Compare commits

..

10 Commits

Author SHA1 Message Date
e1f5ad7297 Apply style fixes 2025-10-16 16:54:47 +00:00
22137bf322 Merge branch 'main' into remove-use_auth_token 2025-10-16 18:51:05 +02:00
61560b295a Apply style fixes 2025-10-16 11:34:06 +00:00
74410d8c78 fix 2025-10-15 16:59:46 +02:00
863cc2e234 style 2025-10-15 12:04:47 +00:00
a2eab57312 add back kwargs 2025-10-15 12:04:32 +00:00
de014f92c2 reformat 2025-10-14 16:28:42 +00:00
16a25c15ff missing a few ones 2025-10-14 16:28:30 +00:00
0911196aa6 style 2025-10-14 16:21:52 +00:00
19166645f3 remove use_auth_token 2025-10-14 16:18:54 +00:00
1049 changed files with 28889 additions and 21452 deletions

View File

@ -22,6 +22,7 @@ tests/generation/ @gante
/src/transformers/models/auto/ @ArthurZucker
/src/transformers/utils/ @ArthurZucker @Rocketknight1
/src/transformers/loss/ @ArthurZucker
/src/transformers/onnx/ @michaelbenayoun
# Specific files come after the sections/globs, so they take priority
/.circleci/config.yml @ArthurZucker @ydshieh

View File

@ -1,10 +1,7 @@
name: Self-hosted runner (benchmark)
on:
push:
branches: [main]
pull_request:
types: [ opened, labeled, reopened, synchronize ]
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -12,8 +9,6 @@ concurrency:
env:
HF_HOME: /mnt/cache
DATASET_ID: hf-benchmarks/transformers
MODEL_ID: meta-llama/Llama-3.1-8B-Instruct
jobs:
benchmark:
@ -28,7 +23,7 @@ jobs:
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
container:
image: huggingface/transformers-all-latest-gpu
image: huggingface/transformers-pytorch-gpu
options: --gpus all --privileged --ipc host
steps:
- name: Get repo
@ -36,12 +31,26 @@ jobs:
with:
ref: ${{ github.event.pull_request.head.sha || github.sha }}
- name: Install libpq-dev & psql
run: |
apt update
apt install -y libpq-dev postgresql-client
- name: Install benchmark script dependencies
run: python3 -m pip install -r benchmark_v2/requirements.txt kernels
run: python3 -m pip install -r benchmark/requirements.txt
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]" && python3 -m pip uninstall -y torchvision # temp fix
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
- name: Run database init script
run: |
psql -f benchmark/utils/init_db.sql
env:
PGDATABASE: metrics
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
- name: Run benchmark
run: |
@ -52,11 +61,13 @@ jobs:
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark_v2/run_benchmarks.py -b 32 -s 128 -n 256 --level 2 --branch-name "$BRANCH_NAME" --commit-id "$commit_id" --commit-message "$commit_msg" --model-id "$MODEL_ID" --log-level INFO --push-result-to-dataset "$DATASET_ID"
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
PUSH_TO_HUB_TOKEN: ${{ secrets.PUSH_TO_HUB_TOKEN }}
# Enable this to see debug logs
# HF_HUB_VERBOSITY: debug
# TRANSFORMERS_VERBOSITY: debug
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}

View File

@ -9,7 +9,7 @@ jobs:
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: aws-g5-4xlarge-cache-use1-public-80
container_image: huggingface/transformers-all-latest-gpu
container_image: huggingface/transformers-pytorch-gpu
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}

View File

@ -45,59 +45,33 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
flash-attn-ci-image:
name: "PyTorch with Flash Attn [dev]"
runs-on:
group: aws-general-8-plus
steps:
# Push CI images still need to be re-built daily
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=2.8.0
TORCHCODEC=0.7.0
FLASH_ATTN=yes
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}:flash-attn
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu docker build
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on:
group: aws-general-8-plus
group: aws-g4dn-2xlarge-cache
steps:
-
name: Set up Docker Buildx
@ -130,8 +104,51 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
@ -164,6 +181,44 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on:
@ -190,47 +245,29 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu build
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
cache-latest-pytorch-amd:
name: "Cache Latest Pytorch (AMD) Image"
needs: latest-pytorch-amd
runs-on:
group: amd-mi325-1gpu
steps:
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Pull and save docker image to cache
run: |
image="huggingface/transformers-pytorch-amd-gpu"
final_path="/mnt/image-cache/transformers-pytorch-amd-gpu.tar"
tmp_path="${final_path}.tmp"
echo "Pulling image: ${image}"
docker pull "${image}"
echo "Saving to temp file: ${tmp_path}"
docker save "${image}" -o "${tmp_path}"
echo "Moving to final path: ${final_path}"
mv -f "${tmp_path}" "${final_path}"
echo "Cache populated successfully at ${final_path}"
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on:
@ -257,6 +294,19 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
@ -269,6 +319,8 @@ jobs:
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:

View File

@ -6,6 +6,9 @@ on:
docker:
required: true
type: string
start_sha:
required: true
type: string
job:
required: true
type: string
@ -21,13 +24,7 @@ on:
commit_sha:
required: false
type: string
pr_number:
required: false
type: string
outputs:
report:
description: "Content of the report of new failures"
value: ${{ jobs.process_new_failures_with_commit_info.outputs.report }}
env:
HF_HOME: /mnt/cache
@ -44,14 +41,9 @@ env:
jobs:
check_new_failures:
name: "Find commits for new failing tests"
strategy:
matrix:
run_idx: [1]
name: " "
runs-on:
group: aws-g5-4xlarge-cache
outputs:
process: ${{ steps.check_file.outputs.process }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -62,17 +54,14 @@ jobs:
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
id: check_file
working-directory: /transformers
run: |
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
echo "process=true" >> $GITHUB_OUTPUT
else
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
echo "process=false" >> $GITHUB_OUTPUT
fi
- uses: actions/download-artifact@v4
@ -91,55 +80,27 @@ jobs:
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Update clone
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git fetch origin ${{ inputs.commit_sha || github.sha }}
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Get `START_SHA`
- name: Get target commit
working-directory: /transformers/utils
if: ${{ env.process == 'true' }}
run: |
echo "START_SHA=${{ inputs.commit_sha || github.sha }}" >> $GITHUB_ENV
# This is used if the CI is triggered from a pull request `self-comment-ci.yml` (after security check is verified)
- name: Extract the base commit on `main` (of the merge commit created by Github) if it is a PR
id: pr_info
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
uses: actions/github-script@v6
with:
script: |
const { data: pr } = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: ${{ inputs.pr_number }}
});
const { data: merge_commit } = await github.rest.repos.getCommit({
owner: pr.base.repo.owner.login,
repo: pr.base.repo.name,
ref: pr.merge_commit_sha,
});
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
# Usually, `END_SHA` should be the commit of the last previous workflow run of the **SAME** (scheduled) workflow.
# (This is why we don't need to specify `workflow_id` which would be fetched automatically in the python script.)
- name: Get `END_SHA` from previous CI runs of the same workflow
working-directory: /transformers/utils
if: ${{ env.process == 'true' && inputs.pr_number == '' }}
run: |
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
# However, for workflow runs triggered by `issue_comment` (for pull requests), we want to check against the
# parent commit (on `main`) of the `merge_commit` (dynamically created by GitHub). In this case, the goal is to
# see if a reported failing test is actually ONLY failing on the `merge_commit`.
- name: Set `END_SHA`
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
run: |
echo "END_SHA=${{ steps.pr_info.outputs.merge_commit_base_sha }}" >> $GITHUB_ENV
- name: Checkout to `start_sha`
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ inputs.start_sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -157,10 +118,6 @@ jobs:
run: |
python3 utils/print_env.py
- name: Install pytest-flakefinder
if: ${{ env.process == 'true' }}
run: python3 -m pip install pytest-flakefinder
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
@ -169,67 +126,37 @@ jobs:
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ env.START_SHA }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
cat new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
process_new_failures_with_commit_info:
name: "process bad commit reports"
needs: check_new_failures
if: needs.check_new_failures.outputs.process == 'true'
runs-on:
group: aws-g5-4xlarge-cache
outputs:
report: ${{ steps.set_output.outputs.report }}
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- uses: actions/download-artifact@v4
with:
pattern: new_failures_with_bad_commit_${{ inputs.job }}*
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}
merge-multiple: true
- name: Check files
- name: Checkout back
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -la /transformers
ls -la /transformers/new_failures_with_bad_commit_${{ inputs.job }}
# Currently, we only run with a single runner by using `run_idx: [1]`. We might try to run with multiple runners
# to further reduce the false positive caused by flaky tests, which requires further processing to merge reports.
- name: Merge files
shell: bash
working-directory: /transformers
run: |
cp /transformers/new_failures_with_bad_commit_${{ inputs.job }}/new_failures_with_bad_commit_${{ inputs.job }}_1.json new_failures_with_bad_commit.json
- name: Update clone
working-directory: /transformers
run: |
git fetch origin ${{ inputs.commit_sha || github.sha }}
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
python3 utils/process_bad_commit_report.py
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -242,37 +169,15 @@ jobs:
echo EOF
} >> "$GITHUB_ENV"
# The output is useful if a caller needs more processing, for example, we have a chain
# self-comment-ci.yml -> self-scheduled.yml -> this one (check_failed_tests.yml),
# and `self-comment-ci.yml` needs further processing before sending a GitHub comment to the pull request page.
- name: Show results & Set outputs
id: set_output
working-directory: /transformers
run: |
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
{
echo 'report<<EOF'
cat new_failures_with_bad_commit.json
echo '' # Force a newline
echo EOF
} >> "$GITHUB_OUTPUT"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: new_failures_with_bad_commit_${{ inputs.job }}
path: /transformers/new_failures_with_bad_commit.json
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.

View File

@ -39,9 +39,6 @@ on:
PR_MERGE_COMMIT_SHA:
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
PR_MERGE_COMMIT_BASE_SHA:
description: "The sha of the parent commit of the the merge commit on the target branch in the base repository"
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_BASE_SHA }}
PR_HEAD_COMMIT_DATE:
description: "The date of the head sha of the pull request branch in the head repository"
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
@ -77,7 +74,6 @@ jobs:
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
PR_MERGE_COMMIT_BASE_SHA: ${{ steps.pr_info.outputs.merge_commit_base_sha }}
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
@ -126,7 +122,6 @@ jobs:
core.setOutput('base_ref', pr.base.ref);
core.setOutput('head_sha', pr.head.sha);
core.setOutput('base_sha', pr.base.sha);
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
core.setOutput('pr', pr);
@ -147,10 +142,6 @@ jobs:
date: merge_commit.commit.committer.date
});
console.log('PR Info:', {
pr_info: pr
});
- name: Convert dates to timestamps
id: get_timestamps
run: |

View File

@ -28,9 +28,6 @@ on:
report_repo_id:
required: false
type: string
pytest_marker:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -80,9 +77,7 @@ jobs:
- name: Update clone
working-directory: /transformers
run: |
git fetch origin ${{ inputs.commit_sha || github.sha }}
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -142,7 +137,7 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: |
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v -m '${{ inputs.pytest_marker }}' --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
ls -la
# Extract the exit code from the output file
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
@ -176,7 +171,7 @@ jobs:
collated_reports:
name: Collated Reports
if: ${{ always() && inputs.runner_type != '' }}
if: ${{ always() }}
needs: run_models_gpu
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
with:

View File

@ -149,9 +149,9 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-push"
docker: huggingface/transformers-all-latest-gpu:flash-attn
docker: huggingface/transformers-all-latest-gpu
ci_event: push
report_repo_id: hf-internal-testing/transformers_ci_push
commit_sha: ${{ github.sha }}
subdirs: ${{ needs.get_modified_models.outputs.matrix }}
models: ${{ needs.get_modified_models.outputs.matrix }}
secrets: inherit

