Compare commits

...

154 Commits

Author SHA1 Message Date
740f952218 check 1 2025-10-17 06:57:10 +02:00
950c4e5303 check 1 2025-10-17 06:28:55 +02:00
89970f4797 check 1 2025-10-17 03:03:25 +02:00
a4a46e62a5 check 1 2025-10-16 21:32:04 +02:00
9b36498d5f 1 2025-10-16 21:16:53 +02:00
eefbf4ac8b 🌐 [i18n-KO] Translated llama4.md to Korean (#40396)
* docs: ko: llama4.md

* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/model_doc/llama4.md

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

---------

Co-authored-by: TaskerJang <bymyself103@naver.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-10-16 11:28:27 -07:00
50ca781d78 🌐 [i18n-KO] Translated code_llama.md to Korean (#40558)
* docs: ko: code_llama.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

---------

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: HyunZ118 <156191095+HyunZ118@users.noreply.github.com>
2025-10-16 11:27:46 -07:00
8739fc05c4 [i18n-KO] Translated big_bird.md to Korean (#40445)
* docs: ko: BigBird.md

* feat: nmt draft

* fix: manual edits
2025-10-16 11:23:56 -07:00
77b5ad65ee 🌐 [i18n-KO] Translated sam_hq.md to Korean (#41340)
* fix: manual edits

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>

* Apply suggestions from code review

Apply suggestions from code review

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: HyunSang Jang <tasker.dev103@gmail.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-10-16 11:10:16 -07:00
a9731a725e 🌐 [i18n-KO] Translated chat_extras.md to Korean (#39863)
* docs: ko: chat_extras.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

* Apply suggestions from code review

* Update docs/source/ko/chat_extras.md
2025-10-16 10:41:03 -07:00
bdbc2d037b [Trainer] [Breaking change] use_cache default to False (#41585)
* use_cache default to `False` when training

* style

* Fix comment

* add checks

* style

* set

* switch
2025-10-16 18:51:36 +02:00
fe11cbb808 Erroring when KernelConfig is passed without use_kernels = True (#41657)
* update

* update
2025-10-16 18:08:46 +02:00
6344371a91 improve utils/check_bad_commit.py (#41658)
* robust

* robust

* robust

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-16 15:51:19 +00:00
a408384a88 Improve package version check (#41661)
fix
2025-10-16 17:31:58 +02:00
f7c33abab3 Small changes to benchmarking script (#41662) 2025-10-16 17:25:49 +02:00
9839d57a02 Fix serving continuous batching (#41624)
* udpate-serving-cb

* style

* style

* check none

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-10-16 17:24:21 +02:00
e85d5ab2bb Fix dtype casting with quantization (#41665)
fix dtype casting
2025-10-16 17:19:32 +02:00
1c36d407d5 Add in-out modalities as class attribute per model (#41366)
* update all models

* fix copies

* explanation comment

* better notation in omni model

* style

* fix copies

* output_modalities under generation mixin

* fix copies

* oh, glm4v also needs conversion
2025-10-16 17:11:06 +02:00
0215846d98 Switch to CB if cache_implementation == paged (#41655)
* Add a switch to CB in case of paged cache

* Added paged as a valid cache implem

* Added a fallback on inputs_ids as a name

* Rookie mistake

* Removed paged from cache implems

* Added warning about some  beam search args

* Moved up CB warning
2025-10-16 17:00:18 +02:00
9e99198e5e Use | for Optional and Union typing (#41646)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 14:29:54 +00:00
bf815e9b5e [Masks] Fix mask handling in eager for vision models (#41625)
add mask handling in case of models that do use it
2025-10-16 16:27:26 +02:00
vb
4a43e3d57c purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet (#41656) 2025-10-16 16:17:09 +02:00
8725ce10ed [Fix] Deepseek V3 expert bias routing (#41647)
* [Fix] Deepseek V3 expert bias routing

* [Fix] fix-copies

* [Fix] Run make style
2025-10-16 14:04:48 +00:00
1fb3fc4db0 [kernels] refactor function kernel calling (#41577)
* refactor function kernel callling

* nit

* don't pass the mapping

* use _kernels_available

* rm import
2025-10-16 15:43:02 +02:00
9176af574a Double router compute? (#41653)
* weird double router compute?

* flip it
2025-10-16 15:17:21 +02:00
503c933f36 Fix confusing cls assignment (#41642)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 13:01:07 +00:00
2aff20aff6 Fix typos in documentation (#41641)
Fix typos

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:46 +00:00
981370c038 Format MarkDown documentation and tiny fixes (#41638)
* Fix MarkDown syntax

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* More fixes

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 12:58:06 +00:00
eef9fb2af3 Fix EncoderDecoder cache (#41612)
* Fix EncoderDecoder cache

* Add the option for the ddp data tuples to have 2 elems

* Modifiy the order of the KV and sliding

* Adapted RAG and Whisper to new EncoderDecoderCache

* A single comma

* Remove kwargs in map

* Fixed order in manual injection cache test

* Slight changes to support legacy format

* Removed Nonnes
2025-10-16 14:55:41 +02:00
35dc8f0a2e Adjust device logging level and add minor fixes (#41636)
This commit addresses a noisy warning and improves the robustness of the base pipeline implementation.

- The device placement message in the pipeline base class has been changed from a `warning` to a `debug` log. This reduces log noise for users who are aware of their device setup, while still providing the information for debugging purposes.

- Additionally, potential `UnboundLocalError` exceptions in the `_pad` and `check_model_type` functions have been prevented by initializing variables before their conditional assignment.
2025-10-16 12:47:39 +00:00
2935a1be19 Fix fp32_ln for various models (#41605)
* Add is_causal to KosmosTextAttention

* Move get target_dtype to be imported elsewhere

* Fix fp32 flash attention bug in bark

* Fix is_causal in mllama

* Fix fp32 issue on StableLM

* Fix repo-consistency
2025-10-16 14:18:49 +02:00
b9bd8c45a1 [CI] Build translated docs (#41632)
fix
2025-10-16 14:01:33 +02:00
baecdb8a97 [Ernie 4.5 Moe] Fix Moe and offloading (#41385)
fix
2025-10-16 13:59:01 +02:00
44539827d5 [Executorch] Simplify for encoder models (#41627)
* Trigger Build

* revert extra treatment for executorch as we default to no vmapping now
2025-10-16 13:57:52 +02:00
143acfe2ce fix check inputs for text2text pipeline (#41556)
fix check inputs

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-16 11:42:41 +00:00
67fae90519 Fix FP-Quant quantization fallback CPU dispatch. (#41619)
* fp_quant fix

* Update quantizer_fp_quant.py
2025-10-16 11:41:01 +00:00
af2a66ced9 Migrate transformers cli to Typer (#41487)
* Add typer-slim as explicit dependency

* Migrate CLI to Typer

* code quality

* bump release candidate

* adapt test_cli.py

* Remove ./commands + adapt tests

* fix quality

* consistency

* doctested

* do not serve model in chat

* style

* will it fix them?

* fix test

* capitalize classes

* Rebase

* Rebase

* tests + fixup

tests + fixup

* csutom error message

* fix ?

* should be good

* fix caplog globally

* inner caplog

* last attempt

* Retry

* Let's try with capsys disabled

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-10-16 13:29:42 +02:00
a59124e27e Add missing dates to docs (#41576)
add dates
2025-10-16 09:32:28 +00:00
81f97b17d2 Remove randomly added script (#41650)
remove
2025-10-16 11:23:53 +02:00
c0a5cf19ad Fix tokenization test (#41649)
fix
2025-10-16 11:14:20 +02:00
3ef6f2c415 Allow passing tp_plan in from_pretrained directly (#41435)
* start

* allow passing it

* fix plans

* fix

* fix

* style

* style

* fix

* add_test

* oupsi indent

* fix

* fix

* fix for CI without accelerator

* fix import
2025-10-16 11:12:07 +02:00
59efd86da2 Add aux loss for GLM-4.5V (#41564)
* add aux

* update

* update config to text_config

* use qwen data class to avoid repeat again

* format

* update

* use 1e-4

* update

* update for remove init

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-10-16 09:04:21 +00:00
7b7d17f9bf 🚨 [v5] Toggle the serialization format in processors (#41474)
* toggle the serialization

* prob this fixes it

* fix tests

* typo

* delete legacy save entirely

* remove extra nesting in if

* revert test and serialzie a public attr instead of private
2025-10-16 10:19:22 +02:00
e20df45bf6 Add Backbone API fine-tuning tutorial (#41590)
---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-15 18:42:32 +02:00
19df66dcba Update executorch.md (#41582)
* Update executorch.md

* Update executorch.md

* Update executorch.md

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-15 09:01:46 -07:00
9f71e3a604 [docs] Duplicate entry (#41591)
fix
2025-10-15 17:02:36 +02:00
bc9900562d Fix quantization base class (#41613)
* fix

* fix

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-15 16:58:17 +02:00
72fd67929b Remove deprecated code (#41616)
remove

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-15 16:57:52 +02:00
da382917aa Remove the head masking block in some vision models (#41620)
* old

* new

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 15:51:01 +02:00
313afcc468 [chat template] update when "push_to_hub" (#39815)
* update templates push to hub

* rvert jinja suffix and move it to processor file
2025-10-15 13:49:59 +00:00
7bba4d1202 Fix video processing channel format (#41603)
fix
2025-10-15 15:48:01 +02:00
ab92534377 enable sdpa enable gqa logic for Ascend NPU (#41601)
* enable gqa logic for Ascend NPU

* remove redundant comments

* fix comments about Ascend NPU

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-10-15 13:45:28 +00:00
56a727dde5 Add fast path for bidirectional mask creation to fix regression (#41586)
* fixed performance regression

* also fixed the older_torch function

* Update src/transformers/masking_utils.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* fix

* more general

* fix slicing

* fix data dependent

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-15 15:30:39 +02:00
dc6fdeb705 Update a dataset reop link (#41618)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 14:41:38 +02:00
3953b65440 Reinstate early CUDA init fix (#41617)
* Reinstate early CUDA init fix

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

* Delay import further

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

---------

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-15 14:41:10 +02:00
96d245a83d torch 2.9 don't ❤️ torchcodec 💔 (#41610)
pin

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-15 14:34:00 +02:00
bb0c3af995 More markdown file fixes (#41599)
* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Format markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-15 12:29:27 +00:00
70e871959c Fix trainer simple tests (#41449)
* fix

* fix ray

* train to tune

* breaking changes wrt generation config

* Fix !

* fix

* fix

* fix deepspeed !

* fix

* fix

* fix

* improve logic

* revert and fix

* revert comment

* oups

* revert change

* fix

* style

* typo in comment

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-15 14:09:00 +02:00
c4210796e0 Import expand_device_map instead of redefining it (#41608)
remove it
2025-10-15 14:00:09 +02:00
fcd1ccdb78 [Docs] Fix changed references (#41614)
* fix

* fix

* other ln
2025-10-15 13:59:13 +02:00
2b2c20f315 Update issue template (#41573)
* update

* fix
2025-10-15 13:54:37 +02:00
e2122c4bcb remove ray_scope and check_quantized_param (#41587)
remove
2025-10-15 13:10:35 +02:00
e89cef6625 fix some case failures lead by "torch.compile recompiled part of th… (#41558)
* fix some case failures lead by "`torch.compile` recompiled part of the forward pass" in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-10-15 10:45:29 +00:00
26b7f66850 Add logits_to_keep to many older CausalLM models (#41335)
* Add logits_to_keep to CausalLM models

* Skip failing test for git model

* Remove unused return_dict from kosmos2 signature

* Revert BlipForQuestionAnswering
2025-10-15 11:56:01 +02:00
5db730786d [device_map] Accelerate loading by computing device_map much faster (#41548)
* start

* add the important fix

* continue

* big cleanup

* type hints

* add method

* fix typehints

* typehints

* fix

* oupsi

* remove space

* improve function

* CI
2025-10-15 11:18:57 +02:00
13a35a5057 Enable non-streaming mode in transformers serve (#41446)
* Enable non-streaming in transformers serve

Remove typos

Remove typos

Remove typos

* Fix tests

* Arthur review
2025-10-15 09:37:26 +02:00
94df0e6560 Benchmark overhaul (#41408)
* Big refactor, still classes to move around and script to re-complexify

* Move to streamer, isolate benches, propagate num tokens

* Some refacto

* Added compile mode to name

* Re-order

* Move to dt_tokens

* Better format

* Fix and disable use_cache by default

* Fixed compile and SDPA backend default

* Refactor results format

* Added default compile mode

* Always use cache

* Fixed cache and added flex

* Plan for missing modules

* Experiments: no cg and shuffle

* Disable compile for FA

* Remove wall time, add sweep mode, get git commit

* Review compliance, start

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Update benchmark_v2/framework/benchmark_runner.py

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Disable workflow

* Pretty print

* Added some pretty names to have pretty logs

* Review n2 compliance (end?)

* Style and end of PR

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-10-14 21:41:43 +02:00
9e4199ede3 Gemma3 fixes (#41572)
* Multiple device error fix

* FA2 equivalence fix

* Move the train fwd in cfg test

* Style

* Added comment

* Made the comment more clear
2025-10-14 18:33:27 +02:00
4c8d293599 Fix typsetting and content of llm_tutorial_optimization.md (#41172)
* Fix typsetting of llm_tutorial_optimization

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix errors

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-14 08:40:26 -07:00
a99b1be3c7 Revert some breaking changes bnb (#41581)
fix
2025-10-14 16:28:16 +02:00
82cae9eb52 Add __iter__ to DynamicCache (#41569)
* Add __iter__ to DynamicCache

* Fix tests that use ddp init
2025-10-14 16:16:32 +02:00
4fad35ee4a [VisionEncoderDecoderModel] Update loss function (#40863)
Update loss function
2025-10-14 16:03:00 +02:00
ae6f6cc3e0 Revert "add rmsnorm kernels support for Intel XPU" (#41579)
Revert "add rmsnorm kernels support for Intel XPU (#41563)"

This reverts commit fd787c5f6d667d3e00def70f588972af4437f631.
2025-10-14 15:49:33 +02:00
fd787c5f6d add rmsnorm kernels support for Intel XPU (#41563)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-10-14 13:26:09 +00:00
4e4f2af586 Add conditional checks to _check_and_adjust_attn_implementation() (#41542) 2025-10-14 13:00:07 +00:00
3648fde486 Add DINOv3Backbone for ConvNext variant (#40651)
---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-10-14 14:57:04 +02:00
abf5b57a68 delete some tokenizer tests using pickle (#41514)
* hate pickle

* hate pickle

* hate pickle

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-14 14:50:51 +02:00
8fe4db5399 [kernels] rm mra kernels (#41507)
* fix modeling

* remove kernel

* fix style
2025-10-14 13:34:04 +02:00
c620c38bb0 [Qwen3VLMoe] Fixed: Expected self.dtype to be equal to src.dtype - routing_weights casting (#41420)
* Fixed Expected self.dtype to be equal to src.dtype on eval

* Fixed Expected self.dtype to be equal to src.dtype on eval

* Fixed Expected self.dtype to be equal to src.dtype on eval

* generated modeling_qwen3_vl_moe.py file

* Fixed Ernie_4_5_MoE router casting

* Fixed routing_weights dtype casting (ernie4_5_moe, hunyuan_v1_moe, qwen2_moe, qwen3_moe, qwen3_next,qwen3_omni_moe)

* rollback hunyuan_v1_moe changes

---------

Co-authored-by: Daniel Oliveira <daniel-oliveira-11@hotmail.com>
Co-authored-by: Daniel Oliveira <36623265+daniel3303@users.noreply.github.com>
2025-10-14 13:14:49 +02:00
0798797ec9 Fix an import error with PreTrainModel (#41571) 2025-10-14 13:13:37 +02:00
0566b6f5bd Patch MistralCommonTokenizer (#41439)
* Fix token_to_id and add add_generation_prompt

* Fix spm download

* Refactor spm

* Try another possibly non-gated spm

* Improve get_vocab

* lint

* Improve get_vocab

* Add warn to piece_to_id

* Improve from_pretrained raise and revert model spm

* Revert fast
2025-10-14 11:13:19 +00:00
b3e3c3dc93 [Qwen3VL] fix device mismatch error for FSDP2 training (#41536)
For FSDP2, parameters might be on a meta device, and the weight.device attribute may
not accurately reflect where the actual computation will happen during forward passes.

```log
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 776, in forward
    pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 745, in fast_pos_embed_interpolate
    pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/module.py", line 1879, in _call_impl
    return inner()
           ^^^^^^^
  File "torch/nn/modules/module.py", line 1827, in inner
    result = forward_call(*args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "torch/nn/modules/sparse.py", line 192, in forward
    return F.embedding(
           ^^^^^^^^^^^^
  File "torch/nn/functional.py", line 2546, in embedding
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected all tensors to be on the same device, but got index is on cpu, different from other tensors on cuda:0 (when checking argument in method wrapper_CUDA__index_select)
```
https://github.com/volcengine/verl/pull/3686#issuecomment-3380981817

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-10-14 10:28:25 +00:00
b84c0b31c6 Remove references to AutoModelForVision2Seq (#41513)
* Since Vision2Seq is deprecated, remove it from pipelines and docstrings

* Catch some more references
2025-10-13 17:00:07 +01:00
1ee3b288a6 [from_pretrained] Small refactor from_pretrained: move around unrelated stuff (#41445)
* drafts

* up

* simplify modeling utils

* more simplifications

* type kwargs

* up

* move more accelerate related stuff

* safeguarding?

* nits

* remove func when func is NOPE

* more

* nits

* styling

* yups

* up

* ups

* revert

* protect trainer utils iport

* fix doc

* Update src/transformers/integrations/peft.py

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* review

* update

* ?

* fixx

* update

* super small update

* ups

* style

* this is stupid

* 🤦 well this was the issue

* small nit

* fix

* nit

* damn the missing return

* one last stupid fix

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-10-13 16:33:32 +02:00
cad74496ca [model] Add VideoLLaMA3 implementation (#40499)
* Add VideoLLaMA3 implementation

* Run style fix

* Switch to modular

* Fix config and smart_resize

* Fix

* Fix

* Fix style

* Fix

* Ruff fix

* Rename

* Rename

* Fix

* Clean

* Fix consistency

* Add doc

* Fix

* Fix

* Fix doc

* Update generated code

* remove test_initialization

* fix tests

* simplify

* tests

* Add VideoLlama3IntegrationTest

* replace asserts

* fix tests

---------

Co-authored-by: steven-ccq <55176896+steven-ccq@users.noreply.github.com>
Co-authored-by: steven-ccq <1456320989@qq.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-13 15:54:34 +02:00
3813a8e3a1 Add VideoMAE video processor (#41534)
* Add video processor for VideoMAE

* Document VideoMAE video processor

* Add regression tests for VideoMAE video processor

* refactor: Use direct batch key access for pixel_values_videos

* test: add parity test for VideoMAEVideoProcessor vs VideoMAEImageProcessor

* docs(videomae): update model docstring example to demonstrate VideoMAEVideoProcessor (TorchCodec-based decoding and sampling)
2025-10-13 15:42:27 +02:00
66d8d7a077 Fixed typos and formatting (#34215)
#hacktoberfest
2025-10-13 13:38:06 +00:00
d621be8286 🚨 [v5] generate delegates default cache initialization to the model (#41505) 2025-10-13 13:20:48 +01:00
d7c9fbdb64 Enable modular files from other libraries (#41372)
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-10-13 13:48:32 +02:00
41e763decd Add AMD developer cloud support (#41126)
* Add AMD developer cloud support

* Add AMD remote svg link.

* Update notebooks/README.md

Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>

---------

Co-authored-by: Rémi Ouazan <83456801+remi-or@users.noreply.github.com>
Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>
2025-10-13 12:17:24 +02:00
cf1e9834ec Restore cuda graphs to continuous batching (#41421)
* Type hints and small fixes

* Remove unusued params

* Made slice inputs the default

* ruffed

* Updated some var name and moved index slicing

* Logging arg in example

* Added some padding debug var and reformat out cg

* First working CG, fixe size

* Working flexible CG

* CG are compatible with all implementations

* Fixed CG API

* Update example

* Documentation

* Fix padding tokens in FA

* Review compliance

* Better doc around weird bug

* Style

* Fix for sliding with CG
2025-10-13 11:57:56 +02:00
6c901bdc0e [SAM] Fix typing hints (#41506)
fix
2025-10-13 11:52:00 +02:00
58f9e13313 Fixed Type-hints in function defintions (#41525)
* Explicitly annotate default None parameters as Optional

* make style.

* make style.

* Fixed check_copies.

