Left padding vs right padding**
|
||||
For generation with mixed prompt lengths in a batch, left padding is usually preferable.
|
||||
For training, right padding is common; AF3’s fusion mechanism itself is padding-agnostic because it replaces in place.
|
||||
* **Attention masks**
|
||||
The processor returns `attention_mask` (text) and `input_features_mask` (audio). The model builds an internal 4-D mask on the encoder’s pre-pool axis with negative infinity at pad positions.
|
||||
* **Caching**
|
||||
During generation, `input_features` and `input_features_mask` are only passed on the first step. Subsequent steps use cached keys/values from the language model.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
* Empty or truncated outputs when batching
|
||||
Use left padding for batched generation and decode only the new tokens after the prompt length, as shown in the quickstart.
|
||||
|
||||
## AudioFlamingo3Config
|
||||
|
||||
[[autodoc]] AudioFlamingo3Config
|
||||
|
||||
## AudioFlamingo3EncoderConfig
|
||||
|
||||
[[autodoc]] AudioFlamingo3EncoderConfig
|
||||
|
||||
## AudioFlamingo3Processor
|
||||
|
||||
[[autodoc]] AudioFlamingo3Processor
|
||||
|
||||
## AudioFlamingo3Encoder
|
||||
|
||||
[[autodoc]] AudioFlamingo3Encoder
|
||||
- forward
|
||||
|
||||
## AudioFlamingo3ForConditionalGeneration
|
||||
|
||||
[[autodoc]] AudioFlamingo3ForConditionalGeneration
|
||||
- forward
|
||||
60
docs/source/en/model_doc/bort.md
Normal file
60
docs/source/en/model_doc/bort.md
Normal file
@ -0,0 +1,60 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2020-10-20 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# BORT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we do not accept any new PRs changing its code.
|
||||
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
|
||||
You can do so by running the following command: `pip install -U transformers==4.30.0`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://huggingface.co/papers/2010.10499) by
|
||||
Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the
|
||||
authors refer to as "Bort".
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by
|
||||
applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as
|
||||
"Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the
|
||||
original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which
|
||||
is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large
|
||||
(Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same
|
||||
hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the
|
||||
architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%,
|
||||
absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.*
|
||||
|
||||
This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/alexa/bort/).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- BORT's model architecture is based on BERT, refer to [BERT's documentation page](bert) for the
|
||||
model's API reference as well as usage examples.
|
||||
- BORT uses the RoBERTa tokenizer instead of the BERT tokenizer, refer to [RoBERTa's documentation page](roberta) for the tokenizer's API reference as well as usage examples.
|
||||
- BORT requires a specific fine-tuning algorithm, called [Agora](https://adewynter.github.io/notes/bort_algorithms_and_applications.html#fine-tuning-with-algebraic-topology) ,
|
||||
that is sadly not open-sourced yet. It would be very useful for the community, if someone tries to implement the
|
||||
algorithm to make BORT fine-tuning work.
|
||||
@ -158,24 +158,6 @@ print("Retrieval scores (query x image):")
|
||||
print(scores)
|
||||
```
|
||||
|
||||
You can also use checkpoints for `ColQwen2.5` that are **compatible with the ColQwen2 architecture**. This version of the model uses [Qwen2_5_VL](./qwen2_5_vl) as the backbone.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
model_name = "Sahil-Kabir/colqwen2.5-v0.2-hf" # An existing compatible checkpoint
|
||||
|
||||
model = ColQwen2ForRetrieval.from_pretrained(
|
||||
model_name,
|
||||
dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "sdpa"
|
||||
)
|
||||
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- [`~ColQwen2Processor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
|
||||
|
||||
78
docs/source/en/model_doc/deta.md
Normal file
78
docs/source/en/model_doc/deta.md
Normal file
@ -0,0 +1,78 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2022-12-12 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# DETA
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The DETA model was proposed in [NMS Strikes Back](https://huggingface.co/papers/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
|
||||
DETA (short for Detection Transformers with Assignment) improves [Deformable DETR](deformable_detr) by replacing the one-to-one bipartite Hungarian matching loss
|
||||
with one-to-many label assignments used in traditional detectors with non-maximum suppression (NMS). This leads to significant gains of up to 2.5 mAP.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture.*
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/deta_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> DETA overview. Taken from the <a href="https://huggingface.co/papers/2212.06137">original paper</a>. </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/jozhang97/DETA).
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETA.
|
||||
|
||||
- Demo notebooks for DETA can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETA).
|
||||
- Scripts for finetuning [`DetaForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
|
||||
- See also: [Object detection task guide](../tasks/object_detection).
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
## DetaConfig
|
||||
|
||||
[[autodoc]] DetaConfig
|
||||
|
||||
## DetaImageProcessor
|
||||
|
||||
[[autodoc]] DetaImageProcessor
|
||||
- preprocess
|
||||
- post_process_object_detection
|
||||
|
||||
## DetaModel
|
||||
|
||||
[[autodoc]] DetaModel
|
||||
- forward
|
||||
|
||||
## DetaForObjectDetection
|
||||
|
||||
[[autodoc]] DetaForObjectDetection
|
||||
- forward
|
||||
@ -169,9 +169,6 @@ print("Pooled output shape:", pooled_output.shape)
|
||||
[[autodoc]] DINOv3ViTModel
|
||||
- forward
|
||||
|
||||
## DINOv3ViTBackbone
|
||||
[[autodoc]] DINOv3ViTBackbone
|
||||
|
||||
## DINOv3ConvNextModel
|
||||
|
||||
[[autodoc]] DINOv3ConvNextModel
|
||||
|
||||
85
docs/source/en/model_doc/efficientformer.md
Normal file
85
docs/source/en/model_doc/efficientformer.md
Normal file
@ -0,0 +1,85 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2022-06-02 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# EfficientFormer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The EfficientFormer model was proposed in [EfficientFormer: Vision Transformers at MobileNet Speed](https://huggingface.co/papers/2206.01191)
|
||||
by Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. EfficientFormer proposes a
|
||||
dimension-consistent pure transformer that can be run on mobile devices for dense prediction tasks like image classification, object
|
||||
detection and semantic segmentation.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks.