View File

@ -23,34 +23,62 @@ env:
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
get-pr-number:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
uses: ./.github/workflows/get-pr-number.yml
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:
- name: Get PR number
shell: bash
run: |
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
else
echo "PR_NUMBER=" >> $GITHUB_ENV
fi
get-pr-info:
name: Get PR commit SHA
- name: Check PR number
shell: bash
run: |
echo "${{ env.PR_NUMBER }}"
- name: Set PR number
id: set_pr_number
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
get-sha:
runs-on: ubuntu-22.04
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
check-timestamps:
name: Check timestamps (security check)
runs-on: ubuntu-22.04
needs: get-pr-info
outputs:
PR_HEAD_SHA: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
PR_MERGE_SHA: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
PR_HEAD_SHA: ${{ steps.get_sha.outputs.PR_HEAD_SHA }}
PR_MERGE_SHA: ${{ steps.get_sha.outputs.PR_MERGE_SHA }}
steps:
- name: Verify `merge_commit` timestamp is older than the issue comment timestamp
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
- name: Get SHA (and verify timestamps against the issue comment date)
id: get_sha
env:
PR_NUMBER: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
run: |
git fetch origin refs/pull/$PR_NUMBER/head:refs/remotes/pull/$PR_NUMBER/head
git checkout refs/remotes/pull/$PR_NUMBER/head
echo "PR_HEAD_SHA: $(git log -1 --format=%H)"
echo "PR_HEAD_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
git fetch origin refs/pull/$PR_NUMBER/merge:refs/remotes/pull/$PR_NUMBER/merge
git checkout refs/remotes/pull/$PR_NUMBER/merge
echo "PR_MERGE_SHA: $(git log -1 --format=%H)"
echo "PR_MERGE_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
PR_MERGE_COMMIT_TIMESTAMP=$(git log -1 --date=unix --format=%cd)
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
@ -59,10 +87,13 @@ jobs:
exit -1;
fi
# use a python script to handle this complex logic.
# use a python script to handle this complex logic
# case 1: `run-slow` (auto. infer with limited number of models, but in particular, new model)
# case 2: `run-slow model_1, model_2`
get-tests:
runs-on: ubuntu-22.04
needs: [get-pr-number, check-timestamps]
needs: [get-pr-number, get-sha]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
outputs:
models: ${{ steps.models_to_run.outputs.models }}
quantizations: ${{ steps.models_to_run.outputs.quantizations }}
@ -70,11 +101,11 @@ jobs:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: "refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge"
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
@ -88,39 +119,19 @@ jobs:
run: |
python -m pip install GitPython
python utils/pr_slow_ci_models.py --message "$PR_COMMENT" | tee output.txt
echo 'models=$(tail -n 1 output.txt)' >> $GITHUB_ENV
echo "models=$(tail -n 1 output.txt)" >> $GITHUB_ENV
python utils/pr_slow_ci_models.py --message "$PR_COMMENT" --quantization | tee output2.txt
echo 'quantizations=$(tail -n 1 output2.txt)' >> $GITHUB_ENV
echo "quantizations=$(tail -n 1 output2.txt)" >> $GITHUB_ENV
- name: Show models to test
id: models_to_run
run: |
echo "${{ env.models }}"
echo "models=${{ env.models }}" >> $GITHUB_ENV
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
echo "${{ env.quantizations }}"
echo "quantizations=${{ env.quantizations }}" >> $GITHUB_OUTPUT
# Report back if we are not able to get the tests (for example, security check is failing)
report_error_earlier:
name: Report error earlier
if: ${{ always() && needs.get-pr-info.result == 'success' && needs.get-tests.result != 'success' }}
needs: [get-pr-number, get-pr-info, get-tests]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f body="💔 This comment contains \`run-slow\`, but unknown error occurred and [the workflow run]($GITHUB_RUN_URL) aborted!"
reply_to_comment:
name: Reply to the comment
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
@ -132,18 +143,20 @@ jobs:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
BODY: '\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}'
MODELS: ${{ needs.get-tests.outputs.models }}
BODY: "\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f body="This comment contains \`run-slow\`, running the specified jobs: $(echo -e '${{ env.BODY }}')"
-f "body=This comment contains run-slow, running the specified jobs: ${{ env.BODY }} ..."
create_run:
name: Create run
needs: [check-timestamps, reply_to_comment]
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
needs: [get-sha, get-tests, reply_to_comment]
permissions:
statuses: write
runs-on: ubuntu-22.04
@ -160,179 +173,243 @@ jobs:
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.check-timestamps.outputs.PR_HEAD_SHA }} \
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Slow CI job" -f "context=pytest/custom-tests"
model-ci:
name: Model CI
run_models_gpu:
name: Run all tests for the model
if: ${{ needs.get-tests.outputs.models != '[]' }}
uses: ./.github/workflows/self-scheduled.yml
needs: [get-pr-number, check-timestamps, get-tests, create_run]
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-pr"
docker: huggingface/transformers-all-latest-gpu
ci_event: PR Comment CI
report_repo_id: hf-internal-testing/transformers_pr_ci
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
subdirs: ${{ needs.get-tests.outputs.models }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
secrets: inherit
needs: [get-pr-number, get-sha, get-tests, create_run]
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ matrix.folders }}"
quantization-ci:
name: Quantization CI
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Checkout to PR merge commit
working-directory: /transformers
run: |
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git log -1 --format=%H
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
working-directory: /transformers
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
exit -1;
fi
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
echo $CUDA_VISIBLE_DEVICES
python3 -m pytest -v -rsfE --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_quantization_torch_gpu:
name: Run all tests for a quantization
if: ${{ needs.get-tests.outputs.quantizations != '[]' }}
uses: ./.github/workflows/self-scheduled.yml
needs: [get-pr-number, check-timestamps, get-tests, create_run]
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-pr"
docker: huggingface/transformers-quantization-latest-gpu
ci_event: PR Comment CI
report_repo_id: hf-internal-testing/transformers_pr_ci
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
subdirs: ${{ needs.get-tests.outputs.quantizations }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
secrets: inherit
needs: [get-pr-number, get-sha, get-tests, create_run]
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
report:
name: Check & Report
needs: [get-pr-number, check-timestamps, create_run, model-ci, quantization-ci]
- name: Checkout to PR merge commit
working-directory: /transformers
run: |
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git log -1 --format=%H
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
working-directory: /transformers
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
exit -1;
fi
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run quantization tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
update_run_status:
name: Update Check Run Status
needs: [get-sha, create_run, run_models_gpu, run_quantization_torch_gpu]
permissions:
pull-requests: write
statuses: write
if: ${{ always() && needs.create_run.result == 'success' }}
runs-on: ubuntu-22.04
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.run_models_gpu.result) && contains(fromJSON('["skipped", "success"]'), needs.run_quantization_torch_gpu.result) }}
steps:
- name: Show reports from jobs
- name: Get `run_models_gpu` job status
run: |
echo "${{ needs.model-ci.outputs.report }}"
echo "${{ needs.quantization-ci.outputs.report }}"
- name: Process and filter reports
env:
MODEL_REPORT: ${{ needs.model-ci.outputs.report }}
QUANT_REPORT: ${{ needs.quantization-ci.outputs.report }}
run: |
# Preprocess with Python
python3 << 'PYTHON_SCRIPT'
import json
import os
def filter_and_format_report(data):
"""
Filter out entries where commit is `None` (failing tests who status is not certain) and format as text
"""
lines = []
for model, model_result in data.items():
model_lines = []
for device, failures in model_result.items():
# Filter out None commits and extract just the test names
test_names = [
failure['test']
for failure in failures
if isinstance(failure, dict) and failure.get('commit') is not None
]
# Add tests to model lines
for idx, test_name in enumerate(test_names):
if idx == 0:
job_link = failures[idx]['job_link']
model_lines.append(f"- [{model}]({job_link}):")
model_lines.append(f" {test_name}")
# Only add model section if it has tests
if len(model_lines) > 0:
lines.extend(model_lines)
lines.append("") # Empty line between models
return "\n".join(lines).strip()
# Load and filter reports
model_report_str = os.environ.get('MODEL_REPORT', '{}')
quant_report_str = os.environ.get('QUANT_REPORT', '{}')
model_report = json.loads(model_report_str) if model_report_str else {}
quant_report = json.loads(quant_report_str) if quant_report_str else {}
formatted_model = filter_and_format_report(model_report)
formatted_quant = filter_and_format_report(quant_report)
# Write to files
with open('model_ci.txt', 'w') as f:
f.write(formatted_model)
if formatted_model:
f.write('\n')
with open('quantization_ci.txt', 'w') as f:
f.write(formatted_quant)
if formatted_quant:
f.write('\n')
PYTHON_SCRIPT
- name: Post results as PR comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
{
echo '## CI Results'
echo "[Workflow Run ⚙️]($GITHUB_RUN_URL)"
echo ''
# Check if both jobs were skipped or cancelled
if [[ "${{ needs.model-ci.result }}" == "skipped" || "${{ needs.model-ci.result }}" == "cancelled" ]] && \
[[ "${{ needs.quantization-ci.result }}" == "skipped" || "${{ needs.quantization-ci.result }}" == "cancelled" ]]; then
echo '⚠️ No test being reported (jobs are skipped or cancelled)!'
echo "STATUS=error" >> $GITHUB_ENV
# Check if either file has content
elif [ -s model_ci.txt ] || [ -s quantization_ci.txt ]; then
echo "STATUS=failure" >> $GITHUB_ENV
# Check if model_ci.txt has content
if [ -s model_ci.txt ]; then
echo '### Model CI Report'
echo ''
echo '#### ❌ Failed tests'
echo ''
cat model_ci.txt
echo ''
fi
# Check if quantization_ci.txt has content
if [ -s quantization_ci.txt ]; then
echo '### Quantization CI Report'
echo ''
echo '#### ❌ Failed tests'
echo ''
cat quantization_ci.txt
echo ''
fi
else
echo "STATUS=success" >> $GITHUB_ENV
echo '✅ No failing test specific to this PR 🎉 !'
fi
} > comment_body.txt
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-F body=@comment_body.txt
echo "${{ needs.run_models_gpu.result }}"
echo "${{ needs.run_quantization_torch_gpu.result }}"
echo $STATUS_OK
if [ "$STATUS_OK" = "true" ]; then
echo "STATUS=success" >> $GITHUB_ENV
else
echo "STATUS=failure" >> $GITHUB_ENV
fi
- name: Update PR commit statuses
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
echo "${{ needs.run_models_gpu.result }}"
echo "${{ env.STATUS }}"
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.check-timestamps.outputs.PR_HEAD_SHA }} \
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Slow CI job" -f "context=pytest/custom-tests"

View File

@ -51,7 +51,6 @@ jobs:
slack_report_channel: "#transformers-ci-past-future"
docker: huggingface/transformers-all-latest-torch-nightly-gpu
ci_event: Nightly CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_daily_ci_with_torch_nightly
commit_sha: ${{ github.event.workflow_run.head_sha || github.sha }}
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

334
.github/workflows/self-push-amd.yml vendored Normal file
View File

@ -0,0 +1,334 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_models_gpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_models_gpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup_gpu.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup_gpu.result }}
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

54
.github/workflows/self-push-caller.yml vendored Normal file
View File

@ -0,0 +1,54 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-22.04
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-22.04
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

652
.github/workflows/self-push.yml vendored Normal file
View File

@ -0,0 +1,652 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- ci_*
- ci-*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
repository_dispatch:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -21,7 +21,7 @@ jobs:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/transformers-pytorch-amd-gpu
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit
@ -33,7 +33,7 @@ jobs:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/transformers-pytorch-amd-gpu
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit
@ -45,7 +45,7 @@ jobs:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_group: hfc-amd-mi355
docker: huggingface/transformers-pytorch-amd-gpu
docker: huggingface/testing-rocm7.0-preview
ci_event: Scheduled CI (AMD) - mi355
report_repo_id: hf-transformers-bot/transformers-ci-dummy
secrets: inherit

View File

@ -63,7 +63,7 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-all-latest-gpu
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
@ -118,15 +118,3 @@ jobs:
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
kernels-ci:
name: Kernels CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_kernels_gpu
slack_report_channel: "#transformers-ci-daily-kernels"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit

View File

@ -1,60 +0,0 @@
name: Nvidia CI - Flash Attn
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci_flash_attn*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-flash-attn"
docker: huggingface/transformers-all-latest-gpu:flash-attn
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_flash_attn_ci
commit_sha: ${{ github.sha }}
pytest_marker: "flash_attn_test or flash_attn_3_test"
secrets: inherit

View File

@ -34,20 +34,10 @@ on:
runner_type:
required: false
type: string
subdirs:
models:
default: ""
required: false
type: string
pytest_marker:
required: false
type: string
pr_number:
required: false
type: string
outputs:
report:
description: "Content of the report of new failures"
value: ${{ jobs.check_new_failures.outputs.report }}
env:
HF_HOME: /mnt/cache
@ -82,7 +72,6 @@ jobs:
- name: Update clone
working-directory: /transformers
run: |
git fetch origin ${{ inputs.commit_sha || github.sha }}
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Cleanup
@ -102,10 +91,8 @@ jobs:
working-directory: /transformers/tests
run: |
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
python3 ../utils/split_model_tests.py --subdirs '${{ inputs.subdirs }}' --num_splits ${{ env.NUM_SLICES }} > folder_slices.txt
echo "folder_slices=$(cat folder_slices.txt)" >> $GITHUB_OUTPUT
python3 -c "import ast; folder_slices = ast.literal_eval(open('folder_slices.txt').read()); open('slice_ids.txt', 'w').write(str(list(range(len(folder_slices)))))"
echo "slice_ids=$(cat slice_ids.txt)" >> $GITHUB_OUTPUT
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
@ -116,7 +103,7 @@ jobs:
name: Identify quantization method to test
working-directory: /transformers/tests
run: |
echo "quantization_matrix=$(python3 -c 'import ast; import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); subdirs = ast.literal_eval(${{ inputs.subdirs || '"None"' }}); quantization_tests = [x.removeprefix("quantization/") for x in subdirs] if subdirs is not None else quantization_tests; d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI
run: |
@ -140,7 +127,6 @@ jobs:
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
pytest_marker: ${{ inputs.pytest_marker }}
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -174,7 +160,7 @@ jobs:
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
@ -338,7 +324,7 @@ jobs:
working-directory: ${{ inputs.working-directory-prefix }}/
run: |
python3 -m pip uninstall -y deepspeed
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
# To avoid unknown test failures
- name: Pre build DeepSpeed *again* (for nightly & Past CI)
@ -348,7 +334,7 @@ jobs:
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -477,70 +463,6 @@ jobs:
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
run_kernels_gpu:
if: ${{ inputs.job == 'run_kernels_gpu' }}
name: Kernel tests
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
- name: Reinstall transformers in edit mode
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[testing]
- name: Install kernels
working-directory: /transformers
run: python3 -m pip install -U kernels
- name: NVIDIA-SMI
run: nvidia-smi
- name: Environment
working-directory: /transformers
run: python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run kernel tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_kernels_gpu_test_reports tests/kernels/test_kernels.py
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_kernels_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_kernels_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_kernels_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_kernels_gpu_test_reports
run_extract_warnings:
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
if: ${{ always() && inputs.job == 'run_models_gpu' }}
@ -593,7 +515,6 @@ jobs:
run_examples_gpu,
run_torch_cuda_extensions_gpu,
run_quantization_torch_gpu,
run_kernels_gpu,
run_extract_warnings
]
if: always() && !cancelled()
@ -613,17 +534,16 @@ jobs:
secrets: inherit
check_new_failures:
if: ${{ always() && needs.send_results.result == 'success' }}
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
name: Check new failures
needs: send_results
uses: ./.github/workflows/check_failed_tests.yml
with:
docker: ${{ inputs.docker }}
commit_sha: ${{ inputs.commit_sha || github.sha }}
start_sha: ${{ inputs.commit_sha || github.sha }}
job: ${{ inputs.job }}
slack_report_channel: ${{ inputs.slack_report_channel }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
pr_number: ${{ inputs.pr_number }}
secrets: inherit

View File

@ -4,7 +4,7 @@ on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10)'
description: 'Type of runner to test (a10 or t4)'
required: true
docker_image:
description: 'Name of the Docker image'
@ -36,10 +36,14 @@ jobs:
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
run: |
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
echo "RUNNER=aws-g5-4xlarge-cache-ssh" >> $GITHUB_ENV
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
echo "RUNNER=aws-g5-12xlarge-cache-ssh" >> $GITHUB_ENV
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
else
echo "RUNNER=" >> $GITHUB_ENV
fi
@ -57,6 +61,8 @@ jobs:
group: ${{ needs.get_runner.outputs.RUNNER }}
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
@ -100,7 +106,7 @@ jobs:
else
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
fi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@main
with:

View File

@ -14,7 +14,7 @@ This AGENTS.md file provides guidance for code agents working with this codebase
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e ".[quality]"`. You can then run `make fixup` to apply style and consistency fixes to your code.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
@ -36,4 +36,4 @@ After making changes, you should usually run `make fixup` to ensure any copies a
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e ".[testing]"`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -112,125 +112,7 @@ New models are constantly released and if you want to implement a new model, ple
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/modular_transformers).
### Vision-Language Model Contribution Checklist
If you're contributing a **vision-language model** (or any multimodal model that processes images/videos), please follow this checklist. Maintainers will use this to review your PR, and completing these steps will significantly increase the likelihood of your PR being merged quickly.
**Required checklist for all vision-language model contributions:**
**1. Implement a modular file**
All new models should use the modular architecture pattern. Create a `modular_<model_name>.py` file using the modular model converter:
- Use the CLI, [`transformers add-new-model-like`](https://github.com/huggingface/transformers/blob/main/src/transformers/cli/add_new_model_like.py) to generate a modular skeleton and get started
- All code should be in the modular file if possible. Modeling must be in it, it's better if configuration is in it as well.
- Reuse existing patterns from similar models as much as possible
To verify your modular file is correct, run:
```bash
python utils/modular_model_converter.py <model_name>
```
This will generate the separate files (`modeling_*.py`, `configuration_*.py`, etc.) from your modular file. The CI will enforce that these generated files match your modular file.
**2. Add a fast image processor (for image models)**
If your model processes images, implement a fast image processor that uses `torch` and `torchvision` instead of PIL/numpy for better inference performance:
- See the detailed guide in [#36978](https://github.com/huggingface/transformers/issues/36978)
- Fast processors inherit from `BaseImageProcessorFast`
- Examples: `LlavaOnevisionImageProcessorFast`, `Idefics2ImageProcessorFast`
**3. Create a weight conversion script**
Add a `convert_<model_name>_to_hf.py` script that converts the original model weights to the HuggingFace format:
- Script should handle checkpoint loading, key mapping, and saving in HF format
- Include usage examples and documentation in the script
- Examples: [`convert_llava_onevision_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py), [`convert_idefics2_weights_to_hf.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py)
**4. Add integration tests with exact output matching**
At minimum, add an `IntegrationTest` class that tests end-to-end generation (processing and modelling) with **exact** output matching:
- For generative models: test that generated text matches expected output exactly
- For non-generative models: test that output logits match expected values
- Tests should use real checkpoints (load in 4-bit or half precision if the checkpoint is too big to fit in our CI runners) and real inputs
- Example pattern:
```python
class MyModelIntegrationTest(unittest.TestCase):
@slow
def test_model_integration(self):
model = MyModelForConditionalGeneration.from_pretrained("org/model-name")
processor = AutoProcessor.from_pretrained("org/model-name")
inputs = processor(images=image, text=prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_TEXT = "exact expected output"
self.assertEqual(processor.decode(output[0]), EXPECTED_TEXT)
```
See `tests/models/llava_onevision/test_modeling_llava_onevision.py` for complete examples.
**5. Update documentation**
Add or update model documentation:
- Create if the cli hasn't `docs/source/en/model_doc/<model_name>.md` with usage examples
- Include model description, paper link, and basic usage with `Pipeline` and `AutoModel`
- Add the model to the appropriate TOC files
**6. Look for reusable patterns**
The library has 400+ models with many established patterns:
- Search for similar models (e.g., other vision-language models)
- Reuse attention mechanisms, layer implementations, and processing patterns
- Check models like LLaVA, Idefics2, Fuyu for vision-language patterns
- Use provided decorators like (`auto_docstring`, `can_return_tuple`, `check_model_inputs` and `_can_record_outputs`) where relevant.
- Don't reinvent the wheel
**7. Run quality checks and read the output**
Before submitting your PR, install quality dependencies and run the full check suite:
```bash
pip install -e ".[quality]"
make fixup
```
**Important**: Take time to read the output of `make fixup`. It will:
- Lint and format your code automatically
- Run consistency checks (imports, docstrings, etc.)
- Show any remaining issues that need manual fixes
All checks must pass before your PR can be merged.
**If this checklist is complete, your PR has a very high likelihood of being merged!** Following these steps makes the maintainers' work much easier and will reduce the number of review iterations, getting your important work out there faster.
#### Copy-pastable checklist for maintainers
Here's a condensed version maintainers can copy into PRs:
```markdown
## Multimodal Model Addition Checklist
Please ensure your PR completes all following items. See the [full checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#vision-language-model-contribution-checklist) for details.
- [ ] **Modular file**: `modular_<model_name>.py` implemented and verified with `python utils/modular_model_converter.py <model_name>`
- [ ] **Fast image processor**: Implemented using `BaseImageProcessorFast` (see [#36978](https://github.com/huggingface/transformers/issues/36978))
- [ ] **Conversion script**: `convert_<model_name>_to_hf.py` added with usage examples
- [ ] **Integration tests**: End-to-end tests with exact output matching (text or logits)
- [ ] **Documentation**: Model docs added/updated in `docs/source/en/model_doc/`
- [ ] **Pattern reuse**: Verified against similar models (LLaVA, Idefics2, etc.)
- [ ] **Quality checks**: `make fixup` passes with no errors
```
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
## Do you want to add documentation?