* fix consistency.
2025-10-13 11:48:37 +02:00
eb28242251 Add MLlama fast image processor (#41391)
* Merge conflict

* add fast processor

* add fast processor

* make style

* add new convert rgb

* use nested group by shape in mllama fast, add support for multiple inputs in group by shape

* refactor after review

---------

Co-authored-by: Vincent <phamvinh257@gmail.com>
2025-10-13 09:16:05 +00:00
65cb8fac6d [Qwen3VL] fix: hidden_states in place modification error (#41535)
```
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 941, in forward
    hidden_states = self._deepstack_process(
                    ^^^^^^^^^^^^^^^^^^^^^^^^
  File "transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py", line 960, in _deepstack_process
    hidden_states[visual_pos_masks, :] = local_this
    ~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Output 0 of SliceBackward0 is a view and is being modified inplace. This view was created inside a custom Function (or because an input was returned as-is) and the autograd logic to handle view+inplace would override the custom backward associated with the custom Function, leading to incorrect gradients. This behavior is forbidden. You can fix this by cloning the output of the custom Function.
```

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-10-13 10:50:14 +02:00
3927ffed31 [testing] reduce runtime of HunYuanMoEV1IntegrationTest:test_model_generation (#41373)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-10 22:27:01 +02:00
7164924a7e Fix Latex typesetting in documentation (#41177)
Fix Latex typsetting in documentation

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-10 08:54:27 -07:00
26a5368c44 Allow optuna's catch kwargs passthrough (#41496)
* allow optuna's catch kwargs passthrough

* apply ruff formatting

---------

Co-authored-by: nicha <nicha.api@nectec.or.th>
2025-10-10 13:58:07 +00:00
feca4f3de7 remove tpu_num_cores (#41383)
* remove-tpu-num-cores

* fix

* let's remove it

* style

* Update examples/legacy/seq2seq/finetune_tpu.sh

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-10 15:53:28 +02:00
c6042a4169 Remove outdated flags (#41512)
remove flags
2025-10-10 14:34:47 +02:00
dfd4121cd4 add Trainer import to .md in appropriate cell block for training.ipynb transformers_doc (#41484)
add Trainer import to .md in appropriate cell block for docs
2025-10-10 12:04:07 +00:00
60f6ec438a Fix detectron2 import (#41510)
* fix

* fix

* typo
2025-10-10 13:33:47 +02:00
f9f8bf5a10 Revert local_rank deletion and some cleaning (#41504)
* forgot those

* clean

* Fix

* merge

* fix

* fix
2025-10-10 12:23:04 +02:00
b4067472ae Bump to hfh 1.0.0.rc5 to fix test (#41508) 2025-10-10 12:12:08 +02:00
bc529a3368 More trainer cleaning (#41489)
clean
2025-10-10 11:55:43 +02:00
b92fc0c6e1 [QoL] modular conversion shows LoC saved (#41500)
smol qol conversion
2025-10-10 11:55:23 +02:00
2eae7c7452 Set truncation to False in Qwen3Omni to avoid default truncation (#41473)
* Set `truncation` to `False` in Qwen3Omni to avoid default truncation

* move `padding` and `truncation` to audio default args

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-10-10 09:55:18 +00:00
c5094a4f97 [voxtral] language detection + skipping lang:xx (#41225)
* proc + doc update

* improve doc

* add lang:xx in decode

* update voxtral test

* nit

* nit

* update test value

* use regex
2025-10-10 09:18:30 +00:00
f4487ec521 fix gemma3n case failure (#41426)
* fix gemma3n case failure

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update dependency_versions_table.py

* change the case argument passing way to make the case PASS,
generation_config way need re-visit

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-10 09:15:27 +00:00
e8194fe84f Fix some tests (#41503)
* fix

* fix

* doc
2025-10-10 11:05:09 +02:00
9556b36b2f [causallm tester] automate pipeline mappings + bloom tests (#41318) 2025-10-10 10:02:00 +01:00
5aca530b34 [Parakeet] unnecessary warning & auto mapping (#41412)
* add parakeet to CONFIG_MAPPING_NAMES

* TOKENIZER_MAPPING_NAMES update

* fix auto tokenizer

* update

* fix
2025-10-10 11:00:15 +02:00
4f323369db Fixed tiny incorrect imports in glm4v (#41483)
Fixed tiny import issue in glm4v
2025-10-10 08:57:01 +00:00
f5f3457278 Try to remove pickle - BloomTokenizerFast (#41466)
* pickle 1

* pickle 1

* pickle 1

* pickle 1

* pickle 1

* pickle 1

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-10 10:52:51 +02:00
3585737746 [kernels] rm yoso kernel (#41495)
* disable kernel mapping

* rm kernel

* delete files

* style

* typo
2025-10-10 10:50:12 +02:00
b543679d0e [kernels] Remove RWKV kernel finally ! (#41493)
* rm kernel

* fix style
2025-10-10 10:32:05 +02:00
ac7777be16 fix bnb model loading (#41499) 2025-10-10 08:27:29 +00:00
17c31a98ac Streaming should be handled at the request-level rather than at the istance level (#41444)
* Streaming should be handled at the request-level rather than at the instance level

* Add tests

* Require torch GPU
2025-10-10 10:24:55 +02:00
b28902c86b Remove DISABLE_KERNEL_MAPPING flag (#41475)
rm disable
2025-10-10 10:19:25 +02:00
d0271be18f Update philosophy (#41438)
* update philosophy

* Update docs/source/en/philosophy.md

Co-authored-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* emphasis

---------

Co-authored-by: Sergio Paniego Blanco <sergiopaniegoblanco@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-10-10 06:52:18 +00:00
0419ff881d Remove local_rank arg from TrainingArguments (#41382) 2025-10-09 18:54:12 +02:00
081391b20e deprecate jit_mode_eval (#41376) 2025-10-09 18:50:45 +02:00
1ddbbdef48 [Trainer] deprecate ray scope (#41403) 2025-10-09 18:50:00 +02:00
c20849bad1 [CI] Fix copies on main (#41486)
fix copies
2025-10-09 18:38:14 +02:00
776eea8612 deprecate overwrite_output_dir (#41323)
* dep

* style

* rm

* wut

* style
2025-10-09 18:36:19 +02:00
3839d51013 report_to default changed to "none" + cleaning deprecated env var (#41375)
* reporting

* fix

* fix
2025-10-09 18:28:48 +02:00
78f79ba5af Update GLM-4.6 doc (#41471)
Update glm4_moe.md
2025-10-09 09:18:05 -07:00
11c597b1b8 Remove deprecated args in Trainer for v5 (#41404)
remove deprecated code
2025-10-09 18:10:14 +02:00
b450d55a91 Remove past_index (#41384)
* remove-tpu-num-cores

* fix

* rm past index

* Revert "fix"

This reverts commit 7608a6c059210957d3a77812e66178c8b79a9313.

* Revert "remove-tpu-num-cores"

This reverts commit ef08a51d71389849851518d67d8ad6c9ea8f04fc.
2025-10-09 18:06:46 +02:00
1a3a5f5289 Remove SigOpt (#41479)
* remove sigopt

* style
2025-10-09 18:05:55 +02:00
823fab4860 Fix bnb fsdp loading for pre-quantized checkpoint (#41415)
* fix

* fix

* get_param_name

* fix device name
2025-10-09 18:05:35 +02:00
42d4e13a0b RT-Detr correct 2d positional embeddings for non-square images (#41380)
* Correct 2d positional embeddings for non-square images

* Simplify bug fix propagate changes to other models

---------

Co-authored-by: Konstantinos Pitas <kostasp210@gmail.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-10-09 17:58:22 +02:00
0eae41ad36 Add Code World Model (CWM) (#41199)
* [wip][cwm] Code World Model stubs and setup in HF Transformers

* [wip] Get other things working

* [wip] Working

* Tokenizer pad

* fix: cwm window attn

* temp remove test

* temp remove test

* Fixes

* Temporarily add auto config remapping option until VLLM 0.11 is out

* Fix model type and add layer validation

* Lint, remove CwmForSequenceClassification

* Lint, tests

* Remove CwmForSequenceClassification

* Lint

* Remove intermediary layer expors/doc errorss, fix tests

* Lint

* run python utils/sort_auto_mappings.py --check_only

* Remove Cwm processor mapping, get check_repo passing

* Remove CwmTextConfig from test

* Add docstring for CwmConfig

* remove global_window and window_pattern params from config

* Fix docstrings

* Revert change to auto docstring util

* lint

* Fixes minus test improvements

* Alter tests to simply check logits

* lint

* Have slow tests use repo, make CwmPretrainedModel passthrough

* Remove decoder layer implementation, use Llama3Decoder + CwmAttetion

* Use linear w/o bias for CwmAttention, add token-level integration test

* Don't ignore config attention bias

* Remove attention bias parameter entirely from config

---------

Co-authored-by: galco <galco@meta.com>
2025-10-09 17:57:45 +02:00
589fc29c9d enhance patched_tearDown to support python 3.11+ (#41429)
* enhance to support python 3.11+

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-09 21:19:29 +05:30
26b5b52676 [Fix] Fix test file error (#40973)
Fix test file error
2025-10-09 15:30:53 +00:00
34b861abd1 🚨 [Attention Masks] Bidirectional masks for encoder and encoder-decoder models (#41265)
* new masks

* fixes

* adjust comments

* fix unnecessary mask creation on sdpa

* simplify masks more

* propogate to other models

* style + repo consistency

* copies

* no comment

* fix attempt

* finally fix grounding dinos

* fix distilbert

* fix executorch

* move to own module

* address first few comments WIP

* revert device comments, simplify executorch further

* fix typo

* add a test for cuda graphs

* move cleanup...

* fix conflict with new main

* fix esm and evolla
2025-10-09 16:56:11 +02:00
b44d91570f [v5] remove load_in_4bit and load_in_8bit (#41287)
* [v5] remove load_in_4bit and load_in_8bit

* fix

* reveert

* fix

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-09 16:34:04 +02:00
d99069195b Cleaning hub kernels (#41477)
* disable kernel mapping

* cleaning

* revert

* fix style
2025-10-09 16:32:18 +02:00
bf38b2d11d Change RT-Detr docs to reflect fixed 640x640 input size (#41364)
* Update rt_detr docs to mention 640x640 input size

The authors of RT-Detr mention that the model was trained on 640x640 images and was meant to be used for inference on 640x640 images.
Also, the current implementation has certain quirks that make training/inferring on images of different sizes problematic. For example,
the pixel masks used for batches of varying image sizes are discarded. I've added a few lines in the docs to notify the user about these issues.

* Batching not possible with variable image sizes

* Remove reference to batching

---------

Co-authored-by: Konstantinos Pitas <kostasp210@gmail.com>
2025-10-09 14:29:16 +00:00
72a3fc275c Remove infer_device (#41088)
* Remove infer_device

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix docs using accelerator

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Fix conflict

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 14:05:39 +00:00
9ef804472b Pickle - part 2 (#41476)
* pickle 2

* pickle 2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-09 13:46:53 +00:00
2b5e4c0d13 Import Callable from collections.abc (#41130)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 12:12:43 +00:00
add4df62ba Fix tests fsdp (#41422)
* Fix tests

* fix !

* fix
2025-10-09 14:09:52 +02:00
3e87072666 Fix auto model configuration for encoder of perceptionlm (#41464)
* fix auto model configuration for encoder of perceptionlm

* delete perception_encoder auto registrations
2025-10-09 14:08:03 +02:00
f0544d7e7c Remove KERAS_NLP_IMPORT_ERROR (#41468)
Remove unused variables of error messages

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-09 11:58:30 +00:00
d1c6310d6a 🚨 [v5] Rendundant code in nested configs (#41314)
* batch update models

* delete even more

* fix modular super init location

* fix

* fix copies

* fix again, these have force-set values in configs

* fix copies
2025-10-09 13:47:44 +02:00
927aa8bef2 [kernels] Cleanup deta kernel (#41470)
* cleanup deta kernel

* fix modeling
2025-10-09 13:17:42 +02:00
1951f3be8e Update GLM-4.1V MMRope implementation (#41182)
* update for 4D mask

* update

* Update modular_glm4v.py

* 1

* Revert "1"

This reverts commit d13a763e876fa049c5fb70a8b3447b335dbb6098.

* update as glm4v logtic

* update

* 1

* update

* Create convert_glm4v_moe_mgt_weights_to_hf.py

* update

* update
2025-10-09 12:15:47 +02:00
f50fd7fb6b [v5] rm utils/tf_ops/ (#41402)
rm utils/tf_ops/
2025-10-09 10:27:47 +01:00
be3fa93b29 Subconfig is a class attribute (#41308)
* delete

* fix this test

* fix copies

* oke, more tests to fix

* fix last tests on DPT

* deleted accidentally
2025-10-09 10:46:44 +02:00
8137dbdbbd 🚨 [v5] Rename left traces of past_key_value in BERT-like models (#41448)
rename everything
2025-10-09 10:44:44 +02:00
7aa888b7fa Fix doc (#41457)
* dummy

* remove
2025-10-08 20:13:21 +02:00
bfe2b623ef Fix generate outputs and simplify cache tests (#41440)
* start refactoring

* simplify

* tests

* tests

* fix

* zamba

* final fix

* fix
2025-10-08 19:04:18 +02:00
b9be8a8775 enable some falcon-mamba uts on xpu (#41428)
* enable some falcon-mamba uts on xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-08 18:48:04 +02:00
1301 changed files with 24724 additions and 26544 deletions

View File

@ -48,18 +48,17 @@ body:
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @zach-huggingface @SunMarc
- trainer: @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker @S1ro1
- distributed: @3outeille @ArthurZucker
- CIs: @ydshieh
Integrations:
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization: @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo

View File

@ -51,18 +51,17 @@ Library:
- continuous batching: @remi-or @ArthurZucker @McPatate
- pipelines: @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @zach-huggingface @SunMarc
- trainer: @SunMarc
- attention: @vasqu @ArthurZucker @CyrilVallez
- model loading (from pretrained, etc): @CyrilVallez
- distributed: @3outeille @ArthurZucker @S1ro1
- distributed: @3outeille @ArthurZucker
- CIs: @ydshieh
Integrations:
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization: @SunMarc @MekkCyber
- kernels: @MekkCyber @drbh
- peft: @BenjaminBossan @githubnemo

View File

@ -1,10 +1,7 @@
name: Self-hosted runner (benchmark)
on:
push:
branches: [main]
pull_request:
types: [ opened, labeled, reopened, synchronize ]
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}

View File

@ -1,35 +1,7 @@
name: Benchmark v2 Framework
on:
workflow_call:
inputs:
runner:
description: 'GH Actions runner group to use'
required: true
type: string
container_image:
description: 'Docker image to use'
required: true
type: string
container_options:
description: 'Container options to use'
required: true
type: string
commit_sha:
description: 'Commit SHA to benchmark'
required: false
type: string
default: ''
run_id:
description: 'Custom run ID for organizing results (auto-generated if not provided)'
required: false
type: string
default: ''
benchmark_repo_id:
description: 'HuggingFace Dataset to upload results to (e.g., "org/benchmark-results")'
required: false
type: string
default: ''
workflow_dispatch:
env:
HF_HOME: /mnt/cache
@ -82,4 +54,4 @@ jobs:
--token '${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}' \
--log-level INFO
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}

View File

@ -1,11 +1,7 @@
name: Benchmark v2 Scheduled Runner - A10 Single-GPU
on:
schedule:
# Run daily at 16:30 UTC
- cron: "30 16 * * *"
pull_request:
types: [ opened, labeled, reopened, synchronize ]
workflow_dispatch:
jobs:
benchmark-v2-default:
@ -18,4 +14,4 @@ jobs:
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit
secrets: inherit

View File

@ -1,11 +1,7 @@
name: Benchmark v2 Scheduled Runner - MI325 Single-GPU
on:
schedule:
# Run daily at 16:30 UTC
- cron: "30 16 * * *"
pull_request:
types: [ opened, labeled, reopened, synchronize ]
workflow_dispatch:
jobs:
benchmark-v2-default:
@ -18,4 +14,4 @@ jobs:
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}
benchmark_repo_id: hf-internal-testing/transformers-daily-benchmarks
secrets: inherit
secrets: inherit

View File

@ -35,14 +35,16 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
check_new_failures:
name: " "
name: "Find commits for new failing tests"
strategy:
matrix:
run_idx: [1, 2, 3]
runs-on:
group: aws-g5-4xlarge-cache
container:
@ -119,6 +121,10 @@ jobs:
run: |
python3 utils/print_env.py
- name: Install pytest-flakefinder
if: ${{ env.process == 'true' }}
run: python3 -m pip install pytest-flakefinder
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
@ -127,82 +133,104 @@ jobs:
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
cat new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
- name: Checkout back
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
python3 utils/process_bad_commit_report.py
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
{
echo 'REPORT_TEXT<<EOF'
python3 utils/process_bad_commit_report.py
echo EOF
} >> "$GITHUB_ENV"
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: '#${{ inputs.slack_report_channel }}'
# For posting a rich message using Block Kit
payload: |
{
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ env.title }}"
}
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "${{ env.REPORT_TEXT }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
name: new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
process_new_failures_with_commit_info:
name: "process bad commit reports"
needs: [check_new_failures]
runs-on:
group: aws-g5-4xlarge-cache
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
pattern: new_failures_with_bad_commit_${{ inputs.job }}*
path: /transformers/new_failures_with_bad_commit_${{ inputs.job }}
merge-multiple: true
- name: Check files
working-directory: /transformers
run: |
ls -la /transformers
ls -la /transformers/new_failures_with_bad_commit_${{ inputs.job }}
# - name: Process report
# shell: bash
# working-directory: /transformers
# if: ${{ env.process == 'true' }}
# env:
# ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
# TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
# JOB_NAME: ${{ inputs.job }}
# REPORT_REPO_ID: ${{ inputs.report_repo_id }}
# run: |
# python3 utils/process_bad_commit_report.py
# - name: Process report
# shell: bash
# working-directory: /transformers
# if: ${{ env.process == 'true' }}
# env:
# ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
# TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
# JOB_NAME: ${{ inputs.job }}
# REPORT_REPO_ID: ${{ inputs.report_repo_id }}
# run: |
# {
# echo 'REPORT_TEXT<<EOF'
# python3 utils/process_bad_commit_report.py
# echo EOF
# } >> "$GITHUB_ENV"
#
# - name: Prepare Slack report title
# working-directory: /transformers
# if: ${{ env.process == 'true' }}
# run: |
# pip install slack_sdk
# echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
#
# - name: Send processed report
# if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: '#${{ inputs.slack_report_channel }}'
# # For posting a rich message using Block Kit
# payload: |
# {
# "blocks": [
# {
# "type": "header",
# "text": {
# "type": "plain_text",
# "text": "${{ env.title }}"
# }
# },
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "${{ env.REPORT_TEXT }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -16,7 +16,6 @@ env:
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:

View File

@ -38,7 +38,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1

View File

@ -26,7 +26,6 @@ env:
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:

View File

@ -98,7 +98,7 @@ jobs:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
languages: ar de en es fr hi it ja ko pt zh
update_run_status:
name: Update Check Run Status

View File

@ -20,7 +20,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1

View File

@ -6,7 +6,7 @@ on:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci*
- multi_jobs_to_check_bad_commit
workflow_dispatch:
inputs:
prev_workflow_run_id:
@ -23,7 +23,7 @@ on:
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
prev_workflow_run_id: "18548615847"
other_workflow_run_id: ""
@ -49,72 +49,10 @@ jobs:
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-models"
slack_report_channel: "#transformers-ci-dummy"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
trainer-fsdp-ci:
name: Trainer/FSDP CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-all-latest-gpu
runner_type: "a10"
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-training"
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit
quantization-ci:
name: Quantization CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}
secrets: inherit

View File

@ -26,7 +26,6 @@ env:
TRANSFORMERS_IS_CI: yes
PT_ENABLE_INT64_SUPPORT: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache/.cache/huggingface
jobs:

View File

@ -48,7 +48,6 @@ env:
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
NUM_SLICES: 2

View File

@ -20,7 +20,6 @@ env:
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1

4
.gitignore vendored
View File

@ -98,6 +98,7 @@ celerybeat-schedule
# Environments
.env
.venv
.venv*
env/
venv/
ENV/
@ -171,3 +172,6 @@ tags
# modular conversion
*.modular_backup
# Cursor IDE files
.cursor/

View File

@ -153,7 +153,7 @@ You are not required to read the following guidelines before opening an issue. H
cd examples/seq2seq
torchrun --nproc_per_node=2 ./finetune_trainer.py \
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
--output_dir output_dir --overwrite_output_dir \
--output_dir output_dir \
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \

View File

@ -16,7 +16,6 @@ import sys
from logging import Logger
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
# Add the parent directory to Python path to import benchmarks_entrypoint
@ -42,7 +41,7 @@ except ImportError:
GenerationConfig = None
StaticCache = None
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_XET_HIGH_PERFORMANCE"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
# Only set torch precision if torch is available
@ -145,7 +144,7 @@ def run_benchmark(
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def logits_to_probs(logits, temperature: float = 1.0, top_k: int | None = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
@ -155,7 +154,7 @@ def run_benchmark(
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
def sample(logits, temperature: float = 1.0, top_k: int | None = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs

View File

@ -2,5 +2,5 @@ gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_transfer
hf_xet
pandas>=1.5.0

