mirror of
https://github.com/huggingface/transformers.git
synced 2025-11-05 21:04:37 +08:00
Compare commits
16 Commits
cleanup_wo
...
vision_vis
| Author | SHA1 | Date | |
|---|---|---|---|
| 557ecce22e | |||
| f3b187027a | |||
| 2767a59df9 | |||
| c9f1003c70 | |||
| b356fce1da | |||
| af7f75e682 | |||
| 34ba5909a2 | |||
| fbec904fb0 | |||
| a1263dfe7b | |||
| 1878d6c4ff | |||
| a6a18efe53 | |||
| e581d2f2ce | |||
| 1f6822d114 | |||
| edb70ae15c | |||
| 27bc371bea | |||
| 58c619e809 |
1
.github/scripts/codeowners_for_review_action
vendored
1
.github/scripts/codeowners_for_review_action
vendored
@ -22,6 +22,7 @@ tests/generation/ @gante
|
||||
/src/transformers/models/auto/ @ArthurZucker
|
||||
/src/transformers/utils/ @ArthurZucker @Rocketknight1
|
||||
/src/transformers/loss/ @ArthurZucker
|
||||
/src/transformers/onnx/ @michaelbenayoun
|
||||
|
||||
# Specific files come after the sections/globs, so they take priority
|
||||
/.circleci/config.yml @ArthurZucker @ydshieh
|
||||
|
||||
4
.github/workflows/benchmark.yml
vendored
4
.github/workflows/benchmark.yml
vendored
@ -28,7 +28,7 @@ jobs:
|
||||
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
|
||||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --privileged --ipc host
|
||||
steps:
|
||||
- name: Get repo
|
||||
@ -52,7 +52,7 @@ jobs:
|
||||
commit_id=$GITHUB_SHA
|
||||
fi
|
||||
commit_msg=$(git show -s --format=%s | cut -c1-70)
|
||||
python3 benchmark_v2/run_benchmarks.py -b 32 -s 128 -n 256 --level 2 --branch-name "$BRANCH_NAME" --commit-id "$commit_id" --commit-message "$commit_msg" --model-id "$MODEL_ID" --log-level INFO --push-result-to-dataset "$DATASET_ID"
|
||||
python3 benchmark_v2/run_benchmarks.py -b 32 -s 128 -n 256 --branch-name "$BRANCH_NAME" --commit-id "$commit_id" --commit-message "$commit_msg" --model-id "$MODEL_ID" --log-level INFO --push-result-to-dataset "$DATASET_ID"
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
PUSH_TO_HUB_TOKEN: ${{ secrets.PUSH_TO_HUB_TOKEN }}
|
||||
|
||||
@ -9,7 +9,7 @@ jobs:
|
||||
uses: ./.github/workflows/benchmark_v2.yml
|
||||
with:
|
||||
runner: aws-g5-4xlarge-cache-use1-public-80
|
||||
container_image: huggingface/transformers-all-latest-gpu
|
||||
container_image: huggingface/transformers-pytorch-gpu
|
||||
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
|
||||
commit_sha: ${{ github.sha }}
|
||||
run_id: ${{ github.run_id }}
|
||||
|
||||
184
.github/workflows/build-docker-images.yml
vendored
184
.github/workflows/build-docker-images.yml
vendored
@ -45,59 +45,33 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-all-latest-gpu docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
flash-attn-ci-image:
|
||||
name: "PyTorch with Flash Attn [dev]"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-all-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
PYTORCH=2.8.0
|
||||
TORCHCODEC=0.7.0
|
||||
FLASH_ATTN=yes
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}:flash-attn
|
||||
tags: huggingface/transformers-all-latest-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-all-latest-gpu docker build
|
||||
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-torch-deepspeed-docker:
|
||||
name: "Latest PyTorch + DeepSpeed"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
group: aws-g4dn-2xlarge-cache
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
@ -130,8 +104,51 @@ jobs:
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
|
||||
latest-torch-deepspeed-docker-for-push-ci-daily-build:
|
||||
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
doc-builder:
|
||||
name: "Doc builder"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
@ -164,6 +181,44 @@ jobs:
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-pytorch:
|
||||
name: "Latest PyTorch [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-gpu
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on:
|
||||
@ -190,47 +245,29 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu build
|
||||
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
cache-latest-pytorch-amd:
|
||||
name: "Cache Latest Pytorch (AMD) Image"
|
||||
needs: latest-pytorch-amd
|
||||
runs-on:
|
||||
group: amd-mi325-1gpu
|
||||
steps:
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
-
|
||||
name: Pull and save docker image to cache
|
||||
run: |
|
||||
image="huggingface/transformers-pytorch-amd-gpu"
|
||||
final_path="/mnt/image-cache/transformers-pytorch-amd-gpu.tar"
|
||||
tmp_path="${final_path}.tmp"
|
||||
|
||||
echo "Pulling image: ${image}"
|
||||
docker pull "${image}"
|
||||
|
||||
echo "Saving to temp file: ${tmp_path}"
|
||||
docker save "${image}" -o "${tmp_path}"
|
||||
|
||||
echo "Moving to final path: ${final_path}"
|
||||
mv -f "${tmp_path}" "${final_path}"
|
||||
|
||||
echo "Cache populated successfully at ${final_path}"
|
||||
|
||||
latest-pytorch-deepspeed-amd:
|
||||
name: "PyTorch + DeepSpeed (AMD) [dev]"
|
||||
runs-on:
|
||||
@ -257,6 +294,19 @@ jobs:
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
@ -269,6 +319,8 @@ jobs:
|
||||
|
||||
latest-quantization-torch-docker:
|
||||
name: "Latest Pytorch + Quantization [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
|
||||
142
.github/workflows/check_failed_tests.yml
vendored
142
.github/workflows/check_failed_tests.yml
vendored
@ -6,6 +6,9 @@ on:
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
@ -21,13 +24,7 @@ on:
|
||||
commit_sha:
|
||||
required: false
|
||||
type: string
|
||||
pr_number:
|
||||
required: false
|
||||
type: string
|
||||
outputs:
|
||||
report:
|
||||
description: "Content of the report of new failures"
|
||||
value: ${{ jobs.process_new_failures_with_commit_info.outputs.report }}
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -64,15 +61,13 @@ jobs:
|
||||
- name: Check file
|
||||
id: check_file
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
if [ -f "ci_results_${job}/new_failures.json" ]; then
|
||||
echo "\`ci_results_${job}/new_failures.json\` exists, continue ..."
|
||||
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
|
||||
echo "process=true" >> $GITHUB_ENV
|
||||
echo "process=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "\`ci_results_${job}/new_failures.json\` doesn't exist, abort."
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
|
||||
echo "process=false" >> $GITHUB_ENV
|
||||
echo "process=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
@ -93,62 +88,27 @@ jobs:
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Get `START_SHA`
|
||||
- name: Get target commit
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
echo "START_SHA=$commit_sha" >> $GITHUB_ENV
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
# This is used if the CI is triggered from a pull request `self-comment-ci.yml` (after security check is verified)
|
||||
- name: Extract the base commit on `main` (of the merge commit created by Github) if it is a PR
|
||||
id: pr_info
|
||||
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const { data: pr } = await github.rest.pulls.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: ${{ inputs.pr_number }}
|
||||
});
|
||||
|
||||
const { data: merge_commit } = await github.rest.repos.getCommit({
|
||||
owner: pr.base.repo.owner.login,
|
||||
repo: pr.base.repo.name,
|
||||
ref: pr.merge_commit_sha,
|
||||
});
|
||||
|
||||
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
|
||||
|
||||
# Usually, `END_SHA` should be the commit of the last previous workflow run of the **SAME** (scheduled) workflow.
|
||||
# (This is why we don't need to specify `workflow_id` which would be fetched automatically in the python script.)
|
||||
- name: Get `END_SHA` from previous CI runs of the same workflow
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' && inputs.pr_number == '' }}
|
||||
env:
|
||||
ACCESS_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
run: |
|
||||
echo "END_SHA=$(TOKEN="$ACCESS_TOKEN" python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
# However, for workflow runs triggered by `issue_comment` (for pull requests), we want to check against the
|
||||
# parent commit (on `main`) of the `merge_commit` (dynamically created by GitHub). In this case, the goal is to
|
||||
# see if a reported failing test is actually ONLY failing on the `merge_commit`.
|
||||
- name: Set `END_SHA`
|
||||
if: ${{ env.process == 'true' && inputs.pr_number != '' }}
|
||||
env:
|
||||
merge_commit_base_sha: ${{ steps.pr_info.outputs.merge_commit_base_sha }}
|
||||
run: |
|
||||
echo "END_SHA=$merge_commit_base_sha" >> $GITHUB_ENV
|
||||
- name: Checkout to `start_sha`
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -178,20 +138,14 @@ jobs:
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run_idx: ${{ matrix.run_idx }}
|
||||
run: python3 utils/check_bad_commit.py --start_commit "$START_SHA" --end_commit "$END_SHA" --file "ci_results_${job}/new_failures.json" --output_file "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run_idx: ${{ matrix.run_idx }}
|
||||
run: |
|
||||
ls -l "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
cat "new_failures_with_bad_commit_${job}_${run_idx}.json"
|
||||
ls -l new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
|
||||
cat new_failures_with_bad_commit_${{ inputs.job }}_${{ matrix.run_idx }}.json
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@ -205,8 +159,6 @@ jobs:
|
||||
if: needs.check_new_failures.outputs.process == 'true'
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
outputs:
|
||||
report: ${{ steps.set_output.outputs.report }}
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -224,28 +176,32 @@ jobs:
|
||||
|
||||
- name: Check files
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
ls -la /transformers
|
||||
ls -la "/transformers/new_failures_with_bad_commit_${job}"
|
||||
ls -la /transformers/new_failures_with_bad_commit_${{ inputs.job }}
|
||||
|
||||
# Currently, we only run with a single runner by using `run_idx: [1]`. We might try to run with multiple runners
|
||||
# to further reduce the false positive caused by flaky tests, which requires further processing to merge reports.
|
||||
- name: Merge files
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
cp "/transformers/new_failures_with_bad_commit_${job}/new_failures_with_bad_commit_${job}_1.json" new_failures_with_bad_commit.json
|
||||
cp /transformers/new_failures_with_bad_commit_${{ inputs.job }}/new_failures_with_bad_commit_${{ inputs.job }}_1.json new_failures_with_bad_commit.json
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
@ -262,37 +218,11 @@ jobs:
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
# The output is useful if a caller needs more processing, for example, we have a chain
|
||||
# self-comment-ci.yml -> self-scheduled.yml -> this one (check_failed_tests.yml),
|
||||
# and `self-comment-ci.yml` needs further processing before sending a GitHub comment to the pull request page.
|
||||
- name: Show results & Set outputs
|
||||
id: set_output
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
{
|
||||
echo 'report<<EOF'
|
||||
cat new_failures_with_bad_commit.json
|
||||
echo '' # Force a newline
|
||||
echo EOF
|
||||
} >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: new_failures_with_bad_commit_${{ inputs.job }}
|
||||
path: /transformers/new_failures_with_bad_commit.json
|
||||
|
||||
- name: Prepare Slack report title
|
||||
working-directory: /transformers
|
||||
env:
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
job: ${{ inputs.job }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
echo "title=$(python3 -c 'import sys; import os; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = os.environ["ci_event"]; job = os.environ["job"]; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
|
||||
24
.github/workflows/get-pr-info.yml
vendored
24
.github/workflows/get-pr-info.yml
vendored
@ -39,9 +39,6 @@ on:
|
||||
PR_MERGE_COMMIT_SHA:
|
||||
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
|
||||
PR_MERGE_COMMIT_BASE_SHA:
|
||||
description: "The sha of the parent commit of the the merge commit on the target branch in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_BASE_SHA }}
|
||||
PR_HEAD_COMMIT_DATE:
|
||||
description: "The date of the head sha of the pull request branch in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
|
||||
@ -77,7 +74,6 @@ jobs:
|
||||
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
|
||||
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
|
||||
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
|
||||
PR_MERGE_COMMIT_BASE_SHA: ${{ steps.pr_info.outputs.merge_commit_base_sha }}
|
||||
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
|
||||
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
@ -126,7 +122,6 @@ jobs:
|
||||
core.setOutput('base_ref', pr.base.ref);
|
||||
core.setOutput('head_sha', pr.head.sha);
|
||||
core.setOutput('base_sha', pr.base.sha);
|
||||
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);
|
||||
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
|
||||
core.setOutput('pr', pr);
|
||||
|
||||
@ -147,21 +142,16 @@ jobs:
|
||||
date: merge_commit.commit.committer.date
|
||||
});
|
||||
|
||||
console.log('PR Info:', {
|
||||
pr_info: pr
|
||||
});
|
||||
|
||||
- name: Convert dates to timestamps
|
||||
id: get_timestamps
|
||||
env:
|
||||
head_commit_date: ${{ steps.pr_info.outputs.head_commit_date }}
|
||||
merge_commit_date: ${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
run: |
|
||||
echo "$head_commit_date"
|
||||
echo "$merge_commit_date"
|
||||
head_commit_date=${{ steps.pr_info.outputs.head_commit_date }}
|
||||
merge_commit_date=${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
echo $head_commit_date
|
||||
echo $merge_commit_date
|
||||
head_commit_timestamp=$(date -d "$head_commit_date" +%s)
|
||||
merge_commit_timestamp=$(date -d "$merge_commit_date" +%s)
|
||||
echo "$head_commit_timestamp"
|
||||
echo "$merge_commit_timestamp"
|
||||
echo $head_commit_timestamp
|
||||
echo $merge_commit_timestamp
|
||||
echo "head_commit_timestamp=$head_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
|
||||
22
.github/workflows/get-pr-number.yml
vendored
22
.github/workflows/get-pr-number.yml
vendored
@ -15,19 +15,13 @@ jobs:
|
||||
steps:
|
||||
- name: Get PR number
|
||||
shell: bash
|
||||
env:
|
||||
issue_number: ${{ github.event.issue.number }}
|
||||
is_pull_request_issue: ${{ github.event.issue.pull_request != null }}
|
||||
pr_number: ${{ github.event.pull_request.number }}
|
||||
is_pull_request: ${{ github.event.pull_request != null }}
|
||||
event_number: ${{ github.event.number }}
|
||||
run: |
|
||||
if [[ "$issue_number" != "" && "$is_pull_request_issue" == "true" ]]; then
|
||||
echo "PR_NUMBER=$issue_number" >> $GITHUB_ENV
|
||||
elif [[ "$pr_number" != "" ]]; then
|
||||
echo "PR_NUMBER=$pr_number" >> $GITHUB_ENV
|
||||
elif [[ "$is_pull_request" == "true" ]]; then
|
||||
echo "PR_NUMBER=$event_number" >> $GITHUB_ENV
|
||||
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request.number }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.pull_request.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.number }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PR_NUMBER=" >> $GITHUB_ENV
|
||||
fi
|
||||
@ -35,8 +29,8 @@ jobs:
|
||||
- name: Check PR number
|
||||
shell: bash
|
||||
run: |
|
||||
echo "$PR_NUMBER"
|
||||
echo "${{ env.PR_NUMBER }}"
|
||||
|
||||
- name: Set PR number
|
||||
id: set_pr_number
|
||||
run: echo "PR_NUMBER=$PR_NUMBER" >> "$GITHUB_OUTPUT"
|
||||
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
63
.github/workflows/model_jobs.yml
vendored
63
.github/workflows/model_jobs.yml
vendored
@ -28,9 +28,6 @@ on:
|
||||
report_repo_id:
|
||||
required: false
|
||||
type: string
|
||||
pytest_marker:
|
||||
required: false
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -62,33 +59,25 @@ jobs:
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
env:
|
||||
folder_slices: ${{ inputs.folder_slices }}
|
||||
matrix_folders: ${{ matrix.folders }}
|
||||
slice_data: ${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}
|
||||
run: |
|
||||
echo "$folder_slices"
|
||||
echo "$matrix_folders"
|
||||
echo "$slice_data"
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
env:
|
||||
matrix_folders_raw: ${{ matrix.folders }}
|
||||
run: |
|
||||
echo "$matrix_folders_raw"
|
||||
matrix_folders="${matrix_folders_raw/'models/'/'models_'}"
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin "$commit_sha" && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -123,17 +112,15 @@ jobs:
|
||||
id: set_machine_type
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
input_machine_type: ${{ inputs.machine_type }}
|
||||
run: |
|
||||
echo "$input_machine_type"
|
||||
echo "${{ inputs.machine_type }}"
|
||||
|
||||
if [ "$input_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ inputs.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$input_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ inputs.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$input_machine_type"
|
||||
machine_type=${{ inputs.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -142,21 +129,15 @@ jobs:
|
||||
|
||||
- name: Create report directory if it doesn't exist
|
||||
shell: bash
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
mkdir -p "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
echo "dummy" > "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/dummy.txt"
|
||||
ls -la "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
echo "dummy" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/dummy.txt
|
||||
ls -la /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
pytest_marker: ${{ inputs.pytest_marker }}
|
||||
model: ${{ matrix.folders }}
|
||||
run: |
|
||||
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports python3 -m pytest -rsfE -v -m '${pytest_marker}' --make-reports=${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports tests/${model}" test_outputs.txt
|
||||
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
|
||||
ls -la
|
||||
# Extract the exit code from the output file
|
||||
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)
|
||||
@ -167,25 +148,19 @@ jobs:
|
||||
# This step is only to show information on Github Actions log.
|
||||
# Always mark this step as successful, even if the report directory or the file `failures_short.txt` in it doesn't exist
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: cat "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Captured information
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
cat "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports/captured_info.txt"
|
||||
cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports/captured_info.txt
|
||||
|
||||
- name: Copy test_outputs.txt
|
||||
if: ${{ always() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
report_name_prefix: ${{ inputs.report_name_prefix }}
|
||||
run: |
|
||||
cp /transformers/test_outputs.txt "/transformers/reports/${machine_type}_${report_name_prefix}_${matrix_folders}_test_reports"
|
||||
cp /transformers/test_outputs.txt /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -196,7 +171,7 @@ jobs:
|
||||
|
||||
collated_reports:
|
||||
name: Collated Reports
|
||||
if: ${{ always() && inputs.runner_type != '' }}
|
||||
if: ${{ always() }}
|
||||
needs: run_models_gpu
|
||||
uses: huggingface/transformers/.github/workflows/collated-reports.yml@main
|
||||
with:
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
name: PR slow CI - Suggestion
|
||||
name: PR slow CI
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
@ -59,35 +59,27 @@ jobs:
|
||||
fetch-depth: "0"
|
||||
|
||||
- name: Write pr_files file
|
||||
env:
|
||||
PR_FILES: ${{ needs.get-pr-info.outputs.PR_FILES }}
|
||||
run: |
|
||||
cat > pr_files.txt << EOF
|
||||
$PR_FILES
|
||||
cat > pr_files.txt << 'EOF'
|
||||
${{ needs.get-pr-info.outputs.PR_FILES }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_dir file
|
||||
env:
|
||||
tests_dir: ${{ steps.repo_content.outputs.tests_dir }}
|
||||
run: |
|
||||
cat > tests_dir.txt << EOF
|
||||
$tests_dir
|
||||
cat > tests_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_models_dir file
|
||||
env:
|
||||
tests_models_dir: ${{ steps.repo_content.outputs.tests_models_dir }}
|
||||
run: |
|
||||
cat > tests_models_dir.txt << EOF
|
||||
$tests_models_dir
|
||||
cat > tests_models_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_models_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_quantization_dir file
|
||||
env:
|
||||
tests_quantization_dir: ${{ steps.repo_content.outputs.tests_quantization_dir }}
|
||||
run: |
|
||||
cat > tests_quantization_dir.txt << EOF
|
||||
$tests_quantization_dir
|
||||
cat > tests_quantization_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_quantization_dir }}
|
||||
EOF
|
||||
|
||||
- name: Run script to get jobs to run
|
||||
4
.github/workflows/push-important-models.yml
vendored
4
.github/workflows/push-important-models.yml
vendored
@ -149,9 +149,9 @@ jobs:
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-push"
|
||||
docker: huggingface/transformers-all-latest-gpu:flash-attn
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: push
|
||||
report_repo_id: hf-internal-testing/transformers_ci_push
|
||||
commit_sha: ${{ github.sha }}
|
||||
subdirs: ${{ needs.get_modified_models.outputs.matrix }}
|
||||
models: ${{ needs.get_modified_models.outputs.matrix }}
|
||||
secrets: inherit
|
||||
|
||||
505
.github/workflows/self-comment-ci.yml
vendored
505
.github/workflows/self-comment-ci.yml
vendored
@ -23,34 +23,62 @@ env:
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
|
||||
jobs:
|
||||
get-pr-number:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "eustlb", "MekkCyber", "vasqu", "ivarflakstad", "stevhliu", "ebezzam", "remi-or", "itazap"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
- name: Get PR number
|
||||
shell: bash
|
||||
run: |
|
||||
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PR_NUMBER=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
get-pr-info:
|
||||
name: Get PR commit SHA
|
||||
- name: Check PR number
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ env.PR_NUMBER }}"
|
||||
|
||||
- name: Set PR number
|
||||
id: set_pr_number
|
||||
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
|
||||
|
||||
get-sha:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-number
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
uses: ./.github/workflows/get-pr-info.yml
|
||||
with:
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
check-timestamps:
|
||||
name: Check timestamps (security check)
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-info
|
||||
outputs:
|
||||
PR_HEAD_SHA: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
|
||||
PR_MERGE_SHA: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
|
||||
PR_HEAD_SHA: ${{ steps.get_sha.outputs.PR_HEAD_SHA }}
|
||||
PR_MERGE_SHA: ${{ steps.get_sha.outputs.PR_MERGE_SHA }}
|
||||
steps:
|
||||
- name: Verify `merge_commit` timestamp is older than the issue comment timestamp
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
|
||||
|
||||
- name: Get SHA (and verify timestamps against the issue comment date)
|
||||
id: get_sha
|
||||
env:
|
||||
PR_NUMBER: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
COMMENT_DATE: ${{ github.event.comment.created_at }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
run: |
|
||||
git fetch origin refs/pull/$PR_NUMBER/head:refs/remotes/pull/$PR_NUMBER/head
|
||||
git checkout refs/remotes/pull/$PR_NUMBER/head
|
||||
echo "PR_HEAD_SHA: $(git log -1 --format=%H)"
|
||||
echo "PR_HEAD_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
|
||||
git fetch origin refs/pull/$PR_NUMBER/merge:refs/remotes/pull/$PR_NUMBER/merge
|
||||
git checkout refs/remotes/pull/$PR_NUMBER/merge
|
||||
echo "PR_MERGE_SHA: $(git log -1 --format=%H)"
|
||||
echo "PR_MERGE_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
|
||||
PR_MERGE_COMMIT_TIMESTAMP=$(git log -1 --date=unix --format=%cd)
|
||||
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
|
||||
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
|
||||
echo "COMMENT_DATE: $COMMENT_DATE"
|
||||
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
|
||||
@ -59,10 +87,13 @@ jobs:
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
# use a python script to handle this complex logic.
|
||||
# use a python script to handle this complex logic
|
||||
# case 1: `run-slow` (auto. infer with limited number of models, but in particular, new model)
|
||||
# case 2: `run-slow model_1, model_2`
|
||||
get-tests:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [get-pr-number, check-timestamps]
|
||||
needs: [get-pr-number, get-sha]
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
outputs:
|
||||
models: ${{ steps.models_to_run.outputs.models }}
|
||||
quantizations: ${{ steps.models_to_run.outputs.quantizations }}
|
||||
@ -70,11 +101,11 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
ref: "refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge"
|
||||
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
@ -95,33 +126,11 @@ jobs:
|
||||
- name: Show models to test
|
||||
id: models_to_run
|
||||
run: |
|
||||
echo "$models"
|
||||
echo "models=$models" >> $GITHUB_OUTPUT
|
||||
echo "$quantizations"
|
||||
echo "quantizations=$quantizations" >> $GITHUB_OUTPUT
|
||||
|
||||
# Report back if we are not able to get the tests (for example, security check is failing)
|
||||
report_error_earlier:
|
||||
name: Report error earlier
|
||||
if: ${{ always() && needs.get-pr-info.result == 'success' && needs.get-tests.result != 'success' }}
|
||||
needs: [get-pr-number, get-pr-info, get-tests]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Reply to the comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-f body="💔 This comment contains \`run-slow\`, but unknown error occurred and [the workflow run]($GITHUB_RUN_URL) aborted!"
|
||||
echo "${{ env.models }}"
|
||||
echo "models=${{ env.models }}" >> $GITHUB_ENV
|
||||
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
|
||||
echo "${{ env.quantizations }}"
|
||||
echo "quantizations=${{ env.quantizations }}" >> $GITHUB_OUTPUT
|
||||
|
||||
reply_to_comment:
|
||||
name: Reply to the comment
|
||||
@ -134,20 +143,20 @@ jobs:
|
||||
- name: Reply to the comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
BODY: '\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}'
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
MODELS: ${{ needs.get-tests.outputs.models }}
|
||||
BODY: "\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-f body="This comment contains \`run-slow\`, running the specified jobs: $(echo -e "$BODY")"
|
||||
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
|
||||
-f "body=This comment contains run-slow, running the specified jobs: ${{ env.BODY }} ..."
|
||||
|
||||
create_run:
|
||||
name: Create run
|
||||
needs: [check-timestamps, reply_to_comment]
|
||||
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
|
||||
needs: [get-sha, get-tests, reply_to_comment]
|
||||
permissions:
|
||||
statuses: write
|
||||
runs-on: ubuntu-22.04
|
||||
@ -159,196 +168,248 @@ jobs:
|
||||
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
|
||||
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_head_sha: ${{ needs.check-timestamps.outputs.PR_HEAD_SHA }}
|
||||
run: |
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/statuses/${pr_head_sha}" \
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
run_models_gpu:
|
||||
name: Run all tests for the model
|
||||
if: ${{ needs.get-tests.outputs.models != '[]' }}
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
needs: [get-pr-number, check-timestamps, get-tests, create_run]
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-pr"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: PR Comment CI
|
||||
report_repo_id: hf-internal-testing/transformers_pr_ci
|
||||
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
subdirs: ${{ needs.get-tests.outputs.models }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
secrets: inherit
|
||||
needs: [get-pr-number, get-sha, get-tests, create_run]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
|
||||
quantization-ci:
|
||||
name: Quantization CI
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout to PR merge commit
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git log -1 --format=%H
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
|
||||
echo $CUDA_VISIBLE_DEVICES
|
||||
python3 -m pytest -v -rsfE --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_quantization_torch_gpu:
|
||||
name: Run all tests for a quantization
|
||||
if: ${{ needs.get-tests.outputs.quantizations != '[]' }}
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
needs: [get-pr-number, check-timestamps, get-tests, create_run]
|
||||
with:
|
||||
job: run_quantization_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-pr"
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: PR Comment CI
|
||||
report_repo_id: hf-internal-testing/transformers_pr_ci
|
||||
commit_sha: ${{ needs.check-timestamps.outputs.PR_MERGE_SHA }}
|
||||
subdirs: ${{ needs.get-tests.outputs.quantizations }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
secrets: inherit
|
||||
needs: [get-pr-number, get-sha, get-tests, create_run]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-quantization-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
report:
|
||||
name: Check & Report
|
||||
needs: [get-pr-number, check-timestamps, create_run, model-ci, quantization-ci]
|
||||
- name: Checkout to PR merge commit
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
|
||||
git log -1 --format=%H
|
||||
|
||||
- name: Verify merge commit SHA
|
||||
env:
|
||||
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
PR_MERGE_SHA=$(git log -1 --format=%H)
|
||||
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
|
||||
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
update_run_status:
|
||||
name: Update Check Run Status
|
||||
needs: [get-sha, create_run, run_models_gpu, run_quantization_torch_gpu]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
statuses: write
|
||||
if: ${{ always() && needs.create_run.result == 'success' }}
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.run_models_gpu.result) && contains(fromJSON('["skipped", "success"]'), needs.run_quantization_torch_gpu.result) }}
|
||||
steps:
|
||||
- name: Show reports from jobs
|
||||
env:
|
||||
MODEL_REPORT: ${{ needs.model-ci.outputs.report }}
|
||||
QUANT_REPORT: ${{ needs.quantization-ci.outputs.report }}
|
||||
- name: Get `run_models_gpu` job status
|
||||
run: |
|
||||
echo "$MODEL_REPORT"
|
||||
echo "$QUANT_REPORT"
|
||||
|
||||
- name: Process and filter reports
|
||||
env:
|
||||
MODEL_REPORT: ${{ needs.model-ci.outputs.report }}
|
||||
QUANT_REPORT: ${{ needs.quantization-ci.outputs.report }}
|
||||
run: |
|
||||
# Preprocess with Python
|
||||
python3 << 'PYTHON_SCRIPT'
|
||||
import json
|
||||
import os
|
||||
|
||||
def filter_and_format_report(data):
|
||||
"""
|
||||
Filter out entries where commit is `None` (failing tests who status is not certain) and format as text
|
||||
"""
|
||||
lines = []
|
||||
|
||||
for model, model_result in data.items():
|
||||
model_lines = []
|
||||
for device, failures in model_result.items():
|
||||
|
||||
# Filter out None commits and extract just the test names
|
||||
test_names = [
|
||||
failure['test']
|
||||
for failure in failures
|
||||
if isinstance(failure, dict) and failure.get('commit') is not None
|
||||
]
|
||||
|
||||
# Add tests to model lines
|
||||
for idx, test_name in enumerate(test_names):
|
||||
if idx == 0:
|
||||
job_link = failures[idx]['job_link']
|
||||
model_lines.append(f"- [{model}]({job_link}):")
|
||||
|
||||
model_lines.append(f" {test_name}")
|
||||
|
||||
# Only add model section if it has tests
|
||||
if len(model_lines) > 0:
|
||||
lines.extend(model_lines)
|
||||
lines.append("") # Empty line between models
|
||||
|
||||
return "\n".join(lines).strip()
|
||||
|
||||
# Load and filter reports
|
||||
model_report_str = os.environ.get('MODEL_REPORT', '{}')
|
||||
quant_report_str = os.environ.get('QUANT_REPORT', '{}')
|
||||
|
||||
model_report = json.loads(model_report_str) if model_report_str else {}
|
||||
quant_report = json.loads(quant_report_str) if quant_report_str else {}
|
||||
|
||||
formatted_model = filter_and_format_report(model_report)
|
||||
formatted_quant = filter_and_format_report(quant_report)
|
||||
|
||||
# Write to files
|
||||
with open('model_ci.txt', 'w') as f:
|
||||
f.write(formatted_model)
|
||||
if formatted_model:
|
||||
f.write('\n')
|
||||
|
||||
with open('quantization_ci.txt', 'w') as f:
|
||||
f.write(formatted_quant)
|
||||
if formatted_quant:
|
||||
f.write('\n')
|
||||
PYTHON_SCRIPT
|
||||
|
||||
- name: Post results as PR comment
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
model_ci_result: ${{ needs.model-ci.result }}
|
||||
quantization_ci_result: ${{ needs.quantization-ci.result }}
|
||||
run: |
|
||||
{
|
||||
echo '## CI Results'
|
||||
echo "[Workflow Run ⚙️]($GITHUB_RUN_URL)"
|
||||
echo ''
|
||||
|
||||
# Check if both jobs were skipped or cancelled
|
||||
if [[ "$model_ci_result" == "skipped" || "$model_ci_result" == "cancelled" ]] && \
|
||||
[[ "$quantization_ci_result" == "skipped" || "$quantization_ci_result" == "cancelled" ]]; then
|
||||
echo '⚠️ No test being reported (jobs are skipped or cancelled)!'
|
||||
echo "STATUS=error" >> $GITHUB_ENV
|
||||
|
||||
# Check if either file has content
|
||||
elif [ -s model_ci.txt ] || [ -s quantization_ci.txt ]; then
|
||||
echo "STATUS=failure" >> $GITHUB_ENV
|
||||
|
||||
# Check if model_ci.txt has content
|
||||
if [ -s model_ci.txt ]; then
|
||||
echo '### Model CI Report'
|
||||
echo ''
|
||||
echo '#### ❌ Failed tests'
|
||||
echo ''
|
||||
cat model_ci.txt
|
||||
echo ''
|
||||
fi
|
||||
|
||||
# Check if quantization_ci.txt has content
|
||||
if [ -s quantization_ci.txt ]; then
|
||||
echo '### Quantization CI Report'
|
||||
echo ''
|
||||
echo '#### ❌ Failed tests'
|
||||
echo ''
|
||||
cat quantization_ci.txt
|
||||
echo ''
|
||||
fi
|
||||
else
|
||||
echo "STATUS=success" >> $GITHUB_ENV
|
||||
echo '✅ No failing test specific to this PR 🎉 !'