View File

@ -64,8 +64,8 @@ limitations under the License.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers acts as the model-definition framework for state-of-the-art machine learning with text, computer
vision, audio, video, and multimodal models, for both inference and training.
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training

View File

@ -9,12 +9,6 @@ In this list, we showcase incredibly impactful and novel projects that have push
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [◉ Universal Intelligence](https://github.com/blueraai/universal-intelligence)
[Universal Intelligence](https://github.com/blueraai/universal-intelligence) aims to standardize models, tools, and agents —transforming them into simple, composable, portable, interoperable, framework-agnostic, hardware-agnostic interfaces (through auto-negotiation and resource sharing); for fast and accessible development of AI applications.
Keywords: Protocol, Open-source, LLMs, Large Language Models, Agents, Low-code
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.

View File

@ -1,11 +1,8 @@
import hashlib
import itertools
import json
import logging
from typing import Any
from transformers.utils.import_utils import is_flash_attn_2_available
KERNELIZATION_AVAILABLE = False
try:
@ -21,22 +18,11 @@ logger = logging.getLogger(__name__)
class BenchmarkConfig:
"""Configuration for a single benchmark scenario."""
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"),
("flex_attention", None),
]
all_compiled_modes = [None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"]
def __init__(
self,
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = True, # NOTE: you may want to disable this at times as we have obsvered it could heavily slow down benchmarks on AMD
continuous_batching: bool = False,
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
@ -52,7 +38,6 @@ class BenchmarkConfig:
self.warmup_iterations = warmup_iterations
self.measurement_iterations = measurement_iterations
self.gpu_monitoring = gpu_monitoring
self.continuous_batching = continuous_batching
# Input parameters
self.batch_size = batch_size
self.sequence_length = sequence_length
@ -74,35 +59,12 @@ class BenchmarkConfig:
def check_validity(self, skip_validity_check: bool = False) -> None:
if skip_validity_check:
return
# Check FA is installed
if self.attn_implementation == "flash_attention_2" and not is_flash_attn_2_available():
logger.warning(
"Flash attention does not support compile mode. Defaulting to SDPA w/ flash attention backend."
)
self.attn_implementation = "sdpa"
self.sdpa_backend = "flash_attention"
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
is_fa = self.attn_implementation == "flash_attention_2"
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
if is_fa:
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
self.compile_mode = None
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if self.attn_implementation == "sdpa" and self.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
self.sdpa_backend = default_backend
if self.continuous_batching:
if self.attn_implementation == "flex_attention":
logger.error(
"disabling continuous batching because of invalid configuration: flex attention is not supported"
)
self.continuous_batching = False
elif self.attn_implementation == "sdpa" and self.sdpa_backend is not None:
logger.warning(
"when continuous batching is enabled, sdpa_backend must be None because of the attention mask, setting it to None"
)
self.sdpa_backend = "math"
@property
def hash(self) -> str:
@ -118,7 +80,6 @@ class BenchmarkConfig:
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
continuous_batching_str = "cb" if self.continuous_batching else "generate"
sep = "-"
else:
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
@ -128,11 +89,8 @@ class BenchmarkConfig:
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
continuous_batching_str = "continuous batching" if self.continuous_batching else "regular generate"
sep = ", "
return sep.join(
[iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str, continuous_batching_str]
)
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
def to_dict(self) -> dict[str, Any]:
return {
@ -140,7 +98,6 @@ class BenchmarkConfig:
"warmup_iterations": self.warmup_iterations,
"measurement_iterations": self.measurement_iterations,
"gpu_monitoring": self.gpu_monitoring,
"continuous_batching": self.continuous_batching,
"batch_size": self.batch_size,
"sequence_length": self.sequence_length,
"num_tokens_to_generate": self.num_tokens_to_generate,
@ -157,7 +114,6 @@ class BenchmarkConfig:
warmup_iterations=data.get("warmup_iterations", 5),
measurement_iterations=data.get("measurement_iterations", 20),
gpu_monitoring=data.get("gpu_monitoring", False),
continuous_batching=data.get("continuous_batching", False),
batch_size=data.get("batch_size", 1),
sequence_length=data.get("sequence_length", 128),
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
@ -171,79 +127,89 @@ class BenchmarkConfig:
)
def adapt_configs(
configs: list[BenchmarkConfig],
warmup_iterations: int | list[int] = 5,
measurement_iterations: int | list[int] = 20,
batch_size: int | list[int] = 1,
sequence_length: int | list[int] = 128,
num_tokens_to_generate: int | list[int] = 128,
gpu_monitoring: bool | list[bool] = True,
def cross_generate_configs(
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
compiled_mode: list[str | None],
kernelized: list[bool],
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
) -> list[BenchmarkConfig]:
parameters = (
x if isinstance(x, list) else [x]
for x in [
warmup_iterations,
measurement_iterations,
batch_size,
sequence_length,
num_tokens_to_generate,
gpu_monitoring,
]
)
iterator = itertools.product(*parameters)
adapted_configs = []
for warmup_iters, measurement_iters, bs, seqlen, ntok, monitor in iterator:
for config in configs:
config = config.to_dict()
config["warmup_iterations"] = warmup_iters
config["measurement_iterations"] = measurement_iters
config["batch_size"] = bs
config["sequence_length"] = seqlen
config["num_tokens_to_generate"] = ntok
config["gpu_monitoring"] = monitor
adapted_configs.append(BenchmarkConfig.from_dict(config))
return adapted_configs
def get_config_by_level(level: int) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
configs = []
# Early return if level is greater than 3: we generate all combinations of configs, maybe even w/ all compile modes
if level >= 3:
for attn_implementation, sdpa_backend in BenchmarkConfig.all_attn_implementations:
# Usually there is not much to gain by compiling with other modes, but we allow it for level 4
compile_modes = BenchmarkConfig.all_compiled_modes if level >= 4 else [None, "default"]
for cm in compile_modes:
for kernelize_on in {False, KERNELIZATION_AVAILABLE}:
for cb_on in [False, True]:
configs.append(
BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
continuous_batching=cb_on,
)
)
return configs
# Otherwise, we add the configs for the given level
if level >= 0:
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default"))
if level >= 1:
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2"))
configs.append(BenchmarkConfig(attn_implementation="eager", compile_mode="default"))
configs.append(
BenchmarkConfig(attn_implementation="paged|sdpa", compile_mode="default", continuous_batching=True)
)
if level >= 2:
configs.append(BenchmarkConfig(attn_implementation="sdpa", compile_mode="default"))
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", kernelize=True))
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", kernelize=True))
configs.append(
BenchmarkConfig(attn_implementation="paged|sdpa", compile_mode="default", continuous_batching=True)
)
configs.append(
BenchmarkConfig(attn_implementation="flash_attention_2", kernelize=True, continuous_batching=True)
)
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
for cm in list(dict.fromkeys(compiled_mode)):
for kernelize_on in list(dict.fromkeys(kernelized)):
config = BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
**kwargs,
)
configs.append(config)
return configs
def generate_all_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"),
("flex_attention", None),
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)
def generate_main_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
return [ # TODO: test max-autotune instead of default
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="eager", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="flash_attention_2", **kwargs),
]

View File

@ -4,7 +4,6 @@ import logging
import os
import pathlib
import re
import tempfile
import time
from contextlib import nullcontext
from datetime import datetime
@ -12,8 +11,6 @@ from queue import Queue
from typing import Any
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from tqdm import trange
from transformers import (
@ -53,8 +50,6 @@ DEFAULT_PROMPT = "\n".join([
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
]) # fmt: skip
PUSH_TO_HUB_TOKEN = os.getenv("PUSH_TO_HUB_TOKEN", None)
def compact_json_numeric_arrays(data: dict):
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
@ -125,19 +120,15 @@ def flush_memory():
class BenchmarkStreamer(BaseStreamer):
def __init__(self, **kwargs) -> None:
self.timeout = kwargs.pop("timeout", 10)
self.timestamps = []
self.text_queue = Queue()
self.stop_signal = None
def put(self, value):
"""Receives tokens and logs the timestamp of the generation."""
self.timestamps.append(time.perf_counter())
self.text_queue.put(value)
def end(self):
self.timestamps.append(time.perf_counter())
self.text_queue.put(self.stop_signal)
def __iter__(self):
return self
@ -153,22 +144,13 @@ class BenchmarkStreamer(BaseStreamer):
class BenchmarkRunner:
"""Main benchmark runner that coordinates benchmark execution."""
def __init__(
self,
logger: logging.Logger,
output_dir: str | None = None,
branch_name: str | None = None,
commit_id: str | None = None,
commit_message: str | None = None,
) -> None:
def __init__(self, logger: logging.Logger, output_dir: str | None = None, commit_id: str | None = None) -> None:
# Those stay constant for the whole run
self.logger = logger
if output_dir is None:
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
self.output_dir = output_dir
self.branch_name = branch_name
self.commit_id = get_git_revision() if commit_id is None else commit_id
self.commit_message = commit_message
os.makedirs(self.output_dir, exist_ok=True)
self.profile_dir = None
# Attributes that are reset for each model
@ -181,7 +163,7 @@ class BenchmarkRunner:
self.model = None
flush_memory()
def setup_benchmark(self, model_id: str, config: BenchmarkConfig) -> None:
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
# Some attributes only need to be set once per model
if self._setup_for != model_id:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
@ -218,13 +200,10 @@ class BenchmarkRunner:
self.model = self.model.eval().to(config.device)
# Kernelize the model if needed
if config.kernelize and kernelize is not None and Mode is not None:
if config.kernelize:
self.model = kernelize(self.model, mode=Mode.INFERENCE)
def run_benchmark(
self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0
) -> dict[str, Any] | None:
"""Run a single benchmark with the given model ID and config."""
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
sdpa_ctx = nullcontext()
if config.attn_implementation == "sdpa":
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
@ -234,9 +213,8 @@ class BenchmarkRunner:
self.logger.info(f"Running benchmark scenario: {config.name}")
# Quick validation: try one measurement first to see if this scenario works
generate_fn = self.time_generate_batch if config.continuous_batching else self.time_generate
flush_memory()
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=1, gpu_monitor=None
)
if e2e_latency < 0:
@ -246,14 +224,14 @@ class BenchmarkRunner:
# Warmup runs
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
for _ in trange(config.warmup_iterations):
_ = generate_fn(max_new_tokens=config.num_tokens_to_generate)
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
self.logger.info("Warmup over.")
# Measurement runs
result = BenchmarkResult()
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
for _ in trange(config.measurement_iterations):
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=config.num_tokens_to_generate,
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
)
@ -265,68 +243,11 @@ class BenchmarkRunner:
self.profile_generate(num_tokens_to_profile, config.name)
return {
"metadata": BenchmarkMetadata(
model_id=model_id,
branch_name=self.branch_name,
commit_id=self.commit_id,
commit_message=self.commit_message,
),
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
"measurements": result,
"config": config,
}
# TODO: refactor `generate_batch` to handle streaming so we can use it here
def time_generate_batch(
self,
max_new_tokens: int,
gpu_monitor: GPUMonitor | None = None,
) -> tuple[float, list[float], str, GPURawMetrics | None]:
if gpu_monitor is not None:
gpu_monitor.start()
config = GenerationConfig(
max_new_tokens=max_new_tokens,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
do_sample=True,
)
manager = self.model.init_continuous_batching(config)
manager.start()
try:
first_req_results = []
timestamps = []
wall_time_0 = time.perf_counter()
inputs = self.inputs["input_ids"].tolist()
manager.add_requests(inputs, max_new_tokens=max_new_tokens, streaming=True)
first_req_id = None
num_requests = len(inputs)
finished_requests = 0
while finished_requests < num_requests:
# NOTE: I don't like having the extra if stmt here, but hopefully won't degrade perf too much
result = manager.get_result()
if result:
timestamps.append(time.perf_counter() - wall_time_0)
if result.is_finished():
finished_requests += 1
if first_req_id is None:
first_req_id = result.request_id
if result.request_id == first_req_id:
first_req_results.append(result)
else:
if not manager.is_running():
raise RuntimeError("Generation thread exited unexpectedly")
wall_time_1 = time.perf_counter()
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
decoded_output = self.tokenizer.decode(
[res.generated_tokens[0] for res in first_req_results], skip_special_tokens=True
)
shape_and_decoded_output = f"{(1, len(first_req_results))} | {decoded_output}"
e2e_latency = wall_time_1 - wall_time_0
return e2e_latency, timestamps, shape_and_decoded_output, gpu_metrics
except Exception as e:
raise e
finally:
manager.stop()
def time_generate(
self,
max_new_tokens: int,
@ -384,28 +305,33 @@ class BenchmarkRunner:
benchmark_configs: list[BenchmarkConfig],
num_tokens_to_profile: int = 0,
pretty_print_summary: bool = True,
) -> tuple[str, dict[str, Any]]:
"""Run multiple benchmarks for the given model ID and list of benchmark configs."""
) -> dict[str, Any]:
all_results = {}
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
start_time = time.perf_counter()
n_configs = len(benchmark_configs)
for i, config in enumerate(benchmark_configs):
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
config.sdpa_backend = default_backend
# Skip if already run
if config.hash in all_results:
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
continue
# Otherwise, run the benchmark
self.setup_benchmark(model_id, config)
self.setup_one_run(model_id, config)
self.logger.info(
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
)
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
try:
results = self.run_benchmark(model_id, config, num_tokens_to_profile)
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
if results is not None:
all_results[config.hash] = results
@ -429,14 +355,10 @@ class BenchmarkRunner:
for result in all_results.values():
print("=" * 100)
print(f"Config: {result['config'].infer_name(compact=False)}\n")
result["measurements"].pprint(
batch_size=result["config"].batch_size,
num_generated_tokens=result["config"].num_tokens_to_generate,
tabs=1,
)
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
print("=" * 100)
return (timestamp, all_results)
return all_results
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
"""Save benchmark results to JSON file."""
@ -465,43 +387,3 @@ class BenchmarkRunner:
self.logger.info(f"Results saved to {filepath}")
return filepath
def push_results_to_hub(self, dataset_id: str, results: dict[Any, Any], timestamp: str) -> None:
if PUSH_TO_HUB_TOKEN is None:
raise ValueError(
"PUSH_TO_HUB_TOKEN is not set, cannot push results to the Hub. When setting dataset_id, please also set the PUSH_TO_HUB_TOKEN environment variable."
)
n_results = len(results)
self.logger.info(f"Pushing {n_results} results to: {dataset_id}")
rows = []
for cfg_hash, entry in results.items():
row = {
"benchmark_config_hash": cfg_hash,
"config": entry["config"].to_dict(),
"measurements": entry["measurements"].to_dict(),
"metadata": entry["metadata"].to_dict(),
}
rows.append(row)
ds = Dataset.from_list(rows)
with tempfile.TemporaryDirectory() as tmp:
jsonl_path = os.path.join(tmp, "data.jsonl")
with open(jsonl_path, "w") as f:
json_lines = []
for ex in ds:
json_lines.append(json.dumps(ex, ensure_ascii=False))
f.write("\n".join(json_lines))
api = HfApi()
# NOTE: we expect the repository to already exist
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
file_name = f"benchmark_run_{timestamp}.jsonl"
api.upload_file(
path_or_fileobj=jsonl_path,
path_in_repo=file_name,
repo_id=dataset_id,
repo_type="dataset",
token=PUSH_TO_HUB_TOKEN,
)
self.logger.info(f"Succesfully uploaded results to: {dataset_id}")