View File

@ -1 +1,2 @@
benchmark_results/
benchmark_results/
benchmark_results_profiles/

View File

@ -1 +0,0 @@
# Benchmark implementations directory

View File

@ -1,165 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any
import torch
from benchmark_framework import ModelBenchmark
os.environ["TOKENIZERS_PARALLELISM"] = "1"
torch.set_float32_matmul_precision("high")
class LLaMABenchmark(ModelBenchmark):
"""Simplified LLaMA model benchmark implementation using the ModelBenchmark base class."""
def __init__(self, logger: logging.Logger):
super().__init__(logger)
self._default_prompt = "Why dogs are so cute?" # Custom prompt for LLaMA
def get_scenario_configs(self) -> list[dict[str, Any]]:
"""
Get LLaMA-specific scenario configurations.
Returns:
List of scenario configuration dictionaries
"""
return [
# Eager variants
{"variant": "eager", "compile_mode": None, "use_cache": True, "description": "Eager execution with cache"},
# Compiled variants
{
"variant": "compiled",
"compile_mode": "max-autotune",
"use_cache": True,
"description": "Compiled with max autotune",
},
# Kernelized variant (if available)
{
"variant": "kernelized",
"compile_mode": "max-autotune",
"use_cache": True,
"description": "Kernelized execution",
},
]
def _is_kernelization_available(self) -> bool:
"""Check if kernelization is available for LLaMA."""
try:
from kernels import Mode, kernelize # noqa: F401
return True
except ImportError:
self.logger.debug("Kernelization not available: kernels module not found")
return False
def get_default_generation_config(self) -> dict[str, Any]:
"""Get LLaMA-specific generation configuration."""
return {
"do_sample": False,
"top_p": 1.0,
"temperature": 1.0,
"repetition_penalty": 1.0,
"max_new_tokens": None, # Will be set per scenario
}
def get_model_init_kwargs(self, config) -> dict[str, Any]:
"""Get LLaMA-specific model initialization kwargs."""
return {
"torch_dtype": getattr(torch, config.torch_dtype),
"attn_implementation": config.attn_implementation,
"use_cache": True,
}
def get_default_torch_dtype(self) -> str:
"""Get default torch dtype for LLaMA."""
return "float16" # LLaMA works well with float16
def get_default_device(self) -> str:
"""Get default device for LLaMA."""
return "cuda" # LLaMA prefers CUDA
def run_llama(logger, output_dir, **kwargs):
"""
Run LLaMA benchmark with the given configuration.
Args:
logger: Logger instance
output_dir: Output directory for results
**kwargs: Additional configuration options
Returns:
Path to output file if successful
"""
from benchmark_framework import BenchmarkRunner
# Extract parameters with defaults
model_id = kwargs.get("model_id", "meta-llama/Llama-2-7b-hf")
warmup_iterations = kwargs.get("warmup_iterations", 3)
measurement_iterations = kwargs.get("measurement_iterations", 5)
num_tokens_to_generate = kwargs.get("num_tokens_to_generate", 100)
include_sdpa_variants = kwargs.get("include_sdpa_variants", True)
device = kwargs.get("device", "cuda")
torch_dtype = kwargs.get("torch_dtype", "float16")
batch_size = kwargs.get("batch_size", 1)
commit_id = kwargs.get("commit_id")
logger.info(f"Starting LLaMA benchmark for model: {model_id}")
logger.info(
f"Configuration: warmup={warmup_iterations}, measurement={measurement_iterations}, tokens={num_tokens_to_generate}"
)
try:
# Create benchmark instance
benchmark = LLaMABenchmark(logger)
# Create scenarios
scenarios = benchmark.create_scenarios(
model_id=model_id,
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
num_tokens_to_generate=num_tokens_to_generate,
include_sdpa_variants=include_sdpa_variants,
device=device,
torch_dtype=torch_dtype,
batch_size=batch_size,
)
logger.info(f"Created {len(scenarios)} benchmark scenarios")
# Create runner and execute benchmarks
runner = BenchmarkRunner(logger, output_dir)
results = runner.run_benchmark(benchmark, scenarios, commit_id=commit_id)
if not results:
logger.warning("No successful benchmark results")
return None
# Save results
model_name = model_id.split("/")[-1] # Extract model name from ID
output_file = runner.save_results(model_name, results)
logger.info(f"LLaMA benchmark completed successfully. Results saved to: {output_file}")
return output_file
except Exception as e:
logger.error(f"LLaMA benchmark failed: {e}")
import traceback
logger.debug(traceback.format_exc())
raise

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,215 @@
import hashlib
import json
import logging
from typing import Any
KERNELIZATION_AVAILABLE = False
try:
from kernels import Mode, kernelize # noqa: F401
KERNELIZATION_AVAILABLE = True
except ImportError:
pass
logger = logging.getLogger(__name__)
class BenchmarkConfig:
"""Configuration for a single benchmark scenario."""
def __init__(
self,
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
attn_implementation: str = "eager",
sdpa_backend: str | None = None,
compile_mode: str | None = None,
compile_options: dict[str, Any] | None = None,
kernelize: bool = False,
name: str | None = None,
skip_validity_check: bool = False,
) -> None:
# Benchmark parameters
self.warmup_iterations = warmup_iterations
self.measurement_iterations = measurement_iterations
self.gpu_monitoring = gpu_monitoring
# Input parameters
self.batch_size = batch_size
self.sequence_length = sequence_length
self.num_tokens_to_generate = num_tokens_to_generate
# Generation parameters
self.attn_implementation = attn_implementation
self.sdpa_backend = sdpa_backend
# Optimization parameters
self.compile_mode = compile_mode
self.compile_options = compile_options if compile_options is not None else {}
self.kernelize = kernelize
# Constant parameters
self.dtype = "torch.bfloat16"
self.device = "cuda"
self.check_validity(skip_validity_check)
self.name = name if name is not None else self.infer_name()
def check_validity(self, skip_validity_check: bool = False) -> None:
if skip_validity_check:
return
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
is_fa = self.attn_implementation == "flash_attention_2"
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
if is_fa:
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
self.compile_mode = None
@property
def hash(self) -> str:
return hashlib.sha256(json.dumps(self.to_dict()).encode()).hexdigest()
def infer_name(self, compact: bool = True) -> str:
"""Infer a human-readable name for the benchmark config, either compact or verbose."""
if compact:
iter_str = f"w{self.warmup_iterations}_i{self.measurement_iterations}"
gpu_monitor_str = "monitored" if self.gpu_monitoring else "unmonitored"
dimensions_str = f"b{self.batch_size}_s{self.sequence_length}_n{self.num_tokens_to_generate}"
attn_code = self.attn_implementation
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
sep = "-"
else:
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
gpu_monitor_str = ("with" if self.gpu_monitoring else "no") + " GPU monitoring"
dimensions_str = f"batch size {self.batch_size}, sequence length {self.sequence_length}, {self.num_tokens_to_generate} generated tokens"
attn_code = f"{self.attn_implementation} attention"
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
sep = ", "
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
def to_dict(self) -> dict[str, Any]:
return {
"name": self.name,
"warmup_iterations": self.warmup_iterations,
"measurement_iterations": self.measurement_iterations,
"gpu_monitoring": self.gpu_monitoring,
"batch_size": self.batch_size,
"sequence_length": self.sequence_length,
"num_tokens_to_generate": self.num_tokens_to_generate,
"attn_implementation": self.attn_implementation,
"sdpa_backend": self.sdpa_backend,
"compile_mode": self.compile_mode,
"compile_options": self.compile_options | {}, # to avoid inplace modification of the original dict
"kernelize": self.kernelize,
}
@classmethod
def from_dict(cls, data: dict[str, Any], skip_validity_check: bool = False) -> "BenchmarkConfig":
return cls(
warmup_iterations=data.get("warmup_iterations", 5),
measurement_iterations=data.get("measurement_iterations", 20),
gpu_monitoring=data.get("gpu_monitoring", False),
batch_size=data.get("batch_size", 1),
sequence_length=data.get("sequence_length", 128),
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
attn_implementation=data.get("attn_implementation", "eager"),
sdpa_backend=data.get("sdpa_backend"),
compile_mode=data.get("compile_mode"),
compile_options=data.get("compile_options"),
kernelize=data.get("kernelize", False),
name=data.get("name"),
skip_validity_check=skip_validity_check,
)
def cross_generate_configs(
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
compiled_mode: list[str | None],
kernelized: list[bool],
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
configs = []
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
for cm in list(dict.fromkeys(compiled_mode)):
for kernelize_on in list(dict.fromkeys(kernelized)):
config = BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
**kwargs,
)
configs.append(config)
return configs
def generate_all_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"),
("flex_attention", None),
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)
def generate_main_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
return [ # TODO: test max-autotune instead of default
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="eager", compile_mode="default", **kwargs),
BenchmarkConfig(attn_implementation="flash_attention_2", **kwargs),
]

View File

@ -0,0 +1,389 @@
import gc
import json
import logging
import os
import pathlib
import re
import time
from contextlib import nullcontext
from datetime import datetime
from queue import Queue
from typing import Any
import torch
from tqdm import trange
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
CompileConfig,
GenerationConfig,
GenerationMixin,
)
from transformers.generation.streamers import BaseStreamer
from .benchmark_config import BenchmarkConfig
from .data_classes import BenchmarkMetadata, BenchmarkResult, GPURawMetrics, pretty_print_dict
from .hardware_metrics import GPUMonitor
try:
from kernels import Mode, kernelize # noqa: F401
except ImportError:
kernelize = None
Mode = None
DEFAULT_PROMPT = "\n".join([
"The French Revolution was a period of political and societal change in France that began with the Estates General of 1789 and ended with the Coup of 18 Brumaire on 9 November 1799.",
"Many of the revolution's ideas are considered fundamental principles of liberal democracy, and its values remain central to modern French political discourse.",
"It was caused by a combination of social, political, and economic factors which the existing regime proved unable to manage.",
"Financial crisis and widespread social distress led to the convocation of the Estates General in May 1789, its first meeting since 1614.",
"The representatives of the Third Estate broke away and re-constituted themselves as a National Assembly in June.",
"The Storming of the Bastille in Paris on 14 July led to a series of radical measures by the Assembly, including the abolition of feudalism, state control over the Catholic Church in France, and issuing the Declaration of the Rights of Man and of the Citizen.",
"The next three years were dominated by a struggle for political control.",
"King Louis XVI's attempted flight to Varennes in June 1791 further discredited the monarchy, and military defeats after the outbreak of the French Revolutionary Wars in April 1792 led to the insurrection of 10 August 1792.",
"As a result, the monarchy was replaced by the French First Republic in September, followed by the execution of Louis XVI himself in January 1793.",
"After another revolt in June 1793, the constitution was suspended, and political power passed from the National Convention to the Committee of Public Safety, dominated by radical Jacobins led by Maximilien Robespierre.",
"About 16,000 people were sentenced by the Revolutionary Tribunal and executed in the Reign of Terror, which ended in July 1794 with the Thermidorian Reaction.",
"Weakened by external threats and internal opposition, the Committee of Public Safety was replaced in November 1795 by the Directory.",
"Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
]) # fmt: skip
def compact_json_numeric_arrays(data: dict):
# Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
pattern = r"\[\s*\n\s*((?:\d+(?:\.\d+)?\s*,\s*)*\d+(?:\.\d+)?)\s*\n\s*\]"
def replace_numeric_array(match):
# Get the array content
content = match.group(1)
# Remove extra whitespace but keep commas
compact_content = re.sub(r"\s+", " ", content).strip()
return f"[{compact_content}]"
return re.sub(pattern, replace_numeric_array, json.dumps(data, indent=4, default=str), flags=re.DOTALL)
def get_git_revision() -> str:
base_path = pathlib.Path(__file__).parent.parent.parent
git_dir = base_path / ".git"
with (git_dir / "HEAD").open("r") as head:
ref = head.readline().split(" ")[-1].strip()
with (git_dir / ref).open("r") as git_hash:
return git_hash.readline().strip()
def get_sdpa_backend(backend_name: str | None) -> torch.nn.attention.SDPBackend | None:
"""Get the SDPA backend enum from string name."""
if backend_name is None:
return None
try:
backend_map = {
"math": torch.nn.attention.SDPBackend.MATH,
"flash_attention": torch.nn.attention.SDPBackend.FLASH_ATTENTION,
"efficient_attention": torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
"cudnn_attention": torch.nn.attention.SDPBackend.CUDNN_ATTENTION,
}
return backend_map.get(backend_name.lower())
except AttributeError:
# torch.nn.attention.SDPBackend not available in older torch versions
return None
def flush_memory():
"""Flush GPU memory and run garbage collection."""
gc.collect()
# Dynamo resets
torch._dynamo.reset()
torch._dynamo.reset_code_caches()
if hasattr(torch._inductor, "codecache"):
# Clear FX graph cache
if hasattr(torch._inductor.codecache, "FxGraphCache"):
torch._inductor.codecache.FxGraphCache.clear()
# Clear PyCodeCache
if hasattr(torch._inductor.codecache, "PyCodeCache"):
torch._inductor.codecache.PyCodeCache.cache_clear()
# Clear TritonFuture cache (for async compilation)
if hasattr(torch._inductor.codecache, "TritonFuture"):
if hasattr(torch._inductor.codecache.TritonFuture, "_compile_cache"):
torch._inductor.codecache.TritonFuture._compile_cache.clear()
# Clear CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
gc.collect()
class BenchmarkStreamer(BaseStreamer):
def __init__(self, **kwargs) -> None:
self.timestamps = []
self.text_queue = Queue()
def put(self, value):
"""Receives tokens and logs the timestamp of the generation."""
self.timestamps.append(time.perf_counter())
def end(self):
self.timestamps.append(time.perf_counter())
def __iter__(self):
return self
def __next__(self):
value = self.text_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
class BenchmarkRunner:
"""Main benchmark runner that coordinates benchmark execution."""
def __init__(self, logger: logging.Logger, output_dir: str | None = None, commit_id: str | None = None) -> None:
# Those stay constant for the whole run
self.logger = logger
if output_dir is None:
output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
self.output_dir = output_dir
self.commit_id = get_git_revision() if commit_id is None else commit_id
os.makedirs(self.output_dir, exist_ok=True)
self.profile_dir = None
# Attributes that are reset for each model
self._setup_for = ""
# Attributes that are reset for each run
self.model: GenerationMixin | None = None
def cleanup(self) -> None:
del self.model
self.model = None
flush_memory()
def setup_one_run(self, model_id: str, config: BenchmarkConfig) -> None:
# Some attributes only need to be set once per model
if self._setup_for != model_id:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
# We set the EOS token to the padding token for open-ended generation
self.tokenizer.eos_token = self.tokenizer.pad_token
self._setup_for = model_id
# Prepare inputs
self.inputs = self.tokenizer(
[DEFAULT_PROMPT for _ in range(config.batch_size)],
return_tensors="pt",
max_length=config.sequence_length,
truncation=True,
return_attention_mask=True,
).to(config.device)
self.inputs["use_cache"] = True
# Prepare generation config
gen_config = GenerationConfig(
do_sample=False, top_p=1.0, temperature=1.0, max_new_tokens=config.num_tokens_to_generate
)
# Prepare compile config
if config.compile_mode is not None:
gen_config.compile_config = CompileConfig(mode=config.compile_mode, options=config.compile_options)
gen_config.cache_implementation = "static"
# Load model
self.logger.debug(f"Loading model {model_id} on device {config.device}...")
dtype = getattr(torch, config.dtype.removeprefix("torch."))
self.model = AutoModelForCausalLM.from_pretrained(
model_id, dtype=dtype, attn_implementation=config.attn_implementation, generation_config=gen_config
)
self.model = self.model.eval().to(config.device)
# Kernelize the model if needed
if config.kernelize:
self.model = kernelize(self.model, mode=Mode.INFERENCE)
def run_one_benchmark(self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0) -> None:
sdpa_ctx = nullcontext()
if config.attn_implementation == "sdpa":
sdpa_backend = get_sdpa_backend(config.sdpa_backend)
sdpa_ctx = torch.nn.attention.sdpa_kernel(sdpa_backend)
with sdpa_ctx, torch.no_grad():
self.logger.info(f"Running benchmark scenario: {config.name}")
# Quick validation: try one measurement first to see if this scenario works
flush_memory()
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=1, gpu_monitor=None
)
if e2e_latency < 0:
self.logger.warning(f"Skipping config {config.name}: {e2e_latency = } (no GPU monitoring)")
return None
# Warmup runs
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
for _ in trange(config.warmup_iterations):
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
self.logger.info("Warmup over.")
# Measurement runs
result = BenchmarkResult()
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
for _ in trange(config.measurement_iterations):
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=config.num_tokens_to_generate,
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
)
result.accumulate(e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics)
self.logger.info("Benchmarking done. Cleaning up.")
# Profile if needed
if num_tokens_to_profile > 0:
self.profile_generate(num_tokens_to_profile, config.name)
return {
"metadata": BenchmarkMetadata(model_id=model_id, commit_id=self.commit_id),
"measurements": result,
"config": config,
}
def time_generate(
self,
max_new_tokens: int,
gpu_monitor: GPUMonitor | None = None,
) -> tuple[float, list[float], str, GPURawMetrics | None]:
"""Time the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
# Prepare gpu monitoring if needed
if gpu_monitor is not None:
gpu_monitor.start()
# Prepare streamer
streamer = BenchmarkStreamer()
# Generate and time
wall_time_0 = time.perf_counter()
outputs = self.model.generate(
**self.inputs,
max_new_tokens=max_new_tokens,
streamer=streamer,
)
wall_time_1 = time.perf_counter()
# Stop gpu monitoring if needed
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
# Check if generation had the right number of tokens
input_tokens = self.inputs["input_ids"].size(-1)
batch_size, output_tokens = outputs.shape
new_tokens = output_tokens - input_tokens
if new_tokens != max_new_tokens:
raise RuntimeError(f"Generated {new_tokens} tokens, expected {max_new_tokens}")
# Decode outputs
decoded_output = self.tokenizer.decode(outputs[0, input_tokens:], skip_special_tokens=True)
shape_and_decoded_output = f"{tuple(outputs.shape)} | {decoded_output}"
# Compute intermediate quantities
e2e_latency = wall_time_1 - wall_time_0
token_generation_times = [t - wall_time_0 for t in streamer.timestamps[1:]]
return e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics
def profile_generate(self, num_tokens_to_profile: int, config_name: str) -> None:
"""Profile the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
profiler = torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
record_shapes=True,
)
with profiler as prof:
_ = self.model.generate(
**self.inputs,
max_new_tokens=num_tokens_to_profile,
)
if self.profile_dir is None:
self.profile_dir = self.output_dir + "_profiles"
os.makedirs(self.profile_dir, exist_ok=True)
prof.export_chrome_trace(f"{self.profile_dir}/{config_name}.json")
def run_benchmarks(
self,
model_id: str,
benchmark_configs: list[BenchmarkConfig],
num_tokens_to_profile: int = 0,
pretty_print_summary: bool = True,
) -> dict[str, Any]:
all_results = {}
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
start_time = time.perf_counter()
n_configs = len(benchmark_configs)
for i, config in enumerate(benchmark_configs):
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
config.sdpa_backend = default_backend
# Skip if already run
if config.hash in all_results:
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
continue
# Otherwise, run the benchmark
self.setup_one_run(model_id, config)
self.logger.info(
f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
)
# Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
try:
results = self.run_one_benchmark(model_id, config, num_tokens_to_profile)
if results is not None:
all_results[config.hash] = results
except Exception as e:
self.logger.error(f"Error running with scenario: {config.name}:\n{repr(e)}")
# Cleanup model and save results
self.cleanup()
self.save_results(model_id, all_results, timestamp=timestamp)
if pretty_print_summary:
print()
print("=" * 100)
print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
print(f"Total number of benchmarks: {len(all_results)}")
if len(all_results) > 0:
print("First run metadata:")
first_key = list(all_results.keys())[0]
first_metadata = all_results[first_key]["metadata"].to_dict()
hardware_info = first_metadata.pop("hardware_info")
pretty_print_dict(first_metadata | hardware_info, tabs=1)
for result in all_results.values():
print("=" * 100)
print(f"Config: {result['config'].infer_name(compact=False)}\n")
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
print("=" * 100)
return all_results
def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
"""Save benchmark results to JSON file."""
# Create model-specific subdirectory
model_name = model_name.replace("/", "_")
model_dir = os.path.join(self.output_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
# Create filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
filename = f"{model_name}_benchmark_{timestamp}.json"
filepath = os.path.join(model_dir, filename)
# Convert results to dict
converted_results = {}
for cfg_hash in results.keys():
converted_results[cfg_hash] = {
"metadata": results[cfg_hash]["metadata"].to_dict(),
"measurements": results[cfg_hash]["measurements"].to_dict(),
"config": results[cfg_hash]["config"].to_dict(),
}
# Save to JSON file
with open(filepath, "w") as f:
f.write(compact_json_numeric_arrays(converted_results))
self.logger.info(f"Results saved to {filepath}")
return filepath