|
||||
However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally
|
||||
times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly
|
||||
challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation
|
||||
complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still
|
||||
unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance?
|
||||
To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs.
|
||||
Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm.
|
||||
Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer.
|
||||
Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices.
|
||||
Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on
|
||||
iPhone 12 (compiled with CoreML), which { runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1),} and our largest model,
|
||||
EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can
|
||||
reach extremely low latency on mobile devices while maintaining high performance.*
|
||||
|
||||
This model was contributed by [novice03](https://huggingface.co/novice03) and [Bearnardd](https://huggingface.co/Bearnardd).
|
||||
The original code can be found [here](https://github.com/snap-research/EfficientFormer).
|
||||
|
||||
## Documentation resources
|
||||
|
||||
- [Image classification task guide](../tasks/image_classification)
|
||||
|
||||
## EfficientFormerConfig
|
||||
|
||||
[[autodoc]] EfficientFormerConfig
|
||||
|
||||
## EfficientFormerImageProcessor
|
||||
|
||||
[[autodoc]] EfficientFormerImageProcessor
|
||||
- preprocess
|
||||
|
||||
## EfficientFormerModel
|
||||
|
||||
[[autodoc]] EfficientFormerModel
|
||||
- forward
|
||||
|
||||
## EfficientFormerForImageClassification
|
||||
|
||||
[[autodoc]] EfficientFormerForImageClassification
|
||||
- forward
|
||||
|
||||
## EfficientFormerForImageClassificationWithTeacher
|
||||
|
||||
[[autodoc]] EfficientFormerForImageClassificationWithTeacher
|
||||
- forward
|
||||
97
docs/source/en/model_doc/ernie_m.md
Normal file
97
docs/source/en/model_doc/ernie_m.md
Normal file
@ -0,0 +1,97 @@
|
||||
<!--Copyright 2023 The HuggingFace and Baidu Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2020-12-31 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# ErnieM
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The ErnieM model was proposed in [ERNIE-M: Enhanced Multilingual Representation by Aligning
|
||||
Cross-lingual Semantics with Monolingual Corpora](https://huggingface.co/papers/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun,
|
||||
Hao Tian, Hua Wu, Haifeng Wang.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for lowresource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks.*
|
||||
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato). The original code can be found [here](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/paddlenlp/transformers/ernie_m).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- Ernie-M is a BERT-like model so it is a stacked Transformer Encoder.
|
||||
- Instead of using MaskedLM for pretraining (like BERT) the authors used two novel techniques: `Cross-attention Masked Language Modeling` and `Back-translation Masked Language Modeling`. For now these two LMHead objectives are not implemented here.
|
||||
- It is a multilingual language model.
|
||||
- Next Sentence Prediction was not used in pretraining process.
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## ErnieMConfig
|
||||
|
||||
[[autodoc]] ErnieMConfig
|
||||
|
||||
## ErnieMTokenizer
|
||||
|
||||
[[autodoc]] ErnieMTokenizer
|
||||
- build_inputs_with_special_tokens
|
||||
- get_special_tokens_mask
|
||||
- create_token_type_ids_from_sequences
|
||||
- save_vocabulary
|
||||
|
||||
## ErnieMModel
|
||||
|
||||
[[autodoc]] ErnieMModel
|
||||
- forward
|
||||
|
||||
## ErnieMForSequenceClassification
|
||||
|
||||
[[autodoc]] ErnieMForSequenceClassification
|
||||
- forward
|
||||
|
||||
## ErnieMForMultipleChoice
|
||||
|
||||
[[autodoc]] ErnieMForMultipleChoice
|
||||
- forward
|
||||
|
||||
## ErnieMForTokenClassification
|
||||
|
||||
[[autodoc]] ErnieMForTokenClassification
|
||||
- forward
|
||||
|
||||
## ErnieMForQuestionAnswering
|
||||
|
||||
[[autodoc]] ErnieMForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## ErnieMForInformationExtraction
|
||||
|
||||
[[autodoc]] ErnieMForInformationExtraction
|
||||
- forward
|
||||
@ -31,7 +31,7 @@ This model was contributed by [Connor Henderson](https://huggingface.co/connor-h
|
||||
|
||||
FastSpeech2's general structure with a Mel-spectrogram decoder was implemented, and the traditional transformer blocks were replaced with conformer blocks as done in the ESPnet library.
|
||||
|
||||
### FastSpeech2 Model Architecture
|
||||
#### FastSpeech2 Model Architecture
|
||||
|
||||

|
||||
|
||||
|
||||
@ -70,8 +70,8 @@ from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
||||
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
||||
|
||||
model = Florence2ForConditionalGeneration.from_pretrained("florence-community/Florence-2-base", dtype=torch.bfloat16, device_map="auto")
|
||||
processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
|
||||
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base", dtype=torch.bfloat16, device_map="auto")
|
||||
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")
|
||||
|
||||
task_prompt = "<OD>"
|
||||
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device)
|
||||
@ -105,12 +105,12 @@ from transformers import AutoProcessor, Florence2ForConditionalGeneration, BitsA
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
|
||||
model = Florence2ForConditionalGeneration.from_pretrained(
|
||||
"florence-community/Florence-2-base",
|
||||
"microsoft/Florence-2-large",
|
||||
dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
|
||||
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
|
||||
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
||||
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
||||
|
||||
@ -75,11 +75,11 @@ A processor requires an image_processor and a tokenizer. Hence, inputs can be lo
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
||||
from transformers.models.fuyu.image_processing_fuyu_fast import FuyuImageProcessorFast
|
||||
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('adept-hf-collab/fuyu-8b')
|
||||
image_processor = FuyuImageProcessorFast()
|
||||
image_processor = FuyuImageProcessor()
|
||||
|
||||
|
||||
processor = FuyuProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
||||
@ -118,11 +118,6 @@ The `LlamaTokenizer` is used as it is a standard wrapper around sentencepiece.