|
||||
fi
|
||||
} > comment_body.txt
|
||||
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/issues/${pr_number}/comments" \
|
||||
-F body=@comment_body.txt
|
||||
echo "${{ needs.run_models_gpu.result }}"
|
||||
echo "${{ needs.run_quantization_torch_gpu.result }}"
|
||||
echo $STATUS_OK
|
||||
if [ "$STATUS_OK" = "true" ]; then
|
||||
echo "STATUS=success" >> $GITHUB_ENV
|
||||
else
|
||||
echo "STATUS=failure" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update PR commit statuses
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
github_repository: ${{ github.repository }}
|
||||
pr_head_sha: ${{ needs.check-timestamps.outputs.PR_HEAD_SHA }}
|
||||
# The env. variable `STATUS` used here is set in the previous step
|
||||
run: |
|
||||
echo "${{ needs.run_models_gpu.result }}"
|
||||
echo "${{ env.STATUS }}"
|
||||
gh api \
|
||||
--method POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"repos/${github_repository}/statuses/${pr_head_sha}" \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=$STATUS" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
|
||||
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Slow CI job" -f "context=pytest/custom-tests"
|
||||
|
||||
1
.github/workflows/self-nightly-caller.yml
vendored
1
.github/workflows/self-nightly-caller.yml
vendored
@ -51,7 +51,6 @@ jobs:
|
||||
slack_report_channel: "#transformers-ci-past-future"
|
||||
docker: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
ci_event: Nightly CI
|
||||
runner_type: "a10"
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci_with_torch_nightly
|
||||
commit_sha: ${{ github.event.workflow_run.head_sha || github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
Normal file
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
name: Self-hosted runner (AMD mi210 CI caller)
|
||||
|
||||
on:
|
||||
#workflow_run:
|
||||
# workflows: ["Self-hosted runner (push-caller)"]
|
||||
# branches: ["main"]
|
||||
# types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi210
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi210
|
||||
secrets: inherit
|
||||
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
Normal file
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
name: Self-hosted runner (AMD mi250 CI caller)
|
||||
|
||||
on:
|
||||
#workflow_run:
|
||||
# workflows: ["Self-hosted runner (push-caller)"]
|
||||
# branches: ["main"]
|
||||
# types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi250
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi250
|
||||
secrets: inherit
|
||||
334
.github/workflows/self-push-amd.yml
vendored
Normal file
334
.github/workflows/self-push-amd.yml
vendored
Normal file
@ -0,0 +1,334 @@
|
||||
name: Self-hosted runner AMD GPU (push)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
gpu_flavor:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
setup_gpu:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_models_gpu:
|
||||
name: Model tests
|
||||
needs: setup_gpu
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup_gpu,
|
||||
run_models_gpu,
|
||||
# run_tests_torch_cuda_extensions_single_gpu,
|
||||
# run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Setup status: ${{ needs.setup_gpu.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup_gpu.result }}
|
||||
|
||||
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"
|
||||
54
.github/workflows/self-push-caller.yml
vendored
Normal file
54
.github/workflows/self-push-caller.yml
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
# Used to trigger self-push CI
|
||||
name: Self-hosted runner (push-caller)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
check-for-setup:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Check if setup was changed
|
||||
outputs:
|
||||
changed: ${{ steps.was_changed.outputs.changed }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "2"
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
|
||||
|
||||
- name: Was setup changed
|
||||
id: was_changed
|
||||
run: |
|
||||
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
|
||||
if [ `basename "${file}"` = "setup.py" ]; then
|
||||
echo "changed=1" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
done
|
||||
|
||||
build-docker-containers:
|
||||
needs: check-for-setup
|
||||
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
|
||||
uses: ./.github/workflows/build-docker-images.yml
|
||||
with:
|
||||
image_postfix: "-push-ci"
|
||||
secrets: inherit
|
||||
|
||||
run_push_ci:
|
||||
name: Trigger Push CI
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ always() }}
|
||||
needs: build-docker-containers
|
||||
steps:
|
||||
- name: Trigger push CI via workflow_run
|
||||
run: echo "Trigger push CI via workflow_run"
|
||||
652
.github/workflows/self-push.yml
vendored
Normal file
652
.github/workflows/self-push.yml
vendored
Normal file
@ -0,0 +1,652 @@
|
||||
name: Self-hosted runner (push)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (push-caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- ci_*
|
||||
- ci-*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
repository_dispatch:
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
env:
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
env:
|
||||
MKL_SERVICE_FORCE_INTEL: 1
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_torch_cuda_extensions_single_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
run_tests_torch_cuda_extensions_multi_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /workspace/transformers
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_tests_torch_cuda_extensions_single_gpu,
|
||||
run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
env:
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
CI_BRANCH_PUSH: ${{ github.event.ref }}
|
||||
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: push
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
@ -21,7 +21,7 @@ jobs:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
@ -33,7 +33,7 @@ jobs:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
@ -45,7 +45,7 @@ jobs:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_group: hfc-amd-mi355
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
docker: huggingface/testing-rocm7.0-preview
|
||||
ci_event: Scheduled CI (AMD) - mi355
|
||||
report_repo_id: hf-transformers-bot/transformers-ci-dummy
|
||||
secrets: inherit
|
||||
|
||||
21
.github/workflows/self-scheduled-caller.yml
vendored
21
.github/workflows/self-scheduled-caller.yml
vendored
@ -33,13 +33,10 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
env:
|
||||
prev_workflow_run_id: ${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}
|
||||
other_workflow_run_id: ${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "$prev_workflow_run_id" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "$other_workflow_run_id" > "setup_values/other_workflow_run_id.txt"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@ -66,7 +63,7 @@ jobs:
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
@ -121,15 +118,3 @@ jobs:
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
kernels-ci:
|
||||
name: Kernels CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_kernels_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-kernels"
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
@ -1,60 +0,0 @@
|
||||
name: Nvidia CI - Flash Attn
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
push:
|
||||
branches:
|
||||
- run_nvidia_ci_flash_attn*
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
prev_workflow_run_id:
|
||||
description: 'previous workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
other_workflow_run_id:
|
||||
description: 'other workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
|
||||
# Used for `push` to easily modify the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: setup_values
|
||||
path: setup_values
|
||||
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-flash-attn"
|
||||
docker: huggingface/transformers-all-latest-gpu:flash-attn
|
||||
ci_event: Daily CI
|
||||
runner_type: "a10"
|
||||
report_repo_id: hf-internal-testing/transformers_flash_attn_ci
|
||||
commit_sha: ${{ github.sha }}
|
||||
pytest_marker: "flash_attn_test or flash_attn_3_test"
|
||||
secrets: inherit
|
||||
215
.github/workflows/self-scheduled.yml
vendored
215
.github/workflows/self-scheduled.yml
vendored
@ -34,20 +34,10 @@ on:
|
||||
runner_type:
|
||||
required: false
|
||||
type: string
|
||||
subdirs:
|
||||
models:
|
||||
default: ""
|
||||
required: false
|
||||
type: string
|
||||
pytest_marker:
|
||||
required: false
|
||||
type: string
|
||||
pr_number:
|
||||
required: false
|
||||
type: string
|
||||
outputs:
|
||||
report:
|
||||
description: "Content of the report of new failures"
|
||||
value: ${{ jobs.check_new_failures.outputs.report }}
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -60,6 +50,7 @@ env:
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
NUM_SLICES: 2
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
@ -80,11 +71,8 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: |
|
||||
git fetch origin $commit_sha
|
||||
git fetch && git checkout $commit_sha
|
||||
git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
@ -101,17 +89,11 @@ jobs:
|
||||
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
env:
|
||||
job: ${{ inputs.job }}
|
||||
subdirs: ${{ inputs.subdirs }}
|
||||
NUM_SLICES: 2
|
||||
run: |
|
||||
if [ "$job" = "run_models_gpu" ]; then
|
||||
python3 ../utils/split_model_tests.py --subdirs "$subdirs" --num_splits "$NUM_SLICES" > folder_slices.txt
|
||||
echo "folder_slices=$(cat folder_slices.txt)" >> $GITHUB_OUTPUT
|
||||
python3 -c "import ast; folder_slices = ast.literal_eval(open('folder_slices.txt').read()); open('slice_ids.txt', 'w').write(str(list(range(len(folder_slices)))))"
|
||||
echo "slice_ids=$(cat slice_ids.txt)" >> $GITHUB_OUTPUT
|
||||
elif [ "$job" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --models '${{ inputs.models }}' --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
@ -120,10 +102,8 @@ jobs:
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
name: Identify quantization method to test
|
||||
working-directory: /transformers/tests
|
||||
env:
|
||||
subdirs: ${{ inputs.subdirs || 'None' }}
|
||||
run: |
|
||||
echo "quantization_matrix=$(python3 -c 'import ast; import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); subdirs = ast.literal_eval(os.environ["subdirs"]); quantization_tests = [x.removeprefix("quantization/") for x in subdirs] if subdirs is not None else quantization_tests; d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))); print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -147,7 +127,6 @@ jobs:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
runner_type: ${{ inputs.runner_type }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
pytest_marker: ${{ inputs.pytest_marker }}
|
||||
secrets: inherit
|
||||
|
||||
run_trainer_and_fsdp_gpu:
|
||||
@ -181,14 +160,12 @@ jobs:
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -210,17 +187,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -229,12 +204,12 @@ jobs:
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports="${machine_type}_run_pipelines_torch_gpu_test_reports" tests/pipelines
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_pipelines_torch_gpu_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -258,9 +233,7 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -282,17 +255,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -302,12 +273,12 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_examples_gpu_test_reports" examples/pytorch
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_examples_gpu_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -331,9 +302,7 @@ jobs:
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
@ -355,7 +324,7 @@ jobs:
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again* (for nightly & Past CI)
|
||||
@ -365,7 +334,7 @@ jobs:
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
rm -rf DeepSpeed
|
||||
git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -383,17 +352,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -402,14 +369,12 @@ jobs:
|
||||
- name: Run all tests on GPU
|
||||
working-directory: ${{ inputs.working-directory-prefix }}/transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_torch_cuda_extensions_gpu_test_reports" tests/deepspeed tests/extended
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
working_directory_prefix: ${{ inputs.working-directory-prefix }}
|
||||
run: cat "${working_directory_prefix}/transformers/reports/${machine_type}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt"
|
||||
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -436,19 +401,16 @@ jobs:
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
env:
|
||||
matrix_folders_raw: ${{ matrix.folders }}
|
||||
run: |
|
||||
echo "$matrix_folders_raw"
|
||||
matrix_folders="${matrix_folders_raw/'quantization/'/'quantization_'}"
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
run: git fetch && git checkout ${{ inputs.commit_sha || github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
@ -470,17 +432,15 @@ jobs:
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
@ -488,17 +448,13 @@ jobs:
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
matrix_folders: ${{ matrix.folders }}
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_quantization_torch_gpu_${matrix_folders}_test_reports" tests/${matrix_folders}
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
env:
|
||||
matrix_folders: ${{ matrix.folders }}
|
||||
run: cat "/transformers/reports/${machine_type}_run_quantization_torch_gpu_${matrix_folders}_test_reports/failures_short.txt"
|
||||
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
@ -507,80 +463,6 @@ jobs:
|
||||
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
|
||||
|
||||
run_kernels_gpu:
|
||||
if: ${{ inputs.job == 'run_kernels_gpu' }}
|
||||
name: Kernel tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
run: git fetch && git checkout "$commit_sha"
|
||||
|
||||
- name: Reinstall transformers in edit mode
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[testing]
|
||||
|
||||
- name: Install kernels
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip install -U kernels
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
working-directory: /transformers
|
||||
shell: bash
|
||||
env:
|
||||
matrix_machine_type: ${{ matrix.machine_type }}
|
||||
run: |
|
||||
echo "$matrix_machine_type"
|
||||
|
||||
if [ "$matrix_machine_type" = "aws-g5-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "$matrix_machine_type" = "aws-g5-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type="$matrix_machine_type"
|
||||
fi
|
||||
|
||||
echo "$machine_type"
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run kernel tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports="${machine_type}_run_kernels_gpu_test_reports" tests/kernels/test_kernels.py
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat "/transformers/reports/${machine_type}_run_kernels_gpu_test_reports/failures_short.txt"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_kernels_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_kernels_gpu_test_reports
|
||||
path: /transformers/reports/${{ env.machine_type }}_run_kernels_gpu_test_reports
|
||||
|
||||
run_extract_warnings:
|
||||
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
|
||||
if: ${{ always() && inputs.job == 'run_models_gpu' }}
|
||||
@ -612,12 +494,9 @@ jobs:
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
env:
|
||||
github_run_id: ${{ github.run_id }}
|
||||
access_token: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id "$github_run_id" --output_dir warnings_in_ci --token "$access_token" --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d); print(d)')"
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
@ -636,7 +515,6 @@ jobs:
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_quantization_torch_gpu,
|
||||
run_kernels_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
if: always() && !cancelled()
|
||||
@ -656,17 +534,16 @@ jobs:
|
||||
secrets: inherit
|
||||
|
||||
check_new_failures:
|
||||
if: ${{ always() && needs.send_results.result == 'success' }}
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
start_sha: ${{ inputs.commit_sha || github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
pr_number: ${{ inputs.pr_number }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
12
.github/workflows/slack-report.yml
vendored
12
.github/workflows/slack-report.yml
vendored
@ -41,10 +41,8 @@ jobs:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
env:
|
||||
setup_status: ${{ inputs.setup_status }}
|
||||
run: |
|
||||
echo "Setup status: $setup_status"
|
||||
echo "Setup status: ${{ inputs.setup_status }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@ -83,8 +81,6 @@ jobs:
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
quantization_matrix: ${{ inputs.quantization_matrix }}
|
||||
folder_slices: ${{ inputs.folder_slices }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
@ -93,10 +89,10 @@ jobs:
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
if [ "$quantization_matrix" != "" ]; then
|
||||
python utils/notification_service.py "$quantization_matrix"
|
||||
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "$folder_slices"
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
|
||||
35
.github/workflows/ssh-runner.yml
vendored
35
.github/workflows/ssh-runner.yml
vendored
@ -4,7 +4,7 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
runner_type:
|
||||
description: 'Type of runner to test (a10)'
|
||||
description: 'Type of runner to test (a10 or t4)'
|
||||
required: true
|
||||
docker_image:
|
||||
description: 'Name of the Docker image'
|
||||
@ -36,10 +36,14 @@ jobs:
|
||||
NUM_GPUS: ${{ github.event.inputs.num_gpus }}
|
||||
RUNNER_TYPE: ${{ github.event.inputs.runner_type }}
|
||||
run: |
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache-ssh" >> $GITHUB_ENV
|
||||
if [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "t4" ]]; then
|
||||
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "single" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
|
||||
elif [[ "$NUM_GPUS" == "multi" && "$RUNNER_TYPE" == "a10" ]]; then
|
||||
echo "RUNNER=aws-g5-12xlarge-cache-ssh" >> $GITHUB_ENV
|
||||
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
|
||||
else
|
||||
echo "RUNNER=" >> $GITHUB_ENV
|
||||
fi
|
||||
@ -47,8 +51,8 @@ jobs:
|
||||
- name: Set runner to use
|
||||
id: set_runner
|
||||
run: |
|
||||
echo "$RUNNER"
|
||||
echo "RUNNER=$RUNNER" >> $GITHUB_OUTPUT
|
||||
echo ${{ env.RUNNER }}
|
||||
echo "RUNNER=${{ env.RUNNER }}" >> $GITHUB_OUTPUT
|
||||
|
||||
ssh_runner:
|
||||
name: "SSH"
|
||||
@ -57,13 +61,13 @@ jobs:
|
||||
group: ${{ needs.get_runner.outputs.RUNNER }}
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
env:
|
||||
commit_sha: ${{ github.sha }}
|
||||
run: |
|
||||
git fetch && git checkout "$commit_sha"
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
@ -95,17 +99,14 @@ jobs:
|
||||
- name: Store Slack infos
|
||||
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
|
||||
shell: bash
|
||||
env:
|
||||
user_slack_id: ${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}
|
||||
default_slack_channel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
run: |
|
||||
echo "$github_actor"
|
||||
if [ "$user_slack_id" != "" ]; then
|
||||
echo "SLACKCHANNEL=$user_slack_id" >> $GITHUB_ENV
|
||||
echo "${{ env.github_actor }}"
|
||||
if [ "${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" != "" ]; then
|
||||
echo "SLACKCHANNEL=${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "SLACKCHANNEL=$default_slack_channel" >> $GITHUB_ENV
|
||||
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
|
||||
- name: Tailscale # In order to be able to SSH when a test fails
|
||||
uses: huggingface/tailscale-action@main
|
||||
with:
|
||||
|
||||
@ -14,7 +14,7 @@ This AGENTS.md file provides guidance for code agents working with this codebase
|
||||
|
||||
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
|
||||
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
|
||||
- Code style is enforced in the CI. You can install the style tools with `pip install -e ".[quality]"`. You can then run `make fixup` to apply style and consistency fixes to your code.
|
||||
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
|
||||
|
||||
## Copying and inheritance
|
||||
|
||||
@ -36,4 +36,4 @@ After making changes, you should usually run `make fixup` to ensure any copies a
|
||||
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
|
||||
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
|
||||
|
||||
In order to run tests, you may need to install dependencies. You can do this with `pip install -e ".[testing]"`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
|
||||
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
|
||||
@ -64,8 +64,8 @@ limitations under the License.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
|
||||
</h3>
|
||||
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning with text, computer
|
||||
vision, audio, video, and multimodal models, for both inference and training.
|
||||
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
|
||||
vision, audio, video, and multimodal model, for both inference and training.
|
||||
|
||||
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
|
||||
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training
|
||||
|
||||
@ -9,12 +9,6 @@ In this list, we showcase incredibly impactful and novel projects that have push
|
||||
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
|
||||
to add it.
|
||||
|
||||
## [◉ Universal Intelligence](https://github.com/blueraai/universal-intelligence)
|
||||
|
||||
[Universal Intelligence](https://github.com/blueraai/universal-intelligence) aims to standardize models, tools, and agents —transforming them into simple, composable, portable, interoperable, framework-agnostic, hardware-agnostic interfaces (through auto-negotiation and resource sharing); for fast and accessible development of AI applications.
|
||||
|
||||
Keywords: Protocol, Open-source, LLMs, Large Language Models, Agents, Low-code
|
||||
|
||||
## [gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
|
||||
|
||||
@ -1,11 +1,8 @@
|
||||
import hashlib
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
|
||||
KERNELIZATION_AVAILABLE = False
|
||||
try:
|
||||
@ -21,16 +18,6 @@ logger = logging.getLogger(__name__)
|
||||
class BenchmarkConfig:
|
||||
"""Configuration for a single benchmark scenario."""
|
||||
|
||||
all_attn_implementations = [
|
||||
("flash_attention_2", None),
|
||||
("eager", None),
|
||||
("sdpa", "math"),
|
||||
("sdpa", "flash_attention"),
|
||||
("flex_attention", None),
|
||||
]
|
||||
|
||||
all_compiled_modes = [None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
warmup_iterations: int = 5,
|
||||
@ -72,13 +59,6 @@ class BenchmarkConfig:
|
||||
def check_validity(self, skip_validity_check: bool = False) -> None:
|
||||
if skip_validity_check:
|
||||
return
|
||||
# Check FA is installed
|
||||
if self.attn_implementation == "flash_attention_2" and not is_flash_attn_2_available():
|
||||
logger.warning(
|
||||
"Flash attention does not support compile mode. Defaulting to SDPA w/ flash attention backend."