View File

@ -0,0 +1,160 @@
from dataclasses import dataclass
from datetime import datetime
from typing import Any
import numpy as np
from .hardware_metrics import GPURawMetrics, HardwareInfo
def compute_basic_statistics(measurements: list[float]) -> dict[str, float]:
return {
"avg": np.mean(measurements),
"std": np.std(measurements),
"min": np.min(measurements),
"med": np.median(measurements),
"max": np.max(measurements),
"p95": np.percentile(measurements, 95),
}
def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
for key in list(stats.keys()):
value = stats[key]
if value > 3600:
stats[key] = f"{(value / 3600):.2f}hr"
elif value > 60:
stats[key] = f"{(value / 60):.2f}min"
elif value > 1:
stats[key] = f"{value:.2f}s"
elif value > 1e-3:
stats[key] = f"{(value * 1e3):.2f}ms"
elif value > 1e-6:
stats[key] = f"{(value * 1e6):.2f}us"
else:
stats[key] = f"{(value * 1e9):.2f}ns"
return stats
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
keys = ["avg", "std", "min", "med", "max", "p95"]
for key in keys:
max_length = max(len(stat[key]) for stat in stats)
for stat in stats:
stat[key] = stat[key].ljust(max_length, " ")
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
max_key_length = max([len(key) for key in data.keys()])
for key, value in data.items():
tabs_str = " " * tabs
padded_key = key.ljust(max_key_length + 1, ".")
print(f"{tabs_str}{padded_key}: {value}")
@dataclass
class BenchmarkMetadata:
"""Metadata collected for each benchmark run."""
model_id: str
timestamp: str
commit_id: str
hardware_info: HardwareInfo
def __init__(self, model_id: str, commit_id: str):
self.model_id = model_id
self.timestamp = datetime.utcnow().isoformat()
self.commit_id = commit_id
self.hardware_info = HardwareInfo()
def to_dict(self) -> dict[str, Any]:
return {
"timestamp": self.timestamp,
"commit_id": self.commit_id,
"hardware_info": self.hardware_info.to_dict(),
}
class BenchmarkResult:
"""Result from a series of benchmark runs."""
def __init__(self) -> None:
self.e2e_latency = []
self.token_generation_times = [] # time at which each token was generated (relative to start of the generation)
self.shape_and_decoded_outputs = []
self.gpu_metrics = []
def accumulate(
self,
e2e_latency: float,
token_generation_times: list[float],
shape_and_decoded_output: str,
gpu_metrics: GPURawMetrics | None,
) -> None:
self.e2e_latency.append(e2e_latency)
self.token_generation_times.append(token_generation_times)
self.shape_and_decoded_outputs.append(shape_and_decoded_output)
self.gpu_metrics.append(gpu_metrics)
def to_dict(self) -> dict[str, None | int | float]:
# Save GPU metrics as None if it contains only None values
if all(gm is None for gm in self.gpu_metrics):
gpu_metrics = None
else:
gpu_metrics = [gm.to_dict() for gm in self.gpu_metrics]
return {
"e2e_latency": self.e2e_latency,
"token_generation_times": self.token_generation_times,
"shape_and_decoded_outputs": self.shape_and_decoded_outputs,
"gpu_metrics": gpu_metrics,
}
@classmethod
def from_dict(cls, data: dict[str, None | int | float]) -> "BenchmarkResult":
# Handle GPU metrics, which is saved as None if it contains only None values
if data["gpu_metrics"] is None:
gpu_metrics = [None for _ in range(len(data["e2e_latency"]))]
else:
gpu_metrics = [GPURawMetrics.from_dict(gm) for gm in data["gpu_metrics"]]
# Create a new instance and accumulate the data
new_instance = cls()
for i in range(len(data["e2e_latency"])):
new_instance.accumulate(
e2e_latency=data["e2e_latency"][i],
token_generation_times=data["token_generation_times"][i],
shape_and_decoded_output=data["shape_and_decoded_outputs"][i],
gpu_metrics=gpu_metrics[i],
)
return new_instance
def get_measured_ttft(self) -> list[float]:
return [dt[0] for dt in self.token_generation_times if len(dt) > 0]
def get_measured_itl(self) -> list[float]:
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
def get_throughput(self, batch_size: int) -> float:
return [
batch_size * len(dt) / e2e_latency
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
]
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
stats_to_collate = [
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
if batch_size > 0:
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
collated_stats = equalize_lengths_and_collate(stats_to_collate)
dict_to_pprint = {
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
}
if batch_size > 0:
dict_to_pprint["Throughput"] = collated_stats[3]
pretty_print_dict(dict_to_pprint, tabs=tabs)

View File

@ -0,0 +1,171 @@
import json
import logging
import subprocess
import sys
import threading
import time
from dataclasses import dataclass
from enum import Enum
from logging import Logger
import gpustat
import psutil
import torch
# Data class to hold the hardware information
def get_device_name_and_memory_total() -> tuple[str, float]:
"""Returns the name and memory total of GPU 0."""
device_name = torch.cuda.get_device_properties(0).name
device_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
return device_name, device_memory_total
class HardwareInfo:
"""A class to hold information about the hardware."""
def __init__(self) -> None:
# Retrieve GPU stats
try:
self.gpu_name, self.gpu_memory_total_gb = get_device_name_and_memory_total()
except Exception:
self.gpu_name, self.gpu_memory_total_gb = None, None
# Retrieve python, torch and CUDA version
self.python_version = f"{sys.version.split()[0]}"
self.torch_version = torch.__version__
if hasattr(torch, "cuda") and torch.cuda.is_available():
self.cuda_version = torch.version.cuda
else:
self.cuda_version = None
# Retrieve general hardware information
self.cpu_count = psutil.cpu_count()
self.memory_total_mb = int(psutil.virtual_memory().total / (1024 * 1024))
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"gpu_name": self.gpu_name,
"gpu_memory_total_gb": self.gpu_memory_total_gb,
"python_version": self.python_version,
"torch_version": self.torch_version,
}
# Functions to get information about the GPU
def get_amd_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an AMD GPU, both in percent"""
rocm_smi_output = subprocess.check_output(["rocm-smi", "--json", "--showuse", "--showmeminfo", "VRAM"])
gpu_stats = json.loads(rocm_smi_output.decode("utf-8"))
gpu_stats = [
(card_id, stats["GPU use (%)"], stats["VRAM Total Used Memory (B)"]) for card_id, stats in gpu_stats.items()
]
gpu_stats.sort(key=lambda x: x[1], reverse=True)
return int(gpu_stats[0][1]), float(gpu_stats[0][2]) / 1024**3
def get_nvidia_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an NVIDIA GPU, both in percent"""
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_stats = gpu_stats[0]
return int(gpu_stats["utilization.gpu"]), float(gpu_stats["memory.used"]) / 1024**3
class GPUStatsCollector:
"""A class to get statistics about the GPU. It serves as a wrapper that holds the GPU total memory and its name,
which is used to call the right function to get the utilization and memory used."""
def __init__(self) -> None:
self.device_name, self.device_memory_total = get_device_name_and_memory_total()
# Monkey patch the get_utilization_and_memory_used method based on the GPU type
if "amd" in self.device_name.lower():
self.get_utilization_and_memory_used = get_amd_gpu_stats
elif "nvidia" in self.device_name.lower():
self.get_utilization_and_memory_used = get_nvidia_gpu_stats
else:
raise RuntimeError(f"Unsupported GPU: {self.device_name}")
def get_measurements(self) -> tuple[int, float]:
"""Get the utilization and memory used of the GPU, both in percent"""
raise NotImplementedError("This method is meant to be monkey patched during __init__")
# Simple data classes to hold the raw GPU metrics
class GPUMonitoringStatus(Enum):
"""Status of GPU monitoring."""
SUCCESS = "success"
FAILED = "failed"
NO_GPUS_AVAILABLE = "no_gpus_available"
NO_SAMPLES_COLLECTED = "no_samples_collected"
@dataclass
class GPURawMetrics:
"""Raw values for GPU utilization and memory used."""
utilization: list[float] # in percent
memory_used: list[float] # in GB
timestamps: list[float] # in seconds
timestamp_0: float # in seconds
monitoring_status: GPUMonitoringStatus
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"utilization": self.utilization,
"memory_used": self.memory_used,
"timestamps": self.timestamps,
"timestamp_0": self.timestamp_0,
"monitoring_status": self.monitoring_status.value,
}
# Main class, used to monitor the GPU utilization during benchmark execution
class GPUMonitor:
"""Monitor GPU utilization during benchmark execution."""
def __init__(self, sample_interval_sec: float = 0.1, logger: Logger | None = None):
self.sample_interval_sec = sample_interval_sec
self.logger = logger if logger is not None else logging.getLogger(__name__)
self.num_available_gpus = torch.cuda.device_count()
if self.num_available_gpus == 0:
raise RuntimeError("No GPUs detected by torch.cuda.device_count().")
self.gpu_stats_getter = GPUStatsCollector()
def start(self):
"""Start monitoring GPU metrics."""
# Clear the stop event to enable monitoring
self.stop_event = threading.Event()
self.gpu_utilization = []
self.gpu_memory_used = []
self.timestamps = []
self.thread = threading.Thread(target=self._monitor_loop)
self.thread.start()
self.logger.debug("GPU monitoring started")
def stop_and_collect(self) -> GPURawMetrics:
"""Stop monitoring and return collected metrics."""
self.stop_event.set()
self.thread.join()
if self.gpu_utilization:
timestamp_0 = self.timestamps[0]
metrics = GPURawMetrics(
utilization=self.gpu_utilization,
memory_used=self.gpu_memory_used,
timestamps=[t - timestamp_0 for t in self.timestamps],
timestamp_0=timestamp_0,
monitoring_status=GPUMonitoringStatus.SUCCESS,
)
self.logger.debug(f"GPU monitoring completed: {len(self.gpu_utilization)} samples collected")
else:
metrics = GPURawMetrics(monitoring_status=GPUMonitoringStatus.NO_SAMPLES_COLLECTED)
return metrics
def _monitor_loop(self):
"""Background monitoring loop using threading.Event for communication."""
while not self.stop_event.is_set():
utilization, memory_used = self.gpu_stats_getter.get_utilization_and_memory_used()
self.gpu_utilization.append(utilization)
self.gpu_memory_used.append(memory_used)
self.timestamps.append(time.time())
if self.stop_event.wait(timeout=self.sample_interval_sec):
break

View File

@ -19,477 +19,98 @@ in the ./benches directory, organizing outputs into model-specific subfolders.
"""
import argparse
import importlib.util
import json
import logging
import os
import sys
import uuid
from datetime import datetime
from pathlib import Path
from typing import Any, Optional
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
from framework.benchmark_runner import BenchmarkRunner
def setup_logging(log_level: str = "INFO", enable_file_logging: bool = False) -> logging.Logger:
"""Setup logging configuration."""
numeric_level = getattr(logging, log_level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError(f"Invalid log level: {log_level}")
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--output-dir", type=str, default=None, help="Output dir for benchmark results")
parser.add_argument("--log-level", type=str, choices=["DEBUG", "INFO", "WARNING", "ERROR"], default="INFO")
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations")
parser.add_argument("--iterations", type=int, default=10, help="Number of measurement iterations")
parser.add_argument("--batch-size", "-b", type=int, nargs="+", help="Batch size")
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
parser.add_argument("--commit-id", type=str, help="Git commit ID (if not provided, will auto-detect from git)")
args = parser.parse_args()
# Setup logging
benchmark_run_uuid = str(uuid.uuid4())[:8]
numeric_level = getattr(logging, args.log_level.upper())
handlers = [logging.StreamHandler(sys.stdout)]
if enable_file_logging:
handlers.append(logging.FileHandler(f"benchmark_run_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"))
logging.basicConfig(
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
)
return logging.getLogger(__name__)
def discover_benchmarks(benches_dir: str) -> list[dict[str, Any]]:
"""
Discover all benchmark modules in the benches directory.
Returns:
List of dictionaries containing benchmark module info
"""
benchmarks = []
benches_path = Path(benches_dir)
if not benches_path.exists():
raise FileNotFoundError(f"Benches directory not found: {benches_dir}")
for py_file in benches_path.glob("*.py"):
if py_file.name.startswith("__"):
continue
module_name = py_file.stem
try:
# Import the module
spec = importlib.util.spec_from_file_location(module_name, py_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Check if it has a benchmark runner function
if hasattr(module, f"run_{module_name}"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, f"run_{module_name}"),
}
)
elif hasattr(module, "run_benchmark"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, "run_benchmark"),
}
)
else:
logging.warning(f"No runner function found in {py_file}")
except Exception as e:
logging.error(f"Failed to import {py_file}: {e}")
return benchmarks
def run_single_benchmark(
benchmark_info: dict[str, Any], output_dir: str, logger: logging.Logger, **kwargs
) -> Optional[str]:
"""
Run a single benchmark and return the output file path.
Args:
benchmark_info: Dictionary containing benchmark module info
output_dir: Base output directory
logger: Logger instance
**kwargs: Additional arguments to pass to the benchmark
Returns:
Path to the output file if successful, None otherwise
"""
benchmark_name = benchmark_info["name"]
runner_func = benchmark_info["runner_function"]
logger.info(f"Running benchmark: {benchmark_name}")
try:
# Check function signature to determine what arguments to pass
import inspect
sig = inspect.signature(runner_func)
# Prepare arguments based on function signature
func_kwargs = {"logger": logger, "output_dir": output_dir}
# Add other kwargs if the function accepts them
for param_name in sig.parameters:
if param_name in kwargs:
func_kwargs[param_name] = kwargs[param_name]
# Filter kwargs to only include parameters the function accepts
# If function has **kwargs, include all provided kwargs
has_var_kwargs = any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values())
if has_var_kwargs:
valid_kwargs = {**func_kwargs, **kwargs}
else:
valid_kwargs = {k: v for k, v in func_kwargs.items() if k in sig.parameters}
# Run the benchmark
result = runner_func(**valid_kwargs)
if isinstance(result, str):
# Function returned a file path
return result
else:
logger.info(f"Benchmark {benchmark_name} completed successfully")
return "completed"
except Exception as e:
logger.error(f"Benchmark {benchmark_name} failed: {e}")
import traceback
logger.debug(traceback.format_exc())
return None
def generate_summary_report(
output_dir: str,
benchmark_results: dict[str, Any],
logger: logging.Logger,
benchmark_run_uuid: Optional[str] = None,
) -> str:
"""Generate a summary report of all benchmark runs."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.json")
summary_data = {
"run_metadata": {
"timestamp": datetime.utcnow().isoformat(),
"benchmark_run_uuid": benchmark_run_uuid,
"total_benchmarks": len(benchmark_results),
"successful_benchmarks": len([r for r in benchmark_results.values() if r is not None]),
"failed_benchmarks": len([r for r in benchmark_results.values() if r is None]),
},
"benchmark_results": benchmark_results,
"output_directory": output_dir,
}
with open(summary_file, "w") as f:
json.dump(summary_data, f, indent=2, default=str)
logger.info(f"Summary report saved to: {summary_file}")
return summary_file
def upload_results_to_hf_dataset(
output_dir: str,
summary_file: str,
dataset_name: str,
run_id: Optional[str] = None,
token: Optional[str] = None,
logger: Optional[logging.Logger] = None,
) -> Optional[str]:
"""
Upload benchmark results to a HuggingFace Dataset.
Based on upload_collated_report() from utils/collated_reports.py
Args:
output_dir: Local output directory containing results
summary_file: Path to the summary file
dataset_name: Name of the HuggingFace dataset to upload to
run_id: Unique run identifier (if None, will generate one)
token: HuggingFace token for authentication (if None, will use environment variables)
logger: Logger instance
Returns:
The run_id used for the upload, None if upload failed
"""
if logger is None:
logger = logging.getLogger(__name__)
import os
from huggingface_hub import HfApi
api = HfApi()
if run_id is None:
github_run_number = os.getenv("GITHUB_RUN_NUMBER")
github_run_id = os.getenv("GITHUB_RUN_ID")
if github_run_number and github_run_id:
run_id = f"{github_run_number}-{github_run_id}"
date_folder = datetime.now().strftime("%Y-%m-%d")
github_event_name = os.getenv("GITHUB_EVENT_NAME")
if github_event_name != "schedule":
# Non-scheduled runs go under a runs subfolder
repo_path = f"{date_folder}/runs/{run_id}/benchmark_results"
else:
# Scheduled runs go directly under the date
repo_path = f"{date_folder}/{run_id}/benchmark_results"
logger.info(f"Uploading benchmark results to dataset '{dataset_name}' at path '{repo_path}'")
try:
# Upload all files in the output directory
from pathlib import Path
output_path = Path(output_dir)
for file_path in output_path.rglob("*"):
if file_path.is_file():
# Calculate relative path from output_dir
relative_path = file_path.relative_to(output_path)
path_in_repo = f"{repo_path}/{relative_path}"
logger.debug(f"Uploading {file_path} to {path_in_repo}")
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=path_in_repo,
repo_id=dataset_name,
repo_type="dataset",
token=token,
commit_message=f"Upload benchmark results for run {run_id}",
)
logger.info(
f"Successfully uploaded results to: https://huggingface.co/datasets/{dataset_name}/tree/main/{repo_path}"
)
return run_id
except Exception as upload_error:
logger.error(f"Failed to upload results: {upload_error}")
import traceback
logger.debug(traceback.format_exc())
return None
def main():
"""Main entry point for the benchmarking script."""
# Generate a unique UUID for this benchmark run
benchmark_run_uuid = str(uuid.uuid4())[:8]
parser = argparse.ArgumentParser(
description="Run all benchmarks in the ./benches directory",
epilog="""
Examples:
# Run all available benchmarks
python3 run_benchmarks.py
# Run with specific model and upload to HuggingFace Dataset
python3 run_benchmarks.py --model-id meta-llama/Llama-2-7b-hf --upload-to-hf username/benchmark-results
# Run with custom run ID and upload to HuggingFace Dataset
python3 run_benchmarks.py --run-id experiment_v1 --upload-to-hf org/benchmarks
# Run only specific benchmarks with file logging
python3 run_benchmarks.py --include llama --enable-file-logging
""", # noqa: W293
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument(
"--output-dir",
type=str,
default="benchmark_results",
help="Base output directory for benchmark results (default: benchmark_results)",
)
parser.add_argument(
"--benches-dir",
type=str,
default="./benches",
help="Directory containing benchmark implementations (default: ./benches)",
)
parser.add_argument(
"--log-level",
type=str,
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
default="INFO",
help="Logging level (default: INFO)",
)
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup-iterations", type=int, default=3, help="Number of warmup iterations (default: 3)")
parser.add_argument(
"--measurement-iterations", type=int, default=5, help="Number of measurement iterations (default: 5)"
)
parser.add_argument(
"--num-tokens-to-generate",
type=int,
default=100,
help="Number of tokens to generate in benchmarks (default: 100)",
)
parser.add_argument("--include", type=str, nargs="*", help="Only run benchmarks matching these names")
parser.add_argument("--exclude", type=str, nargs="*", help="Exclude benchmarks matching these names")
parser.add_argument("--enable-file-logging", action="store_true", help="Enable file logging (disabled by default)")
parser.add_argument(
"--commit-id", type=str, help="Git commit ID for metadata (if not provided, will auto-detect from git)"
)
parser.add_argument(
"--push-to-hub",
type=str,
help="Upload results to HuggingFace Dataset (provide dataset name, e.g., 'username/benchmark-results')",
)
parser.add_argument(
"--run-id", type=str, help="Custom run ID for organizing results (if not provided, will generate a unique ID)"
)
parser.add_argument(
"--token",
type=str,
help="HuggingFace token for dataset uploads (if not provided, will use HF_TOKEN environment variable)",
)
args = parser.parse_args()
# Setup logging
logger = setup_logging(args.log_level, args.enable_file_logging)
logger = logging.getLogger("benchmark_v2")
logger.info("Starting benchmark discovery and execution")
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Benches directory: {args.benches_dir}")
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Error out if one of the arguments is not provided
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
raise ValueError(
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
)
try:
# Discover benchmarks
benchmarks = discover_benchmarks(args.benches_dir)
logger.info(f"Discovered {len(benchmarks)} benchmark(s): {[b['name'] for b in benchmarks]}")
if not benchmarks:
logger.warning("No benchmarks found!")
return 1
# Filter benchmarks based on include/exclude
filtered_benchmarks = benchmarks
if args.include:
filtered_benchmarks = [
b for b in filtered_benchmarks if any(pattern in b["name"] for pattern in args.include)
]
logger.info(f"Filtered to include: {[b['name'] for b in filtered_benchmarks]}")
if args.exclude:
filtered_benchmarks = [
b for b in filtered_benchmarks if not any(pattern in b["name"] for pattern in args.exclude)
]
logger.info(f"After exclusion: {[b['name'] for b in filtered_benchmarks]}")
if not filtered_benchmarks:
logger.warning("No benchmarks remaining after filtering!")
return 1
# Prepare common kwargs for benchmarks
benchmark_kwargs = {
"warmup_iterations": args.warmup_iterations,
"measurement_iterations": args.measurement_iterations,
"num_tokens_to_generate": args.num_tokens_to_generate,
}
if args.model_id:
benchmark_kwargs["model_id"] = args.model_id
# Add commit_id if provided
if args.commit_id:
benchmark_kwargs["commit_id"] = args.commit_id
# Run benchmarks
benchmark_results = {}
successful_count = 0
for benchmark_info in filtered_benchmarks:
result = run_single_benchmark(benchmark_info, args.output_dir, logger, **benchmark_kwargs)
benchmark_results[benchmark_info["name"]] = result
if result is not None:
successful_count += 1
# Generate summary report
summary_file = generate_summary_report(args.output_dir, benchmark_results, logger, benchmark_run_uuid)
# Upload results to HuggingFace Dataset if requested
upload_run_id = None
if args.push_to_hub:
logger.info("=" * 60)
logger.info("UPLOADING TO HUGGINGFACE DATASET")
logger.info("=" * 60)
# Use provided run_id or fallback to benchmark run UUID
effective_run_id = args.run_id or benchmark_run_uuid
upload_run_id = upload_results_to_hf_dataset(
output_dir=args.output_dir,
summary_file=summary_file,
dataset_name=args.push_to_hub,
run_id=effective_run_id,
token=args.token,
logger=logger,
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
if args.cross_generate:
benchmark_configs = generate_all_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
if upload_run_id:
logger.info(f"Upload completed with run ID: {upload_run_id}")
else:
logger.warning("Upload failed - continuing with local results")
# Final summary
total_benchmarks = len(filtered_benchmarks)
failed_count = total_benchmarks - successful_count
logger.info("=" * 60)
logger.info("BENCHMARK RUN SUMMARY")
logger.info("=" * 60)
logger.info(f"Total benchmarks: {total_benchmarks}")
logger.info(f"Successful: {successful_count}")
logger.info(f"Failed: {failed_count}")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Summary report: {summary_file}")
if args.push_to_hub:
if upload_run_id:
logger.info(f"HuggingFace Dataset: {args.push_to_hub}")
logger.info(f"Run ID: {upload_run_id}")
logger.info(
f"View results: https://huggingface.co/datasets/{args.push_to_hub}/tree/main/{datetime.now().strftime('%Y-%m-%d')}/runs/{upload_run_id}"
)
else:
logger.warning("Upload to HuggingFace Dataset failed")
if failed_count > 0:
logger.warning(f"{failed_count} benchmark(s) failed. Check logs for details.")
return 1
else:
logger.info("All benchmarks completed successfully!")
return 0
benchmark_configs = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)
except Exception as e:
logger.error(f"Benchmark run failed: {e}")
import traceback
# Otherwise, we benchmark across all combinations of dimensions
else:
main_config = generate_main_configs(
warmup_iterations=args.warmup,
measurement_iterations=args.iterations,
batch_size=args.batch_size[0],
sequence_length=args.sequence_length[0],
num_tokens_to_generate=args.num_tokens_to_generate[0],
)[0]
benchmark_configs = []
for num_tokens_to_generate in args.num_tokens_to_generate:
for sequence_length in args.sequence_length:
for batch_size in args.batch_size:
cfg_dict = main_config.to_dict()
cfg_dict["batch_size"] = batch_size
cfg_dict["sequence_length"] = sequence_length
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
cfg_dict.pop("name")
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
logger.debug(traceback.format_exc())
return 1
if __name__ == "__main__":
sys.exit(main())
runner = BenchmarkRunner(logger, args.output_dir, args.commit_id)
results = runner.run_benchmarks(
args.model_id,
benchmark_configs,
args.num_tokens_to_profile,
pretty_print_summary=True,
)
# runner.save_results(args.model_id, results)