|
||||
[[autodoc]] FuyuImageProcessor
|
||||
- __call__
|
||||
|
||||
## FuyuImageProcessor
|
||||
|
||||
[[autodoc]] FuyuImageProcessorFast
|
||||
- __call__
|
||||
|
||||
## FuyuProcessor
|
||||
|
||||
[[autodoc]] FuyuProcessor
|
||||
|
||||
@ -33,7 +33,7 @@ this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented R
|
||||
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
|
||||
a similar attention pattern to [Gemma 3](./gemma3) with alternating 4 local sliding window self-attention layers for
|
||||
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
|
||||
MobileNet v5 as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
|
||||
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
|
||||
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.
|
||||
|
||||
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
|
||||
|
||||
@ -1,34 +0,0 @@
|
||||
# GLM-4.6V
|
||||
|
||||
## Glm46VConfig
|
||||
|
||||
[[autodoc]] Glm46VConfig
|
||||
|
||||
## Glm46VImageProcessor
|
||||
|
||||
[[autodoc]] Glm46VImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm46VVideoProcessor
|
||||
|
||||
[[autodoc]] Glm46VVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm46VImageProcessorFast
|
||||
|
||||
[[autodoc]] Glm46VImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Glm46VProcessor
|
||||
|
||||
[[autodoc]] Glm46VProcessor
|
||||
|
||||
## Glm46VModel
|
||||
|
||||
[[autodoc]] Glm46VModel
|
||||
- forward
|
||||
|
||||
## Glm46VForConditionalGeneration
|
||||
|
||||
[[autodoc]] Glm46VForConditionalGeneration
|
||||
- forward
|
||||
@ -170,11 +170,6 @@ print(output_text)
|
||||
|
||||
[[autodoc]] Glm4vConfig
|
||||
|
||||
|
||||
## Glm4vVisionConfig
|
||||
|
||||
[[autodoc]] Glm4vVisionConfig
|
||||
|
||||
## Glm4vTextConfig
|
||||
|
||||
[[autodoc]] Glm4vTextConfig
|
||||
@ -198,11 +193,6 @@ print(output_text)
|
||||
|
||||
[[autodoc]] Glm4vProcessor
|
||||
|
||||
## Glm4vVisionModel
|
||||
|
||||
[[autodoc]] Glm4vVisionModel
|
||||
- forward
|
||||
|
||||
## Glm4vTextModel
|
||||
|
||||
[[autodoc]] Glm4vTextModel
|
||||
|
||||
@ -22,7 +22,7 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> </div>
|
||||
</div>
|
||||
|
||||
# Glm4vMoeMoe
|
||||
# Glm4vMoe
|
||||
|
||||
## Overview
|
||||
|
||||
@ -48,20 +48,10 @@ The model also introduces a **Thinking Mode** switch, allowing users to balance
|
||||
|
||||
[[autodoc]] Glm4vMoeConfig
|
||||
|
||||
|
||||
## Glm4vMoeVisionConfig
|
||||
|
||||
[[autodoc]] Glm4vMoeVisionConfig
|
||||
|
||||
## Glm4vMoeTextConfig
|
||||
|
||||
[[autodoc]] Glm4vMoeTextConfig
|
||||
|
||||
## Glm4vMoeVisionModel
|
||||
|
||||
[[autodoc]] Glm4vMoeVisionModel
|
||||
- forward
|
||||
|
||||
## Glm4vMoeTextModel
|
||||
|
||||
[[autodoc]] Glm4vMoeTextModel
|
||||
@ -75,4 +65,4 @@ The model also introduces a **Thinking Mode** switch, allowing users to balance
|
||||
## Glm4vMoeForConditionalGeneration
|
||||
|
||||
[[autodoc]] Glm4vMoeForConditionalGeneration
|
||||
- forward
|
||||
- forward
|
||||
|
||||
@ -61,11 +61,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] GLPNImageProcessor
|
||||
- preprocess
|
||||
|
||||
## GLPNImageProcessorFast
|
||||
|
||||
[[autodoc]] GLPNImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## GLPNModel
|
||||
|
||||
[[autodoc]] GLPNModel
|
||||
|
||||
145
docs/source/en/model_doc/gptsan-japanese.md
Normal file
145
docs/source/en/model_doc/gptsan-japanese.md
Normal file
@ -0,0 +1,145 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2023-02-07 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# GPTSAN-japanese
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The [GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) model was released in the repository by Toshiyuki Sakamoto (tanreinama).
|
||||
|
||||
GPTSAN is a Japanese language model using Switch Transformer. It has the same structure as the model introduced as Prefix LM
|
||||
in the T5 paper, and support both Text Generation and Masked Language Modeling tasks. These basic tasks similarly can
|
||||
fine-tune for translation or summarization.
|
||||
|
||||
### Usage example
|
||||
|
||||
The `generate()` method can be used to generate text using GPTSAN-Japanese model.