View File

@ -1,5 +1,5 @@
from dataclasses import dataclass
from datetime import datetime, timezone
from datetime import datetime
from typing import Any
import numpy as np
@ -36,17 +36,16 @@ def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
return stats
def equalize_lengths_and_collate(stats: dict[str, dict[str, str]]) -> dict[str, str]:
"""Note: This operation is destructive as it will update values in place before returning a new correctly formatted dict"""
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
keys = ["avg", "std", "min", "med", "max", "p95"]
for key in keys:
max_length = max(len(stat[key]) for stat in stats.values())
for stat in stats.values():
max_length = max(len(stat[key]) for stat in stats)
for stat in stats:
stat[key] = stat[key].ljust(max_length, " ")
return {name: " ".join([f"{key}={stat[key]}" for key in keys]) for name, stat in stats.items()}
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
def pretty_print_dict(data: dict[str, str], tabs: int = 0) -> None:
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
max_key_length = max([len(key) for key in data.keys()])
for key, value in data.items():
tabs_str = " " * tabs
@ -60,26 +59,19 @@ class BenchmarkMetadata:
model_id: str
timestamp: str
branch_name: str
commit_id: str
commit_message: str
hardware_info: HardwareInfo
def __init__(self, model_id: str, commit_id: str, branch_name: str = "main", commit_message: str = "") -> None:
def __init__(self, model_id: str, commit_id: str):
self.model_id = model_id
self.timestamp = datetime.now(timezone.utc).isoformat()
self.branch_name = branch_name
self.timestamp = datetime.utcnow().isoformat()
self.commit_id = commit_id
self.commit_message = commit_message
self.hardware_info = HardwareInfo()
def to_dict(self) -> dict[str, Any]:
return {
"model_id": self.model_id,
"timestamp": self.timestamp,
"branch_name": self.branch_name,
"commit_id": self.commit_id,
"commit_message": self.commit_message,
"hardware_info": self.hardware_info.to_dict(),
}
@ -142,19 +134,27 @@ class BenchmarkResult:
def get_measured_itl(self) -> list[float]:
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
def get_throughput(self, total_generated_tokens: int) -> list[float]:
return [total_generated_tokens / e2e_latency for e2e_latency in self.e2e_latency]
def get_throughput(self, batch_size: int) -> float:
return [
batch_size * len(dt) / e2e_latency
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
]
def pprint(self, batch_size: int = 0, num_generated_tokens: int = 0, tabs: int = 0) -> None:
measurements = {
"E2E Latency": add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
"Time to First Token": add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
}
itl_values = self.get_measured_itl()
if len(itl_values) > 0:
measurements["Inter-Token Latency"] = add_unit_to_duration(compute_basic_statistics(itl_values))
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
stats_to_collate = [
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
if batch_size > 0:
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size * num_generated_tokens))
measurements["Throughput"] = {key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()}
dict_to_pprint = equalize_lengths_and_collate(measurements)
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
collated_stats = equalize_lengths_and_collate(stats_to_collate)
dict_to_pprint = {
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
}
if batch_size > 0:
dict_to_pprint["Throughput"] = collated_stats[3]
pretty_print_dict(dict_to_pprint, tabs=tabs)

View File

@ -2,5 +2,6 @@ numpy>=1.21.0
psutil>=5.8.0
gpustat>=1.0.0
torch>=2.0.0
transformers>=4.30.0
datasets>=2.10.0
huggingface_hub>=0.16.0
huggingface_hub>=0.16.0

View File

@ -23,7 +23,7 @@ import logging
import sys
import uuid
from framework.benchmark_config import adapt_configs, get_config_by_level
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
from framework.benchmark_runner import BenchmarkRunner
@ -33,37 +33,18 @@ if __name__ == "__main__":
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup", "-w", type=int, default=3, help="Number of warmup iterations")
parser.add_argument("--iterations", "-i", type=int, default=10, help="Number of measurement iterations")
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations")
parser.add_argument("--iterations", type=int, default=10, help="Number of measurement iterations")
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
parser.add_argument(
"--level",
type=int,
default=1,
help="Level of coverage for the benchmark. 0: only the main config, 1: a few important configs, 2: a config for"
" each attn implementation an option, 3: cross-generate all combinations of configs, 4: cross-generate all"
" combinations of configs w/ all compile modes",
)
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
parser.add_argument("--branch-name", type=str, help="Git branch name")
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
parser.add_argument("--commit-message", type=str, help="Git commit message")
parser.add_argument(
"--no-gpu-monitoring", action="store_true", help="Disables GPU monitoring during benchmark runs"
)
parser.add_argument(
"--push-result-to-dataset",
type=str,
default=None,
help="Name of the dataset to push results to. If not provided, results are not pushed to the Hub.",
)
args = parser.parse_args()
# Setup logging
@ -80,42 +61,56 @@ if __name__ == "__main__":
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
logger.info(f"Output directory: {args.output_dir}")
# We cannot compute ITL if we don't have at least two measurements
if any(n <= 1 for n in args.num_tokens_to_generate):
raise ValueError("--num_tokens_to_generate arguments should be larger than 1")
# Error out if one of the arguments is not provided
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
raise ValueError(
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
)
# Get the configs for the given coverage level
configs = get_config_by_level(args.level)
# Adapt the configs to the given arguments
configs = adapt_configs(
configs,
args.warmup,
args.iterations,
args.batch_size,
args.sequence_length,
args.num_tokens_to_generate,
not args.no_gpu_monitoring,
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
if args.cross_generate:
benchmark_configs = generate_all_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
else:
benchmark_configs = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
# Otherwise, we benchmark across all combinations of dimensions
else:
main_config = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)[0]
benchmark_configs = []
for num_tokens_to_generate in args.num_tokens_to_generate:
for sequence_length in args.sequence_length:
for batch_size in args.batch_size:
cfg_dict = main_config.to_dict()
cfg_dict["batch_size"] = batch_size
cfg_dict["sequence_length"] = sequence_length
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
cfg_dict.pop("name")
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
results = runner.run_benchmarks(
args.model_id,
benchmark_configs,
args.num_tokens_to_profile,
pretty_print_summary=True,
)
runner = BenchmarkRunner(logger, args.output_dir, args.branch_name, args.commit_id, args.commit_message)
timestamp, results = runner.run_benchmarks(
args.model_id, configs, args.num_tokens_to_profile, pretty_print_summary=True
)
# Check if we have any successful benchmark results
if len(results) == 0:
logger.error("No benchmarks completed successfully. All benchmark configurations failed.")
sys.exit(1)
dataset_id = args.push_result_to_dataset
if dataset_id is not None and len(results) > 0:
runner.push_results_to_hub(dataset_id, results, timestamp)
logger.info("Benchmark run completed successfully")
sys.exit(0)
# runner.save_results(args.model_id, results)

View File

@ -58,6 +58,7 @@ NOT_DEVICE_TESTS = {
"test_model_get_set_embeddings",
"test_model_main_input_name",
"test_correct_missing_keys",
"test_tie_model_weights",
"test_can_use_safetensors",
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
@ -87,8 +88,6 @@ def pytest_configure(config):
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
config.addinivalue_line("markers", "flash_attn_test: mark test which tests flash attention functionality")
config.addinivalue_line("markers", "flash_attn_3_test: mark test which tests flash attention 3 functionality")
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN git lfs install

View File

@ -17,7 +17,7 @@ RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"

View File

@ -9,15 +9,10 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.9.0'
ARG PYTORCH='2.8.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# This needs to be compatible with the above `PYTORCH`.
ARG TORCHCODEC='0.8.0'
ARG FLASH_ATTN='false'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
@ -26,48 +21,14 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev]
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. For `torchcodec`, use `cpu` as we don't have `libnvcuvid.so` on the host runner. See https://github.com/meta-pytorch/torchcodec/issues/912
# **Important**: We need to specify `torchcodec` version if the torch version is not the latest stable one.
# 3. `set -e` means "exit immediately if any command fails".
RUN set -e; \
# Determine torch version
if [ ${#PYTORCH} -gt 0 ] && [ "$PYTORCH" != "pre" ]; then \
VERSION="torch==${PYTORCH}.*"; \
TORCHCODEC_VERSION="torchcodec==${TORCHCODEC}.*"; \
else \
VERSION="torch"; \
TORCHCODEC_VERSION="torchcodec"; \
fi; \
\
# Log the version being installed
echo "Installing torch version: $VERSION"; \
\
# Install PyTorch packages
if [ "$PYTORCH" != "pre" ]; then \
python3 -m pip install --no-cache-dir -U \
$VERSION \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/$CUDA; \
# We need to specify the version if the torch version is not the latest stable one.
python3 -m pip install --no-cache-dir -U \
$TORCHCODEC_VERSION --extra-index-url https://download.pytorch.org/whl/cpu; \
else \
python3 -m pip install --no-cache-dir -U --pre \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/nightly/$CUDA; \
python3 -m pip install --no-cache-dir -U --pre \
torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/cpu; \
fi
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U timm
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
RUN python3 -m pip install --no-cache-dir pytesseract
@ -92,7 +53,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
RUN python3 -m pip install --no-cache-dir quanto
# After using A10 as CI runner, let's run FA2 tests
RUN [ "$FLASH_ATTN" != "false" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
# TODO (ydshieh): check this again
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests

View File

@ -10,7 +10,7 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
# Torch needs to be installed before deepspeed
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir --no-build-isolation torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image

View File

@ -1,4 +1,4 @@
FROM rocm/pytorch:rocm7.0.2_ubuntu24.04_py3.12_pytorch_release_2.7.1
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -10,8 +10,8 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy importlib-metadata setuptools wheel ninja pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
WORKDIR /
@ -39,7 +39,6 @@ RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
cd flash-attention && \
GPU_ARCHS="gfx942" python setup.py install
# GPU_ARCHS builds for MI300, MI325 but not MI355: we would need to add `;gfx950` but it takes too long to build.
GPU_ARCHS="gfx942" python setup.py install
RUN python3 -m pip install --no-cache-dir einops

View File

@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip uninstall -y torch torchvision torchaudio torchcodec && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
@ -43,7 +43,7 @@ RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels

View File

@ -3,10 +3,11 @@ LABEL maintainer="Hugging Face"
SHELL ["/bin/bash", "-c"]
ARG PYTHON_VER=3.12
ARG PYTHON_VER=3.11
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get remove -y python3.10 && apt-get autoremove -y
RUN apt-get update && \
apt-get install -y software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
@ -22,6 +23,7 @@ RUN apt-get update && \
apt-utils \
build-essential \
ca-certificates \
clinfo \
curl \
git \
git-lfs \
@ -33,6 +35,7 @@ RUN apt-get update && \
rsync \
sudo \
libnl-genl-3-200 \
xpu-smi \
unzip \
ffmpeg \
tesseract-ocr \
@ -42,47 +45,34 @@ RUN apt-get update && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get update && \
apt-get install -y \
linux-headers-$(uname -r) linux-modules-extra-$(uname -r) \
linux-headers-$(uname -r) \
linux-modules-extra-$(uname -r) \
flex bison \
intel-fw-gpu intel-i915-dkms xpu-smi intel-ocloc clinfo\
intel-fw-gpu intel-i915-dkms xpu-smi \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc \
libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Use virtual env because Ubuntu-24 does not allowed pip on original python
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VER} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN pip install --upgrade pip
RUN pip install triton==3.3.0
RUN pip install --upgrade pip wheel
RUN pip install triton==3.4.0
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
RUN pip install torch==2.8.0+xpu torchvision==0.23.0+xpu torchaudio==2.8.0+xpu --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
RUN pip install evaluate torchdata pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree
RUN pip install gguf hqq compressed_tensors gptqmodel mergekit autoawq deepspeed torchao onnx
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft
RUN pip install torchcodec torchdata --no-cache-dir
RUN pip install evaluate pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree setuptools
RUN pip install gptqmodel --no-build-isolation
RUN pip install gguf hqq compressed_tensors autoawq deepspeed torchao onnx auto_round
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft diffusers trl kernels
# install liger-kernel
RUN pip install git+https://github.com/linkedin/Liger-Kernel.git --extra-index-url https://download.pytorch.org/whl/test/xpu
# install mergekit
RUN pip install --break-system-packages git+https://github.com/arcee-ai/mergekit.git@v0.1.3
# install bitsandbytes
RUN pip install git+https://github.com/bitsandbytes-foundation/bitsandbytes.git

View File

@ -24,7 +24,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
@ -50,7 +50,7 @@ RUN python3 -m pip install --no-cache-dir hqq
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
RUN python3 -m pip install --no-cache-dir --no-build-isolation autoawq[kernels]
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir optimum-quanto