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN git lfs install

View File

@ -17,7 +17,7 @@ RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"

View File

@ -12,8 +12,6 @@ SHELL ["sh", "-lc"]
ARG PYTORCH='2.8.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# Disable kernel mapping for now until all tests pass
ENV DISABLE_KERNEL_MAPPING=1
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs

View File

@ -12,8 +12,6 @@ SHELL ["sh", "-lc"]
ARG PYTORCH='2.8.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# Disable kernel mapping for quantization tests
ENV DISABLE_KERNEL_MAPPING=1
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg

View File

@ -60,10 +60,10 @@ pip install transformers bitsandbytes>=0.39.0 -q
أولاً، تحتاج إلى تحميل النموذج.
```py
>>> from transformers import AutoModelForCausalLM
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -113,12 +113,12 @@ pip install transformers bitsandbytes>=0.39.0 -q
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... "mistralai/Mistral-7B-v0.1", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -192,7 +192,7 @@ LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/l
```python
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
>>> model = AutoModelForCausalLM.from_pretrained(
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
>>> set_seed(0)
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""

View File

@ -231,7 +231,7 @@ flush()
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_4bit=True), pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -472,7 +472,7 @@ for _ in range(5):
next_token_id = torch.argmax(next_logits, dim=-1)
print("shape of input_ids", next_token_id.shape)
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
print("length of key-value cache", past_key_values.get_seq_length()) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
generated_tokens.append(next_token_id.item())
generated_text = tokenizer.batch_decode(generated_tokens)

View File

@ -93,7 +93,6 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -117,7 +116,6 @@ torchrun \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -140,7 +138,6 @@ python xla_spawn.py --num_cores 8 \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -197,7 +194,6 @@ python examples/pytorch/summarization/run_summarization.py \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
@ -225,7 +221,6 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -239,8 +234,6 @@ examples/pytorch/summarization/run_summarization.py -h
خيار آخر مفيد لتمكينه هو استئناف التدريب من نقطة تفتيش سابقة. سيضمن ذلك أنك تستطيع الاستمرار من حيث توقفت دون البدء من جديد إذا تم مقاطعة تدريبك. هناك طريقتان لاستئناف التدريب من نقطة تفتيش.
تستخدم الطريقة الأولى المعلمة `output_dir previous_output_dir` لاستئناف التدريب من أحدث نقطة تفتيش مخزنة في `output_dir`. في هذه الحالة، يجب عليك إزالة `overwrite_output_dir`:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
@ -252,24 +245,6 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
تستخدم الطريقة الثانية معلمة `resume_from_checkpoint path_to_specific_checkpoint` لاستئناف التدريب من مجلد نقطة تفتيش محددة.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
@ -301,6 +276,5 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```

View File

@ -611,7 +611,6 @@ accelerate launch \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
يمكنك أيضًا تحديد المعلمات من ملف `config_file.yaml` مباشرة في سطر الأوامر:
@ -634,7 +633,6 @@ accelerate launch --num_processes=2 \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
اطلع على برنامج تعليمي [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) لمعرفة المزيد حول `accelerate_launch` والتكوينات المخصصة.

View File

@ -78,10 +78,10 @@ Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere
Zunächst müssen Sie das Modell laden.
```py
>>> from transformers import AutoModelForCausalLM
>>> from transformers import AutoModelForCausalLM, BitsAndBytesConfig
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```
@ -119,12 +119,12 @@ Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zun
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... "openlm-research/open_llama_7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
... )
```

View File

@ -98,7 +98,6 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -122,7 +121,6 @@ torchrun \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -144,7 +142,6 @@ python xla_spawn.py --num_cores 8 \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -201,7 +198,6 @@ python examples/pytorch/summarization/run_summarization.py \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
@ -229,7 +225,6 @@ python examples/pytorch/summarization/run_summarization.py \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
@ -243,8 +238,6 @@ examples/pytorch/summarization/run_summarization.py -h
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
Die erste Methode verwendet das Argument `output_dir previous_output_dir`, um das Training ab dem letzten in `output_dir` gespeicherten Kontrollpunkt wieder aufzunehmen. In diesem Fall sollten Sie `overwrite_output_dir` entfernen:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
@ -256,24 +249,6 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
Die zweite Methode verwendet das Argument `Resume_from_checkpoint path_to_specific_checkpoint`, um das Training ab einem bestimmten Checkpoint-Ordner wieder aufzunehmen.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
@ -305,6 +280,5 @@ python examples/pytorch/summarization/run_summarization.py
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```

View File

@ -284,6 +284,8 @@
title: Knowledge Distillation for Computer Vision
- local: tasks/keypoint_matching
title: Keypoint matching
- local: tasks/training_vision_backbone
title: Training vision models using Backbone API
title: Computer vision
- sections:
- local: tasks/image_captioning
@ -544,8 +546,6 @@
title: Helium
- local: model_doc/herbert
title: HerBERT
- local: model_doc/hgnet_v2
title: HGNet-V2
- local: model_doc/hunyuan_v1_dense
title: HunYuanDenseV1
- local: model_doc/hunyuan_v1_moe
@ -1026,6 +1026,8 @@
title: CLIPSeg
- local: model_doc/clvp
title: CLVP
- local: model_doc/cwm
title: Code World Model (CWM)
- local: model_doc/cohere2_vision
title: Cohere2Vision
- local: model_doc/colpali
@ -1186,6 +1188,8 @@
title: TVP
- local: model_doc/udop
title: UDOP
- local: model_doc/video_llama_3
title: VideoLlama3
- local: model_doc/video_llava
title: VideoLlava
- local: model_doc/vilt

View File

@ -55,6 +55,7 @@ deepspeed --num_gpus 2 trainer-program.py ...
</hfoptions>
## Order of accelerators
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:

View File

@ -41,13 +41,13 @@ $$
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means $ K_{\text{past}} $ and $ V_{\text{past}} $ can be cached and reused to compute the last token's representation.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
At inference time, you only need the last token's query to compute the representation $ x_t $ that predicts the next token $ t+1 $. At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
@ -59,7 +59,7 @@ Refer to the table below to compare how caching improves efficiency.
| without caching | with caching |
|---|---|
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V`
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` |
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) |
## Cache class
@ -98,9 +98,10 @@ The example below demonstrates how to create a generation loop with [`DynamicCac
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache, infer_device
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
from accelerate import Accelerator
device = f"{infer_device()}:0"
device = Accelerator().device
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map=device)
@ -143,9 +144,10 @@ The generation loop usually takes care of the cache position, but if you're writ
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache, infer_device
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
from accelerate import Accelerator
device = f"{infer_device()}:0"
device = Accelerator().device
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16, device_map=device)

View File

@ -6,13 +6,13 @@ rendered properly in your Markdown viewer.
This page regroups resources around 🤗 Transformers developed by the community.
## Community resources:
## Community resources
| Resource | Description | Author |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## Community notebooks:
## Community notebooks
| Notebook | Description | Author | |
|:----------|:-------------|:-------------|------:|

View File

@ -593,7 +593,7 @@ To deploy DeepSpeed on multiple GPUs, add `--num_gpus`. You don't need to add `-
deepspeed --num_gpus=2 examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero3.json \
--model_name_or_path google-t5/t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--output_dir output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--source_lang en --target_lang ro
@ -616,7 +616,7 @@ To deploy DeepSpeed on a single GPU, add `--num_gpus`. You don't need to add `--
deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero2.json \
--model_name_or_path google-t5/t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--output_dir output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--source_lang en --target_lang ro

View File

@ -16,44 +16,17 @@ rendered properly in your Markdown viewer.
# ExecuTorch
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) is a platform that enables PyTorch training and inference programs to be run on mobile and edge devices. It is powered by [torch.compile](https://pytorch.org/docs/stable/torch.compiler.html) and [torch.export](https://pytorch.org/docs/main/export.html) for performance and deployment.
[ExecuTorch](https://pytorch.org/executorch/stable/index.html) runs PyTorch models on mobile and edge devices. Export your Transformers models to the ExecuTorch format with [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch) with the command below.
You can use ExecuTorch with Transformers with [torch.export](https://pytorch.org/docs/main/export.html). The [`~transformers.convert_and_export_with_cache`] method converts a [`PreTrainedModel`] into an exportable module. Under the hood, it uses [torch.export](https://pytorch.org/docs/main/export.html) to export the model, ensuring compatibility with ExecuTorch.
```py
import torch
from transformers import LlamaForCausalLM, AutoTokenizer, GenerationConfig
from transformers.integrations.executorch import(
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache
)
generation_config = GenerationConfig(
use_cache=True,
cache_implementation="static",
cache_config={
"batch_size": 1,
"max_cache_len": 20,
}
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B", pad_token="</s>", padding_side="right")
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B", device_map="auto", dtype=torch.bfloat16, attn_implementation="sdpa", generation_config=generation_config)
exported_program = convert_and_export_with_cache(model)
```
The exported PyTorch model is now ready to be used with ExecuTorch. Wrap the model with [`~transformers.TorchExportableModuleWithStaticCache`] to generate text.
```py
prompts = ["Simply put, the theory of relativity states that "]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=20,
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_text)
['Simply put, the theory of relativity states that 1) the speed of light is the']
optimum-cli export executorch \
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
--task "text-generation" \
--recipe "xnnpack" \
--use_custom_sdpa \
--use_custom_kv_cache \
--qlinear 8da4w \
--qembedding 8w \
--output_dir="hf_smollm2"
```
Run `optimum-cli export executorch --help` to see all export options. For detailed export instructions, check the [README](optimum/exporters/executorch/README.md).

View File

@ -32,9 +32,10 @@ Greedy search works well for tasks with relatively short outputs where creativit
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
@ -54,9 +55,10 @@ Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
@ -79,9 +81,10 @@ Enable beam search with the `num_beams` parameter (should be greater than 1 othe
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to(device)
@ -166,9 +169,10 @@ Enable prompt lookup decoding with the `prompt_lookup_num_tokens` parameter.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B", dtype=torch.float16).to(device)

View File

@ -15,15 +15,12 @@ rendered properly in your Markdown viewer.
# Hyperparameter search
Hyperparameter search discovers an optimal set of hyperparameters that produces the best model performance. [`Trainer`] supports several hyperparameter search backends - [Optuna](https://optuna.readthedocs.io/en/stable/index.html), [SigOpt](https://docs.sigopt.com/), [Weights & Biases](https://docs.wandb.ai/), [Ray Tune](https://docs.ray.io/en/latest/tune/index.html) - through [`~Trainer.hyperparameter_search`] to optimize an objective or even multiple objectives.
Hyperparameter search discovers an optimal set of hyperparameters that produces the best model performance. [`Trainer`] supports several hyperparameter search backends - [Optuna](https://optuna.readthedocs.io/en/stable/index.html), [Weights & Biases](https://docs.wandb.ai/), [Ray Tune](https://docs.ray.io/en/latest/tune/index.html) - through [`~Trainer.hyperparameter_search`] to optimize an objective or even multiple objectives.
This guide will go over how to set up a hyperparameter search for each of the backends.
> [!WARNING]
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
```bash
pip install optuna/sigopt/wandb/ray[tune]
pip install optuna/wandb/ray[tune]
```
To use [`~Trainer.hyperparameter_search`], you need to create a `model_init` function. This function includes basic model information (arguments and configuration) because it needs to be reinitialized for each search trial in the run.
@ -109,31 +106,7 @@ best_trials = trainer.hyperparameter_search(
n_trials=20,
compute_objective=compute_objective,
)
```
</hfoption>
<hfoption id="SigOpt">
[SigOpt](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) optimizes double, integer, and categorical parameters.
```py
def sigopt_hp_space(trial):
return [
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
{
"categorical_values": ["16", "32", "64", "128"],
"name": "per_device_train_batch_size",
"type": "categorical",
},
]
best_trials = trainer.hyperparameter_search(
direction=["minimize", "maximize"],
backend="sigopt",
hp_space=sigopt_hp_space,
n_trials=20,
compute_objective=compute_objective,
)
```
</hfoption>
@ -166,4 +139,4 @@ best_trials = trainer.hyperparameter_search(
## Distributed Data Parallel
[`Trainer`] only supports hyperparameter search for distributed data parallel (DDP) on the Optuna and SigOpt backends. Only the rank-zero process is used to generate the search trial, and the resulting parameters are passed along to the other ranks.
[`Trainer`] only supports hyperparameter search for distributed data parallel (DDP) on the Optuna backends. Only the rank-zero process is used to generate the search trial, and the resulting parameters are passed along to the other ranks.

View File

@ -36,8 +36,6 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
Explore the [Models Timeline](./models_timeline) to discover the latest text, vision, audio and multimodal model architectures in Transformers.
## Features
Transformers provides everything you need for inference or training with state-of-the-art pretrained models. Some of the main features include:

View File

@ -43,4 +43,3 @@ Most of those are only useful if you are studying the general code in the librar
## Other Utilities
[[autodoc]] utils._LazyModule
[[autodoc]] pytorch_utils.infer_device

View File

@ -364,6 +364,7 @@ This utility analyzes code similarities between model implementations to identif
When adding a new model to transformers, many components (attention layers, MLPs, outputs, etc.) may already exist in similar form in other models. Instead of implementing everything from scratch, model adders can identify which existing classes are similar and potentially reusable through modularization.
The tool computes two similarity scores:
- **Embedding score**: Uses semantic code embeddings (via `Qwen/Qwen3-Embedding-4B`) to detect functionally similar code even with different naming
- **Jaccard score**: Measures token set overlap to identify structurally similar code patterns

View File

@ -124,11 +124,12 @@ The example below shows how you can fallback to an offloaded cache if you run ou
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, infer_device
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import Accelerator
def resilient_generate(model, *args, **kwargs):
oom = False
device = infer_device()
device = Accelerator().device
torch_device_module = getattr(torch, device, torch.cuda)
try:
return model.generate(*args, **kwargs)
@ -207,7 +208,7 @@ Some models have a unique way of storing past kv pairs or states that is not com
Mamba models, such as [Mamba](./model_doc/mamba), require a specific cache because the model doesn't have an attention mechanism or kv states. Thus, they are not compatible with the above [`Cache`] classes.
# Iterative generation
## Iterative generation
A cache can also work in iterative generation settings where there is back-and-forth interaction with a model (chatbots). Like regular generation, iterative generation with a cache allows a model to efficiently handle ongoing conversations without recomputing the entire context at each step.

View File

@ -114,7 +114,8 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
Another option for using [`StaticCache`] is to pass it to a models forward pass using the same `past_key_values` argument. This allows you to write your own custom decoding function to decode the next token given the current token, position, and cache position of previously generated tokens.
```py
from transformers import LlamaTokenizer, LlamaForCausalLM, StaticCache, logging, infer_device
from transformers import LlamaTokenizer, LlamaForCausalLM, StaticCache, logging
from accelerate import Accelerator
from transformers.testing_utils import CaptureLogger
import torch
@ -124,7 +125,7 @@ prompts = [
]
NUM_TOKENS_TO_GENERATE = 40
torch_device = infer_device()
torch_device = Accelerator().device
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right")
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="sequential")
@ -208,10 +209,11 @@ Enable speculative decoding by loading an assistant model and passing it to [`~G
<hfoption id="greedy search">
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b")
inputs = tokenizer("Einstein's theory of relativity states", return_tensors="pt").to(device)
@ -229,10 +231,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
For speculative sampling decoding, add the [do_sample](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig.do_sample) and [temperature](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig.temperature) parameters to [`~GenerationMixin.generate`].
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b")
inputs = tokenizer("Einstein's theory of relativity states", return_tensors="pt").to(device)
@ -257,10 +260,11 @@ To enable prompt lookup decoding, specify the number of tokens that should be ov
<hfoption id="greedy decoding">
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b")
inputs = tokenizer("The second law of thermodynamics states", return_tensors="pt").to(device)
@ -278,10 +282,11 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
For prompt lookup decoding with sampling, add the [do_sample](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig.do_sample) and [temperature](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig.temperature) parameters to [`~GenerationMixin.generate`].
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b")
inputs = tokenizer("The second law of thermodynamics states", return_tensors="pt").to(device)