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoModel, AutoTokenizer
|
||||
from accelerate import Accelerator
|
||||
>>> import torch
|
||||
|
||||
>>> device = Accelerator().device
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
||||
>>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
|
||||
>>> x_tok = tokenizer("は、", prefix_text="織田信長", return_tensors="pt")
|
||||
>>> torch.manual_seed(0)
|
||||
>>> gen_tok = model.generate(x_tok.input_ids.to(model.device), token_type_ids=x_tok.token_type_ids.to(model.device), max_new_tokens=20)
|
||||
>>> tokenizer.decode(gen_tok[0])
|
||||
'織田信長は、2004年に『戦国BASARA』のために、豊臣秀吉'
|
||||
```
|
||||
|
||||
## GPTSAN Features
|
||||
|
||||
GPTSAN has some unique features. It has a model structure of Prefix-LM. It works as a shifted Masked Language Model for Prefix Input tokens. Un-prefixed inputs behave like normal generative models.
|
||||
The Spout vector is a GPTSAN specific input. Spout is pre-trained with random inputs, but you can specify a class of text or an arbitrary vector during fine-tuning. This allows you to indicate the tendency of the generated text.
|
||||
GPTSAN has a sparse Feed Forward based on Switch-Transformer. You can also add other layers and train them partially. See the original GPTSAN repository for details.
|
||||
|
||||
### Prefix-LM Model
|
||||
|
||||
GPTSAN has the structure of the model named Prefix-LM in the `T5` paper. (The original GPTSAN repository calls it `hybrid`)
|
||||
In GPTSAN, the `Prefix` part of Prefix-LM, that is, the input position that can be referenced by both tokens, can be specified with any length.
|
||||
Arbitrary lengths can also be specified differently for each batch.
|
||||
This length applies to the text entered in `prefix_text` for the tokenizer.
|
||||
The tokenizer returns the mask of the `Prefix` part of Prefix-LM as `token_type_ids`.
|
||||
The model treats the part where `token_type_ids` is 1 as a `Prefix` part, that is, the input can refer to both tokens before and after.
|
||||
|
||||
## Usage tips
|
||||
|
||||
Specifying the Prefix part is done with a mask passed to self-attention.
|
||||
When token_type_ids=None or all zero, it is equivalent to regular causal mask
|
||||
|
||||
for example:
|
||||
|
||||
>>> x_token = tokenizer("アイウエ")
|
||||
|
||||
```text
|
||||
input_ids: | SOT | SEG | ア | イ | ウ | エ |
|
||||
token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 |
|
||||
prefix_lm_mask:
|
||||
SOT | 1 0 0 0 0 0 |
|
||||
SEG | 1 1 0 0 0 0 |
|
||||
ア | 1 1 1 0 0 0 |
|
||||
イ | 1 1 1 1 0 0 |
|
||||
ウ | 1 1 1 1 1 0 |
|
||||
エ | 1 1 1 1 1 1 |
|
||||
```
|
||||
|
||||
>>> x_token = tokenizer("", prefix_text="アイウエ")
|
||||
|
||||
```text
|
||||
input_ids: | SOT | ア | イ | ウ | エ | SEG |
|
||||
token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 |
|
||||
prefix_lm_mask:
|
||||
SOT | 1 1 1 1 1 0 |
|
||||
ア | 1 1 1 1 1 0 |
|
||||
イ | 1 1 1 1 1 0 |
|
||||
ウ | 1 1 1 1 1 0 |
|
||||
エ | 1 1 1 1 1 0 |
|
||||
SEG | 1 1 1 1 1 1 |
|
||||
```
|
||||
|
||||
>>> x_token = tokenizer("ウエ", prefix_text="アイ")
|
||||
|
||||
```text
|
||||
input_ids: | SOT | ア | イ | SEG | ウ | エ |
|
||||
token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 |
|
||||
prefix_lm_mask:
|
||||
SOT | 1 1 1 0 0 0 |
|
||||
ア | 1 1 1 0 0 0 |
|
||||
イ | 1 1 1 0 0 0 |
|
||||
SEG | 1 1 1 1 0 0 |
|
||||
ウ | 1 1 1 1 1 0 |
|
||||
エ | 1 1 1 1 1 1 |
|
||||
```
|
||||
|
||||
### Spout Vector
|
||||
|
||||
A Spout Vector is a special vector for controlling text generation.
|
||||
This vector is treated as the first embedding in self-attention to bring extraneous attention to the generated tokens.
|
||||
In the pre-trained model published from `Tanrei/GPTSAN-japanese`, the Spout Vector is a 128-dimensional vector that passes through 8 fully connected layers in the model and is projected into the space acting as external attention.
|
||||
The Spout Vector projected by the fully connected layer is split to be passed to all self-attentions.
|
||||
|
||||
## GPTSanJapaneseConfig
|
||||
|
||||
[[autodoc]] GPTSanJapaneseConfig
|
||||
|
||||
## GPTSanJapaneseTokenizer
|
||||
|
||||
[[autodoc]] GPTSanJapaneseTokenizer
|
||||
|
||||
## GPTSanJapaneseModel
|
||||
|
||||
[[autodoc]] GPTSanJapaneseModel
|
||||
|
||||
## GPTSanJapaneseForConditionalGeneration
|
||||
|
||||
[[autodoc]] GPTSanJapaneseForConditionalGeneration
|
||||
- forward
|
||||
60
docs/source/en/model_doc/graphormer.md
Normal file
60
docs/source/en/model_doc/graphormer.md
Normal file
@ -0,0 +1,60 @@
|
||||
<!--Copyright 2022 The HuggingFace Team and Microsoft. All rights reserved.
|
||||
|
||||
Licensed under the MIT License; you may not use this file except in compliance with
|
||||
the License.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2021-06-09 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# Graphormer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The Graphormer model was proposed in [Do Transformers Really Perform Bad for Graph Representation?](https://huggingface.co/papers/2106.05234) by
|
||||
Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen and Tie-Yan Liu. It is a Graph Transformer model, modified to allow computations on graphs instead of text sequences by generating embeddings and features of interest during preprocessing and collation, then using a modified attention.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*The Transformer architecture has become a dominant choice in many domains, such as natural language processing and computer vision. Yet, it has not achieved competitive performance on popular leaderboards of graph-level prediction compared to mainstream GNN variants. Therefore, it remains a mystery how Transformers could perform well for graph representation learning. In this paper, we solve this mystery by presenting Graphormer, which is built upon the standard Transformer architecture, and could attain excellent results on a broad range of graph representation learning tasks, especially on the recent OGB Large-Scale Challenge. Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model. To this end, we propose several simple yet effective structural encoding methods to help Graphormer better model graph-structured data. Besides, we mathematically characterize the expressive power of Graphormer and exhibit that with our ways of encoding the structural information of graphs, many popular GNN variants could be covered as the special cases of Graphormer.*
|
||||
|
||||
This model was contributed by [clefourrier](https://huggingface.co/clefourrier). The original code can be found [here](https://github.com/microsoft/Graphormer).