View File

@ -24,7 +24,7 @@ pip install -e ".[dev]"
```
> [!NOTE]
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to work around it.
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
Then you need to install our special tool that builds the documentation:
@ -38,7 +38,7 @@ pip install git+https://github.com/huggingface/doc-builder
## Building the documentation
Once you have set up the `doc-builder` and additional packages, you can generate the documentation by
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
@ -295,11 +295,12 @@ Here's an example of a tuple return, comprising several objects:
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate them to this dataset.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## Styling the docstring
We have an automatic script running with the `make style` command that will make sure that:
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library

View File

@ -123,6 +123,8 @@
title: تشغيل التدريب على Amazon SageMaker
- local: serialization
title: التصدير إلى ONNX
- local: torchscript
title: التصدير إلى TorchScript
- local: notebooks
title: دفاتر الملاحظات مع الأمثلة
- local: community
@ -258,6 +260,8 @@
# title: النماذج
# - local: main_classes/text_generation
# title: توليد النصوص
# - local: main_classes/onnx
# title: ONNX
# - local: main_classes/optimizer_schedules
# title: التحسين
# - local: main_classes/output

View File

@ -32,7 +32,7 @@
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
```bash
pip install optimum-onnx
pip install optimum[exporters]
```
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
@ -111,3 +111,60 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
### تصدير نموذج لهندسة غير مدعومة
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
### تصدير نموذج باستخدام `transformers.onnx`
<Tip warning={true}>
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
</Tip>
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
```bash
pip install transformers[onnx]
```
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -0,0 +1,154 @@
# التصدير إلى TorchScript
<Tip>
هذه هي بداية تجاربنا مع TorchScript ولا زلنا نستكشف قدراته مع نماذج المدخلات المتغيرة الحجم. إنه مجال اهتمامنا وسنعمق تحليلنا في الإصدارات القادمة، مع المزيد من الأمثلة البرمجية، وتنفيذ أكثر مرونة، ومقاييس مقارنة بين الأكواد القائمة على Python مع أكواد TorchScript المُجمّعة.
</Tip>
وفقًا لـ [وثائق TorchScript](https://pytorch.org/docs/stable/jit.html):
> TorchScript هي طريقة لإنشاء نماذج قابلة للتسلسل والتحسين من تعليمات PyTorch البرمجية.
هناك وحدتان من PyTorch، [JIT and TRACE](https://pytorch.org/docs/stable/jit.html)، تتيحان للمطورين تصدير نماذجهم لإعادة استخدامها في برامج أخرى مثل برامج C++ المُحسّنة للأداء.
نقدم واجهة تتيح لك تصدير نماذج 🤗 Transformers إلى TorchScript بحيث يمكن إعادة استخدامها في بيئة مختلفة عن برامج Python القائمة إلى PyTorch. هنا نشرح كيفية تصدير نماذجنا واستخدامها باستخدام TorchScript.
يتطلب تصدير نموذج أمرين:
- تهيئة مثيل للنموذج باستخدام علامة `torchscript`
- تمرير مُدخلات وهمية (dummy inputs) خلال النموذج
تنطوي هذه الضرورات على عدة أمور يجب على المطورين توخي الحذر بشأنها كما هو مفصل أدناه.
## علامة TorchScript والأوزان المرتبطة
علامة `torchscript` ضرورية لأن معظم نماذج اللغة 🤗 Transformers لها أوزان مرتبطة بين طبقة `Embedding` وطبقة `Decoding`. لا يسمح لك TorchScript بتصدير النماذج ذات الأوزان المرتبطة، لذلك من الضروري فصل الأوزان ونسخها مسبقًا.
النماذج المُهيأة باستخدام علامة `torchscript` لها طبقة `Embedding` وطبقة`Decoding` منفصلتين، مما يعني أنه لا ينبغي تدريبها لاحقًا. سيؤدي التدريب إلى عدم تزامن الطبقتين، مما يؤدي إلى نتائج غير متوقعة.
هذا لا ينطبق على النماذج التي لا تحتوي على رأس نموذج اللغة، حيث لا تملك أوزانًا مرتبطة. يمكن تصدير هذه النماذج بأمان دون علامة `torchscript`.
## المدخلات الوهمية والأطوال القياسية
تُستخدم المُدخلات الوهمية لتمرير أمامي خلال النموذج. أثناء انتشار قيم المُدخلات عبر الطبقات، يتتبع PyTorch العمليات المختلفة التي يتم تنفيذها على كل مصفوفة(tensor). ثم يتم استخدام هذه العمليات المُسجلة بعد ذلك لإنشاء *أثر* النموذج.
يتم إنشاء التتبع بالنسبة لأبعاد المُدخلات. وبالتالي، فهو مُقيّد بأبعاد المُدخلات الوهمية، ولن يعمل لأي طول تسلسل أو حجم دفعة مختلف. عند المحاولة بحجم مختلف، يتم رفع الخطأ التالي:
```
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
```
نوصي بتتبع النموذج باستخدام حجم مُدخلات وهمية لا يقل عن أكبر مُدخل سيتم تقديمه للنموذج أثناء الاستدلال. يمكن أن تساعد الحشوة(padding) في ملء القيم المفقودة. ومع ذلك، نظرًا لتتبع النموذج بحجم مُدخل أكبر، ستكون أبعاد المصفوفة ستكون كبيرة أيضًا، مما يؤدي عنه المزيد من الحسابات.
انتبه إلى إجمالي عدد العمليات المُنفذة على كل مُدخل وتابع الأداء عن كثب عند تصدير نماذج متغيرة طول التسلسل.
## استخدام TorchScript في Python
يوضح هذا القسم كيفية حفظ النماذج وتحميلها، بالإضافة إلى كيفية استخدام التتبع للاستدلال.
### حفظ نموذج
لتصدير `BertModel` باستخدام TorchScript، قم بتهيئة ـ `BertModel` من فئة `BertConfig` ثم احفظه على القرص تحت اسم الملف `traced_bert.pt`:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
### تحميل نموذج
يمكنك الآن تحميل `BertModel` المُحفظ سابقًا، `traced_bert.pt`، من القرص واستخدامه على `dummy_input` المُهيأ سابقًا:
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
### استخدام نموذج مُتتبع للاستدلال
استخدم النموذج المُتتبع للاستدلال باستخدام أسلوب `__call__` الخاص به:
```python
traced_model(tokens_tensor, segments_tensors)
```
## نشر نماذج Hugging Face TorchScript على AWS باستخدام Neuron SDK
قدمت AWS عائلة [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) من اﻷجهزة لخفض التكلفة وأداء التعلم الآلي عالي الأداء في البيئة السحابية. تعمل أجهزة Inf1 بواسطة شريحة Inferentia من AWS، وهي مُسرّع أجهزة مُخصص، متخصص في أعباء عمل الاستدلال للتعلم العميق. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) هي SDK لـ Inferentia التي تدعم تتبع نماذج المحولات وتحسينها للنشر على Inf1. توفر Neuron SDK ما يلي:
1. واجهة برمجة تطبيقات سهلة الاستخدام مع تغيير سطر واحد من التعليمات البرمجية لتتبع نموذج TorchScript وتحسينه للاستدلال في البيئة السحابية.
2. تحسينات الأداء الجاهزة للاستخدام [تحسين التكلفة والأداء](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>).
3. دعم نماذج Hugging Face المحولات المبنية باستخدام إما [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) أو [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
### الآثار المترتبة
تعمل نماذج المحولات المستندة إلى بنية [BERT (تمثيلات الترميز ثنائية الاتجاه من المحولات)](https://huggingface.co/docs/transformers/main/model_doc/bert) أو متغيراتها مثل [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) و [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) بشكل أفضل على Inf1 للمهام غير التوليدية مثل الإجابة على الأسئلة الاستخراجية، وتصنيف التسلسلات، وتصنيف الرموز (tokens). ومع ذلك، يمكن تكييف مهام توليد النصوص للعمل على Inf1 وفقًا لهذا [برنامج تعليمي AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). يمكن العثور على مزيد من المعلومات حول النماذج التي يمكن تحويلها جاهزة على Inferentia في قسم [ملاءمة بنية النموذج](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) من وثائق Neuron.
### التبعيات (Dependencies)
يتطلب استخدام AWS Neuron لتحويل النماذج [بيئة SDK Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) والتي تأتي مسبقًا على [AMI للتعلم العميق من AWS](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
### تحويل نموذج لـ AWS Neuron
قم بتحويل نموذج لـ AWS NEURON باستخدام نفس التعليمات البرمجية من [استخدام TorchScript في Python](torchscript#using-torchscript-in-python) لتتبع `BertModel`. قم باستيراد امتداد إطار عمل `torch.neuron` للوصول إلى مكونات Neuron SDK من خلال واجهة برمجة تطبيقات Python:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
كل ما عليك فعله هو تعديل السطر التالي:
```diff
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
```
يتيح ذلك لـ Neuron SDK تتبع النموذج وتحسينه لمثيلات Inf1.
لمعرفة المزيد حول ميزات AWS Neuron SDK والأدوات ودروس البرامج التعليمية والتحديثات الأخيرة، يرجى الاطلاع على [وثائق AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).

View File

@ -88,8 +88,6 @@
title: Tool use
- local: chat_templating_writing
title: Writing a chat template
- local: chat_response_parsing
title: Response parsing
title: Chat with models
- sections:
- local: serving
@ -119,8 +117,6 @@
title: Tools
- local: transformers_as_backend
title: Inference server backends
- local: continuous_batching
title: Continuous Batching
title: Inference
- isExpanded: false
sections:
@ -231,6 +227,8 @@
title: ONNX
- local: executorch
title: ExecuTorch
- local: torchscript
title: TorchScript
title: Export to production
- isExpanded: false
sections:
@ -1257,8 +1255,6 @@
title: Importing Utilities
- local: internal/time_series_utils
title: Utilities for Time Series
- local: internal/rope_utils
title: Rotary Embeddings Utilities
title: Internal helpers
- sections:
- local: reference/environment_variables

View File

@ -95,12 +95,9 @@ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):]))
The chat model called the `get_current_temperature` tool with the correct parameters from the docstring. It inferred France as the location based on Paris, and that it should use Celsius for the units of temperature.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history. For
models that support [response parsing](./chat_response_parsing), the response parsing will be handled automatically, and you can just use
[`~PreTrainedTokenizer.parse_response] to extract the tool call. For other models, you'll need to manually translate the output
string into a tool call dict.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history.
Regardless of the approach you use, the tool call should go in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
Hold the call in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
> [!WARNING]
> Although `tool_calls` is similar to the OpenAI API, the OpenAI API uses a JSON string as its `tool_calls` format. This may cause errors or strange model behavior if used in Transformers, which expects a dict.

View File

@ -1,233 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Response Parsing
It is increasingly common for chat models to generate structured outputs, rather than just a single reply string.
The most common uses for structured outputs are [tool calling](./chat_extras) and [reasoning models](https://huggingface.co/reasoning-course).
Tool calling models can output tool calls, containing the name of the tool to call and any arguments to be passed to it,
while reasoning models often output reasoning steps as a "chain of thought". Some recent models even use both of these,
and may output reasoning and/or one or more tool calls before their final answer.
Models with structured outputs pose a challenge for chat templating, because the output needs to be parsed before it
can be appended to the chat. For a concrete example, let's say we ask [GPT-OSS](https://huggingface.co/openai/gpt-oss-120b)
what the weather is like, and it thinks and decides to call a tool. Here's what the raw model output might look like:
```txt
<|start|>analysis<|message|>The user asks: "What is the weather like in SF?" We need to get the location of the user? The user explicitly asks about SF (San Francisco).
So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data.
So we should call get_current_weather with location "San Francisco, CA". Let's do that.
We will call function get_current_weather.<|end|><|start|>commentary to=functions.get_current_weather<|channel|>commentary <|constrain|>json<|message|>{"location":"San Francisco, CA"}<|call|>
}
```
But if you want to append this to a chat, you'll need to format it as a chat message dict, like this:
```json
{
"role": "assistant",
"thinking": "The user asks: \"What is the weather like in SF?\" We need to get the location of the user? The user explicitly asks about SF (San Francisco). So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data. So we should call get_current_weather with location \"San Francisco, CA\". Let's do that.",
"tool_calls": [
{
"name": "get_current_weather",
"arguments": {
"location": "San Francisco, CA"
}
}
]
}
```
Chat **templates** give us a way to turn messages into formatted input for a model, but we need something else to
parse model output back into a standard message dict. This is what chat **parsing** is for.
## The [parse_response](~PreTrainedTokenizerBase.parse_response) method
Parsing a chat response on a model that supports it is straightforward. Simply take the raw, decoded output from
[generate](`~generation.GenerationMixin.generate`), and pass it to the tokenizer's [parse_response](~PreTrainedTokenizerBase.parse_response) method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype="auto", device_map="auto")
messages = [
{
"role": "user",
"content": "Hey! Can you summarize the end of the Cold War as briefly as possible? Like, comically briefly. It should really leave out almost most of the relevant information."
}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
out_text = tokenizer.decode(outputs)
parsed = tokenizer.parse_response(out_text)
print(parsed.keys())
```
And you should get:
```text
dict_keys(['thinking', 'content'])
```
And that's all you need to start using response parsing! `parse_response` should return a complete message dict that is ready to be appended to the chat history.
When the tokenizer does not support response parsing, `parse_response` will throw an error. We hope to add support
to more tokenizers over time.
## Developers: Understanding a simple response schema
Under the hood, `parse_response` uses a **JSON schema** to parse the model output. A JSON schema represents
the structure of the output message dict. The schema is augmented with additional fields that indicate how the
output message string should be parsed into the expected format. Let's take a look at the schema for a SmolLM response,
excluding tool calls for now:
```python
{
"x-regex": "(?:<think>\n?(?P<thinking>.+?)\n?</think>)?\s*(?P<content>.+?)?\s*(?:<\|im_end\|>|$)",
"type": "object",
"properties": {
"role": {"const": "assistant"},
"content": {"type": "string"},
"thinking": {"type": "string"}
}
}
```
We can see that the schema describes a JSON "object" (a `dict`, in other words) with three keys: `role`, `content`, and `thinking`.
Because all assistant responses have the role "assistant", the `role` key is a `const`(ant). The other two keys are strings, extracted
from the named groups in the regex in the `x-regex` field.
Like chat templates, response schemas are set as a property of the tokenizer. To enable response parsing, all you need
to do is set `tokenizer.response_schema` to a valid schema dict, and `tokenizer.parse_response()` will work! Again, like
chat templates, this schema will be saved with the processor, so once you set it, you can use `save_pretrained()` or `push_to_hub()` to
save and share the schema.
## Developers: Complex schemas
Now, let's look at a more complex schema, which includes tool calls, to gain more of an understanding of the parser
internals. For this, we'll use the `GPT-OSS` schema. GPT-OSS emits both tool calls and thinking blocks, and it uses
an unusual format where model responses are tagged with one of three "channels": `commentary` for things like
tool calls, `analysis` for chain of thought blocks, and `final` for messages intended to be sent to the user.
A full message where the model calls a tool named `get_current_weather` might look like this, with some extra linebreaks added for clarity:
```text
<|channel|>analysis<|message|>
The user asks: "What is the weather like in SF?" So we need to get the current weather in San Francisco, CA.
We need to call get_current_weather function. So we should call get_current_weather with location "San Francisco, CA".
<|end|>
<|start|>assistant<|channel|>commentary
to=functions.get_current_weather <|constrain|>json<|message|>
{
"location": "San Francisco, CA"
}
<|call|>
```
Parsing proceeds recursively; the output of a regex (or other parser) at one level becomes the input to the nodes below it.
In other words, don't feel like you have to parse the entire output in one enormous regex! Instead, start with the schema,
and then add regexes to extract the relevant chunks as you go. Here's a schema that will parse it, with some
explanatory comments:
```python
{
"type": "object",
"properties": {
"role": {"const": "assistant"},
# "content" and "thinking" are both similar to the previous example, and just extract a single string
# However, rather than using a single regex with named groups to extract both, we use a regex in each subkey.
# When an object node has no parser/regex, the entire input string is passed to all of its children, so
# parsing can either be done with named groups at the object level, or with separate regexes at the property level.
"content": {"type": "string", "x-regex": r"<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"},
"thinking": {"type": "string", "x-regex": r"<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"},
"tool_calls": {
# "x-regex-iterator" uses re.findall to find multiple possible manages, and returns them as an
# array/list. You don't need to worry about array handling, though - each item in the array will be
# parsed by the `items` schema, so just write the schema for a single item.
"x-regex-iterator": r"<\|channel\|>commentary (to=functions\..*?<\|message\|>.*?)(?:<\|call\|>|$)",
"type": "array",
"items": {
"type": "object",
"properties": {
# A const property is a fixed value, and the input has no effect on it.
"type": {"const": "function"},
# Here, we wrap the entire tool call dict in a `{"function": ...}` block. The input string is passed through to it unchanged.
"function": {
"type": "object",
"properties": {
"name": {"type": "string", "x-regex": r"^to=functions\.(\w+)"},
"arguments": {
"type": "object",
"x-regex": "<\|message\|>(.*)",
# The "x-parser" field indicates that the extracted string should be parsed as JSON.
# The output is then passed to the schema nodes below and recursive parsing continues.
"x-parser": "json",
"additionalProperties": {"type": "any"},
},
},
},
},
},
},
},
}
```
## Developers: Understanding the parser logic
The parser follows a few simple rules:
1. Each level of the schema receives input from the level above, applies any regex or parser it has, and then passes the output to its children.
2. The root level receives the entire decoded model output string as input.
3. If a node has structured content after parsing (for example, if the regex has named groups and returns a dict, or if the parser returns a dict or list),
then that structured content is mapped to the node's children, and each child node receives its corresponding value as input.
4. If an `object` (dict) node has unstructured (string) output, then the entire string is passed to all of its children. This allows child nodes
to handle parsing individually rather than requiring a single parent regex to extract all keys at once.
5. If an `array` (list) node has unstructured (string) output, then this throws an error.
There is a small set of allowable `x-` keys that indicate how parsing should be done at each node:
- `x-regex`: A regex string to apply to the input. If the regex has named groups, the output is a dict of group names to values. Named groups should only be used in `object` nodes.
Otherwise, the regex must have exactly one unnamed capturing group, and the output is the value of that group as a string.
- `x-regex-iterator`: A regex string to apply to the input using `re.findall()`. The output is a list of all matches.
This should only be used in `array` nodes, and the regex must have exactly one unnamed capturing group. The output is distributed to
the node's `items` schema.
- `x-parser`: Calls a built-in parser to apply to the input. Currently, the only supported parser is `json`, which parses the input string as JSON.
The output is passed to the child nodes for further parsing. Note that the `json` parser can return deeply nested output - in this case, the output
will be progressively unwrapped as it is passed through child nodes. The child nodes do not need additional `x-parser` or `x-regex` fields in this case,
but their structure must match the structure of the parsed JSON.
- `x-parser-args`: Only allowed in conjunction with `x-parser`. This is a dict of additional arguments that control parsing. Right now, the only supported
argument is `transform`, which specifies a `jmespath` transformation to apply to the output. This is useful when the JSON parser returns a structure
that needs to be modified to match the schema.
- `x-regex-key-value`: This is rarely necessary, but it can be useful when parsing key-value pairs in non-JSON format where the names of the keys are not known
in advance, such as when a model emits XML tool calls with arbitrary argument names. The regex must have exactly two named capturing groups,
`key` and `value`, and the output is a dict mapping keys to values. This should only be used in `object` nodes.
In general, multiple regexes/parsers cannot be combined at the same level. The exception is that `x-regex`, returning a single string, can be combined with the other parsers. In this case,
`x-regex` is applied first, and then the output is passed to the other parser, either `x-regex-iterator`, `x-parser`, or `x-regex-key-value`.
Putting these ideas together, you can see that the input flows through the schema, being parsed at each level and then distributed to child nodes. Each level
only needs to extract the input content that is relevant for that part of the schema, and can then let its child nodes handle the rest. Internally, this is handled
with a parser function that receives input, applies any regexes/parsers at the current level, then maps the result to its child nodes before recursively calling itself on each of them.
Recursion terminates when it reaches leaf nodes, usually primitive types like `string` or `number`, which simply return the input they receive.