View File

@ -259,11 +259,11 @@ Some models and tasks expect a certain input prompt format, and if the format is
For example, a chat model expects the input as a [chat template](./chat_templating). Your prompt should include a `role` and `content` to indicate who is participating in the conversation. If you try to pass your prompt as a single string, the model doesn't always return the expected output.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
"HuggingFaceH4/zephyr-7b-alpha", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True)
)
```

View File

@ -16,18 +16,18 @@ rendered properly in your Markdown viewer.
Large Language Models (LLMs) such as GPT3/4, [Falcon](https://huggingface.co/tiiuae/falcon-40b), and [Llama](https://huggingface.co/meta-llama/Llama-2-70b-hf) are rapidly advancing in their ability to tackle human-centric tasks, establishing themselves as essential tools in modern knowledge-based industries.
Deploying these models in real-world tasks remains challenging, however:
- To exhibit near-human text understanding and generation capabilities, LLMs currently require to be composed of billions of parameters (see [Kaplan et al](https://huggingface.co/papers/2001.08361), [Wei et. al](https://huggingface.co/papers/2206.07682)). This consequently amplifies the memory demands for inference.
- In many real-world tasks, LLMs need to be given extensive contextual information. This necessitates the model's capability to manage very long input sequences during inference.
- To exhibit near-human text understanding and generation capabilities, LLMs currently require to be composed of billions of parameters (see [Kaplan et al](https://huggingface.co/papers/2001.08361), [Wei et. al](https://huggingface.co/papers/2206.07682)). This consequently amplifies the memory demands for inference.
- In many real-world tasks, LLMs need to be given extensive contextual information. This necessitates the model's capability to manage very long input sequences during inference.
The crux of these challenges lies in augmenting the computational and memory capabilities of LLMs, especially when handling expansive input sequences.
In this guide, we will go over the effective techniques for efficient LLM deployment:
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization) can achieve computational advantages without a considerable decline in model performance.
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization) can achieve computational advantages without a considerable decline in model performance.
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245).
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245).
Throughout this guide, we will offer an analysis of auto-regressive generation from a tensor's perspective. We delve into the pros and cons of adopting lower precision, provide a comprehensive exploration of the latest attention algorithms, and discuss improved LLM architectures. While doing so, we run practical examples showcasing each of the feature improvements.
@ -37,22 +37,22 @@ Memory requirements of LLMs can be best understood by seeing the LLM as a set of
At the time of writing this guide, LLMs consist of at least a couple billion parameters. Each parameter thereby is made of a decimal number, e.g. `4.5689` which is usually stored in either [float32](https://en.wikipedia.org/wiki/Single-precision_floating-point_format), [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format), or [float16](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) format. This allows us to easily compute the memory requirement to load the LLM into memory:
> *Loading the weights of a model having X billion parameters requires roughly 4 * X GB of VRAM in float32 precision*
> *Loading the weights of a model having X billion parameters requires roughly 4 \* X GB of VRAM in float32 precision*
Nowadays, models are however rarely trained in full float32 precision, but usually in bfloat16 precision or less frequently in float16 precision. Therefore the rule of thumb becomes:
> *Loading the weights of a model having X billion parameters requires roughly 2 * X GB of VRAM in bfloat16/float16 precision*
> *Loading the weights of a model having X billion parameters requires roughly 2 \* X GB of VRAM in bfloat16/float16 precision*
For shorter text inputs (less than 1024 tokens), the memory requirement for inference is very much dominated by the memory requirement to load the weights. Therefore, for now, let's assume that the memory requirement for inference is equal to the memory requirement to load the model into the GPU VRAM.
To give some examples of how much VRAM it roughly takes to load a model in bfloat16:
- **GPT3** requires 2 \* 175 GB = **350 GB** VRAM
- [**Bloom**](https://huggingface.co/bigscience/bloom) requires 2 \* 176 GB = **352 GB** VRAM
- [**Llama-2-70b**](https://huggingface.co/meta-llama/Llama-2-70b-hf) requires 2 \* 70 GB = **140 GB** VRAM
- [**Falcon-40b**](https://huggingface.co/tiiuae/falcon-40b) requires 2 \* 40 GB = **80 GB** VRAM
- [**MPT-30b**](https://huggingface.co/mosaicml/mpt-30b) requires 2 \* 30 GB = **60 GB** VRAM
- [**bigcode/starcoder**](https://huggingface.co/bigcode/starcoder) requires 2 \* 15.5 = **31 GB** VRAM
- **GPT3** requires 2 \* 175 GB = **350 GB** VRAM
- [**Bloom**](https://huggingface.co/bigscience/bloom) requires 2 \* 176 GB = **352 GB** VRAM
- [**Llama-2-70b**](https://huggingface.co/meta-llama/Llama-2-70b-hf) requires 2 \* 70 GB = **140 GB** VRAM
- [**Falcon-40b**](https://huggingface.co/tiiuae/falcon-40b) requires 2 \* 40 GB = **80 GB** VRAM
- [**MPT-30b**](https://huggingface.co/mosaicml/mpt-30b) requires 2 \* 30 GB = **60 GB** VRAM
- [**bigcode/starcoder**](https://huggingface.co/bigcode/starcoder) requires 2 \* 15.5 = **31 GB** VRAM
As of writing this document, the largest GPU chip on the market is the A100 & H100 offering 80GB of VRAM. Most of the models listed before require more than 80GB just to be loaded and therefore necessarily require [tensor parallelism](https://huggingface.co/docs/transformers/perf_train_gpu_many#tensor-parallelism) and/or [pipeline parallelism](https://huggingface.co/docs/transformers/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism).
@ -169,11 +169,11 @@ All that matters is that the next token *logit* distribution stays roughly the s
There are various quantization techniques, which we won't discuss in detail here, but in general, all quantization techniques work as follows:
- 1. Quantize all weights to the target precision
- 2. Load the quantized weights, and pass the input sequence of vectors in bfloat16 precision
- 3. Dynamically dequantize weights to bfloat16 to perform the computation with their input vectors in bfloat16 precision
- 1. Quantize all weights to the target precision
- 2. Load the quantized weights, and pass the input sequence of vectors in bfloat16 precision
- 3. Dynamically dequantize weights to bfloat16 to perform the computation with their input vectors in bfloat16 precision
In a nutshell, this means that *inputs-weight matrix* multiplications, with \\( X \\) being the *inputs*, \\( W \\) being a weight matrix and \\( Y \\) being the output:
In a nutshell, this means that *inputs-weight matrix* multiplications, with $X$ being the *inputs*, $W$ being a weight matrix and $Y$ being the output:
$$ Y = X * W $$
@ -194,7 +194,7 @@ the [`bitsandbytes`](https://github.com/bitsandbytes-foundation/bitsandbytes) li
We can then load models in 8-bit quantization by simply adding a `load_in_8bit=True` flag to `from_pretrained`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_8bit=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_8bit=True), pad_token_id=0)
```
Now, let's run our example again and measure the memory usage.
@ -241,7 +241,7 @@ flush()
Let's see what peak GPU memory consumption 4-bit quantization gives. Quantizing the model to 4-bit can be done with the same API as before - this time by passing `load_in_4bit=True` instead of `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, pad_token_id=0)
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", quantization_config=BitsAndBytesConfig(load_in_4bit=True), pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
@ -271,7 +271,7 @@ Just 9.5GB! That's really not a lot for a >15 billion parameter model.
While we see very little degradation in accuracy for our model here, 4-bit quantization can in practice often lead to different results compared to 8-bit quantization or full `bfloat16` inference. It is up to the user to try it out.
Also note that inference here was again a bit slower compared to 8-bit quantization which is due to the more aggressive quantization method used for 4-bit quantization leading to \\( \text{quantize} \\) and \\( \text{dequantize} \\) taking longer during inference.
Also note that inference here was again a bit slower compared to 8-bit quantization which is due to the more aggressive quantization method used for 4-bit quantization leading to $\text{quantize}$ and $\text{dequantize}$ taking longer during inference.
```python
del model
@ -300,41 +300,41 @@ Next, let's look into how we can improve computational and memory efficiency by
Today's top-performing LLMs share more or less the same fundamental architecture that consists of feed-forward layers, activation layers, layer normalization layers, and most crucially, self-attention layers.
Self-attention layers are central to Large Language Models (LLMs) in that they enable the model to understand the contextual relationships between input tokens.
However, the peak GPU memory consumption for self-attention layers grows *quadratically* both in compute and memory complexity with number of input tokens (also called *sequence length*) that we denote in the following by \\( N \\) .
However, the peak GPU memory consumption for self-attention layers grows *quadratically* both in compute and memory complexity with number of input tokens (also called *sequence length*) that we denote in the following by $N$ .
While this is not really noticeable for shorter input sequences (of up to 1000 input tokens), it becomes a serious problem for longer input sequences (at around 16000 input tokens).
Let's take a closer look. The formula to compute the output \\( \mathbf{O} \\) of a self-attention layer for an input \\( \mathbf{X} \\) of length \\( N \\) is:
Let's take a closer look. The formula to compute the output $\mathbf{O}$ of a self-attention layer for an input $\mathbf{X}$ of length $N$ is:
$$ \textbf{O} = \text{Attn}(\mathbf{X}) = \mathbf{V} \times \text{Softmax}(\mathbf{QK}^T) \text{ with } \mathbf{Q} = \mathbf{W}_q \mathbf{X}, \mathbf{V} = \mathbf{W}_v \mathbf{X}, \mathbf{K} = \mathbf{W}_k \mathbf{X} $$
\\( \mathbf{X} = (\mathbf{x}_1, ... \mathbf{x}_{N}) \\) is thereby the input sequence to the attention layer. The projections \\( \mathbf{Q} \\) and \\( \mathbf{K} \\) will each consist of \\( N \\) vectors resulting in the \\( \mathbf{QK}^T \\) being of size \\( N^2 \\) .
$\mathbf{X} = (\mathbf{x}_1, ... \mathbf{x}_{N})$ is thereby the input sequence to the attention layer. The projections $\mathbf{Q}$ and $\mathbf{K}$ will each consist of $N$ vectors resulting in the $\mathbf{QK}^T$ being of size $N^2$ .
LLMs usually have multiple attention heads, thus doing multiple self-attention computations in parallel.
Assuming, the LLM has 40 attention heads and runs in bfloat16 precision, we can calculate the memory requirement to store the \\( \mathbf{QK^T} \\) matrices to be \\( 40 * 2 * N^2 \\) bytes. For \\( N=1000 \\) only around 50 MB of VRAM are needed, however, for \\( N=16000 \\) we would need 19 GB of VRAM, and for \\( N=100,000 \\) we would need almost 1TB just to store the \\( \mathbf{QK}^T \\) matrices.
Assuming, the LLM has 40 attention heads and runs in bfloat16 precision, we can calculate the memory requirement to store the $\mathbf{QK^T}$ matrices to be $40 * 2 * N^2$ bytes. For $N=1000$ only around 50 MB of VRAM are needed, however, for $N=16000$ we would need 19 GB of VRAM, and for $N=100,000$ we would need almost 1TB just to store the $\mathbf{QK}^T$ matrices.
Long story short, the default self-attention algorithm quickly becomes prohibitively memory-expensive for large input contexts.
As LLMs improve in text comprehension and generation, they are applied to increasingly complex tasks. While models once handled the translation or summarization of a few sentences, they now manage entire pages, demanding the capability to process extensive input lengths.
How can we get rid of the exorbitant memory requirements for large input lengths? We need a new way to compute the self-attention mechanism that gets rid of the \\( QK^T \\) matrix. [Tri Dao et al.](https://huggingface.co/papers/2205.14135) developed exactly such a new algorithm and called it **Flash Attention**.
How can we get rid of the exorbitant memory requirements for large input lengths? We need a new way to compute the self-attention mechanism that gets rid of the $\mathbf{QK}^T$ matrix. [Tri Dao et al.](https://huggingface.co/papers/2205.14135) developed exactly such a new algorithm and called it **Flash Attention**.
In a nutshell, Flash Attention breaks the \\(\mathbf{V} \times \text{Softmax}(\mathbf{QK}^T\\)) computation apart and instead computes smaller chunks of the output by iterating over multiple softmax computation steps:
In a nutshell, Flash Attention breaks the $\mathbf{V} \times \text{Softmax}(\mathbf{QK}^T)$ computation apart and instead computes smaller chunks of the output by iterating over multiple softmax computation steps:
$$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \times \text{Softmax}(\mathbf{QK}^T_{i,j}) \text{ for multiple } i, j \text{ iterations} $$
with \\( s^a_{ij} \\) and \\( s^b_{ij} \\) being some softmax normalization statistics that need to be recomputed for every \\( i \\) and \\( j \\) .
with $s^a_{ij}$ and $s^b_{ij}$ being some softmax normalization statistics that need to be recomputed for every $i$ and $j$ .
Please note that the whole Flash Attention is a bit more complex and is greatly simplified here as going in too much depth is out of scope for this guide. The reader is invited to take a look at the well-written [Flash Attention paper](https://huggingface.co/papers/2205.14135) for more details.
The main takeaway here is:
> By keeping track of softmax normalization statistics and by using some smart mathematics, Flash Attention gives **numerical identical** outputs compared to the default self-attention layer at a memory cost that only increases linearly with \\( N \\) .
> By keeping track of softmax normalization statistics and by using some smart mathematics, Flash Attention gives **numerical identical** outputs compared to the default self-attention layer at a memory cost that only increases linearly with $N$ .
Looking at the formula, one would intuitively say that Flash Attention must be much slower compared to the default self-attention formula as more computation needs to be done. Indeed Flash Attention requires more FLOPs compared to normal attention as the softmax normalization statistics have to constantly be recomputed (see [paper](https://huggingface.co/papers/2205.14135) for more details if interested)
> However, Flash Attention is much faster in inference compared to default attention which comes from its ability to significantly reduce the demands on the slower, high-bandwidth memory of the GPU (VRAM), focusing instead on the faster on-chip memory (SRAM).
Essentially, Flash Attention makes sure that all intermediate write and read operations can be done using the fast *on-chip* SRAM memory instead of having to access the slower VRAM memory to compute the output vector \\( \mathbf{O} \\) .
Essentially, Flash Attention makes sure that all intermediate write and read operations can be done using the fast *on-chip* SRAM memory instead of having to access the slower VRAM memory to compute the output vector $\mathbf{O}$ .
In practice, there is currently absolutely no reason to **not** use Flash Attention if available. The algorithm gives mathematically the same outputs, and is both faster and more memory-efficient.
@ -342,74 +342,75 @@ In practice, there is currently absolutely no reason to **not** use Flash Attent
So far we have looked into improving computational and memory efficiency by:
- Casting the weights to a lower precision format
- Replacing the self-attention algorithm with a more memory- and compute efficient version
- Casting the weights to a lower precision format
- Replacing the self-attention algorithm with a more memory- and compute efficient version
Let's now look into how we can change the architecture of an LLM so that it is most effective and efficient for task that require long text inputs, *e.g.*:
- Retrieval augmented Questions Answering,
- Summarization,
- Chat
Let's now look into how we can change the architecture of an LLM so that it is most effective and efficient for tasks that require long text inputs, *e.g.*:
- Retrieval augmented Questions Answering,
- Summarization,
- Chat
Note that *chat* not only requires the LLM to handle long text inputs, but it also necessitates that the LLM is able to efficiently handle the back-and-forth dialogue between user and assistant (such as ChatGPT).
Once trained, the fundamental LLM architecture is difficult to change, so it is important to make considerations about the LLM's tasks beforehand and accordingly optimize the model's architecture.
There are two important components of the model architecture that quickly become memory and/or performance bottlenecks for large input sequences.
- The positional embeddings
- The key-value cache
- The positional embeddings
- The key-value cache
Let's go over each component in more detail
### 3.1 Improving positional embeddings of LLMs
Self-attention puts each token in relation to each other's tokens.
As an example, the \\( \text{Softmax}(\mathbf{QK}^T) \\) matrix of the text input sequence *"Hello", "I", "love", "you"* could look as follows:
As an example, the $\text{Softmax}(\mathbf{QK}^T)$ matrix of the text input sequence *"Hello", "I", "love", "you"* could look as follows:
![](/blog/assets/163_optimize_llm/self_attn_tokens.png)
Each word token is given a probability mass at which it attends all other word tokens and, therefore is put into relation with all other word tokens. E.g. the word *"love"* attends to the word *"Hello"* with 5%, to *"I"* with 30%, and to itself with 65%.
A LLM based on self-attention, but without position embeddings would have great difficulties in understanding the positions of the text inputs to each other.
This is because the probability score computed by \\( \mathbf{QK}^T \\) relates each word token to each other word token in \\( O(1) \\) computations regardless of their relative positional distance to each other.
This is because the probability score computed by $\mathbf{QK}^T$ relates each word token to each other word token in $O(1)$ computations regardless of their relative positional distance to each other.
Therefore, for the LLM without position embeddings each token appears to have the same distance to all other tokens, *e.g.* differentiating between *"Hello I love you"* and *"You love I hello"* would be very challenging.
For the LLM to understand sentence order, an additional *cue* is needed and is usually applied in the form of *positional encodings* (or also called *positional embeddings*).
Positional encodings, encode the position of each token into a numerical presentation that the LLM can leverage to better understand sentence order.
The authors of the [*Attention Is All You Need*](https://huggingface.co/papers/1706.03762) paper introduced sinusoidal positional embeddings \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) .
where each vector \\( \mathbf{p}_i \\) is computed as a sinusoidal function of its position \\( i \\) .
The positional encodings are then simply added to the input sequence vectors \\( \mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N \\) = \\( \mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N \\) thereby cueing the model to better learn sentence order.
The authors of the [*Attention Is All You Need*](https://huggingface.co/papers/1706.03762) paper introduced sinusoidal positional embeddings $\mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N$ .
where each vector $\mathbf{p}_i$ is computed as a sinusoidal function of its position $i$ .
The positional encodings are then simply added to the input sequence vectors $\mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N$ = $\mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N$ thereby cueing the model to better learn sentence order.
Instead of using fixed position embeddings, others (such as [Devlin et al.](https://huggingface.co/papers/1810.04805)) used learned positional encodings for which the positional embeddings
\\( \mathbf{P} \\) are learned during training.
$\mathbf{P}$ are learned during training.
Sinusoidal and learned position embeddings used to be the predominant methods to encode sentence order into LLMs, but a couple of problems related to these positional encodings were found:
1. Sinusoidal and learned position embeddings are both absolute positional embeddings, *i.e.* encoding a unique embedding for each position id: \\( 0, \ldots, N \\) . As shown by [Huang et al.](https://huggingface.co/papers/2009.13658) and [Su et al.](https://huggingface.co/papers/2104.09864), absolute positional embeddings lead to poor LLM performance for long text inputs. For long text inputs, it is advantageous if the model learns the relative positional distance input tokens have to each other instead of their absolute position.
2. When using learned position embeddings, the LLM has to be trained on a fixed input length \\( N \\), which makes it difficult to extrapolate to an input length longer than what it was trained on.
1. Sinusoidal and learned position embeddings are both absolute positional embeddings, *i.e.* encoding a unique embedding for each position id: $0, \ldots, N$ . As shown by [Huang et al.](https://huggingface.co/papers/2009.13658) and [Su et al.](https://huggingface.co/papers/2104.09864), absolute positional embeddings lead to poor LLM performance for long text inputs. For long text inputs, it is advantageous if the model learns the relative positional distance input tokens have to each other instead of their absolute position.
2. When using learned position embeddings, the LLM has to be trained on a fixed input length $N$, which makes it difficult to extrapolate to an input length longer than what it was trained on.
Recently, relative positional embeddings that can tackle the above mentioned problems have become more popular, most notably:
- [Rotary Position Embedding (RoPE)](https://huggingface.co/papers/2104.09864)
- [ALiBi](https://huggingface.co/papers/2108.12409)
- [Rotary Position Embedding (RoPE)](https://huggingface.co/papers/2104.09864)
- [ALiBi](https://huggingface.co/papers/2108.12409)
Both *RoPE* and *ALiBi* argue that it's best to cue the LLM about sentence order directly in the self-attention algorithm as it's there that word tokens are put into relation with each other. More specifically, sentence order should be cued by modifying the \\( \mathbf{QK}^T \\) computation.
Both *RoPE* and *ALiBi* argue that it's best to cue the LLM about sentence order directly in the self-attention algorithm as it's there that word tokens are put into relation with each other. More specifically, sentence order should be cued by modifying the $\mathbf{QK}^T$ computation.
Without going into too many details, *RoPE* notes that positional information can be encoded into query-key pairs, *e.g.* \\( \mathbf{q}_i \\) and \\( \mathbf{x}_j \\) by rotating each vector by an angle \\( \theta * i \\) and \\( \theta * j \\) respectively with \\( i, j \\) describing each vectors sentence position:
Without going into too many details, *RoPE* notes that positional information can be encoded into query-key pairs, *e.g.* $\mathbf{q}_i$ and $\mathbf{x}_j$ by rotating each vector by an angle $\theta * i$ and $\theta * j$ respectively with $i, j$ describing each vectors sentence position:
$$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta, i -j} \mathbf{{x}}_j. $$
\\( \mathbf{R}_{\theta, i - j} \\) thereby represents a rotational matrix. \\( \theta \\) is *not* learned during training, but instead set to a pre-defined value that depends on the maximum input sequence length during training.
$\mathbf{R}_{\theta, i - j}$ thereby represents a rotational matrix. $\theta$ is *not* learned during training, but instead set to a pre-defined value that depends on the maximum input sequence length during training.
> By doing so, the probability score between \\( \mathbf{q}_i \\) and \\( \mathbf{q}_j \\) is only affected if \\( i \ne j \\) and solely depends on the relative distance \\( i - j \\) regardless of each vector's specific positions \\( i \\) and \\( j \\) .
> By doing so, the probability score between $\mathbf{q}_i$ and $\mathbf{q}_j$ is only affected if $i \ne j$ and solely depends on the relative distance $i - j$ regardless of each vector's specific positions $i$ and $j$ .
*RoPE* is used in multiple of today's most important LLMs, such as:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**Llama**](https://huggingface.co/papers/2302.13971)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**Llama**](https://huggingface.co/papers/2302.13971)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
As an alternative, *ALiBi* proposes a much simpler relative position encoding scheme. The relative distance that input tokens have to each other is added as a negative integer scaled by a pre-defined value `m` to each query-key entry of the \\( \mathbf{QK}^T \\) matrix right before the softmax computation.
As an alternative, *ALiBi* proposes a much simpler relative position encoding scheme. The relative distance that input tokens have to each other is added as a negative integer scaled by a pre-defined value `m` to each query-key entry of the $\mathbf{QK}^T$ matrix right before the softmax computation.
![](/blog/assets/163_optimize_llm/alibi.png)
@ -417,19 +418,20 @@ As shown in the [ALiBi](https://huggingface.co/papers/2108.12409) paper, this si
*ALiBi* is used in multiple of today's most important LLMs, such as:
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
Both *RoPE* and *ALiBi* position encodings can extrapolate to input lengths not seen during training whereas it has been shown that extrapolation works much better out-of-the-box for *ALiBi* as compared to *RoPE*.
For ALiBi, one simply increases the values of the lower triangular position matrix to match the length of the input sequence.
For *RoPE*, keeping the same \\( \theta \\) that was used during training leads to poor results when passing text inputs much longer than those seen during training, *c.f* [Press et al.](https://huggingface.co/papers/2108.12409). However, the community has found a couple of effective tricks that adapt \\( \theta \\), thereby allowing *RoPE* position embeddings to work well for extrapolated text input sequences (see [here](https://github.com/huggingface/transformers/pull/24653)).
For *RoPE*, keeping the same $\theta$ that was used during training leads to poor results when passing text inputs much longer than those seen during training, *c.f* [Press et al.](https://huggingface.co/papers/2108.12409). However, the community has found a couple of effective tricks that adapt $\theta$, thereby allowing *RoPE* position embeddings to work well for extrapolated text input sequences (see [here](https://github.com/huggingface/transformers/pull/24653)).
> Both RoPE and ALiBi are relative positional embeddings that are *not* learned during training, but instead are based on the following intuitions:
- Positional cues about the text inputs should be given directly to the \\( QK^T \\) matrix of the self-attention layer
- The LLM should be incentivized to learn a constant *relative* distance positional encodings have to each other
- The further text input tokens are from each other, the lower the probability of their query-value probability. Both RoPE and ALiBi lower the query-key probability of tokens far away from each other. RoPE by decreasing their vector product by increasing the angle between the query-key vectors. ALiBi by adding large negative numbers to the vector product
In conclusion, LLMs that are intended to be deployed in tasks that require handling large text inputs are better trained with relative positional embeddings, such as RoPE and ALiBi. Also note that even if an LLM with RoPE and ALiBi has been trained only on a fixed length of say \\( N_1 = 2048 \\) it can still be used in practice with text inputs much larger than \\( N_1 \\), like \\( N_2 = 8192 > N_1 \\) by extrapolating the positional embeddings.
- Positional cues about the text inputs should be given directly to the $\mathbf{QK}^T$ matrix of the self-attention layer.
- The LLM should be incentivized to learn a constant *relative* distance positional encoding.
- The further text input tokens are from each other, the lower the probability of their query-value probability. Both RoPE and ALiBi lower the query-key probability of tokens far away from each other. RoPE lowers by decreasing their vector product by increasing the angle between the query-key vectors. ALiBi lowers by adding large negative numbers to the vector product.
In conclusion, LLMs that are intended to be deployed in tasks that require handling large text inputs are better trained with relative positional embeddings, such as RoPE and ALiBi. Also note that even if an LLM with RoPE and ALiBi has been trained only on a fixed length of say $N_1 = 2048$ it can still be used in practice with text inputs much larger than $N_1$, like $N_2 = 8192 > N_1$ by extrapolating the positional embeddings.
### 3.2 The key-value cache
@ -468,7 +470,7 @@ As we can see every time we increase the text input tokens by the just sampled t
With very few exceptions, LLMs are trained using the [causal language modeling objective](https://huggingface.co/docs/transformers/tasks/language_modeling#causal-language-modeling) and therefore mask the upper triangle matrix of the attention score - this is why in the two diagrams above the attention scores are left blank (*a.k.a* have 0 probability). For a quick recap on causal language modeling you can refer to the [*Illustrated Self Attention blog*](https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention).
As a consequence, tokens *never* depend on previous tokens, more specifically the \\( \mathbf{q}_i \\) vector is never put in relation with any key, values vectors \\( \mathbf{k}_j, \mathbf{v}_j \\) if \\( j > i \\) . Instead \\( \mathbf{q}_i \\) only attends to previous key-value vectors \\( \mathbf{k}_{m < i}, \mathbf{v}_{m < i} \text{ , for } m \in \{0, \ldots i - 1\} \\). In order to reduce unnecessary computation, one can therefore cache each layer's key-value vectors for all previous timesteps.
As a consequence, tokens *never* depend on later tokens, more specifically the $\mathbf{q}_i$ vector is never put in relation with any key, values vectors $\mathbf{k}_j, \mathbf{v}_j$ if $j > i$ . Instead $\mathbf{q}_i$ only attends to previous key-value vectors $\mathbf{k}_{m < i}, \mathbf{v}_{m < i} \text{ , for } m \in \{0, \ldots i - 1\}$. In order to reduce unnecessary computation, one can therefore cache each layer's key-value vectors for all previous timesteps.
In the following, we will tell the LLM to make use of the key-value cache by retrieving and forwarding it for each forward pass.
In Transformers, we can retrieve the key-value cache by passing the `use_cache` flag to the `forward` call and can then pass it with the current token.
@ -484,7 +486,7 @@ for _ in range(5):
next_token_id = torch.argmax(next_logits, dim=-1)
print("shape of input_ids", next_token_id.shape)
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
print("length of key-value cache", past_key_values.get_seq_length()) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
generated_tokens.append(next_token_id.item())
generated_text = tokenizer.batch_decode(generated_tokens)
@ -509,11 +511,12 @@ length of key-value cache 24
As one can see, when using the key-value cache the text input tokens are *not* increased in length, but remain a single input vector. The length of the key-value cache on the other hand is increased by one at every decoding step.
> Making use of the key-value cache means that the \\( \mathbf{QK}^T \\) is essentially reduced to \\( \mathbf{q}_c\mathbf{K}^T \\) with \\( \mathbf{q}_c \\) being the query projection of the currently passed input token which is *always* just a single vector.
> Making use of the key-value cache means that the $\mathbf{QK}^T$ is essentially reduced to $\mathbf{q}_c\mathbf{K}^T$ with $\mathbf{q}_c$ being the query projection of the currently passed input token which is *always* just a single vector.
Using the key-value cache has two advantages:
- Significant increase in computational efficiency as less computations are performed compared to computing the full \\( \mathbf{QK}^T \\) matrix. This leads to an increase in inference speed
- The maximum required memory is not increased quadratically with the number of generated tokens, but only increases linearly.
- Significant increase in computational efficiency as less computations are performed compared to computing the full $\mathbf{QK}^T$ matrix. This leads to an increase in inference speed
- The maximum required memory is not increased quadratically with the number of generated tokens, but only increases linearly.
> One should *always* make use of the key-value cache as it leads to identical results and a significant speed-up for longer input sequences. Transformers has the key-value cache enabled by default when making use of the text pipeline or the [`generate` method](https://huggingface.co/docs/transformers/main_classes/text_generation). We have an entire guide dedicated to caches [here](./kv_cache).
@ -535,10 +538,12 @@ Assistant: Germany has ca. 81 million inhabitants
```
In this chat, the LLM runs auto-regressive decoding twice:
1. The first time, the key-value cache is empty and the input prompt is `"User: How many people live in France?"` and the model auto-regressively generates the text `"Roughly 75 million people live in France"` while increasing the key-value cache at every decoding step.
2. The second time the input prompt is `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany?"`. Thanks to the cache, all key-value vectors for the first two sentences are already computed. Therefore the input prompt only consists of `"User: And how many in Germany?"`. While processing the shortened input prompt, its computed key-value vectors are concatenated to the key-value cache of the first decoding. The second Assistant's answer `"Germany has ca. 81 million inhabitants"` is then auto-regressively generated with the key-value cache consisting of encoded key-value vectors of `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany?"`.
Two things should be noted here:
1. Keeping all the context is crucial for LLMs deployed in chat so that the LLM understands all the previous context of the conversation. E.g. for the example above the LLM needs to understand that the user refers to the population when asking `"And how many are in Germany"`.
2. The key-value cache is extremely useful for chat as it allows us to continuously grow the encoded chat history instead of having to re-encode the chat history again from scratch (as e.g. would be the case when using an encoder-decoder architecture).
@ -574,7 +579,7 @@ def bytes_to_megabytes(bytes):
Answer: The function takes a number of bytes as input and returns the number of
```
Great, no additional time is spent recomputing the same key and values for the attention layer! There is however one catch. While the required peak memory for the \\( \mathbf{QK}^T \\) matrix is significantly reduced, holding the key-value cache in memory can become very memory expensive for long input sequences or multi-turn chat. Remember that the key-value cache needs to store the key-value vectors for all previous input vectors \\( \mathbf{x}_i \text{, for } i \in \{1, \ldots, c - 1\} \\) for all self-attention layers and for all attention heads.
Great, no additional time is spent recomputing the same key and values for the attention layer! There is however one catch. While the required peak memory for the $\mathbf{QK}^T$ matrix is significantly reduced, holding the key-value cache in memory can become very memory expensive for long input sequences or multi-turn chat. Remember that the key-value cache needs to store the key-value vectors for all previous input vectors $\mathbf{x}_i \text{, for } i \in \{1, \ldots, c - 1\}$ for all self-attention layers and for all attention heads.
Let's compute the number of float values that need to be stored in the key-value cache for the LLM `bigcode/octocoder` that we used before.
The number of float values amounts to two times the sequence length times the number of attention heads times the attention head dimension and times the number of layers.
@ -598,21 +603,21 @@ Researchers have proposed two methods that allow to significantly reduce the mem
[Multi-Query-Attention](https://huggingface.co/papers/1911.02150) was proposed in Noam Shazeer's *Fast Transformer Decoding: One Write-Head is All You Need* paper. As the title says, Noam found out that instead of using `n_head` key-value projections weights, one can use a single head-value projection weight pair that is shared across all attention heads without that the model's performance significantly degrades.
> By using a single head-value projection weight pair, the key value vectors \\( \mathbf{k}_i, \mathbf{v}_i \\) have to be identical across all attention heads which in turn means that we only need to store 1 key-value projection pair in the cache instead of `n_head` ones.
> By using a single head-value projection weight pair, the key value vectors $\mathbf{k}_i, \mathbf{v}_i$ have to be identical across all attention heads which in turn means that we only need to store 1 key-value projection pair in the cache instead of `n_head` ones.
As most LLMs use between 20 and 100 attention heads, MQA significantly reduces the memory consumption of the key-value cache. For the LLM used in this notebook we could therefore reduce the required memory consumption from 15 GB to less than 400 MB at an input sequence length of 16000.
In addition to memory savings, MQA also leads to improved computational efficiency as explained in the following.
In auto-regressive decoding, large key-value vectors need to be reloaded, concatenated with the current key-value vector pair to be then fed into the \\( \mathbf{q}_c\mathbf{K}^T \\) computation at every step. For auto-regressive decoding, the required memory bandwidth for the constant reloading can become a serious time bottleneck. By reducing the size of the key-value vectors less memory needs to be accessed, thus reducing the memory bandwidth bottleneck. For more detail, please have a look at [Noam's paper](https://huggingface.co/papers/1911.02150).
In auto-regressive decoding, large key-value vectors need to be reloaded, concatenated with the current key-value vector pair to be then fed into the $\mathbf{q}_c\mathbf{K}^T$ computation at every step. For auto-regressive decoding, the required memory bandwidth for the constant reloading can become a serious time bottleneck. By reducing the size of the key-value vectors less memory needs to be accessed, thus reducing the memory bandwidth bottleneck. For more detail, please have a look at [Noam's paper](https://huggingface.co/papers/1911.02150).
The important part to understand here is that reducing the number of key-value attention heads to 1 only makes sense if a key-value cache is used. The peak memory consumption of the model for a single forward pass without key-value cache stays unchanged as every attention head still has a unique query vector so that each attention head still has a different \\( \mathbf{QK}^T \\) matrix.
The important part to understand here is that reducing the number of key-value attention heads to 1 only makes sense if a key-value cache is used. The peak memory consumption of the model for a single forward pass without key-value cache stays unchanged as every attention head still has a unique query vector so that each attention head still has a different $\mathbf{QK}^T$ matrix.
MQA has seen wide adoption by the community and is now used by many of the most popular LLMs:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**PaLM**](https://huggingface.co/papers/2204.02311)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
Also, the checkpoint used in this notebook - `bigcode/octocoder` - makes use of MQA.

View File

@ -42,7 +42,3 @@ set this to `False`.
## Pushing to the Hub
[[autodoc]] utils.PushToHubMixin
## Sharded checkpoints
[[autodoc]] modeling_utils.load_sharded_checkpoint

View File

@ -154,7 +154,6 @@ for label, score in zip(candidate_labels, probs):
## AlignConfig
[[autodoc]] AlignConfig
- from_text_vision_configs
## AlignTextConfig

View File

@ -100,22 +100,29 @@ for label, prob in zip(labels, probs[0]):
- [`AltCLIPProcessor`] combines [`CLIPImageProcessor`] and [`XLMRobertaTokenizer`] into a single instance to encode text and prepare images.
## AltCLIPConfig
[[autodoc]] AltCLIPConfig
## AltCLIPTextConfig
[[autodoc]] AltCLIPTextConfig
## AltCLIPVisionConfig
[[autodoc]] AltCLIPVisionConfig
## AltCLIPModel
[[autodoc]] AltCLIPModel
## AltCLIPTextModel
[[autodoc]] AltCLIPTextModel
## AltCLIPVisionModel
[[autodoc]] AltCLIPVisionModel
## AltCLIPProcessor
[[autodoc]] AltCLIPProcessor

View File

@ -43,10 +43,11 @@ Bark can be optimized with just a few extra lines of code, which **significantly
You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision.
```python
from transformers import BarkModel, infer_device
from transformers import BarkModel
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
model = BarkModel.from_pretrained("suno/bark-small", dtype=torch.float16).to(device)
```
@ -98,10 +99,11 @@ To put this into perspective, on an NVIDIA A100 and when generating 400 semantic
You can combine optimization techniques, and use CPU offload, half-precision and Flash Attention 2 all at once.
```python
from transformers import BarkModel, infer_device
from transformers import BarkModel
from accelerate import Accelerator
import torch
device = infer_device()
device = Accelerator().device
# load in fp16 and use Flash Attention 2
model = BarkModel.from_pretrained("suno/bark-small", dtype=torch.float16, attn_implementation="flash_attention_2").to(device)