|
||||
|
||||
## Usage tips
|
||||
|
||||
This model will not work well on large graphs (more than 100 nodes/edges), as it will make the memory explode.
|
||||
You can reduce the batch size, increase your RAM, or decrease the `UNREACHABLE_NODE_DISTANCE` parameter in algos_graphormer.pyx, but it will be hard to go above 700 nodes/edges.
|
||||
|
||||
This model does not use a tokenizer, but instead a special collator during training.
|
||||
|
||||
## GraphormerConfig
|
||||
|
||||
[[autodoc]] GraphormerConfig
|
||||
|
||||
## GraphormerModel
|
||||
|
||||
[[autodoc]] GraphormerModel
|
||||
- forward
|
||||
|
||||
## GraphormerForGraphClassification
|
||||
|
||||
[[autodoc]] GraphormerForGraphClassification
|
||||
- forward
|
||||
@ -63,6 +63,11 @@ The attributes can be obtained from model config, as `model.config.num_query_tok
|
||||
[[autodoc]] InstructBlipVideoVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## InstructBlipVideoImageProcessor
|
||||
|
||||
[[autodoc]] InstructBlipVideoImageProcessor
|
||||
- preprocess
|
||||
|
||||
## InstructBlipVideoVisionModel
|
||||
|
||||
[[autodoc]] InstructBlipVideoVisionModel
|
||||
|
||||
99
docs/source/en/model_doc/jukebox.md
Normal file
99
docs/source/en/model_doc/jukebox.md
Normal file
@ -0,0 +1,99 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2020-04-30 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# Jukebox
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The Jukebox model was proposed in [Jukebox: A generative model for music](https://huggingface.co/papers/2005.00341)
|
||||
by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
|
||||
Ilya Sutskever. It introduces a generative music model which can produce minute long samples that can be conditioned on
|
||||
an artist, genres and lyrics.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multiscale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples, along with model weights and code.*
|
||||
|
||||
As shown on the following figure, Jukebox is made of 3 `priors` which are decoder only models. They follow the architecture described in [Generating Long Sequences with Sparse Transformers](https://huggingface.co/papers/1904.10509), modified to support longer context length.
|
||||
First, a autoencoder is used to encode the text lyrics. Next, the first (also called `top_prior`) prior attends to the last hidden states extracted from the lyrics encoder. The priors are linked to the previous priors respectively via an `AudioConditioner` module. The`AudioConditioner` upsamples the outputs of the previous prior to raw tokens at a certain audio frame per second resolution.
|
||||
The metadata such as *artist, genre and timing* are passed to each prior, in the form of a start token and positional embedding for the timing data. The hidden states are mapped to the closest codebook vector from the VQVAE in order to convert them to raw audio.
|
||||
|
||||

|
||||
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ).
|
||||
The original code can be found [here](https://github.com/openai/jukebox).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- This model only supports inference. This is for a few reasons, mostly because it requires a crazy amount of memory to train. Feel free to open a PR and add what's missing to have a full integration with the hugging face trainer!
|
||||
- This model is very slow, and takes 8h to generate a minute long audio using the 5b top prior on a V100 GPU. In order automaticallay handle the device on which the model should execute, use `accelerate`.
|
||||
- Contrary to the paper, the order of the priors goes from `0` to `1` as it felt more intuitive : we sample starting from `0`.
|
||||
- Primed sampling (conditioning the sampling on raw audio) requires more memory than ancestral sampling and should be used with `fp16` set to `True`.
|
||||
|
||||
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ).
|
||||
The original code can be found [here](https://github.com/openai/jukebox).
|
||||
|
||||
## JukeboxConfig
|
||||
|
||||
[[autodoc]] JukeboxConfig
|
||||
|
||||
## JukeboxPriorConfig
|
||||
|
||||
[[autodoc]] JukeboxPriorConfig
|
||||
|
||||
## JukeboxVQVAEConfig
|
||||
|
||||
[[autodoc]] JukeboxVQVAEConfig
|
||||
|
||||
## JukeboxTokenizer
|
||||
|
||||
[[autodoc]] JukeboxTokenizer
|
||||
- save_vocabulary
|
||||
|
||||
## JukeboxModel
|
||||
|
||||
[[autodoc]] JukeboxModel
|
||||
- ancestral_sample
|
||||
- primed_sample
|
||||
- continue_sample
|
||||
- upsample
|
||||
- _sample
|
||||
|
||||
## JukeboxPrior
|
||||
|
||||
[[autodoc]] JukeboxPrior
|
||||
- sample
|
||||
- forward
|
||||
|
||||
## JukeboxVQVAE
|
||||
|
||||
[[autodoc]] JukeboxVQVAE
|
||||
- forward
|
||||
- encode
|
||||
- decode
|
||||
@ -88,16 +88,16 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
|
||||
|
||||
# LightGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
@ -112,7 +112,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
@ -147,13 +147,6 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## LightGlueImageProcessorFast
|
||||
|
||||
[[autodoc]] LightGlueImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## LightGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] LightGlueForKeypointMatching
|
||||
|
||||
@ -247,6 +247,10 @@ model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
||||
|
||||
[[autodoc]] LlavaNextVideoProcessor
|
||||
|
||||
## LlavaNextVideoImageProcessor
|
||||
|
||||
[[autodoc]] LlavaNextVideoImageProcessor
|
||||
|
||||
## LlavaNextVideoVideoProcessor
|
||||
|
||||
[[autodoc]] LlavaNextVideoVideoProcessor
|
||||
|
||||
84
docs/source/en/model_doc/mctct.md
Normal file
84
docs/source/en/model_doc/mctct.md
Normal file
@ -0,0 +1,84 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2021-10-30 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# M-CTC-T
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, so we won't accept any new PRs changing its code.