View File

@ -1,194 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Continuous Batching
Continuous Batching (CB) is an advanced technique to optimize the inference of transformer models by dynamically grouping multiple requests into batches. This approach maximizes GPU utilization and throughput, specifically for workloads with many variable-length inputs.
We are particularly interested in having Continuous Batching in transformers for the following use cases:
- Evaluation of models on large datasets with variable-length inputs
- Generating outputs for multiple sequences for GRPO policies
CB is what makes inference engines like vLLM or SGLang efficient. That being said, transformers does not aim to be a production-ready inference engine, but a complete framework for model development. For this reason, CB is available in `transformers serve`.
If you are not familiar with some of the core concepts CB is built upon, we invite you to read the associated blog post: [Continuous Batching: Efficient Inference for Large Language Models](https://huggingface.co/blog/continuous-batching). _broken link for now_
## API Reference
## Usage Examples
The main way to use CB in transformers is via the `generate_batch` method.
Unlike `generate`, CB takes already tokenized inputs, known as input IDs. Each sequence of input IDs is represented as a list of integers, in python: `list[int]`. Since
For a more detailed example, please refer to: [examples/continuous_batching](./path/to/example)
### `generate_batch` example
We have created a `ContinuousMixin` that is inherited by the `GenerationMixin` so that all auto regressive text models support CB.
This adds the `generate_batch` method to all models that inherit from `GenerationMixin`.
You can use it as follows:
```py
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-4B-Instruct-2507",
attn_implementation="spda_paged",
device_map="cuda", # if you need cuda
dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
# prepare a batch of inputs
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
dataset = dataset.select(range(args.samples))
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
generation_config = GenerationConfig(
max_new_tokens=32,
use_cuda_graph=False, # Not supported for simple version
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
max_batch_tokens=512, # max number of tokens in a batch, this is just a default value you should tune based on your hardware
)
batch_outputs = model.generate_batch(
inputs=simple_batch_inputs,
generation_config=generation_config,
)
for request_id, output in batch_outputs.items():
generated_text = tokenizer.decode(output.generated_tokens, skip_special_tokens=True)
print(f"Request {request_id} output: {generated_text}")
```
### `ContinuousBatchingManager` example
If you want more control w.r.t. how you want to schedule requests using CB, you can use the `ContinuousBatchingManager` class directly.
This is what we use in `transformers serve` because requests arrive asynchronously and we can leverage the asynchronous nature of the CB process to make things more efficient.
Under the hood, the `ContinuousBatchingManager` creates a background thread that receives inputs from a python `queue.Queue` which it uses to get requests to batch in each forward pass.
Note that the manager is thread safe!
```py
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers.generation.continuous_batching import RequestStatus
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-4B-Instruct-2507",
attn_implementation="spda_paged",
device_map="cuda", # if you need cuda
dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
# prepare a batch of inputs
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
dataset = dataset.select(range(args.samples))
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
# initialize the manager, available method thanks to the `ContinuousMixin`
manager = model.init_continuous_batching(generation_config=generation_config)
# start the background thread
manager.start()
# this is for demonstration purposes only, in practice this is most useful to do concurrently
for i, input in enumerate(simple_batch_inputs):
request_id = manager.add_request(input_ids=input, request_id=f"request_{i}") # if you do not specify a request_id, one will be generated for you
# Can be done in an other thread
for id, request in manager.get_result():
generated_text = tokenizer.decode(request.generated_tokens, skip_special_tokens=True)
print(f"Request {id} output: {generated_text}")
# you can also get results for a specific request id
result = manager.get_result(request_id="request_5") # this is blocking and will wait for the result to be ready
# or get results for a request that is streaming
manager.add_request(
input_ids=input,
request_id="streaming_request",
stream=True,
)
for chunk in manager.request_id_iter(request_id="streaming_request"):
generated_text = tokenizer.decode(chunk.generated_tokens, skip_special_tokens=True)
print(generated_text)
# FIXME: stop iteration in `request_id_iter` when finished instead of doing it externally
if chunk.status == RequestStatus.FINISHED:
break
# stop the background thread before exiting the process
manager.stop()
```
## Supported & Unsupported Features
### Supported Features
- Dynamic scheduling of variable-length requests
- Chunked prefill
- Paged Attention Cache
- Sliding window attention
- Chat templates
### Unsupported Features
At the moment, the following features are not supported with CB. We plan to add support to the following:
- Prefix caching
- Beam search
- tool calling
The others are unplanned, but depending on community requests we might consider adding them:
- MTP (multi token prediction)
- Medusa
## Performance Considerations
## Integration with Serving
You can use CB in `transformers serve` by passing the `--continuous-batching` flag when starting the server.
## Monitoring
We have added `opentelemetry` support to Continuous Batching to help you monitor its performance in production. To enable it, you need to install the `opentelemetry` extra when installing `transformers`:
```sh
# this installs `opentelemetry-api`, `opentelemetry-sdk` and `opentelemetry-exporter-otlp`
pip install transformers[open-telemetry]
```
This will enable traces and metrics collection in CB. You will then have to setup the backend to collect and visualize the traces and metrics.

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) runs PyTorch models on mobile and edge devices. Export your Transformers models to the ExecuTorch format with [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch) with the command below.
```bash
```
optimum-cli export executorch \
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
--task "text-generation" \
@ -29,5 +29,4 @@ optimum-cli export executorch \
--qembedding 8w \
--output_dir="hf_smollm2"
```
Run `optimum-cli export executorch --help` to see all export options. For detailed export instructions, check the [README](optimum/exporters/executorch/README.md).

View File

@ -320,7 +320,7 @@ df.sort_values(by=['skipped_proportion'], ascending=False)
You can focus on a specific test method using `--test_method_name`:
```bash
python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
```
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).

View File

@ -1,83 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Rotary Embedding
This page explains how the Rotary Embedding is computed and applied in Transformers and what types of RoPE are supported.
## Overview
Rotary Position Embeddings are a technique used to inject positional information into attention mechanisms without relying on explicit position encodings.
Instead of adding position vectors to token embeddings, RoPE rotates query and key vectors in the complex plane according to their positions enabling relative positional awareness and better extrapolation to unseen sequence lengths.
The Transformers library provides a flexible and extensible implementation of various RoPE types defined in `[`~modeling_rope_utils.ROPE_VALIDATION_FUNCTIONS`]`, including both the default and scaled variants:
| Rope Type | Description |
|------------|-------------|
| `"default"` | Standard rotary embedding as in LLaMA. |
| `"linear"` | Linear-scaled RoPE which allows longer context windows. |
| `"dynamic"` | NTK-aware scaling computed by rescaling frequency base (`θ`) for longer context. |
| `"yarn"` | YaRN scaling variant providing smoother extrapolation and stability. |
| `"longrope"` | [LongRoPE](https://github.com/microsoft/LongRoPE) scaling as in Phi-2 model series. |
| `"llama3"` | RoPE scaling as in Llama3.1. |
## Configuration in Model Configs
To enable and customize rotary embeddings, add a `rope_parameters` field to your models configuration file (`config.json`). This field controls the RoPE behavior across model layers. Note that each RoPE variant defines its own set of expected keys and missing keys will raise an error. See the example below which creates a llama config with default RoPE parameters:
```python
from transformers import LlamaConfig
config = LlamaConfig()
config.rope_parameters = {
"rope_type": "default", # type of RoPE to use
"rope_theta": 10000.0 # base frequency parameter
}
# If we want to apply a scaled RoPE type, we need to pass extra parameters
config.rope_parameters = {
"rope_type": "linear",
"rope_theta": 10000.0,
"factor": 8.0 # scale factor for context extension
}
```
## Per-Layer-Type RoPE Configuration
Some models such as Gemma-3 use different layer types with different attention mechanisms, i.e. "full attention" in some blocks and "sliding-window attention" in others. Transformers supports specifying distinct RoPE parameters per layer type for these models. In this case, `rope_parameters` should be a nested dictionary, where top-level keys correspond to `config.layer_types` and values are per-type RoPE parameters. During model initialization, each decoder layer will automatically look up the matching RoPE configuration based on its declared layer type.
```python
from transformers import Gemma3Config
config = Gemma3Config()
config.rope_parameters = {
"full_attention": {
"rope_type": "dynamic",
"rope_theta": 1000000.0,
"factor": 8.0,
"original_max_position_embeddings": 8096,
},
"sliding_attention": {
"rope_type": "default",
"rope_theta": 10000.0,
}
}
```
## Utilities
[[autodoc]] RopeParameters
- __call__

View File

@ -1,3 +1,3 @@
# Overview
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.
Kernels in transformers are used to optimize the performance of models with custom layers from the hub and very low effort.

View File

@ -393,9 +393,3 @@ model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config, device_map="auto"
)
```
## Continuous Batching
When serving LLMs for inference, you may have multiple requests arriving at different times. Continuous Batching (CB) is a technique that groups incoming requests into batches to maximize GPU utilization and throughput.
See the [Continuous Batching](./continuous_batching) guide for more details on how to use CB in transformers.

View File

@ -67,6 +67,6 @@ Examples of use can be found in the [example scripts](../examples) or [example n
[[autodoc]] data.data_collator.DataCollatorWithFlattening
## DataCollatorForMultipleChoice
# DataCollatorForMultipleChoice
[[autodoc]] data.data_collator.DataCollatorForMultipleChoice

View File

@ -267,7 +267,6 @@ about how many forward passes you inputs are actually going to trigger, you can
independently of the inputs. The caveats from the previous section still apply.
## Pipeline FP16 inference
Models can be run in FP16 which can be significantly faster on GPU while saving memory. Most models will not suffer noticeable performance loss from this. The larger the model, the less likely that it will.
To enable FP16 inference, you can simply pass `dtype=torch.float16` or `dtype='float16'` to the pipeline constructor. Note that this only works for models with a PyTorch backend. Your inputs will be converted to FP16 internally.
@ -335,7 +334,6 @@ Pipelines available for audio tasks include the following.
Pipelines available for computer vision tasks include the following.
### DepthEstimationPipeline
[[autodoc]] DepthEstimationPipeline
- __call__
- all

View File

@ -43,7 +43,6 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
[[autodoc]] AwqConfig
## EetqConfig
[[autodoc]] EetqConfig
## GPTQConfig

View File

@ -50,14 +50,14 @@ several advanced alignment methods which can be used to map between the original
token space (e.g., getting the index of the token comprising a given character or the span of characters corresponding
to a given token).
## Multimodal Tokenizer
# Multimodal Tokenizer
Apart from that each tokenizer can be a "multimodal" tokenizer which means that the tokenizer will hold all relevant special tokens
as part of tokenizer attributes for easier access. For example, if the tokenizer is loaded from a vision-language model like LLaVA, you will
be able to access `tokenizer.image_token_id` to obtain the special image token used as a placeholder.
To enable extra special tokens for any type of tokenizer, you have to add the following lines and save the tokenizer. Extra special tokens do not
have to be modality related and can be anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
have to be modality related and can ne anything that the model often needs access to. In the below code, tokenizer at `output_dir` will have direct access
to three more special tokens.
```python

View File

@ -23,7 +23,6 @@ The video processor extends the functionality of image processors by allowing Vi
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
```python

View File

@ -158,24 +158,6 @@ print("Retrieval scores (query x image):")
print(scores)
```
You can also use checkpoints for `ColQwen2.5` that are **compatible with the ColQwen2 architecture**. This version of the model uses [Qwen2_5_VL](./qwen2_5_vl) as the backbone.
```python
import torch
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
from transformers.utils.import_utils import is_flash_attn_2_available
model_name = "Sahil-Kabir/colqwen2.5-v0.2-hf" # An existing compatible checkpoint
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "sdpa"
)
processor = ColQwen2Processor.from_pretrained(model_name)
```
## Notes
- [`~ColQwen2Processor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.

View File

@ -31,7 +31,7 @@ This model was contributed by [Connor Henderson](https://huggingface.co/connor-h
FastSpeech2's general structure with a Mel-spectrogram decoder was implemented, and the traditional transformer blocks were replaced with conformer blocks as done in the ESPnet library.
### FastSpeech2 Model Architecture
#### FastSpeech2 Model Architecture
![FastSpeech2 Model Architecture](https://www.microsoft.com/en-us/research/uploads/prod/2021/04/fastspeech2-1.png)

View File

@ -70,8 +70,8 @@ from transformers import AutoProcessor, Florence2ForConditionalGeneration
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
model = Florence2ForConditionalGeneration.from_pretrained("florence-community/Florence-2-base", dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base", dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")
task_prompt = "<OD>"
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device)
@ -105,12 +105,12 @@ from transformers import AutoProcessor, Florence2ForConditionalGeneration, BitsA
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = Florence2ForConditionalGeneration.from_pretrained(
"florence-community/Florence-2-base",
"microsoft/Florence-2-large",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
processor = AutoProcessor.from_pretrained("florence-community/Florence-2-base")
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

View File

@ -75,11 +75,11 @@ A processor requires an image_processor and a tokenizer. Hence, inputs can be lo
from PIL import Image
from transformers import AutoTokenizer
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
from transformers.models.fuyu.image_processing_fuyu_fast import FuyuImageProcessorFast
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
tokenizer = AutoTokenizer.from_pretrained('adept-hf-collab/fuyu-8b')
image_processor = FuyuImageProcessorFast()
image_processor = FuyuImageProcessor()
processor = FuyuProcessor(image_processor=image_processor, tokenizer=tokenizer)
@ -118,11 +118,6 @@ The `LlamaTokenizer` is used as it is a standard wrapper around sentencepiece.
[[autodoc]] FuyuImageProcessor
- __call__
## FuyuImageProcessor
[[autodoc]] FuyuImageProcessorFast
- __call__
## FuyuProcessor
[[autodoc]] FuyuProcessor

View File

@ -33,7 +33,7 @@ this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented R
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
a similar attention pattern to [Gemma 3](./gemma3) with alternating 4 local sliding window self-attention layers for
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
MobileNet v5 as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.

View File

@ -61,11 +61,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] GLPNImageProcessor
- preprocess
## GLPNImageProcessorFast
[[autodoc]] GLPNImageProcessorFast
- preprocess
## GLPNModel
[[autodoc]] GLPNModel

View File

@ -63,6 +63,11 @@ The attributes can be obtained from model config, as `model.config.num_query_tok
[[autodoc]] InstructBlipVideoVideoProcessor
- preprocess
## InstructBlipVideoImageProcessor
[[autodoc]] InstructBlipVideoImageProcessor
- preprocess
## InstructBlipVideoVisionModel
[[autodoc]] InstructBlipVideoVisionModel

View File

@ -88,16 +88,16 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
# LightGlue requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
with torch.inference_mode():
outputs = model(**inputs)
# Extract matching information
keypoints0 = outputs.keypoints0 # Keypoints in first image
keypoints1 = outputs.keypoints1 # Keypoints in second image
@ -112,7 +112,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
@ -147,13 +147,6 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- post_process_keypoint_matching
- visualize_keypoint_matching
## LightGlueImageProcessorFast
[[autodoc]] LightGlueImageProcessorFast
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
## LightGlueForKeypointMatching
[[autodoc]] LightGlueForKeypointMatching

View File

@ -247,6 +247,10 @@ model = LlavaNextVideoForConditionalGeneration.from_pretrained(
[[autodoc]] LlavaNextVideoProcessor
## LlavaNextVideoImageProcessor
[[autodoc]] LlavaNextVideoImageProcessor
## LlavaNextVideoVideoProcessor
[[autodoc]] LlavaNextVideoVideoProcessor

View File

@ -54,7 +54,7 @@ model.set_output_embeddings(resized_embeddings)
## Usage Example
### Instruct model
#### Instruct model
```python
import torch
@ -80,7 +80,7 @@ output = model.generate(**inputs, max_new_tokens=25)
print(processor.decode(output[0]))
```
### Base model
#### Base model
```python
import requests

View File

@ -88,16 +88,16 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
# SuperGlue requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
with torch.inference_mode():
outputs = model(**inputs)
# Extract matching information
keypoints0 = outputs.keypoints0 # Keypoints in first image
keypoints1 = outputs.keypoints1 # Keypoints in second image
@ -112,7 +112,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
@ -147,13 +147,6 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- post_process_keypoint_matching
- visualize_keypoint_matching
## SuperGlueImageProcessorFast
[[autodoc]] SuperGlueImageProcessorFast
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
## SuperGlueForKeypointMatching
[[autodoc]] SuperGlueForKeypointMatching

View File

@ -288,7 +288,7 @@ class Olmo2DecoderLayer(OlmoDecoderLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states

View File

@ -154,7 +154,7 @@ pip install schedulefree
[Schedule Free optimizer (SFO)](https://hf.co/papers/2405.15682) replaces the base optimizers momentum with a combination of averaging and interpolation. Unlike a traditional scheduler, SFO completely removes the need to anneal the learning rate.
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps`.
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps` or `warmup_ratio`.
By default, it is recommended to set `lr_scheduler_type="constant"`. Other `lr_scheduler_type` values may also work, but combining SFO optimizers with other learning rate schedules could affect SFOs intended behavior and performance.