View File

@ -23,6 +23,7 @@ rendered properly in your Markdown viewer.
</div>
# BART
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. It's pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.

View File

@ -60,7 +60,6 @@ If you're interested in submitting a resource to be included here, please feel f
## Blip2Config
[[autodoc]] Blip2Config
- from_vision_qformer_text_configs
## Blip2VisionConfig

View File

@ -87,7 +87,6 @@ Refer to this [notebook](https://github.com/huggingface/notebooks/blob/main/exam
## BlipConfig
[[autodoc]] BlipConfig
- from_text_vision_configs
## BlipTextConfig

View File

@ -38,7 +38,7 @@ The abstract from the paper is the following:
efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating
more compute and model capacity where increased data complexity demands it. We present the first flop controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.*
## Usage Tips:
## Usage Tips
- **Dual Model Architecture**: BLT consists of two separate trained models:
- **Patcher (Entropy Model)**: A smaller transformer model that predicts byte-level entropy to determine patch boundaries and segment input.

View File

@ -25,8 +25,7 @@ rendered properly in your Markdown viewer.
## Overview
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models
](https://huggingface.co/papers/2405.09818) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models](https://huggingface.co/papers/2405.09818) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The abstract from the paper is the following:

View File

@ -76,7 +76,6 @@ Currently, following scales of pretrained Chinese-CLIP models are available on
## ChineseCLIPConfig
[[autodoc]] ChineseCLIPConfig
- from_text_vision_configs
## ChineseCLIPTextConfig

View File

@ -63,7 +63,6 @@ print(f"Text embeddings: {text_features}")
## ClapConfig
[[autodoc]] ClapConfig
- from_text_audio_configs
## ClapTextConfig

View File

@ -87,7 +87,6 @@ print(f"Most likely label: {most_likely_label} with probability: {probs[0][most_
## CLIPConfig
[[autodoc]] CLIPConfig
- from_text_vision_configs
## CLIPTextConfig

View File

@ -72,7 +72,6 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
## CLIPSegConfig
[[autodoc]] CLIPSegConfig
- from_text_vision_configs
## CLIPSegTextConfig

View File

@ -39,7 +39,7 @@ The original code can be found [here](https://github.com/neonbjb/tortoise-tts).
3. The use of the [`ClvpModelForConditionalGeneration.generate()`] method is strongly recommended for tortoise usage.
4. Note that the CLVP model expects the audio to be sampled at 22.05 kHz contrary to other audio models which expects 16 kHz.
## Brief Explanation:
## Brief Explanation
- The [`ClvpTokenizer`] tokenizes the text input, and the [`ClvpFeatureExtractor`] extracts the log mel-spectrogram from the desired audio.
- [`ClvpConditioningEncoder`] takes those text tokens and audio representations and converts them into embeddings conditioned on the text and audio.
@ -73,7 +73,6 @@ Example :
## ClvpConfig
[[autodoc]] ClvpConfig
- from_sub_model_configs
## ClvpEncoderConfig

View File

@ -107,10 +107,11 @@ import requests
import torch
from PIL import Image
from transformers import BitsAndBytesConfig, ColQwen2ForRetrieval, ColQwen2Processor, infer_device
from transformers import BitsAndBytesConfig, ColQwen2ForRetrieval, ColQwen2Processor
from accelerate import Accelerator
model_name = "vidore/colqwen2-v1.0-hf"
device = infer_device()
device = Accelerator().device
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(

View File

@ -38,10 +38,11 @@ CSM can be used to simply generate speech from a text prompt:
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor, infer_device
from transformers import CsmForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
model_id = "sesame/csm-1b"
device = infer_device()
device = Accelerator().device
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
@ -72,11 +73,12 @@ CSM can be used to generate speech given a conversation, allowing consistency in
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor, infer_device
from transformers import CsmForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = infer_device()
device = Accelerator().device
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
@ -117,11 +119,12 @@ CSM supports batched inference!
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor, infer_device
from transformers import CsmForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = infer_device()
device = Accelerator().device
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
@ -306,11 +309,12 @@ print("="*50)
CSM Transformers integration supports training!
```python
from transformers import CsmForConditionalGeneration, AutoProcessor, infer_device
from transformers import CsmForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = infer_device()
device = Accelerator().device
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)

View File

@ -0,0 +1,187 @@
<-- Copyright 2025 the HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer.
-->
*This model was released on {release_date} and added to Hugging Face Transformers on 2025-10-09.*
# Code World Model (CWM)
## Overview
The Code World Model (CWM) model was proposed in [CWM: An Open-Weights LLM for Research on Code
Generation with World Models](https://ai.facebook.com/research/publications/cwm) by Meta FAIR CodeGen Team.
CWM is an LLM for code generation and reasoning about code that has, in particular, been trained
to better represent and reason about how code and commands affect the state of a program or system.
Specifically, we mid-trained CWM on a large number of observation-action trajectories from Python
execution traces and agentic interactions in containerized environments. We post-trained with
extensive multi-task RL in verifiable coding, math, and multi-turn software engineering environments.
The abstract from the paper is the following:
> *We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research
on code generation with world models. To improve code understanding beyond what can be learned
from training on static code alone, we mid-train CWM on a large amount of observation-action
trajectories from Python interpreter and agentic Docker environments, and perform extensive multi-
task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With
CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords
for improving code generation with reasoning and planning in computational environments. We
present first steps of how world models can benefit agentic coding, enable step-by-step simulation of
Python code execution, and show early results of how reasoning can benefit from the latter. CWM is
a dense, decoder-only LLM trained with a context size of up to 131 k tokens. Independent of its world
modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches
pass@1 scores of 65.8 % on SWE-bench Verified (with test-time scaling), 68.9 % on LiveCodeBench,
96.6 % on Math-500, and 76.0 % on AIME 2024. To support further research on code world modeling,
we release model checkpoints after mid-training, SFT, and RL.*
Tips:
CWM requires a dedicated system prompt to function optimally during inference. Without proper prompt
configuration, CWM's output quality may be significantly degraded. The following serves as the default
system prompt for reasoning tasks. For agentic workflows, append the relevant tool specifications
after this base prompt. Checkout the original code repository for more details.
```text
You are a helpful AI assistant. You always reason before responding, using the following format:
<think>
your internal reasoning
</think>
your external response
```
This model was contributed by [Meta FAIR CodeGen Team](https://huggingface.co/facebook).
The original code can be found [here](https://github.com/facebookresearch/cwm).
## Usage examples
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'facebook/cwm'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
dtype="auto",
device_map="auto"
)
system_prompt = """
You are a helpful AI assistant. You always reason before responding, using the following format:
<think>
your internal reasoning
</think>
your external response
""".strip()
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Write a haiku about recursion in programming."}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True, # Switches between thinking and non-thinking modes. Default is True.
preserve_previous_think=True, # Switches between keeping thinking blocks from previous messages or not. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
print(tokenizer.decode(output_ids))
```
<details>
<summary>Produces the following output:</summary>
Okay, I need to write a haiku about recursion in programming. Let's start by recalling what recursion is. Recursion is a programming technique where a function calls itself in its own definition, often used to solve problems that can be broken down into smaller, similar sub-problems.
A haiku is a three-line poem with a syllable count of 5-7-5. So, I need to capture the essence of recursion in a concise and poetic way. Let's think about the key elements of recursion: the function calling itself, the base case that stops the recursion, and the idea of breaking down problems into smaller parts.
Maybe I can use imagery related to mirrors or reflections, since recursion often involves a function reflecting or repeating itself. Alternatively, I could use natural imagery like a spiral or a tree, which suggests self-similar patterns.
Let me try to come up with some ideas. For example, "Function calls itself" could be a starting point. But how to make that into a haiku? Maybe something like:
Function calls itself
Base case stops the endless loop
Spiral of code
Hmm, that's a start. But maybe I can make it more poetic. Let's think about the idea of a function calling itself as a kind of infinite loop, but with a base case that stops it. That's like a spiral that unwinds at the center.
Another angle: recursion is often used for problems that have a recursive structure, like tree traversals or factorial calculations. Maybe I can use a natural image to represent that.
How about:
Branches split again
Leaves unfold in endless dance
Roots hold the base case
That's a bit more poetic. The branches splitting represent the recursive calls, the leaves unfolding could represent the processing of each sub-problem, and the roots holding the base case are what stops the recursion.
Alternatively, maybe something simpler:
Mirror within mirror
Reflections infinite deep
Base case breaks the glass
This uses the mirror metaphor to represent the function calling itself, with the base case being the point where the recursion stops, breaking the infinite reflection.
I think I like the mirror idea better. Let me refine that:
Mirror within mirror
Infinite reflections dance
Base case shatters glass
Yes, that seems to capture the idea of recursion well. The mirror represents the function calling itself, the infinite reflections are the recursive calls, and the base case shattering the glass is what stops the recursion.
Let me check the syllable count:
Mirror within mirror (5 syllables: Mir-ror-with-in-mir-ror)
Infinite reflections dance (7 syllables: In-fi-nite-ref-lec-tions-dance)
Base case shatters glass (5 syllables: Base-case-shat-ters-glass)
Yes, that fits the 5-7-5 structure. I think that's a good haiku about recursion.
</think>
Mirror within mirror
Infinite reflections dance
Base case shatters glass<|eot_id|>
</details>
## CwmConfig
[[autodoc]] CwmConfig
## CwmPreTrainedModel
[[autodoc]] CwmPreTrainedModel
- forward
## CwmModel
[[autodoc]] CwmModel
- forward
## CwmForCausalLM
[[autodoc]] CwmForCausalLM