|
||||
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
|
||||
You can do so by running the following command: `pip install -U transformers==4.30.0`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The M-CTC-T model was proposed in [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://huggingface.co/papers/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Semi-supervised learning through pseudo-labeling has become a staple of state-of-the-art monolingual
|
||||
speech recognition systems. In this work, we extend pseudo-labeling to massively multilingual speech
|
||||
recognition with 60 languages. We propose a simple pseudo-labeling recipe that works well even
|
||||
with low-resource languages: train a supervised multilingual model, fine-tune it with semi-supervised
|
||||
learning on a target language, generate pseudo-labels for that language, and train a final model using
|
||||
pseudo-labels for all languages, either from scratch or by fine-tuning. Experiments on the labeled
|
||||
Common Voice and unlabeled VoxPopuli datasets show that our recipe can yield a model with better
|
||||
performance for many languages that also transfers well to LibriSpeech.*
|
||||
|
||||
This model was contributed by [cwkeam](https://huggingface.co/cwkeam). The original code can be found [here](https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl).
|
||||
|
||||
## Usage tips
|
||||
|
||||
The PyTorch version of this model is only available in torch 1.9 and higher.
|
||||
|
||||
## Resources
|
||||
|
||||
- [Automatic speech recognition task guide](../tasks/asr)
|
||||
|
||||
## MCTCTConfig
|
||||
|
||||
[[autodoc]] MCTCTConfig
|
||||
|
||||
## MCTCTFeatureExtractor
|
||||
|
||||
[[autodoc]] MCTCTFeatureExtractor
|
||||
- __call__
|
||||
|
||||
## MCTCTProcessor
|
||||
|
||||
[[autodoc]] MCTCTProcessor
|
||||
- __call__
|
||||
- from_pretrained
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
|
||||
## MCTCTModel
|
||||
|
||||
[[autodoc]] MCTCTModel
|
||||
- forward
|
||||
|
||||
## MCTCTForCTC
|
||||
|
||||
[[autodoc]] MCTCTForCTC
|
||||
- forward
|
||||
94
docs/source/en/model_doc/mega.md
Normal file
94
docs/source/en/model_doc/mega.md
Normal file
@ -0,0 +1,94 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2022-09-21 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# MEGA
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The MEGA model was proposed in [Mega: Moving Average Equipped Gated Attention](https://huggingface.co/papers/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
|
||||
MEGA proposes a new approach to self-attention with each encoder layer having a multi-headed exponential moving average in addition to a single head of standard dot-product attention, giving the attention mechanism
|
||||
stronger positional biases. This allows MEGA to perform competitively to Transformers on standard benchmarks including LRA
|
||||
while also having significantly fewer parameters. MEGA's compute efficiency allows it to scale to very long sequences, making it an
|
||||
attractive option for long-document NLP tasks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models.*
|
||||
|
||||
This model was contributed by [mnaylor](https://huggingface.co/mnaylor).
|
||||
The original code can be found [here](https://github.com/facebookresearch/mega).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- MEGA can perform quite well with relatively few parameters. See Appendix D in the MEGA paper for examples of architectural specs which perform well in various settings. If using MEGA as a decoder, be sure to set `bidirectional=False` to avoid errors with default bidirectional.
|
||||
- Mega-chunk is a variant of mega that reduces time and spaces complexity from quadratic to linear. Utilize chunking with MegaConfig.use_chunking and control chunk size with MegaConfig.chunk_size
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
- The original implementation of MEGA had an inconsistent expectation of attention masks for padding and causal self-attention between the softmax attention and Laplace/squared ReLU method. This implementation addresses that inconsistency.
|
||||
- The original implementation did not include token type embeddings; this implementation adds support for these, with the option controlled by MegaConfig.add_token_type_embeddings
|
||||
|
||||
## MegaConfig
|
||||
|
||||
[[autodoc]] MegaConfig
|
||||
|
||||
## MegaModel
|
||||
|
||||
[[autodoc]] MegaModel
|
||||
- forward
|
||||
|
||||
## MegaForCausalLM
|
||||
|
||||
[[autodoc]] MegaForCausalLM
|
||||
- forward
|
||||
|
||||
## MegaForMaskedLM
|
||||
|
||||
[[autodoc]] MegaForMaskedLM
|
||||
- forward
|
||||
|
||||
## MegaForSequenceClassification
|
||||
|
||||
[[autodoc]] MegaForSequenceClassification
|
||||
- forward
|
||||
|
||||
## MegaForMultipleChoice
|
||||
|
||||
[[autodoc]] MegaForMultipleChoice
|
||||
- forward
|
||||
|
||||
## MegaForTokenClassification
|
||||
|
||||
[[autodoc]] MegaForTokenClassification
|
||||
- forward
|
||||
|
||||
## MegaForQuestionAnswering
|
||||
|
||||
[[autodoc]] MegaForQuestionAnswering
|
||||
- forward
|
||||
@ -54,7 +54,7 @@ model.set_output_embeddings(resized_embeddings)
|
||||
|
||||
## Usage Example
|
||||
|
||||
### Instruct model
|
||||
#### Instruct model
|
||||
|
||||
```python
|
||||
import torch
|
||||
@ -80,7 +80,7 @@ output = model.generate(**inputs, max_new_tokens=25)
|
||||
print(processor.decode(output[0]))
|
||||
```
|
||||
|
||||
### Base model
|
||||
#### Base model
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
101
docs/source/en/model_doc/nat.md
Normal file
101
docs/source/en/model_doc/nat.md
Normal file
@ -0,0 +1,101 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2022-04-14 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# Neighborhood Attention Transformer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
NAT was proposed in [Neighborhood Attention Transformer](https://huggingface.co/papers/2204.07143)
|
||||
by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
|
||||
|
||||
It is a hierarchical vision transformer based on Neighborhood Attention, a sliding-window self attention pattern.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision.