|
||||
)
|
||||
self.attn_implementation = "sdpa"
|
||||
self.sdpa_backend = "flash_attention"
|
||||
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
|
||||
is_fa = self.attn_implementation == "flash_attention_2"
|
||||
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
|
||||
@ -147,68 +127,88 @@ class BenchmarkConfig:
|
||||
)
|
||||
|
||||
|
||||
def adapt_configs(
|
||||
configs: list[BenchmarkConfig],
|
||||
warmup_iterations: int | list[int] = 5,
|
||||
measurement_iterations: int | list[int] = 20,
|
||||
batch_size: int | list[int] = 1,
|
||||
sequence_length: int | list[int] = 128,
|
||||
num_tokens_to_generate: int | list[int] = 128,
|
||||
gpu_monitoring: bool | list[bool] = True,
|
||||
def cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend: list[tuple[str, str | None]],
|
||||
compiled_mode: list[str | None],
|
||||
kernelized: list[bool],
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = True,
|
||||
) -> list[BenchmarkConfig]:
|
||||
parameters = (
|
||||
x if isinstance(x, list) else [x]
|
||||
for x in [
|
||||
warmup_iterations,
|
||||
measurement_iterations,
|
||||
batch_size,
|
||||
sequence_length,
|
||||
num_tokens_to_generate,
|
||||
gpu_monitoring,
|
||||
]
|
||||
)
|
||||
iterator = itertools.product(*parameters)
|
||||
|
||||
adapted_configs = []
|
||||
for warmup_iters, measurement_iters, bs, seqlen, ntok, monitor in iterator:
|
||||
for config in configs:
|
||||
config = config.to_dict()
|
||||
config["warmup_iterations"] = warmup_iters
|
||||
config["measurement_iterations"] = measurement_iters
|
||||
config["batch_size"] = bs
|
||||
config["sequence_length"] = seqlen
|
||||
config["num_tokens_to_generate"] = ntok
|
||||
config["gpu_monitoring"] = monitor
|
||||
adapted_configs.append(BenchmarkConfig.from_dict(config))
|
||||
return adapted_configs
|
||||
|
||||
|
||||
def get_config_by_level(level: int) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
"gpu_monitoring": gpu_monitoring,
|
||||
}
|
||||
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
|
||||
configs = []
|
||||
# Early return if level is greater than 3: we generate all combinations of configs, maybe even w/ all compile modes
|
||||
if level >= 3:
|
||||
for attn_implementation, sdpa_backend in BenchmarkConfig.all_attn_implementations:
|
||||
# Usually there is not much to gain by compiling with other modes, but we allow it for level 4
|
||||
compile_modes = BenchmarkConfig.all_compiled_modes if level >= 4 else [None, "default"]
|
||||
for cm in compile_modes:
|
||||
for kernelize_on in [False, KERNELIZATION_AVAILABLE]:
|
||||
configs.append(
|
||||
BenchmarkConfig(
|
||||
attn_implementation=attn_implementation,
|
||||
sdpa_backend=sdpa_backend,
|
||||
compile_mode=cm,
|
||||
kernelize=kernelize_on,
|
||||
)
|
||||
)
|
||||
return configs
|
||||
# Otherwise, we add the configs for the given level
|
||||
if level >= 0:
|
||||
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default"))
|
||||
if level >= 1:
|
||||
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2"))
|
||||
configs.append(BenchmarkConfig(attn_implementation="eager", compile_mode="default"))
|
||||
if level >= 2:
|
||||
configs.append(BenchmarkConfig(attn_implementation="sdpa", compile_mode="default"))
|
||||
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", kernelize=True))
|
||||
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", kernelize=True))
|
||||
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
|
||||
for cm in list(dict.fromkeys(compiled_mode)):
|
||||
for kernelize_on in list(dict.fromkeys(kernelized)):
|
||||
config = BenchmarkConfig(
|
||||
attn_implementation=attn_implementation,
|
||||
sdpa_backend=sdpa_backend,
|
||||
compile_mode=cm,
|
||||
kernelize=kernelize_on,
|
||||
**kwargs,
|
||||
)
|
||||
configs.append(config)
|
||||
return configs
|
||||
|
||||
|
||||
def generate_all_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
gpu_monitoring: bool = True,
|
||||
) -> list[BenchmarkConfig]:
|
||||
all_attn_implementations = [
|
||||
("flash_attention_2", None),
|
||||
("eager", None),
|
||||
("sdpa", "math"),
|
||||
("sdpa", "flash_attention"),
|
||||
("flex_attention", None),
|
||||
]
|
||||
return cross_generate_configs(
|
||||
attn_impl_and_sdpa_backend=all_attn_implementations,
|
||||
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
|
||||
kernelized=[False, KERNELIZATION_AVAILABLE],
|
||||
warmup_iterations=warmup_iterations,
|
||||
measurement_iterations=measurement_iterations,
|
||||
batch_size=batch_size,
|
||||
sequence_length=sequence_length,
|
||||
num_tokens_to_generate=num_tokens_to_generate,
|
||||
gpu_monitoring=gpu_monitoring,
|
||||
)
|
||||
|
||||
|
||||
def generate_main_configs(
|
||||
warmup_iterations: int = 5,
|
||||
measurement_iterations: int = 20,
|
||||
batch_size: int = 1,
|
||||
sequence_length: int = 128,
|
||||
num_tokens_to_generate: int = 128,
|
||||
) -> list[BenchmarkConfig]:
|
||||
# Create kwargs common to all configs
|
||||
kwargs = {
|
||||
"warmup_iterations": warmup_iterations,
|
||||
"measurement_iterations": measurement_iterations,
|
||||
"batch_size": batch_size,
|
||||
"sequence_length": sequence_length,
|
||||
"num_tokens_to_generate": num_tokens_to_generate,
|
||||
}
|
||||
return [ # TODO: test max-autotune instead of default
|
||||
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", gpu_monitoring=False, **kwargs),
|
||||
BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", gpu_monitoring=True, **kwargs),
|
||||
BenchmarkConfig(attn_implementation="eager", compile_mode="default", gpu_monitoring=True, **kwargs),
|
||||
BenchmarkConfig(attn_implementation="flash_attention_2", gpu_monitoring=True, **kwargs),
|
||||
]
|
||||
|
||||
@ -23,7 +23,7 @@ import logging
|
||||
import sys
|
||||
import uuid
|
||||
|
||||
from framework.benchmark_config import adapt_configs, get_config_by_level
|
||||
from framework.benchmark_config import BenchmarkConfig, generate_all_configs, generate_main_configs
|
||||
from framework.benchmark_runner import BenchmarkRunner
|
||||
|
||||
|
||||
@ -40,14 +40,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--sequence-length", "-s", type=int, nargs="+", help="Sequence length")
|
||||
parser.add_argument("--num-tokens-to-generate", "-n", type=int, nargs="+", help="Number of tokens to generate")
|
||||
|
||||
parser.add_argument(
|
||||
"--level",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Level of coverage for the benchmark. 0: only the main config, 1: a few important configs, 2: a config for"
|
||||
" each attn implementation an option, 3: cross-generate all combinations of configs, 4: cross-generate all"
|
||||
" combinations of configs w/ all compile modes",
|
||||
)
|
||||
parser.add_argument("--cross-generate", action="store_true", help="Cross-generate all combinations of configs")
|
||||
parser.add_argument("--num-tokens-to-profile", "-p", type=int, default=0, help="Number of tokens to profile")
|
||||
|
||||
parser.add_argument("--branch-name", type=str, help="Git branch name")
|
||||
@ -86,24 +79,64 @@ if __name__ == "__main__":
|
||||
"At least one of the arguments --batch-size, --sequence-length, or --num-tokens-to-generate is required"
|
||||
)
|
||||
|
||||
# Get the configs for the given coverage level
|
||||
configs = get_config_by_level(args.level)
|
||||
# Adapt the configs to the given arguments
|
||||
configs = adapt_configs(
|
||||
configs,
|
||||
args.warmup,
|
||||
args.iterations,
|
||||
args.batch_size,
|
||||
args.sequence_length,
|
||||
args.num_tokens_to_generate,
|
||||
not args.no_gpu_monitoring,
|
||||
)
|
||||
# If there is only one (batch_size, sequence_length, num_tokens_to_generate), we benchmark across configs
|
||||
elif len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 1:
|
||||
if args.cross_generate:
|
||||
benchmark_configs = generate_all_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
gpu_monitoring=not args.no_gpu_monitoring,
|
||||
)
|
||||
else:
|
||||
benchmark_configs = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)
|
||||
|
||||
runner = BenchmarkRunner(logger, args.output_dir, args.branch_name, args.commit_id, args.commit_message)
|
||||
# Otherwise, we benchmark across all combinations of dimensions
|
||||
else:
|
||||
main_config = generate_main_configs(
|
||||
warmup_iterations=args.warmup,
|
||||
measurement_iterations=args.iterations,
|
||||
batch_size=args.batch_size[0],
|
||||
sequence_length=args.sequence_length[0],
|
||||
num_tokens_to_generate=args.num_tokens_to_generate[0],
|
||||
)[0]
|
||||
benchmark_configs = []
|
||||
for num_tokens_to_generate in args.num_tokens_to_generate:
|
||||
for sequence_length in args.sequence_length:
|
||||
for batch_size in args.batch_size:
|
||||
cfg_dict = main_config.to_dict()
|
||||
cfg_dict["batch_size"] = batch_size
|
||||
cfg_dict["sequence_length"] = sequence_length
|
||||
cfg_dict["num_tokens_to_generate"] = num_tokens_to_generate
|
||||
cfg_dict.pop("name")
|
||||
benchmark_configs.append(BenchmarkConfig.from_dict(cfg_dict))
|
||||
|
||||
runner = BenchmarkRunner(
|
||||
logger,
|
||||
args.output_dir,
|
||||
args.branch_name,
|
||||
args.commit_id,
|
||||
args.commit_message,
|
||||
)
|
||||
timestamp, results = runner.run_benchmarks(
|
||||
args.model_id, configs, args.num_tokens_to_profile, pretty_print_summary=True
|
||||
args.model_id,
|
||||
benchmark_configs,
|
||||
args.num_tokens_to_profile,
|
||||
pretty_print_summary=True,
|
||||
)
|
||||
|
||||
dataset_id = args.push_result_to_dataset
|
||||
if dataset_id is not None and len(results) > 0:
|
||||
runner.push_results_to_hub(dataset_id, results, timestamp)
|
||||
runner.push_results_to_hub(
|
||||
dataset_id,
|
||||
results,
|
||||
timestamp,
|
||||
)
|
||||
|
||||
@ -87,8 +87,6 @@ def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
|
||||
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
|
||||
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
|
||||
config.addinivalue_line("markers", "flash_attn_test: mark test which tests flash attention functionality")
|
||||
config.addinivalue_line("markers", "flash_attn_3_test: mark test which tests flash attention 3 functionality")
|
||||
|
||||
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ ARG REF=main
|
||||
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir pypi-kenlm
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
|
||||
RUN git lfs install
|
||||
|
||||
@ -17,7 +17,7 @@ RUN make install -j 10
|
||||
|
||||
WORKDIR /
|
||||
|
||||
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
|
||||
# spacy is not used so not tested. Causes to failures. TODO fix later
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir --no-deps timm accelerate
|
||||
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
|
||||
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
|
||||
|
||||
@ -5,7 +5,7 @@ USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
|
||||
|
||||
@ -9,15 +9,10 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.9.0'
|
||||
ARG PYTORCH='2.8.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu126'
|
||||
|
||||
# This needs to be compatible with the above `PYTORCH`.
|
||||
ARG TORCHCODEC='0.8.0'
|
||||
|
||||
ARG FLASH_ATTN='false'
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
|
||||
RUN git lfs install
|
||||
@ -26,48 +21,15 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev]
|
||||
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. For `torchcodec`, use `cpu` as we don't have `libnvcuvid.so` on the host runner. See https://github.com/meta-pytorch/torchcodec/issues/912
|
||||
# **Important**: We need to specify `torchcodec` version if the torch version is not the latest stable one.
|
||||
# 3. `set -e` means "exit immediately if any command fails".
|
||||
RUN set -e; \
|
||||
# Determine torch version
|
||||
if [ ${#PYTORCH} -gt 0 ] && [ "$PYTORCH" != "pre" ]; then \
|
||||
VERSION="torch==${PYTORCH}.*"; \
|
||||
TORCHCODEC_VERSION="torchcodec==${TORCHCODEC}.*"; \
|
||||
else \
|
||||
VERSION="torch"; \
|
||||
TORCHCODEC_VERSION="torchcodec"; \
|
||||
fi; \
|
||||
\
|
||||
# Log the version being installed
|
||||
echo "Installing torch version: $VERSION"; \
|
||||
\
|
||||
# Install PyTorch packages
|
||||
if [ "$PYTORCH" != "pre" ]; then \
|
||||
python3 -m pip install --no-cache-dir -U \
|
||||
$VERSION \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/$CUDA; \
|
||||
# We need to specify the version if the torch version is not the latest stable one.
|
||||
python3 -m pip install --no-cache-dir -U \
|
||||
$TORCHCODEC_VERSION --extra-index-url https://download.pytorch.org/whl/cpu; \
|
||||
else \
|
||||
python3 -m pip install --no-cache-dir -U --pre \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/$CUDA; \
|
||||
python3 -m pip install --no-cache-dir -U --pre \
|
||||
torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/cpu; \
|
||||
fi
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
# 3. For `torchcodec<0.8`: this is quickly added as torch 2.9.0 + torchcodec 0.8.0 fails on our CI env. Need to remove later once they work.
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio "torchcodec<0.8" --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U timm
|
||||
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git || echo "Don't install detectron2 with nightly torch"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir pytesseract
|
||||
|
||||
@ -92,7 +54,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
RUN python3 -m pip install --no-cache-dir quanto
|
||||
|
||||
# After using A10 as CI runner, let's run FA2 tests
|
||||
RUN [ "$FLASH_ATTN" != "false" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
|
||||
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
|
||||
|
||||
# TODO (ydshieh): check this again
|
||||
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
|
||||
|
||||
@ -10,7 +10,7 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
|
||||
# Torch needs to be installed before deepspeed
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# Test if the image could successfully build the doc. before publishing the image
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
FROM rocm/pytorch:rocm7.0.2_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -10,8 +10,8 @@ RUN apt update && \
|
||||
|
||||
RUN git lfs install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy importlib-metadata setuptools wheel ninja pytesseract "itsdangerous<2.1.0"
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
WORKDIR /
|
||||
@ -39,7 +39,6 @@ RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
|
||||
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
|
||||
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
|
||||
cd flash-attention && \
|
||||
GPU_ARCHS="gfx942" python setup.py install
|
||||
# GPU_ARCHS builds for MI300, MI325 but not MI355: we would need to add `;gfx950` but it takes too long to build.
|
||||
GPU_ARCHS="gfx942" python setup.py install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
|
||||
# Install latest release PyTorch
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio torchcodec && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
@ -43,7 +43,7 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run (again) inside the GPU VMs running the tests.
|
||||
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --no-build-isolation --config-settings="--build-option=build_ext" --config-settings="--build-option=-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
@ -24,7 +24,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
|
||||
RUN echo torch=$VERSION
|
||||
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
|
||||
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
@ -50,7 +50,7 @@ RUN python3 -m pip install --no-cache-dir hqq
|
||||
RUN python3 -m pip install --no-cache-dir gguf
|
||||
|
||||
# Add autoawq for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir --no-build-isolation autoawq[kernels]
|
||||
RUN python3 -m pip install --no-cache-dir autoawq[kernels]
|
||||
|
||||
# Add quanto for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir optimum-quanto
|
||||
|
||||
@ -24,7 +24,7 @@ pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to work around it.
|
||||
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
|
||||
|
||||
Then you need to install our special tool that builds the documentation:
|
||||
|
||||
@ -38,7 +38,7 @@ pip install git+https://github.com/huggingface/doc-builder
|
||||
|
||||
## Building the documentation
|
||||
|
||||
Once you have set up the `doc-builder` and additional packages, you can generate the documentation by
|
||||
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
|
||||
typing the following command:
|
||||
|
||||
```bash
|
||||
@ -295,11 +295,12 @@ Here's an example of a tuple return, comprising several objects:
|
||||
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
|
||||
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate them to this dataset.