View File

@ -28,6 +28,7 @@ This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber
The original code can be found [here](https://huggingface.co/deepseek-ai/DeepSeek-V2).
### Usage tips
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
## DeepseekV2Config

View File

@ -34,6 +34,7 @@ We are super happy to make this code community-powered, and would love to see ho
- static cache is not supported (this should be just a generation config issue / config shape issues)
### Usage tips
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
You can run the model in `FP8` automatically, using 2 nodes of 8 H100 should be more than enough!

View File

@ -46,9 +46,10 @@ The DepthPro model processes an input image by first downsampling it at multiple
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation, infer_device
>>> from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)

View File

@ -105,7 +105,7 @@ DETR can be naturally extended to perform panoptic segmentation (which unifies s
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2, which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned absolute position embeddings. By default, the parameter `position_embedding_type` of [`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of [`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the _num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the *num_boxes* variable in the *DetrLoss* class of *modeling_detr.py*. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models). Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of [`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use [`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding. Alternatively, one can also define a custom `collate_fn` in order to batch images together, using [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`. It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
@ -142,7 +142,7 @@ As a summary, consider the following table:
|------|------------------|-----------------------|-----------------------|
| **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `list[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `list[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |

View File

@ -42,9 +42,10 @@ tokens and decodes them back into audio.
### Generation with Text
```python
from transformers import AutoProcessor, DiaForConditionalGeneration, infer_device
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator
torch_device = infer_device()
torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"
text = ["[S1] Dia is an open weights text to dialogue model."]
@ -64,9 +65,10 @@ processor.save_audio(outputs, "example.wav")
```python
from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration, infer_device
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator
torch_device = infer_device()
torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
@ -91,9 +93,10 @@ processor.save_audio(outputs, "example_with_audio.wav")
```python
from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration, infer_device
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator
torch_device = infer_device()
torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")

View File

@ -33,6 +33,7 @@ The abstract from the paper is the following:
*Transformer tends to overallocate attention to irrelevant context. In this work, we introduce Diff Transformer, which amplifies attention to the relevant context while canceling noise. Specifically, the differential attention mechanism calculates attention scores as the difference between two separate softmax attention maps. The subtraction cancels noise, promoting the emergence of sparse attention patterns. Experimental results on language modeling show that Diff Transformer outperforms Transformer in various settings of scaling up model size and training tokens. More intriguingly, it offers notable advantages in practical applications, such as long-context modeling, key information retrieval, hallucination mitigation, in-context learning, and reduction of activation outliers. By being less distracted by irrelevant context, Diff Transformer can mitigate hallucination in question answering and text summarization. For in-context learning, Diff Transformer not only enhances accuracy but is also more robust to order permutation, which was considered as a chronic robustness issue. The results position Diff Transformer as a highly effective and promising architecture to advance large language models.*
### Usage tips
The hyperparameters of this model is the same as Llama model.
## DiffLlamaConfig

View File

@ -47,7 +47,7 @@ Our large model is faster and ahead of its Swin counterpart by 1.5% box AP in CO
Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.2 PQ)
and ADE20K (48.5 PQ), and instance segmentation model on Cityscapes (44.5 AP) and ADE20K (35.4 AP) (no extra data).
It also matches the state of the art specialized semantic segmentation models on ADE20K (58.2 mIoU),
and ranks second on Cityscapes (84.5 mIoU) (no extra data). *
and ranks second on Cityscapes (84.5 mIoU) (no extra data).*
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg"

View File

@ -178,3 +178,8 @@ print("Pooled output shape:", pooled_output.shape)
[[autodoc]] DINOv3ViTImageProcessorFast
- preprocess
## DINOv3ConvNextBackbone
[[autodoc]] DINOv3ConvNextBackbone
- forward

View File

@ -61,10 +61,10 @@ pipeline(image=image, question="What time is the coffee break?")
# pip install datasets
import torch
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = AutoModelForImageTextToText.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
@ -92,11 +92,11 @@ The example below uses [torchao](../quantization/torchao) to only quantize the w
# pip install datasets torchao
import torch
from datasets import load_dataset
from transformers import TorchAoConfig, AutoProcessor, AutoModelForVision2Seq
from transformers import TorchAoConfig, AutoProcessor, AutoModelForImageTextToText
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa", quantization_config=quantization_config)
model = AutoModelForImageTextToText.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa", quantization_config=quantization_config)
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
@ -119,14 +119,15 @@ print(answer)
```py
>>> import re
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel, infer_device
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from accelerate import Accelerator
>>> from datasets import load_dataset
>>> import torch
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> device = infer_device()
>>> device = Accelerator().device
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image
@ -161,14 +162,15 @@ print(answer)
```py
>>> import re
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel, infer_device
>>> from accelerate import Accelerator
>>> from datasets import load_dataset
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> import torch
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
>>> device = infer_device()
>>> device = Accelerator().device
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image

View File

@ -61,12 +61,13 @@ EdgeTAM can be used for automatic mask generation to segment all objects in an i
You can segment objects by providing a single point click on the object you want to segment:
```python
>>> from transformers import Sam2Processor, EdgeTamModel, infer_device
>>> from transformers import Sam2Processor, EdgeTamModel
from accelerate import Accelerator
>>> import torch
>>> from PIL import Image
>>> import requests
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = EdgeTamModel.from_pretrained("yonigozlan/edgetam-1").to(device)
>>> processor = Sam2Processor.from_pretrained("yonigozlan/edgetam-1")
@ -157,12 +158,13 @@ IoU scores: tensor([0.7616, 0.9465], device='cuda:0')
Process multiple images simultaneously for improved efficiency:
```python
>>> from transformers import Sam2Processor, EdgeTamModel, infer_device
>>> from transformers import Sam2Processor, EdgeTamModel
from accelerate import Accelerator
>>> import torch
>>> from PIL import Image
>>> import requests
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = EdgeTamModel.from_pretrained("yonigozlan/edgetam-1").to(device)
>>> processor = Sam2Processor.from_pretrained("yonigozlan/edgetam-1")
@ -303,7 +305,6 @@ EdgeTAM can use masks from previous predictions as input to refine segmentation:
... )
```
## EdgeTamConfig
[[autodoc]] EdgeTamConfig

View File

@ -12,13 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer.
-->
*This model was released on 2025-01-13 and added to Hugging Face Transformers on 2025-09-29.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
@ -51,10 +49,11 @@ EdgeTAM Video's key strength is its ability to track objects across video frames
#### Basic Video Tracking
```python
>>> from transformers import EdgeTamVideoModel, Sam2VideoProcessor, infer_device
>>> from transformers import EdgeTamVideoModel, Sam2VideoProcessor
from accelerate import Accelerator
>>> import torch
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = EdgeTamVideoModel.from_pretrained("yonigozlan/edgetam-video-1").to(device, dtype=torch.bfloat16)
>>> processor = Sam2VideoProcessor.from_pretrained("yonigozlan/edgetam-video-1")

View File

@ -61,7 +61,7 @@ message_list = [
]
]
input_dict = processor(
protein_informations, messages_list, return_tensors="pt", text_max_length=512, protein_max_length=1024
protein_inputs, messages_list, return_tensors="pt", text_max_length=512, protein_max_length=1024
)
with torch.no_grad():
generated_ids = hf_model.generate(**input_dict)

View File

@ -28,15 +28,19 @@ The abstract from the original FastSpeech2 paper is the following:
This model was contributed by [Connor Henderson](https://huggingface.co/connor-henderson). The original code can be found [here](https://github.com/espnet/espnet/blob/master/espnet2/tts/fastspeech2/fastspeech2.py).
## 🤗 Model Architecture
FastSpeech2's general structure with a Mel-spectrogram decoder was implemented, and the traditional transformer blocks were replaced with conformer blocks as done in the ESPnet library.
#### FastSpeech2 Model Architecture
![FastSpeech2 Model Architecture](https://www.microsoft.com/en-us/research/uploads/prod/2021/04/fastspeech2-1.png)
#### Conformer Blocks
![Conformer Blocks](https://www.researchgate.net/profile/Hirofumi-Inaguma-2/publication/344911155/figure/fig2/AS:951455406108673@1603856054097/An-overview-of-Conformer-block.png)
#### Convolution Module
![Convolution Module](https://d3i71xaburhd42.cloudfront.net/8809d0732f6147d4ad9218c8f9b20227c837a746/2-Figure1-1.png)
## 🤗 Transformers Usage

View File

@ -40,9 +40,9 @@ The original checkpoints can be found [here](https://github.com/google-research/
The model is pretty heavy (~40GB in half precision) so if you just want to run the model, make sure you load your model in 8bit, and use `device_map="auto"` to make sure you don't have any OOM issue!
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-ul2", load_in_8bit=True, device_map="auto")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-ul2", quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("google/flan-ul2")
>>> inputs = tokenizer("A step by step recipe to make bolognese pasta:", return_tensors="pt")

View File

@ -60,8 +60,9 @@ Tips:
In the following, we demonstrate how to use `glm-4-9b-chat` for the inference. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
>>> device = infer_device() # the device to load the model onto
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
>>> device = Accelerator().device # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("THUDM/glm-4-9b-chat", device_map="auto", trust_remote_code=True)
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")

View File

@ -19,6 +19,26 @@ rendered properly in your Markdown viewer.
## Overview
Both **GLM-4.6** and **GLM-4.5** language model use this class. The implementation in transformers does not include an MTP layer.
### GLM-4.6
Compared with GLM-4.5, **GLM-4.6** brings several key improvements:
* **Longer context window:** The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks.
* **Superior coding performance:** The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages.
* **Advanced reasoning:** GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability.
* **More capable agents:** GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks.
* **Refined writing:** Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.
We evaluated GLM-4.6 across eight public benchmarks covering agents, reasoning, and coding. Results show clear gains over GLM-4.5, with GLM-4.6 also holding competitive advantages over leading domestic and international models such as **DeepSeek-V3.1-Terminus** and **Claude Sonnet 4**.
![bench](https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/bench_glm46.png)
For more eval results, show cases, and technical details, please visit our [technical blog](https://z.ai/blog/glm-4.6).
### GLM-4.5
The [**GLM-4.5**](https://huggingface.co/papers/2508.06471) series models are foundation models designed for intelligent agents, MoE variants are documented here as Glm4Moe.
GLM-4.5 has **355** billion total parameters with **32** billion active parameters, while GLM-4.5-Air adopts a more compact design with **106** billion total parameters and **12** billion active parameters. GLM-4.5 models unify reasoning, coding, and intelligent agent capabilities to meet the complex demands of intelligent agent applications.

View File

@ -132,10 +132,11 @@ Using GLM-4.1V with video input is similar to using it with image input.
The model can process video data and generate text based on the content of the video.
```python
from transformers import AutoProcessor, Glm4vForConditionalGeneration, infer_device
from transformers import AutoProcessor, Glm4vForConditionalGeneration
from accelerate import Accelerator
import torch
device = f"{infer_device()}:0"
device = Accelerator().device
processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking")
model = Glm4vForConditionalGeneration.from_pretrained(

View File

@ -48,9 +48,10 @@ The original code can be found [here](https://github.com/Ucas-HaoranWei/GOT-OCR2
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -73,9 +74,10 @@ The original code can be found [here](https://github.com/Ucas-HaoranWei/GOT-OCR2
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -102,9 +104,10 @@ GOT-OCR2 can also generate formatted text, such as markdown or LaTeX. Here is an
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -130,9 +133,10 @@ Here is an example of how to process multiple pages at once:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -159,9 +163,10 @@ Here is an example of how to process cropped patches:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", dtype=torch.bfloat16, device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -188,7 +193,7 @@ GOT supports interactive OCR, where the user can specify the region to be recogn
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)
@ -214,10 +219,11 @@ Here is an example of how to process sheet music:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, infer_device
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator
>>> import verovio
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = AutoModelForImageTextToText.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", device_map=device)
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf", use_fast=True)

View File

@ -64,8 +64,9 @@ To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, infer_device
>>> device = infer_device() # the device to load the model onto
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
>>> device = Accelerator().device # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("bigcode/gpt_bigcode-santacoder", dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/gpt_bigcode-santacoder")

View File

@ -101,6 +101,7 @@ Below is an expected speedup diagram that compares pure inference time between t
</div>
## Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
@ -123,6 +124,7 @@ On a local benchmark (rtx3080ti-16GB, PyTorch 2.2.1, OS Ubuntu 22.04) using `flo
following speedups during training and inference.
### Training
| Batch size | Seq len | Time per batch (Eager - s) | Time per batch (SDPA - s) | Speedup (%) | Eager peak mem (MB) | SDPA peak mem (MB) | Mem saving (%) |
|-----------:|-----------:|---------------------------:|-----------------------------:|------------:|--------------------:|-------------------:|------------------:|
| 1 | 128 | 0.024 | 0.019 | 28.945 | 1789.95 | 1789.95 | 0 |
@ -142,6 +144,7 @@ following speedups during training and inference.
| 4 | 2048 | OOM | 0.731 | / | OOM | 12705.1 | SDPA does not OOM |
### Inference
| Batch size | Seq len | Per token latency Eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem Eager (MB) | Mem SDPA (MB) | Mem saved (%) |
|--------------:|-------------:|--------------------------------:|-------------------------------:|---------------:|------------------:|----------------:|-----------------:|
| 1 | 128 | 6.569 | 5.858 | 12.14 | 974.831 | 974.826 | 0 |

View File

@ -41,7 +41,7 @@ The example below demonstrates how to generate text with [`Pipeline`] or the [`A
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation",
@ -52,7 +52,7 @@ pipeline("人とAIが協調するためには、")
</hfoption>
<hfoption id="AutoModel">
```py
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -112,6 +112,7 @@ visualizer("<img>What is shown in this image?")
</div>
## Resources
Refer to the [Training a better GPT model: Learnings from PaLM](https://medium.com/ml-abeja/training-a-better-gpt-2-93b157662ae4) blog post for more details about how ABEJA trained GPT-NeoX-Japanese.
## GPTNeoXJapaneseConfig

View File

@ -35,8 +35,8 @@ The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
- **Attention Sinks with Flex Attention**: When using flex attention, attention sinks require special handling. Unlike with standard attention implementations where sinks can be added directly to attention scores, flex attention `score_mod` function operates on individual score elements rather than the full attention matrix. Therefore, attention sinks renormalization have to be applied after the flex attention computations by renormalizing the outputs using the log-sum-exp (LSE) values returned by flex attention.
- **Attention Sinks with Flex Attention**: When using flex attention, attention sinks require special handling. Unlike with standard attention implementations where sinks can be added directly to attention scores, flex attention `score_mod` function operates on individual score elements rather than the full attention matrix. Therefore, attention sinks renormalization have to be applied after the flex attention computations by renormalizing the outputs using the log-sum-exp (LSE) values returned by flex attention.
<INSERT TIPS ABOUT MODEL HERE>

View File

@ -38,10 +38,11 @@ This model was contributed by [Stella Biderman](https://huggingface.co/stellaath
which could be used to further minimize the RAM usage:
```python
>>> from transformers import GPTJForCausalLM, infer_device
>>> from transformers import GPTJForCausalLM
from accelerate import Accelerator
>>> import torch
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = GPTJForCausalLM.from_pretrained(
... "EleutherAI/gpt-j-6B",
... revision="float16",
@ -93,10 +94,11 @@ model.
...or in float16 precision:
```python
>>> from transformers import GPTJForCausalLM, AutoTokenizer, infer_device
>>> from transformers import GPTJForCausalLM, AutoTokenizer
from accelerate import Accelerator
>>> import torch
>>> device = infer_device()
>>> device = Accelerator().device
>>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", dtype=torch.float16).to(device)
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

View File

@ -42,10 +42,11 @@ fine-tune for translation or summarization.
The `generate()` method can be used to generate text using GPTSAN-Japanese model.
```python
>>> from transformers import AutoModel, AutoTokenizer, infer_device
>>> from transformers import AutoModel, AutoTokenizer
from accelerate import Accelerator
>>> import torch
>>> device = infer_device()
>>> device = Accelerator().device
>>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
>>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
>>> x_tok = tokenizer("は、", prefix_text="織田信長", return_tensors="pt")
@ -78,6 +79,8 @@ When token_type_ids=None or all zero, it is equivalent to regular causal mask
for example:
>>> x_token = tokenizer("アイウエ")
```text
input_ids: | SOT | SEG | ア | イ | ウ | エ |
token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 |
prefix_lm_mask:
@ -87,8 +90,11 @@ SEG | 1 1 0 0 0 0 |
イ | 1 1 1 1 0 0 |
ウ | 1 1 1 1 1 0 |
エ | 1 1 1 1 1 1 |
```
>>> x_token = tokenizer("", prefix_text="アイウエ")
```text
input_ids: | SOT | ア | イ | ウ | エ | SEG |
token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 |
prefix_lm_mask:
@ -98,8 +104,11 @@ SOT | 1 1 1 1 1 0 |
ウ | 1 1 1 1 1 0 |
エ | 1 1 1 1 1 0 |
SEG | 1 1 1 1 1 1 |
```
>>> x_token = tokenizer("ウエ", prefix_text="アイ")
```text
input_ids: | SOT | ア | イ | SEG | ウ | エ |
token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 |
prefix_lm_mask:
@ -109,6 +118,7 @@ SOT | 1 1 1 0 0 0 |
SEG | 1 1 1 1 0 0 |
ウ | 1 1 1 1 1 0 |
エ | 1 1 1 1 1 1 |
```
### Spout Vector

View File

@ -22,6 +22,7 @@ rendered properly in your Markdown viewer.
</div>
## Overview
The [Granite Speech](https://huggingface.co/papers/2505.08699) model ([blog post](https://www.ibm.com/new/announcements/ibm-granite-3-3-speech-recognition-refined-reasoning-rag-loras)) is a multimodal language model, consisting of a speech encoder, speech projector, large language model, and LoRA adapter(s). More details regarding each component for the current (Granite 3.2 Speech) model architecture may be found below.
1. Speech Encoder: A [Conformer](https://huggingface.co/papers/2005.08100) encoder trained with Connectionist Temporal Classification (CTC) on character-level targets on ASR corpora. The encoder uses block-attention and self-conditioned CTC from the middle layer.

Some files were not shown because too many files have changed in this diff Show More