|
||||
NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a
|
||||
linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA's
|
||||
receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike
|
||||
Swin Transformer's Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package
|
||||
with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin's WSA while using up to 25% less
|
||||
memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA
|
||||
that boosts image classification and downstream vision performance. Experimental results on NAT are competitive;
|
||||
NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9%
|
||||
ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size.*
|
||||
|
||||
<img
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/neighborhood-attention-pattern.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> Neighborhood Attention compared to other attention patterns.
|
||||
Taken from the <a href="https://huggingface.co/papers/2204.07143">original paper</a>.</small>
|
||||
|
||||
This model was contributed by [Ali Hassani](https://huggingface.co/alihassanijr).
|
||||
The original code can be found [here](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- One can use the [`AutoImageProcessor`] API to prepare images for the model.
|
||||
- NAT can be used as a *backbone*. When `output_hidden_states = True`,
|
||||
it will output both `hidden_states` and `reshaped_hidden_states`.
|
||||
The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than
|
||||
`(batch_size, height, width, num_channels)`.
|
||||
|
||||
Notes:
|
||||
|
||||
- NAT depends on [NATTEN](https://github.com/SHI-Labs/NATTEN/)'s implementation of Neighborhood Attention.
|
||||
You can install it with pre-built wheels for Linux by referring to [shi-labs.com/natten](https://shi-labs.com/natten),
|
||||
or build on your system by running `pip install natten`.
|
||||
Note that the latter will likely take time to compile. NATTEN does not support Windows devices yet.
|
||||
- Patch size of 4 is only supported at the moment.
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with NAT.
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
|
||||
- [`NatForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
|
||||
## NatConfig
|
||||
|
||||
[[autodoc]] NatConfig
|
||||
|
||||
## NatModel
|
||||
|
||||
[[autodoc]] NatModel
|
||||
- forward
|
||||
|
||||
## NatForImageClassification
|
||||
|
||||
[[autodoc]] NatForImageClassification
|
||||
- forward
|
||||
101
docs/source/en/model_doc/nezha.md
Normal file
101
docs/source/en/model_doc/nezha.md
Normal file
@ -0,0 +1,101 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2019-08-31 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# Nezha
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The Nezha model was proposed in [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://huggingface.co/papers/1909.00204) by Junqiu Wei et al.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks
|
||||
due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora.
|
||||
In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed
|
||||
representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks.
|
||||
The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional
|
||||
Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy,
|
||||
Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA
|
||||
achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including
|
||||
named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti)
|
||||
and natural language inference (XNLI).*
|
||||
|
||||
This model was contributed by [sijunhe](https://huggingface.co/sijunhe). The original code can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch).
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## NezhaConfig
|
||||
|
||||
[[autodoc]] NezhaConfig
|
||||
|
||||
## NezhaModel
|
||||
|
||||
[[autodoc]] NezhaModel
|
||||
- forward
|
||||
|
||||
## NezhaForPreTraining
|
||||
|
||||
[[autodoc]] NezhaForPreTraining
|
||||
- forward
|
||||
|
||||
## NezhaForMaskedLM
|
||||
|
||||
[[autodoc]] NezhaForMaskedLM
|
||||
- forward
|
||||
|
||||
## NezhaForNextSentencePrediction
|
||||
|
||||
[[autodoc]] NezhaForNextSentencePrediction
|
||||
- forward
|
||||
|
||||
## NezhaForSequenceClassification
|
||||
|
||||
[[autodoc]] NezhaForSequenceClassification
|
||||
- forward
|
||||
|
||||
## NezhaForMultipleChoice
|
||||
|
||||
[[autodoc]] NezhaForMultipleChoice
|
||||
- forward
|
||||
|
||||
## NezhaForTokenClassification
|
||||
|
||||
[[autodoc]] NezhaForTokenClassification
|
||||
- forward
|
||||
|
||||
## NezhaForQuestionAnswering
|
||||
|
||||
[[autodoc]] NezhaForQuestionAnswering
|
||||
- forward
|
||||
66
docs/source/en/model_doc/open-llama.md
Normal file
66
docs/source/en/model_doc/open-llama.md
Normal file
@ -0,0 +1,66 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2023-04-16 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# Open-Llama
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.31.0.
|
||||
You can do so by running the following command: `pip install -U transformers==4.31.0`.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model differs from the [OpenLLaMA models](https://huggingface.co/models?search=openllama) on the Hugging Face Hub, which primarily use the [LLaMA](llama) architecture.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The Open-Llama model was proposed in the open source Open-Llama project by community developer s-JoL.
|
||||
|
||||
The model is mainly based on LLaMA with some modifications, incorporating memory-efficient attention from Xformers, stable embedding from Bloom, and shared input-output embedding from PaLM.
|
||||
And the model is pre-trained on both Chinese and English, which gives it better performance on Chinese language tasks.
|
||||
|
||||
This model was contributed by [s-JoL](https://huggingface.co/s-JoL).
|
||||
The original code was released on GitHub by [s-JoL](https://github.com/s-JoL), but is now removed.