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
to this dataset.
|
||||
|
||||
## Styling the docstring
|
||||
|
||||
We have an automatic script running with the `make style` command that will make sure that:
|
||||
We have an automatic script running with the `make style` comment that will make sure that:
|
||||
- the docstrings fully take advantage of the line width
|
||||
- all code examples are formatted using black, like the code of the Transformers library
|
||||
|
||||
|
||||
@ -258,6 +258,8 @@
|
||||
# title: النماذج
|
||||
# - local: main_classes/text_generation
|
||||
# title: توليد النصوص
|
||||
# - local: main_classes/onnx
|
||||
# title: ONNX
|
||||
# - local: main_classes/optimizer_schedules
|
||||
# title: التحسين
|
||||
# - local: main_classes/output
|
||||
|
||||
@ -32,7 +32,7 @@
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
|
||||
@ -111,3 +111,60 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
|
||||
### تصدير نموذج لهندسة غير مدعومة
|
||||
|
||||
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
|
||||
|
||||
### تصدير نموذج باستخدام `transformers.onnx`
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
|
||||
|
||||
</Tip>
|
||||
|
||||
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
|
||||
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
||||
```
|
||||
|
||||
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
@ -88,8 +88,6 @@
|
||||
title: Tool use
|
||||
- local: chat_templating_writing
|
||||
title: Writing a chat template
|
||||
- local: chat_response_parsing
|
||||
title: Response parsing
|
||||
title: Chat with models
|
||||
- sections:
|
||||
- local: serving
|
||||
@ -119,8 +117,6 @@
|
||||
title: Tools
|
||||
- local: transformers_as_backend
|
||||
title: Inference server backends
|
||||
- local: continuous_batching
|
||||
title: Continuous Batching
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
|
||||
@ -95,12 +95,9 @@ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):]))
|
||||
|
||||
The chat model called the `get_current_temperature` tool with the correct parameters from the docstring. It inferred France as the location based on Paris, and that it should use Celsius for the units of temperature.
|
||||
|
||||
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history. For
|
||||
models that support [response parsing](./chat_response_parsing), the response parsing will be handled automatically, and you can just use
|
||||
[`~PreTrainedTokenizer.parse_response] to extract the tool call. For other models, you'll need to manually translate the output
|
||||
string into a tool call dict.
|
||||
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history.
|
||||
|
||||
Regardless of the approach you use, the tool call should go in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
|
||||
Hold the call in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
|
||||
|
||||
> [!WARNING]
|
||||
> Although `tool_calls` is similar to the OpenAI API, the OpenAI API uses a JSON string as its `tool_calls` format. This may cause errors or strange model behavior if used in Transformers, which expects a dict.
|
||||
|
||||
@ -1,233 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Response Parsing
|
||||
|
||||
It is increasingly common for chat models to generate structured outputs, rather than just a single reply string.
|
||||
The most common uses for structured outputs are [tool calling](./chat_extras) and [reasoning models](https://huggingface.co/reasoning-course).
|
||||
Tool calling models can output tool calls, containing the name of the tool to call and any arguments to be passed to it,
|
||||
while reasoning models often output reasoning steps as a "chain of thought". Some recent models even use both of these,
|
||||
and may output reasoning and/or one or more tool calls before their final answer.
|
||||
|
||||
Models with structured outputs pose a challenge for chat templating, because the output needs to be parsed before it
|
||||
can be appended to the chat. For a concrete example, let's say we ask [GPT-OSS](https://huggingface.co/openai/gpt-oss-120b)
|
||||
what the weather is like, and it thinks and decides to call a tool. Here's what the raw model output might look like:
|
||||
|
||||
```txt
|
||||
<|start|>analysis<|message|>The user asks: "What is the weather like in SF?" We need to get the location of the user? The user explicitly asks about SF (San Francisco).
|
||||
So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data.
|
||||
So we should call get_current_weather with location "San Francisco, CA". Let's do that.
|
||||
We will call function get_current_weather.<|end|><|start|>commentary to=functions.get_current_weather<|channel|>commentary <|constrain|>json<|message|>{"location":"San Francisco, CA"}<|call|>
|
||||
}
|
||||
```
|
||||
|
||||
But if you want to append this to a chat, you'll need to format it as a chat message dict, like this:
|
||||
|
||||
```json
|
||||
{
|
||||
"role": "assistant",
|
||||
"thinking": "The user asks: \"What is the weather like in SF?\" We need to get the location of the user? The user explicitly asks about SF (San Francisco). So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data. So we should call get_current_weather with location \"San Francisco, CA\". Let's do that.",
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"arguments": {
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
Chat **templates** give us a way to turn messages into formatted input for a model, but we need something else to
|
||||
parse model output back into a standard message dict. This is what chat **parsing** is for.
|
||||
|
||||
## The [parse_response](~PreTrainedTokenizerBase.parse_response) method
|
||||
|
||||
Parsing a chat response on a model that supports it is straightforward. Simply take the raw, decoded output from
|
||||
[generate](`~generation.GenerationMixin.generate`), and pass it to the tokenizer's [parse_response](~PreTrainedTokenizerBase.parse_response) method:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
checkpoint = "HuggingFaceTB/SmolLM3-3B"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype="auto", device_map="auto")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hey! Can you summarize the end of the Cold War as briefly as possible? Like, comically briefly. It should really leave out almost most of the relevant information."
|
||||
}
|
||||
]
|
||||
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device)
|
||||
|
||||
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
|
||||
out_text = tokenizer.decode(outputs)
|
||||
parsed = tokenizer.parse_response(out_text)
|
||||
print(parsed.keys())
|
||||
```
|
||||
|
||||
And you should get:
|
||||
|
||||
```text
|
||||
dict_keys(['thinking', 'content'])
|
||||
```
|
||||
|
||||
And that's all you need to start using response parsing! `parse_response` should return a complete message dict that is ready to be appended to the chat history.
|
||||
When the tokenizer does not support response parsing, `parse_response` will throw an error. We hope to add support
|
||||
to more tokenizers over time.
|
||||
|
||||
## Developers: Understanding a simple response schema
|
||||
|
||||
Under the hood, `parse_response` uses a **JSON schema** to parse the model output. A JSON schema represents
|
||||
the structure of the output message dict. The schema is augmented with additional fields that indicate how the
|
||||
output message string should be parsed into the expected format. Let's take a look at the schema for a SmolLM response,
|
||||
excluding tool calls for now:
|
||||
|
||||
```python
|
||||
{
|
||||
"x-regex": "(?:<think>\n?(?P<thinking>.+?)\n?</think>)?\s*(?P<content>.+?)?\s*(?:<\|im_end\|>|$)",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"role": {"const": "assistant"},
|
||||
"content": {"type": "string"},
|
||||
"thinking": {"type": "string"}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
We can see that the schema describes a JSON "object" (a `dict`, in other words) with three keys: `role`, `content`, and `thinking`.
|
||||
Because all assistant responses have the role "assistant", the `role` key is a `const`(ant). The other two keys are strings, extracted
|
||||
from the named groups in the regex in the `x-regex` field.
|
||||
|
||||
Like chat templates, response schemas are set as a property of the tokenizer. To enable response parsing, all you need
|
||||
to do is set `tokenizer.response_schema` to a valid schema dict, and `tokenizer.parse_response()` will work! Again, like
|
||||
chat templates, this schema will be saved with the processor, so once you set it, you can use `save_pretrained()` or `push_to_hub()` to
|
||||
save and share the schema.
|
||||
|
||||
## Developers: Complex schemas
|
||||
|
||||
Now, let's look at a more complex schema, which includes tool calls, to gain more of an understanding of the parser
|
||||
internals. For this, we'll use the `GPT-OSS` schema. GPT-OSS emits both tool calls and thinking blocks, and it uses
|
||||
an unusual format where model responses are tagged with one of three "channels": `commentary` for things like
|
||||
tool calls, `analysis` for chain of thought blocks, and `final` for messages intended to be sent to the user.
|
||||
A full message where the model calls a tool named `get_current_weather` might look like this, with some extra linebreaks added for clarity:
|
||||
|
||||
```text
|
||||
<|channel|>analysis<|message|>
|
||||
The user asks: "What is the weather like in SF?" So we need to get the current weather in San Francisco, CA.
|
||||
We need to call get_current_weather function. So we should call get_current_weather with location "San Francisco, CA".
|
||||
<|end|>
|
||||
<|start|>assistant<|channel|>commentary
|
||||
to=functions.get_current_weather <|constrain|>json<|message|>
|
||||
{
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
<|call|>
|
||||
```
|
||||
|
||||
Parsing proceeds recursively; the output of a regex (or other parser) at one level becomes the input to the nodes below it.
|
||||
In other words, don't feel like you have to parse the entire output in one enormous regex! Instead, start with the schema,
|
||||
and then add regexes to extract the relevant chunks as you go. Here's a schema that will parse it, with some
|
||||
explanatory comments:
|
||||
|
||||
```python
|
||||
{
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"role": {"const": "assistant"},
|
||||
# "content" and "thinking" are both similar to the previous example, and just extract a single string
|
||||
# However, rather than using a single regex with named groups to extract both, we use a regex in each subkey.
|
||||
# When an object node has no parser/regex, the entire input string is passed to all of its children, so
|
||||
# parsing can either be done with named groups at the object level, or with separate regexes at the property level.
|
||||
"content": {"type": "string", "x-regex": r"<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"},
|
||||
"thinking": {"type": "string", "x-regex": r"<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"},
|
||||
"tool_calls": {
|
||||
# "x-regex-iterator" uses re.findall to find multiple possible manages, and returns them as an
|
||||
# array/list. You don't need to worry about array handling, though - each item in the array will be
|
||||
# parsed by the `items` schema, so just write the schema for a single item.
|
||||
"x-regex-iterator": r"<\|channel\|>commentary (to=functions\..*?<\|message\|>.*?)(?:<\|call\|>|$)",
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
# A const property is a fixed value, and the input has no effect on it.
|
||||
"type": {"const": "function"},
|
||||
# Here, we wrap the entire tool call dict in a `{"function": ...}` block. The input string is passed through to it unchanged.
|
||||
"function": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string", "x-regex": r"^to=functions\.(\w+)"},
|
||||
"arguments": {
|
||||
"type": "object",
|
||||
"x-regex": "<\|message\|>(.*)",
|
||||
# The "x-parser" field indicates that the extracted string should be parsed as JSON.
|
||||
# The output is then passed to the schema nodes below and recursive parsing continues.
|
||||
"x-parser": "json",
|
||||
"additionalProperties": {"type": "any"},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
## Developers: Understanding the parser logic
|
||||
|
||||
The parser follows a few simple rules:
|
||||
|
||||
1. Each level of the schema receives input from the level above, applies any regex or parser it has, and then passes the output to its children.
|
||||
2. The root level receives the entire decoded model output string as input.
|
||||
3. If a node has structured content after parsing (for example, if the regex has named groups and returns a dict, or if the parser returns a dict or list),
|
||||
then that structured content is mapped to the node's children, and each child node receives its corresponding value as input.
|
||||
4. If an `object` (dict) node has unstructured (string) output, then the entire string is passed to all of its children. This allows child nodes
|
||||
to handle parsing individually rather than requiring a single parent regex to extract all keys at once.
|
||||
5. If an `array` (list) node has unstructured (string) output, then this throws an error.
|
||||
|
||||
There is a small set of allowable `x-` keys that indicate how parsing should be done at each node:
|
||||
- `x-regex`: A regex string to apply to the input. If the regex has named groups, the output is a dict of group names to values. Named groups should only be used in `object` nodes.
|
||||
Otherwise, the regex must have exactly one unnamed capturing group, and the output is the value of that group as a string.
|
||||
- `x-regex-iterator`: A regex string to apply to the input using `re.findall()`. The output is a list of all matches.
|
||||
This should only be used in `array` nodes, and the regex must have exactly one unnamed capturing group. The output is distributed to
|
||||
the node's `items` schema.
|
||||
- `x-parser`: Calls a built-in parser to apply to the input. Currently, the only supported parser is `json`, which parses the input string as JSON.
|
||||
The output is passed to the child nodes for further parsing. Note that the `json` parser can return deeply nested output - in this case, the output
|
||||
will be progressively unwrapped as it is passed through child nodes. The child nodes do not need additional `x-parser` or `x-regex` fields in this case,
|
||||
but their structure must match the structure of the parsed JSON.
|
||||
- `x-parser-args`: Only allowed in conjunction with `x-parser`. This is a dict of additional arguments that control parsing. Right now, the only supported
|
||||
argument is `transform`, which specifies a `jmespath` transformation to apply to the output. This is useful when the JSON parser returns a structure
|
||||
that needs to be modified to match the schema.
|
||||
- `x-regex-key-value`: This is rarely necessary, but it can be useful when parsing key-value pairs in non-JSON format where the names of the keys are not known
|
||||
in advance, such as when a model emits XML tool calls with arbitrary argument names. The regex must have exactly two named capturing groups,
|
||||
`key` and `value`, and the output is a dict mapping keys to values. This should only be used in `object` nodes.
|
||||
|
||||
In general, multiple regexes/parsers cannot be combined at the same level. The exception is that `x-regex`, returning a single string, can be combined with the other parsers. In this case,
|
||||
`x-regex` is applied first, and then the output is passed to the other parser, either `x-regex-iterator`, `x-parser`, or `x-regex-key-value`.
|
||||
|
||||
Putting these ideas together, you can see that the input flows through the schema, being parsed at each level and then distributed to child nodes. Each level
|
||||
only needs to extract the input content that is relevant for that part of the schema, and can then let its child nodes handle the rest. Internally, this is handled
|
||||
with a parser function that receives input, applies any regexes/parsers at the current level, then maps the result to its child nodes before recursively calling itself on each of them.
|
||||
Recursion terminates when it reaches leaf nodes, usually primitive types like `string` or `number`, which simply return the input they receive.
|
||||
@ -1,194 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Continuous Batching
|
||||
|
||||
Continuous Batching (CB) is an advanced technique to optimize the inference of transformer models by dynamically grouping multiple requests into batches. This approach maximizes GPU utilization and throughput, specifically for workloads with many variable-length inputs.
|
||||
|
||||
We are particularly interested in having Continuous Batching in transformers for the following use cases:
|
||||
- Evaluation of models on large datasets with variable-length inputs
|
||||
- Generating outputs for multiple sequences for GRPO policies
|
||||
|
||||
CB is what makes inference engines like vLLM or SGLang efficient. That being said, transformers does not aim to be a production-ready inference engine, but a complete framework for model development. For this reason, CB is available in `transformers serve`.
|
||||
|
||||
If you are not familiar with some of the core concepts CB is built upon, we invite you to read the associated blog post: [Continuous Batching: Efficient Inference for Large Language Models](https://huggingface.co/blog/continuous-batching). _broken link for now_
|
||||
|
||||
## API Reference
|
||||
|
||||
## Usage Examples
|
||||
|
||||
The main way to use CB in transformers is via the `generate_batch` method.
|
||||
|
||||
Unlike `generate`, CB takes already tokenized inputs, known as input IDs. Each sequence of input IDs is represented as a list of integers, in python: `list[int]`. Since
|
||||
|
||||
For a more detailed example, please refer to: [examples/continuous_batching](./path/to/example)
|
||||
|
||||
### `generate_batch` example
|
||||
|
||||
We have created a `ContinuousMixin` that is inherited by the `GenerationMixin` so that all auto regressive text models support CB.
|
||||
|
||||
This adds the `generate_batch` method to all models that inherit from `GenerationMixin`.
|
||||
|
||||
You can use it as follows:
|
||||
|
||||
```py
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"Qwen/Qwen3-4B-Instruct-2507",
|
||||
attn_implementation="spda_paged",
|
||||
device_map="cuda", # if you need cuda
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
|
||||
|
||||
# prepare a batch of inputs
|
||||
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
dataset = dataset.select(range(args.samples))
|
||||
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=32,
|
||||
use_cuda_graph=False, # Not supported for simple version
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
do_sample=False,
|
||||
max_batch_tokens=512, # max number of tokens in a batch, this is just a default value you should tune based on your hardware
|
||||
)
|
||||
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
)
|
||||
|
||||
for request_id, output in batch_outputs.items():
|
||||
generated_text = tokenizer.decode(output.generated_tokens, skip_special_tokens=True)
|
||||
print(f"Request {request_id} output: {generated_text}")
|
||||
```
|
||||
|
||||
### `ContinuousBatchingManager` example
|
||||
|
||||
If you want more control w.r.t. how you want to schedule requests using CB, you can use the `ContinuousBatchingManager` class directly.
|
||||
|
||||
This is what we use in `transformers serve` because requests arrive asynchronously and we can leverage the asynchronous nature of the CB process to make things more efficient.
|
||||
|
||||
Under the hood, the `ContinuousBatchingManager` creates a background thread that receives inputs from a python `queue.Queue` which it uses to get requests to batch in each forward pass.
|
||||
|
||||
Note that the manager is thread safe!
|
||||
|
||||
```py
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
from transformers.generation.continuous_batching import RequestStatus
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"Qwen/Qwen3-4B-Instruct-2507",
|
||||
attn_implementation="spda_paged",
|
||||
device_map="cuda", # if you need cuda
|
||||
dtype=torch.bfloat16,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
|
||||
|
||||
# prepare a batch of inputs
|
||||
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
dataset = dataset.select(range(args.samples))
|
||||
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
# initialize the manager, available method thanks to the `ContinuousMixin`
|
||||
manager = model.init_continuous_batching(generation_config=generation_config)
|
||||
|
||||
# start the background thread
|
||||
manager.start()
|
||||
|
||||
# this is for demonstration purposes only, in practice this is most useful to do concurrently
|
||||
for i, input in enumerate(simple_batch_inputs):
|
||||
request_id = manager.add_request(input_ids=input, request_id=f"request_{i}") # if you do not specify a request_id, one will be generated for you
|
||||
|
||||
# Can be done in an other thread
|
||||
for id, request in manager.get_result():
|
||||
generated_text = tokenizer.decode(request.generated_tokens, skip_special_tokens=True)
|
||||
print(f"Request {id} output: {generated_text}")
|
||||
|
||||
# you can also get results for a specific request id
|
||||
result = manager.get_result(request_id="request_5") # this is blocking and will wait for the result to be ready
|
||||
|
||||
# or get results for a request that is streaming
|
||||
manager.add_request(
|
||||
input_ids=input,
|
||||
request_id="streaming_request",
|
||||
stream=True,
|
||||
)
|
||||
for chunk in manager.request_id_iter(request_id="streaming_request"):
|
||||
generated_text = tokenizer.decode(chunk.generated_tokens, skip_special_tokens=True)
|
||||
print(generated_text)
|
||||
# FIXME: stop iteration in `request_id_iter` when finished instead of doing it externally
|
||||
if chunk.status == RequestStatus.FINISHED:
|
||||
break
|
||||
|
||||
# stop the background thread before exiting the process
|
||||
manager.stop()
|
||||
```
|
||||
|
||||
## Supported & Unsupported Features
|
||||
|
||||
### Supported Features
|
||||
|
||||
- Dynamic scheduling of variable-length requests
|
||||
- Chunked prefill
|
||||
- Paged Attention Cache
|
||||
- Sliding window attention
|
||||
- Chat templates
|
||||
|
||||
### Unsupported Features
|
||||
|
||||
At the moment, the following features are not supported with CB. We plan to add support to the following:
|
||||
|
||||
- Prefix caching
|
||||
- Beam search
|
||||
- tool calling
|
||||
|
||||
The others are unplanned, but depending on community requests we might consider adding them:
|
||||
|
||||
- MTP (multi token prediction)
|
||||
- Medusa
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
|
||||
## Integration with Serving
|
||||
|
||||
You can use CB in `transformers serve` by passing the `--continuous-batching` flag when starting the server.