View File

@ -45,13 +45,7 @@ This guide shows how to enable tensor parallelism with Transformers and differen
## Partitioning a model
Transformers supports tensor parallelism if a model has a `tp_plan`. There are two ways to partition a model.
- Set `tp_plan="auto"` to automatically use a tensor parallelism plan based on a model's predefined configuration.
- Define and pass a manual `tp_plan`.
<hfoptions id="tp_plan">
<hfoption id="auto plan">
Transformers supports tensor parallelism if a model has a `tp_plan`. Set `tp_plan="auto"` to automatically use a tensor parallelism plan based on a model's predefined configuration.
```py
import os
@ -59,7 +53,9 @@ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # better to visualize all the possible strategies
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct" , dtype=torch.bfloat16, tp_plan="auto")
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # better for smaller number of GPUs
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, tp_plan="auto")
print(model._tp_plan)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
@ -76,31 +72,6 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
torchrun --nproc-per-node 4 demo.py
```
</hfoption>
<hfoption id="manual plan">
Define a tensor parallel plan for each layer in `tp_plan` and pass it to [`~PreTrainedModel.from_pretrained`]. The example below uses column and row partitioning. See the [Partitioning strategies](#partitioning-strategies) section for other supported strategies.
Manual partitioning requires deep understanding of model architecture and strategy interactions. Poor partitioning choices create slow models that fail or produce incorrect results. The [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) explains partitioning strategies in detail.
```py
from transformers import AutoModelForCausalLM
tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise",
"model.layers.*.self_attn.k_proj": "colwise",
"model.layers.*.self_attn.v_proj": "colwise",
"model.layers.*.self_attn.o_proj": "rowwise",
...
}
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", dtype="auto", tp_plan=tp_plan)
print(model.tp_plan)
```
</hfoption>
</hfoptions>
## Partitioning strategies
All partitioning strategies are defined in the [`ParallelInterface`] class which maps a string to the strategy implementation. You don't need to interact with this class directly since all the strategies are set with `tp_plan` in [`~PreTrainedModel.from_pretrained`], but it is useful for checking what strategies are available.

View File

@ -38,7 +38,7 @@ pip install transformers[dev]
or for an editable install:
```bash
pip install -e ".[dev]"
pip install -e .[dev]
```
inside the Transformers repo. Since the number of optional dependencies of Transformers has grown a lot, it's possible you don't manage to get all of them. If the dev install fails, make sure to install PyTorch then do
@ -50,7 +50,7 @@ pip install transformers[quality]
or for an editable install:
```bash
pip install -e ".[quality]"
pip install -e .[quality]
```
## Tests

View File

@ -40,7 +40,7 @@ You can choose between MXFP4 and NVFP4 with `FPQuantConfig(forward_dtype="mxfp4"
A **Blackwell-generation GPU is required** to run the kernels. Runtime support for FP-Quant is implemented through the [QuTLASS](https://github.com/IST-DASLab/qutlass) library and a lightweight PyTorch interface lib [`fp_quant`](https://github.com/IST-DASLab/FP-Quant/tree/master/inference_lib). We recommend installing the former **from source** and the latter with `pip install fp_quant`.
Users **without a Blackwell-generation GPU** , can use the method with `quantization_config=FPQuantConfig(pseudoquantization=True)` without having to install [QuTLASS](https://github.com/IST-DASLab/qutlass). This would provide no speedups but would fully emulate the effect of quantization.
Users **without a Blackwell-generation GPU** , can use the method with `quantization_config=FPQuantConfig(pseudoquant=True)` without having to install [QuTLASS](https://github.com/IST-DASLab/qutlass). This would provide no speedups but would fully emulate the effect of quantization.
> [!TIP]
> Find models pre-quantized with FP-Quant in the official ISTA-DASLab [collection](https://huggingface.co/collections/ISTA-DASLab/fp-quant-6877c186103a21d3a02568ee).

View File

@ -33,7 +33,7 @@ Export a Transformers model to ONNX with the Optimum CLI or the `optimum.onnxrun
Run the command below to install Optimum and the [exporters](https://huggingface.co/docs/optimum/exporters/overview) module.
```bash
pip install optimum-onnx
pip install optimum[exporters]
```
> [!TIP]

View File

@ -383,30 +383,6 @@ transformers serve \
--attn_implementation "sdpa"
```
### Quantization
transformers serve is compatible with all [quantization methods](https://huggingface.co/docs/transformers/main/quantization/overview) supported in transformers. Quantization can significantly reduce memory usage and improve inference speed, with two main workflows: pre-quantized models and on-the-fly quantization.
#### Pre-quantized Models
For models that are already quantized (e.g., GPTQ, AWQ, bitsandbytes), simply choose a quantized model name for serving.
Make sure to install the required libraries listed in the quantization documentation.
> [!TIP]
> Pre-quantized models generally provide the best balance of performance and accuracy.
#### On the fly quantization
If you want to quantize a model at runtime, you can specify the --quantization flag in the CLI. Note that not all quantization methods support on-the-fly conversion. The full list of supported methods is available in the quantization [overview](https://huggingface.co/docs/transformers/main/quantization/overview).
Currently, with transformers serve, we only supports some methods: ["bnb-4bit", "bnb-8bit"]
For example, to enable 4-bit quantization with bitsandbytes, you need to pass add `--quantization bnb-4bit`:
```sh
transformers serve --quantization bnb-4bit
```
### Performance tips
- Use an efficient attention backend when available:
@ -421,4 +397,6 @@ transformers serve \
- `--dtype {bfloat16|float16}` typically improve throughput and memory use vs. `float32`
- `--load_in_4bit`/`--load_in_8bit` can reduce memory footprint for LoRA setups
- `--force-model <repo_id>` avoids per-request model hints and helps produce stable, repeatable runs

View File

@ -220,7 +220,7 @@ At this point, only three steps remain:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -169,7 +169,7 @@ def compute_metrics(eval_pred):
return {"wer_score": wer_score}
```
## Train
## Train!
Now, you are ready to start fine-tuning the model. You will use the 🤗 [`Trainer`] for this.