|
||||
|
||||
## OpenLlamaConfig
|
||||
|
||||
[[autodoc]] OpenLlamaConfig
|
||||
|
||||
## OpenLlamaModel
|
||||
|
||||
[[autodoc]] OpenLlamaModel
|
||||
- forward
|
||||
|
||||
## OpenLlamaForCausalLM
|
||||
|
||||
[[autodoc]] OpenLlamaForCausalLM
|
||||
- forward
|
||||
|
||||
## OpenLlamaForSequenceClassification
|
||||
|
||||
[[autodoc]] OpenLlamaForSequenceClassification
|
||||
- forward
|
||||
183
docs/source/en/model_doc/qdqbert.md
Normal file
183
docs/source/en/model_doc/qdqbert.md
Normal file
@ -0,0 +1,183 @@
|
||||
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
*This model was released on 2020-04-20 and added to Hugging Face Transformers on 2023-06-20.*
|
||||
|
||||
# QDQBERT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This model is in maintenance mode only, we don't accept any new PRs changing its code.
|
||||
If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2.
|
||||
You can do so by running the following command: `pip install -U transformers==4.40.2`.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The QDQBERT model can be referenced in [Integer Quantization for Deep Learning Inference: Principles and Empirical
|
||||
Evaluation](https://huggingface.co/papers/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius
|
||||
Micikevicius.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by
|
||||
taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of
|
||||
quantization parameters and evaluate their choices on a wide range of neural network models for different application
|
||||
domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration
|
||||
by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is
|
||||
able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are
|
||||
more difficult to quantize, such as MobileNets and BERT-large.*
|
||||
|
||||
This model was contributed by [shangz](https://huggingface.co/shangz).
|
||||
|
||||
## Usage tips
|
||||
|
||||
- QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer
|
||||
inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model.
|
||||
- QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). To install `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
|
||||
- QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *google-bert/bert-base-uncased*), and
|
||||
perform Quantization Aware Training/Post Training Quantization.
|
||||
- A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for
|
||||
SQUAD task can be found at https://github.com/huggingface/transformers-research-projects/tree/main/quantization-qdqbert.
|
||||
|
||||
### Set default quantizers
|
||||
|
||||
QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by
|
||||
`TensorQuantizer` in [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). `TensorQuantizer` is the module
|
||||
for quantizing tensors, with `QuantDescriptor` defining how the tensor should be quantized. Refer to [Pytorch
|
||||
Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details.
|
||||
|
||||
Before creating QDQBERT model, one has to set the default `QuantDescriptor` defining default tensor quantizers.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> import pytorch_quantization.nn as quant_nn
|
||||
>>> from pytorch_quantization.tensor_quant import QuantDescriptor
|
||||
|
||||
>>> # The default tensor quantizer is set to use Max calibration method
|
||||
>>> input_desc = QuantDescriptor(num_bits=8, calib_method="max")
|
||||
>>> # The default tensor quantizer is set to be per-channel quantization for weights
|
||||
>>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,)))
|
||||
>>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
|
||||
>>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
|
||||
```
|
||||
|
||||
### Calibration
|
||||
|
||||
Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for
|
||||
tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model:
|
||||
|
||||
```python
|
||||
>>> # Find the TensorQuantizer and enable calibration
|
||||
>>> for name, module in model.named_modules():
|
||||
... if name.endswith("_input_quantizer"):
|
||||
... module.enable_calib()
|
||||
... module.disable_quant() # Use full precision data to calibrate
|
||||
|
||||
>>> # Feeding data samples
|
||||
>>> model(x)
|
||||
>>> # ...
|
||||
|
||||
>>> # Finalize calibration
|
||||
>>> for name, module in model.named_modules():
|
||||
... if name.endswith("_input_quantizer"):
|
||||
... module.load_calib_amax()
|
||||
... module.enable_quant()
|
||||
|
||||
>>> # If running on accelerator, it needs to call `.to(xx)` again because new tensors will be created by calibration process
|
||||
>>> from accelerate import Accelerator
|
||||
>>> device = Accelerator().device
|
||||
>>> model.to(device)
|
||||
|
||||
>>> # Keep running the quantized model
|
||||
>>> # ...
|
||||
```
|
||||
|
||||
### Export to ONNX
|
||||
|
||||
The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake
|
||||
quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of
|
||||
TensorQuantizer to use Pytorch's own fake quantization functions, fake quantized model can be exported to ONNX, follow
|
||||
the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example:
|
||||
|
||||
```python
|
||||
>>> from pytorch_quantization.nn import TensorQuantizer
|
||||
|
||||
>>> TensorQuantizer.use_fb_fake_quant = True
|
||||
|
||||
>>> # Load the calibrated model
|
||||
>>> ...
|
||||
>>> # ONNX export
|
||||
>>> torch.onnx.export(...)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## QDQBertConfig
|
||||
|
||||
[[autodoc]] QDQBertConfig
|
||||
|
||||
## QDQBertModel
|
||||
|
||||
[[autodoc]] QDQBertModel
|
||||
- forward
|
||||
|
||||
## QDQBertLMHeadModel
|
||||
|
||||
[[autodoc]] QDQBertLMHeadModel
|
||||
- forward
|
||||
|
||||
## QDQBertForMaskedLM
|
||||
|
||||
[[autodoc]] QDQBertForMaskedLM
|
||||
- forward
|
||||
|
||||
## QDQBertForSequenceClassification
|
||||
|
||||
[[autodoc]] QDQBertForSequenceClassification
|
||||
- forward
|
||||
|
||||
## QDQBertForNextSentencePrediction
|
||||
|
||||
[[autodoc]] QDQBertForNextSentencePrediction
|
||||
- forward
|
||||
|
||||
## QDQBertForMultipleChoice
|
||||
|
||||
[[autodoc]] QDQBertForMultipleChoice
|
||||
- forward
|
||||
|
||||
## QDQBertForTokenClassification
|
||||
|
||||
[[autodoc]] QDQBertForTokenClassification
|
||||
- forward
|
||||
|
||||
## QDQBertForQuestionAnswering
|
||||
|
||||
[[autodoc]] QDQBertForQuestionAnswering
|
||||
- forward
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user