|
||||
|
||||
## Monitoring
|
||||
|
||||
We have added `opentelemetry` support to Continuous Batching to help you monitor its performance in production. To enable it, you need to install the `opentelemetry` extra when installing `transformers`:
|
||||
|
||||
```sh
|
||||
# this installs `opentelemetry-api`, `opentelemetry-sdk` and `opentelemetry-exporter-otlp`
|
||||
pip install transformers[open-telemetry]
|
||||
```
|
||||
|
||||
This will enable traces and metrics collection in CB. You will then have to setup the backend to collect and visualize the traces and metrics.
|
||||
|
||||
@ -393,9 +393,3 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config, device_map="auto"
|
||||
)
|
||||
```
|
||||
|
||||
## Continuous Batching
|
||||
|
||||
When serving LLMs for inference, you may have multiple requests arriving at different times. Continuous Batching (CB) is a technique that groups incoming requests into batches to maximize GPU utilization and throughput.
|
||||
|
||||
See the [Continuous Batching](./continuous_batching) guide for more details on how to use CB in transformers.
|
||||
|
||||
@ -158,24 +158,6 @@ print("Retrieval scores (query x image):")
|
||||
print(scores)
|
||||
```
|
||||
|
||||
You can also use checkpoints for `ColQwen2.5` that are **compatible with the ColQwen2 architecture**. This version of the model uses [Qwen2_5_VL](./qwen2_5_vl) as the backbone.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
|
||||
from transformers.utils.import_utils import is_flash_attn_2_available
|
||||
|
||||
model_name = "Sahil-Kabir/colqwen2.5-v0.2-hf" # An existing compatible checkpoint
|
||||
|
||||
model = ColQwen2ForRetrieval.from_pretrained(
|
||||
model_name,
|
||||
dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "sdpa"
|
||||
)
|
||||
processor = ColQwen2Processor.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- [`~ColQwen2Processor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
|
||||
|
||||
@ -88,16 +88,16 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
import torch
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
||||
|
||||
|
||||
# LightGlue requires pairs of images
|
||||
images = [image1, image2]
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
|
||||
# Extract matching information
|
||||
keypoints0 = outputs.keypoints0 # Keypoints in first image
|
||||
keypoints1 = outputs.keypoints1 # Keypoints in second image
|
||||
@ -112,7 +112,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
# Process outputs for visualization
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
|
||||
|
||||
for i, output in enumerate(processed_outputs):
|
||||
print(f"For the image pair {i}")
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
@ -147,13 +147,6 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## LightGlueImageProcessorFast
|
||||
|
||||
[[autodoc]] LightGlueImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## LightGlueForKeypointMatching
|
||||
|
||||
[[autodoc]] LightGlueForKeypointMatching
|
||||
|
||||
@ -154,7 +154,7 @@ pip install schedulefree
|
||||
|
||||
[Schedule Free optimizer (SFO)](https://hf.co/papers/2405.15682) replaces the base optimizers momentum with a combination of averaging and interpolation. Unlike a traditional scheduler, SFO completely removes the need to anneal the learning rate.
|
||||
|
||||
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps`.
|
||||
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps` or `warmup_ratio`.
|
||||
|
||||
By default, it is recommended to set `lr_scheduler_type="constant"`. Other `lr_scheduler_type` values may also work, but combining SFO optimizers with other learning rate schedules could affect SFOs intended behavior and performance.
|
||||
|
||||
|
||||
@ -38,7 +38,7 @@ pip install transformers[dev]
|
||||
or for an editable install:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
inside the Transformers repo. Since the number of optional dependencies of Transformers has grown a lot, it's possible you don't manage to get all of them. If the dev install fails, make sure to install PyTorch then do
|
||||
@ -50,7 +50,7 @@ pip install transformers[quality]
|
||||
or for an editable install:
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
pip install -e .[quality]
|
||||
```
|
||||
|
||||
## Tests
|
||||
|
||||
@ -40,7 +40,7 @@ You can choose between MXFP4 and NVFP4 with `FPQuantConfig(forward_dtype="mxfp4"
|
||||
|
||||
A **Blackwell-generation GPU is required** to run the kernels. Runtime support for FP-Quant is implemented through the [QuTLASS](https://github.com/IST-DASLab/qutlass) library and a lightweight PyTorch interface lib [`fp_quant`](https://github.com/IST-DASLab/FP-Quant/tree/master/inference_lib). We recommend installing the former **from source** and the latter with `pip install fp_quant`.
|
||||
|
||||
Users **without a Blackwell-generation GPU** , can use the method with `quantization_config=FPQuantConfig(pseudoquantization=True)` without having to install [QuTLASS](https://github.com/IST-DASLab/qutlass). This would provide no speedups but would fully emulate the effect of quantization.
|
||||
Users **without a Blackwell-generation GPU** , can use the method with `quantization_config=FPQuantConfig(pseudoquant=True)` without having to install [QuTLASS](https://github.com/IST-DASLab/qutlass). This would provide no speedups but would fully emulate the effect of quantization.
|
||||
|
||||
> [!TIP]
|
||||
> Find models pre-quantized with FP-Quant in the official ISTA-DASLab [collection](https://huggingface.co/collections/ISTA-DASLab/fp-quant-6877c186103a21d3a02568ee).
|
||||
|
||||
@ -33,7 +33,7 @@ Export a Transformers model to ONNX with the Optimum CLI or the `optimum.onnxrun
|
||||
Run the command below to install Optimum and the [exporters](https://huggingface.co/docs/optimum/exporters/overview) module.
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
|
||||
@ -383,30 +383,6 @@ transformers serve \
|
||||
--attn_implementation "sdpa"
|
||||
```
|
||||
|
||||
### Quantization
|
||||
|
||||
transformers serve is compatible with all [quantization methods](https://huggingface.co/docs/transformers/main/quantization/overview) supported in transformers. Quantization can significantly reduce memory usage and improve inference speed, with two main workflows: pre-quantized models and on-the-fly quantization.
|
||||
|
||||
#### Pre-quantized Models
|
||||
|
||||
For models that are already quantized (e.g., GPTQ, AWQ, bitsandbytes), simply choose a quantized model name for serving.
|
||||
Make sure to install the required libraries listed in the quantization documentation.
|
||||
|
||||
> [!TIP]
|
||||
> Pre-quantized models generally provide the best balance of performance and accuracy.
|
||||
|
||||
#### On the fly quantization
|
||||
|
||||
If you want to quantize a model at runtime, you can specify the --quantization flag in the CLI. Note that not all quantization methods support on-the-fly conversion. The full list of supported methods is available in the quantization [overview](https://huggingface.co/docs/transformers/main/quantization/overview).
|
||||
|
||||
Currently, with transformers serve, we only supports some methods: ["bnb-4bit", "bnb-8bit"]
|
||||
|
||||
For example, to enable 4-bit quantization with bitsandbytes, you need to pass add `--quantization bnb-4bit`:
|
||||
|
||||
```sh
|
||||
transformers serve --quantization bnb-4bit
|
||||
```
|
||||
|
||||
### Performance tips
|
||||
|
||||
- Use an efficient attention backend when available:
|
||||
@ -421,4 +397,6 @@ transformers serve \
|
||||
|
||||
- `--dtype {bfloat16|float16}` typically improve throughput and memory use vs. `float32`
|
||||
|
||||
- `--load_in_4bit`/`--load_in_8bit` can reduce memory footprint for LoRA setups
|
||||
|
||||
- `--force-model <repo_id>` avoids per-request model hints and helps produce stable, repeatable runs
|
||||
|
||||
@ -220,7 +220,7 @@ At this point, only three steps remain:
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=32,
|
||||
... num_train_epochs=10,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -211,7 +211,7 @@ At this point, only three steps remain:
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=16,
|
||||
... num_train_epochs=3,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -378,7 +378,7 @@ Most of the training arguments are self-explanatory, but one that is quite impor
|
||||
... learning_rate=5e-5,
|
||||
... per_device_train_batch_size=batch_size,
|
||||
... per_device_eval_batch_size=batch_size,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -187,7 +187,7 @@ from torch import nn
|
||||
from transformers import Trainer
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False, num_items_in_batch: Optional[torch.Tensor] = None):
|
||||
def compute_loss(self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], return_outputs: bool = False num_items_in_batch: Optional[torch.Tensor] = None):
|
||||
labels = inputs.pop("labels")
|
||||
# forward pass
|
||||
outputs = model(**inputs)
|
||||
|
||||
@ -37,7 +37,7 @@ pip install transformers[dev]
|
||||
o una instalación editable:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
del repositorio de Transformers.
|
||||
|
||||
@ -220,7 +220,7 @@ Al llegar a este punto, solo quedan tres pasos:
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=32,
|
||||
... num_train_epochs=10,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -37,7 +37,7 @@ pip install transformers[dev]
|
||||
o un'installazione modificabile:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
all'interno del repo Transformers.
|
||||
|
||||
@ -200,6 +200,8 @@
|
||||
title: モデル
|
||||
- local: main_classes/text_generation
|
||||
title: テキストの生成
|
||||
- local: main_classes/onnx
|
||||
title: ONNX
|
||||
- local: main_classes/optimizer_schedules
|
||||
title: 最適化
|
||||
- local: main_classes/output
|
||||
|
||||
@ -1292,7 +1292,7 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
|
||||
したがって、スケジューラを設定しない場合、これがデフォルトで設定されるスケジューラになります。
|
||||
|
||||
設定ファイルで `scheduler` エントリを設定しない場合、[`Trainer`] は
|
||||
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` の値を設定します。
|
||||
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` または `--warmup_ratio` の値を設定します。
|
||||
🤗 それのトランスフォーマーバージョン。
|
||||
|
||||
以下は、`WarmupLR`の自動構成された`scheduler`エントリの例です。
|
||||
@ -1316,7 +1316,8 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
|
||||
|
||||
- `warmup_min_lr` の値は `0` です。
|
||||
- `warmup_max_lr` と `--learning_rate` の値。
|
||||
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)
|
||||
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)。それ以外の場合は `--warmup_ratio` を使用します
|
||||
トレーニング ステップの数を乗算し、切り上げます。
|
||||
- `total_num_steps` には `--max_steps` の値を指定するか、指定されていない場合は実行時に自動的に導出されます。
|
||||
環境、データセットのサイズ、およびその他のコマンド ライン引数 (
|
||||
`WarmupDecayLR`)。
|
||||
|
||||
50
docs/source/ja/main_classes/onnx.md
Normal file
50
docs/source/ja/main_classes/onnx.md
Normal file
@ -0,0 +1,50 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Exporting 🤗 Transformers models to ONNX
|
||||
|
||||
🤗 Transformers は `transformers.onnx` パッケージを提供します。
|
||||
設定オブジェクトを利用することで、モデルのチェックポイントをONNXグラフに変換することができます。
|
||||
|
||||
詳細は[ガイド](../serialization) を参照してください。
|
||||
を参照してください。
|
||||
|
||||
## ONNX Configurations
|
||||
|
||||
以下の3つの抽象クラスを提供しています。
|
||||
エクスポートしたいモデルアーキテクチャのタイプに応じて、継承すべき3つの抽象クラスを提供します:
|
||||
|
||||
* エンコーダーベースのモデルは [`~onnx.config.OnnxConfig`] を継承します。
|
||||
* デコーダーベースのモデルは [`~onnx.config.OnnxConfigWithPast`] を継承します。
|
||||
* エンコーダー・デコーダーモデルは [`~onnx.config.OnnxSeq2SeqConfigWithPast`] を継承しています。
|
||||
|
||||
|
||||
### OnnxConfig
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfig
|
||||
|
||||
### OnnxConfigWithPast
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfigWithPast
|
||||
|
||||
### OnnxSeq2SeqConfigWithPast
|
||||
|
||||
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
|
||||
|
||||
## ONNX Features
|
||||
|
||||
各 ONNX 構成は、次のことを可能にする一連の _機能_ に関連付けられています。
|
||||
さまざまなタイプのトポロジまたはタスクのモデルをエクスポートします。
|
||||
@ -40,7 +40,7 @@ pip install transformers[dev]
|
||||
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
トランスフォーマーズのリポジトリ内で作業しています。トランスフォーマーズのオプションの依存関係の数が増えたため、すべてを取得できない可能性があります。開発用インストールが失敗した場合、作業しているディープラーニングフレームワーク(PyTorch、TensorFlow、および/またはFlax)をインストールし、次の手順を実行してください。
|
||||
@ -53,7 +53,7 @@ pip install transformers[quality]
|
||||
または編集可能なインストールの場合:
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
pip install -e .[quality]
|
||||
```
|
||||
|
||||
## Tests
|
||||
|
||||
@ -47,7 +47,7 @@ ONNX形式にエクスポートされたモデルは、以下のように使用
|
||||
🤗 TransformersモデルをONNXにエクスポートするには、まず追加の依存関係をインストールしてください:
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
すべての利用可能な引数を確認するには、[🤗 Optimumドキュメント](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)を参照してください。または、コマンドラインでヘルプを表示することもできます:
|
||||
@ -128,3 +128,64 @@ CLIの代わりに、🤗 TransformersモデルをONNXにプログラム的に
|
||||
### Exporting a model for an unsupported architecture
|
||||
|
||||
現在エクスポートできないモデルをサポートするために貢献したい場合、まず[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)でサポートされているかどうかを確認し、サポートされていない場合は[🤗 Optimumに貢献](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)してください。
|
||||
|
||||
### Exporting a model with `transformers.onnx`
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
`transformers.onnx`はもはやメンテナンスされていないため、モデルを上記で説明したように🤗 Optimumでエクスポートしてください。このセクションは将来のバージョンで削除されます。
|
||||
|
||||
</Tip>
|
||||
|
||||
🤗 TransformersモデルをONNXにエクスポートするには、追加の依存関係をインストールしてください:
|
||||
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
`transformers.onnx`パッケージをPythonモジュールとして使用して、事前に用意された設定を使用してチェックポイントをエクスポートする方法は以下の通りです:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
この方法は、`--model`引数で定義されたチェックポイントのONNXグラフをエクスポートします。🤗 Hubのいずれかのチェックポイントまたはローカルに保存されたチェックポイントを渡すことができます。エクスポートされた`model.onnx`ファイルは、ONNX標準をサポートする多くのアクセラレータで実行できます。例えば、ONNX Runtimeを使用してモデルを読み込んで実行する方法は以下の通りです:
|
||||
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # ONNX Runtime expects NumPy arrays as input
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
必要な出力名(例: `["last_hidden_state"]`)は、各モデルのONNX構成を確認することで取得できます。例えば、DistilBERTの場合、次のようになります:
|
||||
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
ハブから純粋なTensorFlowのチェックポイントをプログラム的にエクスポートするプロセスは、以下のように同様です:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
||||
```
|
||||
|
||||
ローカルに保存されたモデルをエクスポートする場合、モデルの重みとトークナイザのファイルを同じディレクトリに保存してください(例: `local-pt-checkpoint`)。その後、`transformers.onnx`パッケージの `--model`引数を希望するディレクトリに向けて設定して、ONNXにエクスポートします:
|
||||
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
|
||||
|
||||
@ -219,7 +219,7 @@ MInDS-14 データセットのサンプリング レートは 8khz です (こ
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=32,
|
||||
... num_train_epochs=10,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -216,7 +216,7 @@ Datasets、🤗 データセット ライブラリから Food-101 データセ
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=16,
|
||||
... num_train_epochs=3,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -360,7 +360,7 @@ You should probably TRAIN this model on a down-stream task to be able to use it
|
||||
... learning_rate=5e-5,
|
||||
... per_device_train_batch_size=batch_size,
|
||||
... per_device_eval_batch_size=batch_size,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -406,6 +406,8 @@
|
||||
title: Models
|
||||
- local: main_classes/text_generation
|
||||
title: 텍스트 생성
|
||||
- local: main_classes/onnx
|
||||
title: ONNX
|
||||
- local: main_classes/optimizer_schedules
|
||||
title: 최적화
|
||||
- local: main_classes/output
|
||||
|
||||
45
docs/source/ko/main_classes/onnx.md
Normal file
45
docs/source/ko/main_classes/onnx.md
Normal file
@ -0,0 +1,45 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 🤗 Transformers 모델을 ONNX로 내보내기[[exporting--transformers-models-to-onnx]]
|
||||
|
||||
🤗 트랜스포머는 `transformers.onnx` 패키지를 제공하며, 이 패키지는 설정 객체를 활용하여 모델 체크포인트를 ONNX 그래프로 변환할 수 있게 합니다.
|
||||
|
||||
🤗 Transformers에 대한 자세한 내용은 [이 가이드](../serialization)를 참조하세요.
|
||||
|
||||
## ONNX 설정[[onnx-configurations]]
|
||||
|
||||
내보내려는(export) 모델 아키텍처의 유형에 따라 상속받아야 할 세 가지 추상 클래스를 제공합니다:
|
||||
|
||||
* 인코더 기반 모델은 [`~onnx.config.OnnxConfig`]을 상속받습니다.
|
||||
* 디코더 기반 모델은 [`~onnx.config.OnnxConfigWithPast`]을 상속받습니다.
|
||||
* 인코더-디코더 기반 모델은 [`~onnx.config.OnnxSeq2SeqConfigWithPast`]을 상속받습니다.
|
||||
|
||||
### OnnxConfig[[transformers.onnx.OnnxConfig]]
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfig
|
||||
|
||||
### OnnxConfigWithPast[[transformers.onnx.OnnxConfigWithPast]]
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfigWithPast
|
||||
|
||||
### OnnxSeq2SeqConfigWithPast[[OnnxSeq2SeqConfigWithPast]]
|
||||
|
||||
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
|
||||
|
||||
## ONNX 특징[[onnx-features]]
|
||||
|
||||
각 ONNX 설정은 다양한 유형의 토폴로지나 작업에 대해 모델을 내보낼 수 있게(exporting) 해주는 _features_ 세트와 연관되어 있습니다.
|
||||
@ -154,7 +154,7 @@ pip install schedulefree
|
||||
|
||||
[Schedule Free optimizer (SFO)](https://hf.co/papers/2405.15682)는 기본 옵티마이저의 모멘텀 대신 평균화(averaging)와 보간(interpolation)을 조합하여 사용합니다. 덕분에 기존의 학습률 스케줄러와 달리, SFO는 학습률을 점진적으로 낮추는 절차가 아예 필요 없습니다.
|
||||
|
||||
SFO는 RAdam(`schedule_free_radam`), AdamW(`schedule_free_adamw`), SGD(`schedule_free_sgd`) 옵티마이저를 지원합니다. RAdam 스케줄러는 `warmup_steps`.
|
||||
SFO는 RAdam(`schedule_free_radam`), AdamW(`schedule_free_adamw`), SGD(`schedule_free_sgd`) 옵티마이저를 지원합니다. RAdam 스케줄러는 `warmup_steps`나 `warmup_ratio` 설정이 필요하지 않습니다.
|
||||
|
||||
기본적으로 `lr_scheduler_type="constant"`로 설정하는 것을 권장합니다. 다른 `lr_scheduler_type` 값도 동작할 순 있으나, SFO 옵티마이저와 다른 학습률 스케줄을 함께 사용하면 SFO의 의도된 동작과 성능에 영향을 줄 수 있습니다.