View File

@ -211,7 +211,7 @@ At this point, only three steps remain:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -126,6 +126,7 @@ def rebuild_objects(bboxes, labels):
train_dataset = train_dataset.with_transform(train_transform)
```
Build COCO-style annotations for the image processor.
```py
@ -246,4 +247,4 @@ image = Image.open(requests.get("https://huggingface.co/datasets/merve/vlm_test_
plot_results(image, results, threshold=0.05)
```
![Results](https://huggingface.co/datasets/huggingface/documentation-images/results/main/transformers/tasks/backbone_training_results.png)
![Results](https://huggingface.co/datasets/huggingface/documentation-images/results/main/transformers/tasks/backbone_training_results.png)

View File

@ -378,7 +378,7 @@ Most of the training arguments are self-explanatory, but one that is quite impor
... learning_rate=5e-5,
... per_device_train_batch_size=batch_size,
... per_device_eval_batch_size=batch_size,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -0,0 +1,138 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TorchScript
[TorchScript](https://pytorch.org/docs/stable/jit.html) serializes PyTorch models into programs that can be executed in non-Python processes. This is especially advantageous in production environments where Python may not be the most performant choice.
Transformers can export a model to TorchScript by:
1. creating dummy inputs to create a *trace* of the model to serialize to TorchScript
2. enabling the `torchscript` parameter in either [`~PreTrainedConfig.torchscript`] for a randomly initialized model or [`~PreTrainedModel.from_pretrained`] for a pretrained model
## Dummy inputs
The dummy inputs are used in the forward pass, and as the input values are propagated through each layer, PyTorch tracks the different operations executed on each tensor. The recorded operations are used to create the model trace. Once it is recorded, it is serialized into a TorchScript program.
```py
from transformers import BertModel, BertTokenizer, BertConfig
import torch
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
```
The trace is created based on the provided inputs dimensions and it can only handle inputs with the same shape as the provided input during tracing. An input with a different size raises the error message shown below.
```bash
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`.
```
Try to create a trace with a dummy input size at least as large as the largest expected input during inference. Padding can help fill missing values for larger inputs. It may be slower though since a larger input size requires more calculations. Be mindful of the total number of operations performed on each input and track the model performance when exporting models with variable sequence lengths.
## Tied weights
Weights between the `Embedding` and `Decoding` layers are tied in Transformers and TorchScript can't export models with tied weights. Instantiating a model with `torchscript=True`, separates the `Embedding` and `Decoding` layers and they aren't trained any further because it would throw the two layers out of sync which can lead to unexpected results.
Models *without* a language model head don't have tied weights and can be safely exported without the `torchscript` parameter.
<hfoptions id="torchscript">
<hfoption id="randomly initialized model">
```py
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
model = BertModel(config)
model.eval()
```
</hfoption>
<hfoption id="pretrained model">
```py
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
model.eval()
```
</hfoption>
</hfoptions>
## Export to TorchScript
Create the Torchscript program with [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html), and save with [torch.jit.save](https://pytorch.org/docs/stable/generated/torch.jit.save.html).
```py
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
Use [torch.jit.load](https://pytorch.org/docs/stable/generated/torch.jit.load.html) to load the traced model.
```py
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
To use the traced model for inference, use the `__call__` dunder method.
```py
traced_model(tokens_tensor, segments_tensors)
```
## Deploy to AWS
TorchScript programs serialized from Transformers can be deployed on [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) instances. The instance is powered by AWS Inferentia chips, a custom hardware accelerator designed for deep learning inference workloads. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) supports tracing Transformers models for deployment on Inf1 instances.
> [!TIP]
> AWS Neuron requires a [Neuron SDK environment](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/inference-torch-neuron.html#inference-torch-neuron) which is preconfigured on [AWS DLAMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
Instead of [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html), use [torch.neuron.trace](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/api-compilation-python-api.html) to trace a model and optimize it for Inf1 instances.
```py
import torch.neuron
torch.neuron.trace(model, [tokens_tensor, segments_tensors])
```
Refer to the [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html) documentation for more information.
### Model architectures
BERT-based models - like [DistilBERT](./model_doc/distilbert) or [RoBERTa](./model_doc/roberta) - run best on Inf1 instances for non-generative tasks such as extractive question answering, and sequence or token classification.
Text generation can be adapted to run on an Inf1 instance as shown in the [Transformers MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html) tutorial.
Refer to the [Inference Samples/Tutorials (Inf1)](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/models/inference-inf1-samples.html#model-samples-inference-inf1) guide for more information about which models can be converted out of the box to run on Inf1 instances.

View File

@ -187,7 +187,7 @@ from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False, num_items_in_batch: Optional[torch.Tensor] = None):
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
labels = inputs.pop("labels")
# forward pass
outputs = model(**inputs)

View File

@ -64,6 +64,8 @@
title: Entrenador
- local: sagemaker
title: Ejecutar el entrenamiento en Amazon SageMaker
- local: torchscript
title: Exportar a TorchScript
- local: community
title: Los recursos de la comunidad
title: Guías para desarrolladores

View File

@ -37,7 +37,7 @@ pip install transformers[dev]
o una instalación editable:
```bash
pip install -e ".[dev]"
pip install -e .[dev]
```
del repositorio de Transformers.

View File

@ -220,7 +220,7 @@ Al llegar a este punto, solo quedan tres pasos:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -0,0 +1,167 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Exportar a TorchScript
<Tip>
Este es el comienzo de nuestros experimentos con TorchScript y todavía estamos explorando sus capacidades con modelos de variables de entrada. Es un tema de interés para nosotros y profundizaremos en nuestro análisis en las próximas versiones, con más ejemplos de código, una implementación más flexible y comparativas de rendimiento comparando códigos basados en Python con TorchScript compilado.
</Tip>
De acuerdo con la documentación de TorchScript:
> "TorchScript es una manera de crear modelos serializables y optimizables a partir del código PyTorch."
Hay dos módulos de PyTorch, [JIT y TRACE](https://pytorch.org/docs/stable/jit.html), que permiten a los desarrolladores exportar sus modelos para ser reusados en otros programas, como los programas de C++ orientados a la eficiencia.
Nosotros proveemos una interface que te permite exportar los modelos 🤗Transformers a TorchScript para que puedan ser reusados en un entorno diferente al de los programas Python basados en PyTorch. Aquí explicamos como exportar y usar nuestros modelos utilizando TorchScript.
Exportar un modelo requiere de dos cosas:
- La instanciación del modelo con la bandera TorchScript.
- Un paso hacia adelante con entradas ficticias.
Estas necesidades implican varias cosas de las que los desarrolladores deben tener cuidado, como se detalla a continuación.
## Bandera TorchScript y pesos atados.
La bandera `torchscript` es necesaria porque la mayoría de los modelos de lenguaje de 🤗Transformers tienen pesos atados entre su `capa de incrustación` (`Embedding`) y su `capa de decodificación` (`Decoding`). TorchScript no te permite exportar modelos que tienen pesos atados, por lo que es necesario desatar y clonar los pesos de antemano.
Los modelos instanciados con la bandera `torchscript` tienen su `capa de incrustación` (`Embedding`) y su `capa de decodificación` (`Decoding`) separadas, lo que significa que no deben ser entrenados más adelante. Entrenar desincronizaría las dos capas, lo que llevaría a resultados inesperados.
Esto no es así para los modelos que no tienen una cabeza de modelo de lenguaje, ya que esos modelos no tienen pesos atados. Estos modelos pueden ser exportados de manera segura sin la bandera `torchscript`.
## Entradas ficticias y longitudes estándar
Las entradas ficticias se utilizan para un paso del modelo hacia adelante. Mientras los valores de las entradas se propagan a través de las capas, PyTorch realiza un seguimiento de las diferentes operaciones ejecutadas en cada tensor. Estas operaciones registradas se utilizan luego para crear *la traza* del modelo.
La traza se crea en relación con las dimensiones de las entradas. Por lo tanto, está limitada por las dimensiones de la entrada ficticia y no funcionará para ninguna otra longitud de secuencia o tamaño de lote. Cuando se intenta con un tamaño diferente, se genera el siguiente error:
```
`El tamaño expandido del tensor (3) debe coincidir con el tamaño existente (7) en la dimensión no singleton 2`.
```
Recomendamos trazar el modelo con un tamaño de entrada ficticio al menos tan grande como la entrada más grande con la que se alimentará al modelo durante la inferencia. El relleno puede ayudar a completar los valores faltantes. Sin embargo, dado que el modelo se traza con un tamaño de entrada más grande, las dimensiones de la matriz también serán grandes, lo que resultará en más cálculos.
Ten cuidado con el número total de operaciones realizadas en cada entrada y sigue de cerca el rendimiento al exportar modelos con longitudes de secuencia variables.
## Usando TorchScript en Python
Esta sección demuestra cómo guardar y cargar modelos, así como cómo usar la traza para la inferencia.
### Guardando un modelo
Para exportar un `BertModel` con TorchScript, instancia `BertModel` a partir de la clase `BertConfig` y luego guárdalo en disco bajo el nombre de archivo `traced_bert.pt`:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
### Cargando un modelo
Ahora puedes cargar el `BertModel` guardado anteriormente, `traced_bert.pt`, desde el disco y usarlo en la entrada ficticia (`dummy_input`) previamente inicializada:
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
## Usando un modelo trazado para inferencia
Utiliza el modelo trazado para inferencia utilizando su método `_call_` dunder:
```python
traced_model(tokens_tensor, segments_tensors)
```
## Despliega modelos TorchScript de Hugging Face en AWS con el Neuron SDK
AWS introdujo la familia de instancias [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) para inferencia de aprendizaje automático de alto rendimiento y bajo costo en la nube. Las instancias Inf1 están alimentadas por el chip AWS Inferentia, un acelerador de hardware personalizado que se especializa en cargas de trabajo de inferencia de aprendizaje profundo. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) es el SDK para Inferentia que admite el trazado y la optimización de modelos de transformers para implementación en Inf1. El SDK Neuron proporciona:
1. Una API fácil de usar con un solo cambio de línea de código para trazar y optimizar un modelo TorchScript para inferencia en la nube.
2. Optimizaciones de rendimiento listas para usar [para mejorar el rendimiento y el costo](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>).
3. Soporte para modelos de transformers de Hugging Face construidos tanto con [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) como con [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).
### Implicaciones
Los modelos transformers basados en la arquitectura [BERT (Bidirectional Encoder Representations from Transformers)](https://huggingface.co/docs/transformers/main/model_doc/bert), o sus variantes como [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) y [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta), funcionan mejor en Inf1 para tareas no generativas como la respuesta a preguntas extractivas, la clasificación de secuencias y la clasificación de tokens. Sin embargo, las tareas de generación de texto aún pueden adaptarse para ejecutarse en Inf1 según este [tutorial de AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). Se puede encontrar más información sobre los modelos que se pueden convertir fácilmente para usar en Inferentia en la sección de [Model Architecture Fit](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) de la documentación de Neuron.
### Dependencias
El uso de AWS Neuron para convertir modelos requiere un [entorno de Neuron SDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) que viene preconfigurado en [la AMI de AWS Deep Learning](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).
### Convertir un modelo para AWS Neuron
Convierte un modelo para AWS NEURON utilizando el mismo código de [Uso de TorchScript en Python](torchscript#using-torchscript-in-python) para trazar un `BertModel`. Importa la extensión del framework `torch.neuron` para acceder a los componentes del Neuron SDK a través de una API de Python:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
Solo necesitas la linea sigueda:
```diff
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
```
Esto permite que el Neuron SDK trace el modelo y lo optimice para las instancias Inf1.
Para obtener más información sobre las características, herramientas, tutoriales de ejemplo y últimas actualizaciones del AWS Neuron SDK, consulta [la documentación de AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).

View File

@ -37,7 +37,7 @@ pip install transformers[dev]
o un'installazione modificabile:
```bash
pip install -e ".[dev]"
pip install -e .[dev]
```
all'interno del repo Transformers.

View File

@ -109,6 +109,8 @@
title: チャットモデルのテンプレート
- local: serialization
title: ONNX へのエクスポート
- local: torchscript
title: トーチスクリプトへのエクスポート
- local: community
title: コミュニティリソース
- local: troubleshooting
@ -200,6 +202,8 @@
title: モデル
- local: main_classes/text_generation
title: テキストの生成
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: 最適化
- local: main_classes/output

View File

@ -1292,7 +1292,7 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
したがって、スケジューラを設定しない場合、これがデフォルトで設定されるスケジューラになります。
設定ファイルで `scheduler` エントリを設定しない場合、[`Trainer`] は
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` の値を設定します。
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` または `--warmup_ratio` の値を設定します。
🤗 それのトランスフォーマーバージョン。
以下は、`WarmupLR`の自動構成された`scheduler`エントリの例です。
@ -1316,7 +1316,8 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
- `warmup_min_lr` の値は `0` です。
- `warmup_max_lr` と `--learning_rate` の値。
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)。それ以外の場合は `--warmup_ratio` を使用します
トレーニング ステップの数を乗算し、切り上げます。
- `total_num_steps` には `--max_steps` の値を指定するか、指定されていない場合は実行時に自動的に導出されます。
環境、データセットのサイズ、およびその他のコマンド ライン引数 (
`WarmupDecayLR`)。

View File

@ -0,0 +1,50 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Exporting 🤗 Transformers models to ONNX
🤗 Transformers は `transformers.onnx` パッケージを提供します。
設定オブジェクトを利用することで、モデルのチェックポイントをONNXグラフに変換することができます。
詳細は[ガイド](../serialization) を参照してください。
を参照してください。
## ONNX Configurations
以下の3つの抽象クラスを提供しています。
エクスポートしたいモデルアーキテクチャのタイプに応じて、継承すべき3つの抽象クラスを提供します
* エンコーダーベースのモデルは [`~onnx.config.OnnxConfig`] を継承します。
* デコーダーベースのモデルは [`~onnx.config.OnnxConfigWithPast`] を継承します。
* エンコーダー・デコーダーモデルは [`~onnx.config.OnnxSeq2SeqConfigWithPast`] を継承しています。
### OnnxConfig
[[autodoc]] onnx.config.OnnxConfig
### OnnxConfigWithPast
[[autodoc]] onnx.config.OnnxConfigWithPast
### OnnxSeq2SeqConfigWithPast
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
## ONNX Features
各 ONNX 構成は、次のことを可能にする一連の _機能_ に関連付けられています。
さまざまなタイプのトポロジまたはタスクのモデルをエクスポートします。

View File

@ -472,6 +472,8 @@ FlexFlowは、サンプル-オペレータ-属性-パラメータの4D並列化
したがって、このフレームワークの約束は非常に魅力的です。選択したクラスタで30分間のシミュレーションを実行し、この特定の環境を最適に利用するための最良の戦略を提供します。部分を追加/削除/置換すると、それに対して実行して再最適化プランを作成します。その後、トレーニングできます。異なるセットアップには独自の最適化があります。
🤗 Transformersの現在の状況: まだ統合されていません。すでに[transformers.utils.fx](https://github.com/huggingface/transformers/blob/master/src/transformers/utils/fx.py)を使用してモデルがFXトレース可能であるため、FlexFlowを動作させるために必要な手順を誰かが見つける必要があります。
## Which Strategy To Use When
ここでは、どの並列化戦略をいつ使用するかの非常におおまかなアウトラインを示します。各リストの最初が通常よりも速いことが一般的です。

View File

@ -40,7 +40,7 @@ pip install transformers[dev]
```bash
pip install -e ".[dev]"
pip install -e .[dev]
```
トランスフォーマーズのリポジトリ内で作業しています。トランスフォーマーズのオプションの依存関係の数が増えたため、すべてを取得できない可能性があります。開発用インストールが失敗した場合、作業しているディープラーニングフレームワークPyTorch、TensorFlow、および/またはFlaxをインストールし、次の手順を実行してください。
@ -53,7 +53,7 @@ pip install transformers[quality]
または編集可能なインストールの場合:
```bash
pip install -e ".[quality]"
pip install -e .[quality]
```
## Tests

View File

@ -47,7 +47,7 @@ ONNX形式にエクスポートされたモデルは、以下のように使用
🤗 TransformersモデルをONNXにエクスポートするには、まず追加の依存関係をインストールしてください
```bash
pip install optimum-onnx
pip install optimum[exporters]
```
すべての利用可能な引数を確認するには、[🤗 Optimumドキュメント](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)を参照してください。または、コマンドラインでヘルプを表示することもできます:
@ -128,3 +128,64 @@ CLIの代わりに、🤗 TransformersモデルをONNXにプログラム的に
### Exporting a model for an unsupported architecture
現在エクスポートできないモデルをサポートするために貢献したい場合、まず[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)でサポートされているかどうかを確認し、サポートされていない場合は[🤗 Optimumに貢献](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)してください。
### Exporting a model with `transformers.onnx`
<Tip warning={true}>
`transformers.onnx`はもはやメンテナンスされていないため、モデルを上記で説明したように🤗 Optimumでエクスポートしてください。このセクションは将来のバージョンで削除されます。
</Tip>
🤗 TransformersモデルをONNXにエクスポートするには、追加の依存関係をインストールしてください
```bash
pip install transformers[onnx]
```
`transformers.onnx`パッケージをPythonモジュールとして使用して、事前に用意された設定を使用してチェックポイントをエクスポートする方法は以下の通りです
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
この方法は、`--model`引数で定義されたチェックポイントのONNXグラフをエクスポートします。🤗 Hubのいずれかのチェックポイントまたはローカルに保存されたチェックポイントを渡すことができます。エクスポートされた`model.onnx`ファイルは、ONNX標準をサポートする多くのアクセラレータで実行できます。例えば、ONNX Runtimeを使用してモデルを読み込んで実行する方法は以下の通りです
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
必要な出力名(例: `["last_hidden_state"]`は、各モデルのONNX構成を確認することで取得できます。例えば、DistilBERTの場合、次のようになります
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
ハブから純粋なTensorFlowのチェックポイントをプログラム的にエクスポートするプロセスは、以下のように同様です
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
ローカルに保存されたモデルをエクスポートする場合、モデルの重みとトークナイザのファイルを同じディレクトリに保存してください(例: `local-pt-checkpoint`)。その後、`transformers.onnx`パッケージの `--model`引数を希望するディレクトリに向けて設定して、ONNXにエクスポートします
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -219,7 +219,7 @@ MInDS-14 データセットのサンプリング レートは 8khz です (こ
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -216,7 +216,7 @@ Datasets、🤗 データセット ライブラリから Food-101 データセ
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -360,7 +360,7 @@ You should probably TRAIN this model on a down-stream task to be able to use it
... learning_rate=5e-5,
... per_device_train_batch_size=batch_size,
... per_device_eval_batch_size=batch_size,
... warmup_steps=0.1,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -0,0 +1,177 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Export to TorchScript
<Tip>
これはTorchScriptを使用した実験の最初であり、可変入力サイズのモデルに対するその能力をまだ探求中です。これは私たちの関心の焦点であり、今後のリリースでは、より柔軟な実装や、PythonベースのコードとコンパイルされたTorchScriptを比較するベンチマークを含む、より多くのコード例で詳細な分析を行います。
</Tip>
[TorchScriptのドキュメント](https://pytorch.org/docs/stable/jit.html)によれば:
> TorchScriptは、PyTorchコードから直列化および最適化可能なモデルを作成する方法です。
TorchScriptを使用すると、効率志向のC++プログラムなど、他のプログラムでモデルを再利用できるようになります。PyTorchベースのPythonプログラム以外の環境で🤗 Transformersモデルをエクスポートして使用するためのインターフェースを提供しています。ここでは、TorchScriptを使用してモデルをエクスポートし、使用する方法を説明します。
モデルをエクスポートするには、次の2つの要件があります
- `torchscript`フラグを使用したモデルのインスタンス化
- ダミーの入力を使用したフォワードパス
これらの必要条件は、以下で詳細に説明されているように、開発者が注意する必要があるいくつかのことを意味します。
## TorchScript flag and tied weights
`torchscript`フラグは、ほとんどの🤗 Transformers言語モデルにおいて、`Embedding`レイヤーと`Decoding`レイヤー間で重みが連結されているため必要です。
TorchScriptでは、重みが連結されているモデルをエクスポートすることはできませんので、事前に重みを切り離して複製する必要があります。
`torchscript`フラグを使用してインスタンス化されたモデルは、`Embedding`レイヤーと`Decoding`レイヤーが分離されており、そのため後でトレーニングしてはいけません。
トレーニングは、これらの2つのレイヤーを非同期にする可能性があり、予期しない結果をもたらす可能性があります。
言語モデルヘッドを持たないモデルには言及しませんが、これらのモデルには連結された重みが存在しないため、`torchscript`フラグなしで安全にエクスポートできます。
## Dummy inputs and standard lengths
ダミー入力はモデルのフォワードパスに使用されます。入力の値はレイヤーを通じて伝播される間、PyTorchは各テンソルに実行された異なる操作を追跡します。これらの記録された操作は、モデルの*トレース*を作成するために使用されます。
トレースは入力の寸法に対して作成されます。そのため、ダミー入力の寸法に制約され、他のシーケンス長やバッチサイズでは動作しません。異なるサイズで試すと、以下のエラーが発生します:
```
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
```
お勧めしますのは、モデルの推論中に供給される最大の入力と同じ大きさのダミー入力サイズでモデルをトレースすることです。パディングを使用して不足値を補完することもできます。ただし、モデルがより大きな入力サイズでトレースされるため、行列の寸法も大きくなり、より多くの計算が発生します。
異なるシーケンス長のモデルをエクスポートする際に、各入力に対して実行される演算の総数に注意して、パフォーマンスを密接にフォローすることをお勧めします。
## Using TorchScript in Python
このセクションでは、モデルの保存と読み込み、および推論にトレースを使用する方法を示します。
### Saving a model
TorchScriptで`BertModel`をエクスポートするには、`BertConfig`クラスから`BertModel`をインスタンス化し、それをファイル名`traced_bert.pt`でディスクに保存します:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# Instantiating the model
model = BertModel(config)
# The model needs to be in evaluation mode
model.eval()
# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
### Loading a model
以前に保存した `BertModel``traced_bert.pt` をディスクから読み込んで、以前に初期化した `dummy_input` で使用できます。
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
### Using a traced model for inference
トレースモデルを使用して推論を行うには、その `__call__` ダンダーメソッドを使用します。
```python
traced_model(tokens_tensor, segments_tensors)
```
## Deploy Hugging Face TorchScript models to AWS with the Neuron SDK
AWSはクラウドでの低コストで高性能な機械学習推論向けに [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) インスタンスファミリーを導入しました。Inf1インスタンスはAWS Inferentiaチップによって駆動され、ディープラーニング推論ワークロードに特化したカスタムビルドのハードウェアアクセラレータです。[AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) はInferentia用のSDKで、トランスフォーマーモデルをトレースして最適化し、Inf1に展開するためのサポートを提供します。
Neuron SDK が提供するもの:
1. クラウドでの推論のためにTorchScriptモデルをトレースして最適化するための、1行のコード変更で使用できる簡単なAPI。
2. [改善されたコストパフォーマンス](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/) のためのボックス外のパフォーマンス最適化。
3. [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) または [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html) で構築されたHugging Faceトランスフォーマーモデルへのサポート。
### Implications
BERTBidirectional Encoder Representations from Transformersアーキテクチャやその変種[distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) や [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) などに基づくトランスフォーマーモデルは、非生成タスク抽出型質問応答、シーケンス分類、トークン分類などにおいて、Inf1上で最適に動作します。ただし、テキスト生成タスクも [AWS Neuron MarianMT チュートリアル](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html) に従ってInf1上で実行できます。Inferentiaでボックス外で変換できるモデルに関する詳細情報は、Neuronドキュメンテーションの [Model Architecture Fit](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia) セクションにあります。
### Dependencies
モデルをAWS Neuronに変換するには、[Neuron SDK 環境](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide) が必要で、[AWS Deep Learning AMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html) に事前に構成されています。
### Converting a model for AWS Neuron
モデルをAWS NEURON用に変換するには、[PythonでTorchScriptを使用する](torchscript#using-torchscript-in-python) と同じコードを使用して `BertModel` をトレースします。Python APIを介してNeuron SDKのコンポーネントにアクセスするために、`torch.neuron` フレームワーク拡張をインポートします。
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
次の行を変更するだけで済みます。
```diff
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
```
これにより、Neuron SDKはモデルをトレースし、Inf1インスタンス向けに最適化します。
AWS Neuron SDKの機能、ツール、サンプルチュートリアル、最新のアップデートについて詳しく知りたい場合は、[AWS NeuronSDK ドキュメンテーション](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html) をご覧ください。

Some files were not shown because too many files have changed in this diff Show More