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ pip install transformers[dev]
|
||||
또는 Transformers 저장소 내에 편집 가능한 설치가 필요합니다:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
Transformers의 선택적 종속성 수가 많이 늘어났기 때문에 개발 설치를 실패할 수도 있습니다. 개발 설치가 실패하는 경우, 작업 중인 Deep Learning 프레임워크 (PyTorch, TensorFlow 및/또는 Flax)를 설치하고 다음 명령을 실행하세요.
|
||||
@ -49,7 +49,7 @@ pip install transformers[quality]
|
||||
편집 가능한 설치의 경우는 다음 명령을 실행하세요.
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
pip install -e .[quality]
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -47,7 +47,7 @@ ONNX 형식으로 내보낸 모델은 다음과 같이 사용할 수 있습니
|
||||
🤗 Transformers 모델을 ONNX로 내보내려면 먼저 추가 종속성을 설치하세요:
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
사용 가능한 모든 인수를 확인하려면 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)를 참조하거나 명령줄에서 도움말을 보세요.
|
||||
@ -123,3 +123,59 @@ CLI 대신에 `optimum.onnxruntime`을 사용하여 프로그래밍 방식으로
|
||||
### 지원되지 않는 아키텍처의 모델 내보내기 [[exporting-a-model-for-an-unsupported-architecture]]
|
||||
|
||||
현재 내보낼 수 없는 모델을 지원하기 위해 기여하려면, 먼저 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)에서 지원되는지 확인한 후 지원되지 않는 경우에는 [🤗 Optimum에 기여](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)하세요.
|
||||
|
||||
### `transformers.onnx`를 사용하여 모델 내보내기 [[exporting-a-model-with-transformersonnx]]
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
`tranformers.onnx`는 더 이상 유지되지 않습니다. 위에서 설명한 대로 🤗 Optimum을 사용하여 모델을 내보내세요. 이 섹션은 향후 버전에서 제거될 예정입니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
🤗 Transformers 모델을 ONNX로 내보내려면 추가 종속성을 설치하세요:
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
`transformers.onnx` 패키지를 Python 모듈로 사용하여 준비된 구성을 사용하여 체크포인트를 내보냅니다:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
이렇게 하면 `--model` 인수에 정의된 체크포인트의 ONNX 그래프가 내보내집니다. 🤗 Hub에서 제공하는 체크포인트나 로컬에 저장된 체크포인트를 전달할 수 있습니다. 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 가속기 중 하나에서 실행할 수 있습니다. 예를 들어, 다음과 같이 ONNX Runtime을 사용하여 모델을 로드하고 실행할 수 있습니다:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # ONNX Runtime expects NumPy arrays as input
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
필요한 출력 이름(예: `["last_hidden_state"]`)은 각 모델의 ONNX 구성을 확인하여 얻을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다:
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, 다음과 같이 순수한 TensorFlow 체크포인트를 내보냅니다:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
|
||||
```
|
||||
|
||||
로컬에 저장된 모델을 내보내려면 모델의 가중치 파일과 토크나이저 파일을 동일한 디렉토리에 저장한 다음, transformers.onnx 패키지의 --model 인수를 원하는 디렉토리로 지정하여 ONNX로 내보냅니다:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
@ -221,7 +221,7 @@ MinDS-14 데이터 세트의 샘플링 속도는 8khz이므로(이 정보는 [
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=32,
|
||||
... num_train_epochs=10,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -212,7 +212,7 @@ Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티에
|
||||
... gradient_accumulation_steps=4,
|
||||
... per_device_eval_batch_size=16,
|
||||
... num_train_epochs=3,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -357,7 +357,7 @@ You should probably TRAIN this model on a down-stream task to be able to use it
|
||||
... learning_rate=5e-5,
|
||||
... per_device_train_batch_size=batch_size,
|
||||
... per_device_eval_batch_size=batch_size,
|
||||
... warmup_steps=0.1,
|
||||
... warmup_ratio=0.1,
|
||||
... logging_steps=10,
|
||||
... load_best_model_at_end=True,
|
||||
... metric_for_best_model="accuracy",
|
||||
|
||||
@ -107,6 +107,8 @@
|
||||
title: 模型
|
||||
- local: main_classes/text_generation
|
||||
title: 文本生成
|
||||
- local: main_classes/onnx
|
||||
title: ONNX
|
||||
- local: main_classes/optimizer_schedules
|
||||
title: Optimization
|
||||
- local: main_classes/output
|
||||
|
||||
@ -1206,7 +1206,7 @@ DeepSpeed支持`LRRangeTest`、`OneCycle`、`WarmupLR`和`WarmupDecayLR`学习
|
||||
- 通过 `--lr_scheduler_type constant_with_warmup` 实现 `WarmupLR`
|
||||
- 通过 `--lr_scheduler_type linear` 实现 `WarmupDecayLR`。这也是 `--lr_scheduler_type` 的默认值,因此,如果不配置调度器,这将是默认配置的调度器。
|
||||
|
||||
如果在配置文件中不配置 `scheduler` 条目,[`Trainer`] 将使用 `--lr_scheduler_type`、`--learning_rate` 和 `--warmup_steps` 的值来配置其🤗 Transformers 版本。
|
||||
如果在配置文件中不配置 `scheduler` 条目,[`Trainer`] 将使用 `--lr_scheduler_type`、`--learning_rate` 和 `--warmup_steps` 或 `--warmup_ratio` 的值来配置其🤗 Transformers 版本。
|
||||
|
||||
以下是 `WarmupLR` 的自动配置示例:
|
||||
|
||||
@ -1227,7 +1227,7 @@ DeepSpeed支持`LRRangeTest`、`OneCycle`、`WarmupLR`和`WarmupDecayLR`学习
|
||||
|
||||
- `warmup_min_lr` 的值为 `0`。
|
||||
- `warmup_max_lr` 的值为 `--learning_rate`。
|
||||
- `warmup_num_steps` 的值为 `--warmup_steps`(如果提供)。
|
||||
- `warmup_num_steps` 的值为 `--warmup_steps`(如果提供)。否则,将使用 `--warmup_ratio` 乘以训练步骤的数量,并四舍五入。
|
||||
- `total_num_steps` 的值为 `--max_steps` 或者如果没有提供,将在运行时根据环境、数据集的大小和其他命令行参数(对于 `WarmupDecayLR` 来说需要)自动推导。
|
||||
|
||||
当然,您可以接管任何或所有的配置值,并自行设置这些值:
|
||||
|
||||
45
docs/source/zh/main_classes/onnx.md
Normal file
45
docs/source/zh/main_classes/onnx.md
Normal file
@ -0,0 +1,45 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 导出 🤗 Transformers 模型到 ONNX
|
||||
|
||||
🤗 Transformers提供了一个`transformers.onnx`包,通过利用配置对象,您可以将模型checkpoints转换为ONNX图。
|
||||
|
||||
有关更多详细信息,请参阅导出 🤗 Transformers 模型的[指南](../serialization)。
|
||||
|
||||
## ONNX Configurations
|
||||
|
||||
我们提供了三个抽象类,取决于您希望导出的模型架构类型:
|
||||
|
||||
* 基于编码器的模型继承 [`~onnx.config.OnnxConfig`]
|
||||
* 基于解码器的模型继承 [`~onnx.config.OnnxConfigWithPast`]
|
||||
* 编码器-解码器模型继承 [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
|
||||
|
||||
### OnnxConfig
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfig
|
||||
|
||||
### OnnxConfigWithPast
|
||||
|
||||
[[autodoc]] onnx.config.OnnxConfigWithPast
|
||||
|
||||
### OnnxSeq2SeqConfigWithPast
|
||||
|
||||
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
|
||||
|
||||
## ONNX Features
|
||||
|
||||
每个ONNX配置与一组 _特性_ 相关联,使您能够为不同类型的拓扑结构或任务导出模型。
|
||||
@ -47,7 +47,7 @@ rendered properly in your Markdown viewer.
|
||||
要将 🤗 Transformers 模型导出为 ONNX,首先需要安装额外的依赖项:
|
||||
|
||||
```bash
|
||||
pip install optimum-onnx
|
||||
pip install optimum[exporters]
|
||||
```
|
||||
|
||||
请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) 以查看所有可用参数,或者在命令行中查看帮助:
|
||||
@ -117,3 +117,53 @@ optimum-cli export onnx --model local_path --task question-answering distilbert_
|
||||
### 导出尚未支持的架构的模型
|
||||
|
||||
如果你想要为当前无法导出的模型添加支持,请先检查 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview) 是否支持该模型,如果不支持,你可以 [直接为 🤗 Optimum 贡献代码](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)。
|
||||
|
||||
### 使用 `transformers.onnx` 导出模型
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
`transformers.onnx` 不再进行维护,请如上所述,使用 🤗 Optimum 导出模型。这部分内容将在未来版本中删除。
|
||||
|
||||
</Tip>
|
||||
|
||||
要使用 `transformers.onnx` 将 🤗 Transformers 模型导出为 ONNX,请安装额外的依赖项:
|
||||
|
||||
```bash
|
||||
pip install transformers[onnx]
|
||||
```
|
||||
|
||||
将 `transformers.onnx` 包作为 Python 模块使用,以使用现成的配置导出检查点:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
|
||||
```
|
||||
|
||||
以上代码将导出由 `--model` 参数定义的检查点的 ONNX 图。传入任何 🤗 Hub 上或者存储与本地的检查点。生成的 `model.onnx` 文件可以在支持 ONNX 标准的众多加速引擎上运行。例如,使用 ONNX Runtime 加载并运行模型,如下所示:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer
|
||||
>>> from onnxruntime import InferenceSession
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
||||
>>> session = InferenceSession("onnx/model.onnx")
|
||||
>>> # ONNX Runtime expects NumPy arrays as input
|
||||
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
|
||||
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
||||
```
|
||||
|
||||
可以通过查看每个模型的 ONNX 配置来获取所需的输出名(例如 `["last_hidden_state"]`)。例如,对于 DistilBERT,可以用以下代码获取输出名称:
|
||||
|
||||
```python
|
||||
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
|
||||
|
||||
>>> config = DistilBertConfig()
|
||||
>>> onnx_config = DistilBertOnnxConfig(config)
|
||||
>>> print(list(onnx_config.outputs.keys()))
|
||||
["last_hidden_state"]
|
||||
```
|
||||
|
||||
要导出本地存储的模型,请将模型的权重和分词器文件保存在同一目录中(例如 `local-pt-checkpoint`),然后通过将 `transformers.onnx` 包的 `--model` 参数指向该目录,将其导出为 ONNX:
|
||||
|
||||
```bash
|
||||
python -m transformers.onnx --model=local-pt-checkpoint onnx/
|
||||
```
|
||||
|
||||
@ -125,23 +125,15 @@ def token_type_ids_mask_function(
|
||||
# If it's 1 for both query and key/value, we are in an image block
|
||||
# NOTE: static cache shape goes beyond input seq length, while token_type_ids.shape[1] == input seq length
|
||||
# Since vmap doesn't support `if statement` we workaround it with `torch.where`
|
||||
safe_q_idx = torch.where(q_idx < token_type_ids.shape[1], q_idx, 0)
|
||||
safe_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0)
|
||||
|
||||
token_type_ids_at_q_idx = token_type_ids[batch_idx, safe_q_idx]
|
||||
token_type_ids_at_q_idx = torch.where(q_idx < token_type_ids.shape[1], token_type_ids_at_q_idx, 0)
|
||||
|
||||
token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_kv_idx]
|
||||
safe_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0)
|
||||
token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_idx]
|
||||
token_type_ids_at_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], token_type_ids_at_kv_idx, 0)
|
||||
|
||||
image_group_ids_at_q_idx = image_group_ids[batch_idx, safe_q_idx]
|
||||
image_group_ids_at_q_idx = torch.where(q_idx < image_group_ids.shape[1], image_group_ids_at_q_idx, -1)
|
||||
|
||||
image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_kv_idx]
|
||||
image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_idx]
|
||||
image_group_ids_at_kv_idx = torch.where(kv_idx < image_group_ids.shape[1], image_group_ids_at_kv_idx, -1)
|
||||
|
||||
is_image_block = (token_type_ids_at_q_idx == 1) & (token_type_ids_at_kv_idx == 1)
|
||||
same_image_block = image_group_ids_at_q_idx == image_group_ids_at_kv_idx
|
||||
is_image_block = (token_type_ids[batch_idx, q_idx] == 1) & (token_type_ids_at_kv_idx == 1)
|
||||
same_image_block = image_group_ids[batch_idx, q_idx] == image_group_ids_at_kv_idx
|
||||
|
||||
# This is bidirectional attention whenever we are dealing with image tokens
|
||||
return is_image_block & same_image_block
|
||||
|
||||
@ -41,7 +41,7 @@ python run_audio_classification.py \
|
||||
--learning_rate 3e-5 \
|
||||
--max_length_seconds 1 \
|
||||
--attention_mask False \
|
||||
--warmup_steps 0.1 \
|
||||
--warmup_ratio 0.1 \
|
||||
--num_train_epochs 5 \
|
||||
--per_device_train_batch_size 32 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
@ -82,7 +82,7 @@ python run_audio_classification.py \
|
||||
--learning_rate 3e-4 \
|
||||
--max_length_seconds 16 \
|
||||
--attention_mask False \
|
||||
--warmup_steps 0.1 \
|
||||
--warmup_ratio 0.1 \
|
||||
--num_train_epochs 10 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
|
||||
@ -165,7 +165,7 @@ python run_mae.py \
|
||||
--lr_scheduler_type cosine \
|
||||
--weight_decay 0.05 \
|
||||
--num_train_epochs 800 \
|
||||
--warmup_steps 0.05 \
|
||||
--warmup_ratio 0.05 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 8 \
|
||||
--logging_strategy steps \
|
||||
|
||||
@ -308,19 +308,11 @@ def main():
|
||||
api = HfApi()
|
||||
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
|
||||
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
gitignore_path = os.path.join(args.output_dir, ".gitignore")
|
||||
content = ""
|
||||
if os.path.exists(gitignore_path):
|
||||
with open(gitignore_path, "r") as f:
|
||||
content = f.read()
|
||||
with open(gitignore_path, "a") as f:
|
||||
if content and not content.endswith("\n"):
|
||||
f.write("\n")
|
||||
if "step_*" not in content:
|
||||
f.write("step_*\n")
|
||||
if "epoch_*" not in content:
|
||||
f.write("epoch_*\n")
|
||||
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
||||
if "step_*" not in gitignore:
|
||||
gitignore.write("step_*\n")
|
||||
if "epoch_*" not in gitignore:
|
||||
gitignore.write("epoch_*\n")
|
||||
elif args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
@ -33,9 +33,9 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
|
||||
| [Quicktour of the library](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb) | A presentation of the various APIs in Transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/en/transformers_doc/quicktour.ipynb)| |
|
||||
| [Summary of the tasks](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb) | How to run the models of the Transformers library task by task |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| |
|
||||
| [Preprocessing data](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | How to use a tokenizer to preprocess your data |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)||
|
||||
| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)|
|
||||
| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb )|
|
||||
| [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | How to use the multilingual models of the library |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|
|
||||
| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| |
|
||||
| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)|[](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb )|
|
||||
| [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | How to use the multilingual models of the library |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|[](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|
|
||||
|
||||
### PyTorch Examples
|
||||
|
||||
@ -43,14 +43,14 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
|
||||
|
||||
| Notebook | Description | | | |
|
||||
|:----------|:-------------|:-------------|:-------------|------:|
|
||||
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
|
||||
| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
|
||||
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|[](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
|
||||
| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|[](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
|
||||
| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| |
|
||||
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
|
||||
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|
|
||||
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|
|
||||
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|
|
||||
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|[](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|
|
||||
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
|
||||
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| |
|
||||
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| |
|
||||
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| |
|
||||
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| |
|
||||
| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| |
|
||||
| [How to train a language model from scratch](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| |
|
||||
| [How to generate text](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| |
|
||||
@ -58,16 +58,16 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
|
||||
|
||||
#### Computer Vision[[pytorch-cv]]
|
||||
|
||||
| Notebook | Description | | | |
|
||||
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------|------:|
|
||||
| [How to fine-tune a model on image classification (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data using Torchvision and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)| [](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
|
||||
| [How to fine-tune a model on image classification (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | Show how to preprocess the data using Albumentations and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)| |
|
||||
| [How to fine-tune a model on image classification (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | Show how to preprocess the data using Kornia and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)| |
|
||||
| [How to perform zero-shot object detection with OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | Show how to perform zero-shot object detection on images with text queries | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| |
|
||||
| [How to fine-tune an image captioning model](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | Show how to fine-tune BLIP for image captioning on a custom dataset | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)| |
|
||||
| [How to build an image similarity system with Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | Show how to build an image similarity system | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)| |
|
||||
| [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)| |
|
||||
| [How to fine-tune a VideoMAE model on video classification](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | Show how to preprocess the data and fine-tune a pretrained VideoMAE model on Video Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)| |
|
||||
| Notebook | Description | | |
|
||||
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|
|
||||
| [How to fine-tune a model on image classification (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data using Torchvision and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
|
||||
| [How to fine-tune a model on image classification (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | Show how to preprocess the data using Albumentations and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)|
|
||||
| [How to fine-tune a model on image classification (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | Show how to preprocess the data using Kornia and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)|
|
||||
| [How to perform zero-shot object detection with OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | Show how to perform zero-shot object detection on images with text queries | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)|
|
||||
| [How to fine-tune an image captioning model](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | Show how to fine-tune BLIP for image captioning on a custom dataset | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)|
|
||||
| [How to build an image similarity system with Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | Show how to build an image similarity system | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)|
|
||||
| [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)|
|
||||
| [How to fine-tune a VideoMAE model on video classification](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | Show how to preprocess the data and fine-tune a pretrained VideoMAE model on Video Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)|
|
||||
|
||||
#### Audio[[pytorch-audio]]
|
||||
|
||||
|
||||
8
setup.py
8
setup.py
@ -104,7 +104,7 @@ _deps = [
|
||||
"deepspeed>=0.9.3",
|
||||
"diffusers",
|
||||
"dill<0.3.5",
|
||||
"evaluate>=0.4.6",
|
||||
"evaluate>=0.2.0",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"filelock",
|
||||
@ -117,7 +117,6 @@ _deps = [
|
||||
"importlib_metadata",
|
||||
"ipadic>=1.0.0,<2.0",
|
||||
"jinja2>=3.1.0",
|
||||
"jmespath>=1.0.1",
|
||||
"kenlm",
|
||||
"kernels>=0.10.2,<0.11",
|
||||
"librosa",
|
||||
@ -170,7 +169,7 @@ _deps = [
|
||||
"tiktoken",
|
||||
"timm<=1.0.19,!=1.0.18",
|
||||
"tokenizers>=0.22.0,<=0.23.0",
|
||||
"torch>=2.2",
|
||||
"torch>=2.2,<2.9",
|
||||
"torchaudio",
|
||||
"torchvision",
|
||||
"pyctcdecode>=0.4.0",
|
||||
@ -295,7 +294,7 @@ extras["num2words"] = deps_list("num2words")
|
||||
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
|
||||
extras["tiktoken"] = deps_list("tiktoken", "blobfile")
|
||||
extras["mistral-common"] = deps_list("mistral-common[opencv]")
|
||||
extras["chat_template"] = deps_list("jinja2", "jmespath")
|
||||
extras["chat_template"] = deps_list("jinja2")
|
||||
extras["testing"] = (
|
||||
deps_list(
|
||||
"pytest",
|
||||
@ -392,7 +391,6 @@ extras["torchhub"] = deps_list(
|
||||
extras["benchmark"] = deps_list("optimum-benchmark")
|
||||
|
||||
# OpenTelemetry dependencies for metrics collection in continuous batching
|
||||
# TODO: refactor this to split API and SDK; SDK and exporter should only be needed to run code that collects metrics whereas API is what people will need to instrument their code and handle exporter themselves
|
||||
extras["open-telemetry"] = deps_list("opentelemetry-api") + ["opentelemetry-exporter-otlp", "opentelemetry-sdk"]
|
||||
|
||||
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
|
||||
|
||||
@ -129,6 +129,8 @@ _import_structure = {
|
||||
],
|
||||
"loss": [],
|
||||
"modelcard": ["ModelCard"],
|
||||
# Models
|
||||
"onnx": [],
|
||||
"pipelines": [
|
||||
"AudioClassificationPipeline",
|
||||
"AutomaticSpeechRecognitionPipeline",
|
||||
|
||||
@ -51,7 +51,7 @@ def run(
|
||||
Optional[str],
|
||||
typer.Option(help="Name of the column to use as input. For multi columns input use 'column1,columns2'"),
|
||||
] = None,
|
||||
format: Annotated[FormatEnum, typer.Option(help="Input format to read from", case_sensitive=False)] = "pipe", # type: ignore
|
||||
format: Annotated[FormatEnum, typer.Option(help="Input format to read from", case_sensitive=False)] = "infer", # type: ignore
|
||||
device: Annotated[
|
||||
int, typer.Option(help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU.")
|
||||
] = -1,
|
||||
|
||||
@ -377,10 +377,14 @@ class Serve:
|
||||
help="Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`."
|
||||
),
|
||||
] = None,
|
||||
quantization: Annotated[
|
||||
Optional[str],
|
||||
typer.Option(help="Which quantization method to use. choices: 'bnb-4bit', 'bnb-8bit'"),
|
||||
] = None,
|
||||
load_in_8bit: Annotated[
|
||||
bool, typer.Option(help="Whether to use 8 bit precision for the base model - works only with LoRA.")
|
||||
] = False,
|
||||
load_in_4bit: Annotated[
|
||||
bool, typer.Option(help="Whether to use 4 bit precision for the base model - works only with LoRA.")
|
||||
] = False,
|
||||
bnb_4bit_quant_type: Annotated[str, typer.Option(help="Quantization type.")] = "nf4",
|
||||
use_bnb_nested_quant: Annotated[bool, typer.Option(help="Whether to use nested quantization.")] = False,
|
||||
host: Annotated[str, typer.Option(help="Interface the server will listen to.")] = "localhost",
|
||||
port: Annotated[int, typer.Option(help="Port the server will listen to.")] = 8000,
|
||||
model_timeout: Annotated[
|
||||
@ -420,7 +424,10 @@ class Serve:
|
||||
self.dtype = dtype
|
||||
self.trust_remote_code = trust_remote_code
|
||||
self.attn_implementation = attn_implementation
|
||||
self.quantization = quantization
|
||||
self.load_in_8bit = load_in_8bit
|
||||
self.load_in_4bit = load_in_4bit
|
||||
self.bnb_4bit_quant_type = bnb_4bit_quant_type
|
||||
self.use_bnb_nested_quant = use_bnb_nested_quant
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.model_timeout = model_timeout
|
||||
@ -1681,20 +1688,22 @@ class Serve:
|
||||
Returns:
|
||||
`Optional[BitsAndBytesConfig]`: The quantization config.
|
||||
"""
|
||||
if self.quantization == "bnb-4bit":
|
||||
if self.load_in_4bit:
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_use_double_quant=True,
|
||||
# For consistency with model weights, we use the same value as `dtype`
|
||||
bnb_4bit_compute_dtype=self.dtype,
|
||||
bnb_4bit_quant_type=self.bnb_4bit_quant_type,
|
||||
bnb_4bit_use_double_quant=self.use_bnb_nested_quant,
|
||||
bnb_4bit_quant_storage=self.dtype,
|
||||
)
|
||||
elif self.load_in_8bit:
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_8bit=True,
|
||||
)
|
||||
elif self.quantization == "bnb-8bit":
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
else:
|
||||
quantization_config = None
|
||||
|
||||
if quantization_config is not None:
|
||||
logger.info(f"Quantization applied with the following config: {quantization_config}")
|
||||
|
||||
return quantization_config
|
||||
|
||||
def process_model_name(self, model_id: str) -> str:
|
||||
@ -1741,6 +1750,7 @@ class Serve:
|
||||
revision=revision,
|
||||
trust_remote_code=self.trust_remote_code,
|
||||
)
|
||||
|
||||
dtype = self.dtype if self.dtype in ["auto", None] else getattr(torch, self.dtype)
|
||||
quantization_config = self.get_quantization_config()
|
||||
|
||||
@ -1748,15 +1758,19 @@ class Serve:
|
||||
"revision": revision,
|
||||
"attn_implementation": self.attn_implementation,
|
||||
"dtype": dtype,
|
||||
"device_map": self.device,
|
||||
"device_map": "auto",
|
||||
"trust_remote_code": self.trust_remote_code,
|
||||
"quantization_config": quantization_config,
|
||||
}
|
||||
if quantization_config is not None:
|
||||
model_kwargs["quantization_config"] = quantization_config
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
|
||||
architecture = getattr(transformers, config.architectures[0])
|
||||
model = architecture.from_pretrained(model_id, **model_kwargs)
|
||||
|
||||
if getattr(model, "hf_device_map", None) is None:
|
||||
model = model.to(self.device)
|
||||
|
||||
has_default_max_length = (
|
||||
model.generation_config.max_new_tokens is None and model.generation_config.max_length == 20
|
||||
)
|
||||
|
||||
@ -14,7 +14,7 @@ deps = {
|
||||
"deepspeed": "deepspeed>=0.9.3",
|
||||
"diffusers": "diffusers",
|
||||
"dill": "dill<0.3.5",
|
||||
"evaluate": "evaluate>=0.4.6",
|
||||
"evaluate": "evaluate>=0.2.0",
|
||||
"faiss-cpu": "faiss-cpu",
|
||||
"fastapi": "fastapi",
|
||||
"filelock": "filelock",
|
||||
@ -27,7 +27,6 @@ deps = {
|
||||
"importlib_metadata": "importlib_metadata",
|
||||
"ipadic": "ipadic>=1.0.0,<2.0",
|
||||
"jinja2": "jinja2>=3.1.0",
|
||||
"jmespath": "jmespath>=1.0.1",
|
||||
"kenlm": "kenlm",
|
||||
"kernels": "kernels>=0.10.2,<0.11",
|
||||
"librosa": "librosa",
|
||||
@ -77,7 +76,7 @@ deps = {
|
||||
"tiktoken": "tiktoken",
|
||||
"timm": "timm<=1.0.19,!=1.0.18",
|
||||
"tokenizers": "tokenizers>=0.22.0,<=0.23.0",
|
||||
"torch": "torch>=2.2",
|
||||
"torch": "torch>=2.2,<2.9",
|
||||
"torchaudio": "torchaudio",
|
||||
"torchvision": "torchvision",
|
||||
"pyctcdecode": "pyctcdecode>=0.4.0",
|
||||
|
||||
@ -919,7 +919,6 @@ class ContinuousBatchingManager:
|
||||
if result is not None:
|
||||
yield result
|
||||
|
||||
# FIXME: stop iteration when request status is finished?
|
||||
def request_id_iter(self, request_id: str) -> Generator[GenerationOutput]:
|
||||
"""Iterate over results matching a specific request id as they become available."""
|
||||
request_cancelled = False
|
||||
|
||||
@ -27,6 +27,7 @@ from ...utils.metrics import traced
|
||||
logger = logging.getLogger("ContinuousBatchingLogger")
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_device_and_memory_breakdown() -> tuple[torch.device, int, int, int]:
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
|
||||
@ -442,6 +442,75 @@ def normalize(
|
||||
return image
|
||||
|
||||
|
||||
def unnormalize(
|
||||
image: Union[np.ndarray, "torch.Tensor"],
|
||||
mean: Union[float, Collection[float]],
|
||||
std: Union[float, Collection[float]],
|
||||
data_format: Optional[ChannelDimension] = None,
|
||||
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Inverse of `normalize`:
|
||||
|
||||
image = image * std + mean
|
||||
|
||||
Args:
|
||||
image (`np.ndarray` or `torch.Tensor`):
|
||||
The image to unnormalize.
|
||||
mean (`float` or `Collection[float]`):
|
||||
The mean to use for unnormalization.
|
||||
std (`float` or `Collection[float]`):
|
||||
The standard deviation to use for unnormalization.
|
||||
data_format (`ChannelDimension`, *optional*):
|
||||
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
||||
input_data_format (`ChannelDimension`, *optional*):
|
||||
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
||||
|
||||
Returns:
|
||||
`np.ndarray`: The unnormalized image.
|
||||
"""
|
||||
is_torch_input = isinstance(image, torch.Tensor)
|
||||
if is_torch_input:
|
||||
image = image.detach().cpu().numpy()
|
||||
elif not isinstance(image, np.ndarray):
|
||||
raise TypeError("image must be a numpy array or a torch tensor")
|
||||
|
||||
if input_data_format is None:
|
||||
input_data_format = infer_channel_dimension_format(image)
|
||||
|
||||
if not np.issubdtype(image.dtype, np.floating):
|
||||
image = image.astype(np.float32)
|
||||
|
||||
channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
|
||||
num_channels = image.shape[channel_axis]
|
||||
|
||||
if isinstance(mean, Collection):
|
||||
if len(mean) != num_channels:
|
||||
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
||||
else:
|
||||
mean = [mean] * num_channels
|
||||
mean = np.array(mean, dtype=image.dtype)
|
||||
|
||||
if isinstance(std, Collection):
|
||||
if len(std) != num_channels:
|
||||
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
||||
else:
|
||||
std = [std] * num_channels
|
||||
std = np.array(std, dtype=image.dtype)
|
||||
|
||||
if input_data_format == ChannelDimension.LAST:
|
||||
image = image * std + mean
|
||||
else:
|
||||
shape = [1] * image.ndim
|
||||
shape[channel_axis] = num_channels
|
||||
mean = mean.reshape(shape)
|
||||
std = std.reshape(shape)
|
||||
image = image * std + mean
|
||||
|
||||
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
||||
return image
|
||||
|
||||
|
||||
def center_crop(
|
||||
image: np.ndarray,
|
||||
size: tuple[int, int],
|
||||
|
||||
@ -314,14 +314,13 @@ def _load_state_dict_into_zero3_model(model_to_load, state_dict):
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
# Parameters of module and children will start with prefix. We can exit early if there are none in this
|
||||
# state_dict
|
||||
if is_deepspeed_zero3_enabled():
|
||||
if is_deepspeed_zero3_enabled() and len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||||
import deepspeed
|
||||
|
||||
# In sharded models, each shard has only part of the full state_dict, so only gather
|
||||
# parameters that are in the current state_dict.
|
||||
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
|
||||
params_to_gather = [named_parameters[k] for k in named_parameters if k in state_dict]
|
||||
|
||||
params_to_gather = [named_parameters[k] for k in state_dict if k in named_parameters]
|
||||
if len(params_to_gather) > 0:
|
||||
# because zero3 puts placeholders in model params, this context
|
||||
# manager gathers (unpartitions) the params of the current layer, then loads from
|
||||
|
||||
@ -51,13 +51,10 @@ try:
|
||||
)
|
||||
},
|
||||
"RMSNorm": {
|
||||
"cuda": {
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="kernels-community/liger_kernels",
|
||||
layer_name="LigerRMSNorm",
|
||||
# revision="pure-layer-test",
|
||||
),
|
||||
},
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/liger_kernels",
|
||||
layer_name="LigerRMSNorm",
|
||||
),
|
||||
"rocm": {
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="kernels-community/liger_kernels",
|
||||
|
||||
@ -628,7 +628,7 @@ def maybe_load_adapters(
|
||||
**adapter_kwargs,
|
||||
):
|
||||
if pretrained_model_name_or_path is None or not is_peft_available():
|
||||
return None, pretrained_model_name_or_path, adapter_kwargs
|
||||
return None, pretrained_model_name_or_path
|
||||
|
||||
token = download_kwargs.get("token")
|
||||
|
||||
@ -651,15 +651,13 @@ def maybe_load_adapters(
|
||||
|
||||
_adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)
|
||||
|
||||
token_from_adapter_kwargs = adapter_kwargs.pop("token", None)
|
||||
|
||||
if _adapter_model_path is None:
|
||||
_adapter_model_path = find_adapter_config_file(
|
||||
pretrained_model_name_or_path,
|
||||
cache_dir=download_kwargs.get("cache_dir"),
|
||||
force_download=bool(download_kwargs.get("force_download", False)),
|
||||
proxies=download_kwargs.get("proxies"),
|
||||
token=token or token_from_adapter_kwargs,
|
||||
token=token,
|
||||
revision=download_kwargs.get("revision"),
|
||||
local_files_only=bool(download_kwargs.get("local_files_only", False)),
|
||||
subfolder=download_kwargs.get("subfolder", ""),
|
||||
@ -672,4 +670,4 @@ def maybe_load_adapters(
|
||||
_adapter_model_path = pretrained_model_name_or_path
|
||||
pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
|
||||
|
||||
return _adapter_model_path, pretrained_model_name_or_path, adapter_kwargs
|
||||
return _adapter_model_path, pretrained_model_name_or_path
|
||||
|
||||
@ -752,6 +752,8 @@ def extract_hyperparameters_from_trainer(trainer):
|
||||
hyperparameters["optimizer"] = f"Use {optimizer_name} and the args are:\n{optimizer_args}"
|
||||
|
||||
hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value
|
||||
if trainer.args.warmup_ratio != 0.0:
|
||||
hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio
|
||||
if trainer.args.warmup_steps != 0.0:
|
||||
hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps
|
||||
if trainer.args.max_steps != -1:
|
||||
|
||||
@ -4353,7 +4353,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
|
||||
if adapter_kwargs is None:
|
||||
adapter_kwargs = {}
|
||||
|
||||
_adapter_model_path, pretrained_model_name_or_path, adapter_kwargs = maybe_load_adapters(
|
||||
_adapter_model_path, pretrained_model_name_or_path = maybe_load_adapters(
|
||||
pretrained_model_name_or_path,
|
||||
download_kwargs_with_commit,
|
||||
**adapter_kwargs,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user